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Abstract 

 

Curiosity is key in evolution; may that be as a species or personal growth. But how good would 

curiosity be if one couldn’t  answer any of his questions? Us, humans generally love knowing 

the answers to everything, and we continuously develop tools that help us answer our questions 

and finding the best solutions to our problems.  

 

Dynamic Programming is an Algorithmic Approach that builds optimal solutions to problems 

by dynamically dividing a problem into smaller parts, and then combining these smaller so 

called “sub-problems” to find the optimal solution for bigger and bigger parts. 

 

In this study, we investigate in depth the two basic implementation approaches of dynamic 

programming: bottom up and top down. The first is iterative and the second is recursive, which 

uses memoisation so that no subproblem is computed more than once. By implementing 

dynamic programming solutions of basic problems using both approaches, we aim in analysing 

their performance with respect to execution time, resource usage and ease of use (development 

time). The goal is to classify or rather, group dynamic programming solutions based on their 

performance and if possible, to find a trend or even discover a rule of thumb, that may be able 

to provide an insight, as to which implementation approach is more efficient for each problem. 
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1.4 Methodology 9 

1.5 Document Structure 11 

 

 

 

1.1 What is Dynamic Programming? 

 

Dynamic Programming [1] is an algorithmic approach that helps solve problems with an 

optimal description quickly and efficiently. For an algorithm to be considered as a Dynamic 

Programming algorithm, it must fulfil two requirements. Firstly, it must have an explicit 

recursive description and / or it must be described by an optimal function. Additionally, it must 

store the value of each of its calculated sub-problems and use this information to solve others 

of its sub-problems. 

 

A sub-problem is a problem described by the same function as the original problem that is (or 

may have) derived from the original problem. This is the essence of dynamic programming. 

When the problem is presented, smaller sub-problems can be derived from its optimal function, 

these sub-problems can also be divided in the same manner. By storing the values of each and 

every one of these sub-problems we can ensure that each sub-problem will be calculated once 

at most, preventing excess calculations.  

 

This technique is very useful when dealing with recursive functions, however it can also be 

used to calculate optimal solutions quickly in an iterative manner. This is where the two 

implementations make their entrance. 
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1.2 Approaches to Dynamic Programming 

 

The two implementation approaches of Dynamic Programming are the Iterative (also known 

as Bottom-Up) and the Recursive (also known as Top-down) approaches.  

 

When dealing with recursive descriptions, we can use then to divide a problem into smaller 

sub-problems, with each sub-problem being an optimal solution to a part of the original 

problem. Using this knowledge, we can compute the value of each required sub-problem only 

once and find the solution to the original problem without unneeded computations. This 

approach is generally thought to have the worst performance of the two because of its recursive 

nature [4]. 

 

The other approach involves an iterative method. We start from smaller sub-problems that can 

easily be computed to find the optimal solution for bigger sub-problems. We continue this 

process for all possible sub-problems, and with every iteration we move into bigger and more 

complex sub-problems. This continues until all of the sub-problems have been calculated, and 

thus the final answer is found. 

 

In both cases we use a table to store the states of any computed sub-problems and we use this 

table to retrieve any information that has already been calculated thus speeding up the process.  

 

The iterative technique is also known as tabulation, as we ‘build’ or ‘fill’ an array / a table in 

a bottom – up manner. This is because we start from small, easy problems and we build into 

bigger ones. The recursive technique is also known as memoization (or memoisation). This 

technique is what speeds up the recursion since it prevents the program from calculating a sub-

problem more than once from different recursion branches (by storing already computed 

subproblems in a table).  

 

Implementing a recursive problem is generally a fast process. On the other hand, the recursive 

approach is generally thought of as the slower one regarding execution times and memory 

usage, since its recursive nature slows it down and makes use of multiple stacks. However, is 

this always the case? 
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We failed to find in the literature any experimental study demonstrating that the iterative 

approach is more efficient in practice.   

 

1.3 Objective of the study 

 

The objective of this work is to study a variety of dynamic algorithms implemented with both 

approaches in order to find possible patterns, reach some conclusions and classify these 

algorithms in terms of their performance, both regarding execution time, memory usage and 

general efficiency. What affects an implementations performance is its input complexity, and 

the form of its input data. Another factor is the complexity of the solution. This study attempts 

to provide evidence that in practice, depending on the problem, the iterative approach is not 

always the best option. 

 

1.4 Methodology 

 

To ensure we had a better understanding of Dynamic Programming we made sure to study old 

courses to remind ourselves about the techniques used in Dynamic Programming [5], as well 

as the corresponding chapters of well-known algorithmic books[1][2]. We experimented with 

some problems to make sure we had a strong grip of the concept. Then we began exploring 

new data structures, and ways that could increase the efficiency of either implementation. We 

later investigated different resource measuring tools to help us record the usage of resources 

like CPU utilization [9], memory usage [7] and execution time [10]. We began testing on data 

collection by developing scripts that would automate the process. After this we were ready to 

start implementing problems. We will view more details about the tools we use and the process 

behind the data collection in Chapter 2. After this, we were ready to start implementing 

dynamic programming solutions of carefully selected problems.   

 

We tried to cover a variety of problems, based on the input structure; we investigated problems 

concerning sequences, problems on tables (arrays), graphs and trees. In particular we 

considered the following problems: 
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Sequences: 

Most Common Sub Sequence [1][5] - Finding the longest common sequence contained in 

two other sequences. 

Longest increasing Sub Sequence [2] – Finding the longest increasing sub sequence of a list 

/ sequence of numbers. We will solve it in two ways. For the first solution we use a 1-

Dimension array and a 2-Dimension array for the other solution. 

 

Tables:  

Chain Matrix Multiplication [1][2] – The problem of finding the best order in which matrix 

multiplications should be done. Matrix multiplications have a cost. We aim to find the order in 

which the cost of multiplying a set of matrices is the smallest possible.  

0-1 Knapsack [2][3] - A standard problem of Dynamic Programming. In a few words, it is the 

problem of finding the best combination of items to maximize the total value of a sack that can 

contain a certain weight. 

 

Graphs: 

Dijkstra’s Shortest Path [2] - It is a very useful problem on Graphs, which finds the shortest 

possible path between two given nodes. 

 

Trees:  

Independent Set [2] – A problem which requires a set of nodes and returns its biggest 

independent set.  

K-Trees – The problem of finding the amount of sub-tress of size K, in a given Tree.  

Tree Diameter – We find the diameter of the tree which is the maximum distance between 

any two nodes in a tree. 

 

For each problem we provide its definition, its recursive expression, the pseudocode of each 

approach (Bottom-Up and Top-Down) and the experimental evaluation of their 

implementation. 
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1.5 Document Structure 

 

In Chapter 2 we discuss the background research that lead us to record data usage as we do. 

We also discuss the tools we use, how we use them and what their use may imply regarding 

the data we collect. 

In Chapter 3 we investigate the Most Common Sub Sequence problem. In Chapter 4 we 

continue with sequences and we work on the Longest Increasing Sub Sequence problem in 1D 

and 2D. In Chapter 5 we move to problems in tables by exploring the Chain Matrix 

Multiplication problem. In Chapter 6 we investigate the 0-1 Knapsack problem. In Chapter 

7 we investigate our problem on graphs which is Dijkstra’s shortest path. Our final category of 

problems starts in Chapter 8 with the Independent Sets problem. Later, in Chapter 9 we 

investigate the K-Trees problem and finally in Chapter 10 we explore the Tree diameter 

problem. 

In Chapter 11 we give our last thoughts and last conclusions after giving a small recap of all 

previous chapters. In this final chapter we also expand on the problems we have encountered 

during the development of this project and some possible future research directions based on 

our experience. 
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Chapter 2  

 

Background 

 

 

2.1 Preliminary  12 

2.2 Experimenting with other Data Structures 12 

2.3 Measuring Execution Time 13 

2.4 Memory Measurement 13 

2.5 System Used 14 

2.6 CPU Utilization Measurements 15 

 

 

2.1 Preliminary Study 

 

We can have an introduction to Dynamic Programming from the courses of University of 

Cyprus that study algorithms [5]. To understand the behaviour of each implementation we 

followed execution examples as well as pseudo code. We experimented with our own 

implementations and tried to follow through these implementations to better understand how 

each approach works. 

 

2.2 Experimenting with other Data Structures 

 

Before beginning with problem implementations and data collection we have experimented 

with different types of data structures. We questioned whether there was another data structure 

that allowed for better efficiency than the 2D array. We used lists, hash maps and even trees. 

But we realised that the selection complexity of the array 𝑂(1) was its biggest strength, 

something that could not be rivalled by any other structure. We also noticed that the pointer 

used to implement a linked list or any other structure that uses a “node” like a tree, made it 

very inefficient in storing data. To be more precise, lets calculate the required amount of 

memory in Bytes to store a single number (Integer). In a 64Bit computer, an integer most likely 

uses 4 Bytes to be stored. However, any pointer uses 8 (thus, 64Bits). Therefore, to store a 
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single integer in a data structure with a “node” we would need 8+4 Bytes = 12 Bytes, which is 

3 times more memory. Concluding to the following: For any “node” based data structure to be 

more efficient than an array, more than 
2

3
 of the array must be unused. Therefore, the number 

of unique branches a recursion must make should be less than 
1

3
 of N (if we assume than an 

iterative approach uses an NxN array). 

 

2.3 Measuring Execution Time 

 

After exploring other data structures and concluding to the table as the best option, we began 

researching ways to measure memory usage and execution time. We realised that some 

Dynamic Programming problems require some pre-processing, others require some data 

conversions. We concluded that we could not use any external process to capture the execution 

time because by doing that we would also measure the input generation or input reading as part 

of the execution. However, if any type of data conversion is required for either of the 

approaches to work, that would be measured since it is part of the calculation. The execution 

time between two identical runs may not be as consistent, to remove the effect of outliers in 

our data we will be taking the data of 12 runs for each execution. We will then remove the 

lowest and highest values before taking the average of the 10 remaining runs. For every 

measurement we generate the input randomly to capture the average of realistic scenarios. 

 

2.4 Memory Measurement 

 

To measure the memory usage, we seeked the help of external tools. We used the Valgrind 

memory checking tool [7] available for Linux distributions. We realised that this tool allowed 

for a thorough inspection of all memory allocation calls by the system, giving a very precise 

answer as to how much Heap a program uses, as well as the Extra Heap allocated. This tool 

however does not measure the Stack usage of a program. To measure the Stack, we use a 

profiler of the Valgrind tool called Massif [8]. This tool however has a downfall which was 

not discovered at first. To closely inspect the stack usage of a program each allocation or call 

to the stack that occurs is measured, therefore each call requires even more memory, this means 

that recursive programs that usually require plenty of stack could not be measured since the 

demand of the stack was bigger than the available system memory. 



14 

 

To get through this problem we began studying other memory measuring tools and methods. 

We realised that the system monitoring tool was our best bet. To capture the memory usage of 

a program, we start the program in a new process to capture its Process ID (PID). Then we 

inspect the memory usage of that process using the “top” tool [9] available for Linux. We 

capture the memory usage % in intervals of 0.1 seconds, and store it in a temporary file, later 

finding the maximum amount of memory usage from that file. If possible we use both the 

Valgrind and Top tools for the same problem comparing the results, and we found out that both 

techniques yielded very similar results. Because the memory measurements are much more 

consistent and run slower than time measurements, we will be taking the average of 3 runs for 

every memory measurement. 

 

It should be noted that the Valgrind tool [7] retrieves the memory usage of a program in 

snapshots. Therefore, in rare cases the memory usage may be different, this is why the memory 

usage was recorded as an average of 3 runs. On the contrary, the stack usage is inspected more 

carefully, this is also why it requires much more memory to be measured and is also much 

slower. 

 

2.5 System Used 

 

The System we used to run the implementations and took our measurements operated over  an 

AMD Ryzen 7 processor, namely the R7 4700U mobile APU. The total system memory was 

16GB of ram. 

 

The Operating System used during the development was Ubuntu 20.04LTS. All programs are 

developed in C++ (C std 11) in visual studio code. We believe that C++ is a very suitable 

language since it enables precise memory management and avoids unnecessary performance 

overheads; hence it allows for a more precise comparison between the two approaches, both 

regarding memory usage and execution time. To make sure we tested our implementations to 

the limits allowed by our system, we chose input sizes such as the memory usage was 

eventually maxed out. 
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2.6 CPU Utilization Measurements 

 

The CPU utilization was closely monitored via Ubuntu built in tools. The Ubuntu system 

monitor tool provided a general resource usage image while the “top” program and the resource 

monitoring tool was used to monitor CPU utilization specifically. We found that our 

implementations did not use any sort of multithreading optimizations and the CPU utilization 

ranged at the maximum of 12% (100% single core utilization, 12% of 8 cores). Therefore, no 

multithreading advantages were given to any of our implementations.  
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Most Common Sub Sequence 

 

 

3.1 Problem Description and Dynamic Programming Solution 16 

3.2 Experimental Comparison 19 

 

 

3.1 Problem Description and Dynamic Programming Solution 

 

The Most Common Sub-Sequence problem [1] regards two letter sequences A and B and seeks 

the biggest common sub-sequence of letters found in both A and B (not necessarily 

consecutive). A variation of this problem is used by biologists with strands of DNA to better 

understand it. All letters of the MCSS must be included in both Sequences. 

.  

For example, the MCSS of the sequence “APPLES” and “PINEAPPLE” has a length of 5. This 

example is shown in Table 1 and Table 2. 

 

Definitions 

 

• Sequence A, B 

• Alphabet size S 

• A(i) is the i-th character of A 

• B(j) is the j-th character of B 

• length(A) = N, length(B) = M 

• Array of (N+1)x(M+1) 

 

 

 

 

 



17 

 

Sub-Problem 

 

Let 𝑃(𝑖, 𝑗) be the optimal solution for the first i-th letters of sequence A and j-th letters of 

sequence B. Since 𝑃(𝐼, 𝑗) is the optimal solution we can assume that: 

• if 𝐴(𝑖) =  𝐵(𝑗) then 𝑃(𝑖 + 1, 𝑗 + 1) =  𝑃(𝐼, 𝑗) + 1  

• else  𝑃(𝐼, 𝑗)  =  𝑚𝑎𝑥 ( 𝑃(𝐼, 𝑗 − 1), 𝑃(𝑖 − 1, 𝑗 ) 

 

Therefore. we derive the following recursive equation: 

• 𝑃(𝑖, −1) =   𝑃(−1, 𝑗) =  0  (terminal case) 

• 𝑃(𝑖, 𝑗) = { 

𝒊𝒇 (𝐴(𝑖) =  𝐵(𝑖)) 𝒕𝒉𝒆𝒏 𝑃(𝑖 − 1, 𝑗 − 1) + 1, 

𝒆𝒍𝒔𝒆 𝑚𝑎𝑥( 𝑃(𝑖 − 1, 𝑗) , 𝑃(𝑖 − 1, 𝑗) , 𝑃(𝑖 − 1, 𝑗 − 1))  

} 

 

Bottom-Up Approach (Iterative) 

 

We iterate through array elements 1-by-1 and calculate the value of the MCSS for every point 

of the sequences. An extra column and row are used to represent the terminal case. This 

approach calculates every possible combination of i and j (N+1 x M+1 combinations). 

 

//int[][] array = {0} 

int iterate(int[][] array, string A, string B){ 
 for every i index of A: //(1..N)  
  for every j index of B: //(1..M) 

if (A(i) == B(i)): 
array[i][j] = array[i-1][j-1] +1; 

else if (array[i][j-1] <= array[i-1][j]): 
array[i][j] = array[i-1][j]; 

else: 
array[i][j] = array[i][j-1]; 

return array[N-1][M-1]; 
} 
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Example  

 

Following (Table 1 and Table 2) is the result of the iterative implementation for the given 

example. 

Sequences  A P P L E S 

 0 0 0 0 0 0 0 

P 0 0 1 1 1 1 1 

I 0 0 1 1 1 1 1 

N 0 0 1 1 1 1 1 

E 0 0 1 1 1 2 2 

A 0 1 1 1 1 2 2 

P 0 1 2 2 2 2 2 

P 0 1 2 3 3 3 3 

L 0 1 2 3 4 4 4 

E 0 1 2 3 4 5 5 

Table 1 presents the solution of the Bottom-Up approach for the given example of the Most Common Sub Sequence problem 

 

Top-Down Approach (Recursive) 

 

Starting from the end of each sequence try to reverse engineer the MCSS by creating solution 

paths. Every time the corresponding letters of sequence A or B are matching, 1 possible solution 

path is created but when the letters differ 2 possible solution paths are created. There is an extra 

column and row to represent the terminal case. The array is initialized with -1 for the sake of 

Memoization. Recursion stops at the terminal cases, or when a value that is not ‘-1’ is reached. 

Which means the sub-problem has already been solved by another recursion instance. 
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//int[][] array = {-1} 
//recurse(array, A, B, N, M) 
int recurse(int** array, string A, string B, int i, int j){  

if(i<0 || j<0): 
return 0; 

 
if(array[i+1][j+1] >= 0): 

return array[i+1][j+1]; 
 

if(A(i) == B(j)): 
array[a+1][b+1] = recurse(array, A, B, i-1, j-1) +1; 

else: 
array[a+1][b+1] = max(recurse(array, A, B, i, j-1),recurse(array, A, B, 

i-1, j)); 
 

return array[i+1][j+1]; 
} 

 

Example 

 

Following (Table 2) is the result of the recursive implementation for the given example 

Sequence  A P P L E S 

 -1 -1 -1 -1 -1 -1 -1 

P -1 0 1 1 1 1 1 

I -1 0 1 1 1 1 1 

N -1 0 1 1 1 1 1 

E -1 0 1 1 1 2 2 

A -1 1 1 1 1 2 2 

P -1 -1 2 2 2 2 2 

P -1 -1 -1 3 3 3 3 

L -1 -1 -1 -1 4 4 4 

E -1 -1 -1 -1 -1 5 5 

Table 2 presents the solution of the Top-Down approach for the example given fot the Most Common Sub Sequence problem 

 

3.2 Experimental Comparison 

Scenarios and Preparation 

 

To evaluate the performance of the two implementations we will measure their execution time, 

and their memory usage with sequences of different lengths. The sequences will be randomly 

generated via a random sequence generator using the alphabet size variable S. A sequence can 

have up to S different characters. 

 



20 

 

We measure all input sizes with the following alphabet sizes: 1, 2, 6, 11, 16, 21, 26. We want 

to observe whether the alphabet size has an impact on the performance of either 

implementation, and how each algorithm responds as the problem size (sequence length 

increases). This problem is a symmetrical problem. Therefore, by executing it with inputs A 

and B we can say we also executed inputs B and A. We could also experiment with sequences 

of different lengths. However, we test sequences of similar lengths (N=M). 

 

We realise that this problem has a rather slow execution (a single run may take hours), 

therefore, to counter this we also consider smaller problem sizes that do not push the system to 

its limits. 

 

Results and Discussion 

 

Figure 1 depicts the effect of the input size to the execution time of both implementations. In 

this example we tested with an alphabet size of 26 (A-Z). Figure 2 presents the impact of the 

input size in total memory usage and % memory usage. These results were taken for the same 

alphabet size. 

 

 

Figure 1 depicts the average execution time (in Seconds) in regard to problem size of the MCSS problem with  alphabet size 

of 26 for both implementations 
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Figure 2 depicts the average memory usage in Megabytes and % Total memory of the MCSS problem with alphabet size of 

26 for both implementations 

 

As one can easily observe, our results for the Most Common Sub Sequence Problem (S=26) 

show that the execution time for the recursive approach yields much slower results while 

consuming more memory (Figure 1 and Figure 2). As we mentioned earlier, running the 

implementation for bigger problem sizes increased the execution time exponentially as our 

results show, therefore we can’t test for bigger input problems.  

 

We will continue by investigating the effect of the Alphabet Size (S) on the performance of 

both implementations. Figure 3 shows the effect of the alphabet size S, in the performance of 

the iterative approach. While Figure 4 shows this effect for the recursive approach. 
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Figure 3 depicts the average execution time (in seconds) of the MCSS problem in regard to problem size for the Iterative 

approach for different Alphabet Sizes 

 

Figure 4 depicts the average execution time (in Seconds) of the MCSS problem in regard to problem size for the Recursive 

approach for different Alphabet Sizes 

 

These results show that the alphabet size of the sequences affects the performance of the 

recursive approach while the discrepancies shown in the results of the iterative approach are 

within margin of error. We can conclude that the recursive approach benefits from small 

alphabet sizes. This is most likely because of the reduction of the branching factor of the 

recursions that occur when the alphabet size is lowered. By lowering the alphabet size we 

increase the similarity of the two sequences, therefore reducing the recursive calls. (identical 

characters result in 1 recursion call while differing characters result in 2).  
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Figure 5 and Figure 6 present the effect of the alphabet size in memory usage for the iterative 

and recursive implementation approaches respectively. 

 

 
Figure 5 depicts the average memory usage (in Megabytes) of the MCSS problem in regard to Problem Size for the Iterative 

approach for different Alphabet Sizes 

 

 
Figure 6 depicts the average memory usage (in Megabytes) of the MCSS problem in regard to Problem Size for the 

Recursive approach for different Alphabet Sizes 

 

From our plots we observe that while the alphabet size has no effect in the memory usage of 

the Iterative approach, it greatly affects the memory usage of the Recursive approach. Bigger 

alphabet sizes increase the memory usage, lowering the implementations performance even 

further. This also supports our theory that the branching factor increases with the alphabet 

size, making the implementation slower and more memory demanding.  
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4.1 Problem Description and Dynamic Programming Solution 

 

The problem of the Longest Increasing Sub-Sequence [1][2] is a problem that seeks the largest 

ascending (increasing) sub sequence from a given sequence of numbers. An increasing sub-

sequence is a sequence where each of its values is followed by a greater value and is preceded 

by a smaller value. This problem is useful in the study of algorithms, mathematics and random 

matrix theory. This problem can be solved using a 2D array, however optimizations make it 

possible to solve it in a 1D array. We will examine both solutions. 

 

Let’s view an example. Given the sequence (3,10,2,1,20) the longest increasing subsequence 

is (3,10,20) with a length of 3.  

 

4.2 2D Solution 

 

Definitions 

 

• Sequence S of length N 

• Cache array C of size N 

• Maximum Value M 
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Sub-Problem 

 

Let 𝑃(𝑖, 𝑗) be the optimal solution for the i-th letter moving to the j-th letter, (letter j  is the next 

number of the optimal sequence). If the value of i is bigger than the value of j then we can 

safely assume that P(i,j) is not part of the optimal subsequence, therefore we move to the next 

possibility P(i,j+1). Since P(i,j) is the optimal solution we can assume that: 

• if  S(𝑖) ≥ 𝑆(𝑗) then 𝑃(𝑖, 𝑗) =  𝑃(𝑖, 𝑗 + 1)  (𝑖 < 𝑗) 

• otherwise 𝑃(𝑖, 𝑗) = 𝑚𝑎𝑥 ( 𝑃(𝑖, 𝑗 + 1)  , 𝑃(𝑗, 𝑗 + 1)  )   

 

Bottom-Up Approach (Iterative) 

 

//int array[] = {0] 
int iterate(int[][] array, int[] S){ 

//cache contains the previous best of each index 
int cache[N] = {0}; 
for every index i of S: //(0..N-1) 

for every j from 0 to i+1: //(0..i+1)  
if(S[i] < S[j]): 

array[i][j] = cache[i]+1; 
if(cache[j]<array[i][j]) cache[j]=array[i][j]; 

 
//find the value of the LISS in the cache 
int retVal = 0; 
for(int i=0; i<N; i++): 

retVal = max(retVal, cache[i]); 
return retVal+1;  

 

Top-Down Approach (Recursive) 

 

//int array[] = {-1]  
int recurse(int[][] array, int[] S, int i, int j){ 

if(curr >= N) return 0; 
//memoization 
if(array[i][j] >= 0) return array[i][j]; 
//value of j is bigger, so we skip 
if(S[i] >= S[j]):              

array[i][j] = return recurse(array, S, i, j+1); 
else: 

array[i][j] = max(recurse(array, S, i, j+1), 1 + recurse(array, S, j, 
j+1)); 
 

return array[i][j]; 
}  
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4.2.1 Experimental Comparison 

Scenarios and Preparation 

 

The problem requires a single number sequence. To test the performance of the approaches 

with different inputs we will first generate random number sequences. We use the M variable 

to determine the maximum value of the sequence, values start from 0 and the biggest possible 

number is equal to M-1. During our testing we found out that changing the variable M does not 

affect the performance of either approach. 

 

Results and Discussion 

 

Figure 7 shows the impact of the input size of the problem in execution time (seconds). While 

Figure 8 depicts the impact of the input size in memory usage (Gigabytes) and % total memory 

usage. To acquire these results, we used M of 1000. 

 

 

Figure 7 depicts the average execution time (in Seconds) of the LISS 2D problem for both implementations 
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Figure 8 depicts the average memory usage in Gigabytes and % Total memory of the LISS 2D problem for both 

implementations 

 

The extra consumption of the stack by the recursive implementation is minimal compared to 

the total heap consumption. The small discrepancies of the execution time of the two 

implementations are within error margin. Therefore, we can conclude that both approaches 

behave in a similar manner, and both measurements (time and memory) seem to perform 

equally well. 
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4.3 1D Solution 

 

This problem is a continuation of the LISS problem solved using a 2D array, however 

optimized to be solved using a 1D array. This means that the problem can be solved for much 

greater sizes while consuming much less memory. In more detail, the memory usage is reduced 

by an exponential factor of 1 (reduction of dimensionality by  1). 

 

Bottom-Up Approach (Iterative) 

 

//int[] array = {1} 
int iterate(int[] S, int[] array) 

for every index i in S: //0..N 
for every index j from 0 to i: //0..i 

if ( S[i] > S[j] && array[i] < array[j] + 1)   
array[i] = array[j] + 1;                          
 

int max =INT32_MIN, index=-1; 
 for every number in S 

if(array[i] > max): 
max = array[i]; 
index = S[i]; 

                 
return array[index];        

 

Top-Down Approach (Recursive) 

 

//int[] array = {-1} 
int recurse(int[] S, int[] array, int curr){ 
 //end case 

if(curr >= N) return 0; 
//memoization 
if(array[curr] > 0) return array[curr]; 

 
int result = 1;             
for every node i to curr: //0..curr 

if(S[curr] > S[i])  
result = max(result, 1 + recurse(S, array, i)); 

array[curr] = result; 
return result;  
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4.3.1 Experimental Comparison 

Scenarios and Preparation 

 

To compare the results, we acquired by using the 2D solution with the 1D solution, we use the 

same input parameters. These parameters are N (sequence length) and M (amount of unique 

values). Similarly, to the 2D solution, our results show that the variable M does not affect 

performance. 

 

Results and Discussion 

 

Figure 9 depicts the effect of the problem input size in execution time (seconds), and Figure 

10 depicts the effect it has on memory usage (Kilobytes) and % total memory usage. The 

variable M used was 1000. 

 

 

Figure 9 depicts the average execution time (in Seconds) of the LISS 1D problem for both implementations 
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Figure 10 depicts the average memory usage in Kilobytes and % Total memory of the LISS 1D problem for both 

implementations 

 

After viewing these results, we can see that this solution consumes very little memory                 

(< 0.001%), making it very efficient, with both approaches providing similar results. 

However, comparing the execution times of the two implementations we can also see that the 

iterative approach is pulls ahead with a slight lead. 

 

4.4 Comparison between 1D and 2D Solutions 

 

The results of the two solutions show that the 1D solution is the clear winner in both aspects. 

It is very efficient when regarding the memory usage and it is faster than the 2D solution. The 

iterative approach of the 1D solution provides the best results overall with a small lead in 

execution time over the recursive implementation.   
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Chapter 5  

 

Chain Matrix Multiplication 

 

 

5.1  
5.2 Problem Description and Dynamic Programming Solution 
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5.1 Problem Description and Dynamic Programming Solution 

 

Let two matrices A and B of size NxI and JxM respectively. The multiplication (dot-product) 

of these 2 matrices requires that I is equal to J and results in a new matrix of size NxM [1][2]. 

This process requires NxIxM operations, this is also set to be the cost of the multiplication. 

When multiple matrices have to be multiplied, the order in which these matrices are multiplied 

has an effect in the resulting cost. The aim is to minimize this cost by choosing the optimal 

order in which these matrices should be multiplied.  

 

Definitions 

 

• Set S of N Matrices (WixHi) 

• ( S(i).w, S(i).h ) are the dimensions of the i-th matrix in the list, where ‘w’ is its width 

and ‘h’ is its height. 

• S contains the matrices in order; therefore, we can assume, S(i).w = S(i+1).h since the 

matrix multiplication operation requires that the width of the preceding array is equal 

to the height of the following array. Now assume list L. We can assume L is a list of 

N+1 values, and N(i) is equal to S(i).w and  N(i) is also equal to S(i+1).h. 

• Maximum value of matrix width and height M  
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Example 

Table 3 contains the result of both implementation approaches with the given matrices and 

generated list L. 

 

Matrices: [5x10], [10x12], [12x8], [8x7], [7x11] (5) ➔   L: [5,10,12,8,7,11] (6) 

Matrix 0 1 2 3 4 

0 0 600 1080 1360 1745 

1 0 0 960 1512 2282 

2 0 0 0 672 1596 

3 0 0 0 0 616 

Table 3 presents an example with each solution for the Chain Matrix Multiplication problem 

 

Sub-Problem 

 

• Let P(i,j) be the optimal solution for matrices i up to j 

• P(i,i) = 0 is the terminal case. 

• The actual problem is solved when P(0,N) is solved. 

We use the step variable to calculate using a pivot, therefore:  

 𝑃(𝑖, 𝑘) = min
𝑖≤𝑗<𝑘

(𝑃(𝑖, 𝑗) + 𝑃(𝑗 + 1, 𝑘)  + 𝑆(𝑖). 𝑤 ∗ 𝑆(𝑗). ℎ ∗ 𝑆(𝑘). ℎ) 

 

We use a ‘step’ variable, let ‘step’ be s (or k). We start solving P(i, i+s) for every i, increasing 

s by 1 after each iteration until the problem is solved. The idea is that since P(i,i+s) is known, 

P(i,i+s+1) can be calculated in O(1). 
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Bottom-Up Approach (Iterative) 

 

int iterate(int[][] array, int[] L){ 
int indexStart, indexEnd, val; 
for(int step=1; step<N; step++): 

for(indexStart=0; indexStart<N - step -1; indexStart++): 
indexEnd = indexStart + step; 
int min = infinity; 
for(int k=indexStart; k<indexEnd; k++): 

val = array[indexStart][k] + array[k+1][indexEnd] + 
L[indexStart] * L[k+1] * L[indexEnd+1]; 
if(val < min): 

min = val;  
                    array[indexStart][indexEnd] = min; 
 

return array[0][N-1]; 
} 

 

 

Top-Down Approach (Recursive) 

 

int recurse(int[][] array, int[] L, int indexStart, int indexEnd){ 
if (indexStart == indexEnd) 

return 0; 
if(array[indexStart][indexEnd] != 0) 

return array[indexStart][indexEnd]; 
 

int min = infinity; 
for(int k=indexStart; k<indexEnd; k++){ 
int val = recurse(array, L, indexStart, k) + recurse(array, L, k+1, indexEnd) + 

L[indexStart] * L[k+1] * L[indexEnd+1]; 
if(val < min) 

min = val; 
     

int retVal = min; 
array[indexStart][indexEnd] = retVal; 
return retVal; 

} 
 

 

5.2 Experimental Comparison 

Scenarios and Preparation 

 

To test the efficiency and performance of each approach we will generate a random list ‘L’ of 

size N+1 values and the specified maximum value of M. There can be up to M unique values 

within the list L (from 0 to M-1). The Chain Matrix Multiplication is the problem tested with 

the most required computation needed since it has a complexity of 𝑂(𝑁3), therefore we will 

take measurements of smaller problem sizes N. The variable M does not affect the performance 

of either implementation. 
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Results and Discussion 

 

Figure 11 depicts the impact of the problem input size in execution time (seconds) while 

Figure 12 shows the memory usage in Megabytes and % total memory usage in regards to the 

input size. The variable M was set to 20. 

 

Figure 11 depicts the average execution time of the Chain Matrix Multiplication problem for both implementations  

 
Figure 12 depicts the average memory usage in Megabytes and % Total memory of the Chain Matrix Multiplication problem 

for both implementations 
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From these results we can observe that while the memory usage is similar for both 

implementations, the recursive approach falls behind when it comes to execution time. The 

iterative approach is the much better choice. The amount of extra stack usage of the recursive 

approach is not significant compared to the total heap usage.   
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Chapter 6  

 

0-1 Knapsack 

 

 

6.1  
6.2  
6.3 Problem Description and Dynamic Programming Solution 
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6.1 Problem Description and Dynamic Programming Solution 

 

The Knapsack problem [3] is to find the selection of items within a certain weight limit C, with 

the most value. Each item has its own cost (weight) and worth values. This problem is very 

useful, it is used to capture the customer values and the discrete characteristics of loads. The 

objective is to maximize the customer values within a given supply. 

 

For the ‘0-1’ version of the problem we assume an item can either be completely inside the 

sack or completely out. We also assume that weights are natural numbers. The idea is that we 

create C sacks, and then we choose an item arbitrarily and attempt to place the item in these 

sacks to maximize the sacks value. The choice is to either place the item in the sack or not. 

When all items have been processed for all C sacks the solution will be found. 

 

Definitions 

 

• Weight limit C (capacity of the knapsack) 

• List of items N, each item has its own weight Wi and value Vi 

• C sacks with capacity Ci, sacks begin with capacity 0 up to C. 

• Maximum weight Wmax and value Vmax 
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Sub-Problem 

 

• Let P(i,j) be the optimal value for all items up to the i-th item in the j-th sack (sack with 

capacity j). 

• An item can either be placed in the j-th sack or not, it can only be placed if it can fit 

inside the sack. 

 

Therefore, we derive the following equation: 

𝑃(𝑖, 𝑗) = 0  if 𝑖 = 0   or   j= 0   (terminal cases) 

𝑃(𝑖, 𝑗) =  max( Vi +  P(i − 1, j), P(i − 1, j) )    if   𝑊𝑖 ≤ 𝑖 (item can fit in sack) 

𝑃(𝑖, 𝑗) =  P(i − 1, j)  otherwise 

 

Example 

 

The following table (Table 4) shows a randomly generated list of items that were generated 

with the following parameters:  

Sack capacity C: 5 Items: 8 (weight: 1-3, value: 1-30) 

Item Weight Value 

1 3 4 

2 3 13 

3 2 15 

4 1 26 

5 3 2 

6 2 5 

7 3 12 

8 1 12 

Table 4 presents a randomly generated set of items that serves as our example 

We will view the results of both implementations later. 
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Bottom-Up Approach (Iterative) 

 

//int array[N+1][C+1] = {0}  
int iterate(Item[] items, int[][] weights){  

int itemIndex, weightIndex;  
 

// Build table K[][] in bottom up manner  
 for (every index of items) : //1..N 
  for (every index of weights): //1..C 

Item* item = items[itemIndex]; 
// End case 
if (itemIndex == 0 || weightIndex == 0)  

weights[itemIndex][weightIndex] = 0;  
else if (item->weight <= weightIndex)  

weights[itemIndex][weightIndex] = max(item->value + 
weights[itemIndex][weightIndex - item->weight], 
weights[itemIndex][weightIndex]);  
else 

weights[itemIndex][weightIndex] = 
weights[itemIndex][weightIndex];  

             
return weights[N][C];  

} 
 

 

We begin from item with index 1 and attempt to place the item in the sacks. Sack values are 

initialized to 0, and we strive to find the combination of items for each sack that maximizes its 

value.  

 

Item \ Sack  1 2 3 4 5 

 0 0 0 0 0 0 

1 0 0 0 4 4 4 

2 0 0 0 13 13 13 

3 0 0 15 15 15 28 

4 0 26 26 41 41 41 

5 0 26 26 41 41 41 

6 0 26 26 41 41 46 

7 0 26 26 41 41 46 

8 0 26 26 41 53 53 

Table 5 presents the solution of the Bottom-Up approach for the example given of the 0-1 Knapsack problem 
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Top-Down Approach (Recursive) 

 

//int array[N+1][C+1] = {-1}  
int recurse(Item** items, int** weights, int itemIndex, int weightIndex){ 

if(itemIndex == 0): 
return 0; 
 

if (weights[itemIndex][weightIndex] != -1): 
return weights[itemIndex][weightIndex]; 
 

Item* item = items[itemIndex]; 
if(weightIndex < item->weight): 

weights[itemIndex][weightIndex] = recurse(items, weights, itemIndex, 
weightIndex); 

return weights[itemIndex+1][weightIndex]; 
else 

weights[itemIndex+1][weightIndex] = max(recurse(items, weights, 
itemIndex-1, weightIndex), recurse(items, weights, itemIndex-1, weightIndex - 
item->weight) + item->value); 
return  weights[itemIndex+1][weightIndex]; 

}  

 

Item \ Sack  1 2 3 4 5 

 -1 -1 -1 -1 -1 -1 

1 0 0 0 4 4 4 

2 0 0 0 13 13 13 

3 0 0 15 15 15 28 

4 0 26 26 41 41 41 

5 0 26 26 41 41 41 

6 -1 26 26 -1 41 46 

7 -1 -1 -1 -1 41 46 

8 -1 -1 -1 -1 -1 53 

Table 6 presents the solution of the Top-Down approach for the example given of the 0-1 Knapsack problem 

 

 

 

 

 

 



40 

 

 

6.2 Experimental Comparison 

Scenarios and Preparation 

 

To test the efficiency of each approach we will generate a random list of N items, each with 

weight in the range of [1,wMax] and value within the range of [1,vMax]. We want to investigate 

if these parameters affect the performance of either approach. We realised that the vMax and 

wMax variables do not affect performance. However, the Sack size C does as expected. 

 

Results and Discussion 

 

Figure 13 shows the effect of the problem input size in execution time (seconds) and Figure 

14 shows the memory consumption in Gigabytes and % total memory for the same input sizes. 

For these measurements C was set to be 25000. 

 

Figure 13 depicts the execution time (in Seconds) of the 0-1 Knapsack problem for both implementations 
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Figure 14 depicts the average memory usage in Megabytes and % Total memory of the 0-1 Knapsack problem for both 

implementations 

 

Our results show that the memory usage seems to be very similar in both approaches while the 

execution is much slower in the recursive approach yielding bigger execution times. We can 

see that the memory usage follows a linear growth in regard to the problem size. This growth 

is also present in the execution time. 

 

We expect the C variable to have an impact on the performance of both implementations. As a 

problem on arrays, 0-1 Knapsack creates a solution on a table of NxC. Therefore, we will record 

our measurements with different C variables to measure the performance of both 

implementations. 

0

10

20

30

40

50

60

70

80

0

2E+09

4E+09

6E+09

8E+09

1E+10

1.2E+10

1.4E+10

1.6E+10

15000 30000 45000 60000 75000 90000 105000 120000 135000 150000

Problem Size

Memory (GB - %)

Recursive Iterative



42 

 

 

Figure 15 depicts the average in execution time (in Seconds) of the 0-1 Knapsack problem for the Iterative approach with 

measurements of multiple C sizes. 

 

 

Figure 16 depicts the average in execution time (in Seconds) of the 0-1 Knapsack problem for the Recursive approach with 

measurements of multiple C sizes. 

 

Figure 17 and Figure 18 depict the memory usage of the iterative and recursive 

implementations respectively in regard to changes in the C variable. This is an expected result 

since the input of the problem depends both  on the problem size N and the sack capacity C.  
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Figure 17 depicts the average memory usage in Gigabytes and % Total memory of the 0-1 Knapsack problem for the 

Iterative approach with measurements of multiple C sizes. 

 

 

Figure 18 depicts the average memory usage in Gigabytes and % Total memory of the 0-1 Knapsack problem for the 

Recursive approach with measurements of multiple C sizes. 

 

Our results show that increasing C we see an equal increase in memory usage for both 

implementations. However, an increase in C does not favour any implantation approach in 

particular since the demand in memory grows equally in both cases. Execution times tell a 

similar story, where an increase in C yields a proportionally equal increase in execution time 

for both implementation approaches.  
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Chapter 7  

 

Dijkstra’s Shortest Path 
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7.2 Experimental Comparison 47 

 

 

6.3 Problem Description and Dynamic Programming Solution 

 

Finding the shortest path (and therefore the smallest distance) between two nodes in a graph is 

equally useful and important. It is useful in multiple fields, from general research to AI in game 

development. Dijkstra’s algorithm does exactly that, given a Graph G, a pair of nodes, namely 

the starting point and the end point, it finds the shortest path between the two (2) nodes from 

inside the given graph. There’s a debate as to where this algorithm should be considered a 

Dynamic Programming algorithm or a Greedy algorithm, but for the sake of this study we will 

consider it a DP algorithm. Variations of this algorithm exist that may yield better results, one 

of these variations is the A* (A-star) algorithm that introduces a cost variable and a heuristic 

variable. These variables are used to make more informed choices contrary to Dijkstra’s 

approach, this is why A* is considered a greedier algorithm. 

 

As aforementioned, Dijkstra’s algorithm finds the closest path between two nodes inside a 

graph, to do this it starts from the given start node and it iteratively explores all its adjacent 

nodes until the end node is reached. To ensure that the optimal answer (or in other words, the 

shortest path between the two nodes) is found, the node explored in every iteration has to be 

the closest, unexplored node to the starting node. The algorithm can end before looping through 

all the nodes if the end point has been visited once because of this detail, as this detail provides 

the optimal answer of each state / sub-problem.  
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Definitions 

 

• Graph G of N nodes, with density D and wMax 

• Nodes S (‘Start node’) and node T (‘Finish’ / ‘End node’) 

• ‘Visited’ array V of size N 

• ‘Cache’ array C of size N 

 

Sub-Problem 

 

• 𝐶(𝑆, 𝑗) is the shortest distance between start node S and node j. 

• Solution at: 𝐶(𝑆, 𝑇) 

• Recursive function for intermediate node i 

Therefore:  

• 𝐶(𝑆, 𝑗) = 𝑚𝑖𝑛 ( 𝐶(𝑆 − {𝑗}, 𝑖)  ) + 𝐺(𝑖, 𝑗)  

 

Algorithm 

int Dijkstra(int[][] G, int[] cache, int s, int t) 
//visited array contains explored nodes 
bool visited[PROBLEM_SIZE] = false; 
visited[s] = true; 

 
// the ‘index’ variable represents the node being explored (closest unexplored 
// node to s), while the ‘min’ variable represents the distance of the closest 
// unexplored node (index) 
int index, min; 
for every node i in G: 
//find closest node index 
 
 //start with node s 

        if(i == s) 
index = s; 
min = cache[index]; 

 //for all other nodes 
else 

for every node j in G: 
if(visited[j]) continue; 
if(cache[j] < min) { 

index = j; 
min = cache[j]; 

 
 //explore nodes from index 

for every node j in G: 
if nodes i and j are connected: 

if cache[j] > (cache[index] + graph[index][j]): 
array[j] = array[index] + graph[index][j]; 
path[j] = index; 

visited[index] = true; 
 
//return the cached distance of the end point 
return array[t]; 
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Examples 

 

In the following example we present a randomly generated graph G (Figure 19 & Table 7) of 

5 nodes, and the state array (Table 8) that occurs from our implementation.  

 

Figure 19 represents the example graph G 

Node A B C D E 

A -1 4 -1 10 18 

B 4 -1 4 1 8 

C -1 4 -1 19 1 

D 10 1 19 -1 7 

E 18 8 1 7 -1 

Table 7 represents the graph G as an array 

 

Iteration \ Node A B C D E 

0 – A - \ - 4 \ A - \ - 10 \ A 18 \ A 

1 – B - \ - 4 \ A 8 \ B 5 \ B 14 \ B 

2 – D - \ - 4 \ A 8 \ B 5 \ B 12 \ D 

3 – C - \ - 4 \ A 8 \ B 5 \ B 12 \ D 

4 – E - \ - 4 \ A 8 \ B 5 \ B 12 \ D 

Table 8 presents the solution for the example given of the Dijkstra’s shortest path problem 
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6.4 Experimental Comparison 

Scenarios and Preparations 

 

Since the input of the problem is a graph, we can compare the performance of the 2 approaches 

with different graphs. Firstly, we create N nodes, then we iterate through all the nodes to 

connect them to each other. We use the density variable D to determine the maximum number 

of neighbours (adjacent nodes) a node can have. For each node we choose a random amount of 

connected nodes such Hi, such that 0 < 𝐻𝑖 ≤ 𝐷, Then we connect every node to Hi other 

nodes. This way we ensure the graph is connected, and that the bigger the density, the more the 

average connections of each node. Every time we connect two nodes we generate a random 

weight value for their connection. During our experiments we realised that the weight of the 

connections of the graph does not affect the performance of any of the approaches.  

 

Results and Discussion 

 

Figure 20 and Figure 21 show the effect of the problem input size in execution time (seconds) 

and memory usage in Gigabytes and % total memory, respectively. The graphs generated for 

this data had a density of 20 and a maximum weight size of 20 as well. 

 

Figure 20 depicts the average execution time (in Seconds) of the Dijkstra’s shortest path problem for both implementations 
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Figure 21 depicts the average memory usage in Gigabytes and % Total memory of the Dijkstra’s shortest path problem for 

both implementations 

 

Our results show a different story to all previous problems. While the memory usage is similar 

in both implementations the execution time is also quite similar. While this may seem 

unreasonable at first after a deeper look in our implementation we can see why this is. Dijkstra’s 

optimal description requires that for every iteration the node we explore must be the one closest 

to the starting node. This means that for both implementations the same work is done, however 

we can see the iterative approach has a slight overhead, which is perhaps introduced because 

of the extra data structures required (pre-processing) to run a problem on graphs iteratively.  

 

Figure 22 and Figure 23 show how the density of a graph affects execution time for the 

iterative and recursive approach respectively. We see a similar response to the change of the 

density in both implementation approaches. In more detail, we see the execution time gradually 

increase as the density of the tree increases. We did not observe this when measuring memory, 

where we saw no meaningful change in memory usage when the graph density changes. 
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Figure 22 depicts the average execution time (in Seconds) of Dijkstra’s problem for the Iterative approach with 

measurements of multiple graph Densities 

 

 

Figure 23 depicts the average execution time (in Seconds) of Dijkstra’s problem for the Recursive approach with 

measurements of multiple graph Densities 
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8.1 Problem Description and Dynamic Programming Solution 

 

The Independent Sets problem concerns a set of nodes S and the creation of a new set S’ where 

for every node in S’ one rule applies: no adjacent nodes are included in the set. In more detail, 

when a node is included in S’, all of its adjacent nodes are excluded. However, the adjacent 

nodes of all these excluded nodes can now be included in the new set (S’). The goal is to create 

the largest independent set S’ possible. To do this we must include as many nodes as possible, 

however due to the aforementioned rule we must also exclude the least nodes possible. The 

exclusion of some nodes may have an overall positive effect, while the opposite is also possible. 

 

To solve this problem, we assume a graph of nodes G as the set of nodes S. We proceed into 

rooting the graph G into a tree T at a random node R (root). To solve this problem, we assume 

that no cycles exist in the transformed tree.  

 

Figure 24 and Figure 25 show examples of the biggest independent sets in two different 

graphs. Nodes inside the solution are marked red. Figure 25 can also be considered as a tree 

rooted at node 1. We can see that certain nodes can have a bigger negative impact than other 

when included in the solution. For example node 4 of Figure 25 has 3 children leaves, which 

means by including it in the solution we would automatically lose 3 nodes. From this, it is now 

clear that the nodes must be computed in DFS order. 
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Figure 24 represents an example graph with a 

largest independent set coloured in red 

 

Figure 25 represents an example graph with a largest independent set 

coloured in red 

 

Definitions 

 

• Graph of N nodes and density D 

• Rooted graph (tree) T 

• A root node R 

 

Sub-Problem 

 

P(i) contains the optimal solution for node i. 

𝒗𝒂𝒍_𝒊𝒏𝒄[𝒊] = 𝟏 + ∑〖𝑷(𝒗)𝒇𝒐𝒓 𝒆𝒗𝒆𝒓𝒚 𝒄𝒉𝒊𝒍𝒅 𝒗〗  

𝒗𝒂𝒍_𝒆𝒙𝒄[𝒊] = 𝟏 + ∑〖𝑷(𝒗)𝒇𝒐𝒓 𝒆𝒗𝒆𝒓𝒚 𝒈𝒓𝒂𝒏𝒅𝒄𝒉𝒊𝒍𝒅 𝒗〗 

𝑷(𝒊) = 𝐦𝐚 𝐱 (𝒗𝒂𝒍_𝒊𝒏𝒄[𝒊], 𝒗𝒂𝒍_𝒆𝒙𝒄[𝒊]) 
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Bottom-Up Approach (Iterative) 

 

//nodes are inserted into the stack in DFS order for optimization 
int iterate(TreeNode* root, stack<TreeNode*> nodes){            

TreeNode* node; 
while(nodes.size() > 0): 

node = nodes.top(); 
                 

//if node has no children (is a leaf) set leaf value  
//and if so, remove it from the stack 
if(node->children.size() == 0): 

node->value = 1; 
nodes.pop(); 
continue; 

 
//calculate value including the current node 
int val_including = 1; 
for(TreeNode* child: node->children): 

for(TreeNode* grandchild: child->children): 
val_including += grandchild->value; 
 

//calculate value excluding the current node 
int val_excluding = 0; 
for(TreeNode* child: node->children): 

val_excluding += child->value; 
                 

//set the node value to the maximum of the 2 values 
node->value = max(val_including, val_excluding); 
nodes.pop(); 

return root->value; 
} 
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Top-Down Approach (Recursive) 

 

int recurse(TreeNode* node){ 
//node doesnt exist 
if(node == NULL) 

return 0; 
             

//if leaf value has already been calculated 
if(node->value) 

return node->value; 
 

//if its a leaf set value 
if(node->children.size() == 0) 

return (node->value = 1); 
 

//value when node is excluded 
int value_excluding = 0; 
for(TreeNode* child: node->children): 

value_excluding += recurse(child); 
 

//value when node is included 
int value_including = 1; 
for(TreeNode* child: node->children): 

if(child==NULL) continue; 
for(TreeNode* grandchild: child->children): 

value_including += recurse(grandchild); 
 

//return maximum of the 2 
return (node->value = max(value_including, value_excluding)); 

} 
 

 

8.2 Experimental Comparison 

Scenarios and Preparations 

 

Our solution does not work on graphs containing cycles. Therefore, instead of generating a 

graph G which will later be rooted, we generate a tree to represent S. 

  

This tree will be generated with a specific density D which represents the degree of the tree. 

Each node can have up to D children nodes (we choose the number of children of each node 

randomly between 0 and D). Every node is connected to at least 1 node, since every node is 

connected to their parent, hence, the tree is connected. The root is exempt from this rule because 

it has no parent node.  
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Results and Discussion 

 

Figure 26 and Figure 27 show the effect of input problem size in execution time (seconds) 

and total memory usage in Gigabytes and % memory usage respectively. To take these 

measurements we used a perfect tree with a degree of 2. 

 

Figure 26 depicts the average execution time (in Seconds) of the Independent set  problem for both implementations 

 

Figure 27 depicts the average memory usage in Gigabytes and % Total memory of the Independent sets problem for both 

implementations 
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This is where things get interesting. This problem is a problem solved on trees. It may be 

presented as a Graph (or a Set), but to solve it we have to root this graph to traverse it, and this 

is why cycles should not be included in the generated Tree. 

 

The results show that contrary to all previous results, the execution of the recursive approach 

seems to be much faster while consuming the same amounts of memory as the iterative 

approach. The results at first seem unreasonable, however after some thorough investigation 

on the implementations things started to make sense. 

 

The flaw of the iterative approach for this problem quickly became apparent. This problem 

requires the traversal of the tree in a Depth First manner (DPS). The leaves of the tree have to 

be computed, following them are their parent nodes, and this continuous up to the root. In other 

words, before computing a node we have to compute its children (if they exist).  

 

Using recursion this can easily be done, however this is much harder and computationally 

intensive otherwise. This can easily be seen by comparing the two implementations. To come 

around this issue, we have to use new data structures, and creating these data structures is what 

results in the overhead of the iterative approach. Mainly, we have to put all the nodes of the 

tree in a list to be able to traverse them, on top of that, at every iteration we have to check which 

nodes can be computed. A node can be computed only if it has no children nodes or all of its 

children nodes have been already computed.  

 

This results in what we observe in the plots, memory usage is similar in both approaches, since 

the recursive approach uses a tree to store its nodes and a 2D array to store the sub-problem 

data. The iterative approach however uses a queue to store the tree and the same 2D array for 

the problem data.  

 

On the other hand, as previously mentioned, even if both approaches follow an exponential 

growth, the execution time of the iterative approach has a steeper growth, making the recursive 

approach much more efficient. The Top-Down approach is much faster in both execution and 

development / implementation time while being much easier to understand. 
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The following plots in Figure 28 and Figure 29 show how a change in tree density (D) 

affects the execution time of the Iterative and Recursive approach respectively. For the 

following measurements we used a complete tree. Every node of these trees can have up to D 

children nodes. 

 

 
Figure 28 depicts the average execution time (in Seconds) of the Independent set  problem for the Iterative approach with 

measurements of multiple tree Degrees 

 
Figure 29 depicts the average execution time (in Seconds) of the Independent set  problem for the Recursive approach with 

measurements of multiple tree Degrees 

What our data shows is that as the tree density increases we see an increase in the 

performance of the iterative approach by speeding it up, the opposite is true for the recursive 

approach, where an increase in tree density slows it down. We did not observe a change in 

the memory usage of either implementation when measuring for different tree densities.  
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Chapter 9  

 

K-Trees 

 

 

9.1  
9.2 Problem Description and Dynamic Programming Solution 

57 

9.3 Experimental Comparison 59 

 

 

9.1 Problem Description and Dynamic Programming Solution 

 

This problem involves finding the number of subtrees of size K, from a tree rooted at R. The 

size of the tree is determined by the number of all its nodes including its root. Therefore, a sub-

tree of size K is a tree with exactly K nodes. This problem is a very useful problem used in 

even distributions on trees.  

 

Figure 30 shows an example tree of 7 nodes (numbered from 1 to 7) rooted at node 1. Coloured 

are its 2 k-trees of size 3 (green and cyan).  

 

 

Figure 30 represents an example Graph G with 2 sub-trees of size 3 coloured green and cyan. 
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Definitions 

 

• Tree of N nodes of degree D 

• A root node R 

• Cache array C of size N 

 

Sub-Problem 

 

P(i) contains the optimal solution for node i. 

C[i] contains the size of the sub-tree rooted at i. 

 

𝑪[𝒊] =  𝟏 + ∑〖𝑪(𝒗)𝒇𝒐𝒓 𝒆𝒗𝒆𝒓𝒚 𝒄𝒉𝒊𝒍𝒅 𝒗〗  

𝑷(𝒊) = (𝑪[𝒊] == 𝒌) + ∑〖𝑷(𝒗)𝒇𝒐𝒓 𝒆𝒗𝒆𝒓𝒚 𝒄𝒉𝒊𝒍𝒅 𝒗〗  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



59 

 

 

Bottom-Up Approach (Iterative) 

 

//nodes are inserted into the stack in DFS order for optimization  
int iterate(TreeNode* root, int* array, stack<TreeNode*> nodes, int k){ 

TreeNode* node; 
while(nodes.size() > 0){ 

node = nodes.top(); 
 

//if node has no children (is a leaf) set leaf value  
//and if so, remove it from the queue 
if(node->children.size() == 0): 

node->value = (1==k); 
array[node->index] = 1; 
nodes.pop();                     
continue; 

 
for(TreeNode* child: node->children): 

array[node->index] += array[child->index]; 
node->value += child->value;  
 

array[node->index] += 1;        
node->value += (k == array[node->index]); 

                 
nodes.pop(); 

 
return root->value; 

} 
 

 

Top-Down Approach (Recursive) 

 

int recurse(TreeNode* node, int[] array, int k){ 
array[node->index] = 1; 
if(node->children.size() == 0 ): 

return 1 == k; 
 

int sum = 0; 
//DFS 
for(TreeNode* v: node->children): 

sum += recurse(v, array, k); 
array[node->index] += array[v->index]; 

             
return sum + (array[node->index] == k); 

} 
 

 

9.2 Experimental Comparison 

Scenarios and Preparation 

 

To change the structure of the tree we introduce the degree variable D. This variable determines 

the maximum number of children any node can have (Degree). Firstly, we create N nodes and 

we iterate through all of them, assigning up to D children until all nodes receive a parent node. 
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Each node can have 0 to D children except the root which must have at least 1 (the root has no 

parent). We want to investigate whether the degree of the tree affects the performance of any 

of the implementations. 

 

Results and Discussion 

 

Figure 31 and Figure 32 depict the effect of input problem size in execution time (seconds) 

and % total memory usage respectively. The tree used to take these measurements was a perfect 

tree with a  degree of 2. Thus, every node had exactly 2 children (except leaves).  

 

 

Figure 31 depicts the average execution time (in Seconds) of the K-Trees problem for both implementations 

 

Figure 32 depicts the average memory usage in % Total memory of the K-Trees problem for both implementations 
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What we observe is that the memory usage growth is linear to the problem size. Likewise, the 

execution time is linear to the problem size. However, what we see is that the iterative approach 

consumes just a little more memory. What we also see is that even though both approaches run 

in linear time, the iterative approach is also slower. 

 

The last point of the memory graph shows a drop of the memory usage in comparison to the 

general trend of the iterative approach. Our explanation is that this instance of the problem 

pushed the system to its outmost limits. The RAM of the computer was full, and the swap 

memory was used. This explains the drop on the memory usage, since the program didn’t 

measure the swap memory used, this also explains the slower execution.  

 

Figure 33 and Figure 34 show the effect of the tree Degree (D) in execution time for the 

Iterative and Recursive implementation approaches respectively. 

 
Figure 33 depicts the average execution time (in Seconds) of the K-Trees  problem for the Iterative approach with 

measurements of multiple tree Degrees 
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Figure 34 depicts the average execution time (in Seconds) of the K-Trees  problem for the Recursive approach with 

measurements of multiple tree Degrees 

 

These results show us that while the Recursive approach is gradually being slowed down by 

the increase of the tree Degree, the results of the Iterative approach show a different story. As 

the degree of the tree increases the execution time of the Iterative approach lowers, increasing 

its performance. In these plots we do not see any signs of the swap memory being used. 
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Chapter 10  

 

Tree Diameter 
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9.3 Problem Description and Dynamic Programming Solution 

 

This problem involves finding the diameter of a tree rooted at R. The diameter is the maximum 

distance between any two nodes inside the tree. 

 

Figure 35 shows an example of this problem on a tree of 10 nodes. The red nodes are part of 

the diameter of the tree. The diameter shown is just one of the possible solutions. Another 

possible solution would occur if we excluded node 8 and included node 9. 

 

 

Figure 35 represents an example graph G with its diameter coloured in red. 
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Definitions 

 

• Tree of N nodes of Degree D 

• A root node R 

• Caching arrays max1_array and max2_array of size N 

 

Sub-Problem 

 

From the example on Figure 35 we make two observations. A node can either not be included 

in the solution or be included with at most 2 of its children. Only 1 node of the solution can 

have 2 of its children be included in the solution path. The rest of the nodes can either have 1 

or none (leaves only). Therefore, we will keep track of the two longest paths that occur at every 

node. Then the parent of each node will compare these paths to find the global maximum.  

• max1_array[i] contains the longest path of node i including itself with 1 of its children. 

• max2_array[i] contains the longest path of node i including itself with 2 of its children. 

• P(i) contains the optimal solution for node i (max of max1_array[i] and 

max2_array[i]).   

• We use DFS (Depth First Search) to traverse the tree from its leaves first 

 

From this we derive the following: 

𝒇𝒐𝒓 𝒆𝒗𝒆𝒓𝒚 𝒏𝒐𝒅𝒆 𝒏 𝒊𝒏 𝑫𝑭𝑺 (𝒇𝒓𝒐𝒎 𝒓𝒐𝒐𝒕 𝑹) 

• 𝒕𝒎𝒑𝟏 = 𝒎𝒂 𝒙(𝒎𝒂𝒙𝟏_𝒂𝒓𝒓𝒂𝒚[𝒗] 𝒇𝒐𝒓 𝒆𝒗𝒆𝒓𝒚 𝒄𝒉𝒊𝒍𝒅 𝒗) 

• 𝒕𝒎𝒑𝟐 = 𝟐𝒏𝒅  𝒎𝒂𝒙(𝒎𝒂𝒙𝟏_𝒂𝒓𝒓𝒂𝒚[𝒗] 𝒇𝒐𝒓 𝒆𝒗𝒆𝒓𝒚 𝒄𝒉𝒊𝒍𝒅 𝒗) 

• 𝒎𝒂𝒙𝟏_𝒂𝒓𝒓𝒂𝒚[𝒏] = 𝟏 + 𝒕𝒎𝒑𝟏  

• 𝒎𝒂𝒙𝟐_𝒂𝒓𝒓𝒂𝒚[𝒏] = 𝟏 + 𝒕𝒎𝒑𝟏 + 𝒕𝒎𝒑𝟐 

• 𝑷(𝒊) = 𝒎𝒂𝒙 (𝒎𝒂𝒙𝟏_𝒂𝒓𝒓𝒂𝒚[𝒏], 𝒎𝒂𝒙𝟐_𝒂𝒓𝒓𝒂𝒚[𝒏]) 

 

Note: The root might not be included in the solution, so we have to keep track of the diameter 

of the tree at a global scope. Another solution would be to keep track of the node with the 

largest max2_array value since it will contain the value of the diameter (only 1 node contains 

two paths). 
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Bottom-Up Approach (Iterative) 

 
//nodes are inserted into the stack in DFS order for optimization  
int iterate(long[] array, TreeNode* root, stack<TreeNode*> nodes){ 

int maxVal=0; 
TreeNode* node; 
while(nodes.size() > 0): 

node = nodes.top(); 
 

//if node has no children (is a leaf) set leaf value  
//and if so, remove it from the queue 
if(node->children.size() == 0): 

node->value = 1; 
array[node->index]= 1;   
nodes.pop();                     

               continue; 
 

//calculate firstmax and secondmax of node 
int firstmax=0, secondmax=0; 
for(TreeNode* child: node->children): 

if(child->value >= firstmax): 
secondmax = firstmax; 
firstmax = child->value; 

:else if(child->value > secondmax) 
secondmax = child->value; 

 
//set the node value to the maximum of the 2 values                 
node->value = firstmax + 1; 
array[node->index]= 1 + firstmax + secondmax; 
maxVal = max(max(node->value, array[node->index]), maxVal); 
nodes.pop(); 

 
return maxVal; 

}  

 

 

 

 

 

 

 

Top-Down Approach (Recursive) 
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Int max1[N] ={0}, max2[N] ={0}; 
int recurse(TreeNode* root){ 

vector<int> fValues; 
 

//DFS traversal 
for every child c of node: 

recurse(c); 
//push chldrens' values of inc array into list 
fValues.push_back(max1[c->index]); 

             
//find 2 max fvalues 
int tmp1=-1, tmp2=-1; 
for every index i of fValues: 

if(fValues[i] >= max1): 
tmp2 = tmp1; 
tmp1 = fValues[i]; 

else if(fValues[i] > max2): 
tmp2 = fValues[i]; 

             
//this is necessary for leaves (no children, therefore, no tmp1 value) 
inc_array[root->index] =1; 
if(tmp1 != -1): 

max1[root->index] += tmp1; 
             

if(tmp2 != -1): 
max2[root->index] = 1 + tmp1 + tmp2; 

 
return diameter = max(diameter, inc_array[root->index], exc_array[root-

>index]); 
} 

 

 

9.4 Experimental Comparison 

Scenarios and Preparation 

 

Similarly to previous tree problems, we use the degree variable D to change the structure of 

the tree. The tree is fully connected. Each node has a single parent (except the root) and all 

nodes have up to D children (the root has at least 1). We change the degree of the tree to 

investigate whether the structure of the tree affects the performance of any of the two 

implementations.  
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Results and Discussion 

 

Figure 36 and Figure 37 depict the effect of input problem size in execution time (seconds) 

and % total memory usage respectively. The tree used to take these measurements was a perfect 

tree with a  degree of 2. Thus, every node had exactly 2 children (except leaves). 
 

 

Figure 36 depicts the average execution time (in Seconds) of the Tree Diameter problem for both implementations 

 

Figure 37 depicts the average memory usage in % Total memory of the Tree Diameter problem for both implementations 

 

The first observation is that the efficiency of the recursive approach is greater in both aspects. 

We see a linear increase in both the memory usage and the execution time for both approaches. 

However, the rate of increase of the iterative approach is greater. In more detail, the execution 

time is much greater but the memory usage not so much, however it was enough to make this 
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approach unable to run the problem for the last input size. The recursive approach is a clear 

winner in both aspects, especially in execution time.  

 

Now its time to test the effect of the tree Density to the performance of the two 

implementations. 

 

 

Figure 38 depicts the average execution time (in Seconds) of the Tree Diameter problem for the Iterative approach with 

measurements of multiple tree Degrees 

 

 

Figure 39 depicts the average execution time (in Seconds) of the Tree Diameter problem for the Iterative approach with 

measurements of multiple tree Degrees (plot cleaned) 
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Figure 40 depicts the average execution time (in Seconds) of the Tree Diameter problem for the Recursive approach with 

measurements of multiple tree Degrees 

 

In Figure 38 we observe the change that occurs in the execution time of the iterative approach 

when the degree of the tree changes. In this plot we observe un unreasonably huge slowdown 

as the memory is being filled, this is where the swap memory is being used. Since the swap 

memory is much slower the execution slows down, hence the performance suffers. In Figure 

39 we remove the last measurements to make the changes of the previous measurements 

clearer. Figure 40 depicts the effect of the tree degree in the execution time of the recursive 

implementation. Comparing these results we observe that both approaches seem to benefit in 

an increase of the tree degree. As the tree degree increases so does the performance of both 

implementations. We did not observe a measurable change in the memory usage of either 

implementation as the degree of the tree changes.  
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10.1 Summary 

 

After close inspection of the obtained results we came to some surprising conclusions. The type 

of the input of the problem seems to play an important role in its performance. We categorize 

the problems based on the Input Complexity. 

 

Problem Categorization 

 

Input 

Array (1D or 2D) 
MCSS, LISS 1D, LISS 2D, Chain Matrix 

Multiplication, Knapsack 

Graph Dijkstra 

Tree Independent Sets, K-Trees, Tree Diameter 
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Through all the experiments, we conclude the following:  

Input Problems Conclussion 

2D Array 

• MCSS 

• LISS 1D 

• LISS 2D 

• Chain Matrix 

Multiplication 

• Knapsack 

These problems are heavily favoured by the iterative 

approach in regards to the Execution time. The 

memory usage is very similar for either approach, 

however we have reason to believe that some 

problems may even favour the iterative approach in 

memory usage as well. 

Graphs 
• Dijkstra’s 

Shortest Path 

This problem is a problem presented on a Graph. The 

limitation of the iterative approach becomes clear 

here. A problem that is declared in a “pointer style” 

data structure is hard to traverse in an iterative 

manner. Even when we use an array to represent the 

graph it is even harder to traverse the graph in DFS 

order. Dijkstra’s algorithm however requires the 

traversal of the graph in a specific manner, therefore 

the results of the two implementations are very 

similar. The iterative approach had a slight overhead 

in execution time caused by the pre-processing of the 

data. 

Trees 

• Independent Sets 

• K-Trees 

• Tree Diameter 

Here is where things got interesting. When solving 

problems on graphs the weakness of the iterative 

approach showed itself. However, problems on trees 

showed something more, a strength of the recursive 

approach. Traversing trees is very easy in a recursive 

manner, making it both faster in development 

(implementation) and in execution. Yielding better 

results both in memory usage and execution time. The 

difference was not as much in the memory used, 

however the execution was a lot faster, making the 

recursive approach the clear winner for problems on 

trees. 
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A general conclusion is that Tree and Graph traversal is both more intuitive, faster and more 

memory efficient in a recursive manner instead of an iterative manner. 

 

10.2 Problems Encountered 

 

There were several problems encountered during this study. Most of the problems had to do 

with data collection. As mentioned at the beginning measuring the memory usage of a program 

can be tedious, especially when dealing with problems that consume a lot of memory which 

was the case for the project. The tools we used were unable to function because of the high 

memory demands, so we had to resort in different methods. 

 

The biggest problem faced however was the time it took to collect the data. This was the case 

with problems like the MCSS and the Chain Matrix Multiplication. For big problem sizes, that 

would use up most of the memory, the execution of the program would take hours. In the case 

of the Chain Matrix Multiplication program the execution would take weeks and even months. 

Therefore, we had to change our input sizes.  

 

10.3 Future Work 

 

Finding out about the behaviour of the recursive approach on different data structures was not 

something we suspected at first. However just when we began developing the programs we 

realised how useful recursion is on some data structures like trees. Discovering more of these 

behaviours would be interesting.  

 

An interesting extension of this work is to further investigate how other parameters would 

affect the performance of each approach. A comparison between the same implementation in 

two different programming languages would be interesting. The effect of the Operating System 

may also be important, both in resource usage and execution time. 
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