
0 

 

 

 

UNIVERSITY OF CYPRUS 

COMPUTER SCIENCE DEPARTMENT 

 

 

 

 

 

 

 

 

 

 

PRESENTATION PLAN 

INDIVIDUAL DISSERTATION 

 

 

 

 

 

 

 

 

 

 

 

 

 

May 2021  



1 

 

 

 

INDIVIDUAL DISSERTATION 

 

 

 

 

MONITORING SYSTEM FOR  

INDUSTRIAL IOT APPLICATIONS 

 

 

 

 

Andreas Komis 

 

 

UNIVERSITY OF CYPRUS 

 

 

 

 

COMPUTER SCIENCE DEPARTMENT 

 

 

 

 

 

May 2021 

  



2 

 

 

UNIVERSITY OF CYPRUS 

COMPUTER SCIENCE DEPARTMENT 

 

 

 

 

 

 

 

Monitoring System for Industrial IoT Applications 

 

Andreas Komis 

 

 

 

 

 

 

 

 

Supervisor 

Marios D. Dikaiakos 

 

 

 

The individual dissertation has been submitted to partially fulfill the requirements for 

acquiring a bachelor’s degree in Computer Science by the University of Cyprus. 

 

 

May 2021  



3 

 

Thanks 

 

I would like to thank my family and friends who have supported me throughout my 

academic journey for the past 4 years. I would also like to thank the people of the Centre 

for Entrepreneurship for providing all the tools necessary for the completion of this 

project through Makerspace.   



4 

 

Abstract 

 

A monitoring system that collects data from devices such as the Dobot Magician, Sliding 

Rail and JeVois Camera that are used in an industrial setting using Prometheus for 

monitoring device metrics. By using a visualization option compatible with Prometheus 

such as Grafana one can visualize such metrics and provide better insight. The goal of 

this system is to be an effective, modular and extensible solution at monitoring such 

devices. This project aims at doing that while being efficient, without interfering with the 

normal operations of the devices, and be scalable in terms of the number of devices that 

can be monitored as well as the number of different types of devices it supports. Also 

provide high monitoring flexibility through a plethora of configuration options for the 

monitoring agent and what device attributes to be extracted and monitored, configured 

individually for each device.   

https://www.dobot.cc/dobot-magician/product-overview.html
https://www.dobot.cc/products/sliding-rail-kit-overview.html
https://www.dobot.cc/products/sliding-rail-kit-overview.html
http://jevois.org/
https://prometheus.io/
https://grafana.com/


5 

 

Contents 

 

Chapter 1 Introduction…………………………………........................1 

  1.1 Motivation              1 

  1.2 Benefits of monitoring             2 

  1.3 Technical challenges            2 

  1.4 Project's goals              3 

  1.5 Abstract architecture             3 

 

Chapter 2 Monitored Devices: Dobot Magician & JeVois Camera…5 

  2.1 Dobot Magician              5 

   2.1.1 Introduction to Dobot Magician          5 

   2.1.2 Dobot Magician API            6 

   2.1.3 API Analysis             7 

   2.1.4 API Fork            8 

   2.1.5 Monitoring options            9 

   2.1.6 Connectivity            13 

  2.2 JeVois Camera             14 

   2.2.1 Introduction to JeVois Camera          14 

   2.2.2 Standardized serial messages          15 

   2.2.3 Monitoring options           15 

   2.2.4 Connectivity            15 

 

Chapter 3 Middleware: Monitoring Agent…..........…………............17 

  3.1 Responsibilities             17 

  3.2 Dependencies             18 

  3.3 Usage             18 

3.4 Device discovery & configuration         19 

   3.4.1 Dobot Magician           19 

   3.4.2 JeVois Camera            23 

   3.4.3 Other Device            24 

  3.5 Procedures             24 



6 

 

  3.6 Extensibility             24 

  3.7 Testing              25 

  3.8 Performance analysis            26 

   3.8.1 Dobot             26 

   3.8.2 Jevois             29 

 

Chapter 4 Monitoring System: Prometheus...........…………..........…30 

  4.1 Introduction to Prometheus           30 

  4.2 Python client library            31 

  4.3 Hierarchical federation            31 

  4.4 Long term storage            32 

 

Chapter 5 Visualization: Grafana...............................….…….........…33 

  5.1 Introduction to Grafana            33 

  5.2 Customization options            33 

 

Chapter 6 System Overview.....................................……….….............34 

  6.1 High level architecture            34 

   6.1.1 Connectivity layer           35 

   6.1.2 Monitoring layer           35 

   6.1.3 Visualization layer           36 

   6.1.4 Overall view            37 

  6.2 Components             38 

   6.2.1 Hardware            38 

   6.2.2 Software            39 

  6.3 Load Balancing             39 

 

Chapter 7 Conclusion......................................................….……..........40 

  7.1 Conclusion             40 

  7.2 Possible extensions            40 

 

R e f e r e n c e s.........………………………....……………………….......41 



7 

 

 

A p p e n d i x  A...…………….……...……….…….…...………….…..Α-1 

 

A p p e n d i x  B ……...………………....……………...………….…...B-1 

 

A p p e n d i x  C ….....…….……..……………………..………….…...C-1 

 

A p p e n d i x  D …..........................………...…………….……….…...D-1 

 

A p p e n d i x  E..……........................……….…...............……….…....E-1 

 



1 

 

Chapter 1 

Introduction 

 

 

 

1.1 Motivation          1 

1.2 Benefits of monitoring         2 

1.3 Technical challenges        2 

1.4 Project's goals          3 

1.5 Abstract architecture         3 

 

 

 

1.1  Motivation 

One of the most timely and exciting advancements in technology is Internet of Things, 

something that can be observed by the ever-increasing amount of connected IoT devices 

around the globe. Internet of Things is a technology paradigm where a plethora of devices, 

digital or not, have the capability to connect to the internet, exchange information and 

thus be able to interact with each other [2]. This interconnectivity that the IoT concept 

provides, due to its versatility of devices and the possible combinations creates many 

applications for it. One of the most prominent applications is the industrial area where 

assembly (or other) lines consisting of multiple devices that cooperate are used to 

accomplish an end goal. This is also referred to as Industrial Internet of Things (IIoT) and 

is defined by L. Aberle as "the use of Internet of Things (IoT) technologies in 

manufacturing" [3] and more precisely by Hugh Boyes as "A system comprising 

networked smart objects, cyber-physical assets, associated generic information 

technologies and optional cloud or edge computing platforms, which enable real-time, 

intelligent, and autonomous access, collection, analysis, communications, and exchange 

of process, product and/or service information, within the industrial environment, so as 

to optimise overall production value" [1]. Usually in an industrial application the setup is 

of high scale with multiple devices for multiple purposes and dependencies throughout 

the work line. When dealing with such workflows it becomes hard to manage them 



 

2 

 

efficiently manually and automation of this process becomes a necessity. The base for 

proper management is monitoring and especially in an industrial setting where there are 

various and complex applications. Apart from having a monitoring system take care of 

observing the devices and their state in an automatic fashion, proper monitoring of the 

devices can have many benefits that helps users manage, maintain, and optimize their 

workflows. 

 

1.2  Benefits of monitoring 

Monitoring is essentially about extracting, storing and observing data from a device, most 

commonly sensors, on a regular basis. This data is stored in specific ways for a computing 

device to then analyze such data and create useful information in different ways. Some 

common scenarios are visualizing the monitoring data for a human to observe in real time 

and get information about the state of certain devices. Another use case to handling this 

data is to define thresholds to values of the monitored device that will trigger 

alarms/notifications in order to either act upon a situation manually or program it further 

to automatically adjust in a certain way through software in order to deal with a potential 

issue. This is exceptionally useful when there are many nodes in a network that have 

certain dependencies such as a network of IoT devices. Last but not least, statistical 

analysis to such data can yield very useful information for the end user that can help 

optimize a system as well as help with decision making in regard to managing such 

environments. 

 

1.3  Technical challenges 

To properly monitor the workflow, the system must be able to collect data from multiple 

devices through a standard routine (based on intervals) and allocate its resources fairly 

throughout the monitoring period. This procedure can be challenging as different devices 

use different interfaces to connect and communicate with the host something that 

increases the complexity of the setups. Moreover, aggressive fetching can result in a 

system that misses useful data throughout the routine and/or affects the normal operations 

of the devices by throttling them through excessive fetching rates. Apart from this, 

monitoring adds overhead to both the devices and the host machine running the 

monitoring agent side effects e.g. increase in device temperature or interrupting the 

normal operations of the devices. 



 

3 

 

1.4  Project's goals 

The goal of this system is to be a scalable, modular and extensible solution at monitoring 

devices such as the Dobot Magician and the JeVois camera. This project aims at doing 

that while being efficient, without interfering with the normal operations of the devices, 

and be scalable in terms of the number of devices that can be monitored as well as the 

number of different types of devices it supports. Also provide high monitoring flexibility 

through a plethora of configuration options for the monitoring agent and what device 

attributes to be extracted and monitored, configured individually for each device. 

 

1.5  Abstract Architecture 

Image 1.1: Abstract architecture 

 

The system comprise devices (that are to be monitored), host computer(s) on the edge (in 

close proximity to the devices) that are connected to said devices and run a monitoring 

agent (will be referred to as monitoring stations) and a host computer acting as the 

administration station which collects the metrics from each individual station using a 

Prometheus Hierarchical Federation (see 4.3) as a data source and visualizes them. For 

the monitoring of the metrics each monitoring station runs a local Prometheus server. The 

system can scale vertically (monitoring station level) as the agent can connect to and 



 

4 

 

monitor a variable number of different devices, a number constrained by the monitoring 

station's available ports and resources. In addition, for larger and more complex setups 

one can scale the system horizontally (main monitoring station level) by adding multiple 

monitoring stations. For the configuration of these stations one can tweak their 

Prometheus and agent configuration files. 

  



 

5 

 

Chapter 2 

Monitored Devices: Dobot Magician & JeVois Camera 

 

 

 

2.1 Dobot Magician          5 

 2.1.1 Introduction to Dobot Magician      5 

 2.1.2 Dobot Magician API        6 

 2.1.3 API Analysis         7 

 2.1.4 API Fork         8 

 2.1.5 Monitoring options        9 

 2.1.6 Connectivity         13 

2.2 JeVois Camera          14 

 2.2.1 Introduction to JeVois Camera       14 

 2.2.2 Standardized serial messages       15 

 2.2.3 Monitoring options        15 

 2.2.4 Connectivity         15 

 

 

 

2.1  Dobot Magician 

2.1.1  Introduction to Dobot Magician 

Dobot magician is best described in a sentence by the maker as "a multifunctional desktop 

robotic arm for practical training education" [4]. The arm can be extended by changing 

its end effectors. Some of them are the suction cup, the gripper, pen holder and more. 

With this variety of compatible equipment, the Dobot Magician can be used for 3D 

printing, laser engraving, writing/drawing and more. In addition to those the robot is also 

compatible with external equipment such as the conveyor belt kit which includes a 

conveyor belt, a color sensor and an infrared sensor that helps setup small scale 

environments that replicate an industrial production line. There are numerous kits and 

extensions to the Dobot Magician such as the Sliding Rail Kit that enables the robot to 

slide instead of being stationary. It is worth noting that the Dobot Magician has been 



 

6 

 

awarded[4] the 2018 Innovation Award by CES as well as the iF DESIGN AWARD 2018, 

Red Dot Design Award 2018 and 2017 Red Star Design Award.  

Image 2.1: Dobot Magician Robotic Arm & Conveyor Belt Kit [5] 

 

2.1.2  Dobot Magician API 

In order to interact with the arm and connected peripherals through software the Dobot 

Magician API[6] can be utilized. The main library that enables such communication with 

the device is a dynamic link library called DobotDll.dll and libDobotDll.so in Windows 

and Linux respectively. This library utilizes the Dobot Communication Protocol[7] in 

order to communicate properly with the robot. For convenience and flexibility there are 

many encapsulations of it in many languages such as Python, Java, C# and more that 

provide a more abstract way (depending on the language architecture) to interact with the 

robot. All the API encapsulations and their respective demos can be found in the official 

Dobot Magician page at "Dobot Demo v2.2"[8] under the "Development Protocol" 

section. The API provides the programmer with the ability to give input to the robot and 

control its actions as well as retrieve information about the current state of the robot and 

its peripherals which is essentially what enables the monitoring of this device. Such getter 

functions/commands can be issued to retrieve information about the positions, speed and 

acceleration of the joints, alarm states, and other information about the robot. For the rest 

of the paper when referring to the Dobot Magician API we mean the Python encapsulation 



 

7 

 

of the Dobot API, DobotDllType.py, which is used by the monitoring agent for fetching 

all the necessary data. 

Image 2.2: Dobot Magician API Architecture Overview [8] 

 

2.1.3  API Analysis 

For better understanding what the API provides, that can be useful for monitoring, the 

Dobot API source file can be analyzed to extract the following information which played 

a crucial role in the decision making regarding the monitoring options. The API includes 

a total of 79 "getter" functions for various attributes of the device that can potentially be 

useful for monitoring. The following analysis has been done on those functions to better 

understand and determine which API calls can be utilized by excluding certain functions 

based on the following criteria. 

Criteria Number of functions 

Not regarding the Dobot Magician (functions regarding 

the Dobot Magician Lite – another Dobot model)  
15  

Not included/documented in the latest Dobot Magician 

API Description (v1.2.3) 
17 

IO related and/or missing argument description and/or not 

useful for monitoring 
11 

Table 2.1: Number of excluded functions in the Dobot API based on criteria 

 

Based on the above table we can conclude that 44 of the getter functions are not suitable 

for use with the monitoring agent. This implies that the remaining 35 getter functions can 

be utilized in the monitoring agent. From the included functions we can retrieve 83 useful 

info/data from the Dobot Magician as most api calls return more than one attribute. 

Throughout this analysis it is ensured that the monitoring agent is not bloated with useless 



 

8 

 

or uninteresting calls while still providing a plethora of solid options. For more details 

regarding which attributes can be monitored and what API calls are responsible and used 

in the monitoring agent, refer to section 2.1.3. 

 

2.1.4  API Fork 

Throughout the analysis of the Dobot API, some minor issues arose with fetching certain 

useful attributes, due to errors in the API. Fixing those errors to not sacrifice any wanted 

data led to a greater understanding of how the Dobot API works and resulted to more 

changes that make the Dobot API more flexible and more convenient to use. No functions 

are changed from the original Dobot API as to not break any existing implementations 

utilizing the official API, as all changes to functions are done through wrappers (new 

functions that utilize the existing functions with additions). For using the improved 

functions provided by the fork one should create a "runtime" directory in the working 

directory (where the python script utilizing it will run) with all the files provided in the 

Dobot Demo. 

 

Fixes 

• Fixed GetPoseL(api) function, which returns the position of the sliding rail (if 

there is one connected to the robot), by importing the math library which is 

required for the needs of the function, however not included by default. 

 

Improvements 

• Created function loadX() to replace load(). It has been observed that the basic 

information for communicating with the Dobot is set by ConnectDobot() and are 

stored in this file for future api calls. By calling the default load() this file is 

overridden each time which makes parallel connections impossible. loadX()  

implements loading individual dll/so (DobotDll.dll instances) for each connected 

device allowing  parallel connection with multiple Dobots. This function is not 

meant to be called explicitly. Connection can be made through 

ConnectDobotX(port) which uses it properly.  

• Created function ConnectDobotX(port) to replace "api = load(); state = 

ConnectDobot(api, port, baudrate)" for connecting to a Dobot Magician device. 

The main improvement this change provides is that through its implementation, 



 

9 

 

by utilizing the loadX(), it allows parallel connections to Dobot Magicians and 

also removes the need to issue separately. When using the default API this model 

is not feasible and multiple Dobot Magicians can be connected concurrently with 

a switching overhead of approximately 0.3 seconds per switch. Apart from the 

performance benefits this function provides, it is also a more readable and 

convenient option for connecting a Dobot Magician device as all the standardized 

procedures are included either in the function or through default arguments. 

• Created function GetAlarmsStateX(api) which is an alternative to 

GetAlarmsState(api, maxLen) that uses a hardcoded dictionary of bit addresses 

and alarm descriptions is used for decoding the byte array returned by the default 

function and instead return the active alarms in human readable form (alarm name 

and description). The decoding of the alarms byte array is achieved by traversing 

the array by alarm index based on a hardcoded dictionary called alarms{} with 

the key being the bit index and the corresponding value the alarm description as 

described in the Dobot ALARM document [21].  

Additions 

• Created function GetActiveDobots() that returns the amount of currently 

connected Dobot Magician. 

• Created function DisconnectAll() to disconnect from all connected Dobot 

Magician devices and clean up any runtime files. 

Both additions were due to the major ConnectDobotX(port) function and their 

purpose is to accommodate it and enrich the flexibility it provides.  

 

2.1.5  Monitoring options 

After the API analysis described in section 2.1.2.2 the following 82 attributes of a Dobot 

Magician device are supported for monitoring. 

 

Description API Call 

Device's serial number GetDeviceSN(api) 

Device's name/alias GetDeviceName(api) 

Device's version (major.minor.0.revision) GetDeviceVersion(api) 

Device's clock/time GetDeviceTime(api) 



 

10 

 

Description API Call 

Current index in command queue GetQueuedCmdCurrentIndex(api) 

Real-time cartesian coordinate of device's X axis GetPose(api) 

Real-time cartesian coordinate of device's Y axis GetPose(api) 

Real-time cartesian coordinate of device's Z axis GetPose(api) 

Real-time cartesian coordinate of device's R axis GetPose(api) 

Base joint angle GetPose(api) 

Rear arm joint angle GetPose(api) 

Forearm joint angle GetPose(api) 

End effector joint angle GetPose(api) 

Device's active alarms GetAlarmsState(api) 

Home position for X axis GetHOMEParams(api) 

Home position for Y axis GetHOMEParams(api) 

Home position for Z axis GetHOMEParams(api) 

Home position for R axis GetHOMEParams(api) 

X-axis offset of end effector GetEndEffectorParams(api) 

Y-axis offset of end effector GetEndEffectorParams(api) 

Z-axis offset of end effector GetEndEffectorParams(api) 

Status (enabled/disabled) of laser GetEndEffectorLaser(api) 

Status (enabled/disabled) of suction cup GetEndEffectorSuctionCup(api) 

Status (enabled/disabled) of gripper GetEndEffectorGripper(api) 

Velocity (°/s) of base joint in jogging mode GetJOGJointParams(api) 

Velocity (°/s) of rear arm joint in jogging mode GetJOGJointParams(api) 

Velocity (°/s) of forearm joint in jogging mode GetJOGJointParams(api) 

Velocity (°/s) of end effector joint in jogging mode GetJOGJointParams(api) 

Acceleration (°/s^2) of base joint in jogging mode GetJOGJointParams(api) 

Acceleration (°/s^2) of rear arm joint in jogging mode GetJOGJointParams(api) 

Acceleration (°/s^2) of forearm joint in jogging mode GetJOGJointParams(api) 

Acceleration (°/s^2) of end effector joint in jogging mode GetJOGJointParams(api) 



 

11 

 

Description API Call 

Velocity (mm/s) of device's X axis (cartesian coordinate) in 

jogging mode 
GetJOGCoordinateParams(api) 

Velocity (mm/s) of device's Y axis (cartesian coordinate) in 

jogging mode 
GetJOGCoordinateParams(api) 

Velocity (mm/s) of device's Z axis (cartesian coordinate) in 

jogging mode 
GetJOGCoordinateParams(api) 

Velocity (mm/s) of device's R axis (cartesian coordinate) in 

jogging mode 
GetJOGCoordinateParams(api) 

Acceleration (mm/s^2) of device's X axis (cartesian coordinate) in 

jogging mode 
GetJOGCoordinateParams(api) 

Acceleration (mm/s^2) of device's Y axis (cartesian coordinate) in 

jogging mode 
GetJOGCoordinateParams(api) 

Acceleration (mm/s^2) of device's Z axis (cartesian coordinate) in 

jogging mode 
GetJOGCoordinateParams(api) 

Acceleration (mm/s^2) of device's R axis (cartesian coordinate) in 

jogging mode 
GetJOGCoordinateParams(api) 

Velocity ratio of all axis (joint and cartesian coordinate system) in 

jogging mode 
GetJOGCommonParams(api) 

Acceleration ratio of all axis (joint and cartesian coordinate 

system) in jogging mode 
GetJOGCommonParams(api) 

Velocity (°/s) of base joint in point to point mode GetPTPJointParams(api) 

Velocity (°/s) of rear arm joint in point to point mode GetPTPJointParams(api) 

Velocity (°/s) of forearm joint in point to point mode GetPTPJointParams(api) 

Velocity (°/s) of end effector joint in point to point mode GetPTPJointParams(api) 

Acceleration (°/s^2) of base joint in point to point mode GetPTPJointParams(api) 

Acceleration (°/s^2) of rear arm joint in point to point mode GetPTPJointParams(api) 

Acceleration (°/s^2) of forearm joint in point to point mode GetPTPJointParams(api) 

Acceleration (°/s^2) of end effector joint in point to point mode GetPTPJointParams(api) 

Velocity (mm/s) of device's X, Y, Z axis (cartesian coordinate) in 

point to point mode 
GetPTPCoordinateParams(api) 

Velocity (mm/s) of device's R axis (cartesian coordinate) in point 

to point mode 
GetPTPCoordinateParams(api) 



 

12 

 

Description API Call 

Acceleration (mm/s^2) of device's X, Y, Z axis (cartesian 

coordinate) in point to point mode 
GetPTPCoordinateParams(api) 

Acceleration (mm/s^2) of device's R axis (cartesian coordinate) in 

point to point mode 
GetPTPCoordinateParams(api) 

Velocity ratio of all axis (joint and cartesian coordinate system) in 

point to point mode 
GetPTPCommonParams(api) 

Acceleration ratio of all axis (joint and cartesian coordinate 

system) in point to point mode 
GetPTPCommonParams(api) 

Lifting height in jump mode GetPTPJumpParams(api) 

Max lifting height in jump mode GetPTPJumpParams(api) 

Velocity (mm/s) in cp mode GetCPParams(api) 

Acceleration (mm/s^2) in cp mode GetCPParams(api) 

Velocity (mm/s) of X, Y, Z axis in arc mode GetARCParams(api) 

Velocity (mm/s) of R axis in arc mode GetARCParams(api) 

Acceleration (mm/s^2) of X, Y, Z axis in arc mode GetARCParams(api) 

Acceleration (mm/s^2) of R axis in arc mode GetARCParams(api) 

Rear arm angle sensor static error GetAngleSensorStaticError(api) 

Forearm angle sensor static error GetAngleSensorStaticError(api) 

Rear arm angle sensor linearization parameter GetAngleSensorCoef(api) 

Forearm angle sensor linearization parameter GetAngleSensorCoef(api) 

Sliding rail's status (enabled/disabled) GetDeviceWithL(api) 

Sliding rail's real-time pose in mm GetPoseL(api) 

Velocity (mm/s) of sliding rail in jogging mode GetJOGLParams(api) 

Acceleration (mm/s^2) of sliding rail in jogging mode GetJOGLParams(api) 

Velocity (mm/s) of sliding rail in point to point mode GetPTPLParams(api) 

Acceleration (mm/s^2) of sliding rail in point to point mode GetPTPLParams(api) 

Wifi module status (enabled/disabled) GetWIFIConfigMode(api) 

Wifi connection status (connected/not connected) GetWIFIConnectStatus(api) 

Configured Wifi SSID GetWIFISSID(api) 

Configured Wifi Password GetWIFIPassword(api) 



 

13 

 

Description API Call 

Device's IP address GetWIFIIPAddress(api) 

Device's configured subnet mask GetWIFINetmask(api) 

Device's configured default Gateway GetWIFIGateway(api) 

Device's configured DNS GetWIFIDNS(api) 

Table 2.1: Dobot Magician Supported Monitoring Options 

 

2.1.6  Connectivity 

The Dobot Magician supports connection to a host computer through USB to serial port 

(with the corresponding included cable), WiFi and Bluetooth[7]. In order to achieve a 

wireless connection to the robot, either through Bluetooth or WiFi, the corresponding kit 

needs to be installed to the device by connecting the corresponding adapter to the UART 

interface on the base and restarting the device. The Wireless-1 adapter corresponds to 

Bluetooth kit and the Wireless-2 adapter to the WiFi kit. The green light on the adapters 

indicate that the device is currently connected, and communication can be made. The 

Bluetooth connectivity is not related to this project as it is only used to communicate with 

the robot through mobile applications. For a Dobot Magician to be connected through 

WiFi to a host computer both the robot and the host computer must be connected to the 

same local network (WLAN). A convenient approach to connecting a Dobot Magician 

through WiFi is to first connect the Dobot through USB to serial port in the host computer 

and then use the Magician Studio[9] (Windows only) provided by Dobot as an interface 

to setup the WiFi settings (e.g. the IP address of the robot) and test the connection through 

a GUI environment before proceeding with any monitoring. The other option is to 

configure the WiFi settings by connecting through USB and making the appropriate API 

calls (for configuring the IP, default gateway, DNS etc). 

 Image 2.2: Dobot Magician WiFi Kit (left) and  

Dobot Magician successfully connected to the network indication (right) [10] 



 

14 

 

 

2.2  JeVois Camera 

2.2.1  Introduction to JeVois Camera 

The JeVois camera is a smart machine vision camera with many capabilities. It is 

composed by a 1.3 megapixels video sensor, an ARM Cortex A7 quad-core CPU, 256 

MB RAM and usb to serial port. It is very lightweight and has a small size of 28 cm3 

which makes it extremely portable and versatile. The camera has an SD card input where 

through configuration files the desired module can be loaded and executed by the camera. 

There are many different modules including locating and identifying faces and objects, 

classifying different object types, detecting and decoding QR codes and more. The 

camera can operate to different resolutions for different frame rates up to 120 frames per 

second depending on the use case and its requirements. For the retrieval and processing 

of information from the JeVois camera there is the ability to extract the results of the 

camera through structured messages, something that is the main use of the camera for the 

purpose this project.[11] 

 

Image 2.3: JeVois Smart Machine Vision Camera[11] 

 

2.2.2  Standardized serial messages 

For machine to machine interaction JeVois doesn't provide some sort of API, however its 

modules have the ability to produce standardized set of serial output messages. The 

current focus of this mechanism is about sending identity and location information in 

either 1, 2 or 3 (experimental) dimensions. By altering the serstyle and serprec parameters 

in the jevois::StdModule one can define different styles (formats) of the messages. 

Because of this customization of formats the monitoring agent needs to first identify the 

type of message (object detection/recognition and/or location), if it is a location message 

the dimensions of the location (1D, 2D or 3D) and then the serstyle (Terse, Normal, 



 

15 

 

Detail, Fine) in order to handle the message (with the possibility of rejecting it), 

potentially parse the message and further monitor the data properly.[12] Standardized 

location serial messages follow the following format "[S][D] [data..]", where [S] is a 

capital character representing the serstyle T, N, D, F for Terse, Normal, Detail and Fine 

respectively and [D] is a single-digit number (character) representing the number of 

dimensions 1, 2, 3 for 1D, 2D, 3D respectively. For different serstyle examples see the 

image 2.4. The available serstyle and dimensions of the message are constrained by the 

active module implementation. The user can change the serstyle of the output, among 

other settings, by modifying the initscript.cfg file on the JeVois camera. The rate in which 

standardized messages are produced is one per frame which allows for real-time 

calculations. If there is no identified object then the standardized message is empty. 

 

Image 2.4: Two-dimensional (2D) location messages[12]  

 

2.2.3  Monitoring options 

Following the previous section, we can conclude that the only information we can extract 

from the camera are the results in regards of location and identity of the identified object. 

standardized positions x, x/y and x/y/z can be monitored for 1D, 2D and 3D messages, 

respectively. With the location data we can estimate the object's size as well. The size is 

calculated differently depending on the number of dimensions of the message. If the 

location message is one-dimensional then the size is provided by the message[12]. For 

more dimensions, the size is calculated by multiplying the width/height and 

width/height/depth for 2D and 3D location messages respectively. 

 

2.2.4  Connectivity 

The JeVois Camera can transmit data either through a 4-pin JST-SH 1.0mm connector 

(micro-serial connector) mostly used for connecting it to a microcontroller or a mini-USB 



 

16 

 

2.0 type B 5-pin connector. For the needs of the project, we will be utilizing the latter. As 

the JeVois camera can be considered a standalone computer since it has an embedded 

CPU and RAM, there is need for both power and data transmission. Depending on the 

setup one can provide both through a USB 3.0 port or 2 USB 2.0 ports of a host computer. 

For the scenario where there are limited USB 2.0 ports, one can provide power through 

an adaptor on a socket or a power bank. 

Image 2.5a: USB 2.0 Y-type cable for connecting to host[13] 

 

Image 2.5b: Connection to host and power through socket (left) and through powerbank (right)[13] 

  



 

17 

 

Chapter 3 

Middleware: Monitoring Agent 

 

 

 

3.1 Responsibilities          17 

3.2 Dependencies          18 

3.3 Usage          18 

3.4 Device discovery & configuration      19 

 3.4.1 Dobot Magician        19 

 3.4.2 JeVois Camera         23 

 3.4.3 Other Device        24 

3.5 Procedures          24 

3.6 Extensibility          24 

3.7 Testing           25 

3.8 Performance analysis         26 

 3.8.1 Dobot          26 

 3.8.2 Jevois          29 

 

 

 

3.1  Responsibilities 

The monitoring agent is a piece of software written in Python mainly responsible of 

extracting the data from the monitored devices in specified intervals without interfering 

with the normal operations of the devices. It primarily acts as the middleware between 

the devices and the main monitoring system (see Chapter 4). Apart from this main goal, 

the monitoring agent aims at providing flexibility and customizability for which 

monitored data to extract for each individual device as to be usable in many different 

scenarios. The agent also produces related output to standard output and standard error 

for real-time updates on the process as well as logging. 

 

 



 

18 

 

3.2  Dependencies 

The implementation of the agent tries to minimize the number of dependencies. The 

monitoring agent uses the sys, time, argparse, webbrowser, configparser and threading 

modules from the Python Standard Library and more specifically works with Python v3.9 

or greater. Another, non-standard, dependency of the monitoring agent is the 

prometheus_client library. For each device type and thus device module (in 

device_modules.py), different dependencies are needed. The Jevois camera device 

module (class Jevois) depends on the pyserial module and for the Dobot Magician device 

module (class Dobot), the Dobot python module the Dobot Robot Driver (which one 

convenient way to be acquired is by installing the Magician Studio), the Dobot API and 

the DobotTypeDllX.py (python encapsulation fork) with the corresponding library 

objects. 

 

3.3  Usage 

When using the default configuration file location, make sure that "devices.conf" file is 

properly setup and in the same directory as the executable.  For configuring the agent one 

can pass the following command line arguments. All arguments are optional. For 

arguments that a default value is specified, a value is needed when using them. 

 

Usage: $ agent.py [-d DEVICES] [-n NAME] [-p PROMPORT] [-k] [-v] [-m] [-h] 

Notation 

Argument Description Default 

Short Long 

-d --devices Specify discovery/configuration file absolute path devices.conf 

-n --name Specify symbolic agent/station name Agent0 

-p --promport Specify port number for the Prometheus endpoint 8000 

-k --killswitch Exit agent if error occurs in validation/connection phase - 

-v --verbose Print actions with details in standard output - 

-c --color Print color rich messages to terminal (ANSI escape colors) - 

-m --more Open README.md with configuration and implementation details - 

-h --help Show help message with command line arguments and exit - 

Table 3.1: Agent command line arguments 

 



 

19 

 

3.4  Device discovery & configuration 

For device discovery and configuration of which data to be monitored for each device the 

agent uses a configuration file which default name is "devices.conf". This configuration 

file follows a structure similar to Microsoft Windows INI[14] files and is parsed in the 

agent by using configparser[15]. This format has been chosen as it provides a simple and 

understandable configuration interface that fulfills all the configuration needs of the 

monitoring agent, as there are no needs for nested configuration options in which case a 

format like JSON would be more appropriate. The configuration file has no mandatory 

fields as there are default fallback values for each option, giving the ability for the user to 

completely exclude options from the configuration file for better readability. The 

configuration file is divided in sections, each section representing a device. Regarding the 

device entries, for enabling data to be monitored one can use `on`, `1`, `yes` or `true` and 

in order to not monitor certain data use `off`, `0`, `no`, `false` based on personal 

preference. By removing an entry completely, the value for the entry will be resolved to 

the default. All keys are case-insensitive, but all section names must be identical to the 

class name of the device module. All keys in the configuration file are case-insensitive as 

they are always stored in lower case, however all section titles must be the same as their 

respective device module class. For all device attributes the Timeout can be used to set a 

custom timeout in milliseconds in between fetch calls, which defaults to 0. All 

configuration is parsed and validated based on the above information, before the start of 

the routine, and warns the user for any invalid entries, fields and values. It is worth noting 

that comments are supported and can be used by starting the line with the character '#'. 

For a more practical view, see Appendix E. 

 

3.4.1  Dobot Magician 

For connecting to a Dobot Magician device there should be a [Dobot:<port>] where 

<port> can be either a serial communication port (e.g. [Dobot:COM3]) or an IP address 

(e.g. [Dobot:192.168.0.3]). The default configuration options are such as to provide a 

minimal monitoring setting with only basic, necessary and non-situational attributes 

enabled. Table 3.2 contains a list of all the configuration options for Dobot Magician 

devices and their details. 



 

20 

 

Config Name Description Default 

DeviceSN Device's serial number on 

DeviceName Device's name/alias on 

DeviceVersion Device's verion (major.minor.0.revision) on 

DeviceTime Device's clock/time off 

QueueIndex Current index in command queue off 

PoseX Real-time cartesian coordinate of device's X axis on 

PoseY Real-time cartesian coordinate of device's Y axis on 

PoseZ Real-time cartesian coordinate of device's Z axis on 

PoseR Real-time cartesian coordinate of device's R axis on 

AngleBase Base joint angle on 

AngleRearArm Rear arm joint angle on 

AngleForearm Forearm joint angle on 

AngleEndEffector End effector joint angle on 

AlarmsState Device's active alarms on 

HomeX Home position for X axis off 

HomeY Home position for Y axis off 

HomeZ Home position for Z axis off 

HomeR Home position for R axis off 

EndEffectorX X-axis offset of end effector off 

EndEffectorY Y-axis offset of end effector off 

EndEffectorZ Z-axis offset of end effector off 

LaserStatus Status (enabled/disabled) of laser off 

SuctionCupStatus Status (enabled/disabled) of suction cup off 

GripperStatus Status (enabled/disabled) of gripper off 

JogBaseVelocity Velocity (°/s) of base joint in jogging mode off 

JogRearArmVelocity Velocity (°/s) of rear arm joint in jogging mode off 

JogForearmVelocity Velocity (°/s) of forearm joint in jogging mode off 

JogEndEffectorVelocity Velocity (°/s) of end effector joint in jogging mode off 

JogBaseAcceleration Acceleration (°/s^2) of base joint in jogging mode off 



 

21 

 

Config Name Description Default 

JogRearArmAcceleration Acceleration (°/s^2) of rear arm joint in jogging mode off 

JogForearmAcceleration Acceleration (°/s^2) of forearm joint in jogging mode off 

JogEndEffectorAcceleration Acceleration (°/s^2) of end effector joint in jogging mode off 

JogAxisXVelocity 
Velocity (mm/s) of device's X axis (cartesian coordinate) in 

jogging mode 
off 

JogAxisYVelocity 
Velocity (mm/s) of device's Y axis (cartesian coordinate) in 

jogging mode 
off 

JogAxisZVelocity 
Velocity (mm/s) of device's Z axis (cartesian coordinate) in 

jogging mode 
off 

JogAxisRVelocity 
Velocity (mm/s) of device's R axis (cartesian coordinate) in 

jogging mode 
off 

JogAxisXAcceleration 
Acceleration (mm/s^2) of device's X axis (cartesian coordinate) 

in jogging mode 
off 

JogAxisYAcceleration 
Acceleration (mm/s^2) of device's Y axis (cartesian coordinate) 

in jogging mode 
off 

JogAxisZAcceleration 
Acceleration (mm/s^2) of device's Z axis (cartesian coordinate) 

in jogging mode 
off 

JogAxisRAcceleration 
Acceleration (mm/s^2) of device's R axis (cartesian coordinate) 

in jogging mode 
off 

JogVelocityRatio 
Velocity ratio of all axis (joint and cartesian coordinate system) 

in jogging mode 
off 

JogAccelerationRatio 
Acceleration ratio of all axis (joint and cartesian coordinate 

system) in jogging mode 
off 

PtpBaseVelocity Velocity (°/s) of base joint in point to point mode off 

PtpRearArmVelocity Velocity (°/s) of rear arm joint in point to point mode off 

PtpForearmVelocity Velocity (°/s) of forearm joint in point to point mode off 

PtpEndEffectorVelocity Velocity (°/s) of end effector joint in point to point mode off 

PtpBaseAcceleration Acceleration (°/s^2) of base joint in point to point mode off 

PtpRearArmAcceleration Acceleration (°/s^2) of rear arm joint in point to point mode off 

PtpForearmAcceleration Acceleration (°/s^2) of forearm joint in point to point mode off 

PtpEndEffectorAcceleration Acceleration (°/s^2) of end effector joint in point to point mode off 



 

22 

 

Config Name Description Default 

PtpAxisXYZVelocity 
Velocity (mm/s) of device's X, Y, Z axis (cartesian coordinate) 

in point to point mode 
off 

PtpAxisRVelocity 
Velocity (mm/s) of device's R axis (cartesian coordinate) in 

point to point mode 
off 

PtpAxisXYZAcceleration 
Acceleration (mm/s^2) of device's X, Y, Z axis (cartesian 

coordinate) in point to point mode 
off 

PtpAxisRAcceleration 
Acceleration (mm/s^2) of device's R axis (cartesian coordinate) 

in point to point mode 
off 

PtpVelocityRatio 
Velocity ratio of all axis (joint and cartesian coordinate system) 

in point to point mode 
off 

PtpAccelerationRatio 
Acceleration ratio of all axis (joint and cartesian coordinate 

system) in point to point mode 
off 

LiftingHeight Lifting height in jump mode off 

HeighLimit Max lifting height in jump mode off 

CpVelocity Velocity (mm/s) in cp mode off 

CpAcceleration Acceleration (mm/s^2) in cp mode off 

ArcXYZVelocity Velocity (mm/s) of X, Y, Z axis in arc mode off 

ArcRVelocity Velocity (mm/s) of R axis in arc mode off 

ArcXYZAcceleration Acceleration (mm/s^2) of X, Y, Z axis in arc mode off 

ArcRAcceleration Acceleration (mm/s^2) of R axis in arc mode off 

AngleStaticErrRear Rear arm angle sensor static error off 

AngleStaticErrFront Forearm angle sensor static error off 

AngleCoefRear Rear arm angle sensor linearization parameter off 

AngleCoefFront Forearm angle sensor linearization parameter off 

SlidingRailStatus Sliding rail's status (enabled/disabled) off 

SlidingRailPose Sliding rail's real-time pose in mm off 

SlidingRailJogVelocity Velocity (mm/s) of sliding rail in jogging mode off 

SlidingRailJogAcceleration Acceleration (mm/s^2) of sliding rail in jogging mode off 

SlidingRailPtpVelocity Velocity (mm/s) of sliding rail in point to point mode off 

SlidingRailPtpAcceleration Acceleration (mm/s^2) of sliding rail in point to point mode off 



 

23 

 

Config Name Description Default 

WifiModuleStatus Wifi module status (enabled/disabled) off 

WifiConnectionStatus Wifi connection status (connected/not connected) off 

WifiSSID Configured Wifi SSID off 

WifiPassword Configured Wifi Password off 

WifiIPAddress Device's IP address off 

WifiNetmask Device's configured subnet mask off 

WifiGateway Device's configured default Gateway off 

WifiDNS Device's configured DNS off 

Table 3.2: Dobot Magician configuration settings for monitoring options 

 

3.4.2  JeVois Camera 

For connecting to a JeVois Camera device there should be a [Jevois:<port>] where <port> 

can be strictly a serial communication port (e.g. [Jevois:COM3]) since the device doesn't 

natively support connecting through WiFi or wirelessly in general. Under the section one 

can configure which data to be monitored by using the same notations as described in 

3.2.1. The location data includes the standardized positions, x for 1D messages, x/y for 

2D messages and x/y/z for 3D messages thus the number of dimensions of the location 

dictate the monitored metrics. In order to properly monitor what type of object has been 

identified the user must include a list of object names divided by space under the device 

section in an entry called "objects", that must be the names of the images' (file) names 

included in the target set existing in the "Saved" directory on the JeVois' SD card e.g. 

"objects = cube pen paper". For better readability whilst monitoring it is recommended 

that those filenames do not include a file extension and the image names concisely 

describe the object. Table 3.3 has a list of all the configuration options for the JeVois 

Camera and their details. 

Config Name Description Default 

ObjectIdentified Identified object's name on 

ObjectLocation Identified object's location on 

ObjectSize Identified object's size off 

Table 3.3: JeVois Camera configuration settings for monitoring options 

 



 

24 

 

Currently the monitoring agent, due to to the implementation of the Jevois module, only 

supports location messages with the Normal serstyle, since other serstyles like Terse 

provide insufficient data for the monitoring options provided and the Detail and Fine 

serstyles provide excess data that would further complicate the Jevois module's 

implementation for no great benefit, something that would go against the monitoring 

agent's philosophy. However, there is support for all available dimensions (N1/N2/N3 

types of messages) to provide a decent amount of flexibility.  

 

3.4.3  Other Device 

For custom device classes in the device_modules.py e.g. DeviceType, a 

[DeviceType:<port>] entry must exist in the configuration for the monitoring agent to 

automatically discover it and use the appropriate module for connecting, fetching and 

disconnecting from said device (see 3.6). 

 

3.5  Procedures 

Firstly, the monitoring agent opens, parses and validates the configuration file through 

the __validateConfig() function which uses the respective options directory for each 

device to verify that the configuration file is valid and warn the user about validation 

issues before the start of the routine. Validation is being done to check that the fields of a 

device section are valid (such options are supported by the module), that the value of that 

field is of the correct type, that the respective device module exists and implement the 

Device class properly and that at least 1 monitored option is enabled. The validSections 

list is created by __validateConfig() including only the device (config) sections with no 

errors. Based on this list the agent uses the appropriate device module (from 

device_modules.py) to connect to a device through the specified port and adds it to the 

devices[] list which holds all connected device objects. Finally, the agent spawns a thread 

for each device object and fetches the enabled attributes with the specified per device 

timeout in between its routine. 

 

3.6  Extensibility 

The agent currently supports Dobot Magician and JeVois Camera devices. For extending 

the agent's capabilities to support a different type of device one can create a device class 

(device module) and place it in the device_modules.py. This class needs to be a child of 



 

25 

 

the Device class (found in the same file) and implement all its attributes and methods. 

The name of the class is determining the name that the agent will use to discover a device 

through agent.conf, connect to it, fetch (and inform prometheus) its attributes and finally 

disconnect from the device. The only member that need to be implemented is the 

options{} dictionary and the connect(), fetch() and disconnect() methods. 

• options{}: A dictionary that includes all the valid fields/options a device can have 

in the configuration file (monitored attribute fields) as keys and their default value 

(also used to validate the type of the value in the configuration file) as values. 

• connect(): Responsible for connecting to the device, initialize any Prometheus 

metrics and other necessary device information that is vital for the use of the other 

methods. If the connection attempt is unsuccessful it should raise an exception. 

• fetch(): Used to extract all enabled monitoring attributes for said device and 

update the Prometheus metrics accordingly. If the fetch attempt is unsuccessful it 

should raise an exception. 

• disconnect(): Responsible for disconnecting the device, close any open 

ports/streams and remove any runtime temporary files regarding the device.  

All other necessary modules needed for implementing the above functions (e.g. 

DobotDllTypeX.py for the Dobot device module) and any runtime files should be 

included in the "runtime" directory and imported properly in device_modules.py. For a 

practical example one can review the source code in device_modules.py. Also note that 

all Prometheus objects for recording metrics should be static members of the class in 

order to allow for label use. For a more practical view see Appendix C. 

 

3.7  Testing 

For both functional and performance tests, a small manageable testing utility has been 

developed in parallel with the agent’s development named test.py (see appendix D) which 

includes a number of functions respective to different functional (f) and performance (p) 

tests for different device modules. Each functional test represents a function of a device 

module. Each test returns true in successful completion and false otherwise. Performance 

tests produce results/statistics to standard output that can be further analyzed. The naming 

convention for better organization and use of the test functions is as follows: 

typeOfTest_moduleName_description 

e.g. For a performance test regarding the Jevois module p_Jevois_Description() 



 

26 

 

 

3.8  Performance analysis 

A series of performance tests to benchmark the agent and device modules were done. 

Memory footprint and fetch times were the two most important metrics that were taken 

into consideration. The performance tests were run on a x64 Windows (OS build 

19041.985) machine. Both Dobot and Jevois related software (dobot driver, dobot api, 

jevois image) were the latest based on the date of the creation of this paper. The memory 

footprint of the agent prior to connecting to any devices (and thus creating any device 

objects) was 25MB and after connecting 2 Dobot Magicians and 1 Jevois camera with all 

attributes enabled it increased to 30MB. The performance/responsiveness for connecting, 

fetching and disconnecting from a device is determined by the respective device module 

implementation, the device architecture and the monitoring station’s available resources.  

 

3.8.1  Dobot 

For the fetch times regarding the regarding the Dobot Magician device and the Dobot 

device module for all attributes the average fetch time while connected through usb was 

~15ms and when connected through WiFi ~24ms, which leads to the conclusion that the 

general wireless overhead is around 9ms. However, for some of the WiFi related (see 

Tabel 3.4 and Image 3.1) and the GetDeviceTime api calls, the fetch times were lower 

(better) when connected wirelessly. These attributes are also the only attributes that their 

fetch times always exceed 500ms in both cases. Since these WiFi attributes are of type 

Info, which means they are only fetched once at the start of the monitoring phase this is 

not a bottleneck to the fetching routine. It has been observed that if the Dobot is under 

any kind of movement starting the monitoring with the WiFi attributes enabled will affect 

the normal operations of the robot (supposedly due to the high fetch times interfering with 

the normal command execution) so only enable these attributes if the monitoring will start 

prior to the normal operations. Since DeviceTime is the only non-info attribute that 

exceeds the average low fetch times (by a great amount), it is advised that enabling the 

DeviceTime option is avoided. All fetch time results were produced by calling the certain 

API call 30 times and calculating the min, max and average. A detailed look of the results 

for both wired and wireless connections can be seen in the table below. 

 

 



 

27 

 

 

API Call 

Wired Wireless 

Average Min Max Average Min Max 

GetDeviceTime 719 505 1014 608 205 655 

GetQueuedCmdCurrentIndex 15 10 20 27 18 147 

GetPose 16 12 23 24 20 33 

GetAlarmsStateX 17 10 20 25 19 32 

GetHOMEParams 20 13 24 29 22 34 

GetAutoLevelingResult 15 10 21 24 18 31 

GetEndEffectorParams 15 10 22 23 18 34 

GetEndEffectorLaser 13 7 20 23 17 30 

GetEndEffectorSuctionCup 13 7 20 23 18 34 

GetEndEffectorGripper 14 8 22 22 18 29 

GetJOGJointParams 17 12 31 26 21 33 

GetJOGCoordinateParams 17 9 22 28 20 33 

GetJOGCommonParams 15 9 20 25 16 30 

GetPTPJointParams 16 12 23 26 20 33 

GetPTPCoordinateParams 17 10 24 25 20 31 

GetPTPCommonParams 14 9 24 24 17 29 

GetPTPJumpParams 15 9 25 24 17 31 

GetCPParams 14 9 21 24 19 30 

GetARCParams 16 9 21 24 18 32 

GetAngleSensorStaticError 15 9 22 25 20 30 

GetAngleSensorCoef 16 8 22 25 18 39 

GetDeviceWithL 14 8 19 23 17 29 

GetPoseL 13 8 20 22 18 31 

GetJOGLParams 13 10 20 21 17 28 

GetPTPLParams 13 9 20 23 18 30 

GetWIFIConfigMode 14 8 20 24 18 30 

GetWIFIConnectStatus 13 10 21 22 18 28 



 

28 

 

GetDeviceSN 13 9 19 24 19 40 

GetDeviceName 16 11 22 26 18 34 

GetDeviceVersion 16 9 20 26 20 32 

GetWIFISSID 521 516 528 536 531 541 

GetWIFIPassword 1676 1011 2541 1153 1046 1647 

GetWIFIIPAddress 1499 1012 2016 1368 1122 1739 

GetWIFINetmask 1550 1012 2031 1200 625 1727 

GetWIFIGateway 1635 1013 2537 1141 1066 1630 

GetWIFIDNS 1483 1013 2029 1145 1075 1736 

Table 3.4: Dobot fetch times  

 

For a visual representation of the average fetching times of the Dobot for both wired and 

wireless setups, see the chart below. 

Image 3.1: Visualization of Dobot average fetch times  



 

29 

 

3.8.2  Jevois 

Since the Jevois is directly connected to the host machine through a serial port, 

considering that timeout to the serial reading is set to 0 the consecutive fetch times, 

including reading, stripping and decoding the standardized message are on average 

around 1ms with a max fetch time of 4ms. The testing was done with Normal style 2D 

standardized messages. Fetch times on empty messages were not counted. 

  



 

30 

 

Chapter 4 

Monitoring System: Prometheus 

 

 

 

4.1 Introduction to Prometheus        30 

4.2 Python client library         31 

4.3 Hierarchical federation         31 

4.4 Long term storage         32 

 

 

 

4.1  Introduction to Prometheus 

Prometheus is an open-source systems monitoring and alerting toolkit. Its rich feature list 

and solid architecture makes it a state-of-the-art solution for recording any purely numeric 

time series. When using traditional monitoring systems one can push the data onto the 

monitoring system for monitoring. With Prometheus however there is no such thing as 

pushing the data to it, as it instead scrapes (pulls) the data from specified endpoints on 

certain intervals and/or when it sees its needed, something that avoids overloading the 

system and provides reliability. Because of this even under failure conditions one can still 

see what monitored statistics are available. This characteristic makes Prometheus a great 

choice for this project since in an industrial environment there is a possibility for hardware 

failure/malfunction and one can easily rely on Prometheus to diagnose the problems [16].  

Image 4.1: Prometheus' architecture and its ecosystem components[16] 



 

31 

 

4.2  Python client library 

For instrumenting the data exchange between the monitoring agent and the Prometheus 

server one can use the python client library (prometheus-client)[17]. The library provides 

4 main metric types: Counter, Gauge, Histogram and Summary. Since the numeric values 

such as coordinates/location data can both increase and decrease, in the monitoring agent 

we will be using a Gauge for each metric that fluctuates. For general device information 

such as the device serial number the agent uses the Info which tracks key-value 

information about a whole target (once at the start of the routine). For alarms and object's 

identification, since they are not numeric values, the only way to approach monitoring 

such data is through Enum which is a type that supports strings as states and we can 

choose which state is enabled. For distinguishing metrics between different devices 

and/or other categorization we use labels. A label enables Prometheus' dimensional data 

model as any given combination of the labels for the same metric name identifies a 

particular instantiation of that metric. The supported device modules currently implement 

the device_id, device_type and station labels for querying based on specific device id 

(e.g. Dobot: 192.168.43.4), device type (e.g. Dobot, Jevois) and agent name, respectively. 

The latter can be used to create virtual stations (see 6.3). Since there is a great possibility 

that more than one of the same type of device monitors the same metric this approach 

helps with distinguishing which metric belongs to what device and synergizes well with 

Prometheus queries (PromQL)[18]. 

 

4.3  Hierarchical federation 

For scaling the system horizontally one can add multiple monitoring stations with their 

respective monitoring agent's and Prometheus servers. In order to collect data from 

multiple monitoring stations we can use Prometheus' hierarchical federation. In the 

official documentation a federation is described as a way to allow a Prometheus server to 

scrape selected time series from another Prometheus server[25]. With this mechanism we 

can create a tree like structure with a main Prometheus server on the administration station 

being the root and scraping all the Prometheus servers on their respective monitoring 

station's, being the leaves. By doing so we can access the data flowing from all monitoring 

stations through one centralized Prometheus instance. For enabling such setup one can 

configure the main Prometheus instance to scrape from the /federate endpoints of the 

Prometheus server's running on the monitoring stations.  



 

32 

 

 

4.4  Long term storage 

Prometheus stores metrics locally in a time series database for high efficiency[22]. This 

database is kept in memory and thus is not persisted. One might want these metrics to be 

stored for the long term in order to backup a history of metrics and/or analyze them for 

better insight. Prometheus writes incoming data to local storage and replicates it to remote 

storage in parallel. The "remote storage" as it is mentioned can exist on the localhost. In 

order to achieve that we can utilize Prometheus' capability to send and receive samples in 

a standardized format over HTTP. We can configure a Prometheus instance to write data 

to a remote database by adding a remote_write entry in its configuration file. One popular 

option for long term storage with Prometheus is VictoriaMetrics[23]. Victoria metrics can 

be used as a fast, cost-effective and scalable time series database which supports the 

Prometheus querying API and thus can be used with Grafana to visualize long term 

metrics. For a high-scale scenario this configuration can be applied to the main 

Prometheus server as described in the hierarchical federation, to store data from all the 

monitoring stations. VictoriaMetrics uses port 8428 by default and thus for using it for 

long term storage one must install and configure it to a host and add the following line[24] 

to the Prometheus configuration: 

remote_write: 

 - url: http://<victoriametrics-addr>:8428/api/v1/write 

  



 

33 

 

Chapter 5 

Visualization: Grafana 

 

 

 

5.1 Introduction to Grafana         33 

5.2 Customization options         33 

 

 

 

5.1  Introduction to Grafana 

Grafana is an open-source analytics platform for metrics. It allows for query, visualization 

and alert for better utilizing the metrics, in this case, provided by Prometheus[19]. 

Grafana is feature-rich and provides out-of-the-box support for Prometheus[20] which 

makes it a great option for this system.  

 

5.2  Customization options 

For customizing the visualization of the metrics one can create dashboards that display 

data retrieved through queries and more specifically PromQL, a query language designed 

for Prometheus timeseries metrics. The visualization is flexible as one can choose the 

type of visualization such as graph, heatmap, table and more as well as customize the 

dashboard placements and details. 

Image 5.1: Grafana dashboard example with a variety of visualization types[19]  



 

34 

 

Chapter 6 

System Overview 

 

 

 

6.1 High Level Architecture         34 

 6.1.1 Connectivity Layer        35 

 6.1.2 Monitoring Layer        35 

 6.1.3 Visualization Layer        36 

 6.1.4 Overall View         37 

6.2 Components          38 

 6.2.1 Hardware         38 

 6.2.2 Software         39 

6.3 Load balancing          39 

 

 

6.1  High Level Architecture 

The system consists of 3 main layers. From a bottom up approach these layers are the 

connectivity layer, the monitoring layer and the visualization layer. For each layer image 

the following apply: a solid line box indicates a device, a dotted box an interface and the 

line a connection. Labels in a line indicate the module used for establishing such 

connection. "Other Device" refers to a different device from the natively supported ones.  

Image 6.1: Layer representation through abstract architecture 



 

35 

 

6.1.1  Connectivity Layer 

The connectivity layer exists in the edge and is about the hardware stack for connecting 

the devices with the monitoring stations. Each device has its specific stack(s). The 

following diagram includes details regarding the natively supported devices. Both devices 

can utilize the serial ports on the monitoring agent to establish a connection but only the 

Dobot Magician can connect wirelessly (WLAN). The communication protocols needed 

for establishing a wireless communication with a Dobot Magician are the following 

(bottom-up): MAC, IPv4, UDP, Dobot Communication Protocol [7]. 

Image 6.2: Connectivity Layer 

 

6.1.2  Monitoring Layer 

This layer consists of one or more monitoring stations. Each monitoring station runs one 

monitoring agent and a local Prometheus server. The monitoring agent (agent.py) uses 

device_modules.py to connect to, fetch and disconnect from the devices. Each device has 

a different software (dependency) stack. For setups that involve more than one monitoring 

stations, a main Prometheus server configured as hierarchical federation is used as a 

central point for all metrics from all stations. 



 

36 

 

Image 6.3: Monitoring Layer 

 

6.1.3  Visualization Layer 

The visualization layer aims at providing a graphical interface for representing all fetched 

metrics and thus provide insight on the monitored devices. Any visualization software 

compatible with Prometheus can be used by using the main Prometheus server as a data 

source. The usual approach is having one administration station to act as a single 

monitoring interface however in more complex setups one can add multiple 

administration stations, for better separation of concerns. 



 

37 

 

Image 6.4: Visualization Layer 

 

 

6.1.4  Overall View 

By combining the layers we have a complete flow of information from the device to the 

administrator's screen(s). 



 

38 

 

Image 6.5: Overall Layer View 

 

6.2  Components 

6.2.1  Hardware 

In terms of hardware, host computer(s) acting as a monitoring/administration station(s) is 

needed. Also, the devices themselves that one needs to monitor (such as Dobot Magician, 

JeVois camera or other). If the connection between the host computer, running the 



 

39 

 

monitoring agent, and a monitored device is not wireless all the necessary usb to serial 

port cables to establish the connection between the devices.  

 

6.2.2  Software 

The two open-source tools that are being utilized to form a complete monitoring system 

is Prometheus and Grafana (and their respective servers) which have been discussed in 

Chapter 4 and Chapter 5 respectively. The connecting piece of software between 

Prometheus and the physical devices is the monitoring agent (agent.py) and its 

dependencies (see 3.2). 

 

6.3  Load Balancing 

Monitoring stations can be used to group a set of devices (probably in the same section 

in the workflow) where the agent/station name option becomes relevant. 

Monitoring/grouping many devices through a single monitoring station (host computer) 

can bottleneck it and affect monitoring rates. In this case, another use of the agent’s name 

attribute is naming two or more stations with the same name thus creating a single virtual 

station. Since each metric supports the station label one can query based on the station 

name and get metrics from multiple stations while looking like it is one. For setups where 

the use of multiple monitoring stations is doable, one can use more than one monitoring 

station for monitoring a section and thus if distributed properly load balance the 

monitoring stations while still looking like a unified station. 

  



 

40 

 

Chapter 7 

Conclusion 

 

 

 

7.1 Conclusion          40 

7.2 Possible extensions         40 

 

 

 

7.1  Conclusion 

The task of monitoring comes with a lot of difficulties as devices might not provide the 

means to acquire the attributes one wishes to monitor, or it does it in an inefficient way. 

Monitoring adds overhead which needs to be properly calibrated in order to avoid any 

side-effects with the normal operations of the devices. However, if done correctly it can 

lead to great benefits for ensuring that everything is working as expected and to take 

proper (also could be automated) action in case they are not. With a monitoring history 

one can analyze the metrics further to optimize the environment and potentially predict 

any future failures or other useful conclusions regarding the work environment. 

 

7.2  Possible extensions 

Different device modules can be implemented to extend the agent's device support. An 

idea that arose but there was not enough time to implement, and test is the idea of general 

device modules e.g. Camera which would provide monitoring options that are common 

for all cameras such as FPS. Furthermore, all cameras with no means to get other 

attributes (e.g. standardized messages) could be connected through that module in a plug 

and play fashion. In contrast, device modules for cameras like JeVois could inherit from 

this base class to also include such information. Also give the ability to the agent to auto 

discover devices (by indicating the device type but not the port) by scanning all available 

serial and network ports, as well as reload the devices list dynamically to start monitoring 

new devices without the need to restart the agent. 

  



 

41 

 

References 

 

[1] Hugh Boyes, Bil Hallaq, Joe Cunningham and Tim Watson, "The industrial 

internet of things (IIoT): An analysis framework", pp. 3, 2018 

[2] In Lee and Kyoochun Lee, "The Internet of Things (IoT): Applications, 

investments, and challenges for enterprises", Kelley School of Business, Indiana 

University, pp. 1, 2015 

[3] L. Aberle, "A comprehensive Guide to Enterprise IoT Project Success", IoT 

Agenda, pp. 1, 2015 

[4] Dobot Magician Website, https://www.dobot.cc/dobot-magician/product-

overview.html 

[5] Conveyor Belt Kit, https://www.dobot.cc/products/conveyor-belt-kit-

overview.html 

[6] Dobot Magician API, https://download.dobot.cc/product-manual/dobot-

magician/pdf/en/Dobot-Magician-API-DescriptionV1.2.3.pdf 

[7] Dobot Communication Protocol, https://download.dobot.cc/product-

manual/dobot-magician/pdf/en/Dobot-Communication-Protocol-V1.1.5.pdf 

[8] Dobot Magician Demo Description, https://download.dobot.cc/development-

protocol/dobot-magician/win7-win10/Demo/dobotdemo2.2/en/Dobot-Demo-

V2.2-en.zip 

[9] Magician Studio (Windows), https://download.dobot.cc/control-software/dobot-

magician/win7-win10/1.9.4/DobotStudio(Windows)V1.9.4.zip 

[10] Dobot Magician User Manual, https://download.dobot.cc/product-

manual/dobot-magician/pdf/V1.7.0/en/Dobot-Magician-User-Guide-V1.7.0.pdf 

[11] JeVois Smart Machine Vision Camera, http://www.jevois.org/ 

[12] JeVois: standardized serial messages formatting, 

http://jevois.org/doc/UserSerialStyle.html 

[13] Connecting JeVois to Power and Data, 

http://jevois.org/doc/UserConnect.html 

[14] Format of the .ini File, https://docs.microsoft.com/en-us/previous-

versions/windows/desktop/ms717987(v=vs.85) 

https://www.dobot.cc/dobot-magician/product-overview.html
https://www.dobot.cc/dobot-magician/product-overview.html
https://www.dobot.cc/products/conveyor-belt-kit-overview.html
https://www.dobot.cc/products/conveyor-belt-kit-overview.html
https://download.dobot.cc/product-manual/dobot-magician/pdf/en/Dobot-Magician-API-DescriptionV1.2.3.pdf
https://download.dobot.cc/product-manual/dobot-magician/pdf/en/Dobot-Magician-API-DescriptionV1.2.3.pdf
https://download.dobot.cc/product-manual/dobot-magician/pdf/en/Dobot-Communication-Protocol-V1.1.5.pdf
https://download.dobot.cc/product-manual/dobot-magician/pdf/en/Dobot-Communication-Protocol-V1.1.5.pdf
https://download.dobot.cc/development-protocol/dobot-magician/win7-win10/Demo/dobotdemo2.2/en/Dobot-Demo-V2.2-en.zip
https://download.dobot.cc/development-protocol/dobot-magician/win7-win10/Demo/dobotdemo2.2/en/Dobot-Demo-V2.2-en.zip
https://download.dobot.cc/development-protocol/dobot-magician/win7-win10/Demo/dobotdemo2.2/en/Dobot-Demo-V2.2-en.zip
https://download.dobot.cc/control-software/dobot-magician/win7-win10/1.9.4/DobotStudio(Windows)V1.9.4.zip
https://download.dobot.cc/control-software/dobot-magician/win7-win10/1.9.4/DobotStudio(Windows)V1.9.4.zip
https://download.dobot.cc/product-manual/dobot-magician/pdf/V1.7.0/en/Dobot-Magician-User-Guide-V1.7.0.pdf
https://download.dobot.cc/product-manual/dobot-magician/pdf/V1.7.0/en/Dobot-Magician-User-Guide-V1.7.0.pdf
http://www.jevois.org/
http://jevois.org/doc/UserSerialStyle.html
http://jevois.org/doc/UserConnect.html
https://docs.microsoft.com/en-us/previous-versions/windows/desktop/ms717987(v=vs.85)
https://docs.microsoft.com/en-us/previous-versions/windows/desktop/ms717987(v=vs.85)


 

42 

 

[15] configparser - Configuration file parser, 

https://docs.python.org/3/library/configparser.html 

[16] Prometheus Overview, https://prometheus.io/docs/introduction/overview/ 

[17] Prometheus Python Client, https://github.com/prometheus/client_python 

[18] Prometheus Data Model, 

https://prometheus.io/docs/concepts/data_model/ 

[19] Grafana, https://grafana.com/ 

[20] Getting started with Grafana and Prometheus, 

https://grafana.com/docs/grafana/latest/getting-started/getting-started-

prometheus/ 

[21] Dobot ALARM, http://www.dobot.it/wp-content/uploads/2018/03/dobot-

magician-alarm-en.pdf 

[22] Prometheus: Storage, 

https://prometheus.io/docs/prometheus/latest/storage/ 

[23] VictoriaMetrics, https://victoriametrics.github.io/ 

[24] VictoriaMetrics: Prometheus Setup, 

https://victoriametrics.github.io/#prometheus-setup 

[25] Prometheus: Federation, 

https://prometheus.io/docs/prometheus/latest/federation/ 

 

Note: All online references were accessed on the date of the publishing of this paper. 

Github repository of the project: https://github.com/akomis/diploma-project

https://docs.python.org/3/library/configparser.html
https://prometheus.io/docs/introduction/overview/
https://github.com/prometheus/client_python
https://prometheus.io/docs/concepts/data_model/
https://grafana.com/
https://grafana.com/docs/grafana/latest/getting-started/getting-started-prometheus/
https://grafana.com/docs/grafana/latest/getting-started/getting-started-prometheus/
http://www.dobot.it/wp-content/uploads/2018/03/dobot-magician-alarm-en.pdf
http://www.dobot.it/wp-content/uploads/2018/03/dobot-magician-alarm-en.pdf
https://prometheus.io/docs/prometheus/latest/storage/
https://victoriametrics.github.io/
https://victoriametrics.github.io/%23prometheus-setup
https://prometheus.io/docs/prometheus/latest/federation/
https://github.com/akomis/diploma-project


 

A-1 

 

Appendix A 

List of abbreviations and their meaning used in this paper. 

 

API: Application Programming Interface 

DNS: Domain Name System 

FPS: Frames Per Second 

GUI: Graphical User Interface 

HTTP: HyperText Transfer Protocol 

IIOT: Industrial Internet of Things 

IOT: Internet of Things 

IP: Internet Protocol 

MAC: Medium Access Control 

NIC: Network Interface Controller 

PQL/PromQL: Prometheus Query Language 

UART: Universal Asynchronous Receiver/Transmitter 

UDP: User Datagram Protocol 

WLAN: Wireless Local Area Network 

 



 

B-1 

 

Appendix B 

Source code of the monitoring agent (agent.py) 

 

import sys 

import time 

import argparse 

import webbrowser 

import configparser 

from threading import Thread 

from prometheus_client import start_http_server 

from device_modules import * 

 

class Agent(): 

    termcolors = { 

    "B":"\033[1m","U":"\033[4m","H":"\033[95m", 

    "OK":"\033[92m","INFO":"\033[94m", 

    "WARNING":"\033[93m","ERROR":"\033[91m", 

    "END":"\033[0m"} 

 

    def __init__(self, devicesFilename:str, name:str, prometheusPort:int, killSwitch:bool, verbose:bool, 

color:bool): 

        self.stopped = False 

        self.config = configparser.ConfigParser() 

        self.devicesFilename = devicesFilename 

        self.name = name 

        self.prometheusPort = prometheusPort 

        self.killSwitch = killSwitch 

        self.verbose = verbose 

        if not color: 

            for attr in Agent.termcolors: 

                Agent.termcolors[attr] = "" 

 

        self.__readConfig() 

        self.validSections = self.__validateConfig() 

        self.devices = [] 

 

    def agentPrint(self, s, type=""): 

        termcolors = Agent.termcolors 



 

B-2 

 

        prefix = self.name + " (" + time.ctime() + "): " 

        body = s + termcolors["END"] 

 

        if type == "i": 

            print(prefix + termcolors["INFO"] +  "[INFO] " + body) 

        elif type == "o": 

            print(prefix + termcolors["OK"] + "[OK] " + body) 

        elif type == "w": 

            print(prefix + termcolors["WARNING"] + "[WARNING] " + body) 

        elif type == "e": 

            print(prefix + termcolors["ERROR"] + "[ERROR] " + body, file=sys.stderr) 

        elif type == "f": 

            print(prefix + termcolors["ERROR"] + "[" + termcolors["U"] + "FATAL" + termcolors["END"] + 

termcolors["ERROR"] + "] " + body, file=sys.stderr) 

        else: 

            print(prefix + s) 

 

    def __readConfig(self): 

        try: 

            check = self.config.read(self.devicesFilename) 

 

            if len(check) == 0: 

                raise Exception("Couldn't find file") 

        except Exception as e: 

            self.agentPrint("Can't read configuration file \"" + self.devicesFilename + "\" (" + str(e) + ")", 

type="e") 

            exit(3) 

 

        self.agentPrint("Succesfully opened configuration file \"" + self.devicesFilename + "\"", type="o") 

 

    def __validateConfig(self): 

        self.agentPrint("Validating configuration file..", type="i") 

 

        validBooleanValues = ["1","yes","true","on","0","no","false","off"] 

        validSections = {} 

 

        # Check configuration validity for each defined devices 

        flag = False 

        for sectionName in self.config.sections(): 

            try: 



 

B-3 

 

                part = sectionName.split(":") 

 

                if len(part) != 2: 

                    raise Exception("\"" + sectionName + " is not a valid device entry. All device entries should 

follow this format [DEVICE_TYPE:PORT]") 

 

                deviceType = part[0] 

                connectionPort = part[1] 

 

                if deviceType not in globals(): 

                    raise Exception("The agent does not support the \"" + deviceType + "\" device type. Make 

sure the appropriate device module exists in device_module.py (case-sensitive)") 

 

                section = self.config[sectionName] 

                entityClass = globals()[deviceType] 

 

                if entityClass.options == Device.options or len(entityClass.options) == 0: 

                    raise Exception("Cannot validate \"" + deviceType + "\". Make sure the options{} dictionary 

is implemented.") 

            except Exception as e: 

                flag = True 

                self.agentPrint(str(e), type="e") 

                self.agentPrint("\"" + sectionName + "\" device will not be monitored.", type="w") 

                continue 

 

            # Check if device fields in configuration are valid (supported by module) 

            options = {} 

            options.update(entityClass.options) 

            options.update(Device.options) 

            errorCount = 0 

            for option in section: 

                try: 

                    if option not in options: 

                        raise Exception("\"" + option + "\" is not a valid option for section \"" + sectionName + 

"\".") 

 

                    configValue = section[option] 

                    optionsValue = options[option] 

 

                    # Check if value type is correct 



 

B-4 

 

                    if isinstance(optionsValue, bool) and configValue not in validBooleanValues: 

                        raise Exception("Value \"" + configValue + "\" for option \"" + option + "\" in section \"" + 

sectionName +"\" is not valid (can only be 1|yes|true|on|0|no|false|off)") 

 

                    try: 

                        type(optionsValue)(configValue) 

                    except: 

                        raise Exception("Value \"" + configValue + "\" for option \"" + option + "\" in section \"" + 

sectionName +"\" is not valid (must be of type " + str(type(optionsValue).__name__) + ").") 

                except Exception as e: 

                    flag = True 

                    errorCount += 1 

                    self.agentPrint(str(e), type="e") 

 

            if errorCount > 0: 

                self.agentPrint(str(errorCount) + " error(s) in \"" + sectionName + "\" section. The device will 

not be monitored. Please resolve the errors in order for this device to be monitored.", type="w") 

            else: 

                try: 

                    device = entityClass(section, connectionPort, self.name) 

                except Exception as e: 

                    flag = True 

                    self.agentPrint("\"" + deviceType + "\" device module does not properly implement the 

Device interface", type="e") 

                    self.agentPrint("\"" + sectionName + "\" device will not be monitored.", type="w") 

                    continue 

 

                if device.activeAttr == 0: 

                    flag = True 

                    self.agentPrint("Device \"" + sectionName + "\" has 0 enabled attributes to be monitored", 

type="e") 

                    self.agentPrint("\"" + sectionName + "\" device will not be monitored.", type="w") 

                    continue 

 

                validSections[sectionName] = device 

 

        if flag: 

            self.agentPrint("For more information use --more.", type="i") 

            if self.killSwitch: 

                self.agentPrint("Killswitch is enabled. Exiting..", type="f") 



 

B-5 

 

                exit(6) 

        else: 

            if self.verbose: 

                self.agentPrint("No errors in \"" + self.devicesFilename + "\"", type="o") 

 

        return validSections 

 

    def __connectDevices(self): 

        # Discover through the validated config which devices should be monitored 

        for sectionName in self.validSections: 

            start = time.time() 

            device = self.validSections[sectionName] 

 

            if self.verbose: 

                self.agentPrint("Connecting to " + device.id + "..", type="i") 

 

            try: 

                device.connect() 

                elapsed = time.time() - start 

 

                self.devices.append(device) 

                if self.verbose: 

                    self.agentPrint("Device " + device.type + " at " + device.port + " connected succesfully! (" + 

str(round(elapsed*1000)) + "ms)", type="o") 

                else: 

                    self.agentPrint("Device " + device.type + " at " + device.port + " connected succesfully!", 

type="o") 

            except Exception as e: 

                self.agentPrint(device.type + " at " + device.port + " cannot be connected. (" + str(e) + ")", 

type="e") 

                self.agentPrint("Device " + device.type + " at " + device.port + " will not be monitored.", 

type="w") 

                if self.killSwitch: 

                    self.agentPrint("Killswitch is enabled. Exiting..", type="f") 

                    exit(7) 

 

    def __fetchFrom(self, device): 

        while not self.stopped: 

            try: 

                start = time.time() 



 

B-6 

 

                device.fetch() 

                elapsed = time.time() - start 

                if self.verbose: 

                    self.agentPrint("Fetched from " + device.id + " in " + str(round(elapsed*1000)) + " ms", 

type="o") 

 

                time.sleep(device.timeout / 1000) 

            except Exception as e: 

                self.agentPrint("Couldn't fetch from " + device.id + " (" + str(e) + ")", type="e") 

                time.sleep(device.timeout / 1000) 

 

    def startRoutine(self): 

        self.agentPrint("Connecting to devices listed in \"" + self.devicesFilename + "\"..", type="i") 

        self.__connectDevices() 

 

        if len(self.devices) == 0: 

            self.agentPrint("No devices connected to the agent. Exiting..", type="f") 

            sys.exit(8) 

 

        self.agentPrint("Starting prometheus server at port " + str(self.prometheusPort) + "..", type="i") 

        start_http_server(self.prometheusPort) 

 

        try: 

            threads = {} 

            for device in self.devices: 

                threads[device] = Thread(target = self.__fetchFrom, args=(device,)) 

 

            for device in threads: 

                threads[device].start() 

                if self.verbose: 

                    self.agentPrint("Started monitoring for device " + device.id + " with " + str(device.activeAttr) 

+ " active attributes (fetching timeout: " + str(device.timeout) + "ms)", type="o") 

 

            if not self.verbose: 

                self.agentPrint("Monitoring..", type="i") 

 

            while 1: 

                pass 

        except KeyboardInterrupt: 

            self.stopped = True 



 

B-7 

 

            self.agentPrint("Waiting for active fetching to complete..", type="i") 

            for device in threads: 

                threads[device].join() 

 

            self.agentPrint("Disconnecting devices..", type="i") 

            for device in self.devices: 

                device.disconnect() 

 

            if self.verbose: 

                self.agentPrint("Disconnected devices", type="o") 

 

            exit(0) 

 

def isPort(value): 

    port = 0 

    try: 

        port = int(value) 

        if port > 65535 or port < 0: 

            raise Exception() 

    except Exception as e: 

        raise argparse.ArgumentTypeError("\"%s\" is not a valid port number (must be an integer between 1 

and 65535)" % value) 

 

    return port 

 

def main(): 

    parser = argparse.ArgumentParser(description="Agent Settings") 

    parser.add_argument("-d", "--devices", default="devices.conf", help="specify discovery/configuration 

file absolute path (default: \".\\devices.conf\")") 

    parser.add_argument("-n", "--name", default="Agent0", help="specify symbolic agent/station name 

used for separation/grouping of stations (default: \"Agent0\")") 

    parser.add_argument("-p", "--promport", type=isPort, default=8000, help="specify port number for the 

Prometheus endpoint (default: 8000)") 

    parser.add_argument("-k", "--killswitch", action="store_true", help="exit agent if error occurs in 

validation/connection phase") 

    parser.add_argument("-v", "--verbose", action="store_true", help="print actions with details in 

standard output") 

    parser.add_argument("-c", "--color", action="store_true", help="print color rich messages to terminal 

(terminal needs to support ANSI escape colors)") 



 

B-8 

 

    parser.add_argument("-m", "--more", action="store_true", help="open README.md with 

configuration and implementation details and exit") 

    args = parser.parse_args() 

 

    if args.more: 

        webbrowser.open("..\README.md") 

        exit(0) 

 

    Agent(args.devices, args.name, args.promport, args.killswitch, args.verbose, args.color).startRoutine() 

 

if __name__ == "__main__": 

    main()



 

C-1 

 

Appendix C 

Source code of device modules used by the monitoring agent (device_modules.py) 

 

from abc import ABC, abstractmethod 

from prometheus_client import Info, Gauge, Enum 

import runtime.DobotDllTypeX as dTypeX 

import serial 

 

class Device(ABC): 

    options = {"timeout":0} # Default device options/attributes 

 

    def __init__(self, config_section, port, host): 

        self.section = config_section 

        self.port = port 

        self.host = host 

        self.type = type(self).__name__ 

        self.id = self.type + ":" + self.port 

 

        self.timeout = self.section.getint("timeout", fallback=Device.options["timeout"]) 

        if self.timeout < Device.options["timeout"]: self.timeout = Device.options["timeout"] 

 

        activeCounter = 0 

        for key in type(self).options: 

            if isinstance(type(self).options[key], bool) and self.isEnabled(key): 

                activeCounter += 1 

 

        self.activeAttr = activeCounter 

 

    @abstractmethod 

    def connect(self): 

        pass 

 

    @abstractmethod 

    def fetch(self): 

        pass 



 

C-2 

 

 

    @abstractmethod 

    def disconnect(self): 

        pass 

 

    def isEnabled(self, attr): 

        if not isinstance(type(self).options[attr], bool): 

            raise Exception("\"" + attr + "\" attribute is not a monitoring option.") 

        return self.section.getboolean(attr, fallback=type(self).options[attr]) 

 

    def isCallEnabled(self, attrList): 

        for attr in attrList: 

            if self.isEnabled(attr): 

                return True 

 

        return False 

 

class Dobot(Device): 

    options = 

{"devicesn":True,"devicename":True,"deviceversion":True,"devicetime":False,"queueindex":False, 

    

"posex":True,"posey":True,"posez":True,"poser":True,"anglebase":True,"anglereararm":True,"angleforearm":

True, 

    "angleendeffector":True,"alarmsstate":True,"homex":False,"homey":False,"homez":False,"homer":False, 

    

"endeffectorx":False,"endeffectory":False,"endeffectorz":False,"laserstatus":False,"suctioncupstatus":False,"g

ripperstatus":False,"jogbasevelocity":False, 

    

"jogreararmvelocity":False,"jogforearmvelocity":False,"jogendeffectorvelocity":False,"jogbaseacceleration":

False,"jogreararmacceleration":False, 

    

"jogforearmacceleration":False,"jogendeffectoracceleration":False,"jogaxisxvelocity":False,"jogaxisyvelocity

":False,"jogaxiszvelocity":False, 

    

"jogaxisrvelocity":False,"jogaxisxacceleration":False,"jogaxisyacceleration":False,"jogaxiszacceleration":Fals

e,"jogaxisracceleration":False, 

    "jogvelocityratio":False,"jogaccelerationratio":False,"ptpbasevelocity":False,"ptpreararmvelocity":False, 



 

C-3 

 

    

"ptpforearmvelocity":False,"ptpendeffectorvelocity":False,"ptpbaseacceleration":False,"ptpreararmacceleratio

n":False, 

    "ptpforearmacceleration":False,"ptpendeffectoracceleration":False,"ptpaxisxyzvelocity":False, 

    

"ptpaxisrvelocity":False,"ptpaxisxyzacceleration":False,"ptpaxisracceleration":False,"ptpvelocityratio":False, 

    "ptpaccelerationratio":False,"liftingheight":False,"heightlimit":False, 

    "cpvelocity":False,"cpacceleration":False,"arcxyzvelocity":False,"arcrvelocity":False, 

    "arcxyzacceleration":False,"arcracceleration":False,"anglestaticerrrear":False, 

    "anglestaticerrfront":False,"anglecoefrear":False,"anglecoeffront":False,"slidingrailstatus":False, 

    "slidingrailpose":False,"slidingrailjogvelocity":False,"slidingrailjogacceleration":False, 

    "slidingrailptpvelocity":False,"slidingrailptpacceleration":False,"wifimodulestatus":False, 

    "wificonnectionstatus":False,"wifissid":False,"wifipassword":False,"wifiipaddress":False, 

    "wifinetmask":False,"wifigateway":False,"wifidns":False} 

 

    deviceInfo = Info("dobot_magician", "General information about monitored Dobot Magician device", 

["device_id","device_type","station"]) 

    wifiInfo = Info("wifi", "Information regarding the device's wifi connection", 

["device_id","device_type","station"]) 

    deviceTime = Gauge("device_time","Device's clock/time", ["device_id","device_type","station"]) 

    queueIndex = Gauge("queue_index","Current index in command queue", 

["device_id","device_type","station"]) 

    poseX = Gauge("pose_x","Real-time cartesian coordinate of device's X axis", 

["device_id","device_type","station"]) 

    poseY = Gauge("pose_y","Real-time cartesian coordinate of device's Y axis", 

["device_id","device_type","station"]) 

    poseZ = Gauge("pose_z","Real-time cartesian coordinate of device's Z axis", 

["device_id","device_type","station"]) 

    poseR = Gauge("pose_r","Real-time cartesian coordinate of device's R axis", 

["device_id","device_type","station"]) 

    angleBase = Gauge("angle_base","Base joint angle", ["device_id","device_type","station"]) 

    angleRearArm = Gauge("angle_rear_arm","Rear arm joint angle", ["device_id","device_type","station"]) 

    angleForearm = Gauge("angle_forearm","Forearm joint angle", ["device_id","device_type","station"]) 

    angleEndEffector = Gauge("angle_end_effector","End effector joint angle", 

["device_id","device_type","station"]) 

    alarmsState = Enum("alarms_state", "Device alarms state", ["device_id","device_type","station"], 

states=dTypeX.alarmStates) 



 

C-4 

 

    homeX = Gauge("home_x","Home position for X axis", ["device_id","device_type","station"]) 

    homeY = Gauge("home_y","Home position for Y axis", ["device_id","device_type","station"]) 

    homeZ = Gauge("home_z","Home position for Z axis", ["device_id","device_type","station"]) 

    homeR = Gauge("home_r","Home position for R axis", ["device_id","device_type","station"]) 

    endEffectorX = Gauge("end_effector_x","X-axis offset of end effector", 

["device_id","device_type","station"]) 

    endEffectorY = Gauge("end_effector_y","Y-axis offset of end effector", 

["device_id","device_type","station"]) 

    endEffectorZ = Gauge("end_effector_z","Z-axis offset of end effector", 

["device_id","device_type","station"]) 

    laserStatus = Enum("laser_status","Status (enabled/disabled) of laser", 

["device_id","device_type","station"], states=["enabled","disabled"]) 

    suctionCupStatus = Enum("suction_cup_status","Status (enabled/disabled) of suction cup", 

["device_id","device_type","station"], states=["enabled","disabled"]) 

    gripperStatus = Enum("gripper_status","Status (enabled/disabled) of gripper", 

["device_id","device_type","station"], states=["enabled","disabled"]) 

    jogBaseVelocity = Gauge("jog_base_velocity","Velocity (°/s) of base joint in jogging mode", 

["device_id","device_type","station"]) 

    jogRearArmVelocity = Gauge("jog_rear_arm_velocity","Velocity (°/s) of rear arm joint in jogging mode", 

["device_id","device_type","station"]) 

    jogForearmVelocity = Gauge("jog_forearm_velocity","Velocity (°/s) of forearm joint in jogging mode", 

["device_id","device_type","station"]) 

    jogEndEffectorVelocity = Gauge("jog_end_effector_velocity","Velocity (°/s) of end effector joint in 

jogging mode", ["device_id","device_type","station"]) 

    jogBaseAcceleration = Gauge("jog_base_acceleration","Acceleration (°/s^2) of base joint in jogging 

mode", ["device_id","device_type","station"]) 

    jogRearArmAcceleration = Gauge("jog_rear_arm_acceleration","Acceleration (°/s^2) of rear arm joint in 

jogging mode", ["device_id","device_type","station"]) 

    jogForearmAcceleration = Gauge("jog_forearm_acceleration","Acceleration (°/s^2) of forearm joint in 

jogging mode", ["device_id","device_type","station"]) 

    jogEndEffectorAcceleration = Gauge("jog_end_effector_acceleration","Acceleration (°/s^2) of end effector 

joint in jogging mode", ["device_id","device_type","station"]) 

    jogAxisXVelocity = Gauge("jog_axis_x_velocity","Velocity (mm/s) of device's X axis (cartesian 

coordinate) in jogging mode", ["device_id","device_type","station"]) 

    jogAxisYVelocity = Gauge("jog_axis_y_velocity","Velocity (mm/s) of device's Y axis (cartesian 

coordinate) in jogging mode", ["device_id","device_type","station"]) 



 

C-5 

 

    jogAxisZVelocity = Gauge("jog_axis_z_velocity","Velocity (mm/s) of device's Z axis (cartesian 

coordinate) in jogging mode", ["device_id","device_type","station"]) 

    jogAxisRVelocity = Gauge("jog_axis_r_velocity","Velocity (mm/s) of device's R axis (cartesian 

coordinate) in jogging mode", ["device_id","device_type","station"]) 

    jogAxisXAcceleration = Gauge("jog_axis_x_acceleration","Acceleration (mm/s^2) of device's X axis 

(cartesian coordinate) in jogging mode", ["device_id","device_type","station"]) 

    jogAxisYAcceleration = Gauge("jog_axis_y_acceleration","Acceleration (mm/s^2) of device's Y axis 

(cartesian coordinate) in jogging mode", ["device_id","device_type","station"]) 

    jogAxisZAcceleration = Gauge("jog_axis_z_acceleration","Acceleration (mm/s^2) of device's Z axis 

(cartesian coordinate) in jogging mode", ["device_id","device_type","station"]) 

    jogAxisRAcceleration = Gauge("jog_axis_r_acceleration","Acceleration (mm/s^2) of device's R axis 

(cartesian coordinate) in jogging mode", ["device_id","device_type","station"]) 

    jogVelocityRatio = Gauge("jog_velocity_ratio","Velocity ratio of all axis (joint and cartesian coordinate 

system) in jogging mode", ["device_id","device_type","station"]) 

    jogAccelerationRatio = Gauge("jog_acceleration_ratio","Acceleration ratio of all axis (joint and cartesian 

coordinate system) in jogging mode", ["device_id","device_type","station"]) 

    ptpBaseVelocity = Gauge("ptp_base_velocity","Velocity (°/s) of base joint in point to point mode", 

["device_id","device_type","station"]) 

    ptpRearArmVelocity = Gauge("ptp_rear_arm_velocity","Velocity (°/s) of rear arm joint in point to point 

mode", ["device_id","device_type","station"]) 

    ptpForearmVelocity = Gauge("ptp_forearm_velocity","Velocity (°/s) of forearm joint in point to point 

mode", ["device_id","device_type","station"]) 

    ptpEndEffectorVelocity = Gauge("ptp_end_effector_velocity","Velocity (°/s) of end effector joint in point 

to point mode", ["device_id","device_type","station"]) 

    ptpBaseAcceleration = Gauge("ptp_base_acceleration","Acceleration (°/s^2) of base joint in point to point 

mode", ["device_id","device_type","station"]) 

    ptpRearArmAcceleration = Gauge("ptp_rear_arm_acceleration","Acceleration (°/s^2) of rear arm joint in 

point to point mode", ["device_id","device_type","station"]) 

    ptpForearmAcceleration = Gauge("ptp_forearm_acceleration","Acceleration (°/s^2) of forearm joint in 

point to point mode", ["device_id","device_type","station"]) 

    ptpEndEffectorAcceleration = Gauge("ptp_end_effector_acceleration","Acceleration (°/s^2) of end effector 

joint in point to point mode", ["device_id","device_type","station"]) 

    ptpAxisXYZVelocity = Gauge("ptp_axis_xyz_velocity","Velocity (mm/s) of device's X, Y, Z axis 

(cartesian coordinate) in point to point mode", ["device_id","device_type","station"]) 

    ptpAxisRVelocity = Gauge("ptp_axis_r_velocity","Velocity (mm/s) of device's R axis (cartesian 

coordinate) in point to point mode", ["device_id","device_type","station"]) 



 

C-6 

 

    ptpAxisXYZAcceleration = Gauge("ptp_axis_x_y_z_acceleration","Acceleration (mm/s^2) of device's X, 

Y, Z axis (cartesian coordinate) in point to point mode", ["device_id","device_type","station"]) 

    ptpAxisRAcceleration = Gauge("ptp_axis_r_acceleration","Acceleration (mm/s^2) of device's R axis 

(cartesian coordinate) in point to point mode", ["device_id","device_type","station"]) 

    ptpVelocityRatio = Gauge("ptp_velocity_ratio","Velocity ratio of all axis (joint and cartesian coordinate 

system) in point to point mode", ["device_id","device_type","station"]) 

    ptpAccelerationRatio = Gauge("ptp_acceleration_ratio","Acceleration ratio of all axis (joint and cartesian 

coordinate system) in point to point mode", ["device_id","device_type","station"]) 

    liftingHeight = Gauge("lifting_height","Lifting height in jump mode", 

["device_id","device_type","station"]) 

    heightLimit = Gauge("height_limit","Max lifting height in jump mode", 

["device_id","device_type","station"]) 

    cpVelocity = Gauge("cp_velocity","Velocity (mm/s) in cp mode", ["device_id","device_type","station"]) 

    cpAcceleration = Gauge("cp_acceleration","Acceleration (mm/s^2) in cp mode", 

["device_id","device_type","station"]) 

    arcXYZVelocity = Gauge("arc_x_y_z_velocity","Velocity (mm/s) of X, Y, Z axis in arc mode", 

["device_id","device_type","station"]) 

    arcRVelocity = Gauge("arc_r_velocity","Velocity (mm/s) of R axis in arc mode", 

["device_id","device_type","station"]) 

    arcXYZAcceleration = Gauge("arc_x_y_z_acceleration","Acceleration (mm/s^2) of X, Y, Z axis in arc 

mode", ["device_id","device_type","station"]) 

    arcRAcceleration = Gauge("arc_r_acceleration","Acceleration (mm/s^2) of R axis in arc mode", 

["device_id","device_type","station"]) 

    angleStaticErrRear = Gauge("angle_static_err_rear","Rear arm angle sensor static error", 

["device_id","device_type","station"]) 

    angleStaticErrFront = Gauge("arc_static_err_front","Forearm angle sensor static error", 

["device_id","device_type","station"]) 

    angleCoefRear = Gauge("angle_coef_rear","Rear arm angle sensor linearization parameter", 

["device_id","device_type","station"]) 

    angleCoefFront = Gauge("angle_coef_front","Forearm angle sensor linearization parameter", 

["device_id","device_type","station"]) 

    slidingRailStatus = Enum("sliding_rail_status","Sliding rail's status (enabled/disabled)", 

["device_id","device_type","station"], states=["enabled","disabled"]) 

    slidingRailPose = Gauge("sliding_rail_pose","Sliding rail's real-time pose in mm", 

["device_id","device_type","station"]) 

    slidingRailJogVelocity = Gauge("sliding_rail_jog_velocity","Velocity (mm/s) of sliding rail in jogging 

mode", ["device_id","device_type","station"]) 



 

C-7 

 

    slidingRailJogAcceleration = Gauge("sliding_rail_jog_acceleration","Acceleration (mm/s^2) of sliding rail 

in jogging mode", ["device_id","device_type","station"]) 

    slidingRailPtpVelocity = Gauge("sliding_rail_ptp_velocity","Velocity (mm/s) of sliding rail in point to 

point mode", ["device_id","device_type","station"]) 

    slidingRailPtpAcceleration = Gauge("sliding_rail_ptp_acceleration","Acceleration (mm/s^2) of sliding rail 

in point to point mode", ["device_id","device_type","station"]) 

    wifiModuleStatus = Enum("wifi_module_status","Wifi module status (enabled/disabled)", 

["device_id","device_type","station"], states=["enabled","disabled"]) 

    wifiConnectionStatus = Enum("wifi_connection_status","Wifi connection status (connected/not 

connected)", ["device_id","device_type","station"], states=["enabled","disabled"]) 

 

    def connect(self): 

        stateInfo = {1:"Not Found", 2:"Occupied"} 

 

        try: 

            self.api, state = dTypeX.ConnectDobotX(self.port) 

            if state[0] == dTypeX.DobotConnect.DobotConnect_NoError: 

                self.__initialize() 

            else: 

                raise Exception(stateInfo[state[0]]) 

        except Exception as e: 

            raise Exception(str(e)) 

 

    def __initialize(self): 

        enabledDeviceInfo = {} 

        if self.isEnabled("devicesn"): 

            enabledDeviceInfo["serial"] = dTypeX.GetDeviceSN(self.api)[0] 

        if self.isEnabled("devicename"): 

            enabledDeviceInfo["name"] = dTypeX.GetDeviceName(self.api)[0] 

        if self.isEnabled("deviceversion"): 

            enabledDeviceInfo["version"] = ".".join(list(map(str, dTypeX.GetDeviceVersion(self.api)))) 

        if len(enabledDeviceInfo) > 0: 

            Dobot.deviceInfo.labels(device_id=self.id, device_type=self.type, 

station=self.host).info(enabledDeviceInfo) 

 

        enabledWifiInfo = {} 

        if self.isEnabled("wifissid"): 



 

C-8 

 

            enabledWifiInfo["ssid"] = dTypeX.GetWIFISSID(self.api)[0] 

        if self.isEnabled("wifipassword"): 

            enabledWifiInfo["password"] = dTypeX.GetWIFIPassword(self.api)[0] 

        if self.isEnabled("wifiipaddress"): 

            enabledWifiInfo["ip_address"] = ".".join(list(map(str, dTypeX.GetWIFIIPAddress(self.api)[1:]))) 

        if self.isEnabled("wifinetmask"): 

            enabledWifiInfo["netmask"] = ".".join(list(map(str, dTypeX.GetWIFINetmask(self.api)))) 

        if self.isEnabled("wifigateway"): 

            enabledWifiInfo["gateway"] = ".".join(list(map(str, dTypeX.GetWIFIGateway(self.api)))) 

        if self.isEnabled("wifidns"): 

            enabledWifiInfo["dns"] = ".".join(list(map(str, dTypeX.GetWIFIDNS(self.api)))) 

        if len(enabledWifiInfo) > 0: 

            Dobot.wifiInfo.labels(device_id=self.id, device_type=self.type, 

station=self.host).info(enabledWifiInfo) 

 

        self.GetPose = 

self.isCallEnabled(["posex","posey","posez","poser","anglebase","anglereararm","angleforearm","angleendef

fector"]) 

        self.GetHomeParams = self.isCallEnabled(["homex","homey","homez","homer"]) 

        self.GetEndEffectorParams = self.isCallEnabled(["endeffectorx","endeffectory","endeffectorz"]) 

        self.GetJOGGointParams = 

self.isCallEnabled(["jogbasevelocity","jogreararmvelocity","jogforearmvelocity","jogendeffectorvelocity", 

        "jogbaseacceleration","jogreararmacceleration","jogforearmacceleration","jogendeffectoracceleration"]) 

        self.GetJOGCoordinateParams = 

self.isCallEnabled(["jogaxisxvelocity","jogaxisyvelocity","jogaxiszvelocity","jogaxisrvelocity", 

        "jogaxisxacceleration","jogaxisyacceleration","jogaxiszacceleration","jogaxisracceleration"]) 

        self.GetJOGCommonParams = self.isCallEnabled(["jogvelocityratio","jogaccelerationratio"]) 

        self.GetPTPJointParams = 

self.isCallEnabled(["ptpbasevelocity","ptpreararmvelocity","ptpforearmvelocity","ptpendeffectorvelocity", 

        "ptpbaseacceleration","ptpreararmacceleration","ptpforearmacceleration","ptpendeffectoracceleration"]) 

        self.GetPTPCoordinateParams = 

self.isCallEnabled(["ptpaxisxyzvelocity","ptpaxisrvelocity","ptpaxisxyzacceleration","ptpaxisracceleration"]) 

        self.GetPTPCommonParams = self.isCallEnabled(["ptpvelocityratio","ptpaccelerationratio"]) 

        self.GetPTPJumpParams = self.isCallEnabled(["liftingheight","heightlimit"]) 

        self.GetCPParams = self.isCallEnabled(["cpvelocity","cpacceleration"]) 

        self.GetARCParams = 

self.isCallEnabled(["arcxyzvelocity","arcrvelocity","arcxyzacceleration","arcracceleration"]) 



 

C-9 

 

        self.GetAngleSensorStaticError = self.isCallEnabled(["anglestaticerrrear","anglestaticerrfront"]) 

        self.GetAngleSensorCoef = self.isCallEnabled(["anglecoefrear","anglecoeffront"]) 

        self.GetJOGLParams = self.isCallEnabled(["slidingrailjogvelocity","slidingrailjogacceleration"]) 

        self.GetPTPLParams = self.isCallEnabled(["slidingrailptpvelocity","slidingrailptpacceleration"]) 

 

    def fetch(self): 

        if self.isEnabled("devicetime"): 

            Dobot.deviceTime.labels(device_id=self.id, device_type=self.type, 

station=self.host).set(dTypeX.GetDeviceTime(self.api)[0]) 

 

        if self.isEnabled("queueindex"): 

            Dobot.queueIndex.labels(device_id=self.id, device_type=self.type, 

station=self.host).set(dTypeX.GetQueuedCmdCurrentIndex(self.api)[0]) 

 

        if self.GetPose: 

            pose = dTypeX.GetPose(self.api) 

            if self.isEnabled("posex"): 

                Dobot.poseX.labels(device_id=self.id, device_type=self.type, station=self.host).set(pose[0]) 

 

            if self.isEnabled("posey"): 

                Dobot.poseY.labels(device_id=self.id, device_type=self.type, station=self.host).set(pose[1]) 

 

            if self.isEnabled("posez"): 

                Dobot.poseZ.labels(device_id=self.id, device_type=self.type, station=self.host).set(pose[2]) 

 

            if self.isEnabled("poser"): 

                Dobot.poseR.labels(device_id=self.id, device_type=self.type, station=self.host).set(pose[3]) 

 

            if self.isEnabled("anglebase"): 

                Dobot.angleBase.labels(device_id=self.id, device_type=self.type, station=self.host).set(pose[4]) 

 

            if self.isEnabled("anglereararm"): 

                Dobot.angleRearArm.labels(device_id=self.id, device_type=self.type, 

station=self.host).set(pose[5]) 

 

            if self.isEnabled("angleforearm"): 

                Dobot.angleForearm.labels(device_id=self.id, device_type=self.type, station=self.host).set(pose[6]) 



 

C-10 

 

 

            if self.isEnabled("angleendeffector"): 

                Dobot.angleEndEffector.labels(device_id=self.id, device_type=self.type, 

station=self.host).set(pose[7]) 

 

        if self.isEnabled("alarmsstate"): 

            alarmsList = dTypeX.GetAlarmsStateX(self.api) 

            if len(alarmsList) == 0: 

                Dobot.alarmsState.labels(device_id=self.id, device_type=self.type, station=self.host).state(" ") 

            else: 

                for a in alarmsList: 

                    Dobot.alarmsState.labels(device_id=self.id, device_type=self.type, station=self.host).state(a) 

 

        if self.GetHomeParams: 

            home = dTypeX.GetHOMEParams(self.api) 

            if self.isEnabled("homex"): 

                Dobot.homeX.labels(device_id=self.id, device_type=self.type, station=self.host).set(home[0]) 

 

            if self.isEnabled("homey"): 

                Dobot.homeY.labels(device_id=self.id, device_type=self.type, station=self.host).set(home[1]) 

 

            if self.isEnabled("homez"): 

                Dobot.homeZ.labels(device_id=self.id, device_type=self.type, station=self.host).set(home[2]) 

 

            if self.isEnabled("homer"): 

                Dobot.homeR.labels(device_id=self.id, device_type=self.type, station=self.host).set(home[3]) 

 

        if self.GetEndEffectorParams: 

            endEffector = dTypeX.GetEndEffectorParams(self.api) 

            if self.isEnabled("endeffectorx"): 

                Dobot.endEffectorX.labels(device_id=self.id, device_type=self.type, 

station=self.host).set(endEffector[0]) 

 

            if self.isEnabled("endeffectory"): 

                Dobot.endEffectorY.labels(device_id=self.id, device_type=self.type, 

station=self.host).set(endEffector[1]) 

 



 

C-11 

 

            if self.isEnabled("endeffectorz"): 

                Dobot.endEffectorZ.labels(device_id=self.id, device_type=self.type, 

station=self.host).set(endEffector[2]) 

 

        if self.isEnabled("laserstatus"): 

            if bool(dTypeX.GetEndEffectorLaser(self.api)[0]): 

                Dobot.laserStatus.labels(device_id=self.id, device_type=self.type, 

station=self.host).state("enabled") 

            else: 

                Dobot.laserStatus.labels(device_id=self.id, device_type=self.type, 

station=self.host).state("disabled") 

 

        if self.isEnabled("suctioncupstatus"): 

            if bool(dTypeX.GetEndEffectorSuctionCup(self.api)[0]): 

                Dobot.suctionCupStatus.labels(device_id=self.id, device_type=self.type, 

station=self.host).state("enabled") 

            else: 

                Dobot.suctionCupStatus.labels(device_id=self.id, device_type=self.type, 

station=self.host).state("disabled") 

 

        if self.isEnabled("gripperstatus"): 

            if bool(dTypeX.GetEndEffectorGripper(self.api)[0]): 

                Dobot.gripperStatus.labels(device_id=self.id, device_type=self.type, 

station=self.host).state("enabled") 

            else: 

                Dobot.gripperStatus.labels(device_id=self.id, device_type=self.type, 

station=self.host).state("disabled") 

 

        if self.GetJOGGointParams: 

            jogJoints = dTypeX.GetJOGJointParams(self.api) 

            if self.isEnabled("jogbasevelocity"): 

                Dobot.jogBaseVelocity.labels(device_id=self.id, device_type=self.type, 

station=self.host).set(jogJoints[0]) 

 

            if self.isEnabled("jogreararmvelocity"): 

                Dobot.jogRearArmVelocity.labels(device_id=self.id, device_type=self.type, 

station=self.host).set(jogJoints[1]) 



 

C-12 

 

 

            if self.isEnabled("jogforearmvelocity"): 

                Dobot.jogForearmVelocity.labels(device_id=self.id, device_type=self.type, 

station=self.host).set(jogJoints[2]) 

 

            if self.isEnabled("jogendeffectorvelocity"): 

                Dobot.jogEndEffectorVelocity.labels(device_id=self.id, device_type=self.type, 

station=self.host).set(jogJoints[3]) 

 

            if self.isEnabled("jogbaseacceleration"): 

                Dobot.jogBaseAcceleration.labels(device_id=self.id, device_type=self.type, 

station=self.host).set(jogJoints[4]) 

 

            if self.isEnabled("jogreararmacceleration"): 

                Dobot.jogRearArmAcceleration.labels(device_id=self.id, device_type=self.type, 

station=self.host).set(jogJoints[5]) 

 

            if self.isEnabled("jogforearmacceleration"): 

                Dobot.jogForearmAcceleration.labels(device_id=self.id, device_type=self.type, 

station=self.host).set(jogJoints[6]) 

 

            if self.isEnabled("jogendeffectoracceleration"): 

                Dobot.jogEndEffectorAcceleration.labels(device_id=self.id, device_type=self.type, 

station=self.host).set(jogJoints[7]) 

 

        if self.GetJOGCoordinateParams: 

            jogCoords = dTypeX.GetJOGCoordinateParams(self.api) 

            if self.isEnabled("jogaxisxvelocity"): 

                Dobot.jogAxisXVelocity.labels(device_id=self.id, device_type=self.type, 

station=self.host).set(jogCoords[0]) 

 

            if self.isEnabled("jogaxisyvelocity"): 

                Dobot.jogAxisYVelocity.labels(device_id=self.id, device_type=self.type, 

station=self.host).set(jogCoords[1]) 

 

            if self.isEnabled("jogaxiszvelocity"): 



 

C-13 

 

                Dobot.jogAxisZVelocity.labels(device_id=self.id, device_type=self.type, 

station=self.host).set(jogCoords[2]) 

 

            if self.isEnabled("jogaxisrvelocity"): 

                Dobot.jogAxisRVelocity.labels(device_id=self.id, device_type=self.type, 

station=self.host).set(jogCoords[3]) 

 

            if self.isEnabled("jogaxisxacceleration"): 

                Dobot.jogAxisXAcceleration.labels(device_id=self.id, device_type=self.type, 

station=self.host).set(jogCoords[4]) 

 

            if self.isEnabled("jogaxisyacceleration"): 

                Dobot.jogAxisYAcceleration.labels(device_id=self.id, device_type=self.type, 

station=self.host).set(jogCoords[5]) 

 

            if self.isEnabled("jogaxiszacceleration"): 

                Dobot.jogAxisZAcceleration.labels(device_id=self.id, device_type=self.type, 

station=self.host).set(jogCoords[6]) 

 

            if self.isEnabled("jogaxisracceleration"): 

                Dobot.jogAxisRAcceleration.labels(device_id=self.id, device_type=self.type, 

station=self.host).set(jogCoords[7]) 

 

        if self.GetJOGCommonParams: 

            jogCommon = dTypeX.GetJOGCommonParams(self.api) 

            if self.isEnabled("jogvelocityratio"): 

                Dobot.jogVelocityRatio.labels(device_id=self.id, device_type=self.type, 

station=self.host).set(jogCommon[0]) 

 

            if self.isEnabled("jogaccelerationratio"): 

                Dobot.jogAccelerationRatio.labels(device_id=self.id, device_type=self.type, 

station=self.host).set(jogCommon[1]) 

 

        if self.GetPTPJointParams: 

            ptpJoints = dTypeX.GetPTPJointParams(self.api) 

            if self.isEnabled("ptpbasevelocity"): 



 

C-14 

 

                Dobot.ptpBaseVelocity.labels(device_id=self.id, device_type=self.type, 

station=self.host).set(ptpJoints[0]) 

 

            if self.isEnabled("ptpreararmvelocity"): 

                Dobot.ptpRearArmVelocity.labels(device_id=self.id, device_type=self.type, 

station=self.host).set(ptpJoints[1]) 

 

            if self.isEnabled("ptpforearmvelocity"): 

                Dobot.ptpForearmVelocity.labels(device_id=self.id, device_type=self.type, 

station=self.host).set(ptpJoints[2]) 

 

            if self.isEnabled("ptpendeffectorvelocity"): 

                Dobot.ptpEndEffectorVelocity.labels(device_id=self.id, device_type=self.type, 

station=self.host).set(ptpJoints[3]) 

 

            if self.isEnabled("ptpbaseacceleration"): 

                Dobot.ptpBaseAcceleration.labels(device_id=self.id, device_type=self.type, 

station=self.host).set(ptpJoints[4]) 

 

            if self.isEnabled("ptpreararmacceleration"): 

                Dobot.ptpRearArmAcceleration.labels(device_id=self.id, device_type=self.type, 

station=self.host).set(ptpJoints[5]) 

 

            if self.isEnabled("ptpforearmacceleration"): 

                Dobot.ptpForearmAcceleration.labels(device_id=self.id, device_type=self.type, 

station=self.host).set(ptpJoints[6]) 

 

            if self.isEnabled("ptpendeffectoracceleration"): 

                Dobot.ptpEndEffectorAcceleration.labels(device_id=self.id, device_type=self.type, 

station=self.host).set(ptpJoints[7]) 

 

        if self.GetPTPCoordinateParams: 

            ptpCoords = dTypeX.GetPTPCoordinateParams(self.api) 

            if self.isEnabled("ptpaxisxyzvelocity"): 

                Dobot.ptpAxisXYZVelocity.labels(device_id=self.id, device_type=self.type, 

station=self.host).set(ptpCoords[0]) 

 



 

C-15 

 

            if self.isEnabled("ptpaxisrvelocity"): 

                Dobot.ptpAxisRVelocity.labels(device_id=self.id, device_type=self.type, 

station=self.host).set(ptpCoords[1]) 

 

            if self.isEnabled("ptpaxisxyzacceleration"): 

                Dobot.ptpAxisXYZAcceleration.labels(device_id=self.id, device_type=self.type, 

station=self.host).set(ptpCoords[2]) 

 

            if self.isEnabled("ptpaxisracceleration"): 

                Dobot.ptpAxisRAcceleration.labels(device_id=self.id, device_type=self.type, 

station=self.host).set(ptpCoords[3]) 

 

        if self.GetPTPCommonParams: 

            ptpCommon = dTypeX.GetPTPCommonParams(self.api) 

            if self.isEnabled("ptpvelocityratio"): 

                Dobot.ptpVelocityRatio.labels(device_id=self.id, device_type=self.type, 

station=self.host).set(ptpCommon[0]) 

 

            if self.isEnabled("ptpaccelerationratio"): 

                Dobot.ptpAccelerationRatio.labels(device_id=self.id, device_type=self.type, 

station=self.host).set(ptpCommon[1]) 

 

        if self.GetPTPJumpParams: 

            ptpJump = dTypeX.GetPTPJumpParams(self.api) 

            if self.isEnabled("liftingheight"): 

                Dobot.liftingHeight.labels(device_id=self.id, device_type=self.type, 

station=self.host).set(ptpJump[0]) 

 

            if self.isEnabled("heightlimit"): 

                Dobot.heightLimit.labels(device_id=self.id, device_type=self.type, 

station=self.host).set(ptpJump[1]) 

 

        if self.GetCPParams: 

            cp = dTypeX.GetCPParams(self.api) 

            if self.isEnabled("cpvelocity"): 

                Dobot.cpVelocity.labels(device_id=self.id, device_type=self.type, station=self.host).set(cp[0]) 

 



 

C-16 

 

            if self.isEnabled("cpacceleration"): 

                Dobot.cpAcceleration.labels(device_id=self.id, device_type=self.type, station=self.host).set(cp[1]) 

 

        if self.GetARCParams: 

            arc = dTypeX.GetARCParams(self.api) 

            if self.isEnabled("arcxyzvelocity"): 

                Dobot.arcXYZVelocity.labels(device_id=self.id, device_type=self.type, 

station=self.host).set(arc[0]) 

 

            if self.isEnabled("arcrvelocity"): 

                Dobot.arcRVelocity.labels(device_id=self.id, device_type=self.type, station=self.host).set(arc[1]) 

 

            if self.isEnabled("arcxyzacceleration"): 

                Dobot.arcXYZAcceleration.labels(device_id=self.id, device_type=self.type, 

station=self.host).set(arc[2]) 

 

            if self.isEnabled("arcracceleration"): 

                Dobot.arcRAcceleration.labels(device_id=self.id, device_type=self.type, 

station=self.host).set(arc[3]) 

 

        if self.GetAngleSensorStaticError: 

            angleStaticErr = dTypeX.GetAngleSensorStaticError(self.api) 

            if self.isEnabled("anglestaticerrrear"): 

                Dobot.angleStaticErrRear.labels(device_id=self.id, device_type=self.type, 

station=self.host).set(angleStaticErr[0]) 

 

            if self.isEnabled("anglestaticerrfront"): 

                Dobot.angleStaticErrFront.labels(device_id=self.id, device_type=self.type, 

station=self.host).set(angleStaticErr[1]) 

 

        if self.GetAngleSensorCoef: 

            angleCoef = dTypeX.GetAngleSensorCoef(self.api) 

            if self.isEnabled("anglecoefrear"): 

                Dobot.angleCoefRear.labels(device_id=self.id, device_type=self.type, 

station=self.host).set(angleCoef[0]) 

 

            if self.isEnabled("anglecoeffront"): 



 

C-17 

 

                Dobot.angleCoefFront.labels(device_id=self.id, device_type=self.type, 

station=self.host).set(angleCoef[1]) 

 

        if self.isEnabled("slidingrailstatus"): 

            if bool(dTypeX.GetDeviceWithL(self.api)[0]): 

                Dobot.slidingRailStatus.labels(device_id=self.id, device_type=self.type, 

station=self.host).state("enabled") 

            else: 

                Dobot.slidingRailStatus.labels(device_id=self.id, device_type=self.type, 

station=self.host).state("disabled") 

 

        if self.isEnabled("slidingrailpose"): 

            Dobot.slidingRailPose.labels(device_id=self.id, device_type=self.type, 

station=self.host).set(dTypeX.GetPoseL(self.api)[0]) 

 

        if self.GetJOGLParams: 

            jogRail = dTypeX.GetJOGLParams(self.api) 

            if self.isEnabled("slidingrailjogvelocity"): 

                Dobot.slidingRailJogVelocity.labels(device_id=self.id, device_type=self.type, 

station=self.host).set(jogRail[0]) 

 

            if self.isEnabled("slidingrailjogacceleration"): 

                Dobot.slidingRailJogAcceleration.labels(device_id=self.id, device_type=self.type, 

station=self.host).set(jogRail[1]) 

 

        if self.GetPTPLParams: 

            ptpRail = dTypeX.GetPTPLParams(self.api) 

            if self.isEnabled("slidingrailptpvelocity"): 

                Dobot.slidingRailPtpVelocity.labels(device_id=self.id, device_type=self.type, 

station=self.host).set(ptpRail[0]) 

 

            if self.isEnabled("slidingrailptpacceleration"): 

                Dobot.slidingRailPtpAcceleration.labels(device_id=self.id, device_type=self.type, 

station=self.host).set(ptpRail[1]) 

 

        if self.isEnabled("wifimodulestatus"): 

            if bool(dTypeX.GetWIFIConfigMode(self.api)[0]): 



 

C-18 

 

                Dobot.wifiModuleStatus.labels(device_id=self.id, device_type=self.type, 

station=self.host).state("enabled") 

            else: 

                Dobot.wifiModuleStatus.labels(device_id=self.id, device_type=self.type, 

station=self.host).state("disabled") 

 

        if self.isEnabled("wificonnectionstatus"): 

            if bool(dTypeX.GetWIFIConnectStatus(self.api)[0]): 

                Dobot.wifiConnectionStatus.labels(device_id=self.id, device_type=self.type, 

station=self.host).state("enabled") 

            else: 

                Dobot.wifiConnectionStatus.labels(device_id=self.id, device_type=self.type, 

station=self.host).state("disabled") 

 

    def disconnect(self): 

        dTypeX.DisconnectDobotX(self.api) 

 

class Jevois(Device): 

    options = {"objects":"","objectidentified":True,"objectlocation":True,"objectsize":False} 

 

    objectLocationX = Gauge("object_location_x", "Identified object's x position", 

["device_id","device_type","station"]) 

    objectLocationY = Gauge("object_location_y", "Identified object's y position", 

["device_id","device_type","station"]) 

    objectLocationZ = Gauge("object_location_z", "Identified object's Z position", 

["device_id","device_type","station"]) 

    objectSize = Gauge("object_size","Identified object's size", ["device_id","device_type","station"]) 

 

    def connect(self): 

        try: 

            self.serial = serial.Serial(self.port, 115200, timeout=0) 

            self.__initialize() 

        except Exception as e: 

            raise Exception(str(e)) 

 

    def __initialize(self): 

        if self.isEnabled("objectidentified"): 



 

C-19 

 

            if self.section["objects"] is not None: 

                self.objects = [" "] 

                # remove extension part and add to the objects list 

                for obj in self.section["objects"].split(): 

                    self.objects.append(obj.split(".")[0]) 

 

                self.objectIdentified = Enum("object_id_"+self.port, "Object Identified", 

["device_id","device_type","station"], states=self.objects) 

            else: 

                raise Exception("The \"objects\" list is necessary for monitoring identified objects") 

 

    def fetch(self): 

        line = self.serial.readline().rstrip().decode() 

        tok = line.split() 

 

        # in case of no identified object (empty message) or malformed line (as a message with Normal serstyle 

has 6 fields) skip fetching 

        if len(tok) < 6: 

            if self.isEnabled("objectidentified"): 

                self.objectIdentified.labels(device_id=self.id, device_type=self.type, station=self.host).state(" ") 

            Jevois.objectLocationX.labels(device_id=self.id, device_type=self.type, station=self.host).set(0) 

            Jevois.objectLocationY.labels(device_id=self.id, device_type=self.type, station=self.host).set(0) 

            Jevois.objectLocationZ.labels(device_id=self.id, device_type=self.type, station=self.host).set(0) 

            Jevois.objectSize.labels(device_id=self.id, device_type=self.type, station=self.host).set(0) 

            self.serial.flushInput() 

            return 

 

        serstyle = tok[0][0] 

        dimension = tok[0][1] 

 

        # If the serstyle is not Normal (thus it is not supported by the module) 

        if (serstyle != "N"): raise Exception("Unsupported serstyle (" + serstyle + ")") 

 

        if dimension == "1" and len(tok) != 4: raise Exception("Malformed line (expected 4 fields but received " 

+ str(len(tok)) + ")") 

        if dimension == "2" and len(tok) != 6: raise Exception("Malformed line (expected 6 fields but received " 

+ str(len(tok)) + ")") 



 

C-20 

 

        if dimension == "3" and len(tok) != 8: raise Exception("Malformed line (expected 8 fields but received " 

+ str(len(tok)) + ")") 

 

        if self.isEnabled("objectidentified"): 

            if len(self.objects) > 1: 

                obj = tok[1].split(".")[0] 

                if obj in self.objects: 

                    self.objectIdentified.labels(device_id=self.id, device_type=self.type, station=self.host).state(obj) 

                else: 

                    self.objectIdentified.labels(device_id=self.id, device_type=self.type, station=self.host).state(" ") 

            else: 

                raise Exception("The \"objects\" list exists but is empty") 

 

        if self.isEnabled("objectlocation"): 

            Jevois.objectLocationX.labels(device_id=self.id, device_type=self.type, 

station=self.host).set(float(tok[2])) 

 

            if int(dimension) > 1: 

                Jevois.objectLocationY.labels(device_id=self.id, device_type=self.type, 

station=self.host).set(float(tok[3])) 

 

            if int(dimension) == 3: 

                Jevois.objectLocationZ.labels(device_id=self.id, device_type=self.type, 

station=self.host).set(float(tok[4])) 

 

        if self.isEnabled("objectsize"): 

            if dimension == "1": 

                Jevois.objectSize.labels(device_id=self.id, device_type=self.type, 

station=self.host).set(float(tok[3])) 

            elif dimension == "2": 

                Jevois.objectSize.labels(device_id=self.id, device_type=self.type, 

station=self.host).set(abs(float(tok[4])*float(tok[5]))) 

            elif dimension == "3": 

                Jevois.objectSize.labels(device_id=self.id, device_type=self.type, 

station=self.host).set(abs(float(tok[5])*float(tok[6])*float(tok[7]))) 

 

        self.serial.flushInput() 



 

C-21 

 

    

 def disconnect(self): 

        self.serial.close()



 

C-1 

 

Appendix D 

Source code of device modules testing utility (test.py) 

 

''' 

A small manageable testing utility for the monitoring agent (agent.py) is the `test.py` script 

which includes a number of functions respective to different functional (f) and performance (p) tests. 

Each functional test represents a function of the monitoring agent (agent.py). 

Each test returns true in successful completion and false otherwise. 

Performance tests produce results/statistics to standard output that can be further analyzed. 

The naming convention for better organization and use of the test functions 

is as follows: typeOfTest_moduleName_description 

e.g.    For a performance test regarding the Jevois module => p_Jevois_DescriptionOfTest() 

        For a functional test regarding the Dobot module => f_Dobot_DescriptionOfTest() 

''' 

import sys, os 

import threading 

import time 

import serial 

import configparser 

import runtime.DobotDllTypeX as dTypeX 

 

### Performance Tests ### 

''' 

Description: Helper function to measureFetchingOverheadDobot() 

Execute a dobot function and return the execution time in ms 

Parameters: 

    func: (dTypeX) api call to be measured 

    arg: dobot api object 

''' 

def _execute(func, arg): 

    start = time.time() 

    func(arg) 

    stop = time.time() 

    return (stop - start) * 1000 

 



 

C-2 

 

''' 

Description: Measure fetching times (in ms) for each attribute through multiple iterations 

Parameters: 

    port: dobot device port (e.g. "COM4" / "192.168.43.4") 

    n: number of iterations 

''' 

def p_Dobot_FetchingOverhead(port, n): 

    dobot, state = dTypeX.ConnectDobotX(port) 

    if state[0] != dTypeX.DobotConnect.DobotConnect_NoError: 

        print("Couldn't connect Dobot at port " + str(port)) 

        return False 

 

    if n < 1: 

        print("Iterations number must be a positive integer.") 

        return False 

 

    iterations = n 

    attributes = 

{"GetDeviceSN":[],"GetDeviceName":[],"GetDeviceVersion":[],"GetWIFISSID":[],"GetWIFIPassword":[],"

GetWIFIIPAddress":[], 

    

"GetWIFINetmask":[],"GetWIFIGateway":[],"GetWIFIDNS":[],"GetDeviceTime":[],"GetQueuedCmdCurren

tIndex":[], 

    "GetPose":[],"GetAlarmsStateX":[],"GetHOMEParams":[],"GetEndEffectorParams":[], 

    

"GetEndEffectorLaser":[],"GetEndEffectorSuctionCup":[],"GetEndEffectorGripper":[],"GetJOGJointParams"

:[], 

    

"GetJOGCoordinateParams":[],"GetJOGCommonParams":[],"GetPTPJointParams":[],"GetPTPCoordinatePar

ams":[], 

    

"GetPTPCommonParams":[],"GetPTPJumpParams":[],"GetCPParams":[],"GetARCParams":[],"GetAngleSen

sorStaticError":[], 

    "GetAngleSensorCoef":[],"GetDeviceWithL":[],"GetPoseL":[],"GetJOGLParams":[],"GetPTPLParams":[], 

    "GetWIFIConfigMode":[],"GetWIFIConnectStatus":[]} 

 

    for i in range(iterations): 



 

C-3 

 

        attributes["GetDeviceSN"].append(_execute(dTypeX.GetDeviceSN, dobot)) 

        attributes["GetDeviceName"].append(_execute(dTypeX.GetDeviceName, dobot)) 

        attributes["GetDeviceVersion"].append(_execute(dTypeX.GetDeviceVersion, dobot)) 

        attributes["GetWIFISSID"].append(_execute(dTypeX.GetWIFISSID, dobot)) 

        attributes["GetWIFIPassword"].append(_execute(dTypeX.GetWIFIPassword, dobot)) 

        attributes["GetWIFIIPAddress"].append(_execute(dTypeX.GetWIFIIPAddress, dobot)) 

        attributes["GetWIFINetmask"].append(_execute(dTypeX.GetWIFINetmask, dobot)) 

        attributes["GetWIFIGateway"].append(_execute(dTypeX.GetWIFIGateway, dobot)) 

        attributes["GetWIFIDNS"].append(_execute(dTypeX.GetWIFIDNS, dobot)) 

        attributes["GetDeviceTime"].append(_execute(dTypeX.GetDeviceTime, dobot)) 

        attributes["GetQueuedCmdCurrentIndex"].append(_execute(dTypeX.GetQueuedCmdCurrentIndex, 

dobot)) 

        attributes["GetPose"].append(_execute(dTypeX.GetPose, dobot)) 

        attributes["GetAlarmsStateX"].append(_execute(dTypeX.GetAlarmsStateX, dobot)) 

        attributes["GetHOMEParams"].append(_execute(dTypeX.GetHOMEParams, dobot)) 

        attributes["GetEndEffectorParams"].append(_execute(dTypeX.GetEndEffectorParams, dobot)) 

        attributes["GetEndEffectorLaser"].append(_execute(dTypeX.GetEndEffectorLaser, dobot)) 

        attributes["GetEndEffectorSuctionCup"].append(_execute(dTypeX.GetEndEffectorSuctionCup, dobot)) 

        attributes["GetEndEffectorGripper"].append(_execute(dTypeX.GetEndEffectorGripper, dobot)) 

        attributes["GetJOGJointParams"].append(_execute(dTypeX.GetJOGJointParams, dobot)) 

        attributes["GetJOGCoordinateParams"].append(_execute(dTypeX.GetJOGCoordinateParams, dobot)) 

        attributes["GetJOGCommonParams"].append(_execute(dTypeX.GetJOGCommonParams, dobot)) 

        attributes["GetPTPJointParams"].append(_execute(dTypeX.GetPTPJointParams, dobot)) 

        attributes["GetPTPCoordinateParams"].append(_execute(dTypeX.GetPTPCoordinateParams, dobot)) 

        attributes["GetPTPCommonParams"].append(_execute(dTypeX.GetPTPCommonParams, dobot)) 

        attributes["GetPTPJumpParams"].append(_execute(dTypeX.GetPTPJumpParams, dobot)) 

        attributes["GetCPParams"].append(_execute(dTypeX.GetCPParams, dobot)) 

        attributes["GetARCParams"].append(_execute(dTypeX.GetARCParams, dobot)) 

        attributes["GetAngleSensorStaticError"].append(_execute(dTypeX.GetAngleSensorStaticError, dobot)) 

        attributes["GetAngleSensorCoef"].append(_execute(dTypeX.GetAngleSensorCoef, dobot)) 

        attributes["GetDeviceWithL"].append(_execute(dTypeX.GetDeviceWithL, dobot)) 

        attributes["GetPoseL"].append(_execute(dTypeX.GetPoseL, dobot)) 

        attributes["GetJOGLParams"].append(_execute(dTypeX.GetJOGLParams, dobot)) 

        attributes["GetPTPLParams"].append(_execute(dTypeX.GetPTPLParams, dobot)) 

        attributes["GetWIFIConfigMode"].append(_execute(dTypeX.GetWIFIConfigMode, dobot)) 

        attributes["GetWIFIConnectStatus"].append(_execute(dTypeX.GetWIFIConnectStatus, dobot)) 

 



 

C-4 

 

    print("\nResults for " + str(iterations) + " iterations (attribute_name, avg, min, max (in milliseconds))") 

    for attr in attributes: 

        max = 0 

        min = sys.maxsize 

        sum = 0 

        for i in range(iterations): 

            ms = attributes[attr][i] 

            sum += ms 

            if ms > max: 

                max = ms 

            if ms < min: 

                min = ms 

 

        print(str(attr) + "," + str(round(sum/iterations)) + "," + str(round(min)) + "," + str(round(max))) 

 

    return True 

 

''' 

Description: Measure the fetching rate in which one can receive standardized messages through the serial port 

Parameters: 

    port: jevois serial port 

    n: number of iterations 

''' 

def p_Jevois_FetchingRate(port, n): 

    try: 

        ser = serial.Serial(port, 115200, timeout=0) 

        line = ser.readline().rstrip() 

        tok = line.split() 

        print("Jevois Camera at port " + port + " connected succesfully!") 

    except Exception as e: 

        print("Couldn't connect with Jevois Camera device at port " + port + " (" + str(e) + ")") 

        return False 

 

    if n < 1: 

        print("Iterations number must be a positive integer.") 

        return False 

 



 

C-5 

 

    iterations = n 

 

    max = 0 

    min = sys.maxsize 

    sum = 0 

    i = 0 

    while i < iterations: 

        start = time.time() 

        line = ser.readline().rstrip().decode() 

        stop = time.time() 

        if len(line) > 0: 

            print(line) 

            ms = (stop - start) * 1000 

            sum += ms 

            if ms > max: 

                max = ms 

            if ms < min: 

                min = ms 

            i += 1 

 

    print("\nResults for " + str(iterations) + " iterations (attribute_name, avg, min, max (in milliseconds))") 

    print(str(round(sum/iterations)) + "," + str(round(min)) + "," + str(round(max))) 

    return True 

 

''' 

Description: Measure the switching overhead of connecting to multiple dobot devices 

through a 2 dobot connection paradigm using the default dTypeX.ConnectDobot() call 

Parameters: 

    port1: dobot device port (e.g. "COM4" / "192.168.43.4") 

    port2: dobot device port (e.g. "COM4" / "192.168.43.4") 

''' 

def p_Dobot_SwitchOverhead(port1, port2): 

    # Run for 1 minute 

    stop = time.time() + 60 

    sum = 0 

    count = 0 

    api = dTypeX.load() 



 

C-6 

 

    while (time.time() < stop): 

        state = dTypeX.ConnectDobot(api, port1, 115200)[0] 

        if state != dTypeX.DobotConnect.DobotConnect_NoError: 

            print("Can't connect to the dobot. Aborting test.") 

            return False 

        start = time.time() 

        dTypeX.DisconnectDobot(api) 

        state = dTypeX.ConnectDobot(api, port2, 115200)[0] 

        if state != dTypeX.DobotConnect.DobotConnect_NoError: 

            print("Can't connect to the dobot. Aborting test.") 

            return False 

        end = time.time() 

        sum += end - start 

        count += 1 

        print(f"Switching overhead is {end - start} \n") 

 

    print("Recorded %3d switches\n"% (count)) 

    print("Total overhead: %5.2f seconds\n"% (sum)) 

    print("Average Switch Overhead: %5.2f seconds\n"% (sum / count)) 

    print("Percentage of time spend on overhead %5.2f%%\n"% (sum * 100 / 60)) 

    return True 

 

### Functional Tests ### 

''' 

Description: Test connecting to a JeVois camera device 

Parameters: 

    port: jevois device port (e.g. "COM3") 

''' 

def f_Jevois_Connectivity(port): 

    try: 

        ser = serial.Serial(port, 115200, timeout=0.25) 

        print("Jevois Camera at port " + port + " connected succesfully!") 

    except Exception as e: 

        print("Couldn't connect with Jevois Camera device at port " + port + " (" + str(e) + ")") 

        return False 

 

    stop = time.time() + 30 



 

C-7 

 

    while (time.time() < stop): 

        line = ser.readline().rstrip().decode() 

        tok = line.split() 

        # Abort fetching if timeout or malformed line 

        if len(tok) < 1: print("No data found"); continue 

        if tok[0][0] != 'N': print("Unsupported serstyle"); continue 

        if tok[0][1] == '1' and len(tok) != 4: continue 

        elif tok[0][1] == '2' and len(tok) != 6: continue 

        elif tok[0][1] == '3' and len(tok) != 8: continue 

        print(line) 

 

    return True 

 

''' 

Description: Test the non-standard dTypeX.GetAlarmsStateX() function to fetch alarms 

created as an alternative to the standard dTypeX.GetAlarmsState() 

Parameters: 

    port: dobot device port (e.g. "COM4" / "192.168.43.4") 

''' 

def f_Dobot_Alarms(port): 

    dobot, state = dTypeX.ConnectDobotX(port) 

 

    if state[0] != dTypeX.DobotConnect.DobotConnect_NoError: 

        return False 

 

    print(port + "\'s name: " + str(dTypeX.GetDeviceName(dobot)[0])) 

 

    stop = time.time() + 60 

    while (time.time() < stop): 

        print(time.time + "Active alarms:") 

        for a in dTypeX.GetAlarmsStateX(dobot): 

            print(a) 

        time.sleep(0.2) 

 

    dTypeX.DisconnectAll() 

    return True 

 



 

C-8 

 

''' 

Description: Test the non-standard dTypeX.ConnectDobotX() function to connect to multiple 

dobot devices in parallel (and diminish switching overhead), created as 

an alternative to the standard dTypeX.ConnectDobot() 

Parameters: 

    portList: a list of strings indicating the multiple ports of dobot devices 

    (e.g. ["192.168.43.4","192.168.43.5"]) 

''' 

def f_Dobot_ParallelConnection(portList): 

    dobotList = [] 

    for port in portList: 

        dobot, state = dTypeX.ConnectDobotX(port) 

 

        if state[0] == dTypeX.DobotConnect.DobotConnect_NoError: 

            dobotList.append(dobot) 

        else: 

            return False 

 

    print("\nConnected Dobots:") 

    for dobot in dobotList: 

        print("Device Name: " + str(dTypeX.GetDeviceName(dobot)[0])) 

        print("Device Serial No: " + str(dTypeX.GetDeviceSN(dobot)[0])) 

        print("Device Version: " + ".".join(list(map(str, dTypeX.GetDeviceVersion(dobot))))) 

        print() 

 

    dTypeX.DisconnectAll() 

    return True 

 

### Enable/Disable Tests ### 

#p_Dobot_FetchingOverhead("192.168.43.4", 30) 

#p_Jevois_FetchingRate("COM4", 30) 

#p_Dobot_SwitchOverhead("192.168.43.4","192.168.43.5") 

#f_Jevois_Connectivity("COM3") 

#f_Dobot_Alarms("192.168.43.4") 

#f_Dobot_ParallelConnection(["192.168.43.4","192.168.43.5"])



 

E-1 

 

Appendix E 

Example of device discovery/configuration file used by the monitoring agent (devices.conf) 

 

[Dobot:192.168.43.4] 

    Timeout = 500 

    DeviceSN: on 

    DeviceName: on 

    DeviceVersion: on 

    DeviceTime: off 

    QueueIndex: off 

    PoseX: on 

    PoseY: on 

    PoseZ: on 

    PoseR: on 

    AngleBase: on 

    AngleRearArm: on 

    AngleForearm: on 

    AngleEndEffector: on 

    AlarmsState: on 

    HomeX: off 

    HomeY: off 

    HomeZ: off 

    HomeR: off 

    EndEffectorX: off 

    EndEffectorY: off 

    EndEffectorZ: off 

    LaserStatus: off 

    SuctionCupStatus: off 

    GripperStatus: off 

 

    # JOG mode related options 

    JogBaseVelocity: off 

    JogRearArmVelocity: off 

    JogForearmVelocity: off 

    JogEndEffectorVelocity: off 



 

E-2 

 

    JogBaseAcceleration: off 

    JogRearArmAcceleration: off 

    JogForearmAcceleration: off 

    JogEndEffectorAcceleration: off 

    JogAxisXVelocity: off 

    JogAxisYVelocity: off 

    JogAxisZVelocity: off 

    JogAxisRVelocity: off 

    JogAxisXAcceleration: off 

    JogAxisYAcceleration: off 

    JogAxisZAcceleration: off 

    JogAxisRAcceleration: off 

    JogVelocityRatio: off 

    JogAccelerationRatio: off 

 

    # PTP mode related options 

    PtpBaseVelocity: off 

    PtpRearArmVelocity: off 

    PtpForearmVelocity: off 

    PtpEndEffectorVelocity: off 

    PtpBaseAcceleration: off 

    PtpRearArmAcceleration: off 

    PtpForearmAcceleration: off 

    PtpEndEffectorAcceleration: off 

    PtpAxisXYZVelocity: off 

    PtpAxisRVelocity: off 

    PtpAxisXYZAcceleration: off 

    PtpAxisRAcceleration: off 

    PtpVelocityRatio: off 

    PtpAccelerationRatio: off 

    LiftingHeight: off 

    HeightLimit: off 

 

    # CP mode related options 

    CpVelocity: off 

    CpAcceleration: off 

 



 

E-3 

 

    # ARC mode related options 

    ArcXYZVelocity: off 

    ArcRVelocity: off 

    ArcXYZAcceleration: off 

    ArcRAcceleration: off 

 

    # Angle sensor options 

    AngleStaticErrRear: off 

    AngleStaticErrFront: off 

    AngleCoefRear: off 

    AngleCoefFront: off 

 

    # Sliding rail options 

    SlidingRailStatus: off 

    SlidingRailPose: off 

    SlidingRailJogVelocity: off 

    SlidingRailJogAcceleration: off 

    SlidingRailPtpVelocity: off 

    SlidingRailPtpAcceleration: off 

 

    # Wifi related options 

    WifiModuleStatus: off 

    WifiConnectionStatus: off 

    WifiSSID: off 

    WifiPassword: off 

    WifiIPAddress: off 

    WifiNetmask: off 

    WifiGateway: off 

    WifiDNS: off 

 

[Dobot:192.168.43.5] 

    DeviceSN: on 

    DeviceName: on 

    DeviceVersion: on 

    DeviceTime: off 

    QueueIndex: off 

    PoseX: on 



 

E-4 

 

    PoseY: on 

    PoseZ: on 

    PoseR: on 

    AngleBase: on 

    AngleRearArm: on 

    AngleForearm: on 

    AngleEndEffector: on 

    AlarmsState: on 

    HomeX: off 

    HomeY: off 

    HomeZ: off 

    HomeR: off 

    EndEffectorX: off 

    EndEffectorY: off 

    EndEffectorZ: off 

    LaserStatus: off 

    SuctionCupStatus: off 

    GripperStatus: off 

 

[Jevois:COM3] 

    objects = example pen 

    ObjectIdentified: on 

    ObjectLocation: on 

    ObjectSize: off 


