

Diploma project

EVOLVING SWITCH NEURON NETWORKS

Christodoulos Hajdichristodoulou

University of Cyprus

Department of Computer Science

May 2021

1

University of Cyprus

Computer Science Department

EVOLVING SWICH NEURON NETWORKS

Christodoulos Hadjichristodoulou

Supervisors:

Dr. Chris Christodoulou

Dr. Vassilis Vassiliades

This diploma project is submitted to the department for partial fulfillment of the requirements

for the degree of Bachelor of Science at the University of Cyprus

May 2021

2

Acknowledgments

This whole undertaking would be impossible to get to this stage without the supervision

of Dr. Chris Christodoulou. The continuous support and knowledge he has provided throughout this past

year have proven to be extremely useful in my endeavors.

I am also deeply thankful to Dr. Vassilis Vassiliades, who has guided me through some of the hardest parts

of this project and was always happy to share his insights and expertise on the subject.

3

ABSTRACT

Neural networks have seen widespread use during the past few decades for solving a diverse array of

problems, both in the field of computer science as well as several other fields, such as biology and finance.

Many researchers have devoted a lot of effort into studying these networks and brewing novel ideas in

order to improve their performance. One of those novelties is the switch neuron, a type of neuron with a

unique behavior pattern that will be the main feature of this diploma thesis.

In this project an effort is made to automate the process of finding the optimal architecture and weights for

a network containing switch neurons, through the utilization of already existing modern neuroevolutionary

algorithms, specifically the NeuroEvolution of Augmenting Topologies algorithm and novelty search. The

success of this process is then gauged by comparing the performance of the resulting networks at a

reinforcement learning environment with that of networks which were manually designed to be optimal.

The reinforcement learning tasks used are the T-Maze and the binary association task.

The results of this experiment are mixed. For the simplest one of the tasks – the T-Maze - the evolutionary

algorithms were able to find an optimal network within a few generations and with a less complex

architecture than the ones designed by hand. However, for the rest of the problems both algorithms struggle

to evolve an optimal network even after a substantial amount of evaluations and reaching a high level of

complexity in the population’s architectures.

4

Contents

1 Introduction ... 6

2 Literature Review .. 9

2.1 Switch neurons .. 9

2.1.1 Context .. 9

2.1.2 The switch neuron ... 9

2.1.3 The switch module .. 11

2.2 NEAT .. 12

2.2.1 Genetic Algorithms .. 12

2.2.2 Neuroevolution of Augmenting Topologies .. 13

2.3 Map based encoding ... 14

2.4 Novelty search ... 15

2.4.1 The novelty metric ... 16

2.4.2 Novelty in the T-Maze domain .. 16

3 Design and Implementation .. 18

3.1 Bird’s eye view ... 18

3.2 Modelling the networks .. 18

3.3 Learning environments ... 20

3.3.1 The T-Maze .. 20

3.3.2 Binary association task .. 21

3.4 Evolutionary algorithms .. 22

3.4.1 NEAT .. 22

3.4.2 Novelty search ... 23

3.5 Mapping genotypes to phenotypes .. 24

3.5.1 Direct encoding ... 24

3.5.2 Map-based encoding ... 25

3.5.3 The agent class .. 25

5

3.6 Wrapper and experiments .. 26

4 Results and Discussion .. 28

5 Conclusion ... 37

6

1 Introduction

In my thesis, I expand on the work done by Vassiliades and Christodoulou (2016) on a novel type of

neuron proposed by them, the switch neuron. The switch neuron aims to provide new utility to artificial

neural networks by propagating signals in a unique way which is explained in detail in section 2.1. In

their work, Vassiliades and Christodoulou (2016) successfully used this type of neuron to design

artificial neural networks that solve the T-Maze problem and the binary association problem in a

standard reinforcement learning environment. The task of this project is to expand genetic algorithms for

neural networks – specifically NeuroEvolution of Augmenting Technologies (NEAT) (Stanley &

Miikkulainen, 2002) – along with certain network encoding schemes and alternative search methods

with the ability to use switch neurons in their networks’ architectures. The two encoding schemes used

are the direct encoding (the one NEAT uses by default) and the map-based encoding (Doncieux, Mouret,

Pinville, Tonelli, & Girard, 2011), which introduces the idea of creating neural networks with maps of

neurons as the building block instead of isolated neurons. The novelty search algorithm (Lehman &

Stanley, 2008) is also incorporated in our experiments, which is a search method that disregards the

objective function and focuses solely on discovering novel patterns . Our goal with this approach is to

remove the necessity for a designer to manually construct the network’s architecture, which could

possibly be very time-consuming. We judge the viability of the evolved networks by testing them on the

tasks mentioned above and comparing their results with those of neural networks designed by hand.

The first pillar upon which my work stands on is reinforcement learning. Reinforcement learning is an

area of machine learning concerned with how intelligent agents ought to take actions in an environment

in order to maximize the cumulative reward. A basic reinforcement learning agent interacts with its

environment in discrete time steps. At each time step, the agent receives the current state and reward. It

then chooses an action from the set of available actions, which is subsequently sent to the environment.

The environment moves to a new state and the reward associated with the transition is determined. The

goal of a reinforcement learning agent is to learn a policy which maximizes the expected cumulative

reward. Figure 1 illustrates a bird’s eye view of the described framework. An interested reader is referred

to Reinforcement Learning: A Survey (Kaelbling, Littman, & Moore, 1996) for a more in-depth

introduction.

7

Figure 1: A basic representation of the reinforcement learning framework

Neural networks are commonly used as agents in a reinforcement learning environment, aside from all

their numerous other applications. Neural networks are a set of algorithms, modeled loosely after the

human brain, that are designed to recognize patterns. A network’s primary components are neurons, which

act as computation units and work together to produce the final output. Neurons are connected with each

other and a weight value is assigned to each connection. This weight determines how much influence the

output of one neuron will have on the output of the other. By adjusting the weights of these connections in

respect to some desired output, the network is essentially learning – approximating the function between

the inputs and the outputs. A simple neural network is depicted in figure 2.

Figure 2: An illustration of an arbitrary neural network.

The third major theme in this project are genetic algorithms and more specifically neuro-evolution. A

genetic algorithm is a search heuristic that is inspired by Charles Darwin’s theory of natural evolution.

This algorithm reflects the process of natural selection where the fittest individuals are selected for

reproduction in order to produce offspring for the next generation. For this project, we focus on algorithms

designed to evolve neural networks. Conventional learning is taking place with a fixed topology and the

network tries to adapt its weights to represent the data provided to it as best as possible. A genetic

8

algorithm, however, is also tasked with figuring out the optimal topology for the given problem, allowing

for automatic discovery of the topology rather relying on the experience and insights of the designer. A

more detailed introduction to genetic algorithms would be Genetic Algorithms: Concepts and Applications

(Man, Tang, & Kwong, 1996)

In the following pages, the central components the experiment (switch neurons, NEAT, map-based

encoding and novelty search) are discussed in detail through an overview of the relevant literature. In

section 3 the specifics of the implementation of these concepts are presented as well as a few points where

some extra attention is needed so some traps can be avoided. The procedure needed to recreate the

experiments is also explained. Further down, in section 4, the results of the various experiments we have

run are and our interpretation of them are presented.

9

2 Literature Review

2.1 Switch neurons

As mentioned above, the switch neuron plays a central role in this project. In this section, the definition of

the switch neuron is introduced, as described by Vassiliades and Christodoulou (2016).

2.1.1 Context

The usual formulation of an artificial neuron involves the integration of incoming signals and parameters

through an accumulation or integration function resulting in the neuron’s activity. This activity is then fed

through an activation function resulting in the neuron’s output. In order to define the switch neuron model,

the following extensions to the traditional model are adopted (Soltoggio, Bullinaria, Mattiussi, Durr, &

Floreano, 2008) (Vassiliades & Christodoulou, 2016):

• A new type of connection is introduced, the modulatory. This type of connection allows for

neurons to emit modulatory signals which affect the synaptic plasticity of a target neuron.

• Each neuron has an internal value for a modulatory activation in addition to its standard activation.

In this context, a neuron consists of two parts that are responsible for the calculation and storage of its

standard activation and modulatory activation:

ni := ⟨si
(std) , si

(mod) ⟩

where si
(std) and si

(mod) are tuples that hold the parameters for computing and storing the standard output and

the modulatory output of the neuron respectively.

2.1.2 The switch neuron

The core concept of switch neurons is that, in contrast with traditional neurons, the incoming

signals are not integrated, but instead only one is allowed to be propagated forward, while all the others

are blocked (Vassiliades & Christodoulou, 2016). Modulatory signals change the level of modulatory

activity of the switch neuron and the level of modulatory activity determines from which of its incoming

connections the signal is allowed to be propagated forward.

10

The integration function of the switch neuron calculates its standard activation as

ai
(std) (t) = wji · yi

(std) (t − dji)

where ai
(std) (t) is the standard activation of the switch neuron at time t, yi

(std) (t) is the standard output of the

jth presynaptic node at time t, wji is the weight of the (standard) connection and dij is the delay of the

connection. The jth index is selected according to:

j = ⌊n · yi
(mod)(t)⌋

where n ∈ N+ is the number of incoming standard connections and yi
(mod) (t) ∈ [0, 1) is the modulatory

output of switch neuron i at time t. This equation effectively partitions the range of modulatory output [0,

1) into n homogeneous intervals, with the size of each interval being equal to 1/n. It also implies an ‘order

relation’ between the connection indices, i.e., connection k comes after connection k − 1, meaning that if

currently connection k – 1 is selected and the next modulatory output is at most 1/n greater than the current,

then the next selected connection will be connection k. This means that the modulatory signals indirectly

decide which signal is propagated by the switch neuron by changing its modulatory activity. The switch

neuron’s modulatory activity is kept in the range [0,1) by implementing a cyclic pattern in the space of

indices. Figure 3 shows how the level of modulatory activation of the switch neuron affects its decision.

Figure 3. Modulatory “wheel”. Redrawn from Vassiliades & Christodoulou (2016)

11

2.1.3 The switch module

The switch module is a structure of three neurons which allows for switch neurons to modulate other

switch neurons and its design concept is presented in figure 4.

Figure 4. The switch module. Redrawn from Vassiliades & Christodoulou (2016) .

The switch module consists of a switch neuron (as described above), a modulating neuron and an

integrating module. The ‘‘modulating neuron’’ is responsible for altering the level of modulatory

activation of the switch neuron and for this reason it connects to the switch neuron with a modulatory

connection (shown by a dashed line). The ‘‘integrating neuron’’ integrates the modulatory signals emitted

from the modulating neuron, using a standard connection that has the same weight as the modulatory one,

which is equal to 1/n, and fires when its activation exceeds a threshold value; this neuron is responsible for

connecting different switch modules/neurons (Vassiliades & Christodoulou, 2016). Effectively, this setup

makes the switch module able to fire both an activation signal (from the switch neuron itself) and a

modulatory signal (from the integrating neuron) at the same time.

The modulating neuron uses the weighted-sum integration function and the linear activation function for

calculating its standard activation and standard output respectively. Therefore,

its (standard) output is computed as:

𝑦(𝑠𝑡𝑑)(𝑡) = 𝑎𝑖
(𝑠𝑡𝑑) (𝑡) = ∑ 𝑤𝑖𝑗 ∗ 𝑦𝑗

(𝑠𝑡𝑑) ∗ (𝑡 − 𝑑𝑗𝑖)

𝑤𝑖𝑗 ∈ 𝑠𝑡𝑑

12

The integrating neuron uses a perfect integrator as the integration function and the linear activation

function. When the output is not zero, i.e., 1 or −1, the activation of the neuron is reset to a baseline value,

b, which is set to 0 in all experiments of this study.

𝑎𝑖
(𝑠𝑡𝑑) (𝑡) = 𝑎𝑖

(𝑠𝑡𝑑) ∗ (𝑡 − 1) + ∑ 𝑤𝑖𝑗 ∗ 𝑦𝑗
(𝑠𝑡𝑑) ∗ (𝑡 − 𝑑𝑗𝑖)

𝑤𝑖𝑗 ∈ 𝑠𝑡𝑑

𝑦𝑖
(𝑠𝑡𝑑)(𝑡) = {

1, 𝑎𝑖
(𝑠𝑡𝑑) (𝑡) ≥ 𝜃

−1, 𝑎𝑖
(𝑠𝑡𝑑) (𝑡) < 𝜃

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where θ > 0 is a threshold value that is set to 1 in all experiments.

2.2 NEAT

2.2.1 Genetic Algorithms

As described above, genetic algorithms are search based optimization techniques that reflect the process

of natural selection where the fittest individuals are selected for reproduction. In this section the basic

framework in which this family of algorithms operates is laid.

The process begins with a population of (random) candidate solutions to the problem we are trying to

optimize – these are referred to as chromosomes. Each individual consists of a number of genes, with each

gene controlling one parameter of the problem. The values of the parameters are encoded in the context of

a specific alphabet to enable meaningful crossovers between genes, with the most usual encoding being a

binary string.

The fitness function evaluates the performance of each gene with respect to the task at hand. Thus, a higher

fitness score assigned to a chromosome means the solution encoded within it is better. After every

chromosome is evaluated, a subset of the population is selected in pairs for reproduction, with the

probability of selection being proportional to the fitness score.

13

Each pair of selected chromosomes produces one or more offspring (depending on the algorithm),

primarily through the means of crossover. The process of crossover involves exchanging certain genes

between the parents, resulting in new chromosomes which are added to the population. New offspring are

also subjected to mutation with a low probability. When a chromosome mutates, some genes are altered

randomly. Mutation in genetic algorithms aims to maintain diversity and introduce novel genes to the gene

pool. The evaluation – reproduction cycle is repeated until one of the candidate solutions satisfies our

fitness criteria or the population converges, i.e. no further optimization is possible.

2.2.2 Neuroevolution of Augmenting Topologies

First introduced in (Stanley & Miikkulainen, 2002) ,Neuroevolution of Augmenting Topologies (NEAT

for short) is such a genetic algorithm that is specifically tuned for evolving neural networks, both their

weights and structure. From this point on, we refer to the individuals in the population as genomes or

genotypes and the networks that correspond to them phenotypes.

NEAT uses a direct scheme for encoding neural networks into genotypes. Each genome includes a list of

node genes and a list of connection genes, each of which refers to two node genes being connected. A

node gene describes a neuron in the network: its bias, integration function and activation function. Each

connection gene specifies the in-node, the out-node, the weight of the connection, whether the connection

gene is expressed (an enable bit), and an innovation number, which allows finding corresponding genes

during crossover. Figure 5 shows the mapping from genotype to phenotype.

Figure 5. Genotype to phenotype mapping. Redrawn from Stanley & Miikkulainen (2002).

14

The initial population consists of neural networks with minimal topologies, that is without any hidden

nodes, and grows more and more complex with each generation. The aim behind this decision is to

minimize the initial dimensionality of the search space and thus speed up the evolutionary process.

Mutation in NEAT can change both connection weights and network structures. Connection weights

mutate with a small probability over a gaussian function, with a constant mean and standard deviation,

multiplied by a mutation factor. Structural mutations, which expand the genome, occur in two ways: add

connection and add node. Figure 6 shows how each operation affects the genotype and the phenotype.

Figure 6. Add connection and add node. Redrawn from Stanley & Miikkulainen (2002).

The NEAT algorithm has been used with success widely, especially in combination with reinforcement

learning. The applications range from researchers tackling classic problems in the field such as pole

balancing to hobbyists using it to evolve agents capable of playing video games. It is also easily accessible

since there exist libraries that implement it for many popular programming languages. These qualities

portray NEAT as a promising tool and a useful ally in our endeavors.

2.3 Map based encoding

The map-based encoding is an indirect encoding scheme used for evolving neural networks. In Doncieux,

Mouret, Pinville, Tonelli, & Girard (2011) a map is described as 1D or a 2D grid of identical neurons and

the main idea behind this approach is connecting these maps with regular connection schemes. This allows

such neural networks to scale up to larger maps while maintaining the same overall structure.

15

The aim of the designers of this scheme was to improve the quality of the neural networks resulting from

neuroevolution through imitating better biological systems (brains), which rely on repetition and

combination of hierarchically organized modules.

Connection schemes between maps are restricted to three cases, as depicted in figure 7: one to one

connection with constant weights, one to all with constant weights and one to all with weights following

a Gaussian distribution (although for this project the Gaussian is substituted with a custom function which

better fits our needs).

Figure 7: The three connection schemes of map-based encoding, in order: one-to-one,

one-to-all with constant weights and one-to-all with the gaussian distribution.

This encoding can be easily adapted to be used in conjunction with the NEAT algorithm by extending the

parameters that node and connection genes control. For node genes, we add a parameter which indicates

whether a node should be scaled to a map or not and for connection genes we allow evolution to determine

the connection scheme between two maps.

2.4 Novelty search

Novelty search is a new method of achieving optimal solutions with neuro-evolution introduced by

Lehman & Stanley (2008) and is based on the radical idea of ignoring the objective. The idea is to identify

novelty as a proxy for stepping stones. That is, instead of searching for a final objective, the learning

method is rewarded for finding any behavior whose functionality is significantly different from what has

been discovered before. Thus, instead of an objective function, this algorithm employs a novelty metric.

16

That way, no attempt is made to measure overall progress. In effect, such a process gradually accumulates

novel behaviors.

2.4.1 The novelty metric

There are many potential ways to measure novelty by analyzing and quantifying behaviors to characterize

their differences. Importantly, like the fitness function, this measure must be fitted to the domain. The way

this is achieved is by defining a behavioral descriptor for the problem we are trying to optimize, a compact

representation, that is, of the way an agent behaves in the environment. Then, using these behavioral

descriptors we can measure how far apart two agents are in the behavioral space.

The novelty of a newly generated individual is computed with respect to the observed behaviors of an

archive of past individuals whose behaviors were highly novel when they originated. The aim is to

characterize how far away the new individual is from the rest of the population and its predecessors in

novelty space, i.e. the space of unique behaviors. A good metric should thus compute the sparseness at

any point in the novelty space. Areas with denser clusters of visited points are less novel and therefore

rewarded less. A simple measure of sparseness at a point is the average distance to the k-nearest neighbors

of that point, where k is a fixed parameter that is determined experimentally. Intuitively, if the average

distance to a given point’s nearest neighbors is large then it is in a sparse area; it is in a dense region if the

average distance is small. The sparseness p at point x is given by:

𝑝(𝑥) =
1

𝑘
 ∑ 𝑑𝑖𝑠𝑡(𝑥, 𝑚𝑖)

𝑘

𝑖=1

where mi is the ith-nearest neighbor of x with respect to the distance metric.

If novelty is sufficiently high at the location of a new individual, i.e. above some minimal threshold, then

the individual is entered into the permanent archive that characterizes the distribution of prior solutions in

novelty space.

2.4.2 Novelty in the T-Maze domain

The T-Maze is a domain of problems designed to evaluate reinforcement learning agents and it is described

by Soltoggio, Bullinaria, Mattiussi, Durr, and Floreano (2008). The single T-Maze consists of two arms

that either contain a high or low reward (illustrated in figure 8). The agent begins at the bottom of the maze

17

and its goal is to navigate to the reward position and return home. This procedure is repeated many times

during the agent’s lifetime. The goal of the agent is to maximize the amount of reward collected over

deployments, which requires it to memorize the position of the high reward in each deployment. When

the position of the reward sometimes changes, the agent should alter its strategy accordingly to explore the

other arm of the maze in the next trial.

Figure 8: The single T-Maze

The behavior of an agent in the T-Maze domain is characterized by a series of trial outcomes. It is necessary

to include multiple trials because an agent that learns can only be distinguished from one that does not by

observing its behavior before and after the reward switch. Each trial outcome is characterized by two

values: (1) the amount of reward collected (high, low, none) and (2) whether the agent crashed. These

outcomes are assigned different distances to each other depending on how similar they are. In particular,

an agent that collects the high reward and returns home successfully without crashing (HN) should be

more similar to an agent that collects the low reward and also returns home (LN) than to one that crashes

without reaching any reward location (NY). The novelty distance metric is ultimately computed by

summing the distances between each trial outcome of two individuals over all deployments.

In their experiments, Risi, Vanderbleek, Hughes, & Stanley (2009) found out that novelty search

outperformed the classic fitness-based search, in the sense that it was able to evolve optimal agents in a

shorter time span.

18

3 Design and Implementation

3.1 Bird’s eye view

Figure 9: Overview of the flow of an evolutionary experiment

On the highest abstraction level, the flow of an evolutionary experiment is simple and can be described in

a couple of steps. To start off, the evolutionary algorithm (NEAT or novelty search) initializes the

population of genotypes. Then we map these genotypes to the phenotypes of the type of neural networks

using the encoding schemes we designated. In this project we conduct experiments with two schemes: the

direct encoding and the map-based encoding, both enhanced with switch neurons. After building the

neural networks, we expose each one of them to our selected reinforcement learning environment in order

to evaluate their fitness, or in the case of novelty search to extract their behavioral descriptors. Finally, the

evolutionary algorithm selects the genomes that will reproduce and pass their genes to the next generation

based on the metric score of each one. The process is repeated until either a genome reaches the maximum

fitness for a task or the maximum number of generations has been reached.

3.2 Modelling the networks

The aim of building a network with switch neurons, of course, is not for the whole network to consist of

switch neurons, but rather have them cooperate with “traditional” neurons in order to enable more complex

behavior. Unfortunately, finding a package that suits our needs proved to be challenging, either because

19

some of them did not allow for arbitrary connection schemes, which is essential, or were not easily

extendable. As such, it was deemed necessary to create a neural network definition by code tailored to our

needs. The main concepts of the implementation are discussed below, while the more specific parts can

be studied from the code listed under Appendix A, and specifically the switch_neuron.py file (page A-47).

Figure 10: How the network implementation is organized

Figure 10 showcases the structure of the network implementation. A switch neuron network is composed

of neurons, which in turn are defined by their standard and modulatory parts. A neuron can be a traditional

neuron, in which case it only has a standard part, an integrating neuron or a switch neuron. Integrating and

switch neurons are just substantiations of their superclass with some of the parameters pre-defined and

with some exclusive methods to accommodate for their expected functionality.

Arbitrary connection structure unfortunately means that computations for the activation of the neural

network are hard to vectorize and be implemented with matrix multiplication as would be the case with

feedforward networks. Thus, each neuron contained in the network is activated in a serial manner in the

order they are presented in the container of the nodes (a simple list), first activating the modular part of the

20

neuron and then the standard part. At this point we are not concerned with checking if the order of

activation is correct since this is taken care of during the creation of the network.

3.3 Learning environments

We employ two major reinforcement learning environments for evaluating the neural networks: the T-

Maze and the binary association task. Both are developed with the help of OpenAI Gym

(https://gym.openai.com/), a toolkit for standardization of the definition of an environment. It comes with

several example environments ready to go but also offers the ability to developers to define their own

environments through a specific interface.

For every environment defined with OpenAI Gym, an episode has a very simple and standard structure:

the environment provides an “observation” to the agent (i.e. the state) and the agent returns one of the

possible actions. Then the environment makes any necessary alterations to the state and presents it back to

the agent along with the corresponding reward, repeating the cycle until the episode reaches a termination

condition. An important implementation detail is that, contrary to evaluating traditional networks, when

dealing with switch neuron networks it is advised to activate the network twice with the same input, first

without the reward and then with it. This allows for the network to calibrate its state in case of a negative

reward and prepare for the next one.

3.3.1 The T-Maze

For the implementation of the T-Maze environment, the gym-minigrid package

(https://github.com/maximecb/gym-minigrid) is also used, which is an extension of OpenAI Gym that

specializes on grid-like environments where the agent needs to reach a goal.

The state for this domain is expressed as a tuple of three boolean values in this order:

1. True if the agent is at the starting position, else false.

2. True if the agent is at a junction, else false.

3. True if the agent is at a maze end, else false.

21

However, because the inputs to the networks are floats, we map the true value to 1 and the false value to

0. The possible rewards at each step are the following:

• -0.4 if the agent crashes on a wall

• -0.3 if the agent fails to return to the starting position

• 0.2 if it finds the low reward

• 1 if it finds the high reward

The reward for failing to return the starting position does not apply for the versions of the environment

where the episode ends when the agent reaches a maze end. The possible actions at each step are: turn left,

turn right and move forward. Because the output of the network is also a float, we map the ranges of

possible outputs to these discrete actions. In particular, an output of less than -0.33 maps to turning left,

more than 0.33 to turning right and an output in between to moving forward.

With this setup, we define three versions of the T-Maze environment:

• The homing T-Maze (meaning the agent has to return to the starting position after it reaches a

maze end).

• The non-homing T-Maze

• The double T-Maze, a variation where after the first turning point there is a second one before the

agent reaches a maze end. So, essentially, there are four possible maze ends and the agent needs

to decide twice in which direction to turn.

In order to be able to judge the agent’s adaptability, the evaluation should consist of multiple episodes –

this parameter is configurable at execution time. After a random but restricted number of episodes, the

high reward changes its location. An evaluation like this is repeated a few times to punish agents that do

not fit our criteria but “got lucky” during the first evaluation. For the experiments, four such evaluations

are being carried out for each network.

3.3.2 Binary association task

The general setting in the binary association task is to make an agent learn the random associations

between binary input patterns and binary output patterns based on feedback that comes in the form of a

reward signal. These associations can be re-randomized at certain points in time, requiring from the agent

22

to unlearn the previous associations and re-learn the new ones. The number of inputs is n and the number

of outputs is m. There are four types of association problems: (i) one-to-one, where each of the n inputs

needs to be associated with one of the m outputs, (ii) one-to-many, where each of the n inputs needs to be

associated with one of the 2m possible output patterns, (iii) many-to-one, where each of the 2n input patterns

needs to be associated with one of the m outputs, and (iv) many-to-many, where each of the 2n input

patterns needs to be associated with one of the 2m possible output patterns. Therefore, in each case, all

possible input vectors need to be associated with some output vectors. Although all of the variations are

implemented, evolutionary experiments were run only for the one-to-one association problem because the

hand-crafted solutions for the rest use some features that are not supported in the current neural network

implementation and relying on the algorithm to discover new alternatives to them was deemed excessive.

The state of this environment at a time step is simply a tuple containing the n inputs – a tuple of 1’s and

0’s. The possible actions an agent can take are the set of the possible outputs. However, we do not evolve

agents with m outputs but rather one, in order to reduce the complexity. Thus, the ranges of the possible

outputs are mapped to the possible actions, similarly to above. For example, for the n=3, m=3 one-to-one

variation, a value of more than 3.3 maps to (1,0,0), less that -3,3 to (0,0,1) and anything in between to

(0,1,0). The environment awards a reward of 1 to the agent if the guessed association is correct and 0

otherwise.

3.4 Evolutionary algorithms

3.4.1 NEAT

As mentioned above, there exist libraries of code with NEAT implementations for many popular

programming languages. My language of choice is python, because it offers many useful tools in its

standard library and it speeds up development. The package used for this project is neat-python , which is

open source and available on github (https://github.com/CodeReclaimers/neat-python). It was developed

by CodeReclaimers and is under the BSD-3-Clause License.

Thankfully, the package is easily extendable. In order allow for NEAT to evolve networks with switch

neurons, all that was needed was to define a custom type of genes for both nodes and connections that

inherit a basic gene defined in the library and programmatically add to it all the evolved parameters. The

same course of action was taken regarding the map-based encoding integration with NEAT.

23

3.4.2 Novelty search

The implementation of novelty search was also done as an extension to the NEAT package. A behavioral

descriptor and a distance function using the descriptor and the hamming distance was defined for each

problem in order to give the algorithm the ability to compare the behaviors of two agents. This distance

function is utilized by an evaluation function that computes the novelty score for each agent using the

nearest neighbors algorithm as described above and decides if it will be added to the archive. The

evaluation function replaces the objective function in the NEAT algorithm and essentially transforms it

into a novelty-based algorithm. When the evolutionary experiment is finished, the winner is derived from

the archive rather than the resulting population. (*Implementation detail: the archive is re-evaluated at the

end of each generation to ensure that we maintain a diverse collection of adaptive agents).

For the single T-Maze domain, the behavioral descriptor presented by Risi, Vanderbleek, Hughes, &

Stanley (2009) is employed (described in section 2.4.2). The descriptor for the homing T-Maze is a

variation of this one as well; in addition to the markings regarding whether the high or low reward was

collected and whether the agent crashed, we add a third marking for tracking if the agent managed to return

to the starting point after collecting the reward. For example, a descriptor for a single trial may be “LNY”:

the agent collected the low reward, it did not crash, and it returned to the starting point. For the double T-

Maze, we take a slightly different approach to the matter. For each trial we record if the agent reached a

maze end and which one it reached (each maze end is labeled with a number). So, if the agent reached the

third maze end its descriptor would be 3, and if it crashed instead, it would be 0. The quantified distance

between two episode descriptors would be 0 if in the two episodes the agents ended up on the same maze

end, and 0 if they ended up on different ends.

Regarding the binary association task descriptor, we needed to design a different type of descriptor, since

the number of episodes for each evaluation is much larger and keeping track of every single one would

become too resource-heavy and time consuming. So, the solution proposed is to take snapshots of the

agent’s responses to each input at regular intervals and record changes to them. This way, we end up with

an n-dimensional array of 1’s and 0’s, where a 1 indicates that between the snapshot indicated by the index

and the previous one the agent changed its responses and a 0 means it did not.

Consider the following example:

24

Suppose that at episode 100 the agent has the following response table for the 2 by 2 one-to-one association

problem:

(1,0) -> (0,1)

(0,1) -> (1,0)

Let the snapshot interval be 100 episodes. If, now, at episode 200 this response table stays the same, then

we append a ‘0’ to the behavioral descriptor. If, however, the table changes to:

(1,0) -> (1,0)

(0,1) -> (0,1)

then we append a ‘1’.

The result for the distance metric for two agents would be the hamming distance between the two

descriptors. To further demonstrate, let agent A’s behavior be described by (1,0,1,0) and agent B’s

behavior by (1,1,0,0). The hamming distance between the two is calculated as the number of indexes

where the descriptors differ, so in this case where the descriptors differ in the indexes 1 and 2, the distance

would be 2.

The dimensionality of the descriptor is configurable at execution time through specifying the number of

episodes and the snapshot interval. It should be noted, though, that setting a very small snapshot interval

results in a non-representative descriptor since it would not account for the episodes the agent needs to re-

learn the associations after a shuffle.

3.5 Mapping genotypes to phenotypes

3.5.1 Direct encoding

Mapping a genotype to a phenotype is mostly a straightforward process. One only has to translate all the

information contained in the genes to the components of the network. Special attention must be paid to the

order of activations of the nodes inside the network. Because arbitrary connection schemes are possible,

grouping neurons into layers may be impossible. What is proposed instead is to use the topological sorting

algorithm to get all the hidden nodes in one of the possible correct orders, by making sure that the nodes

from all the incoming connections of a specific node are added to the ordered list before that specific one.

25

Of course, sometimes, this will not be possible as loops can emerge, in which case a random neuron from

those in the loop is added first.

Another point of interest is the case when two switch neurons are connected with each other via a

modulatory connection. When this is detected by the part of the code responsible for constructing the

network, the first switch neuron is replaced by a switch module (as described in section 2.1.3). The

evolutionary algorithm is not given the ability to use switch modules in its architectures, although the

emergence of the pattern with individual neurons is still possible.

3.5.2 Map-based encoding

Although the same principles apply for mapping genotypes to phenotypes using the map-based encoding

scheme, some additional steps must be taken before we end up with the complete network. When

evaluating a node gene and translating it to a neuron, the program also checks the parameter of the gene

that controls if that node is isolated. If it is not isolated, then n more neurons are added to the network with

identical parameters with the original one, with n being a customizable parameter at execution time (map

size). Also, when evaluating connections, we must check if the connection is between two maps as well

as the connection scheme used between them. The different connection schemes are described in section

2.3.

Initially, the gaussian function was used in one of the connection schemes, as proposed in the original

paper presenting this encoding (Doncieux, Mouret, Pinville, Tonelli, & Girard, 2011). However, the

randomness that it introduced lead to inconsistent mappings between genotypes and networks, i.e., one

genotype did not always map to the same phenotype. This noise is undesirable in our networks, as switch

neurons are sensitive to it. For this reason, we chose to replace the Gaussian with another deterministic

function. This function translates the weight evolved from NEAT, w, to n different weight values (where

n = map size) by splitting the range [-w, w] into n-1 equal ranges. For example, let w = 1 and n =5. Then

this function f would derive these 5 values: (-1, -0.5, 0, 0.5, 1).

3.5.3 The agent class

After creating the network, we encapsulate it into an instance of the Agent class. This class serves two

purposes: a) to pre-process the inputs to the network and b) to post-process the network’s outputs. This

26

processing is sometimes necessary to be able to translate an environment status to a valid input, or a

numerical output to a valid action. An example of this is the mapping from the network’s numerical output

to a valid action for the binary association task.

3.6 Wrapper and experiments

This section is dedicated to explaining how to configure and run an evolutionary experiment using the

code implementing the above, as well as laying out the various setups for the experiments that were

conducted.

Assuming python3 is installed (code tested for python 3.7) and the whole directory was cloned from

github, the required external packages can be installed with the help of pip and the file requirements.txt.

First off, we must configure the settings for NEAT, which is done by creating a configuration file.

Configuration files for all scenarios are included, thus only changing the various parameters’ values as one

sees fit is necessary. This configuration file controls parameters like the maximum fitness threshold, the

population size and the number of inputs and outputs of the networks. More details can be read at the wiki

page of the neat-python package (https://neat-python.readthedocs.io/en/latest/config_file.html).

The rest of the customizable parameters that are relevant to the other parts of the project are defined at

execution time. The whole process is controlled by the file evolve.py (appendix A - page 18), which based

on the arguments given will run the relevant experiment. The arguments taken by evolve.py are:

• -s SCHEME: choose the encoding scheme used for mapping phenotypes to genotypes. Possible

choices: switch, switch_maps

• -c CONFIG: path to the NEAT configuration file.

• -g GENERATIONS: the maximum number of generations that you want NEAT to evaluate

networks for.

• -p PROBLEM: which problem we are trying to optimize. Possible choices: binary_association,

tmaze, double_tmaze and homing_tmaze. The binary association option referes to the 3x3 one-

to-one variation.

• --num_episodes EPISODES: the number of episodes for each evaluation. Keep in mind that for

the T-Maze problems each agent is evaluated four times.

• --switch_interval INTERVAL: only applicable for the binary association task. Specifies the

interval between shuffling the input – output pairs.

https://neat-python.readthedocs.io/en/latest/config_file.html

27

• --map_size MAP_SIZE: only required if the map-based encoding was chosen. Specifies the size

of the maps used in the networks.

• --novelty: if used, NEAT will use the novelty metric instead of the objective function for the

chosen problem.

• --threshold THRESHOLD: the minimum novelty score for a genotype to enter the archive.

• --snap_iter SNAP_ITER: only applicable for the binary association task along with novelty

search. Specifies the interval between snapshots.

• --dump: if used, the program will save the winner network to a binary file (may be useful for

debugging).

• --draw FILE: if used, the program creates a diagram depicting the winner network at path FILE.

• --log FILE: optional. Directs the program to log the maximum fitness per generation to a text file

in append mode.

28

4 Results and Discussion

A total of twelve sets of experiments have been executed, three sets for each of the four problems: binary

association task (the 3x3 one-to-one variation), the single non-homing T-Maze, the double non-homing

T-Maze and the single homing T-Maze. The first set uses the NEAT algorithm with the direct encoding

scheme, the second one uses NEAT with the map-based encoding scheme and the third one uses the

novelty search algorithm. In this section the results are presented and some statistics that may help us

interpret them.

The sample size for the experiments is rather small, due the computational intensity of the tasks.

Execution times on the machine we used vary from a couple of hours for the simplest ones and a few

days (and maybe even a week, depending on the configuration) for the more complex tasks, the ones

with the novelty search algorithm for example.

4.1 Success in simple tasks

The first problem we examine is the single non-homing T-Maze. For these experiments, the number of

episodes per evaluation is 8 and in every generation we evaluate all networks 4 times. For each

evaluation, the position of the high reward is changed once at a random episode between episode 3 and

7. To calculate the satisfactory fitness threshold, we consider the behavior of an optimal agent. We

would expect an optimal agent to miss the high reward a total of 5 times: 4 times because we change the

location of the high reward, and possibly once in the start of the evaluation. So, since the high reward is

1, the low reward is 0.2 and we have a total of 32 episodes, the fitness threshold is computed as 27 * 1 +

0.2 * 5 = 28. For all three sets of experiments, the algorithm was able to evolve a competent agent with

performance comparable to the ones designed by hand in most of the runs. Figure 11 is an illustration of

an optimal agent from the NEAT-direct set. The grey boxes denote the input nodes, the white circles the

hidden neurons and the blue circle an output node. A double circle (a circle within a circle) means that

the neuron is a switch neuron. The activation function of a hidden neuron is written inside the circle (the

identity function is the linear activation function). A solid line between two nodes represents a standard

connection between them while a dashed line represents a modulatory connection. However, a

modulatory connection to a non-switch neuron is parsed as a standard connection by the program. Each

29

hidden and output neuron has an evolvable parameter that controls its bias, which is not shown in the

diagram.

Figure 11: Illustration of an optimal agent from the NEAT-direct experiment set for the

single non-homing T-Maze.

As described in section 3.3.1, the inputs are:

• H: 1 if the agent is at the starting position, else 0.

• T: 1 if the agent is at a turning point, else 0.

• ME: 1 if the agent is at a maze end, else 0.

• R: the reward from the environment for the current action (we activate the networks twice with

the same inputs so they can calibrate in case of undesired behavior).

Inspecting the network, we observe some interesting properties that are worth noting. First of all, the

complexity of it is very low, with only one hidden neuron and a total of five connections. This, of course,

does not come in contrast with our expectations, since NEAT searches for the simplest solution by design.

However, this is not the case for every run; some networks that were evolved are much more complex,

with random redundant hidden neurons and connections that do not meaningfully contribute to the output

of the network. Results like these are also somewhat justifiable, with the idea being that those redundant

components gave the network an evolutionary advantage in early generations, and thus were kept, but

were later rendered useless by the introduction of new patterns.

Secondly, we notice that the (ME) input is not used, which is only logical, since this is the non-homing

task and the agent does not need to know when it has to return to the starting point. Another thing that we

expected is that if a solution were to be found, it was necessary for NEAT to discover the pattern of the

0

 1.10

T

 .1

identity

 0. 1

 0. 1

0. 1

30

reward input modulating the switch neuron, which, as we can see, has happened (the R input is connected

with a modulatory connection to the switch neuron 0). In addition, a peculiar pattern that has emerged and

is present in many of the resulting networks, especially for this task, is successfully using the switch neuron

as the output node. This challenges the design patterns of the hand-crafted networks, where the switch

neurons are used towards the “end” of the network, a few steps before the output nodes, but never as the

output. Finally, in this network the identity function is used for the activation of the hidden neuron, but a

variety of other functions is used in other solutions, such as the sigmoid and the heaviside function.

Figure 12: Chart of the 1 s t quartile (red line), median (blue line) and 3 rd quartile (red

line) -in this order - of the maximum fitness for each generation (Sample size = 16).

The green dashed line is the fitness threshold.

Figure 12 depicts the progress of NEAT trying to find a solution for 16 different runs of the experiment.

In most cases, the algorithm was able to evolve an optimal agent from relatively early – in less than 200

generations, while for some cases it needed 600 generations, or it did not manage to find a solution in the

1000 generations limit. We are speculating that by taking time to fine tune some parameters in the

configuration file that control the mutation rate and power of the architecture and weights could result in

faster convergence, but it was not deemed necessary to do so since this project is mainly about proving

that the concept can work.

The above data concern the experiment set with NEAT and the direct encoding. The results for the set

with the indirect encoding are also similar, in the sense that the algorithm can consistently evolve an

31

optimal agent. In this set, 8 runs were executed with every run having a different map size – from 4 to

11. The resulting networks vary from an architecture standpoint. Some of them do not use maps at all

and are similar to the network in figure 11, while some others do, and with similar success rate. An

example of a satisfactory network that incorporates maps in its architecture is shown in figure 12.

Although it is a little cluttered, the regularity of the connection weights between the output neuron and a

group of hidden neurons is apparent – specifically it uses the one-to-one scheme with constant weights.

Figure 13: A network that solves the non-homing single T-Maze task that uses neuron

maps. Small implementation detail: a number is written inside the white circles

instead of the name of a function because a lambda function is used.

The respective fitness graph for this set of experiments is displayed in figure 14. The trend is like the one

for the direct encoding scheme, but we notice that finding a solution now takes more generations on

average. This suggests that the indirect encoding hampers the evolution process rather than helping it, at

least for simpler tasks.

T

0
1.

sigmoid

1.

sigmoid

1.

sigmoid

1.

sigmoid1.

sigmoid

1. sigmoid
1.

sigmoid

1.

sigmoid

1.

 1 .

 . 0

 . 0 1.

 1 .1

 0.

0.

1.1 1.

32

Figure 14: Chart of the 1 s t quartile (red line), median (blue line) and 3 rd quartile (red

line) -in this order - of the maximum fitness for each generation for the NEAT - map-

based algorithm (Sample size = 8). The green dashed line is the fitness threshold.

Moving onto the set using the novelty search algorithm, we find consistent success here as well. A total

of 8 experiments were run using these settings, each one with different novelty thresholds for a genome

to enter the archive. Upon viewing the resulting networks, though, an astounding difference in

complexity from the other two sets emerges. An example is illustrated in figure 15 for reference. This

sudden jump in complexity can probably be attributed to the fact that in this set we do not use a fitness

threshold, rather we let the algorithm evaluate solutions for 1000 generations for every experiment. As

such, simple solutions may appear early on but larger networks that emerge later have a slightly higher

fitness and thus rise as the “winners”. This suggests that a revision in the termination condition of the

algorithm may be beneficial.

33

Figure 15: A network-solution evolved with the novelty search algorithm.

4.2 Shortcomings

Before the results for the rest of the problems are presented, the basic settings for each experiment set are

stated so that a better picture of the context is portrayed.

• Non-homing double T-Maze: Similarly to the single T-Maze, we perform four evaluations of

each network for each generation, with each evaluation consisting of twelve trials. Similarly to

the single T-Maze task, the high reward location is changed once in every evaluation. As such,

an optimal agent would need to re-learn the path to it 5 times: 4 times because we change its

location and possible once in the beginning. Each time the agent re-learns the location of the

high reward, it would make a maximum of three mistakes before finding it. Considering we

have a total of 48 episodes, the fitness threshold is computed as: 5*3*0.2 + 33*1 = 36.

• Homing single T-Maze: Once again, we perform four evaluations, each with 8 episodes. The

fitness threshold is set to 28, with the same logic used for the single non-homing T-Maze.

• Binary association task: For the 3x3 one-to-one association task, we perform 1000 trials for each

network evaluation, with a switch interval of 100 trials. This means that an agent would have to

re-learn the associations 10 times during one evaluation. Each time the associations are

randomized, an optimal agent would make a maximum of n*(m-1) = 6 mistakes to re-learn

identity

1. 0

identity

1. 1

T

0

 . 11

sigmoid

 1 .10

identity

 0.0

tanh

1.0

identity

 0 .

 1 .0

tanh
0.01

0.
 .

sigmoid

0.
tanh

1. 01

tanh

heaviside

 .

tanh

tanh

0.

tanh

 . 0

heaviside

tanh

 . heaviside

 0 .1

identity

 .0

 0. 0

 1.

heaviside

sigmoid
 .1

 .

sigmoid

0.

1.

 . 1

heaviside

 . 1

0. 1

heaviside

 1. 0

sigmoid

 1 .

0.

identity

 0 .

 0.

tanh

heaviside

 . 1

identity

 0.0

 . 1

 0 .

 . 1

1.0

 0.0 1

sigmoid

 0.1

 0 .

34

them. Considering that the high reward is 1 and the low 0, the fitness threshold is calculated as

6*10*0 + 940*1 = 940.

For all the above, a maximum of 1000 generations is allowed. In the case of using the map-based

encoding, each experiment is run with a different map size in the range [2, 9] and in the case of the

novelty search algorithm each run has a different archive entrance threshold which is capped to 25% of

the maximum distance between two descriptors.

For all the cases described, none of the three algorithms was able to find a solution. In figures 16, 17, 18

the progression of the maximum fitness per generation is shown for all three problems for the NEAT-

direct set of experiments (sample size = 8). For the binary association task (first graph) and the homing

T-Maze (second graph) it is apparent that the algorithm plateaus at a certain fitness point below our set

threshold after 100-200 generations. On the other hand, the respective graph for the double T-Maze

problem is closer to the desired fitness but much noisier, which suggests that the results are sensitive to

the parameters of the algorithm and perhaps with a much larger generation cap we could see some

interesting results emerge. However, upon further inspection of the results, it seems that in this domain

there is high variance between two evaluations of the same network, which could mean a failure in

evolving adaptive agents – and subsequently in the punishment of non-adaptive agents by the

environment.

35

Figure 16: Chart of the 1 s t quartile (red line), median (blue line) and 3 rd quartile (red

line) of the maximum fitness for each generation for the NEAT - direct set for the

binary association task (sample size = 8).

Figure 17: Chart of the 1 s t quartile (red line), median (blue line) and 3 rd quartile (red

line) of the maximum fitness for each generation for the NEAT- direct set for the

homing T-Maze (sample size = 8).

Figure 18: Chart of the 1 s t quartile (red line), median (blue line) and 3 rd quartile (red

line) of the maximum fitness for each generation for the NEAT - direct set for the

double T-Maze (sample size = 8).

36

The same patterns are detected in the respective graphs for the map-based encoding set of experiments,

with the only difference being the variance mentioned for the double T-Maze domain resulting in some

fault positives, i.e. a genome was flagged as satisfactory during the evolution but was found lacking

during a second evaluation.

4.3 Discussion

The success that we have had with the task of the single non-homing T-Maze constitutes proof that

switch neurons can be successfully used alongside neuroevolution algorithms to automatically discover

optimal network architectures. It could become an additional tool in such frameworks and assist the

evolutionary process, even if only for simple tasks. It would seem, however, that the success rate of the

three algorithms is at least somewhat correlated, when we in fact expected the novelty search algorithm

to decouple at a degree from the performance of NEAT.

The failure at the rest of the tasks can point us to mistakes in our approach to the issue and the

implementation, both technical and not. Firstly, there is the possibility that the connectivity patterns we

gave NEAT to work with were not enough for it to develop optimal agents for the more complex tasks.

The hand-crafted networks utilize some structures that are impossible to occur through this

implementation of NEAT, such as two connections with different weights between the same neurons,

delayed connections, and vector inputs to the nodes. One other weakness in our approach could be the

sensitiveness of switch neurons to noise, which means that a small difference in the incoming weights

can dramatically alter the output of the whole network. The networks that were designed manually have

had their weights carefully picked and architectures that may be too specific for a genetic algorithm to

approximate. A final misstep that was also mentioned above is specific to the double T-Maze domain

and concerns the failure of the environment to punish “lucky” non-adaptive agents.

37

5 Conclusion and future work

In this diploma thesis our attempt at evolving switch neuron networks is outlined. We begin by

introducing some basic principles in the areas that are relevant to our study: reinforcement learning,

neural networks and genetic algorithms. Then, we proceed to analyze the specific theories and

algorithms we used, with the central piece being the switch neuron, a unique type of artificial neuron that

was introduced recently by Vassiliades & Christodoulou (2016), the supervisors of this project. The

NeuroEvolution of Augmenting Topologies algorithm, the map-based encoding scheme and novelty

search are also reviewed with the relevant references to the original studies. A discussion of the structure

of the experiments, as well as the design and implementation decisions behind them follows, dissecting

each part of the project separately and how they work together towards the goal of evolving adaptive

agents using switch neurons in their architectures. The results of this attempt are mixed. We found

success in evolving optimal agents for the simplest one of the tasks but failed for the rest. Still, this

indicates that the unique properties of the switch neuron can be a beneficial addition to evolutionary

algorithms and help with the evolutionary process, especially when the objective is adaptive behavior.

There are various methods one could try in future work in order to achieve better performance. One of

these is the enhancement of the evolutionary algorithm with the structures mentioned above, giving them

some additional tools that can help the process. Another venue one could pursue is the adaptation of this

experiment to a different evolutionary algorithm. For instance, quality-diversity optimization algorithms

(Chatzilygeroudis, Cullyz, Vassiliades, & Mouret, 2021) were proposed by Dr. Vassiliades during our

sessions, but were ultimately dismissed due to time constraints and the difficulty of fitting them to our

needs. This family of algorithms builds on the premise of novelty search and try to explore the search

space to find the best solution and could prove to be a powerful tool in such an effort.

38

REFERENCES

Chatzilygeroudis, K., Cullyz, A., Vassiliades, V., & Mouret, J.-B. (2021). Quality-Diversity

Optimization:a novel branch of stochastic optimization. In P. M. Pardalos, V. Rasskazova, & M.

N. Vrahatis, Black Box Optimization, Machine Learning, and No-Free Lunch Theorems.

Springer International Publishing.

Doncieux, S., Mouret, J.-B., Pinville, T., Tonelli, P., & Girard, B. (2011). The EvoNeuro Approach to

Neuro-Evolution. Proceedings of the Workshop on Development & Learning in Artificial

Neural Networks (DevLeANN), Oct. 2011. Paris, France.

Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement Learning: A Survey. Journal

of Artifical Intelligence Research, 237-285.

Lehman, J., & Stanley, K. O. (2008). Exploiting open-endedness to solve problems throughthe search

for novelty. Proceedings of the Eleventh International Conference on Artificial Life(ALIFE XI),

(pp. 329-336).

Man, K. F., Tang, K. S., & Kwong, S. (1996). Genetic Algorithms: Concepts and Applications. IEEE

Transactions on industrial electronics, 519-534.

Risi, S., Vanderbleek, S. D., Hughes, C. E., & Stanley, K. O. (2009). How novelty search escapes the

deceptive trap of learning to learn. GECCO '09: Proceedings of the 11th Annual conference on

Genetic and evolutionary computation (pp. 153-1 0). ontreal Québec Canada: Association for

Computing Machinery, New York, NY, United States.

Soltoggio, A., Bullinaria, J. A., Mattiussi, C., Durr, P., & Floreano, D. (2008). Evolutionary advantages

of neuromodulated plasticity in dynamic, reward-based scenarios. In S. Bullock, J. Noble, R.

Watson & M. A. Bedau (eds.). Artificial Life XI (pp. 569-579). Cambridge: MIT Press.

Stanley, K. O., & Miikkulainen, R. (2002). Evolving Neural Networks through Augmenting Topologies.

Evolutionary computation, 10(2), 99-127.

Vassiliades, V., & Christodoulou, C. (2016). Behavioral plasticity through the modulation of switch

neurons. Neural Networks, 74, 35-51.

A-1

Appendix A

t_maze.py:

from gym_minigrid.minigrid import *

from gym_minigrid.register import register

LOW = 0.2

HIGH = 1

CRASH_REWARD = -0.4

FAIL_HOME = -0.3

STEP_PENALTY = -0.005

#Helper class for keeping track of reward positions

class MazeEnd(Ball):

 reward = LOW

 def __init__(self, reward='low'):

 color = 'yellow'

 if reward == 'high':

 color = 'green'

 self.reward = HIGH

 super().__init__(color)

 def can_overlap(self):

 return True

 def set_high(self):

 self.reward = HIGH

class TMazeEnv(MiniGridEnv):

 #Actions that the agent is permitted to make

 class Actions(IntEnum):

 # Turn left, turn right, move forward

 left = 0

 right = 1

 forward = 2

 def __init__(self, high_reward_end=0, size = 7, isHoming = False):

 self.agent_start_pos = (size // 2, 1)

 self.agent_start_dir = 1

 #Which maze end has the high reward. The rest have the low reward

 self.high_reward_end = high_reward_end

 self.reward_range = (-1, 1)

 self.actions = TMazeEnv.Actions

 self.isHoming = isHoming

 max_steps = 8

 if self.isHoming:

 max_steps = 15

 super().__init__(

 grid_size= size,

 max_steps = max_steps,

 agent_view_size = 3

)

 def _gen_grid(self, width, height):

 #Setting the coordinates for each maze end

A-2

 self.LEFT_END = (1,self.height - 2)

 self.RIGHT_END = (self.height - 2, self.height - 2)

 self.MAZE_ENDS = [self.LEFT_END, self.RIGHT_END]

 self.middle = self.width // 2

 #Setting the coordinates for the turning points

 self.TURNING_POINTS = [(self.middle, self.width - 2)]

 self.reward = 0

 self.grid = Grid(width, height)

 #Here we are creating the landscape which looks like this

 # X

 # X

 # X

 # X X X X X X X

 #

 for i in range(width):

 for j in range(height):

 self.put_obj(Lava(),i,j)

 for i in range (width):

 self.grid.set(i,height-2,None)

 self.grid.set(self.middle,i,None)

 self.mission = "Find the highest reward"

 x=0

 y=0

 w=width

 h=height

 self.grid.horz_wall(x, y, w,Lava)

 self.grid.horz_wall(x, y + h - 1, w,Lava)

 self.grid.vert_wall(x, y, h,Lava)

 self.grid.vert_wall(x + w - 1, y, h,Lava)

 #Place the agent

 if self.agent_start_pos is not None:

 self.agent_pos = self.agent_start_pos

 self.agent_dir = self.agent_start_dir

 else:

 self.place_agent()

 #Set the maze ends with the correct rewards

 self.set_reward_pos(self.high_reward_end)

 #Set the home square

 self.put_obj(Goal(),self.agent_start_pos[0],

self.agent_start_pos[1])

 def set_reward_pos(self, high_reward_end):

 self.high_reward_end = high_reward_end

 for i in range(len(self.MAZE_ENDS)):

 if i == high_reward_end:

 self.put_obj(MazeEnd('high'),self.MAZE_ENDS[i][0],

self.MAZE_ENDS[i][1])

 else:

 self.put_obj(MazeEnd('low'), self.MAZE_ENDS[i][0],

self.MAZE_ENDS[i][1])

 def step(self, action):

 #Some of the following code is copied from MiniGrid's step function

 self.step_count += 1

A-3

 reward = 0

 done = False

 # Rotate left

 if action == self.actions.left:

 self.agent_dir -= 1

 if self.agent_dir < 0:

 self.agent_dir += 4

 action = self.actions.forward

 # Rotate right

 elif action == self.actions.right:

 self.agent_dir = (self.agent_dir + 1) % 4

 action = self.actions.forward

 # Get the position in front of the agent

 fwd_pos = self.front_pos

 # Get the contents of the cell in front of the agent

 fwd_cell = self.grid.get(*fwd_pos)

 # Move forward

 if action == self.actions.forward:

 if fwd_cell == None or fwd_cell.can_overlap():

 self.agent_pos = fwd_pos

 if fwd_cell != None and fwd_cell.type == 'goal':

 done = True

 reward = self._reward()

 #If the agent crashes the episode ends and a negative reward is

given

 if fwd_cell != None and fwd_cell.type == 'lava':

 done = True

 reward = CRASH_REWARD

 # When we are simulating the homing T-maze task, the reward is

delayed

 if fwd_cell != None and fwd_cell.type == 'ball':

 self.reward = fwd_cell.reward

 self.grid.set(self.agent_pos[0],self.agent_pos[1],None)

 if not self.isHoming:

 done = True

 reward = self.reward

 self.agent_dir = (self.agent_dir + 2) % 4

 # Done action (not used by default)

 elif action == self.actions.done:

 pass

 else:

 assert False, "unknown action"

 #Checking for number of step taken to punish the agent when it

fails to return home

 if self.step_count >= self.max_steps:

 done = True

 reward = FAIL_HOME

 atHome = list(self.agent_pos) == list(self.agent_start_pos)

 atTurning = False

 for turningPoint in self.TURNING_POINTS:

 if list(turningPoint) == list(self.agent_pos):

A-4

 atTurning = True

 atMazeEnd = False

 for maze_end in self.MAZE_ENDS:

 if list(maze_end) == list(self.agent_pos):

 atMazeEnd = True

 #observation format = [is agent at home, is agent at turning point,

is agent at maze end]

 obs = (float(atHome),float(atTurning),float(atMazeEnd))

 #Comment out for debugging purposes

 #print(obs)

 return obs, reward, done, {}

 def reset(self, reward_pos = -1):

 super().reset()

 atHome = list(self.agent_pos) == list(self.agent_start_pos)

 atTurning = False

 for turningPoint in self.TURNING_POINTS:

 if list(turningPoint) == list(self.agent_pos):

 atTurning = True

 atMazeEnd = False

 for maze_end in self.MAZE_ENDS:

 if list(maze_end) == list(self.agent_pos):

 atMazeEnd = True

 # observation format = [is agent at home, is agent at turning

point, is agent at maze end]

 obs = (float(atHome), float(atTurning), float(atMazeEnd))

 #print(obs)

 if reward_pos in range(len(self.MAZE_ENDS)):

 self.set_reward_pos(reward_pos)

 return obs

 def _reward(self):

 return self.reward

class DoubleTMazeEnv(TMazeEnv):

 def __init__(self, high_reward_end = 0, isHoming = False):

 super().__init__(high_reward_end=high_reward_end,size=9, isHoming=

isHoming)

 if self.isHoming:

 self.max_steps = 23

 else:

 self.max_steps = 12

 def _gen_grid(self, width, height):

 if self.agent_start_pos is not None:

 self.agent_pos = self.agent_start_pos

 self.agent_dir = self.agent_start_dir

 else:

 self.place_agent()

 self.mission = "Find the highest reward"

 self.END1 = (1, self.height - 2)

 self.END2 = (1, 1)

 self.END3 = (self.width - 2, 1)

 self.END4 = (self.width - 2, self.height - 2)

 self.MAZE_ENDS = [self.END1, self.END2, self.END3, self.END4]

 self.middle = self.width // 2

A-5

 self.TURN1 = (self.middle, self.middle)

 self.TURN2 = (1, self.middle)

 self.TURN3 = (self.width-2, self.middle)

 self.TURNING_POINTS = [self.TURN1, self.TURN2, self.TURN3]

 self.reward = 0

 self.grid = Grid(width, height)

 for i in range(width):

 for j in range(height):

 self.put_obj(Lava(), i, j)

 x, y = self.agent_start_pos[0], self.agent_start_pos[1]

 self.put_obj(Goal(), x, y)

 while (y < self.TURN1[1]):

 y += 1

 self.grid.set(x, y, None)

 i = 0

 while x + i < self.TURN3[0]:

 i += 1

 self.grid.set(x+i, y, None)

 self.grid.set(x-i,y,None)

 j = 0

 while y+j < self.END4[1]:

 j+=1

 self.grid.set(x + i, y+j, None)

 self.grid.set(x - i, y+j, None)

 self.grid.set(x + i, y-j, None)

 self.grid.set(x - i, y-j, None)

 self.set_reward_pos(self.high_reward_end)

 self.put_obj(Goal(),self.agent_start_pos[0],

self.agent_start_pos[1])

if __name__ == "__main__":

 #Matplotlib crashes on render for now but it is not going to be a

problem

 tmaze = TMazeEnv()

 tmaze.set_reward_pos(1)

 tmaze.render()

 x = input("Press enter when finished")

#The following code is executed when this file is imported and is necessary

for this environment to work

#with manual_control.py

class TMazeHoming(TMazeEnv):

 def __init__(self):

 super().__init__(isHoming = True)

A-6

association_task.py

import random

import gym

import numpy as np

from gym import Space

from gym.utils import seeding

class BinaryList(Space):

 def __init__(self, n, one_hot=False):

 super().__init__()

 self.n = n

 self.actions = BinaryList._gen_bin_space(n, one_hot)

 self.seed()

 def sample(self):

 return self.actions[np.random.choice(range(self.n))]

 def contains(self, x):

 for a in self.actions:

 if tuple(a) == tuple(x):

 return True

 return False

 def _to_list(self):

 return self.actions[:]

 @staticmethod

 def _bit_tuple(x, padding=0):

 return tuple([1 if digit == '1' else 0 for digit in

bin(x)[2:].rjust(padding, '0')])

 @staticmethod

 def _gen_bin_space(n, one_hot=False):

 bin_space = []

 if one_hot:

 for i in range(n):

 bin_space.append(BinaryList._bit_tuple(2 ** i, n))

 else:

 for i in range(2 ** n):

 bin_space.append(BinaryList._bit_tuple(i, n))

 return bin_space

#If the agent guessed correctly a reward of 0 is given, else -1

class AssociationTaskEnv(gym.Env):

 metadata = {'render.modes': ['human']}

 step_count = 0

 def __init__(self, input_num, output_num, mode='one-to-one', rand_inter

= 0):

 self.n = input_num

 self.m = output_num

 self.reward_range = (-1,0)

 self.rand_inter = rand_inter

A-7

 self.obs_gen = self.next_obs()

 if mode == 'one-to-one':

 self.action_space = BinaryList(output_num, one_hot= True)

 self.observation_space = BinaryList(input_num, one_hot= True)

 elif mode == 'one-to-many':

 self.observation_space = BinaryList(input_num,one_hot=True)

 self.action_space = BinaryList(output_num,one_hot=False)

 elif mode == 'many-to-one':

 self.observation_space = BinaryList(input_num,one_hot=False)

 self.action_space = BinaryList(input_num,one_hot=True)

 elif mode == 'many-to-many':

 self.observation_space = BinaryList(input_num, False)

 self.action_space = BinaryList(input_num,False)

 else:

 raise ValueError('Unknown mode used: {}'.format(mode))

 self.associations = {}

 self.reset()

 def step(self, action):

 #print("Observation: {}, Expected: {}, Agent action:

{}".format(self.observation, self.associations[self.observation],action))

 action = tuple(action)

 isValid = False

 for output in self.action_space._to_list():

 if output == action:

 isValid = True

 if not isValid:

 raise ValueError('Invalid action taken {}'.format(str(action)))

 self.reward = -1

 if self.associations[self.observation] == action:

 self.reward = 0

 self.step_count += 1

 if self.rand_inter > 0 and self.step_count % self.rand_inter == 0:

 self.randomize_associations()

 #self.observation = list(self.associations.keys())[self.step_count

% len(self.associations)]

 self.observation = next(self.obs_gen)

 done = True

 return self.observation, self.reward, done, {}

 def reset(self, rand_iter = -1):

 self.step_count = 0

 self.randomize_associations()

 #self.observation = list(self.associations.keys())[0]

 self.observation = next(self.obs_gen)

 if rand_iter > 0:

 self.rand_inter = rand_iter

 return self.observation

 def render(self, mode='human'):

 assert mode == 'human', '{} mode not supported'.format(mode)

 if self.step_count > 0:

 print("Reward: {}".format(self.reward))

 print("Observation: {}".format(self.observation))

 print("Actions:")

A-8

 print(self.action_space._to_list())

 def randomize_associations(self):

 self.associations = {}

 input = [i for i in self.observation_space._to_list()]

 output = [o for o in self.action_space._to_list()]

 np.random.shuffle(input)

 for pattern in input[:]:

 idx = np.random.choice(range(len(output)))

 self.associations[pattern] = output[idx]

 input.remove(pattern)

 output.pop(idx)

 if len(output) == 0:

 output = [o for o in self.action_space._to_list()]

 return self.associations

 def next_obs(self):

 while(True):

 obs = self.observation_space._to_list()

 random.shuffle(obs)

 while(len(obs) > 0):

 yield obs.pop()

class OneToOne2x2(AssociationTaskEnv):

 def __init__(self):

 super().__init__(2,2)

class OneToOne3x3(AssociationTaskEnv):

 def __init__(self):

 super().__init__(3,3)

class OneToMany3x2(AssociationTaskEnv):

 def __init__(self):

 super().__init__(3,2,'one-to-many')

class ManyToMany2x2Rand(AssociationTaskEnv):

 def __init__(self):

 super().__init__(2,2,'many-to-many',500)

if __name__ == '__main__':

 env = OneToMany3x2()

 while True:

 env.render(mode='human')

 x = input("Select action with binary string e.g. 011 or quit: ")

 if x == 'quit' or x == 'Quit' or x =='q':

 exit(0)

 action = tuple([int(c) for c in x])

 env.step(action)

A-9

eval.py

import copy

import math

import random

import gym

import gym_association_task

import t_maze

from functools import partial

#All the following evaluation functions take as argument an agent variable.

It is assumed that the agent has

#an activate function which takes as input a vector (list) and returns an

output which corresponds to the action

#of the agent. The actions are described in each environment

##############

from utilities import shuffle_lists

def eq_tuples(tup1, tup2):

 for x,y in zip(tup1, tup2):

 if x != y:

 return False

 return True

def eq_snapshots(s1,s2):

 for key in s1:

 if not eq_tuples(s1[key], s2[key]):

 return False

 return True

#For a network to be considered to be able to solve the one-to-one 3x3

association task in this case it needs to

#to achieve a score of at least 1976 (2000 - (5*(3*2)) = steps -

(association_changes+1)*(n*(m-1)).

#Note that scores above this threshold do not mean better performance since

the score of 1976 is already considered optimal.

#The network here needs to accept 4 inputs (3 for observation and 1 for

reward) and return a vector with 3 binary values.

#For num_episodes = 100 | 1000

rand_iter = 25 | 100

max fitness = 70 | 934

def eval_one_to_one_3x3(agent, num_episodes = 1000, rand_iter=

100,snapshot_inter=50, descriptor_out=False):

 env = gym.make('OneToOne3x3-v0')

 s = num_episodes

 observation = env.reset(rand_iter=rand_iter)

 input = tuple(list(observation) + [0])

 responses = {}

 prevsnapshot = {}

 bd = []

 for i_episode in range(num_episodes):

 action = agent.activate(input)

 if descriptor_out:

 t_in = input[:-1]

 if t_in not in prevsnapshot:

 prevsnapshot[t_in] = action

A-10

 responses[t_in] = action

 if i_episode != snapshot_inter and i_episode%snapshot_inter ==

0 and i_episode>0:

 if eq_snapshots(responses, prevsnapshot):

 bd.append(0)

 else:

 bd.append(1)

 prevsnapshot = responses

 observation, reward, done, info = env.step(action)

 input = list(input)

 input[-1] = reward

 agent.activate(input)

 input = tuple(list(observation) + [0])

 s += reward

 env.close()

 if descriptor_out:

 return s, bd

 #print(bd)

 else:

 return s

#For a network to be considered to be able to solve the one-to-many 3x2

association task in this case it needs to

#to achieve a score of at least 1964 (2000 - 4*(3*(4-1)) = steps -

association_changes*(n*(2^m - 1)).

#Note that scores above this threshold do not mean better performance since

the score of 1964 is already considered optimal.

#The network accepts 4 inputs (3 for observation and 1 for reward) and

return a vector with two binary values.

def eval_one_to_many_3x2(agent):

 env = gym.make('OneToMany3x2-v0')

 num_episodes = 2000

 sum = num_episodes

 observation = env.reset(rand_iter=500)

 input = list(observation)

 input.append(0)

 for i_episode in range(num_episodes):

 action = agent.activate(input)

 observation, reward, done, info = env.step(action)

 input = list(input)

 input[-1] = reward

 agent.activate(input)

 input = list(observation)

 input.append(0)

 sum += reward

 env.close()

 return sum

def int_to_action(x):

 if x == 0:

 return "Left"

 if x ==1:

 return "Right"

 return "Forward"

#Assuming 8 episodes and one switch, the optimal fitness for an agent would

be 6 * 1 + 2 * 0.2 = 6.4

#The one switch will occur at 2 + y

class TmazeEvaluator():

A-11

 DOMAIN_CONSTANT = 2

 def __init__(self, num_episodes = 8,samples = 4, debug = False,

descriptor_out = False):

 self.maxparam = num_episodes - 2*self.DOMAIN_CONSTANT

 self.param_list = [i for i in range(0,self.maxparam+1)]

 self.samples = samples

 self.params = random.sample(self.param_list, self.samples)

 self.num_episodes = num_episodes

 self.debug = debug

 self.descriptor_out = descriptor_out

 self.eval_func = self.eval_tmaze

 def eval_tmaze(self, agent):

 env = gym.make('MiniGrid-TMaze-v0') #init environment

 s = 0 #s = total reward

 pos = 0 #pos = the initial position of the high reward

 bd = [] # behavioural descriptor

 for param in self.params:

 #pos = 0

 for i_episode in range(self.num_episodes):

 reward = 0

 #swap the position of the high reward every s_inter steps

 if i_episode == self.DOMAIN_CONSTANT + param:

 pos = (pos + 1) % 2

 observation = env.reset(reward_pos= pos)

 #print(f"y = {param}, pos = {pos}")

 #append 0 for the reward

 input = list(observation)

 input.append(0)

 done = False

 #DEBUG INFO

 if self.debug:

 print("Episode: {}".format(i_episode))

 print("High pos: {}".format(pos))

 while not done:

 action = agent.activate(input)

 observation, reward, done, info = env.step(action)

 input = list(observation)

 input.append(reward)

 #DEBUG INFO

 if self.debug:

 print(" {}".format(int_to_action(action)))

 if self.debug:

 print(input)

 s += reward

 #Add this episode to the behavioural descriptor

 if self.descriptor_out:

 if math.isclose(reward, t_maze.LOW):

 des = 'l'

 elif math.isclose(reward, t_maze.HIGH):

 des = 'h'

 else:

 des = 'n'

 if math.isclose(reward, t_maze.CRASH_REWARD):

 des += 'y'

 else:

 des += 'n'

 bd.append(des)

A-12

 agent.activate(input)

 #DEBUG INFO

 if self.debug:

 print("Reward: {}".format(reward))

 print("--------------")

 env.close()

 if self.debug:

 print(f"Total reward: {s}")

 if self.descriptor_out:

 return s, bd

 return s

class DoubleTmazeEvaluator():

 DOMAIN_CONSTANT = 4

 def __init__(self, num_episodes=12, samples=4, debug=False,

descriptor_out=False):

 self.maxparam = num_episodes - 2 * self.DOMAIN_CONSTANT

 self.param_list = [i for i in range(0,self.maxparam+1)]

 self.samples = samples

 self.params = random.sample(self.param_list, self.samples)

 self.num_episodes = num_episodes

 self.debug = debug

 self.descriptor_out = descriptor_out

 self.eval_func = self.eval_double_tmaze

 #num episodes = 12

 #samples 4

 #max fitness = 36

 def eval_double_tmaze(self, agent):

 env = gym.make('MiniGrid-DoubleTMaze-v0') #init environment

 env = env.unwrapped

 s = 0 #s = total reward

 pos = 0 #pos = the initial position of the high reward

 bd = [] # behavioural descriptor

 maze_ends = [0,1,2,3]

 for param in self.params:

 for i_episode in range(self.num_episodes):

 reward = 0

 #swap the position of the high reward every s_inter steps

 if i_episode == self.DOMAIN_CONSTANT + param:

 choices = copy.deepcopy(maze_ends)

 choices.remove(pos)

 pos = random.choice(choices)

 observation = env.reset(reward_pos= pos)

 #append 0 for the reward

 input = list(observation)

 input.append(0)

 done = False

 #DEBUG INFO

 if self.debug:

 print("Episode: {}".format(i_episode))

 print("High pos: {}".format(pos))

 while not done:

A-13

 action = agent.activate(input)

 observation, reward, done, info = env.step(action)

 input = list(observation)

 input.append(reward)

 #DEBUG INFO

 if self.debug:

 print(" {}".format(int_to_action(action)))

 if self.debug:

 print(input)

 s += reward

 #Add this episode to the behavioural descriptor

 if self.descriptor_out:

 if eq_tuples(env.agent_pos, env.END1):

 des = 1

 elif eq_tuples(env.agent_pos, env.END2):

 des = 2

 elif eq_tuples(env.agent_pos, env.END3):

 des = 3

 elif eq_tuples(env.agent_pos, env.END4):

 des = 4

 else:

 des = 0

 bd.append(des)

 agent.activate(input)

 #DEBUG INFO

 if self.debug:

 print("Reward: {}".format(reward))

 print("--------------")

 env.close()

 if self.debug:

 print(f"Total reward: {s}")

 if self.descriptor_out:

 return s, bd

 return s

class HomingTmazeEvaluator():

 DOMAIN_CONSTANT = 2

 def __init__(self, num_episodes=8, samples=4, debug=False,

descriptor_out=False):

 self.maxparam = num_episodes - 2 * self.DOMAIN_CONSTANT

 self.param_list = [i for i in range(0,self.maxparam+1)]

 self.samples = samples

 self.params = random.sample(self.param_list, self.samples)

 self.num_episodes = num_episodes

 self.debug = debug

 self.descriptor_out = descriptor_out

 self.eval_func = self.eval_tmaze_homing

 def eval_tmaze_homing(self, agent):

 env = gym.make('MiniGrid-TMazeHoming-v0') #init environment

 s = 0 #s = total reward

 pos = 0 #pos = the initial position of the high reward

 bd = [] # behavioural descriptor

 for param in self.params:

 for i_episode in range(self.num_episodes):

 reward = 0

A-14

 #swap the position of the high reward every s_inter steps

 if i_episode == self.DOMAIN_CONSTANT + param:

 pos = (pos + 1) % 2

 observation = env.reset(reward_pos= pos)

 #append 0 for the reward

 input = list(observation)

 input.append(0)

 done = False

 #DEBUG INFO

 if self.debug:

 print("Episode: {}".format(i_episode))

 print("High pos: {}".format(pos))

 while not done:

 action = agent.activate(input)

 observation, reward, done, info = env.step(action)

 input = list(observation)

 input.append(reward)

 #DEBUG INFO

 if self.debug:

 print(" {}".format(int_to_action(action)))

 if self.debug:

 print(input)

 s += reward

 #Add this episode to the behavioural descriptor

 if self.descriptor_out:

 if math.isclose(reward, t_maze.LOW):

 des = 'l'

 elif math.isclose(reward, t_maze.HIGH):

 des = 'h'

 else:

 des = 'n'

 if math.isclose(reward, t_maze.CRASH_REWARD):

 des += 'y'

 else:

 des += 'n'

 if math.isclose(reward, t_maze.FAIL_HOME):

 des += 'n'

 else:

 des += 'y'

 bd.append(des)

 agent.activate(input)

 #DEBUG INFO

 if self.debug:

 print("Reward: {}".format(reward))

 print("--------------")

 env.close()

 if self.debug:

 print(f"Total reward: {s}")

 if self.descriptor_out:

 return s, bd

 return s

#The simplest case for test the network's implementation. Use when in doubt

about the rest.

#Optimal network should have a score of 4 or very close to 4.

#The network takes 2 input and returns one output

xor_inputs = [(0.0, 0.0), (0.0, 1.0), (1.0, 0.0), (1.0, 1.0)]

xor_outputs = [(0.0,), (1.0,), (1.0,), (0.0,)]

A-15

TRIALS = 10

def eval_net_xor(net):

 sum = 0

 for i in range(TRIALS):

 fitness = 4

 trial_in, trial_out = shuffle_lists(xor_inputs, xor_outputs)

 for xi, xo in zip(trial_in, trial_out):

 output = net.activate(xi)

 fitness -= abs(output[0] - xo[0])

 sum += fitness

 return sum/TRIALS

class NoveltyEvaluator():

 #distance_func: a function that computes the distance of two

behavioural descriptors

 #k: the number used for the nearest neighbour calculation

 #threshold: the sparseness threshold for a gene to enter the archive

 #The archive has the key of the genome as the key and another

dictionary as values with bd, novelty and fitness, genome

 def __init__(self, eval_func, threshold = 1, k = 15):

 self.eval_func = eval_func

 self.threshold = threshold

 self.k = k

 self.archive = {}

 self.visited_novelty = {}

 def distance_func(self, bd1, bd2):

 assert False, "NoveltyEvaluator.distance_func needs to be

overloaded!"

 def get_best_id(self):

 maxid = list(self.archive.keys())[0]

 maxfitness = self.archive[maxid]['fitness']

 for key in self.archive:

 if self.archive[key]['fitness'] > maxfitness:

 maxfitness = self.archive[key]['fitness']

 maxid = key

 return maxid

 #Find the novelty score for an agent.

 def eval(self,key,genome ,agent):

 #if key in self.visited_novelty:

 # return self.visited_novelty[key]

 fitness, bd = self.eval_func(agent)

 cache = []

 if not self.archive:

 self.archive[key] = {'bd': bd, 'novelty': len(bd),

'fitness':fitness, 'agent' : agent, 'genome': genome}

 return len(bd)

 for k in self.archive:

 dist = self.distance_func(bd, self.archive[k]['bd'])

 if len(cache) > self.k and dist < min(cache):

 cache.remove(min(cache))

 if len(cache) < self.k:

A-16

 cache.append(dist)

 novelty = sum(cache) / len(cache)

 self.visited_novelty[key] = novelty

 if novelty > self.threshold:

 self.archive[key] = {'bd': bd, 'novelty': novelty,

'fitness':fitness, 'agent': agent}

 return novelty

 def reevaluate_archive(self):

 if not self.archive:

 return

 for key in self.archive:

 agent = self.archive[key]['agent']

 fitness, bd = self.eval_func(agent)

 self.archive[key]['bd'] = bd

 self.archive[key]['fitness'] = fitness

 #print(bd)

class TmazeNovelty(NoveltyEvaluator):

 def __init__(self, n_episodes, samples, threshold = 8):

 self.evaluator =

TmazeEvaluator(num_episodes=n_episodes,samples=samples, debug = False,

descriptor_out = True)

 eval_func = self.evaluator.eval_tmaze

 super().__init__(eval_func, threshold=threshold)

 def distance_func(self, bd1, bd2):

 total = 0

 for t1, t2 in zip(bd1, bd2):

 for i in range(len(t1)):

 if t1[i] != t2[i]:

 total += 1

 return total

class DoubleTmazeNovelty(NoveltyEvaluator):

 def __init__(self, n_episodes, samples, threshold=10):

 self.evaluator =

DoubleTmazeEvaluator(num_episodes=n_episodes,samples=samples,debug=False,de

scriptor_out=True)

 eval_func = self.evaluator.eval_double_tmaze

 super().__init__(eval_func, threshold=threshold)

 def distance_func(self, bd1, bd2):

 score = 0

 for i, j in zip(bd1, bd2):

 if i != j:

 score += 1

 return score

class HomingTmazeNovelty(NoveltyEvaluator):

 def __init__(self, n_episodes, samples, threshold=1):

 self.evaluator = HomingTmazeEvaluator(num_episodes=n_episodes,

samples=samples,debug=False, descriptor_out=True)

 eval_func = self.evaluator.eval_tmaze_homing

 super().__init__(eval_func, threshold=threshold)

A-17

 def distance_func(self, bd1, bd2):

 total = 0

 for t1, t2 in zip(bd1, bd2):

 for i in range(len(t1)):

 if t1[i] != t2[i]:

 total += 1

 return total

class AssociationNovelty(NoveltyEvaluator):

 def __init__(self, num_episodes, rand_iter,snapshot_inter,threshold=2):

 eval_f = partial(eval_one_to_one_3x3,num_episodes = num_episodes,

rand_iter= rand_iter,

 snapshot_inter=snapshot_inter,

descriptor_out=True)

 super().__init__(eval_f, threshold=threshold)

 def distance_func(self, bd1, bd2):

 sum = 0

 for x,y in zip(bd1,bd2):

 if x!=y:

 sum += 1

 return sum

A-18

evolve.py

import pickle

import argparse

from functools import partial, partialmethod

import gym_association_task

from eval import eval_one_to_one_3x3, eval_net_xor, TmazeNovelty, \

 DoubleTmazeNovelty, HomingTmazeNovelty, TmazeEvaluator,

DoubleTmazeEvaluator, HomingTmazeEvaluator, \

 AssociationNovelty

import switch_neat

from maps import MapNetwork, MapGenome

import switch_maps

from recurrent_neat import RecurrentNetwork

from solve import convert_to_action, convert_to_direction

import neat

import Reporters

from utilities import heaviside

from switch_neuron import Agent

import render_network

from neat.statistics import StatisticsReporter

def identity(x):

 return x

def main():

 schemes = {'switch':switch_neat.create , 'maps' : MapNetwork.create,

'recurrent': RecurrentNetwork.create,

 'switch_maps' : switch_maps.create}

 problems = {'xor' : eval_net_xor,

'binary_association':eval_one_to_one_3x3, 'tmaze':

TmazeEvaluator().eval_tmaze,

 'double_tmaze':

 DoubleTmazeEvaluator.eval_double_tmaze, 'homing_tmaze':

HomingTmazeEvaluator().eval_tmaze_homing}

 domain_constant = {'tmaze': 2, 'double_tmaze': 4, 'homing_tmaze':2}

 parser = argparse.ArgumentParser(description="Evolve neural networks

with neat")

 parser.add_argument('-s', '--scheme', help=f"Choose between the

available schemes: {','.join(schemes.keys())}",

 type=str, required=True, choices=schemes.keys())

 parser.add_argument('-c', '--config', help="The config file",

required=True, type=str)

 parser.add_argument('-g', '--generations', help="The number of

generations", type=int)

 parser.add_argument('-p', '--problem', help=f"Available problems:

{','.join(problems.keys())}", required=True, type=str,

 choices=problems.keys())

 parser.add_argument('--map_size', help="Set the map size for the

relevant schemes", type=int)

 parser.add_argument('--dump', help="Dump the network in a binary file",

type=str)

 parser.add_argument('--num_episodes', help="Number of episodes for

tmaze/binary_association", type=int)

 parser.add_argument('--switch_interval', help="Interval of episodes for

"

 "shuffling the

associations", type=int)

A-19

 parser.add_argument('--novelty', help='Use the novelty metric instead

of the fitness function', action="store_true")

 parser.add_argument('--threshold', help='Threshold for a new genome to

enter the archive', type=float, default=1)

 parser.add_argument("--snap_inter", help="Snapshot interval for

association problem novelty search", type = int)

 parser.add_argument("--draw", help='Render the network to a picture.

Provide the name of the picture.', type=str, default=None)

 parser.add_argument("--log", help="Log the max fitness per generation

to text file. (Append)", type=str, default=None)

 args=parser.parse_args()

 eval_f = problems[args.problem]

 in_f = identity

 out_f = identity

 genome = neat.DefaultGenome

 evaluator = None

 #Configure genome based on the encoding scheme and neurons used

 if args.scheme == 'switch':

 genome = switch_neat.SwitchGenome

 elif args.scheme == 'maps':

 genome = MapGenome

 elif args.scheme == 'switch_maps':

 genome = switch_maps.SwitchMapGenome

 #Configure the pre-processing and post-processing functions based on

 #the environment

 if args.problem == 'binary_association':

 out_f = convert_to_action

 elif args.problem in ['tmaze', 'double_tmaze', 'homing_tmaze'] :

 out_f = convert_to_direction

 #If we use the map-based encoding scheme add the map size parameter to

the function

 #responsible for creating the network from the genotype.

 create_f = None

 if args.map_size is not None and (args.scheme in ['maps',

'switch_maps']):

 create_f = partial(schemes[args.scheme], map_size=args.map_size)

 else:

 create_f = schemes[args.scheme]

 num_episodes = 100

 s_inter = 20

 if args.num_episodes is not None:

 num_episodes = args.num_episodes

 if args.switch_interval is not None:

 s_inter = args.switch_interval

 #If the problem is the t-maze task, use the extra parameters episodes

and switch interval

 if args.problem == 'tmaze':

 if args.novelty:

 evaluator = TmazeNovelty(num_episodes,samples=4,

threshold=args.threshold)

 eval_f = evaluator.eval

 else:

 evaluator = TmazeEvaluator(num_episodes, samples=4)

 eval_f = evaluator.eval_tmaze

 elif args.problem == 'double_tmaze':

 if args.novelty:

A-20

 evaluator = DoubleTmazeNovelty(num_episodes,samples=4,

threshold=args.threshold)

 eval_f = evaluator.eval

 else:

 evaluator = DoubleTmazeEvaluator(num_episodes, samples=4)

 eval_f = evaluator.eval_double_tmaze

 elif args.problem == 'homing_tmaze':

 if args.novelty:

 evaluator = HomingTmazeNovelty(num_episodes,samples=4,

threshold=args.threshold)

 eval_f = evaluator.eval

 else:

 evaluator = HomingTmazeEvaluator(num_episodes, samples=4)

 eval_f = evaluator.eval_tmaze_homing

 elif args.problem == 'binary_association':

 if args.novelty:

 evaluator =

AssociationNovelty(num_episodes,rand_iter=args.switch_interval,snapshot_int

er=args.snap_inter,

 threshold=args.threshold)

 eval_f = evaluator.eval

 else:

 eval_f = partial

(eval_one_to_one_3x3,num_episodes=num_episodes, rand_iter=s_inter)

 def make_eval_fun(evaluation_func, in_proc, out_proc, evaluator=None):

 def eval_genomes (genomes, config):

 for genome_id, genome in genomes:

 net = create_f(genome,config)

 #Wrap the network around an agent

 agent = Agent(net, in_proc, out_proc)

 #Evaluate its fitness based on the function given above.

 genome.fitness = evaluation_func(agent)

 def eval_genomes_novelty(genomes, config):

 evaluator.reevaluate_archive()

 for genome_id, genome in genomes:

 net = create_f(genome,config)

 #Wrap the network around an agent

 agent = Agent(net, in_proc, out_proc)

 #Evaluate its fitness based on the function given above.

 genome.fitness = evaluation_func(genome_id, genome, agent)

 if args.novelty:

 return eval_genomes_novelty

 else:

 return eval_genomes

 config = neat.Config(genome, neat.DefaultReproduction,

 neat.DefaultSpeciesSet, neat.DefaultStagnation,

 args.config)

 config.genome_config.add_activation('heaviside', heaviside)

 # Create the population, which is the top-level object for a NEAT run.

 p = neat.Population(config)

 #Add a stdout reporter to show progress in the terminal.

 p.add_reporter(neat.StdOutReporter(True))

 stats = StatisticsReporter()

A-21

 p.add_reporter(stats)

 if args.problem in ['double_tmaze', 'tmaze', 'homing_tmaze']:

 if args.novelty:

 mutator = Reporters.EvaluatorMutator(evaluator.evaluator)

 else:

 mutator = Reporters.EvaluatorMutator(evaluator)

 p.add_reporter(mutator)

 # Run for up to ... generations.

 if args.novelty:

 f = make_eval_fun(eval_f, in_f, out_f, evaluator)

 else:

 f = make_eval_fun(eval_f, in_f, out_f)

 winner = p.run(f, args.generations)

 #If we are using the novelty metric get the winner from the archive

 if args.novelty:

 winnerid = evaluator.get_best_id()

 winner = evaluator.archive[winnerid]['genome']

 winner_agent = evaluator.archive[winnerid]['agent']

 else:

 print('\nBest genome:\n{!s}'.format(winner))

 winner_net = create_f(winner, config)

 winner_agent = Agent(winner_net,in_f, out_f)

 if args.novelty:

 if args.problem == 'binary_association':

 score = evaluator.eval_func(winner_agent)[0]

 else:

 score = evaluator.evaluator.eval_func(winner_agent)[0]

 else:

 score = eval_f(winner_agent)

 print("Score in task: {}".format(score))

 if args.draw is not None:

 if args.scheme in ['maps', 'switch_maps']:

 map_size = args.map_size

 else:

 map_size = -1

 render_network.draw_net(config, winner,filename = args.draw,

map_size=map_size)

 if args.log is not None:

 fp = open(args.log, 'a')

 best_fitness = [str(c.fitness) for c in stats.most_fit_genomes]

 mfs = ' '.join(best_fitness)

 fp.write(mfs)

 fp.write("\n")

 fp.close()

 if args.dump is not None:

 fp = open(args.dump,'wb')

 pickle.dump(winner,fp)

 fp.close()

 print(f'Agent pre-processing function: {in_f.__name__}')

 print(f'Agent post-processing function: {out_f.__name__}')

if __name__ == "__main__":

 main()

A-22

maps.py

from neat.attributes import FloatAttribute, BoolAttribute, StringAttribute

from neat.genes import BaseGene, DefaultNodeGene

from neat.genome import DefaultGenomeConfig, DefaultGenome

from neat.graphs import required_for_output

from neat.six_util import itervalues

import numpy as np

from switch_neuron import Neuron

from utilities import order_of_activation

class MapNetwork:

 #A lot of this code is taken directly from neat.nn.RecurrentNetwork and

modified because it is very close to

 #the desired outcome

 def __init__(self,inputs, outputs, nodes):

 self.input_nodes = inputs

 self.output_nodes = outputs

 self.nodes = nodes

 self.nodes_dict = {}

 for node in nodes:

 self.nodes_dict[node.key] = node

 @staticmethod

 def create(genome, config, map_size):

 """ Receives a genome and returns its phenotype (a MapNetwork). """

 genome_config = config.genome_config

 required = required_for_output(genome_config.input_keys,

genome_config.output_keys, genome.connections)

 # Gather inputs and expressed connections.

 node_inputs = {}

 children = {}

 node_keys = list(genome.nodes.keys())[:] #+

list(genome_config.input_keys[:])

 # for key in genome_config.input_keys + genome_config.output_keys:

 # children[key] = []

 # for i in range(1,map_size):

 # if key < 0:

 # new_idx = min(node_keys) - 1

 # else:

 # new_idx = max(node_keys) + 1

 # children[key].append(new_idx)

 # node_keys.append(new_idx)

 for cg in itervalues(genome.connections):

 if not cg.enabled:

 continue

 i, o = cg.key

 if o not in required and i not in required:

 continue

 for n in [i,o]:

 if n in children.keys():

 continue

 children[n] = []

A-23

 if n in genome_config.input_keys or n in

genome_config.output_keys:

 continue

 if not genome.nodes[n].is_isolated:

 for _ in range(1,map_size):

 new_idx = max(node_keys) + 1

 children[n].append(new_idx)

 node_keys.append(new_idx)

 in_map = [i] + children[i]

 out_map = [o] + children[o]

 for n in out_map:

 if n not in node_inputs.keys():

 node_inputs[n] = []

 if len(in_map) == map_size and len(out_map) == map_size:

 #Map to map connectivity

 if cg.one_to_one:

 #1-to-1 mapping

 weight = 5*cg.weight

 for i_n in range(map_size):

 node_inputs[out_map[i_n]].append((in_map[i_n],

weight))

 else:

 #1-to-all

 if cg.is_gaussian:

 #Gaussian

 for o_n in out_map:

 for i_n in in_map:

 node_inputs[o_n].append((i_n,

np.random.normal(cg.weight,cg.sigma)))

 else:

 #Uniform

 for o_n in out_map:

 for i_n in in_map:

 node_inputs[o_n].append((i_n, 5*cg.weight))

 else:

 #Map-to-isolated or isolated-to-isolated

 if cg.is_gaussian:

 # Gaussian

 for o_n in out_map:

 for i_n in in_map:

 node_inputs[o_n].append((i_n,

np.random.normal(cg.weight, cg.sigma)))

 else:

 # Uniform

 for o_n in out_map:

 for i_n in in_map:\

 node_inputs[o_n].append((i_n, 5 * cg.weight))

 input_keys = genome_config.input_keys

 output_keys = genome_config.output_keys

 conns = {}

 for k in genome.nodes.keys():

 if k not in node_inputs:

 node_inputs[k] = []

 if k in children:

 for c in children[k]:

A-24

 node_inputs[c] = []

 conns[k] = [i for i, _ in node_inputs[k]]

 sorted_keys = order_of_activation(conns, input_keys, output_keys)

 nodes = []

 for node_key in sorted_keys:

 if node_key not in genome.nodes.keys():

 continue

 node = genome.nodes[node_key]

 activation_function =

genome_config.activation_defs.get(node.activation)

 aggregation_function =

genome_config.aggregation_function_defs.get(node.aggregation)

 nodes.append(Neuron(node_key, {

 'activation_function': activation_function,

 'integration_function': aggregation_function,

 'bias': node.bias,

 'activity': 0,

 'output': 0,

 'weights': node_inputs[node_key]

 }))

 if node_key not in children:

 continue

 for n in children[node_key]:

 nodes.append(Neuron(n, {

 'activation_function': activation_function,

 'integration_function': aggregation_function,

 'bias': node.bias,

 'activity': 0,

 'output': 0,

 'weights': node_inputs[n]

 }))

 # for key in genome_config.input_keys:

 # input_keys.append(key)

 # if key in children.keys():

 # for child in children[key]:

 # input_keys.append(child)

 #

 # for key in genome_config.output_keys:

 # output_keys.append(key)

 # if key in children.keys():

 # for child in children[key]:

 # output_keys.append(child)

 return MapNetwork(input_keys, output_keys, nodes)

 #Perform a forward pass in the network with the given inputs. Since we

are working with recurrent networks

 #and arbitrary connections, no separation of the neurons is performed

between the neurons and the activation

 #sequence is determined from their order in the node_evals array.

 def activate(self, inputs):

 if len(self.input_nodes) != len(inputs):

 raise RuntimeError("Expected {0:n} inputs, got

{1:n}".format(len(self.input_nodes), len(inputs)))

A-25

 ivalues = {}

 for i, v in zip(self.input_nodes, inputs):

 ivalues[i] = v

 for node in self.nodes:

 standard_inputs = []

 # Collect the weighted inputs in an array

 for key, weight in node.standard['weights']:

 if key in ivalues.keys():

 val = ivalues[key]

 else:

 val = self.nodes_dict[key].standard['output']

 standard_inputs.append(val * weight)

 # add the bias

 standard_inputs.append(node.standard['bias'])

 # Calculate the neuron's activity and output based on it's

standard functions.

 node.standard['activity'] =

node.standard['integration_function'](standard_inputs)

 node.standard['output'] =

node.standard['activation_function'](node.standard['activity'])

 output = [self.nodes_dict[key].standard['output'] for key in

self.output_nodes]

 return output

class MapConnectionGene(BaseGene):

 #Various parameters for defining a connection.

 _gene_attributes = [BoolAttribute('one_to_one'), #1-to-1 or 1-to-all

scheme

 BoolAttribute('is_gaussian'), #Gaussian or uniform

distribution

 FloatAttribute('weight'),#Weigth is used as the

mean of the normal distribution for 1-to-all

 FloatAttribute('sigma'), #The standard deviation

for the gaussian

 BoolAttribute('enabled')] #<- maybe remove this

trait

 def __init__(self, key):

 assert isinstance(key, tuple), "DefaultConnectionGene key must be a

tuple, not {!r}".format(key)

 BaseGene.__init__(self, key)

 #Define the distance between two genes

 def distance(self, other, config):

 d = abs(self.sigma - other.sigma) + abs(self.weight - other.weight)

+ int(self.one_to_one != other.one_to_one)

 + int(self.is_gaussian != other.is_gaussian)

 return d * config.compatibility_weight_coefficient

class MapNodeGene(DefaultNodeGene):

 _gene_attributes = [FloatAttribute('bias'), #The bias of the neuron

 StringAttribute('activation', options='sigmoid'), #

The activation function, tunable from the config

 StringAttribute('aggregation', options='sum'), #The

aggregation function

A-26

 BoolAttribute('is_isolated')] #Map vs isolated

neuron

 def distance(self, other, config):

 d = 0

 if self.activation != other.activation:

 d += 1.0

 if self.aggregation != other.aggregation:

 d += 1.0

 if self.is_isolated != other.is_isolated:

 d += 1

 return d * config.compatibility_weight_coefficient

class MapNode:

 def __init__(self,key, activation_function, aggregation_function,

bias,is_isolated, links):

 self.key = key

 self.activation_function = activation_function

 self.aggregation_function = aggregation_function

 self.bias = bias

 self.is_isolated = is_isolated

 self.links = links

 self.activity = 0

class MapGenome(DefaultGenome):

 @classmethod

 def parse_config(cls, param_dict):

 param_dict['node_gene_type'] = MapNodeGene

 param_dict['connection_gene_type'] = MapConnectionGene

 return DefaultGenomeConfig(param_dict)

A-27

render_network.py

import copy

import warnings

import graphviz

def draw_net(config, genome, view=False, filename=None, node_names=None,

show_disabled=True, prune_unused=False,

 node_colors=None, fmt='svg', map_size = -1):

 """ Receives a genome and draws a neural network with arbitrary

topology. """

 # Attributes for network nodes.

 if graphviz is None:

 warnings.warn("This display is not available due to a missing

optional dependency (graphviz)")

 return

 if node_names is None:

 node_names = {}

 assert type(node_names) is dict

 if node_colors is None:

 node_colors = {}

 assert type(node_colors) is dict

 node_attrs = {

 'shape': 'circle',

 'fontsize': '9',

 'height': '0.1',

 'width': '0.1'}

 dot = graphviz.Digraph(format=fmt, node_attr=node_attrs,

engine='neato')

 maps = {}

 inputs = set()

 for k in config.genome_config.input_keys:

 inputs.add(k)

 name = node_names.get(k, str(k))

 input_attrs = {'style': 'filled',

 'shape': 'box'}

 input_attrs['fillcolor'] = node_colors.get(k, 'lightgray')

 dot.node(name, _attributes=input_attrs)

 maps[str(k)] = [str(k)]

 outputs = set()

 for k in config.genome_config.output_keys:

 outputs.add(k)

 name = node_names.get(k, str(k))

 node_attrs = {'style': 'filled'}

 node_attrs['fillcolor'] = node_colors.get(k, 'lightblue')

 node_attrs['shape'] = 'doublecircle' if genome.nodes[k].is_switch

else 'circle'

 dot.node(name, _attributes=node_attrs)

A-28

 maps[str(k)] = [str(k)]

 if prune_unused:

 connections = set()

 for cg in genome.connections.values():

 if cg.enabled or show_disabled:

 connections.add((cg.in_node_id, cg.out_node_id))

 used_nodes = copy.copy(outputs)

 pending = copy.copy(outputs)

 while pending:

 new_pending = set()

 for a, b in connections:

 if b in pending and a not in used_nodes:

 new_pending.add(a)

 used_nodes.add(a)

 pending = new_pending

 else:

 used_nodes = set(genome.nodes.keys())

 for n in used_nodes:

 if n in inputs or n in outputs:

 continue

 attrs = {'style': 'filled',

 'fillcolor': node_colors.get(n, 'white')}

 attrs['shape'] = 'doublecircle' if genome.nodes[n].is_switch else

'circle'

 dot.node(str(n),

label=str(genome.nodes[n].activation),_attributes=attrs)

 if map_size > 0:

 if not genome.nodes[n].is_isolated:

 maps[str(n)] = [str(n) + ' ' + str(i) for i in

range(map_size)]

 maps[str(n)].append(str(n))

 else:

 maps[str(n)] = [str(n)]

 for cg in genome.connections.values():

 if cg.enabled or show_disabled:

 #if cg.input not in used_nodes or cg.output not in used_nodes:

 # continue

 input, output = cg.key

 a = node_names.get(input, str(input))

 b = node_names.get(output, str(output))

 style = 'solid' if not cg.is_mod else 'dotted'

 color = 'green' if cg.weight > 0 else 'red'

 width = str(0.1 + abs(cg.weight / 5.0))

 fontsize = '5'

 eattrs = {'style': style, 'color': color, 'penwidth': width,

'fontsize': fontsize}

 if map_size > 0:

 in_map = maps[a]

 out_map = maps[b]

 if len(in_map) == map_size and len(out_map) == map_size:

 # Map to map connectivity

A-29

 if cg.one2one:

 # 1-to-1 mapping

 for i in range(map_size):

 dot.edge(in_map[i], out_map[i], label=

f"{cg.weight:.3f}",

 _attributes=eattrs)

 else:

 # 1-to-all

 if not cg.uniform:

 # Step

 start = -cg.weight

 end = cg.weight

 step = (end - start) / map_size

 for o_n in out_map:

 s = start

 for i_n in in_map:

 dot.edge(i_n, o_n, label= f"{s:.3f}",

 _attributes=eattrs)

 s += step

 else:

 # Uniform

 for o_n in out_map:

 for i_n in in_map:

 dot.edge(i_n, o_n, label=

f"{cg.weight:.3f}",

 _attributes=eattrs)

 else:

 # Map-to-isolated or isolated-to-isolated

 if not cg.uniform:

 # Step

 start = -cg.weight

 end = cg.weight

 step = (end - start) / map_size

 for o_n in out_map:

 s = start

 for i_n in in_map:

 dot.edge(i_n, o_n, label= f"{s:.3f}",

 _attributes=eattrs)

 s += step

 else:

 # Uniform

 for o_n in out_map:

 for i_n in in_map:

 dot.edge(i_n, o_n, label=

f"{cg.weight:.3f}",

 _attributes=eattrs)

 else:

 dot.edge(a, b, label= f"{cg.weight:.3f}",

_attributes=eattrs)

 dot.render(filename, view=view)

 return dot

A-30

Reporters.py

from neat.statistics import StatisticsReporter

from neat.reporting import BaseReporter

from neat.six_util import iteritems

from switch_neat import *

import random

#Return the low quartile of the values in the *values array

def low_quartile(values):

 values = list(values)

 n = len(values)

 if n == 1:

 return values[0]

 values.sort()

 if n < 4:

 return (values[1] + values[0]) / 2.0

 if (n % 4) == 1:

 return values[n//4]

 i = n//4

 return (values[i - 1] + values[i])/ 2

#Return the high quartile of the values in the *values array

def high_quartile(values):

 values = list(values)

 n = len(values)

 if n == 1:

 return values[0]

 values.sort()

 if n < 4:

 return (values[-1] + values[-2]) / 2.0

 if (n % 4) == 1:

 return values[n // 4 * 3]

 i = n // 4 * 3

 return (values[i - 1] + values[i]) / 2

#Inherit the StatisticsReported from the neat package to add some desired

functionality

class StatReporterv2(StatisticsReporter):

 def get_fitness_low_quartile(self):

 return self.get_fitness_stat(low_quartile)

 def get_fitness_high_quartile(self):

 return self.get_fitness_stat(high_quartile)

 def get_fitness_best(self):

 return self.get_fitness_stat(max)

#This is a reporter that saves the best network genome to a binary file

every generation.

class NetRetriever(BaseReporter):

 def __init__(self):

 self.g = 0

 def end_generation(self, config, population, species_set):

 max_fit = 0

 best_genome = None

 #Find the best genome based on fitness

A-31

 for id, genome in iteritems(population):

 if not genome.fitness:

 continue

 if genome.fitness > max_fit:

 max_fit = genome.fitness

 best_genome = genome

 try:

 #Save it to the binary file

 fp = open(f"net_gen_{self.g}.bin", 'wb')

 pickle.dump(create(best_genome, config), fp)

 fp.close()

 except:

 pass

 if self.g > 0:

 #Remove the previous genome to avoid cluttering

 os.remove(f"net_gen_{self.g-1}.bin")

 self.g += 1

class EvaluatorMutator(BaseReporter):

 def __init__(self, evaluator):

 self.evaluator = evaluator

 def end_generation(self, config, population, species_set):

 self.evaluator.params = random.sample(self.evaluator.param_list,

self.evaluator.samples)

A-32

solve.py (contains functions that build the hand-designed networks):

import copy

from switch_neuron import Neuron, SwitchNeuron, SwitchNeuronNetwork, Agent

from math import tanh

from t_maze.envs import TMazeEnv

from utilities import mult, clamp, heaviside

def convert_to_action(scalar):

 if scalar[0] > 3.3:

 return (1,0,0)

 if scalar[0] < -3.3:

 return (0,0,1)

 return (0,1,0)

#Returns an agent which solves the 3x3 one-to-one association task

#We say that a network solves this problem when it manages to learn a new

association within n*(m-1) steps,

#in this case 6 steps.

def solve_one_to_one_3x3():

 input_keys = [-1, -2, -3, -4]

 output_keys = [0]

 switch_keys = [1, 2, 3]

 node_keys = [4, 5, 6]

 nodes = []

 modulating_nodes_dict = {

 'activation_function': lambda x: clamp(x,-10,10),

 'integration_function': mult,

 'activity': 0,

 'output': 0,

 'bias':1

 }

 node_weights = {4: [(-1, 1), (-4, 1)], 5: [(-2, 1), (-4, 1)], 6: [(-3,

1), (-4, 1)]}

 for i in node_keys:

 node_dict = copy.deepcopy(modulating_nodes_dict)

 node_dict['weights'] = node_weights[i]

 nodes.append(Neuron(i, node_dict))

 switch_std_weights = {

 1: [(-1, 10), (-1, 0), (-1, -10)],

 2: [(-2, 10), (-2, 0), (-2, -10)],

 3: [(-3, 10), (-3, 0), (-3, -10)]

 }

 switch_mod_weights = {

 1: [(4, 1 / 3)],

 2: [(5, 1 / 3)],

 3: [(6, 1 / 3)]

 }

 for key in switch_keys:

 nodes.append(SwitchNeuron(key, switch_std_weights[key],

switch_mod_weights[key]))

 node_0_std = {

 'activation_function': lambda x: clamp(x,-10,10),

 'integration_function': sum,

A-33

 'activity': 0,

 'output': 0,

 'weights': [(1, 1), (2, 1), (3, 1)],

 'bias' : 0

 }

 nodes.append(Neuron(0, node_0_std))

 net = SwitchNeuronNetwork(input_keys, output_keys, nodes)

 agent = Agent(net,lambda x: x,lambda x: convert_to_action(x))

 return agent

#Returns an agent which solves the 3x3 one-to-one association task

#We say that a network solves this problem when it manages to learn a new

association within n*(2^m - 1) steps,

#in this case 9 steps.

def solve_one_to_many():

 input_keys = [-1, -2, -3, -4]

 output_keys = [0,1]

 node_keys = [3,4,5]

 switch_keys = [7,8,9,10,11,12]

 nodes = []

 node_weights = {3: [(-1, 1), (-4, 1)], 4: [(-2, 1), (-4, 1)], 5: [(-3,

1), (-4, 1)]}

 modulating_nodes_dict = {

 'activation_function': lambda x: clamp(x,-1,1),

 'integration_function': mult,

 'activity': 0,

 'output': 0,

 'bias' : 1

 }

 for i in node_keys:

 node_dict = copy.deepcopy(modulating_nodes_dict)

 node_dict['weights'] = node_weights[i]

 nodes.append(Neuron(i, node_dict))

 slow, fast = 0,0

 switch_std_w = {}

 while fast < len(switch_keys):

 switch_std_w[switch_keys[fast]] = [(input_keys[slow], 1),

(input_keys[slow], -1)]

 fast += 1

 switch_std_w[switch_keys[fast]] = [(input_keys[slow], 1),

(input_keys[slow], -1)]

 fast+=1

 slow+=1

 w1, w2 = 0.5, 1

 switch_mod_w = {7: [(3,w2)], 8: [(7,w1)], 9: [(4,w2)], 10:[(9,w1)], 11:

[(5,w2)], 12: [(11,w1)]}

 for key in switch_keys:

 nodes.append(SwitchNeuron(key,switch_std_w[key],switch_mod_w[key]))

 out_w = {0 : [(8,1), (10,1), (12,1)], 1: [(7,1), (9,1), (11,1)]}

 out_dict = {

 'activation_function': heaviside,

 'integration_function': sum,

A-34

 'activity': 0,

 'output': 0,

 'bias' : 0

 }

 for key in output_keys:

 params = copy.deepcopy(out_dict)

 params['weights'] = out_w[key]

 nodes.append(Neuron(key,params))

 net = SwitchNeuronNetwork(input_keys,output_keys,nodes)

 return net

def convert_to_direction(x):

 if x[0] < -0.33:

 return TMazeEnv.Actions.left

 if x[0] > 0.33:

 return TMazeEnv.Actions.right

 return TMazeEnv.Actions.forward

#Returns an agent which solves the single t-maze non-homing task.

#We say a network solves the problem when it it needs at most one step

figure out that the high reward has switched

#positions.

def solve_tmaze():

 input_keys = [-1,-2,-3,-4,-5]

 output_keys = [0]

 node_keys = [1,2,3]

 nodes = []

 #Aggregating neuron

 params = {

 'activation_function' : lambda x : x,

 'integration_function' : sum,

 'activity': 0,

 'output' : 0,

 'weights' : [(-1,-1), (-5,1)],

 'bias':0

 }

 nodes.append(Neuron(1,params))

 m_params = {

 'activation_function': lambda x: clamp(x, -0.8,0),

 'integration_function': mult,

 'activity': 0,

 'output': 0,

 'weights': [(1, 1), (-4, 1)],

 'bias' : 1

 }

 nodes.append(Neuron(2,m_params))

 std_weights = [(-3,5), (-3,-5)]

 mod_weights = [(2,-1.25*0.5)]

 nodes.append(SwitchNeuron(3,std_weights,mod_weights))

 o_params = {

 'activation_function': tanh,

 'integration_function': sum,

 'activity': 0,

A-35

 'output': 0,

 'weights': [(3,1)],

 'bias' : 0

 }

 nodes.append(Neuron(0,o_params))

 net = SwitchNeuronNetwork(input_keys,output_keys,nodes)

 agent = Agent(net, lambda x: x.insert(0,1), lambda x:

convert_to_direction(x))

 return agent

def solve_xor_rec():

 in_keys = [-1,-2]

 out_keys = [0]

 hidden_keys = [1]

 nodes = []

 nodes.append(Neuron(1, {

 'activation_function': heaviside,

 'integration_function': sum,

 'bias' : -1.5,

 'activity': 0,

 'output': 0,

 'weights': [(-1, 1),(-2,1)]

 }))

 nodes.append(Neuron(0, {

 'activation_function': heaviside,

 'integration_function': sum,

 'bias': -0.5,

 'activity': 0,

 'output': 0,

 'weights': [(-1,1),(-2,1),(1,-10)]

 }))

 net = SwitchNeuronNetwork(in_keys,out_keys,nodes)

 return net

A-36

switch_maps.py

import os

import pickle

import Reporters

import neat

import numpy as np

from neat.attributes import FloatAttribute, BoolAttribute, StringAttribute

from neat.genes import BaseGene, DefaultNodeGene

from neat.genome import DefaultGenomeConfig, DefaultGenome

from neat.graphs import required_for_output

from switch_neuron import Neuron, SwitchNeuronNetwork, SwitchNeuron, Agent

from neat.six_util import itervalues

from itertools import chain

from utilities import order_of_activation

class SwitchMapConnectionGene(BaseGene):

 #Various parameters for defining a connection.

 _gene_attributes = [BoolAttribute('one2one'), #if true then the

connection scheme is one to one, else one to all

 BoolAttribute('uniform'), #step or uniform

 FloatAttribute('weight'),#Weigth is used as the

mean of the normal distribution for 1-to-all

 BoolAttribute('enabled'),

 BoolAttribute('is_mod')]

 def __init__(self, key):

 assert isinstance(key, tuple), "DefaultConnectionGene key must be a

tuple, not {!r}".format(key)

 BaseGene.__init__(self, key)

 #Define the distance between two genes

 def distance(self, other, config):

 d = abs(self.weight - other.weight) + int(self.one2one ==

other.one2one) \

 + int(self.uniform == other.uniform) + int(self.enabled ==

other.enabled) + int(self.is_mod == other.is_mod)

 return d * config.compatibility_weight_coefficient

class SwitchMapNodeGene(DefaultNodeGene):

 _gene_attributes = [FloatAttribute('bias'), #The bias of the neuron

 StringAttribute('activation', options='sigmoid'), #

The activation function, tunable from the config

 StringAttribute('aggregation', options='sum'), #The

aggregation function

 BoolAttribute('is_isolated'),

 BoolAttribute('is_switch')] #Map vs isolated neuron

 def distance(self, other, config):

 d = abs(self.bias - other.bias) + int(self.activation ==

other.activation) + int(self.aggregation == other.aggregation)\

 + int(self.is_isolated == other.is_isolated) +

int(self.is_switch - other.is_switch)

 return d * config.compatibility_weight_coefficient

A-37

class SwitchMapGenome(DefaultGenome):

 @classmethod

 def parse_config(cls, param_dict):

 param_dict['node_gene_type'] = SwitchMapNodeGene

 param_dict['connection_gene_type'] = SwitchMapConnectionGene

 return DefaultGenomeConfig(param_dict)

def create(genome, config, map_size):

 """ Receives a genome and returns its phenotype (a

SwitchNeuronNetwork). """

 genome_config = config.genome_config

 required = required_for_output(genome_config.input_keys,

genome_config.output_keys, genome.connections)

 input_keys = genome_config.input_keys

 output_keys = genome_config.output_keys

 # Gather inputs and expressed connections.

 std_inputs = {}

 mod_inputs = {}

 children = {}

 node_keys = set(genome.nodes.keys()) # +

list(genome_config.input_keys[:])

 # Here we populate the children dictionay for each unique not isolated

node.

 for n in genome.nodes.keys():

 children[n] = []

 if not genome.nodes[n].is_isolated:

 for _ in range(1, map_size):

 new_idx = max(node_keys) + 1

 children[n].append(new_idx)

 node_keys.add(new_idx)

 # We don't scale the output with the map size to keep passing the

parameters of the network easy.

 # This part can be revised in the future

 for n in chain(input_keys, output_keys):

 children[n] = []

 #Iterate over every connection

 for cg in itervalues(genome.connections):

 #If it's not enabled don't include it

 if not cg.enabled:

 continue

 i, o = cg.key

 #If neither node is required for output then skip the connection

 if o not in required and i not in required:

 continue

 #Find the map corresponding to each node of the connection

 in_map = [i] + children[i]

 out_map = [o] + children[o]

 #If the connection is modulatory and the output neuron a switch

neuron then the new weights are stored

 #in the mod dictionary. We assume that only switch neurons have a

modulatory part.

 if cg.is_mod and genome.nodes[o].is_switch:

 node_inputs = mod_inputs

 else:

A-38

 node_inputs = std_inputs

 for n in out_map:

 if n not in node_inputs.keys():

 node_inputs[n] = []

 if len(in_map) == map_size and len(out_map) == map_size:

 # Map to map connectivity

 if cg.one2one:

 # 1-to-1 mapping

 weight = cg.weight

 for i in range(map_size):

 node_inputs[out_map[i]].append((in_map[i], weight))

 else:

 # 1-to-all

 if not cg.uniform:

 # Step

 start = -cg.weight

 end = cg.weight

 step = (end - start) / (map_size - 1)

 for o_n in out_map:

 s = start

 for i_n in in_map:

 node_inputs[o_n].append((i_n, s))

 s += step

 else:

 # Uniform

 for o_n in out_map:

 for i_n in in_map:

 node_inputs[o_n].append((i_n, cg.weight))

 else:

 # Map-to-isolated or isolated-to-isolated

 if not cg.uniform:

 # Step

 start = -cg.weight

 end = cg.weight

 step = (end - start) / (map_size - 1)

 for o_n in out_map:

 s = start

 for i_n in in_map:

 node_inputs[o_n].append((i_n, s))

 s += step

 else:

 # Uniform

 for o_n in out_map:

 for i_n in in_map:

 node_inputs[o_n].append((i_n, cg.weight))

 nodes = []

 #Sometimes the output neurons end up not having any connections during

the evolutionary process. While we do not

 #desire such networks, we should still allow them to make predictions

to avoid fatal errors.

 for okey in output_keys:

 if okey not in node_keys:

 node_keys.add(okey)

 std_inputs[okey] = []

A-39

 # While we cannot deduce the order of activations of the neurons due to

the fact that we allow for arbitrary connection

 # schemes, we certainly want the output neurons to activate last.

 input_keys = genome_config.input_keys

 output_keys = genome_config.output_keys

 conns = {}

 for k in genome.nodes.keys():

 if k not in std_inputs:

 std_inputs[k] = []

 if k in children:

 for c in children[k]:

 std_inputs[c] = []

 conns[k] = [i for i, _ in std_inputs[k]]

 sorted_keys = order_of_activation(conns, input_keys, output_keys)

 for node_key in sorted_keys:

 #if the node we are examining is not in our keys set then skip it.

It means that it is not required for output.

 if node_key not in node_keys:

 continue

 node = genome.nodes[node_key]

 node_map = [node_key] + children[node_key]

 if node.is_switch:

 # If the switch neuron has both modulatory and standard weights

then we can add it normally to the nodes

 # of the network.

 if node_key in std_inputs.keys() and node_key in

mod_inputs.keys():

 for n in node_map:

nodes.append(SwitchNeuron(n,std_inputs[n],mod_inputs[n]))

 continue

 # if the switch neuron only has modulatory weights then we copy

those weights for the standard part as well.

 # this is not the desired behaviour but it is done to avoid

errors during forward pass.

 elif node_key not in std_inputs.keys() and node_key in

mod_inputs.keys():

 for n in node_map:

 std_inputs[n] = mod_inputs[n]

 else:

 for n in node_map:

 std_inputs[n] = []

 else:

 for n in node_map:

 if n not in std_inputs:

 std_inputs[n] = []

 # Create the standard part dictionary for the neuron

 for n in node_map:

 params = {

 'activation_function':

genome_config.activation_defs.get(node.activation),

 'integration_function':

genome_config.aggregation_function_defs.get(node.aggregation),

 'bias': node.bias,

 'activity': 0,

 'output': 0,

 'weights': std_inputs[n]

A-40

 }

 nodes.append(Neuron(n, params))

 return SwitchNeuronNetwork(input_keys, output_keys, nodes)

MAP_SIZE = 5

def make_eval_fun(evaluation_func, in_proc, out_proc):

 def eval_genomes (genomes, config):

 for genome_id, genome in genomes:

 net = create(genome,config,MAP_SIZE)

 #Wrap the network around an agent

 agent = Agent(net, in_proc, out_proc)

 #Evaluate its fitness based on the function given above.

 genome.fitness = evaluation_func(agent)

 return eval_genomes

#A dry test run for the xor problem to test if the above implementation

works

def run(config_file):

 #Configuring the agent and the evaluation function

 from eval import eval_net_xor

 eval_func = eval_net_xor

 #Preprocessing for inputs: none

 in_func = out_func = lambda x: x

 #Preprocessing for output - convert float to boolean

 # Load configuration.

 config = neat.Config(SwitchMapGenome, neat.DefaultReproduction,

 neat.DefaultSpeciesSet, neat.DefaultStagnation,

 config_file)

 # Create the population, which is the top-level object for a NEAT run.

 p = neat.Population(config)

 # Add a stdout reporter to show progress in the terminal.

 p.add_reporter(neat.StdOutReporter(True))

 stats = Reporters.StatReporterv2()

 p.add_reporter(stats)

 #p.add_reporter(Reporters.NetRetriever())

 #p.add_reporter(neat.Checkpointer(5))

 # Run for up to 300 generations.

 winner = p.run(make_eval_fun(eval_func, in_func, out_func), 1000)

 # Display the winning genome.

 print('\nBest genome:\n{!s}'.format(winner))

 # Show output of the most fit genome against training data.

 print('\nOutput:')

 winner_net = create(winner, config, MAP_SIZE)

 winner_agent = Agent(winner_net,in_func, out_func)

 print("Score in task: {}".format(eval_func(winner_agent)))

 for i, o in (((0, 0), 0), ((0, 1), 1), ((1, 0), 1), ((1, 1), 0)):

 print(f"Input: {i}, Expected: {o}, got {winner_agent.activate(i)}")

 #Uncomment the following if you want to save the network in a binary

file

 fp = open('winner_net.bin','wb')

 pickle.dump(winner_net,fp)

 fp.close()

A-41

 #visualize.draw_net(config, winner, True)

 #visualize.plot_stats(stats, ylog=False, view=True)

 #visualize.plot_species(stats, view=True)

def main():

 # Determine path to configuration file. This path manipulation is

 # here so that the script will run successfully regardless of the

 # current working directory.

 local_dir = os.path.dirname(__file__)

 config_path = os.path.join(local_dir, 'config/config-switch_maps')

 run(config_path)

if __name__ == '__main__':

 main()

A-42

switch_neat.py

from __future__ import print_function

import pickle

import visualize

from neat.attributes import FloatAttribute, BoolAttribute, StringAttribute

from neat.genes import DefaultNodeGene, DefaultConnectionGene

from neat.genome import DefaultGenomeConfig, DefaultGenome

from neat.graphs import required_for_output

from neat.six_util import itervalues

from switch_neuron import SwitchNeuron, SwitchNeuronNetwork, Neuron, Agent

import os

import neat

import Reporters

from utilities import order_of_activation

#The class for the gene representing the neurons in our network.

class SwitchNodeGene(DefaultNodeGene):

 _gene_attributes = [FloatAttribute('bias'),

 StringAttribute('activation', options='sigmoid'),

 StringAttribute('aggregation', options='sum'),

 BoolAttribute('is_switch')]

 def distance(self, other, config):

 d = abs(self.bias + other.bias)

 if self.activation != other.activation:

 d += 1.0

 if self.aggregation != other.aggregation:

 d += 1.0

 if self.is_switch != other.is_switch:

 d =3

 return d * config.compatibility_weight_coefficient

#The gene for the connections in our network.

class SwitchConnectionGene(DefaultConnectionGene):

 _gene_attributes = [FloatAttribute('weight'),

 BoolAttribute('is_mod'),

 BoolAttribute('enabled')] #The neat package

complains if this attribute is not present.

 def distance(self, other, config):

 d = abs(self.weight - other.weight)

 if self.enabled != other.enabled:

 d += 1.0

 if self.is_mod != other.is_mod:

 d += 1

 return d * config.compatibility_weight_coefficient

#Create a switch genome class to replace the default genome class in our

experiments.

class SwitchGenome(DefaultGenome):

 @classmethod

 def parse_config(cls, param_dict):

 param_dict['node_gene_type'] = SwitchNodeGene

 param_dict['connection_gene_type'] = SwitchConnectionGene

 return DefaultGenomeConfig(param_dict)

#Takes a genome and the configuration object and returns the network

encoded in the genome.

A-43

def create(genome, config):

 genome_config = config.genome_config

 required = required_for_output(genome_config.input_keys,

genome_config.output_keys, genome.connections)

 input_keys = genome_config.input_keys

 output_keys = genome_config.output_keys

 #A dictionary where we keep the modulatory weights for every node

 mod_weights = {}

 #A dictionary where we keep the standard weights for every node

 std_weights = {}

 #Create a set with the keys of the nodes in the network

 keys = set()

 #Iterate over the connections

 for cg in itervalues(genome.connections):

 #if not cg.enabled:

 # continue

 i, o = cg.key

 #If neither of the nodes in the connection are required for output

then skip this connection

 if o not in required and i not in required:

 continue

 if i not in input_keys:

 keys.add(i)

 keys.add(o)

 #In this implementation, only switch neurons have a modulatory part

 if genome.nodes[o].is_switch:

 #Add the weight to the modulatory part of the o node and

continue with the next connection

 if cg.is_mod:

 if o not in mod_weights.keys():

 mod_weights[o] = [(i,cg.weight)]

 else:

 mod_weights[o].append((i,cg.weight))

 continue

 #If the connection is not modulatory

 #Add the weight to the standard weight of the o node.

 if o not in std_weights.keys():

 std_weights[o] = [(i,cg.weight)]

 else:

 std_weights[o].append((i,cg.weight))

 #Create the array with the network's nodes

 nodes = []

 #Sometimes the output neurons end up not having any connections during

the evolutionary process. While we do not

 #desire such networks, we should still allow them to make predictions

to avoid fatal errors.

 for okey in output_keys:

 keys.add(okey)

 for k in keys:

 if k not in std_weights:

 std_weights[k] = []

 #While we cannot deduce the order of activations of the neurons due to

the fact that we allow for arbitrary connection

 #schemes, we certainly want the output neurons to activate last.

A-44

 conns = {}

 for k in keys:

 conns[k] = [i for i, w in std_weights[k]]

 sorted_keys = order_of_activation(conns, input_keys, output_keys)

 #Create the nodes of the network based on the weights dictionaries

created above and the genome.

 for node_key in sorted_keys:

 if node_key not in keys:

 continue

 node = genome.nodes[node_key]

 if node.is_switch:

 #If the switch neuron has both modulatory and standard weights

then we can add it normally to the nodes

 #of the network.

 if node_key in std_weights.keys() and node_key in

mod_weights.keys():

 nodes.append(SwitchNeuron(node_key, std_weights[node_key],

mod_weights[node_key]))

 continue

 #if the switch neuron only has modulatory weights then we copy

those weights for the standard part as well.

 #this is not the desired behaviour but it is done to avoid

errors during forward pass.

 elif node_key not in std_weights.keys() and node_key in

mod_weights:

 std_weights[node_key] = mod_weights[node_key]

 else:

 std_weights[node_key] = []

 else:

 if node_key not in std_weights:

 std_weights[node_key] = []

 #Create the standard part dictionary for the neuron

 params = {

 'activation_function' :

genome_config.activation_defs.get(node.activation),

 'integration_function' :

genome_config.aggregation_function_defs.get(node.aggregation),

 'bias' : node.bias,

 'activity' : 0,

 'output' : 0,

 'weights' : std_weights[node_key]

 }

 nodes.append(Neuron(node_key,params))

 return SwitchNeuronNetwork(input_keys,output_keys,nodes)

#This function wraps a given evaluation function to make it suitable for

evaluating an array of genomes

#produced by neat and returns it.

def make_eval_fun(evaluation_func, in_proc, out_proc):

 def eval_genomes (genomes, config):

 for genome_id, genome in genomes:

 net = create(genome,config)

 #Wrap the network around an agent

 agent = Agent(net, in_proc, out_proc)

 #Evaluate its fitness based on the function given above.

 genome.fitness = evaluation_func(agent)

A-45

 return eval_genomes

#A dry test run for the one to one association task. I haven't ran it to

end yet because it needs too much time as of now and at some point

#it even reaches a plateau.

def run(config_file):

 #Configuring the agent and the evaluation function

 from eval import eval_net_xor

 eval_func = eval_net_xor

 #Preprocessing for inputs: none

 in_func = out_func = lambda x: x

 #Preprocessing for outputs: one-hot max encoding.

 # Load configuration.

 config = neat.Config(SwitchGenome, neat.DefaultReproduction,

 neat.DefaultSpeciesSet, neat.DefaultStagnation,

 config_file)

 from utilities import heaviside

 config.genome_config.add_activation('heaviside', heaviside)

 # Create the population, which is the top-level object for a NEAT run.

 p = neat.Population(config)

 # Add a stdout reporter to show progress in the terminal.

 p.add_reporter(neat.StdOutReporter(True))

 stats = Reporters.StatReporterv2()

 p.add_reporter(stats)

 #p.add_reporter(Reporters.NetRetriever())

 #p.add_reporter(neat.Checkpointer(5))

 # Run for up to 300 generations.

 winner = p.run(make_eval_fun(eval_func, in_func, out_func), 2000)

 # Display the winning genome.

 print('\nBest genome:\n{!s}'.format(winner))

 # Show output of the most fit genome against training data.

 print('\nOutput:')

 winner_net = create(winner, config)

 winner_agent = Agent(winner_net,in_func, out_func)

 print("Score in task: {}".format(eval_func(winner_agent)))

 #for i, o in (((0,0),0), ((0,1),1), ((1,0),1), ((1,1),0)):

 # print(f"Input: {i}, Expected: {o}, got

{winner_agent.activate(i)}")

 #Uncomment the following if you want to save the network in a binary

file

 fp = open('winner_net.bin','wb')

 pickle.dump(winner_net,fp)

 fp.close()

 #visualize.draw_net(config, winner, True)

 visualize.plot_stats(stats, ylog=False, view=True)

 #visualize.plot_species(stats, view=True)

def main():

A-46

 # Determine path to configuration file. This path manipulation is

 # here so that the script will run successfully regardless of the

 # current working directory.

 local_dir = os.path.dirname(__file__)

 config_path = os.path.join(local_dir, 'config/config-switch')

 run(config_path)

if __name__ == '__main__':

 main()

A-47

switch_neuron.py

import math

import sys

from math import floor

from utilities import identity

#This is a wrapper class for the neural networks to allow pre-processing of

the input and the output which may help the

#network

class Agent():

 def __init__(self, network, setup_inputs, prepare_outputs):

 self.network = network

 self.setup_inputs = setup_inputs

 self.prepare_outputs = prepare_outputs

 def activate(self,inputs):

 proc_inputs = self.setup_inputs(inputs)

 output = self.network.activate(proc_inputs)

 return self.prepare_outputs(output)

#This is the basis class for the neurons that we will be using for our

experiments.

class Neuron():

 #Consider abolishing the dictionaries and go for a more object-oriented

approach

 def __init__(self,key, standard_dict, modulatory_dict = None):

 #Each dictionary contains the following: activation_function,

integration_function, activity, output, weights

 #Standard dictionary also contains bias

 self.key = key

 self.standard= standard_dict

 self.modulatory = modulatory_dict

 self.has_modulatory = (self.modulatory is not None)

class SwitchNeuron(Neuron):

 #Each of std_weights and mod_weights is an array of tuples of the form

(<node>,<weight>)

 def __init__(self,key, std_weights, mod_weights):

 #The standard part of the neuron is initialized according to the

definition of the switch neuron in Christodoulou's

 #and Vassiliades paper

 std_dict = {'activation_function': identity,

 'integration_function': self.std_integration_function,

 'bias' : 0,

 'activity': 0,

 'output': 0,

 'weights': std_weights}

 #Initialize the standard activity of the neuron

 if not std_weights:

 mod_activity = 0

 else:

 mod_activity = 1 / (2 * len(std_weights))

A-48

 mod_dict = {

 'activation_function': identity,

 'integration_function': self.mod_integration_function,

 'activity': mod_activity,

 'output': mod_activity,

 'weights': mod_weights

 }

 super().__init__(key,std_dict, mod_dict)

 #The standard integration function is basically a gate that propagates

one signal from its inputs based on

 #the neurons modulatory activity.

 def std_integration_function(self, w_inputs):

 idx = floor(len(self.standard['weights']) *

self.modulatory['output'])

 return w_inputs[idx]

 #The modulatory function acts as perfect integrator which we make

behave in a cyclical fashion in order to keep

 #its value in bounds. This cyclical behaviour is key to the switch

neuron's role as it enables the alternating (when

 #needed) propagation of the signals from the input.

 def mod_integration_function(self, w_inputs):

 self.modulatory['activity'] += sum(w_inputs)

 ###################

 #The following bounding of the activity very rarely happens and is

there to combat overflows.

 #Although, these overflows shouldn't even be happening in the first

place.

 if math.isnan(self.modulatory['activity']):

 self.modulatory['activity'] = 0

 self.modulatory['activity'] = max(min(self.modulatory['activity'],

sys.maxsize), -sys.maxsize)

 ###################

 self.modulatory['activity'] -= floor(self.modulatory['activity'])

 return self.modulatory['activity']

#This class models the integrating neuron used in the switch module. It

continually integrates the signals from

#its inputs and when the sum is over a certain threshold it fires a signal

itself. It is comparable to the

#integrate-and-fire neurons .

class IntegratingNeuron(Neuron):

 THETA = 1

 BASELINE = 0

 def __init__(self, key, weights):

 params = {

 'activation_function' : self.tri_step,

 'integration_function' : self.perfect_integration,

 'bias' : 0,

 'activity' : IntegratingNeuron.BASELINE,

 'output' : 0,

 'weights': weights

 }

 super().__init__(key,params)

A-49

 def perfect_integration(self, w_inputs):

 self.standard['activity'] += sum(w_inputs)

 return self.standard['activity']

 #When the neuron's activity goes over the threshold we fire a 1, and

when the neuron's activity goes below the

 # -threshold we fire a -1. The we reset the activity to 0.

 def tri_step(self, activity):

 if activity >= IntegratingNeuron.THETA:

 self.standard['activity'] = 0

 return 1

 elif activity < -IntegratingNeuron.THETA:

 self.standard['activity'] = 0

 return -1

 return 0

class SwitchNeuronNetwork():

 #inputs: an array containing the keys of the input pins

 #outputs: an array containing the keys of the output neurons

 #nodes: an array containing the neurons of the network, in the order

they are supposed to fire.

 def __init__(self,inputs, outputs, nodes):

 self.inputs = inputs

 self.outputs = outputs

 self.nodes = nodes

 #We create in memory a dictionary of the nodes for faster on-demand

indexing

 self.nodes_dict = {}

 for node in nodes:

 self.nodes_dict[node.key] = node

 #We convert any switch neurons that need to be converted to switch

modules, i.e. the switch neurons that modulate

 #other neurons.

 temp_nodes = nodes[:]

 for node in temp_nodes:

 if isinstance(node, SwitchNeuron) and

len(node.standard["weights"]) > 0:

 self.make_switch_module(node.key)

 #Perform a forward pass through the network. Since arbitrary connection

schemes are allowed, the neurons are not

 #divided into layers and its order of activation is assumed based on

their order of the nodes array.

 def activate(self, inputs):

 assert len(self.inputs) == len(inputs), "Expected {:d} inputs, got

{:d}".format(len(self.inputs), len(inputs))

 #Store the values from the input pins in a dictionary

 ivalues = {}

 for i, v in zip(self.inputs, inputs):

 ivalues[i] = v

 for node in self.nodes:

 #First calculate the modulatory output of the neuron

 if node.has_modulatory:

 mod_inputs = []

 #Collect all the weighted inputs in array

 for key, weight in node.modulatory['weights']:

A-50

 if key in ivalues.keys():

 val = ivalues[key]

 else:

 val = self.nodes_dict[key].standard['output']

 mod_inputs.append(val*weight)

 #Calculate the neurons modulatory activity and output based

on it's functions.

 node.modulatory['activity'] =

node.modulatory['integration_function'](mod_inputs)

 node.modulatory['output'] =

node.modulatory['activation_function'](node.modulatory['activity'])

 standard_inputs = []

 #Collect the weighted inputs in an array

 for key, weight in node.standard['weights']:

 if key in ivalues.keys():

 val = ivalues[key]

 else:

 val = self.nodes_dict[key].standard['output']

 standard_inputs.append(val * weight)

 #add the bias

 standard_inputs.append(node.standard['bias'])

 #Calculate the neuron's activity and output based on it's

standard functions.

 node.standard['activity'] =

node.standard['integration_function'](standard_inputs)

 node.standard['output'] =

node.standard['activation_function'](node.standard['activity'])

 output = [self.nodes_dict[key].standard['output'] for key in

self.outputs]

 return output

 #Check if a switch neuron needs to be converted to a module AND

converts it if so. A neuron needs to be

 #converted if it modulates other neurons.

 def make_switch_module(self, key):

 #Check if the key of the switch neuron is valid.

 idx = None

 for i, node in enumerate(self.nodes):

 if node.key == key:

 idx = i

 break

 assert idx != None, "Switch Neuron passed not found in the network

nodes"

 s_node = self.nodes_dict[key]

 assert isinstance(s_node, SwitchNeuron), \

 "Argument passed in is {} instead of SwitchNeuron

type".format(s_node.__class__.__name__)

 out_mod = []

 #Find if this switch neurons modulates other neurons

 for node in self.nodes:

 if node.has_modulatory:

 found = False

 for i, w in node.modulatory['weights']:

 if i == key:

 out_mod.append(node.key)

 found = True

 break

A-51

 if found:

 break

 #If not, then stop the process

 if not out_mod:

 return

 #Create a unique key for the modulating neurons

 modulating_key = max(list(self.nodes_dict.keys())) + 1

 #The modulating neuron inherits the initial switch neuron's

modulatory weights as its standard weights.

 modulating_weights = s_node.modulatory['weights']

 modulating_dict = {

 'activation_function': identity,

 'integration_function': sum,

 'bias' : 0,

 'activity' : 0,

 'output' : 0,

 'weights': modulating_weights

 }

 #Create the modulating neuron and add it to the network's neurons

 modulating_neuron = Neuron(modulating_key,modulating_dict)

 self.nodes_dict[modulating_key] = modulating_neuron

 #The switch neuron's is only modulated by the modulating neuron

with a weight inverse to it's initial

 #input neurons.

 s_node.modulatory['weights'] = [(modulating_key,

1/len(s_node.standard['weights']))]

 #Create a unique key for the integrating neuron

 integrating_key = max(list(self.nodes_dict.keys())) + 1

 #The integrating neuron shares the connection from the modulating

neuron with the switch neuron.

 integrating_weights = [(modulating_key,

1/len(s_node.standard['weights']))]

 #Create the neuron and add it to the network's neurons.

 integrating_neuron =

IntegratingNeuron(integrating_key,integrating_weights)

 self.nodes_dict[integrating_key] = integrating_neuron

 self.nodes.insert(idx,integrating_neuron)

 self.nodes.insert(idx,modulating_neuron)

 #Modify the input weights of each neuron that was modulated by the

switch neuron to be instead modulated

 #by the integrating neuron.

 for n in out_mod:

 node = self.nodes_dict[n]

 for ind, (i, w) in enumerate(node.modulatory['weights']):

 if i == key:

 node.modulatory['weights'][ind] = (integrating_key, w)

A-52

test_networks.py (functions that test if a solution is correct):

import unittest

import solve

import eval

class TestNetworks(unittest.TestCase):

 def test_one_to_one(self):

 agent = solve.solve_one_to_one_3x3()

 optimal_score = 1975

 scores = [eval.eval_one_to_one_3x3(agent) for _ in range(100)]

 for score in scores:

 self.assertGreaterEqual(score, optimal_score)

 def test_one_to_many(self):

 agent = solve.solve_one_to_many()

 optimal_score = 1964

 scores = [eval.eval_one_to_many_3x2(agent) for _ in range(100)]

 for score in scores:

 self.assertGreaterEqual(score,optimal_score)

 def test_t_maze(self):

 agent = solve.solve_tmaze()

 optimal_score = 95

 scores = [eval.eval_tmaze(agent) for _ in range(100)]

 for score in scores:

 self.assertGreaterEqual(score, optimal_score)

if __name__ == '__main__':

 unittest.main()

A-53

utilities.py

import random

def identity(activity):

 return activity

def clamp(x,low,high):

 if x < low:

 return low

 if x > high:

 return high

 return x

def heaviside(x):

 if x < 0:

 return 0

 return 1

def mult(w_inputs):

 product = 1

 for w_i in w_inputs:

 product *= w_i

 return product

def shuffle_lists(list1, list2):

 temp = list(zip(list1, list2))

 random.shuffle(temp)

 list1, list2 = [], []

 for a, b in temp:

 list1.append(a)

 list2.append(b)

 return list1, list2

#Return the order of neuron activation in a cyclical directed graph.

#conns is a dictionary with:

key: the name of the node

value: the nodes inputs in this form: [node1, node2, node3]

def order_of_activation(conns, inputs, outputs):

 ordered_list = []

 visited = set()

 #The number of incoming connections

 #If a neuron has a recurrent connection to itself we don't count it

 magnitude = {k: len([i for i in conns[k] if i != k]) for k in

conns.keys()}

 #Inputs always activate first

 for i in inputs:

 magnitude[i] = 0

 frontier = [i for i in magnitude.keys() if magnitude[i] ==

min(magnitude.values())]

 def activate_n(node):

 new_nodes = []

 for k in magnitude.keys():

 if k in inputs:

 continue

 if node in conns[k]:

 magnitude[k] -= 1

 new_nodes.append(k)

 return new_nodes

A-54

 while len(visited) < len(conns.keys()) + len(inputs):

 if frontier == []:

 minmagn = min([magnitude[v] for v in magnitude.keys() if v not

in visited])

 frontier = [i for i in magnitude.keys() if magnitude[i] ==

minmagn]

 minn = frontier[0]

 for node in frontier:

 if magnitude[node] < magnitude[minn]:

 minn = node

 if minn not in inputs:

 ordered_list.append(minn)

 frontier.remove(minn)

 visited.add(minn)

 new_nodes = activate_n(minn)

 frontier.extend([n for n in new_nodes if n not in visited and n not

in frontier])

 return ordered_list

