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Abstract
Bitcoin is the first and most popular digital currency for online payments, realized as a

decentralized peer-to-peer electronic cash system. Bitcoin maintains an ordered ledger of

all transactions, and the longest chain of the blockchain is selected as the valid ledger by

the participants.

Selfish mining is a well-known attack where a selfish miner, under certain conditions,

can gain a disproportionate share of reward by deviating from honest behavior. A selfish

miner exploits the conflicting resolution rule of Bitcoin in order to increase its revenue.

The standard Bitcoin protocol requires nodes to quickly distribute newly created blocks;

however, malicious nodes can gain higher payoffs by withholding blocks they create and

selectively defer their publication. Fortunately, selfish mining becomes profitable only

when the malicious nodes possess a relatively large proportion of the entire network’s

computational power and/or are sufficiently well connected to the rest of the network.

In this thesis, we extend the mining strategy space to include "conservative stubborn"

variations. These variations allow selfish miners to earn more than the pre-existing selfish

mining strategies for specific parameter space regions. Consequently, we show that the

basic selfish mining and stubborn mining attacks are not globally optimal.

Furthermore, we provide a formalization of selfish mining without propagation de-

lays on Bitcoin as an UPPAAL model. UPPAAL is a tool for modeling, validating, and

verifying real-time systems modeled as networks of timed automata, extended with data

types. In this work, the UPPAAL STRATEGO extension is used, which enables statistical

model checking and allows the exploration of strategy space defined by the automata. The

model on UPPAAL STRATEGO is used to show the dominant strategies of selfish mining,

among every strategy in the extended strategy space of selfish mining, for every region of

the parameter space, estimate the dominant strategies’ revenue, and verify our conserva-

tive stubborn variations’ Risk Safety property. Finally, we estimate the probability of a

selfish miner gaining more than its fair share in terms of revenue. Bitcoin is not incentive-

compatible for a vast portion of the parameter space if we consider a proportion of the

honest miners receiving first the selfish block instead of depending on the complexity of

propagation delays, and no countermeasures are in place.
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Chapter 1

Introduction

Contents

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1 Overview

Since its inception, Bitcoin [23], a decentralized cryptocurrency, captured the interest of

the entire world. Due to its popularity, a large number of research work have been con-

ducted to study its various features, e.g., consensus protocol and incentive schemes. The

groundbreaking, distributed nature of Bitcoin eliminates the need for a trusted third party,

such as banks, to process payments. Instead, a publicly known ledger handles transactions

for which its participants consent. Miners are responsible for maintaining and extending

the ordered ledger of transactions by pursuing the standard mining procedure. For this

purpose, a consensus protocol was designed to solve ambiguities and form an agreement.

In order to ensure that miners will follow the standard Bitcoin protocol, incentives in the

form of rewards are in place.

The incentives in Bitcoin have a crucial role since they prevent miners from deviating

from the prespecified consensus protocol and, primarily, to keep the Bitcoin "alive". In-

centives are rewards in the form of bitcoins, which is the currency of the Bitcoin system.

The block creator includes a batch of transactions, to be confirmed, into a block whose
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creation requires generating the solution to computationally expensive proof-of-work puz-

zles. Once a new block is created, rewards are awarded to its creator. Therefore, honest

participation is incentivized, and as a consequence, the security of Bitcoin is reinforced.

In a disruptive paper [18], its authors highlighted a defect in the incentive scheme in

Bitcoin. A single miner or a pool of miners who possesses enough computational power

and/or is extremely well connected to the rest of the network can increase its expected

rewards by deviating from the block publication rule. This requires that most of the

participants follow the predetermined Bitcoin protocol. The block publication rule of the

Bitcoin protocol requires nodes to publish any block they mine immediately; however,

in [18], they have shown that if miners selectively withhold blocks they may increase

their revenue. For the rest of this work, we refer to this first selfish mining strategy, called

Selfish-Mine by its inventors, as the basic selfish mining.

When every participant of the Bitcoin network strictly follows the consensus protocol,

we expect that miners are rewarded according to the computational power they control.

More specifically, we expect miners to reap the same fraction of rewards as the computa-

tional power they possess. Nevertheless, selfish mining allows an attacker to increase its

revenue at the expense of other miners. This is accomplished by exploiting the conflicting

resolution rule of the Bitcoin protocol. The longest chain is what individual nodes accept

as the valid ledger of the blockchain. Its blocks are the only blocks considered valid, and

hence they are the only blocks that receive rewards. This rule allows every node in the

network to agree on what the blockchain looks like and therefore consent on the same

transaction history. To exploit this vulnerability, an attacker deliberately creates a fork,

which is a side chain, in order to force honest miners to periodically abandon the previ-

ously longest chain. According to the Bitcoin protocol, miners work on the longest chain;

therefore, miners select to extend the longest fork in the presence of forks. However, the

selfish miner keeps hidden the hopefully (for them) longest fork; hence, the unaware min-

ers work on a shorter fork. Consequently, honest miners waste time and money mining

on top of a shorter chain that will never become the longest.

Unfortunately, selfish mining attacks can potentially cause catastrophic consequences

to the Bitcoin network. The rate of growth of a successful selfish mining attacker is steady.

This is a result of the increased revenue compared to honest participants of the network.

Consequently, other miners may join the pool of the selfish miner to enjoy the increased
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profit, or the miner can multiply its computational power by buying more equipment.

Moreover, the revenue from selfish mining is proportional to the computational power

in possession of the attacker; therefore, the attack will become more effective over time.

Eventually, the attacker can collect every reward of the network by performing the well-

known 51% attack, which requires more than half of the entire network’s computational

power.

The above-mentioned reasons were the impetus for further study of selfish mining

in order to encourage interest in future research and more particular, in application and

development of formal techniques for the analysis of blockchains. Undoubtedly, the de-

tection, alleviation, and security against such attacks must be immediate and effective.

1.2 Purpose

Our goal in this thesis is to considerably understand the selfish mining strategy space and,

therefore, try to extend it by introducing more effective strategies. In [24], an earlier paper

regarding selfish mining expands the mining strategy space to include a novel strategy

family, called "stubborn". These new stubborn mining strategies offer the miner more

revenue than basic selfish mining, which is the first formally described selfish mining

strategy. Thus, basic selfish mining is not optimal.

Furthermore, this work focuses on exploring formal techniques towards the analy-

sis of selfish mining on Bitcoin. We aim to investigate the UPPAAL [4] model checker

and the capabilities offered by its various extensions, such as UPPAAL STRATEGO [15].

UPPAAL STRATEGO allows an effective strategy space search, which fit our purpose per-

fectly.

1.3 Contributions

This thesis makes the following contributions:

• We present the conservative stubborn mining variants, which further expand the

strategy space of selfish mining. More specifically, in this work, we discuss two

variants, the Safe-Lead, and Safe-Equal-Fork, which are based on stubborn mining.

What distinguishes them is the alternation between basic selfish mining and stub-
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born mining to achieve better revenue results. We also provide pseudocode, which

allows any combination of selfish mining variations to form hybrid strategies.

• We implement and evaluate the entire space of selfish mining strategies on UPPAAL

model checker. UPPAAL STRATEGO is used to identify the best strategy for every

parametrization of the parameter space. Furthermore, the Risk Safety properties of

basic selfish mining and the novel conservative stubborn mining are verified. Risk

Safety property allows bounded risk at any time of the selfish mining.

• Stubborn mining is not optimal for a large parameter space. Our conservative stub-

born mining outperforms pre-existing strategies in some regions of the parameter

space.

1.4 Outline

The rest of the thesis is organized in chapters as follows. In Chapter 2, we provide the

background information required for understanding the subsequent chapters. More specif-

ically, there is an introduction to the well-known Bitcoin cryptosystem and the model

checking tool UPPAAL, alongside its UPPAAL STRATEGO extension. Chapter 3 provides

an overview of the existing selfish mining strategies and our newly introduced variations

modeled as state machines. Moreover, an algorithm is given which is capable of construct-

ing hybrid selfish mining strategies by combining variations. In Chapter 4, we explain in

detail the automata of our implementation on UPPAAL STRATEGO and the testing code,

which secure the correctness of our model. In Chapter 5, we evaluate our new conser-

vative stubborn strategies and verify the Risk Safety property satisfaction. In Chapter 6,

we refer to related work concerning selfish mining and previous work modeling Bitcoin

on UPPAAL. Finally, in Chapter 7, we summarize our work and propose possible future

work extending our model with parameters or countermeasures not studied in the thesis

at hand.
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Chapter 2

Background

Contents

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Bitcoin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.2 Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.3 Blockchain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.4 Blockchain Forks . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 UPPAAL Model Checker . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 UPPAAL STRATEGO . . . . . . . . . . . . . . . . . . . . . . 10

2.3.2 Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Overview

This chapter provides background information for the rest of the thesis. We briefly discuss

how Bitcoin realizes a distributed ledger of transactions by providing essential informa-

tion about transactions, blocks, and blockchain. Then, we shift the attention to the un-

wanted but inevitable blockchain forks that are causing problems to the Bitcoin network.

Without blockchain forks, there will be no need to study selfish mining, which is the main

topic of this work. Finally, we provide an overview of UPPAAL [4] and more specifically,

of the UPPAAL STRATEGO [15] extension, the model checking tool used to conduct this

work.
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2.2 Bitcoin

Bitcoin is the first decentralized global currency system introduced by Satoshi Nakamoto

[23] in 2008. Unlike traditional currencies, such as Euro and USD, which are maintained

by centralized authorities (banks), Bitcoin is a currency maintained by volunteer partic-

ipants worldwide, called miners. Each participant (miners and non-miners) of Bitcoin’s

network keeps a replica of the transaction’s ledger that sometimes may slightly differ

from others. This ledger tracks the balance of all accounts in the system. To verify new

transactions into the distributed ledger, Bitcoin miners stick to a consensus protocol, an

agreement of the rules they should follow during the mining procedure. In this work, we

abstract the complexity of transactions’ and blocks’ structures since they are out of this

study’s scope—more details about how Bitcoin works can be found in [1, 8, 22].

2.2.1 Transactions

In general, a transaction transfers bitcoins (the currency) from one or more source ac-

counts to one or more destination accounts. This becomes possible due to the capability

to enter more than one input and output in each transaction. Each input is linked to an

output of a previous ledger’s transaction, which has not yet been spent. Such transactions

are called unspent transactions. It goes without saying that in order for an unspent trans-

action to be linked to an input of a transaction, its ownership1 must be proved. On the

other hand, each output can refer to a different account and, hence, be claimed later as in-

put to another transaction. Moreover, the amount of bitcoin transferred to other accounts

should never exceed the amount of bitcoin accumulated by inputs. Any bitcoins leftover

from the transaction’s inputs, that is, they are not transferred to an account, remain as

transaction fees to the miner. The miner who will include the transaction in a block of

the ledger will be the one who will obtain the transaction fees of the transactions included

in the block. Therefore, this adds an incentive to miners who waste power during the

mining procedure. In addition to the transaction fees, the miner of a newly mined block is

incentivized by receiving an additional predefined reward. This reward is in the form of a

transaction, namely coinbase transaction, which allows the miner to include a transaction

1Bitcoin uses ECDSA to secure the authenticity of transactions and to create accounts from public-
private key pairs

6



into the block without inputs (this is the only exception to the rule) but with outputs that

can spend the predefined reward.

2.2.2 Blocks

The purpose of blocks is to confirm the validity of transactions. A block contains a set of

transactions that will be validated. The creator of a block, the so-called miner, can decide

whether a transaction will be included in the block and transactions’ order in that block.

When creating a block, the mining procedure is followed, which requires solving a

computationally difficult puzzle. This puzzle is called proof-of-work. Bitcoin uses the

Hashcash [9] proof-of-work system, which was originally used to limit email spam and

denial-of-service attacks. Each block can be serialized, and its digest can be found after

applying a cryptographic hash function. To solve the puzzle, a miner needs to find a

valid nonce that is part of the block; therefore, its digest will change after applying a new

nonce. As cryptographic hash functions are one-way, it is difficult to find a nonce that

produces a correct solution, but it is straightforward for others to verify it. A valid nonce

must evaluate the block’s digest to a value less than or equal to the target determined by

the consensus protocol (can also be seen as leading zeros). Therefore, since finding an

acceptable digest is probabilistic, the higher the computing power of the network a miner

possesses, the greater the chances that this miner will be the next block’s owner by finding

a valid nonce. Moreover, the target changes every 2016 blocks so that a new block will

require approximately 10 minutes to be mined. Finally, a miner will publish its block

immediately after creating it so that it can be disseminated to every node in the network

as soon as possible to avoid forks.

2.2.3 Blockchain

So far, we have seen how transactions are validated and ordered into a block. However,

this is not enough to create a distributed ledger of transactions, and therefore there is a

need to define the order of transactions between different blocks. The blockchain serves

this purpose, which is essentially a directed tree of blocks.

In the blockchain, each block is linked to another block, which is called its parent. A

block defines its parent by including its digest within itself. The pointer to the parent of

7



a block implies that a block can not be altered by modifying its transactions or metadata

later. If that is the case, its digest will completely change; therefore, its children will

become orphans and might be invalided according to the target value. The genesis block

is the root of the blockchain, and it is hardcoded. The height of a block is calculated based

on the distance from the genesis block. For example, the genesis block has 0 height.

Assuredly, there can be many branches into the blockchain; however, only the longest

branch is considered valid, that is, the branch with the greater height. To be more precise,

the longest chain is the chain with the most work, which is almost always the same as just

comparing the height, unless the fork spans a re-target. Therefore, the transactions in the

blocks of the longest chain are the only transactions that are considered valid. The block

at the end of the longest branch is called the head of the blockchain. Miners extend their

local blockchain on top of that block.

2.2.4 Blockchain Forks

We already observed that blockchains can have multiple branches simultaneously; how-

ever, according to the consensus protocol, miners mine on top of the longest branch.

These branches are called blockchain forks, and they are the reasons for many possible

attacks to the Bitcoin system.

A blockchain fork can be caused either from deliberately mining on top of a side

chain which is not the longest or from information propagation delays of the network,

which can cause concurrent block mining from distinct miners. In our work, information

propagation delays studied in [17] are considered negligible compared to the time needed

to mine a new block (forks caused by concurrent mining are omitted). Moreover, Blocks

that are not in the longest fork are called stale blocks.

In the presence of blockchain forks, miners can decide to mine on top of different

forks. As a consequence, the longest fork can change at any time if a side fork surpasses

the current longest fork in terms of height. Therefore, the Bitcoin network never commits

a transaction or a block definitively because the longest fork can change. Hence, the

blocks of the longest fork will change, and as a result, the valid transactions and their

order will also change.

As discussed later, in Chapter 3, Blockchain forks are exploited in selfish mining to

increase miners’ revenue without following the consensus protocol. Therefore, they can
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deceive honest miners by creating deliberate forks.

2.3 UPPAAL Model Checker

UPPAAL is a tool for modeling, validating, and verifying real-time systems modeled as

networks of timed automata [7], which are composed into a system, extended with data

types.

Each UPPAAL automaton consists of locations, edges, and local declarations of func-

tions and variables. A location represents a state of the automaton, and it can be either

initial (only one per automaton), urgent, which freezes the time or committed, which also

freezes the time; however, the next transition must be taken from a committed location.

The last restriction does not apply to urgent locations; thus, this distinguishes them. Fur-

thermore, a location has an invariant, which determines how long an automaton can stay

there or after how long it can leave from there. In addition, edges allow the transition

from one location to another and, therefore, the transition of the system from one state

to another. An edge consists of updates, guards, synchronizations, and selections (not

used in this work). Firstly, updates are expressions that are executed during the transition,

and they can be used to update local variables of the automaton or global variables of

the system. Moreover, guards are expressions that state the conditions under which the

transition is executable (enabled). Finally, synchronizations contain the channel on which

the transition must be synchronized with another automaton or every other automaton in

the case of a broadcast channel. The transitions of automata are executed simultaneously

when a synchronization occurs.

UPPAAL uses TCTL [5, 6] temporal logic language to verify its properties. An ex-

tended tutorial is provided in [10]. In general, there are five properties, namely possibly

(satisfied), invariantly (always satisfied), potentially always, eventually (there is always a

chance to be satisfied), and leads to (response). In this thesis, we use solely the invariantly

property which is denoted by:

A[] Expression (2.1)

It basically means that the expression is satisfied permanently without a moment of un-

9



satisfaction. Overall, there are many extensions of UPPAAL, but for the purposes of this

work, we focus on UPPAAL STRATEGO.

2.3.1 UPPAAL STRATEGO

This extension of UPPAAL integrates UPPAAL SMC [11, 16], which enables statistical

model checking. UPPAAL SMC essentially replaces the non-deterministic choices be-

tween multiple enabled transitions by probabilistic choices and the non-deterministic

choices of time delays by probability distributions. The probability distributions are ei-

ther uniform distributions in cases with time-bounded delays or exponential distributions

in cases of unbounded delays. If an exponential distribution specifies the time delay, then

instead of invariant, the distribution rate λ is specified at a location. These changes permit

probability estimation, hypothesis testing, and probability comparison. In this work, we

used the capability of probability estimation queries, which is denoted by:

Pr[bound;#sim](<> or [] Expression) (2.2)

This query estimates the satisfaction probability of a path expression, where the diamond

means in the future while the square means always. The model exploration is bounded

by an expression that can set a limit based on a clock value, model time (used in this

thesis) or the number of steps. Furthermore, UPPAAL SMC allows value estimation,

which estimates the expected mean value of the minimum or maximum evaluation of an

expression by running a given number of simulations, which is denoted by:

E[bound;#sim](min: or max: Expression) (2.3)

The number of simulations is specified after the bound, which was explained earlier.

Moreover, note that for the probability estimation query, it is not required to set the num-

ber of simulations because UPPAAL handles it.

Furthermore, UPPAAL STRATEGO integrates UPPAAL TIGA [12] and statistical learn-

ing methods proposed in [14]. As a result, UPPAAL STRATEGO allows the exploration of

strategy space defined by the automata, and queries offered by UPPAAL SMC can be ex-

amined under specific strategies that maximize or minimize a property and/or guarantee
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an objective. The query of maximizing an objective is denoted by:

strategy S = maxE (Expression) [bound] (2.4)

where S is an identifier which can be applied to the queries offered by UPPAAL SMC by

adding at the end of the queries the words "under S" (bound implies the time limit as ex-

plained earlier). For this purpose, UPPAAL STRATEGO allows the definition of controlled

and uncontrolled edges. The controlled edges are depicted as solid lines and they are

controlled by the controller; thus, the controller is able to remember a path or transition

selection to maximize or minimize and/or guaranty an objective.

2.3.2 Test Cases

The test cases tool can be used to examine the correctness of UPPAAL models. It gen-

erates traces from the implemented model. The produced traces are then translated into

test cases, which are output files (one per test case), based on test code entered into the

model on edges and locations. Test code at locations can be entered either on entering

or exiting the location. Therefore, the correctness of the implementation can be checked

by entering the appropriate test code in edges and locations, which will produce a file for

each test case that can be used later for testing the implementation. It is up to the devel-

oper how test cases will be used. In Figure 2.1, we present the test case procedure for our

implementation which is described later in Section 4.5. An extended tutorial on the test

cases tool is located in the demos folder of the current (4.1) development release of the

academic version of UPPAAL.
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Chapter 3

Selfish Mining Strategies
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3.1 Overview

This chapter provides an overview of the existing selfish mining strategies alongside our

newly introduced variations. We begin with the notations used throughout this thesis and

how we are modeling the strategies as state machine diagrams. After that, we depict the

basic selfish mining strategy proposed in [18]. In the subsequent section, we describe
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Lead, Equal-Fork, and Trail stubborn selfish mining variations proposed later in [24].

The stubborn selfish mining strategies contain the notion of stubbornness, which was our

inspiration to introduce two new selfish mining strategies, the Safe-Lead and Safe-Equal-

Fork. We will discuss them in more detail later in this chapter, but for now, note that

they are strongly related and similar to Lead and Equal-Fork respectively. The chapter

ends by providing an efficient way to construct hybrid selfish mining strategies. A hybrid

selfish mining strategy combines more than one of the variations reported above in order

to increase its stubbornness and profit. We also provide an outline of the pseudocode

summarizing the actions performed by any feasible hybrid strategy.

Honest miners strictly follow the consensus protocol described in Section 2.2. On the

other hand, selfish miners deviate from the consensus protocol regarding the publication

of blocks. They deliberately withhold blocks that they have mined in order to reveal them

later in such a way that will be more profitable for them. A selfish miner has the dilemma

of when and how many blocks to reveal. These decisions define the strategy which the

miner follows. The functionality of each one of the strategies used in this thesis will be

described in this chapter.

3.2 Modeling of the Mining Procedure

This section provides a list of the notations used for the rest of this thesis. Furthermore,

for each variation of the selfish mining attack, a state machine will be provided.

The mining process consists of a set of entities that interact with each other. There

are two types of entities, those that are selfish and those that are honest. Their interaction

depends on the strategy followed by the attacker, also known as selfish miner. In Table

3.1, we give a list of notations with the notations used in this work, accompanied by

a short description, where affected by the connectivity means that they receive first the

selfish block when a fork occurs.

3.2.1 Defining the Mining Environment

The environment of the mining procedure consists of a set of entities that interact with

each other. Each one of the entities holds a proportion of the total computing power of the

entire blockchain network. In total, there are two different entities, of which one is divided
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Entities of Environment (Section 3.2)

A Alice – Selfish miners coalition

B Bob – The set of all honest miners

GB Good Bob – The subset of Bob which is not affected by its connectivity with
Alice

BB Bad Bob – The subset of Bob which is affected by its connectivity with Alice

Network’s Mining Power Distribution Parameters (Section 3.2)

α The fraction of the total computing power of the network held by Alice

β The fraction of the total computing power of the network held by Bob

γ The fraction of computing power held by Bob which belongs to Bad Bob

Stubborn Mining Variations (Section 3.4)

S Basic Selfish mining (Section 3.3) – The first formally described selfish mining
strategy

L Lead stubborn – Stubborn variation which insists on lead

F Equal-Fork stubborn – Stubborn variation which quickly gains lead

Ti Trail stubborn - Stubborn variation where Bob pulls ahead of Alice in terms of
lead, where i is the trail stubbornness degree

Conservative Stubborn Mining Variations (Section 3.5)

LS Safe-Lead conservative stubborn – Conservative stubborn variation which in-
sists conservatively on lead

FS Safe-Equal-Fork conservative stubborn – Conservative stubborn variation which
gains lead quickly in a conservative fashion

Table 3.1: Notation table.

into two sub-entities. More specifically, we have the following entities and sub-entities:

• Alice (A) – This entity represents the coalition of selfish miners. Selfish miners

are the miners in the network who do not follow the predetermined consensus pro-

tocol rules and deviate in order to have a personal profit. More specifically, they

follow their own rules of publishing a newly created block. Their mining behavior

is described as one of the selfish mining strategies in Sections 3.3, 3.4, 3.5, and 3.6.

The fraction of computing power they possess is denoted by the letter α , where

0≤ α ≤ 1.

• Bob (B) – This entity represents the entire set of honest miners. Honest miners are
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the miners in the network who strictly follow the rules of the consensus protocol.

As a consequence, they have no selfish intentions. The fraction of computing power

they possess is denoted by the letter β , where 0≤ β ≤ 1 and α +β = 1.

• Good Bob (GB) - Bob’s first sub-entity consisting of miners who inherit Bob’s

honest behavior. The only difference is that Alice is not well connected with him.

As a result, when two forks (Alice’s and Bob’s) of equal length co-occurred, he will

mine on top of Bob’s block. The fraction of computing power corresponding to this

sub-entity is 1− γ of Bob’s computing power, that is, (1− γ)β of the network’s

total computing power, where 0≤ γ ≤ 1.

• Bad Bob (BB) - Bob’s second sub-entity consisting of miners who again inherit

Bob’s honest behavior. The only difference is that Alice is well connected with

him. As a result, when two forks (Alice’s and Bob’s) of equal length co-occurred,

he will unintentionally mine on top of Alice’s fork. The fraction of computing

power corresponding to this sub-entity is γ of Bob’s computing power, that is, γβ

of the network’s total computing power, where 0≤ γ ≤ 1.

The entities of the environment also have a local blockchain. The blockchain is main-

tained as described in 2.2. Any reference to the public and private blockchains are made

to highlight the fork on top of which the entities are mining. Alice strictly works on her

private blockchain, but at the same time, she is inspecting the blocks mined on the public

blockchain. On the other hand, Bob mainly works on the public blockchain, with Bad

Bob sometimes accidentally working on the private blockchain. Furthermore, Bob may

not have a complete picture of the entire private blockchain since Alice may not have

revealed all of her blocks yet.

3.2.2 Strategies as State Machines

The strategies in this work have been modeled as state machines. More specifically, for

each strategy, we provide Alice’s state machine, which depicts a complete picture of Al-

ice’s actions upon an event. A state machine consists of:

• A set of states, the representation of which will be explained below.
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• A set of transitions from one state to another. Moreover, each transition contains

the following information as a label. The probability, given that Alice is currently

located in the state from which the transition exits, for the transition to be taken.

As a result Alice performs an action during the transition to the new state. This is

denoted with the label propability
action placed on the transition. A transition can also be

denoted by the tuple (σ1,pr,act,σ2), where σ1 is the current state, σ2 is the state

to which the transition leads, pr is the probability for the transition to be taken and

act is the action being performed during the transition.

As mentioned above, Alice has to decide which action to perform each time a proba-

bilistic event occurs. These decisions taken by Alice define the strategy which she follows.

Overall, there are four different actions to choose from. "No action" (n), Alice remains

idle (no blocks of the private chain are published). "All" (a), Alice will publish all of her

unpublished blocks. "Match" (m), Alice will publish as many blocks as needed to match

the length of the public blockchain. "Restart" (r), Alice abandons her effort and continues

the mining process starting from the head of the public blockchain, that is, she loses all

of her mined blocks that existed solely in her private blockchain. In Table 3.2, there is

a summary of the possible actions that can be performed by Alice every time an event

occurs.

Action Description

n No action – Alice will not publish blocks (idle)

a All – Alice will publish all unpublished blocks of her private chain

m Match – Alice will publish as many blocks as required to match public chain

r Restart – Alice will abandon her effort

Table 3.2: Alice’s possible actions.

Regarding the names of the states, they have been used in such a way as to give us

enough information about the lead that Alice has at her disposal as well as the state of

the environment (but not for the risk she runs). The lead can take any value from the

set of integers (lead = · · · ,−1,0,1,2,3, · · ·). In contrast, the risk can take any value from

the set of positive integers (risk = 0,1,2, · · ·). When we refer to the lead of Alice com-

pared to Bob, we mean the difference in the length of private and public blockchains,
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lead = len(pubchain)− len(pr chain). On the other hand, the risk is the number of

blocks that are included in the private chain, whether published or not, which are not

included in the public chain. (Note that when we refer to public and private chains, we

mean the longest chains, that is, the chains with most blocks). For instance, if Alice cur-

rently has lead and risk equal to five, then if Good Bob mines the next block, Alice’s lead

reduces to four. However, the risk remains the same because the block she revealed when

Goob Bob mined the block is not included in the public chain.

As we have seen, there is a difference between risk and lead; the next step is to explain

how and what exactly a state represents. Firstly, a state is given an integer number, either

negative or positive. This number indicates the lead of Alice compared to Bob at that

state. Then the state is classified into one of the state types. In total, there are three

types of states, without an apostrophe, with a single apostrophe (′), and with a double

apostrophe (′′). The apostrophes follow the number given to that state, namely the lead of

Alice. All states, which are of the first type without apostrophe, denote a state in which

(from Alice’s point of view) there are no forks, that is, Bob has not mined a block yet

since the moment Alice started her new cycle of selfish behavior. A new cycle of selfish

behavior is started every time Alice performs the actions "all" or "restart". With a single

apostrophe, we denote the states in which there is a fork (from Alice’s point of view) and

Bad Bob mines on top of Alice’s fork, while with a double apostrophe, Bad Bob mines

on top of Bob’s fork. For instance, with 1
′

we will denote the state in which Alice has a

lead of one block and Bad Bob mines on top of Alice’s fork, whereas with 0
′′

we denote

the state where Alice has no lead and Bad Bob mines on top of Bob’s fork. It is important

to note that the initial state for every state machine is state 0. Finally, we want to mention

a special case in our state machines, where we give information about the risk that Alice

runs and is denoted by 0
′
s. In this state, we know that Alice has no lead, there is a fork

(Bad Bob mines on top of Alice’s fork), and Alice runs a risk equal to one.

3.3 Basic Selfish Mining

The first strategy that we will study was initially proposed in [18]. As we mentioned ear-

lier, the inspiration of this work was to take advantage of block withholding by Alice and

her excellent network connectivity with Bad Bob. As a result, the basic selfish mining was
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born. The strategies in Sections 3.4 and 3.5 are based on this strategy. (The differences in

the new strategies concern Alice’s chosen actions upon the probabilistic events)

It is essential to mention that there is a difference when Bad Bob mines a block from

when Good Bob does. The difference is that Bad Bob will mine on top of Alice’s fork

when there is a fork, and the public fork is of equal length with Alice’s fork. Into our

state machines, this is represented by the states with a single apostrophe. As a result, all

previous Alice’s blocks in the current private chain will be confirmed and successfully

inserted into the public chain making Good Bob continue mining on top of Bad Bob’s

block when Bad Bob first mines a block. The difference is not particularly evident in

the basic selfish mining strategy, but we will see later that in the new strategies, different

actions may be taken when Bad Bob mines a block compared to when Good Bob does.

In brief, the fundamental function of the basic selfish mining strategy is as follows.

Alice will reveal a block, if any, to match the public chain every time Bob mines a block.

When Alice matches the length of the public chain, she divides Bob’s computing power

because Good Bob will mine on top of Bob’s fork and Bad Bob on top of Alice’s fork.

Moreover, Alice will never risk losing her mined blocks. In such a situation, Alice will

publish all of her unpublished blocks to ensure her revenue. As a result, the selfish mining

has the effect to waste the mining power of Bob who is mining blocks on a fork that is

eventually abandoned because it is no longer the longest fork.

In order to describe a strategy in more detail, we need to clarify Alice’s actions being

performed for every reachable state of the state machine for this specific strategy. The

following rules apply for the basic selfish mining:

• When Alice is in states ≥ 0 or ≥ 2′ and Alice mines a block, then Alice remains

idle.

• When Alice is in state 2 or 2′ and Bob mines a block then Alice reveals all of her

blocks.

• When Alice is in state 0′ and Alice mines a block, then Alice reveals all of her

blocks.

• When Alice is in states 1,≥ 3 or ≥ 3′ and Bob mines a block, then Alice reveals a

block and matches the public chain.
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• Alice is not negative lead tolerant (states ≤ −1′′ not reachable), thus she always

restarts when the lead is lost.

This strategy is depicted as a state machine in Figure 3.1, where we can see the states

and their corresponding transitions that describe Alice’s behavior in each situation. The

state machine presented in our work is not the same as presented in [18], as we wanted

to represent additional information with slightly different modeling, i.e., the presence of

public and private forks. Thus, we translated it into our modeling scheme. Nevertheless,

it is equivalent in terms of the behavior of Alice.
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Figure 3.1: State machine of basic selfish mining strategy.

Now that we know the exact functionality of the strategy, we can conclude that this

strategy has a property. We define the Risk Safety property with maximum risk of i,

denoted with RSi, where i > 0. If this property is satisfied by a strategy then the strategy

always has risk below i. A strategy that satisfies RS j, where j > 0, also satisfies RSi, for

i≥ j.

The basic selfish mining satisfies the RS1 property. This implies that Alice never risks

more than one block since the only case in which she risks a block is when she is in state

0′. This state is only reachable if Alice first mines a block during a new cycle of selfish

mining behavior, and Bob mines the next block. Therefore Alice cannot run a risk of more

than one block for the strategy currently discussed. As we will see later, this strategy is

the most conservative since the risks taken are minimal.
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3.4 Stubborn Selfish Mining

At the end of the previous section, we briefly discussed the Risk safety property of the

selfish mining strategy. The risk taken by Alice in the stubborn strategies [24] can be-

come arbitrarily large; hence, we can say that they satisfy RS∞, but for the rest of this

thesis we say that strategies which satisfy RS∞ do not satisfy the Risk Safety property.

More specifically, in the paper mentioned above, the authors perceived that new strategies

could be created by increasing the stubbornness of basic selfish mining by introducing

small variations in Alice’s decision rules. A strategy is considered more stubborn when it

performs less frequently the actions "all" and "restart"; that is, Alice prefers to insist on

the effort she is currently in, rather than starting a new cycle of selfish mining behavior.

In total, they designed three variations, which they named Lead, Equal-Fork, and Trail

stubborn. The state machine that illustrates how these strategies work is shown in Figure

3.2, which includes all the variations color separated. The state machine we present is

not the same as presented in [24] since our modeling is slightly different, and our basic

strategy is not the same; therefore, we translated it to meet our modifications. Their basic

strategy was a version of the basic selfish mining that omitted Alice’s matching rule when

Bob mines a block. The matching rule was only part of the Lead stubborn mining, which

will be described in short. We made this differentiation (in Equal-Fork and Trail stubborn

variations) because there was no reason not to include the matching rule, as it does not

insert extra insistence from Alice on its inclusion. Instead, with the matching rule Bob’s

computing power is divided into Good Bob’s and Bad Bob’s. The rest of this thesis works

with these slightly different stubborn variations.

3.4.1 Lead

Lead stubborn is the strategy in which Alice is more stubborn in terms of maintaining her

lead. Besides, this is evident from the name given to the strategy.

In short, the main idea of this strategy is that Alice will never perform the action "all"

when she has any positive lead. Thus, she increases her stubbornness regarding her lead,

trying to exploit it maximally. However, this has, as a consequence, a more dangerous

amount of risk. No one can guarantee that this strategy will have bounded risk as applies

in basic selfish mining, which satisfies the RS1 property.
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                   Equal-Fork stubborn mining 
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Figure 3.2: State machine of Lead, Equal-Fork and Trail (T1) mining variations. (1) Green
+ Cyan + Gold + Black indicates the state machine of Lead stubborn strategy. (2) Blue
+ Cyan + Purple + Black indicates the state machine of Equal-Fork stubborn strategy.
(3) Bordeaux + Purple + Gold + Black indicates the state machine of Trail (T1) stubborn
strategy.

As previously done, to describe the strategy, we need to clarify Alice’s decisions in

each of the states in which she may find herself. In the previous section, we described the

basic strategy in detail, so from now on, we will only mention the differences towards it,

which for Lead stubborn are as follows:

• When Alice is in 2 or 2′ states and Bob mines a block, then Alice instead of reveal-

ing all of her blocks, she reveals a block to match the public chain.

• When Alice is in state 1′ and Alice mines a block then Alice takes no action.

• When Alice is in state 1′ and Bob mines a block, then Alice reveals a block to match

the public chain.

For this strategy, the state 1′ is reachable as opposed to basic selfish mining. This is

the result of Alice’s higher stubbornness level.
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3.4.2 Equal-Fork

Equal-Fork stubborn is the strategy in which Alice is more stubborn when public and

private forks are of equal length; Alice has already revealed all of her blocks and has no

other block to reveal.

If we recall the basic selfish mining functionality, we can observe that Alice did not

take risky decisions when she was in a situation with equal forks (state 0′). If she mined

the next block, she would have immediately revealed it to secure all of her previously

mined blocks. This is not the case for this stubborn strategy. If Alice is in such a situation

and mines the next block, she will keep it secret instead of revealing it. The incentive

behind this variation is that Alice wants to gain a lead immediately and therefore pull

ahead of Bob. Consequently, this slight change eliminates the Risk Safety property since

an infinite loop between states with a lead of zero and one without Bad Bob mining a

block intermediately is possible, which can arbitrarily increase risk.

As before, we will only refer to the differences between this strategy and the basic

selfish mining, which are the following:

• When Alice is in 0′ or 1′ states and Alice mines a block, then Alice performs no

action.

• When Alice is in state 1′ and Bob mines a block, then Alice reveals a block to match

the public chain.

We notice that the 1′ state is also reachable in this strategy in contrast to basic selfish

mining.

3.4.3 Trail

So far, the strategies analyzed were referring to one and only one strategy. Trail stubborn

defines a set of strategies with a distinction that characterizes them all. Alice remains

stubborn even if the public chain is pulled ahead of her private chain; that is, the lead she

poses is negative. Undoubtedly, these strategies are more stubborn than the basic selfish

mining, as they not only allow Alice to lose the lead from her competitors but also she

loses the advantage of Bad Bob (who unintentionally mines on top of her fork). This

happens because when Bob is ahead of Alice and mines a block, Alice will not be able
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to match his public chain fork as she lacks blocks. Therefore, Bad Bob will not mine

anymore in favor of Alice. The different Trail stubborn strategies are distinguished by

the negative lead that Alice allows before giving up. The parameter i, where i ≥ 1, is

the identifier for these strategies, and it is placed as a subscript after the word Trail. In

general, Alice gives up when the lead is equal to −(i+ 1). The main incentive behind

these strategies is that Alice hopes that with her computational power, she will be able to

overtake the public chain to secure blocks that with negative lead would have been other-

wise lost. We want to mention that the only Trail stubborn strategy that was studied was

T1 because the results in [24] showed that higher profit could not be achieved for greater

i. Additionally note that this strategy does not satisfy the Risk Safety property since the

negative lead allows arbitrarily large paths between double apostrophe type states.

Regarding the differences between these strategies and the basic selfish mining, they

are as follows:

• When Alice is in state 0′ and Good Bob mines a block, then Alice performs "no

action" (this allows negative lead).

• When Alice is in states −i′′ < s ≤ 0′′ and Bob mines a block, then Alice performs

"no action".

• When Alice is in state −i′′ and Bob mines a block, then Alice abandons her effort

and performs "restart".

• When Alice is in states−i′′≤ s≤−1′′ and Alice mines a block, then Alice performs

"no action".

• When Alice is in state 0′′ and Alice mines a block, then Alice reveals all of her

blocks.

Note that Alice still abandons her effort when she is in the 0′ state and Bad Bob mines

a block. The reason that led to this differentiation is that when Bad Bob mines a block,

he confirms all of Alice’s previous blocks. Therefore, Alice does not lose any blocks and

there is not any reason to take additional risks. Alice will also lose the advantage of Bad

Bob (when behind), which will make her effort much more difficult. Differentiating this

behavior can lead to worse results.
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3.5 Conservative Stubborn Selfish Mining

In this section, we present two new conservative variations inspired by the stubborn strate-

gies of Section 3.4. The new strategies are designed because the corresponding stubborn

strategies do not satisfy the Risk Safety property. Note that there are no changes for Trail

stubborn strategies that can turn them into conservative stubborn, as we have named the

new strategies. This unsatisfaction aroused our interest, and by making the appropriate

changes to the Lead and Equal-Fork stubborn, we achieved the satisfaction of the Risk

Safety property. The only difference is that Alice’s maximum risk is two as opposed to

one in basic selfish mining; thus, RS2 property is satisfied. The satisfaction of this prop-

erty will be studied in more detail in Section 5.5. For the time being, we can perceive it

intuitively through the descriptions that will follow.

For better understanding the required strategy changes, in Figure 3.3, we illustrate six

blockchain figures covering all the edge cases that need to be discussed. First, let us look

at Figures 3.3b, d and f, which relate to the changes that had to be made to Lead stubborn

to produce Safe-Lead conservative stubborn strategy. In Figure 3.3b, we see that Alice is

in state 1′ with a lead of one block, while previously she was in state 2′ with a lead of two

blocks where a new block emerged from Bad Bob. This resulted in securing all of Alice’s

previous blocks, as Bad Bob mined on top of Alice’s fork. So, Alice will risk only her last

two blocks in case of abandonment of her effort. On the other hand, in Figure 3.3d, the

only difference is that when Alice was in state 2′, the resulting block was from Good Bob.

However, that does not bound Alice’s risk since Good Bob mined on top of the public

chain. So, Alice’s risk is greater than two. Thus, Alice may decide to give up her effort,

leading to a loss of an arbitrarily large number of blocks. Therefore, this made us think

that by differentiating Alice’s action depending on whether Bad Bob or Good Bob mined

the last block will help. In Figure 3.3f, we see the last case of transiting to state 1′, but

this time from state 2, where there are not two forks yet. The risk is always two regardless

of whether Bad Bob or Good Bob mined the last block, so a differentiation is not needed.

Figures 3.3a, c and e show the changes that needed to be made to the Equal-Fork

stubborn to produce the Safe-Equal-Fork conservative stubborn. In Figure 3.3a, we see

that Alice is in state 0′, while previously she was in state 1′, where a new block from

Bad Bob emerged. This resulted in securing all of Alice’s previous blocks, as Bad Bob
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Figure 3.3: Representation of blockchain’s states that motivated us to introduce the Safe-
Lead and Safe-Equal-Fork conservative stubborn mining variations. Each state shows the
lead of the selfish miner (lead), the number of selfish blocks that are not yet included in
the public chain (risk) and the miner of last mined block. The arrows indicate the fraction
of Bob’s power which is mining on each block.

continued mining on top of Alice’s fork. So, Alice will risk only her last block in case

of abandonment of her effort. On the other hand, in Figure 3.3c, the only difference is

that when Alice was in state 1′, the resulting block was from Good Bob. However, that

does not limit Alice’s risk since Good Bob mined on top of the public chain. So, Alice’s

risk is greater than one. Thus, Alice may decide to give up her effort, leading to a loss of

an arbitrarily large number of blocks. So, as before, we thought that a differentiation in

Alice’s actions depending on whether Bad Bob or Good Bob mined the last block would
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help. In Figure 3.3e, we see the last case of transiting to state 0′, but this time from state 1

where there are not two forks yet. The risk is always one regardless of whether Bad Bob

or Good Bob mined the last block, so a differentiation is not needed.

With all the above observations, an introduction was made to the logic behind the

modifications needed to transform stubborn strategies into conservative ones. Besides,

the strategies were called conservative stubborn as they use "all" and "restart" actions

less frequently than the basic selfish mining, but more often than stubborn strategies. In

Figure 3.4, the state machine that illustrates how these strategies work is depicted; the two

strategies are color separated.
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Figure 3.4: State machine of Safe-Lead and Safe-Equal-Fork conservative stubborn min-
ing variations. (1) Green + Black indicates the state machine of Safe-Lead conservative
stubborn strategy. (2) Blue + Black indicates the state machine of Safe-Equal-Fork con-
servative stubborn strategy.
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3.5.1 Safe-Lead

Safe-Lead conservative stubborn is the strategy designed to satisfy RS2 property when

Alice wants to risk at most two blocks and to insist more on the lead she holds.

This strategy is almost identical to Lead stubborn. The only difference is that the

action performed by Alice is differentiated when she has a lead of two blocks, and the

next block is mined either from Bad Bob or Good Bob. Due to its conservative nature,

when the next block is mined from Good Bob, Alice will behave the same as in basic

selfish mining, while when the next block is mined from Bad Bob, Alice will behave like

in the Lead stubborn mining. This, as we saw in Figure 3.3, ensures a maximum risk

equal to two because Good Bob is mining solely on the public chain whereas Bad Bob is

mining on Alice’s fork; thus, he is acting like a safety barrier. This safety barrier allows

Alice to be more stubborn when Bad Bob mines the next block. The reader can run any

example of execution on the state machine, which we provide in Figure 3.4, to confirm

that risk is always bounded to two blocks.

In more detail, the differences between this strategy and Lead stubborn are as follows

(this strategy inherits all behavioral features of Lead stubborn):

• When Alice is in state 2′ and Bad Bob mines a block, then Alice reveals a block

and matches the public chain.

• When Alice is in state 2′ and Good Bob mines a block, then Alice reveals all of her

blocks.

Note that when Alice is in state 2, the entity that will mine the next block does not

influence her decision; she will always match the public chain as in Lead stubborn.

3.5.2 Safe-Equal-Fork

Safe-Equal-Fork conservative stubborn is the strategy designed to satisfy RS2 property

when Alice wants to risk at most two blocks and insist on the presence of two equal forks.

As before, this strategy is almost identical to the corresponding stubborn strategy.

The only difference is that in Safe-Equal-Fork, Alice sometimes behaves like in the basic

selfish mining. This depends on the risk she runs when she is in a state where the lead

is equal to zero. When Alice has a lead of zero, and the risk is less than or equal to one,
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Alice follows the Equal-Fork stubborn strategy rules. This is especially the case when

Alice has one block lead and Bad Bob mined the next block. Therefore, Bad Bob secures

all of Alice’s previous blocks, leaving only the last one in danger. In all other cases,

specifically, when the risk is greater than one (and the lead is zero), Alice behaves as in

the basic selfish mining. Hence, Alice’s future actions depend on whether Good Bob or

Bad Bob is the latest block’s miner. In the latter case, Good Bob is always the miner

of the latest mined block. We ensure that Alice will never risk more than two blocks by

following this strategy with these changes.

In more detail, the differences between this strategy and Equal-Fork stubborn are as

follows (this strategy inherits all behavioral features of Equal-Fork):

• When Alice is in state 1
′

and Good Bob mines a block, then Alice reveals a block

to match the public chain. (Transition to state 0
′
, which will affect future actions

according to basic selfish mining)

• When Alice is in state 1
′

and Bad Bob mines a block, then Alice reveals a block

to match the public chain. (Transition to state 0
′
s, which will affect future actions

according to Equal-Fork stubborn)

• When Alice is in state 0′ and Alice mines a block, then Alice reveals all of her

blocks.

• When Alice is in state 0
′
s and Bob mines a block, then Alice abandons her effort to

restart a new cycle of selfish behavior.

• When Alice is in state 0
′
s and Alice mines a block, then Alice performs "no action".

This strategy is the only one in which the state 0
′
s is reachable. This is a consequence

of the differentiation in Alice’s decisions when there is a risk of one block, i.e., Alice will

risk in the presence of equal forks only when she runs a risk of one block since she wants

to avoid the infinite loop between states with a lead of zero and one without Bad Bob

mining intermediately a block, which can arbitrarily increase risk. Therefore, a dedicated

state was necessary to distinguish such situations. As mentioned before, this state is the

only one in our state machines that provides information about Alice’s risk, which is one

block.
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Figure 3.5: Strategies 3D space. A strategy is coordinated in the 3D space based on its
stubbornness on the Lead, Equal Fork and Trail categories. Moving to the direction of the
arrows means that the strategy is becoming more stubborn on that category. With dark red
(dashed) color we mark our new conservative stubborn mining strategies in the 3D space.

3.6 Hybrid Strategies

The strategies described in the previous sections are not mutually exclusive, so they can

be combined to form hybrid strategies that are more stubborn. The only combinations that

can not be formed are those of Lead and Equal-Fork stubborn with their corresponding

conservative stubborn strategies.

In total, there are three measures of stubbornness that characterize each hybrid selfish

mining strategy. Therefore, all strategies can be presented in a three-dimensional space, as

shown in Figure 3.5. The three measures are Lead, Trail and Equal-Fork stubbornness: (1)

Safe-Lead and Lead strategies can increase the lead stubbornness of a hybrid strategy, (2)

Safe-Equal-Fork and Equal-Fork strategies can increase the Equal-Fork stubbornness of

a hybrid strategy, and (3) Trail strategies can increase the Trail stubbornness of a hybrid

strategy. There is an infinite number of Trail strategies; thus, this dimension spans to

infinity. In addition, note that Safe-Lead and Safe-Equal-Fork strategies do not always

contribute the same amount of stubbornness to the corresponding measure. The degree
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of contribution depends on the computational power of Bad Bob (γ). As γ approaches

0, then the behavior of both strategies approaches the basic selfish mining. On the other

hand, as γ approaches 1, both strategies’ behavior approaches the corresponding stubborn

strategy’s. Consequently, in the former case, they will not contribute to the stubbornness

in the respective measure, while in the latter case, they will tend to contribute the same

amount of stubbornness as the stubborn strategies do. The basic selfish mining is the

strategy with zero Lead, Equal-Fork, and Trail stubbornness, so it is coordinated on the

origin of the three-dimensional space.

The combination of strategies is not straight-forward because there are collisions be-

tween the decisions of which action Alice should perform on a specific occasion. For

example, we have a collision when we want to form the Safe-Lead-Safe-Equal-Fork strat-

egy (LSFS), and Alice has a lead of two blocks without the presence of a public fork yet

(state 2 of state machine). When Bob mines the next block, the Safe-Lead strategy will

ask Alice to perform the action "match", while the Safe-Equal-Fork will ask Alice to

perform the action "all". The question is how we will resolve these conflicts.

To address these ambiguities, we will define some transitions for each strategy that we

will call special transitions. These transitions characterize each strategy’s differentiation

from basic selfish mining and have no collisions between each other. In the existence

of a collision, the transition that will be preferred is the transition of the strategy which

is special, according to Table 3.3 which presents the special transitions for each of the

strategies. In this way, all conflicts will be resolved, and the combination of strategies

will be feasible since there are no conflicts between special transitions. The notation

used to describe special transitions is given in Section 3.2. Concerning the collision of

LSFS discussed earlier, we managed to resolve it since the special transition (2,β ,m,1′)

of Safe-Lead strategy will be preferred. It is important to note that every hybrid strategy

which contains at least one of the conservative stubborn variations is considered in the

category of conservative stubborn strategies. Also, hybrid strategies are given the name

of all combined variations, e.g., combination of all stubborn variations will result to LFT1

selfish mining hybrid strategy.

Algorithm 1 presents the pseudocode for the formation of hybrid strategies. This pseu-

docode was used to implement UPPAAL’s automata and test cases described in Chapter 4.

It shows how Alice’s behavior changes depending on the simultaneously activated vari-
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Strategy Special Transitions

Lead (L) (2′,(1− γ)β ,m,1′),(2′,γβ ,m,1′),(2,β ,m,1′)

Equal-Fork (F) (0′,α,n,1′)

Trail (Ti) (0′,(1− γ)β ,n,−1′′)

Safe-Lead (Ls) (2′,(1− γ)β ,a,0),(2′,γβ ,m,1′),(2,β ,m,1′)

Safe-Equal-Fork (Fs) (1,β ,m,0
′
s),(1

′,γβ ,m,0
′
s)

Table 3.3: Special transitions for each strategy.

ations. The activated variations depend on the lead, slead, f ork, s f ork, trail, and Tlen

input parameters. The last parameter determines the trail stubbornness, which we have

seen in the discussion of Trail strategies, and is assigned with a positive integer value. The

corresponding lead, f ork, and trail parameters must be set to true to activate the Lead,

Equal-Fork, and Trail variations. To activate Safe-Lead conservative stubborn mining, set

both lead and slead parameters to true; the same applies for Safe-Equal-Fork (set both

f ork and s f ork to true). Alice is behaving as in basic selfish mining if all variations are

disabled.

The pseudocode determines the decisions and necessary changes to all of Alice’s vari-

ables and data structures for three possible events. The events that may occur are the ini-

tialization of miners (line 1), the mining of blocks by miners belonging to Alice’s coalition

(line 9), and the mining of blocks by miners who do not belong to Alice’s coalition (line

21). Regarding the miners’ initialization (lines 1-7), there is a simple update of the local

blockchain with the publicly known blocks, and the selfish miner will start mining on top

of the private chain.

As we have seen in the initialization, there is no differentiation caused by activated

strategies. However, strategies will influence the decisions taken in the other two events.

We will then try to uncomplicate the pseudocode with references to it by providing a more

simplistic description so that the reader can easily understand it, but without referring to

details concerning the updates of variables.

For each of the two remaining events (line 9 and line 21), it must be made clear which

action Alice decides to perform in any state of the state machine she can be found. Starting

from the event of block mining by the miners of the coalition of Alice (lines 9-19), the

following apply:
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1. (lines 13-14) Alice is in state 0′ or 0
′
s. If Equal-Fork is activated then she does not

perform any action (SM1 lines 2-3). If Safe-Equal-Fork is activated then she does

not perform any action only if she is in safe zero state (SM1 lines 2-3). In all other

occasions she reveals all of her unpublished blocks (SM1 lines 4-6).

2. (lines 15-18) Alice is in state 0′′ and she reveals all of her unpublished blocks.

3. She does not perform any action in the other states (indirectly stated).

Continuing to the event of block mining by miners who do not belong to Alice’s

coalition (lines 21-40), the following apply:

1. (lines 24-25) Alice is in states s,−T
′′

len < s≤ 0′′ and she does not perform an action.

2. (lines 26-29) Alice is in states 0 or −T
′′

len and she abandons her effort.

3. (lines 30-32) Alice is in state 0′. If Trail is activated and the block belongs to Good

Bob then she does not perform an action (SM2 lines 2-3). In all other occasions she

abandons her effort (SM2 lines 4-6).

4. (lines 33-35) Alice is in state 1 or 1′ and she reveals her last unpublished block. If

Safe-Equal-Fork is activated and the block belongs to Bad Bob or she was in state

1 then she transits to state 0
′
s (SM3 lines 2-3).

5. (lines 36-37) Alice is in state 2 or 2′. If Lead is activated then she reveals one of

the unpublished blocks (SM4 lines 2-3). If Safe-Lead is activated and the block

belongs to Bad Bob or she was in state 2 then she reveals one of the unpublished

blocks (SM4 lines 2-3). In all other occasions she reveals all of her unpublished

blocks (SM4 lines 4-6).

6. (lines 38-39) Alice is in a state with lead greater than 2 and she reveals one of her

unpublished blocks.

Regarding the variables privateBranchLen, isBehind, and safeZero, they are used to

distinguish the three types of states. The privateBranchLen variable helps to distinguish

the single apostrophe states from the states without an apostrophe. The isBehind variable

helps to distinguish the states with a double apostrophe, and the safeZero variable helps
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us to distinguish the state 0
′
s. Furthermore, marked in red are the pseudocode changes to

support LS and FS conservative stubborn variations alongside the rest of the strategies.

Algorithm 1 Hybrid Strategies

Input: lead, slead, fork, sfork, trail, Tlen

1: on Init
2: public chain← publicly known blocks
3: private chain← publicly known blocks
4: privateBranchLen← 0
5: isBehind← false
6: safeZero← false
7: Mine at the head of the private chain
8:
9: on My Miners found a block

10: ∆prev← length(private chain) - length(public chain)
11: append new block to private chain
12: privateBranchLen← privateBranchLen+1
13: if ∆prev = 0 and privateBranchLen ≥ 2 and not isBehind then . State = 0′,0

′
s

14: SM1
15: else if ∆prev = 0 and isBehind then . State = 0′′

16: publish all of the private chain
17: privateBranchLen← 0
18: isBehind← false
19: Mine at the new head of the private chain
20:
21: on Others found a block
22: ∆prev← length(private chain) - length(public chain)
23: append new block to public chain
24: if ∆prev >−Tlen and isBehind then . −T

′′
len < State≤ 0′′

25: do nothing
26: else if (∆prev = 0 and privateBranchLen = 0) or ∆prev =−Tlen then . 0,−T

′′
len

27: private chain← public chain
28: privateBranchLen← 0
29: isBehind← false
30: else if ∆prev = 0 and privateBranchLen ≥ 1 and not isBehind then . State = 0′

31: SM2
32: safeZero← false
33: else if ∆prev = 1 then . State = 1,1′

34: SM3
35: publish last block of the private chain
36: else if ∆prev = 2 then . State = 2,2′

37: SM4
38: else if ∆prev > 2 then . State > 2,2′

39: publish first unpublished block in private chain
40: Mine at the head of the private chain
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SM1, SM2, SM3 and SM4

1: SM1
2: if (fork and not sfork) or safeZero then
3: safeZero← false
4: else
5: publish all of the private chain
6: privateBranchLen← 0

1: SM2
2: if trail and not controlled() then
3: isBehind← true
4: else
5: private chain← public chain
6: privateBranchLen← 0

1: SM3
2: if fork and sfork and (controlled() or privateBranchLen = 1) then
3: safeZero← true

1: SM4
2: if lead and (not slead or controlled() or privateBranchLen = 2) then
3: publish first unpublished block in private chain
4: else
5: publish all of the private chain
6: privateBranchLen← 0

controlled(): It is true if and only if the miner who mined the last honest block is BB (well
connected with the selfish miners), thus the previous block belongs to Alice.
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Chapter 4

Implementation
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4.1 Overview

We have implemented the bitcoin’s network as UPPAAL’s automata [4]. Overall our im-

plementation in UPPAAL STRATEGO [15] consists of three automata that simulate the

interaction between our network’s entities, namely selfish miners (alongside their strat-

egy) and honest miners. Four automata are composed into a system representing Alice

and her strategy, Good Bob, and Bad Bob. Our implementation abstracts the complexity

of the Bitcoin protocol and block-transaction structures. It only deals with the dissemi-

nation of blocks and the time elapsed between mining two distinct blocks (transactions

are completely omitted since they are not affected by the selfish mining strategy, and they

would have added unnecessary complexity to the system). In this chapter, firstly, we de-

scribe the implementation of the selfish miner (Alice) and its strategy. Then, we provide

the implementation of the honest miner (Bob), and at the end of the chapter, there is a

short description of how we maintained the correctness of our automata’ functionality.

Before proceeding to the first section of this chapter, there is a short introduction to the
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exponential distribution. As we discussed in Section 2.3, timed automata [7] are used to

model the behavior and test real-time systems’ properties. In our distributed bitcoin net-

work system, we wanted somehow to model the elapsed time between mining two distinct

blocks. Moreover, this time must variate according to the proportion of computational

power the miner poses. For this purpose, the exponential distribution is the appropriate

means to represent the time elapsed between events (UPPAAL STRATEGO also supports

it). More specifically, the exponential distribution is used to predict the amount of waiting

time until the next event, which in our case is a new block. The exponential distribution

has a single parameter, which is called rate (λ ), and it specifies the event rate, that is, the

number of events per time unit (the time unit can be interpreted as any time interval).

4.2 The Selfish Miner

The automaton of selfish miners, called SMiners, which is depicted in Figure 4.1, repre-

sents the coalition of selfish miners under Alice’s supervision. This automaton consists of

seven locations, of which location Mine is the core of the mining procedure while the rest

exist for decision-making purposes and they are committed. Furthermore, it maintains a

local blockchain where blocks reside. Our automaton has the Finish location which is the

game ending location. (In our experiments we "played" a game of 1000 blocks in order

to find the best strategy regarding revenue at state Finish)

The automaton begins from location Start. This means that the automaton is not ini-

tialized yet; hence initializations must be made through the first transition’s updates, such

as blockchain initialization with the genesis block (initialize()). The transition to location

Mine is initially deactivated until strategies are set from the strategy automaton, depicted

in Figure 4.2. This is handled by guard stratsReady(), which checks whether strategies

are set.

The mining procedure occurs at location Mine. The exponential distribution is used at

mining locations to model the time elapsed between two blocks being mined. Therefore,

it is assumed that the probability of leaving the location is distributed according to the

exponential probability. In other words, approximately rate_a
1000 (rate_a:1000) blocks are

mined every time unit. The time unit is interpreted as one minute; thus, the rate_a, which

is one of the automaton’s parameters, will determine the mining rate. In this work, we
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Figure 4.1: Selfish miners automaton UPPAAL STRATEGO.

used rate_a to specify the proportion of the network’s total mining power, which this

coalition of selfish miners poses. For example, setting rate_a equal to 50 implies that

selfish miners own 50% of the total computing power of the entire network and this miner

will mine approximately 1 block every 20 minutes. The denominator 1000 is justified

because Bitcoin adjusts mining difficulty so that a block will be mined approximately

every 10 minutes (10 minutes multiplied by 100). The denominator can be modified if

someone wants to interpret time differently, i.e., time is interpreted as seconds or to allow

more precise proportions (this was useful during our experiments). The same applies in

Section 4.4. In general, this rate can change according to the needs of model’s users.

Regarding the publication of blocks, miners can publish and receive blocks through

the broadcast channel newBlock being at location Mine. Recall that in Algorithm 1, we

distinguished two types of events, on Others and My Miners. This distinction also applies

to the selfish miners automaton. When selfish miners automaton is at location Mine, and
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honest miners automata mine a block, then they will broadcast it through the newBlock

channel, and eventually, selfish miners will receive it. This signal will result in selfish

miners automaton transitioning from location Mine to location HonestBlock, where it

will have to decide its next action. Before that, it will add the new block to its local

blockchain with the update function addPublicBlock(). At location HonestBlock, there

exist four outgoing transitions. These transitions represent the four possible actions that

Alice can perform, which are "all", "restart", "match", and "no action". The outgoing

transition to the left side of the location represents the action "no action". The outgoing

transition to the right bottom represents the action "all", while the rest represent the ac-

tions "restart" and "match". The latter is represented by the outgoing transition, which

leads to location DecideSafe. The automaton will publish the first unpublished block

through newBlock! broadcast channel with the help of publishFirstUnpublished() update

function. The location DecideSafe decides whether selfish miners are in a safe zero state,

as described in Section 3.5. On the other hand, the transition, which represents the ac-

tion "restart", will force selfish miners automaton to mine on top of honest miners’ fork

(restartFork()).

When selfish miners automaton is at location Mine and mines a block as described

earlier with the exponential distribution, then the transition to the location SelfishBlock

will be taken. However, the automaton will not immediately publish a block while taking

this transition. First, a new block will be created and added to the local blockchain; think

of that as a withheld block from selfish miners. Then, at location SelfishBlock, a decision

will determine the next action. Overall, there are two possible actions at this location,

which are "no action" and "all". The outgoing transition to the left side of the location

represents the action "no action", whilst the outgoing transition to the right the action

"all". At location PublishAll, the automaton will publish all unpublished blocks through

newBlock! broadcast channel one by one until allBlocksPublic() is satisfied.

Throughout the automaton description, we omitted the explanation of the transitions

that form self-loops onto location Mine. These transitions correspond to the functionality

of honest mining described later in Section 4.4. Also, note that all selfish miners automa-

ton’s transitions are not controlled (dotted) since they are not the required transitions to be

remembered by the controller when finding the best strategy (the execution traces differ

every time, although the same strategy is followed). Furthermore, we have not paid much
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attention to the transitions’ guards since they are complicated and not easy to understand.

The correctness of the model is shown later in Section 4.5.

Undoubtedly, the strategy adopted from the automaton of selfish miners plays a piv-

otal role in the decision-making mechanism at locations HonestBlock, and SelfishBlock.

Strategies can significantly affect guards’ evaluation of their outgoing transitions. Strat-

egy selection will be the next topic that we will address to complete the description of

selfish miners realization as UPPAAL automata.

4.3 The Strategy

Selfish mining strategies is the main topic of this work. So far, we have seen the SMiners

automaton but not how selfish miners’ strategy is chosen. For this purpose, a dedicated au-

tomaton was implemented, shown in Figure 4.2. This automaton consists of six locations

(all committed) that make feasible strategy selection. The Strategy automaton must be

linked with the corresponding SMiners automaton by providing the SMiners automaton’s

identity as a parameter (id). Therefore, the strategy will be available to the appropriate

SMiners automaton depicted in Figure 4.1. The strategy is adopted from SMiners au-

tomaton when update function initialize() is executed, which also initializes the strategy

alongside other initializations.

SelfishDecision

LeadDecision

Finish

EqualForkDecision StrategyOn
TrailDecision

Selfish[id-1] = true

validLead(false, false)

validFork(Lead[id-1], Slead[id-1], true, false)validLead(true, false)

validFork(Lead[id-1], 
�Slead[id-1], 
�true, true)

validFork(Lead[id-1], 
�Slead[id-1],
�false, false)

validTrail(Lead[id-1], Slead[id-1], 
�Fork[id-1], Sfork[id-1], true)

validTrail(Lead[id-1], Slead[id-1], 
�Fork[id-1], Sfork[id-1], false)

validLead(true, true)

Trail[id-1] = true

Trail[id-1] = false

Selfish[id-1] = false

strategyOn[id-1] = true

Lead[id-1] = true,
Slead[id-1] = true

Lead[id-1] = true,
Slead[id-1] = false

Fork[id-1] = true,
Sfork[id-1] = true

Fork[id-1] = false,
Sfork[id-1] = false

Lead[id-1] = false,
Slead[id-1] = false

Fork[id-1] = true,
Sfork[id-1] = false

Figure 4.2: Strategy initialization automaton UPPAAL STRATEGO.

The Strategy automaton begins from location SelfishDecision. This location is re-

sponsible for deciding whether selfish miners will be selfish or not. If selfish miners are

39



chosen not to be selfish (Selfish[id-1]=false), then the automaton will skip selfish mining

variations and will directly transit to location StrategyOn. On the other hand, if selfish

miners are chosen to be selfish, then the automaton will transit to location LeadDecision.

At this location, the automaton has three options. A selfish miner can follow the Lead

variation (Lead[id-1]=true, Slead[id-1]=false), the Safe-Lead variation (Lead[id-1]=true,

Slead[id-1]=true), or none of them (Lead[id-1]=false, Slead[id-1]=false). The automaton

will select one of these options, and it will transit to location EqualForkDecision. At

this location, the automaton has three options: Equal-Fork, Safe-Equal-Fork, or none of

them, but this time the changes are made to the variables Fork[id-1] and Sfork[id-1] in

the same fashion as at LeadDecision location. After selecting the Equal-Fork variation,

the automaton transits to location TrailDecision. At this location, there are only two op-

tions since there is not a conservative stubborn variation. Therefore, the automaton has to

choose whether the Strategy will enable Trail variation (Trail[id-1]=true) or not (Trail[id-

1]=false). This is the last decision the automaton has to make, which will subsequently

lead to location StrategyOn. This location has only one transition, which signals the com-

pletion of strategy selection by setting strategyOn[id-1]=true and transiting to location

Finish. Then, the SMiners automaton will be able to take the transition from location

Start to location Mine since the Strategy is defined, and its guard is satisfied.

Overall, there are 19 strategies, both basic selfish mining and honest mining included.

Strategy automaton offers the capability of disabling strategies. This capability is neces-

sary because some experiments must be done to a restricted number of and specific strate-

gies. For this purpose, the automaton has an array parameter of length 17 (disable[17])

(honest strategy and basic selfish mining cannot be turned off). When instantiating the

strategy template in system declarations, some strategies can be disabled by providing

the appropriate array. To learn more about the appropriate array format, refer to Listing

A.5, listed in Appendix A. The guards validLead(...) (on transitions from LeadDecision

to EqualForkDecision), validFork(...) (on transitions from EqualForkDecision to TrailDe-

cision), and validTrail(...) (on transitions from TrailDecision to StrategyOn) are handling

recursively the request of disabling strategies. More specifically, they turn off paths of

the Strategy automaton that define disabled strategies. Furthermore, note that all strategy

automaton transitions are controlled (solid) since they are the transitions to be remem-

bered by the controller when finding the best Strategy. They contain all the necessary
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information about the adopted strategy.

In addition to the UPPAAL STRATEGO implementation, we provide an UPPAAL SMC

implementation. There are very few differences between them. The latter enables the

manual assignment of Strategy by providing it through parameters to the automaton tem-

plate instantiation. Therefore, the Strategy automaton is no longer necessary. The UP-

PAAL SMC automata can be seen in Figures B.1 and B.2, listed in Appendix B. Moreover,

UPPAAL SMC is the implementation used to test our model, but the correctness also gen-

eralizes to the UPPAAL STRATEGO since the changes do not affect the SMiner automaton

except for its automated strategy selection.

4.4 The Honest Miner

The last entity of our bitcoin network, which was modeled, is honest miners. The au-

tomaton of honest miners is called HMiners (Figure 4.3), and it can either represent Good

Bob or Bad Bob. Since both entities exist in our network, there are two instantiations of

this template, one representing Good Bob and one representing Bad Bob. This purpose

serves the parameter controlled given to the automaton during instantiation. If parameter

controlled is set to true, then the automaton’s behavior is based on Bad Bob’s behavior;

otherwise, the automaton behaves such as Good Bob.

Start Mine Finish

newBlock?

!outOfSpace

outOfSpace

newBlock!

createAndAddNewBlock()

processNewBlock(controlled)

rate_b:1000

initialize()

1:1

Figure 4.3: Honest miners automaton UPPAAL STRATEGO.

The implementation of HMiners automaton is straightforward because honest miners

are only receiving and publishing blocks without any sophisticated strategy. The automa-

ton begins at location Start, and it transits to location Mine. Before this transition, it
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performs some initializations (initialize()), such as initializing blockchain with the gene-

sis block.

As mentioned earlier, the exponential distribution is used at mining locations. There-

fore, approximately rate_b
1000 (rate_b:1000) blocks will be mined every time unit. The time

unit is interpreted as one minute; thus, the rate_b, which is one of the automaton’s pa-

rameters, will determine the mining rate. For example, setting rate_b equal to 50 implies

that honest miners of this automaton hold 50% of the total computing power of the entire

network and this miner will mine approximately 1 block every 20 minutes.

When this automaton is at location Mine, it can either receive a block (newBlock?)

or publish a newly mined block (newBlock!) based on exponential distribution. The

received block will be added to the local blockchain (processNewBlock(controlled)) of

this automaton by taking the transition below location Mine. If the automaton mines a

new block, it will choose the transition above the location Mine. The function createAn-

dAddNewBlock() creates the new block, and this block is disseminated through channel

newBlock. Also, note that all honest miners automaton’s transitions are not controlled

(dotted) for the same reason as in SMiners automaton. Lastly, the location Finish is the

game ending location as discussed earlier in SMiners automaton.

4.5 Testing the Model

In Section 4.2, we perceived the complexity of guards on the transitions of our SMin-

ers automaton, but at that moment, we deemed that they are correctly defined. In this

work, we implemented the testing code as Java classes to test that our automata function

correctly according to Algorithm 1. Recall from Section 2.3 that UPPAAL offers the ca-

pability of creating a file for a specific trace. More specifically, code can be placed in

system declaration to determine the prefix and suffix of the produced file, on transitions

and during exiting/entering Locations in the order presented in the trace. The prefix is

used to create a class called Test, which contains the main and the suffix to close this

class’s brackets. Moreover, this class extends the App class, which will be explained in

detail in short.

In general, there are four classes, namely, Action, Block which implements the block’s

structure used in UPPAAL, SelfishMiner which implements the pseudocode of Algorithm
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1, and App. The last is responsible for tracking UPPAAL’s automata actions and maintain-

ing information provided by automata, such as newly created blocks and SMiners local

variables. These classes are presented in Listings C.1, C.2, C.3, and C.4 respectively,

listed in Appendix C.

Class App is the most important since it maintains the information provided by the

automata. It can be thought of as the core of our testing implementation since it synthe-

sizes every class and provides functions to be placed on automata edges and locations.

In general, it handles the code presented on transitions and the code when automata are

entering or exiting a Location. This class provides a set of functions that can be placed on

automata. We can arrange this set into two sub sets. First are the functions which provide

information of the state of automata to the Java implementation and second, are the func-

tions that indicate which action was performed. Here, we reference lines of code for each

of the functions provided by class App, listed in Listing C.4. Therefore, the functions

which provide information about the state and blocks of automata are the following (this

code is placed on SMiners automaton):

1. (lines 14-17) Initialize the strategy followed by selfish miners. On the transition

from Location Start to Mine.

2. (lines 19-54) Check if the local variables of SMiners automaton, which are main-

tained for decision making, are as expected. On entering Location Mine.

3. (lines 56-71) Add and Check if the new block mined from SMiners automaton is as

expected. On entering Location SelfishBlock.

4. (lines 73-78) Add to blockchain of selfish miners the new block mined from HMin-

ers automaton. On entering Location HonestBlock.

Furthermore, the functions that indicate which action was performed are the following

(this code is placed on SMiners automaton):

1. (lines 80-92) Check if action "all" was the expected action.

2. (lines 94-106) Check if action "no action" was the expected action.

3. (lines 108-120) Check if action "restart" was the expected action.
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4. (lines 122-134) Check if action "match" was the expected action.

These functions are placed on transitions corresponding to the action in question ac-

cording to Section 4.2.

In conclusion, with the test cases, we can test our implementation by producing a wide

range of traces for each selfish miners’ strategy and, therefore, their corresponding main

function of the Test class. Furthermore, we can detect errors with the exceptions prompted

during test cases, and the necessary adjustments can be made. The test cases’ procedure

is depicted in Figure 2.1. Test cases prove our final implementation’s correctness and are

an essential part of our work.
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Chapter 5

Evaluation
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5.1 Overview

This chapter is dedicated to the evaluation of our new conservative stubborn strategies

with UPPAAL STRATEGO. The evaluation required to examine the efficiency of strategy

space strategies, stubborn and basic selfish mining included, for different values of α

and γ in parameter space. Note that we consider every strategy in the strategy space

except those that enable the Trail variation with trail stubbornness greater than 2. More

specifically, we consider 18 selfish mining strategies in our experiments. The values of α

and γ range from 0.01 to 0.50 and 0 to 1 respectively, both with a step of 0.01. Therefore,

there are 5050 different parametrizations to consider when Uppaal verifies the queries in

place. Values of α greater than 0.50 have no interest because an attacker with access to

more than 50% of the network’s computational power can launch the 51% attack, which is

by far a stronger attack (the attacker can reap all the rewards of the network). Furthermore,

not all γ values are likely because well connectivity with almost the entire network seems

impossible. However, for completeness reasons, we included every value of γ , although
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their possibility of occurrence is negligible. Moreover, for each execution of the model,

a limit of 1000 blocks to be mined from miners is set; hence, a game of 1000 rounds is

"played".

We provide and explain the queries in the corresponding forthcoming sections. First,

we discuss the results of dominant strategies for each combination of α and γ . Then, we

present the relative revenue of selfish miners compared to the expected honest revenue

and stubborn strategies’ revenue. After that, we discuss about the fairness of bitcoin’s

blockchain when miners adopt such strategies. Finally, we present the queries verifying

the RS2 property of our newly introduced conservative stubborn variations and the hybrid

strategy combining them.

5.2 Dominant Strategies

To identify the dominant strategies, we used the queries 5.1 and 5.2. In short, query 5.1

identifies the strategy which maximizes the final revenue of Alice. The bound of model

time simulation is set to 20000 because we know that it is sufficient to reach the game

ending location (the same applies to any feature query). This query must be the first one

to run since the rest of the queries are verified under its strategy. Recall that only the

Strategy automaton has controlled transitions that the controller of UPPAAL STRATEGO

controls. In order to verify a query under the revenue maximization strategy, the identifier

MaxRevenue should be used at the end of the query. However, in order to see which

strategy is preferred from UPPAAL STRATEGO, we need to run simulations with query

5.2 under the revenue maximization strategy to track changes in strategy variables. Thus,

the preferred strategy will be made known to us by observing which is the most popular

strategy selected by the controller over 100 simulations.

strategy MaxRevenue = maxE (Alice.finalRevenue) [<=20000]

: <> Alice.Finish
(5.1)

simulate 100 [<=50]{Alice.lead, 0.1+Alice.slead, 2+Alice.fork,

2.1+Alice.sfork, 4+Alice.trail,

6+Alice.selfish} under MaxRevenue

(5.2)
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Figure 5.1: Best strategies for different values of α (Alice) and γ (controlled honest min-
ers).

In Figure 5.1, we show the results of our experiments for the dominant strategies. In

Figure 5.1a, we present the best selfish mining strategies for different values of α and γ .

We observe that hybrid strategies form clusters in the parameter space. Clearly, no single

hybrid strategy performs better in the entire space of parameters, but different hybrid

strategies are preferred in localized regions.

In Figure 5.1b, we demonstrate a comparison between conservative stubborn and stub-

born strategies. Apparently, the new hybrid strategies formed with at least one conserva-

tive stubborn variation, in many cases displace the pre-existing hybrid strategies. Hence,

stubborn mining is not optimal for a large fraction of the parameter space.

Finally, in Figure 5.1c, we present the best family of strategies for each parametriza-

tion. A family of strategies consists of the hybrid strategies, which contain either the stub-
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born or the respective conservative stubborn variations. We observe that the LFT1 family

outperforms the FT1, which was the dominant strategy when solely stubborn strategies

were applied, for high α values and low γ values. Recall that hybrid strategies are named

after the combination of the names of their enabled variations (Table 3.1). More specif-

ically, the strategies of LFT1 family that outperform FT1 are the conservative stubborn

members of the family (LSFST1, LSFT1, and LFST1), as marked in Figure 5.1.

5.3 Revenue and Comparison with Stubborn Strategies
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Figure 5.2: Comparisons of relative revenue of Alice’s best strategy for different values
of α (Alice) and γ (controlled honest miners).

To evaluate a strategy, we consider Alice’s relative revenue when performing a strat-

egy, which is the percentage increase compared to the revenue of another strategy. The

following equation gives the relative revenue of Alice when performing strategy X com-

pared to strategy Y:

relative_revenue(X ,Y ) =
revenueX − revenueY

revenueY
×100 (5.3)

where revenueX is the fraction of blocks earned by Alice under strategy X. In this sec-

tion, we compare Alice’s relative revenue for honest mining and stubborn mining (the

comparison is made among every strategy both honest and stubborn included).

To calculate Alice’s final revenue, we used the estimation query of 5.4, which is ex-

ecuted under the revenue maximization strategy. This allowed estimating the fraction of
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blocks earned by Alice under the best strategy for each parametrization. The estima-

tion query run 100 simulations for a duration of 20000 time units of the model which is

required to reach the final location.

E[<=20000;100] (max: Alice.finalRevenue) under MaxRevenue (5.4)

In Figure 5.2, we present Alice’s relative revenue in comparison with honest mining

and stubborn mining. The relative revenue results compared to honest mining, depicted

in Figure 5.2a, are similar to [24]. In general, we observe that selfish mining is more prof-

itable than honest mining in a wide range of parameters. Hence, a miner is incentivized

to deviate from the consensus protocol to follow a selfish mining strategy. As parameter

α increases, the greater is the percentage increase in the revenue of Alice. The same ap-

plies to parameter γ . When parameter α exceeds 0.5, then a 51% attack will be feasible.

This will permit Alice to absorb the entire revenue of the blockchain by invalidating every

other block.

However, does conservative stubborn mining increase significantly the selfish miner’s

revenue? The answers are given in Figure 5.2b, where we show Alice’s relative revenue

compared to stubborn mining. To calculate the relative revenue, we used the best stubborn

mining strategy for the respective parameters. Our new conservative stubborn mining

strategies offer up to 5% percentage increase to Alice’s revenue compared to the best

strategy of stubborn mining. This is mainly observed to high α values (0.4 to 0.5) and low

γ values (0 to 0.4) where the LFT1 family outperforms the FT1 family of hybrid strategies.

This signifies that conservative stubborn mining has better results when both γ and α are

not small either big at the same time, i.e., the regions with better revenue shown in Figure

5.2b. Therefore, this implies that less stubborn strategies, i.e., conservative stubborn, were

necessary for some parameter space regions to handle more careful decision making.

5.4 Fairness of the Blockchain

A blockchain needs to be incentive-compatible in terms of its honest policy in any circum-

stance. Therefore, it should not entitle anyone to consider deviating from the consensus

protocol for personal profit.
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Figure 5.3: Probability of earning more than fair share for different values of α (Alice)
and γ (controlled honest miners).

This section observes a selfish miner’s probability of earning more than its fair share

by following selfish strategies. In a fair protocol, one would expect miners with an α

fraction of the computational power to harvest an α fraction of the rewards. The fairness

probability can be verified with query 5.5, which calculates the probability for the final

revenue to exceed the fair share fraction of α under the best selfish mining strategy.

Pr[<=20000](<> Alice.finalRevenue > a) under MaxRevenue (5.5)

In Figure 5.3, we present our results for the probability of exceeding the fair share in

terms of revenue. For the values of the parameters in parameter space where the honest

policy is preferred, we see that the selfish miner’s probability exceeding the fair share is

50%. This happens because inevitably, a miner’s profit is very close to its fair share since

the honest strategy is followed. Therefore, the miner’s rewards will be slightly less or

greater than the expected average for different simulations. In the region of parameter

space, very close to the region where honest policy is the most profitable, we see that the

probability increases around 70%. While we move a little further away from the region

of honest policy, we see that the probability increases rapidly to 100%. Overall, regions

in parameter space that are incentive-compatible with selfish mining strategies are larger

than regions that are incentive-compatible with honest policy. Therefore, this can cause

miners to merge in order to reach the desired threshold in terms of computing power,

which will allow them to apply a selfish strategy to increase their revenue.
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5.5 The Risk Safety Property

In Chapter 3, we discussed about the Risk Safety property that basic selfish mining and

conservative stubborn variations impose. Recall that Risk Safety property specifies the

maximum risk to which Alice (selfish miner) is susceptible, at any circumstance.

In order to verify these properties of basic selfish mining and conservative variations,

we designed two property queries shown in 5.6 and 5.7 respectively. From the state ma-

chines of Chapter 3, it is known that Alice loses the race when she performs the action

"restart". This appears only when Alice is in a state with lead equal to zero or equal to the

negative of the trail stubbornness value. The above clarifications will help in understand-

ing the queries.

A[]((

(!Alice.lead && !Alice.fork && !Alice.trail

&& Alice.Mine && Alice.lengthDiffIs() == 0

)

imply (Alice.risk() <= 1)

)

(5.6)

Query 5.6 verifies the RS1 property of the basic selfish mining. On the other hand,

query 5.7 verifies the RS2 property of the conservative stubborn variations. Moreover,

it verifies that the combination of conservative variants, i.e., LSFS conservative stubborn

strategy, also satisfies the property above. Finally, after verifying both queries, they are

satisfied in our model; thus, our claims about the Risk Safety property are correct.

A[](((

(Alice.lead && Alice.slead && !Alice.trail &&

(!Alice.fork || Alice.sfork))

|| (Alice.fork && Alice.sfork &&

(!Alice.lead || Alice.slead) && !Alice.trail)

)

&& Alice.Mine && (Alice.lengthDiffIs() == 0

|| Alice.lengthDiffIs() == -trail_len)

)

imply (Alice.risk() <= 2)

)

(5.7)
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6.1 Overview

The first known discussion about gaining higher payoffs by withholding new blocks and

selectively postponing their publication, i.e., selfish mining, took place in one of Bitcoin’s

forums [3]. Since then, researchers have studied this topic extensively from many aspects,

and there are many proposed countermeasures against it. Besides, bitcoin has attracted

colossal interest since its inception in 2008. As a consequence, the studies focused not

only on selfish mining but also on other possible attacks. Some of them used UPPAAL to

conduct their research. Next, we review some of the above-addressed topics.

6.2 Selfish Mining and Countermeasures

Selfish mining has shown tremendous research interest since the first proposed strategy

in [18]. In parallel with the work in [24], the work in [27] was conducted. The latter

studied optimal selfish mining strategies for any parametrization of α and γ , according to

MDP (Markov Decision Processes). They also stated that under propagation delays, the

profit threshold, that is, the minimum value of parameter α required for profitable selfish
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mining, is 0. Moreover, they explained significant weaknesses of the uniform tie-breaking

countermeasure proposed in [18].

Additional work in selfish mining appears in [20]. In that work, a study of selfish

mining [18] is pursued when propagation delays are taken into account. A significant

observation is that the value of parameter γ can be non-zero only if there is variability

in the propagation delay of different nodes. Furthermore, they demonstrated that it is

possible to detect block withholding behavior similar to selfish mining by monitoring the

production rate of stale blocks.

Many approaches to mitigate selfish mining were also proposed. In [21], a counter-

measure called Freshness Preferred was designed. This countermeasure tries to decrease

the profitability of selfish mining by using unforgeable timestamps. More specifically, it

indicates that if a miner receives two blocks within w seconds and both blocks belong to

forks of equal height, then the miner accepts the block with the most recent valid times-

tamp rather than the one that arrived first. Another approach to alleviate selfish mining,

which suggests the introduction of expected transaction confirmation height and block

publishing height, appears in [26].

Bitcoin is not incentive compatible since miners deviate from honest mining to gain

more than their fair share of the rewards. In [25], a fair blockchain, called FruitChain, is

proposed, which is proved to be approximately fair. Therefore, this disincentivizes selfish

mining. To achieve fairness, except for blocks, it introduces fruits (mined in parallel with

blocks) which hang from blocks of the blockchain. Also, it obliterates the need for mining

pools, which are somehow destroying the distributed nature of Bitcoin, by decreasing the

variance of mining rewards. Another alternative to prevent selfish mining is discussed

in [28].

6.3 UPPAAL

UPPAAL was previously used for modeling and verifying Bitcoin properties. More specif-

ically, the statistical model checker was used to study the probability of successfully de-

ploying specific attacks.

The first study in [13] focused on the known attack of double-spending. This paper

presented an abstract model of the Bitcoin protocol with only the essential characteristics
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of the protocol implemented in UPPAAL SMC. The aim was to investigate the probabil-

ity of successful double-spending in an environment consisting of honest and dishonest

participants. As we know, Bitcoin is used to process transactions, e.g., buying various

goods and services. When the payer wants to proceed with a transaction, he will create a

transaction with a transfer to the seller’s account. This transaction will be visible to the

seller once it is included in a block of the blockchain’s longest chain. Although the seller

sees the transaction in the longest chain, he still waits until the longest chain extends a

few more blocks. According to the classic bitcoin client, this is known as the confirmation

depth, which is set to 6 blocks. Sellers who accept bitcoins as payment can and should

set their threshold to how many blocks are required until transactions are considered con-

firmed. Delaying the acceptance of a transaction ensures, to some extent, that a side fork

will not replace the longest chain, and hence the transaction will not be revoked. A suc-

cessful double-spending attacker will force bitcoin nodes to believe that a ledger without

his previous payment is the correct one, even though the attacker received the good or

service. To achieve this, the malicious miner builds a secret side chain in order to reverse

payments.

Finally, the second and last study that we will address is presented in [19]. Bitcoin

has a block limit of 1 megabyte, limiting the number of confirmations of transactions per

second. That led to the development of many alternatives, such as BTU, which allows

flexible block size. BTU suggested using a type of majority attack to force other Bitcoin

miners to adopt it [2]. That work modeled the attack mentioned above in UPPAAL SMC

and analyzed the time it would take for such an attack to succeed and the success proba-

bility according to many strategies, depending on the attackers’ computing power and the

confirmation depth.
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Chapter 7

Conclusion
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7.1 Overview

In this work, we introduced a new family of selfish mining inspired by stubborn mining

[24]. The new conservative stubborn mining strategies alternate their behavior between

basic selfish mining and stubborn mining depending on the blockchain state. This allows

conservative stubborn mining to outperform the existing strategies in a wide range of

parametrizations of α (selfish miners’ fraction of network’s computation power) and γ

(fraction of honest miners which are well connected to selfish miners). Overall, it manages

to improve efficiency compared to stubborn mining up to 5% in terms of revenue. Our

study focused on selfish mining in the absence of propagation delays and other coalitions

of selfish miners.

In Chapter 3, we began by presenting how we modeled selfish mining strategies as

state machines, and we described the basic selfish mining [18] and stubborn mining [24].

Next, we introduced the Safe-Lead and Safe-Equal-Fork conservative stubborn mining

strategies and a straight-forward way to combine every variation. In Chapter 4, we de-

scribed our implementation on UPPAAL STRATEGO which allowed us later, in Chapter

5, to evaluate the newly introduced variations. Our work’s results reinforce the concerns

about selfish mining, even though, to the extent of our knowledge, a selfish mining attack
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on bitcoin was not deployed successfully yet. Therefore, any attempt to carry out this

attack must be detected and tackled effectively. Besides, by doing an overview of the

related work, it is clear that there have been studied many countermeasures [21, 26] and

variations [25, 28] in order to mitigate selfish mining.

7.2 Future Work

As future work, various parameters that were not included in this thesis and their impact

on the efficiency of existing strategies can be studied. More specifically, the presence of

many coalitions of selfish miners has not yet been studied. In the presence of multiple

coalitions of selfish miners, selfish mining may be disincentivized as it may no longer

be profitable. Moreover, in order to retain increased profitability, malicious coalitions

may decide that it is more beneficial to merge their power. Therefore, our model can be

extended to include and study the effects of multiple distinct selfish miners.

Another parameter that we did not consider in our model is the propagation delay

of information in the network, i.e., block dissemination time. Thus, our model can be

extended to take into consideration propagation delays instead of the parameter γ . For this

purpose, a study on the current propagation delay of bitcoin will be required to describe

it as probability distributions.

Selfish mining, as studied in [24], can be combined with eclipse attacks. During an

eclipse attack, the attacker tries to compromise every incoming and outgoing connection

of a peer. Therefore, the victim is isolated from the rest of the network and unable to

view the ledger’s current state. As a result, the attacker can filter the victim’s view of the

blockchain in his favor. An extension of our model, which will study the combination of

eclipse attacks with the new extended strategy space of selfish mining, will be interesting.

Furthermore, someone may have a more in-depth look at a dynamic Trail stubborn

strategy which may outperform our extended strategy space for some values of the pa-

rameter space. In contrast with the traditional family of Trail stubborn strategies, this

strategy will dynamically change its trail stubbornness to form a more efficient Trail stub-

born variation. For instance, a simple rule will change trail stubbornness to x1 if risk is

below y, otherwise to x2. Recall that trail stubbornness is the number of blocks allowed

to fall behind instead of adopting the public chain and, therefore, restarting a new cycle
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of selfish mining.

Finally, some of the defenses presented in Chapter 6, such as FruitChains [25] (a fair

blockchain), Freshness Preferred [21], and Zeroblock [28] can be modeled and verified in

UPPAAL.
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Appendix A

In this appendix, we quote the code of UPPAAL STRATEGO’s implementation. More

specifically, we provide in Listing A.1, the global declarations of the model, in Listing

A.2, the local declarations of selfish miners automaton, in Listing A.3, the local dec-

larations of strategy automaton, in Listing A.4, the local declarations of honest miners

automaton, and in Listing A.5, the system declarations of the model.

1 // Global declarations.

2
3 /* Necessary for test cases. Do not change.*/

4 i n t __reach__ = 0 ;
5 i n t _ _ s i n g l e _ _ = 0 ;
6 /* Necessary for test cases*/

7
8 // Change Block limit to allow more blocks to be mined.

9 c o n s t i n t BLOCKLIM = 1000 ;
10
11 // Do not change anything bellow!

12 c o n s t i n t HLIM = 2 ;
13 c o n s t i n t SLIM = 1 ;
14
15
16 t y p e d e f i n t [ - 1 , BLOCKLIM] BlockID ;
17 t y p e d e f i n t [ 0 , HLIM] HMinerID ;
18 t y p e d e f i n t [ 0 , SLIM ] SMinerID ;
19
20
21 t y p e d e f s t r u c t {
22 BlockID blockID ; // Block id

23 BlockID prevID ; // Previous block id

24 HMinerID hMiner ; // Honest miner id (if it is mined by honest)

25 SMinerID sMiner ; // Selfish miner id (if it is mined by selfish)

26 i n t [ 0 ,BLOCKLIM] l e n g t h ; // Distance from genesis block.

27 } Block ;
28
29
30 // It replaces the hash value of the blocks with a unique number which is

31 // incremented every time a miner mines a new block

32 i n t [ 0 ,BLOCKLIM] blockHash = 1 ;
33
34 // This channel will be used to publish blocks.

35 b r o a d c a s t chan newBlock ;
36
37 // It is used when we are broadcasting blocks for temporary storage.

38 meta Block tempBlock ;
39
40 // It is used to indicate the completion of the simulation. All automatons will

41 // transit to the Finish state.
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42 bool ou tOfSpace = f a l s e ;
43
44 // These variables should not become true (Not part of the state).

45 meta bool nextNotFound = f a l s e ;
46 meta bool prevNotFound = f a l s e ;
47 meta bool wrongLength = f a l s e ;
48
49 // Strategies declared from controller

50 bool Lead [ SLIM ] , S l e a d [ SLIM ] , Fork [ SLIM ] , S f o r k [ SLIM ] , T r a i l [ SLIM ] ;
51 bool S e l f i s h [ SLIM ] , s t r a t e g y O n [ SLIM ] ;

Listing A.1: Global declarations UPPAAL STRATEGO.

1 /** Selfish miner's local declarations.

2 *

3 * This automaton implements the operation of a selfish miner with various

4 * options for strategies. Strategy will be chosen arbitrarily.

5 *

6 * @param id Selfish miners coalition id.

7 * @param Tlen Trail stubborness number.

8 * @param rate_a Selfish miner coalition's hash rate of the entire network.

9 */

10
11 i n t p r i v a t e B r a n c h L e n ;
12 bool i s B e h i n d ;
13 // indicates whether we are on safe zero state (risk=1)

14 bool s a f e Z e r o = f a l s e ;
15
16 // This array will maintain all mined blocks.

17 Block c h a i n [BLOCKLIM+ 1 ] ;
18
19 // Keep track of the head of the 2 forks.

20 i n t p u b l i c H e a d ;
21 i n t p r i v a t e H e a d ;
22
23 // Index of last public block from the selfish blocks that this miner mined.

24 i n t i n d e x L a s t P u b l i c ;
25
26 double f i n a l R e v e n u e = 0 . 0 ;
27
28 // These variables will be initialized arbitrarily after strategy transitions.

29 bool l e ad , s l e a d , fo rk , s f o r k , t r a i l , s e l f i s h ;
30
31
32 Block b ;
33 // Necessary for test cases

34 i n t [ 1 , SLIM ] i d e n t i t y = i d ;
35 i n t t l e n = Tlen ;
36 // Necessary for test cases

37
38 /******************************************************************************/

39 /** Check if strategies are initiliazed.

40 *

41 * @return It returns true if so, otherwise false.

42 */

43 bool s t r a t s R e a d y ( ) {

A-2



44 i n t i ;
45 f o r ( i = 0 ; i < SLIM ; i ++) {
46 i f ( ! s t r a t e g y O n [ i ] ) {
47 re turn f a l s e ;
48 }
49 }
50
51 re turn true ;
52 }
53
54 /** Find the first free slot in chain array.

55 *

56 * @return It returns the index of the first free slot in the chain array.

57 * It returns -1 if there is no free slot.

58 */

59 i n t g e t C h a i n F r e e I n d e x ( ) {
60 i n t i , i n d e x = - 1 ;
61 f o r ( i = 0 ; i < BLOCKLIM + 1 ; i ++) {
62 // First free slot.

63 i f ( c h a i n [ i ] . b lockID == 0 && c h a i n [ i ] . prevID == 0 ) {
64 i n d e x = i ;
65 i = BLOCKLIM;
66 }
67 }
68 re turn i n d e x ;
69 }
70
71 /** Find the index of the given block in the chain.

72 *

73 * @param id Block's id to search for its index.

74 * @return It returns the index of the given block in the chain.

75 * It returns -1 if there is no such block.

76 */

77 i n t g e t B l o c k I n C h a i n I n d e x ( BlockID b i d ) {
78 i n t i , i n d e x = - 1 ;
79
80 f o r ( i = 0 ; i < BLOCKLIM + 1 ; i ++) {
81 i f ( c h a i n [ i ] . b lockID == b i d ) {
82 i n d e x = i ;
83 i = BLOCKLIM;
84 }
85 }
86 re turn i n d e x ;
87 }
88
89 /** Find and return the risk of the selfish miner.

90 * Risk is the number of blocks of the selfish miner that are not yet included

91 * in the public chain.

92 *

93 * @return It returns the risk.

94 */

95 i n t r i s k ( ) {
96 i n t index , i nd ex2 ;
97
98 i n d e x = p u b l i c H e a d ;
99

100 // find last common block of public and private chains.
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101 whi le ( c h a i n [ i n d e x ] . b lockID != 0) {
102
103 ind ex 2 = p r i v a t e H e a d ;
104 whi le ( c h a i n [ i n de x2 ] . b lockID != 0) {
105 i f ( c h a i n [ i n de x2 ] . b lockID == c h a i n [ i n d e x ] . b lockID ) {
106 re turn c h a i n [ p r i v a t e H e a d ] . l e n g t h - c h a i n [ i nd ex 2 ] . l e n g t h ;
107 }
108
109 ind ex 2 = g e t B l o c k I n C h a i n I n d e x ( c h a i n [ i n de x2 ] . prevID ) ;
110 }
111
112 i n d e x = g e t B l o c k I n C h a i n I n d e x ( c h a i n [ i n d e x ] . prevID ) ;
113 }
114
115 re turn c h a i n [ p r i v a t e H e a d ] . l e n g t h ;
116 }
117
118 /** Check whether the previous block of the head of the public chain was mined

119 * from this selfish miners coalition.

120 *

121 * @return It returns true if previous block of the head of the public chain

122 * was mined from this selfish miner coalition.

123 */

124 bool i s C o n t r o l l e d M i n e d ( ) {
125 i n t i n d e x ;
126 i n d e x = g e t B l o c k I n C h a i n I n d e x ( c h a i n [ p u b l i c H e a d ] . prevID ) ;
127
128 re turn ( c h a i n [ i n d e x ] . sMiner == i d ) ? t rue : f a l s e ;
129 }
130
131 /** Find the block which is after a specific block in the blockchain of

132 * the selfish miners.

133 *

134 * @param bid Block's id to search for its next block.

135 * @return It returns the index of the next block.

136 * It returns -1 if there is no such block.

137 */

138 i n t g e t N e x t B l o c k I n d e x ( BlockID b i d ) {
139 i n t i , i n d e x = - 1 ;
140
141 f o r ( i = 0 ; i < BLOCKLIM + 1 ; i ++) {
142 // Must be mined from this selfish miner.

143 // There might be a lot of blocks with the same prevID.

144 // In other words a block might have more than one children.

145 i f ( c h a i n [ i ] . p revID == b i d && c h a i n [ i ] . sMiner == i d ) {
146 i n d e x = i ;
147 i = BLOCKLIM;
148 }
149 }
150 re turn i n d e x ;
151 }
152
153 /** Find the relative renenue of selfish miners.

154 *

155 * Relative revenue = #selfish blocks / (#selfish blocks + #others blocks)

156 *

157 * @return It returns the relative revenue of selfish miners at the time it was
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158 * called, multiplied by 10000 and truncated.

159 */

160 double r e l a t i v e R e v e n u e ( ) {
161 double s e l f i s h , o t h e r s , r evenueDoub le ;
162 i n t i n d e x ;
163 i n t r e v e n u e I n t ;
164 s e l f i s h = 0 ;
165 o t h e r s = 0 ;
166
167 i n d e x = p u b l i c H e a d ;
168 i f ( c h a i n [ p u b l i c H e a d ] . l e n g t h <= c h a i n [ p r i v a t e H e a d ] . l e n g t h ) {
169 i n d e x = p r i v a t e H e a d ;
170 }
171 // initialize blockchain with genesis block

172 /*chain[0].blockID = 0;

173 chain[0].prevID = -1;

174 chain[0].huMiner = 0;

175 chain[0].hcMiner = 0;

176 chain[0].sMiner = 0;

177 chain[0].length = 0;*/

178 whi le ( c h a i n [ i n d e x ] . b lockID != 0) {
179 i f ( c h a i n [ i n d e x ] . sMiner == i d ) {
180 s e l f i s h = s e l f i s h + 1 ;
181 }
182 e l s e {
183 o t h e r s = o t h e r s + 1 ;
184 }
185
186 i n d e x = g e t B l o c k I n C h a i n I n d e x ( c h a i n [ i n d e x ] . prevID ) ;
187 }
188
189 i f ( s e l f i s h + o t h e r s == 0) {
190 re turn 0 ;
191 }
192
193 // by passing double precision problems with verification

194 revenueDoub le = s e l f i s h / ( s e l f i s h + o t h e r s ) ;
195 //revenueInt = fint(revenueDouble*10000);

196 re turn r evenueDoub le ;
197 //return revenueInt;

198 }
199
200 /** Find the number of selfish miners' blocks.

201 *

202 * @return It returns the number of selfish miners' blocks.

203 */

204 i n t s e l f i s h B l o c k s I n L o n g e s t C h a i n ( ) {
205 i n t index , s e l f i s h ;
206
207 i n d e x = p u b l i c H e a d ;
208 // if chain is full and there is a tie in length of private and public

209 // blockchains then give advantage to public blockchain.

210 i f ( c h a i n [ p u b l i c H e a d ] . l e n g t h < c h a i n [ p r i v a t e H e a d ] . l e n g t h ) {
211 i n d e x = p r i v a t e H e a d ;
212 }
213
214 whi le ( c h a i n [ i n d e x ] . b lockID != 0) {
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215 i f ( c h a i n [ i n d e x ] . sMiner == i d ) {
216 s e l f i s h = s e l f i s h + 1 ;
217 }
218
219 i n d e x = g e t B l o c k I n C h a i n I n d e x ( c h a i n [ i n d e x ] . prevID ) ;
220 }
221 re turn s e l f i s h ;
222 }
223
224 /** Find the number of blocks mined from others.

225 *

226 * @return It returns the number of blocks mined from others.

227 */

228 i n t o t h e r B l o c k s I n L o n g e s t C h a i n ( ) {
229 i n t index , s e l f i s h , o t h e r ;
230
231 i n d e x = p u b l i c H e a d ;
232 i f ( c h a i n [ p u b l i c H e a d ] . l e n g t h <= c h a i n [ p r i v a t e H e a d ] . l e n g t h ) {
233 i n d e x = p r i v a t e H e a d ;
234 }
235 o t h e r = c h a i n [ i n d e x ] . l e n g t h ;
236
237 whi le ( c h a i n [ i n d e x ] . b lockID != 0) {
238 i f ( c h a i n [ i n d e x ] . sMiner == i d ) {
239 s e l f i s h = s e l f i s h + 1 ;
240 }
241
242 i n d e x = g e t B l o c k I n C h a i n I n d e x ( c h a i n [ i n d e x ] . prevID ) ;
243 }
244 re turn o t h e r - s e l f i s h ;
245 }
246 /******************************************************************************/

247
248
249 /** Initialize blockchain with the genesis block.

250 *

251 * This function is also doing some initializations on local variables.

252 */

253 void i n i t i a l i z e ( ) {
254 // Initialize blockchain with genesis block.

255 c h a i n [ 0 ] . b lockID = 0 ;
256 c h a i n [ 0 ] . prevID = - 1 ;
257 c h a i n [ 0 ] . hMiner = 0 ;
258 c h a i n [ 0 ] . sMiner = 0 ;
259 c h a i n [ 0 ] . l e n g t h = 0 ;
260
261 // Private and public chains start from the genesis block.

262 p u b l i c H e a d = 0 ;
263 p r i v a t e H e a d = 0 ;
264
265 i n d e x L a s t P u b l i c = 0 ;
266
267 // initialize strategy which was decided from Strategy automaton.

268 // (the one belongs to this Miner)

269 l e a d = Lead [ id - 1 ] ;
270 s l e a d = S l e a d [ id - 1 ] ;
271 f o r k = Fork [ id - 1 ] ;
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272 s f o r k = S f o r k [ id - 1 ] ;
273 t r a i l = T r a i l [ id - 1 ] ;
274 s e l f i s h = S e l f i s h [ id - 1 ] ;
275 }
276
277 /** Find the length difference of the 2 forks (public and private).

278 *

279 * @param selfish Indicates if the previous found block was selfish.

280 * @return It returns the length difference of the 2 forks before the last

281 * mined block.

282 */

283 i n t l e n g t h D i f f W a s ( bool s e l f i s h ) {
284 i n t publ icLenWas ;
285 i n t pr iva t eLenWas ;
286
287 i f ( s e l f i s h ) {
288 publ icLenWas = c h a i n [ p u b l i c H e a d ] . l e n g t h ;
289 pr iva t eLenWas = c h a i n [ p r i v a t e H e a d ] . l e n g t h - 1 ;
290 }
291 e l s e {
292 publ icLenWas = c h a i n [ p u b l i c H e a d ] . l e n g t h - 1 ;
293 pr iva t eLenWas = c h a i n [ p r i v a t e H e a d ] . l e n g t h ;
294 }
295
296 re turn pr iva t eLenWas - publ icLenWas ;
297 }
298
299 /** Find the length difference of the 2 forks (public and private).

300 *

301 * @return It returns the current length difference of the 2 forks

302 */

303 i n t l e n g t h D i f f I s ( ) {
304 re turn c h a i n [ p r i v a t e H e a d ] . l e n g t h - c h a i n [ p u b l i c H e a d ] . l e n g t h ;
305 }
306
307 /** Add a new block to the chain.

308 */

309 void c r e a t e A n d A d d P r i v a t e B l o c k ( ) {
310 i n t i n d e x ;
311 //Block b;

312
313 i n d e x = g e t C h a i n F r e e I n d e x ( ) ;
314 i f ( i n d e x != - 1 ) {
315 b . b lockID = blockHash ;
316 b . prevID = c h a i n [ p r i v a t e H e a d ] . b lockID ;
317 b . hMiner = 0 ;
318 b . sMiner = i d ;
319
320 b . l e n g t h = c h a i n [ p r i v a t e H e a d ] . l e n g t h + 1 ;
321
322 c h a i n [ i n d e x ] = b ;
323 i f ( b lockHash == BLOCKLIM) {
324 outOfSpace = t rue ;
325 }
326 e l s e {
327 blockHash ++;
328 }
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329
330 p r i v a t e H e a d = i n d e x ;
331 }
332 e l s e {
333 outOfSpace = t rue ;
334 }
335 }
336
337 /** Check whether all blocks which the selfish miners mined have been published

338 *

339 * @return It returns true if all private blocks have been published otherwise

340 * false.

341 */

342 bool a l l B l o c k s P u b l i c ( ) {
343 re turn ( i n d e x L a s t P u b l i c == p r i v a t e H e a d ) ? t rue : f a l s e ;
344 }
345
346 /** This function will publish the first unpublished private block.

347 *

348 * Automatons are responsible to copy from broadcast tempBlock the broadcasted

349 * block.

350 */

351 void p u b l i s h F i r s t U n p u b l i s h e d ( ) {
352 i n t n e x t I n d e x , c u r r I D ;
353
354 i f ( ! a l l B l o c k s P u b l i c ( ) ) {
355 c u r r I D = c h a i n [ i n d e x L a s t P u b l i c ] . b lockID ;
356
357 n e x t I n d e x = g e t N e x t B l o c k I n d e x ( c u r r I D ) ;
358
359 i f ( n e x t I n d e x != - 1 ) {
360 tempBlock = c h a i n [ n e x t I n d e x ] ;
361
362 i n d e x L a s t P u b l i c = n e x t I n d e x ;
363
364 i f ( c h a i n [ p u b l i c H e a d ] . l e n g t h < c h a i n [ p r i v a t e H e a d ] . l e n g t h &&
365 a l l B l o c k s P u b l i c ( ) ) {
366 p u b l i c H e a d = p r i v a t e H e a d ;
367 }
368 }
369 e l s e {
370 nextNotFound = t rue ;
371 }
372 }
373 }
374
375 /** This function is responsible to add a block that was broadcasted from

376 * newBlock broadcast channel.

377 */

378 void a d d P u b l i c B l o c k ( ) {
379 i n t index , p rev Index , headLen ;
380 //Block b;

381
382 b = tempBlock ;
383 p r e v I n d e x = g e t B l o c k I n C h a i n I n d e x ( b . prevID ) ;
384
385 // Previous block does not exist, something is wrong.

A-8



386 i f ( p r e v I n d e x == - 1 ) {
387 prevNotFound = t rue ;
388 re turn ;
389 }
390
391 i f ( c h a i n [ p r e v I n d e x ] . l e n g t h + 1 != b . l e n g t h ) {
392 b . l e n g t h = c h a i n [ p r e v I n d e x ] . l e n g t h + 1 ;
393 wrongLength = t rue ;
394 }
395
396 i n d e x = g e t C h a i n F r e e I n d e x ( ) ;
397 i f ( i n d e x != - 1 ) {
398 c h a i n [ i n d e x ] = b ;
399
400 // Check if the new block forms a longer chain.

401 headLen = c h a i n [ p u b l i c H e a d ] . l e n g t h ;
402 i f ( headLen < b . l e n g t h ) {
403 p u b l i c H e a d = i n d e x ;
404 }
405 }
406 e l s e {
407 outOfSpace = t rue ;
408 }
409 }
410
411 /** Restart private fork.

412 *

413 * This function will point the head of the private fork to the head of the

414 * public fork.

415 *

416 */

417 void r e s t a r t F o r k ( ) {
418 p r i v a t e H e a d = p u b l i c H e a d ;
419 i n d e x L a s t P u b l i c = p u b l i c H e a d ;
420 }
421
422
423
424 /** This function is responsible to add a block that was broadcasted from

425 * newBlock broadcast channel to the chain array.

426 *

427 * It can give priority to the latest block in a case of a length tie. This is

428 * used to differentiate honest controlled miners from honest uncontrolled.

429 *

430 * @param latestPriority In case of chain length tie latest block wins.

431 */

432 void processNewBlock ( bool l a t e s t P r i o r i t y ) {
433 i n t index , p rev Index , headLen ;
434 //Block b;

435
436 b = tempBlock ;
437 p r e v I n d e x = g e t B l o c k I n C h a i n I n d e x ( b . prevID ) ;
438
439 // Previous block does not exist, something is wrong.

440 i f ( p r e v I n d e x == - 1 ) {
441 prevNotFound = t rue ;
442 re turn ;
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443 }
444
445 i f ( c h a i n [ p r e v I n d e x ] . l e n g t h + 1 != b . l e n g t h ) {
446 b . l e n g t h = c h a i n [ p r e v I n d e x ] . l e n g t h + 1 ;
447 wrongLength = t rue ;
448 }
449
450 i n d e x = g e t C h a i n F r e e I n d e x ( ) ;
451 i f ( i n d e x != - 1 ) {
452 c h a i n [ i n d e x ] = b ;
453
454 // Check if the new block forms a longer chain.

455 headLen = c h a i n [ p u b l i c H e a d ] . l e n g t h ;
456 i f ( ( headLen == b . l e n g t h && l a t e s t P r i o r i t y ) | | headLen < b . l e n g t h ) {
457 p u b l i c H e a d = i n d e x ;
458 }
459 }
460 e l s e {
461 outOfSpace = t rue ;
462 }
463 }
464
465 /** Add a new block to the chain and then broadcast.

466 */

467 void createAndAddNewBlock ( ) {
468 i n t i n d e x ;
469 //Block b;

470
471 i n d e x = g e t C h a i n F r e e I n d e x ( ) ;
472 i f ( i n d e x != - 1 ) {
473 b . b lockID = blockHash ;
474 b . prevID = c h a i n [ p u b l i c H e a d ] . b lockID ;
475 b . hMiner = 0 ;
476 b . sMiner = i d ;
477
478 b . l e n g t h = c h a i n [ p u b l i c H e a d ] . l e n g t h + 1 ;
479
480
481 c h a i n [ i n d e x ] = b ;
482 i f ( b lockHash == BLOCKLIM) {
483 outOfSpace = t rue ;
484 }
485 e l s e {
486 blockHash ++;
487 }
488
489 p u b l i c H e a d = i n d e x ;
490
491 // Broadcast the newly mined block.

492 tempBlock = b ;
493 }
494 e l s e {
495 outOfSpace = t rue ;
496 }
497 }

Listing A.2: Selfish miners automaton local declarations UPPAAL STRATEGO.
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1 /** Strategies local declaration.

2 *

3 * This automaton implements the strategy selection operation.

4 *

5 * @param id Selfish miners coalition id.

6 * @param disable Indicates the strategies that are not permitted to be

7 * enabled. Look at the table below to find out the strategy

8 * assigned per index of this array.

9 */

10 c o n s t i n t [ 0 , 2 ] s t r a t e g i e s [ 1 7 ] [ 5 ] = {
11 {1 , 1 , 1 , 1 , 1} , // LSFST

12 {1 , 1 , 1 , 0 , 1} , // LSFT

13 {1 , 1 , 1 , 1 , 0} , // LSFS

14 {1 , 1 , 1 , 0 , 0} , // LSF

15 {1 , 1 , 0 , 2 , 1} , // LST

16 {1 , 1 , 0 , 2 , 0} , // LS

17 {1 , 0 , 1 , 1 , 1} , // LFST

18 {1 , 0 , 1 , 0 , 1} , // LFT

19 {1 , 0 , 1 , 1 , 0} , // LFS

20 {1 , 0 , 1 , 0 , 0} , // LF

21 {1 , 0 , 0 , 2 , 1} , // LT

22 {1 , 0 , 0 , 2 , 0} , // L

23 {0 , 2 , 1 , 1 , 1} , // FST

24 {0 , 2 , 1 , 0 , 1} , // FT

25 {0 , 2 , 1 , 1 , 0} , // FS

26 {0 , 2 , 1 , 0 , 0} , // F

27 {0 , 2 , 0 , 2 , 1} // T

28 } ;
29 /******************************************************************************/

30 /** Check if there is a path to a valid strategy.

31 *

32 * @param lead Indicates if lead is activated.

33 * @param slead Indicates if slead is activated.

34 * @param fork Indicates if fork is activated.

35 * @param sfork Indicates if sfork is activated.

36 * @param trail Indicates if trail is activated.

37 * @return It returns true if there is a path to a valid strategy.

38 */

39 bool v a l i d T r a i l ( bool l e ad , bool s l e a d , bool fo rk , bool s f o r k , bool t r a i l ) {
40 i n t i = 0 ;
41 bool l = f a l s e , s l = f a l s e , f = f a l s e , s f = f a l s e , t = f a l s e ;
42
43 f o r ( i = 0 ; i < 1 7 ; i ++) {
44 l = f a l s e ; s l = f a l s e ; f = f a l s e ; s f = f a l s e ; t = f a l s e ;
45 i f ( d i s a b l e [ i ] ) {
46 i f ( s t r a t e g i e s [ i ] [ 0 ] == 1) {
47 l = t rue ;
48 }
49
50 i f ( s t r a t e g i e s [ i ] [ 1 ] == 1) {
51 s l = t rue ;
52 }
53 e l s e i f ( s t r a t e g i e s [ i ] [ 1 ] == 2) {
54 s l = s l e a d ;
55 }
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56
57 i f ( s t r a t e g i e s [ i ] [ 2 ] == 1) {
58 f = t rue ;
59 }
60
61 i f ( s t r a t e g i e s [ i ] [ 3 ] == 1) {
62 s f = t rue ;
63 }
64 e l s e i f ( s t r a t e g i e s [ i ] [ 3 ] == 2) {
65 s f = s f o r k ;
66 }
67
68 i f ( s t r a t e g i e s [ i ] [ 4 ] == 1) {
69 t = t rue ;
70 }
71
72 i f ( l == l e a d && s l == s l e a d && f == f o r k && s f == s f o r k
73 && t == t r a i l ) {
74 re turn f a l s e ;
75 }
76 }
77 }
78
79 re turn true ;
80 }
81
82 /** Check if there is a path to a valid strategy.

83 *

84 * @param lead Indicates if lead is activated.

85 * @param slead Indicates if slead is activated.

86 * @param fork Indicates if fork is activated.

87 * @param sfork Indicates if sfork is activated.

88 * @return It returns true if there is a path to a valid strategy.

89 */

90 bool v a l i d F o r k ( bool l e ad , bool s l e a d , bool fo rk , bool s f o r k ) {
91 re turn v a l i d T r a i l ( l ead , s l e a d , fo rk , s f o r k , t rue )
92 | | v a l i d T r a i l ( l ead , s l e a d , fo rk , s f o r k , f a l s e ) ;
93 }
94
95 /** Check if there is a path to a valid strategy.

96 *

97 * @param lead Indicates if lead is activated.

98 * @param slead Indicates if slead is activated.

99 * @return It returns true if there is a path to a valid strategy.

100 */

101 bool v a l i d L e a d ( bool l e ad , bool s l e a d ) {
102 re turn v a l i d F o r k ( l ead , s l e a d , true , f a l s e )
103 | | v a l i d F o r k ( l ead , s l e a d , true , t rue )
104 | | v a l i d F o r k ( l ead , s l e a d , f a l s e , f a l s e ) ;
105 }

Listing A.3: Strategy automaton local declarations UPPAAL STRATEGO.

1 /** Honest miner's local declarations.

2 *

3 * This automaton implements the operation of an honest miners who are either
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4 * well connected with the selfish miners coalition or not. You can specify

5 * this with the automaton's parameter controlled.

6 *

7 * @param id Honest miners coalition's id.

8 * @param rate_b Honest miner coalition's hash rate of the entire network.

9 * @param controlled Selfish miner is well connected with this honest coalition

10 * if true.

11 */

12
13
14 // This array will maintain all mined blocks.

15 Block c h a i n [BLOCKLIM+ 1 ] ;
16
17 i n t p u b l i c H e a d ;
18
19
20 /******************************************************************************/

21 /** Find the first free slot in chain array.

22 *

23 * @return It returns the index of the first free slot in the chain array.

24 * It returns -1 if there is no free slot.

25 */

26 i n t g e t C h a i n F r e e I n d e x ( ) {
27 i n t i , i n d e x = - 1 ;
28 f o r ( i = 0 ; i < BLOCKLIM + 1 ; i ++) {
29 // First free slot.

30 i f ( c h a i n [ i ] . b lockID == 0 && c h a i n [ i ] . prevID == 0 ) {
31 i n d e x = i ;
32 i = BLOCKLIM;
33 }
34 }
35 re turn i n d e x ;
36 }
37
38 /** Find the index of the given block in the chain.

39 *

40 * @param id Block's id to search for its index.

41 * @return It returns the index of the given block in the chain.

42 * It returns -1 if there is no such block.

43 */

44 i n t g e t B l o c k I n C h a i n I n d e x ( BlockID b i d ) {
45 i n t i , i n d e x = - 1 ;
46
47 f o r ( i = 0 ; i < BLOCKLIM + 1 ; i ++) {
48 i f ( c h a i n [ i ] . b lockID == b i d ) {
49 i n d e x = i ;
50 i = BLOCKLIM;
51 }
52 }
53 re turn i n d e x ;
54 }
55 /******************************************************************************/

56
57
58 /** Initialize blockchain with the genesis block.

59 *

60 * This function also do some initializations on local variables.
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61 */

62 void i n i t i a l i z e ( ) {
63 // Initialize blockchain with genesis block.

64 c h a i n [ 0 ] . b lockID = 0 ;
65 c h a i n [ 0 ] . prevID = - 1 ;
66 c h a i n [ 0 ] . hMiner = 0 ;
67 c h a i n [ 0 ] . sMiner = 0 ;
68 c h a i n [ 0 ] . l e n g t h = 0 ;
69
70 // Public chain starts from the genesis block.

71 p u b l i c H e a d = 0 ;
72 }
73
74 /** This function is responsible to add a block that was broadcasted from

75 * newBlock broadcast channel to the chain array.

76 *

77 * It can give priority to the latest block in a case of a length tie. This is

78 * used to differentiate honest controlled miners from honest uncontrolled.

79 *

80 * @param latestPriority In case of chain length tie latest block wins if true

81 */

82 void processNewBlock ( bool l a t e s t P r i o r i t y ) {
83 i n t index , p rev Index , headLen ;
84 Block b ;
85
86 b = tempBlock ;
87 p r e v I n d e x = g e t B l o c k I n C h a i n I n d e x ( b . prevID ) ;
88
89 // Previous block does not exist, something is wrong.

90 i f ( p r e v I n d e x == - 1 ) {
91 prevNotFound = t rue ;
92 re turn ;
93 }
94
95 i f ( c h a i n [ p r e v I n d e x ] . l e n g t h + 1 != b . l e n g t h ) {
96 b . l e n g t h = c h a i n [ p r e v I n d e x ] . l e n g t h + 1 ;
97 wrongLength = t rue ;
98 }
99

100 i n d e x = g e t C h a i n F r e e I n d e x ( ) ;
101 i f ( i n d e x != - 1 ) {
102 c h a i n [ i n d e x ] = b ;
103
104 // Check if the new block forms a longer chain.

105 headLen = c h a i n [ p u b l i c H e a d ] . l e n g t h ;
106 i f ( ( headLen == b . l e n g t h && l a t e s t P r i o r i t y ) | | headLen < b . l e n g t h ) {
107 p u b l i c H e a d = i n d e x ;
108 }
109 }
110 e l s e {
111 outOfSpace = t rue ;
112 }
113 }
114
115 /** Add a new block to the chain and then broadcast.

116 */

117 void createAndAddNewBlock ( ) {
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118 i n t i n d e x ;
119 Block b ;
120
121 i n d e x = g e t C h a i n F r e e I n d e x ( ) ;
122 i f ( i n d e x != - 1 ) {
123 b . b lockID = blockHash ;
124 b . prevID = c h a i n [ p u b l i c H e a d ] . b lockID ;
125 b . hMiner = i d ;
126 b . sMiner = 0 ;
127
128 b . l e n g t h = c h a i n [ p u b l i c H e a d ] . l e n g t h + 1 ;
129
130 c h a i n [ i n d e x ] = b ;
131 i f ( b lockHash == BLOCKLIM) {
132 outOfSpace = t rue ;
133 }
134 e l s e {
135 blockHash ++;
136 }
137
138 p u b l i c H e a d = i n d e x ;
139
140 // Broadcast the new block.

141 tempBlock = b ;
142 }
143 e l s e {
144 outOfSpace = t rue ;
145 }
146 }

Listing A.4: Honest miners automaton local declarations UPPAAL STRATEGO.

1 // Place template instantiations here.

2
3 // Honest miners parameters

4 c o n s t bool c o n t r o l l e d = t rue ;
5
6 // Selfish miner parameters

7 c o n s t i n t t r a i l _ l e n = 1 ;
8 // Mining power parameters

9 c o n s t i n t a l f a = 4 0 ;
10 c o n s t double a = 0 . 4 ;
11 c o n s t i n t goodBob = 5 4 ;
12 c o n s t i n t badBob = 6 ;
13
14 // Disable strategies.

15 c o n s t bool d i s a b l e [ 1 7 ] = {
16 f a l s e , // LSFST

17 f a l s e , // LSFT

18 f a l s e , // LSFS

19 f a l s e , // LSF

20 f a l s e , // LST

21 f a l s e , // LS

22 f a l s e , // LFST

23 f a l s e , // LFT

24 f a l s e , // LFS
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25 f a l s e , // LF

26 f a l s e , // LT

27 f a l s e , // L

28 f a l s e , // FST

29 f a l s e , // FT

30 f a l s e , // FS

31 f a l s e , // F

32 f a l s e // T

33 } ;
34 A l i c e S t r a t = S t r a t e g y ( 1 , d i s a b l e ) ;
35 A l i c e = SMiners ( 1 , t r a i l _ l e n , a l f a ) ;
36 GoodBob = HMiners ( 1 , goodBob , ! c o n t r o l l e d ) ;
37 BadBob = HMiners ( 2 , badBob , c o n t r o l l e d ) ;
38
39 // List one or more processes to be composed into a system.

40 sys tem A l i c e S t r a t , A l i ce , GoodBob , BadBob ;
41
42 /** TEST_FILENAME test_ */

43 /** TEST_FILEEXT .java */

44 /** TEST_PREFIX

45 package test;

46 import test.App;

47
48 public class Test {

49 public static void main(String[] args){

50 */

51 /** TEST_POSTFIX

52 }

53 }

54 */

Listing A.5: System declarations UPPAAL STRATEGO.
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Appendix B

In this appendix, we present UPPAAL SMC’s automata. More specifically, we provide in

Figure B.1, the automaton of selfish miners, and in Figure B.2, the automaton of honest

miners.
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Appendix C

In this appendix, we quote the java implementation of the testing code used by test cases.

More specifically, we provide in Listing C.1, the enum class of actions, in Listing C.2, the

Block class which implements the block’s structure used in UPPAAL, in Listing C.3, the

class of selfish miner which implements the pseudocode of Algorithm 1, and in Listing

C.4, the class which provides functions that are used on edges and locations of UPPAAL

automata.

1 package t e s t ;
2
3 /**

4 * All feasible actions of a miner.

5 */

6 p u b l i c enum Ac t i on {
7 NA{
8 p u b l i c S t r i n g t o S t r i n g ( ) {
9 re turn "No a c t i o n - NA" ;

10 }
11 }
12 , ALL{
13 p u b l i c S t r i n g t o S t r i n g ( ) {
14 re turn " P u b l i s h a l l - ALL" ;
15 }
16 } , FIRST{
17 p u b l i c S t r i n g t o S t r i n g ( ) {
18 re turn " P u b l i s h f i r s t - FIRST " ;
19 }
20 } , RESTART{
21 p u b l i c S t r i n g t o S t r i n g ( ) {
22 re turn " R e s t a r t f o r k - RESTART" ;
23 }
24 } ;
25 }

Listing C.1: Test cases Action enum.

1 package t e s t ;
2 /**

3 * Implementation of a blockchain block.

4 */

5 p u b l i c c l a s s Block {
6 p u b l i c i n t blockID ;
7 p u b l i c i n t prevID ;
8 p u b l i c i n t hMinerID ;
9 p u b l i c i n t sMinerID ;

10 p u b l i c i n t l e n g t h ;
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11
12 p u b l i c Block ( ) {
13 t h i s ( 0 , - 1 , 0 , 0 , 0 ) ;
14 }
15
16 p u b l i c Block ( i n t blockID , i n t prevID , i n t hMinerID , i n t sMinerID ,
17 i n t l e n g t h ) {
18 t h i s . b lockID = blockID ;
19 t h i s . p revID = prevID ;
20 t h i s . hMinerID = hMinerID ;
21 t h i s . sMinerID = sMinerID ;
22 t h i s . l e n g t h = l e n g t h ;
23 }
24
25 // Overriding equals() to compare two Blocks

26 @Override
27 p u b l i c boolean e q u a l s ( O b j e c t o ) {
28
29 i f ( o == n u l l ) {
30 re turn f a l s e ;
31 }
32
33 i f ( ! ( o i n s t a n c e o f Block ) ) {
34 re turn f a l s e ;
35 }
36
37 // typecast o to Complex so that we can compare data members

38 Block b = ( Block ) o ;
39
40 // Compare the data members and return accordingly

41 re turn b . b lockID == t h i s . b lockID
42 && b . prevID == t h i s . p revID
43 && b . hMinerID == t h i s . hMinerID
44 && b . sMinerID == t h i s . sMinerID
45 && b . l e n g t h == t h i s . l e n g t h ;
46 }
47
48 /**

49 * String representation of a block.

50 */

51 p u b l i c S t r i n g t o S t r i n g ( ) {
52 re turn " Block # "+ t h i s . b lockID +" ( prevID : "+ t h i s . p revID +" , hMinerID : "
53 + t h i s . hMinerID+" , sMinerID : "+ t h i s . sMinerID+" , l e n g t h : "
54 + t h i s . l e n g t h +" ) " ;
55 }
56 }

Listing C.2: Test cases Block class.

1 package t e s t ;
2
3 import j a v a . u t i l . A r r a y L i s t ;
4
5 /**

6 * Implementation of a selfish miner behavior (algorithm).

7 *
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8 * The behavior of the selfish miner depents on his strategy defined

9 * by lead, fork, trail, tlen and selfish instance's members.

10 */

11 p u b l i c c l a s s S e l f i s h M i n e r {
12 p r i v a t e i n t p u b l i c H e a d ;
13 p r i v a t e i n t p r i v a t e H e a d ;
14 p r i v a t e boolean i s B e h i n d ;
15 p r i v a t e boolean s a f e Z e r o ;
16 p r i v a t e i n t p r i v a t e B r a n c h L e n ;
17 p r i v a t e i n t i n d e x L a s t P u b l i c ;
18
19 p r i v a t e i n t i d ;
20 p r i v a t e i n t l e a d ;
21 p r i v a t e i n t s l e a d ;
22 p r i v a t e i n t f o r k ;
23 p r i v a t e i n t s f o r k ;
24 p r i v a t e i n t t r a i l ;
25 p r i v a t e i n t t l e n ;
26 p r i v a t e i n t s e l f i s h ;
27
28 p r i v a t e A r r a y L i s t <Block > c h a i n = new A r r a y L i s t < >() ;
29
30 p r i v a t e i n t c u r r e n t I D ;
31
32 p r i v a t e boolean l a s t S e l f i s h ;
33
34 p u b l i c S e l f i s h M i n e r ( i n t id , i n t l e ad , i n t s l e a d , i n t fo rk , i n t s f o r k ,
35 i n t t r a i l , i n t t l e n , i n t s e l f i s h ) {
36 t h i s . p u b l i c H e a d = 0 ;
37 t h i s . p r i v a t e H e a d = 0 ;
38 t h i s . i s B e h i n d = f a l s e ;
39 t h i s . s a f e Z e r o = f a l s e ;
40 t h i s . p r i v a t e B r a n c h L e n = 0 ;
41 t h i s . i n d e x L a s t P u b l i c = 0 ;
42
43 t h i s . i d = i d ;
44 t h i s . l e a d = l e a d ;
45 t h i s . s l e a d = s l e a d ;
46 t h i s . f o r k = f o r k ;
47 t h i s . s f o r k = s f o r k ;
48 t h i s . t r a i l = t r a i l ;
49 t h i s . t l e n = t l e n ;
50 t h i s . s e l f i s h = s e l f i s h ;
51
52 t h i s . c u r r e n t I D = 1 ;
53 // genesis block

54 t h i s . c h a i n . add ( new Block ( ) ) ;
55 }
56
57 p u b l i c vo id i n c C u r r e n t I D ( ) {
58 t h i s . c u r r e n t I D ++;
59 }
60
61 p u b l i c boolean c h e c k S t a t e ( i n t publ icHead , i n t p r i v a t e H e a d ,
62 boolean i sBeh ind , boolean s a f e Z e r o , i n t p r i v a t e B r a n c h L e n ,
63 i n t i n d e x L a s t P u b l i c ) {
64 // ignore when miners are acting like honest.
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65 re turn ( t h i s . p u b l i c H e a d == p u b l i c H e a d
66 && t h i s . p r i v a t e H e a d == p r i v a t e H e a d
67 && t h i s . i s B e h i n d == i s B e h i n d
68 && t h i s . s a f e Z e r o == s a f e Z e r o
69 && t h i s . p r i v a t e B r a n c h L e n == p r i v a t e B r a n c h L e n
70 && t h i s . i n d e x L a s t P u b l i c == i n d e x L a s t P u b l i c )
71 | | t h i s . s e l f i s h == 0 ;
72 }
73
74 p u b l i c Block a d d S e l f i s h B l o c k ( ) {
75 Block b = new Block ( t h i s . c u r r e n t I D ,
76 t h i s . c h a i n . g e t ( t h i s . p r i v a t e H e a d ) . blockID , 0 ,
77 t h i s . id , c h a i n . g e t ( t h i s . p r i v a t e H e a d ) . l e n g t h +1) ;
78
79 t h i s . c h a i n . add ( b ) ;
80 t h i s . p r i v a t e H e a d = t h i s . c h a i n . s i z e ( ) - 1 ;
81 t h i s . p r i v a t e B r a n c h L e n ++;
82 t h i s . c u r r e n t I D ++;
83
84 t h i s . l a s t S e l f i s h = t rue ;
85 re turn b ;
86 }
87
88 p u b l i c vo id addHones tBlock ( Block b ) {
89 t h i s . c h a i n . add ( b ) ;
90 t h i s . p u b l i c H e a d = t h i s . c h a i n . s i z e ( ) - 1 ;
91
92 t h i s . l a s t S e l f i s h = f a l s e ;
93 }
94
95
96 /********************/

97 /* ALGORITHM */

98 /********************/

99
100
101 /**

102 * Algorithm's decisions.

103 *

104 * @return It returns the expected action

105 */

106 p u b l i c Ac t i on a l g o r i t h m E x p e c t e d A c t i o n ( ) {
107 i f ( t h i s . l a s t S e l f i s h ) {
108 re turn t h i s . o n S e l f i s h M i n e r ( ) ;
109 }
110 e l s e {
111 re turn t h i s . o n O t h e r s ( ) ;
112 }
113 }
114
115 /**

116 * on My Miners found a block.

117 *

118 * @return It returns the expected action

119 */

120 p r i v a t e Ac t i on o n S e l f i s h M i n e r ( ) {
121 i n t d = t h i s . l e n g t h D i f f W a s ( ) ;
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122
123 i f ( d == 0 && t h i s . p r i v a t e B r a n c h L e n >= 2 && ! t h i s . i s B e h i n d ) {
124 re turn SM1 ( ) ;
125 }
126 e l s e i f ( d == 0 && t h i s . i s B e h i n d ) {
127 t h i s . p u b l i s h A l l ( ) ;
128 t h i s . p r i v a t e B r a n c h L e n = 0 ;
129 t h i s . i s B e h i n d = f a l s e ;
130 re turn Ac t i on . ALL;
131 }
132 e l s e {
133 re turn Ac t i on .NA;
134 }
135 }
136
137 /**

138 * on Others found a block.

139 *

140 * @return It returns the expected action

141 */

142 p r i v a t e Ac t i on o n O t h e r s ( ) {
143 i n t d = t h i s . l e n g t h D i f f W a s ( ) ;
144
145 i f ( d > - t h i s . t l e n && t h i s . i s B e h i n d ) {
146 re turn Ac t i on .NA;
147 }
148 e l s e i f ( ( d == 0 && t h i s . p r i v a t e B r a n c h L e n == 0) | | d == - t l e n ) {
149 t h i s . r e s t a r t ( ) ;
150 t h i s . p r i v a t e B r a n c h L e n = 0 ;
151 t h i s . i s B e h i n d = f a l s e ;
152 re turn Ac t i on . RESTART ;
153 }
154 e l s e i f ( d == 0 && t h i s . p r i v a t e B r a n c h L e n >= 1 && ! t h i s . i s B e h i n d ) {
155 t h i s . s a f e Z e r o = f a l s e ;
156 re turn SM2 ( ) ;
157 }
158 e l s e i f ( d == 1) {
159 SM3 ( ) ;
160 t h i s . p u b l i s h F i r s t ( ) ;
161 re turn Ac t i on . FIRST ;
162 }
163 e l s e i f ( d == 2) {
164 re turn SM4 ( ) ;
165 }
166 e l s e {
167 t h i s . p u b l i s h F i r s t ( ) ;
168 re turn Ac t i on . FIRST ;
169 }
170 }
171
172 /**

173 * SM1

174 * if (fork and not sfork) or safeZero then

175 * safeZero <- false

176 * else

177 * publish all of the private chain

178 * privateBranchLen <- 0
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179 *

180 * @return It returns the expected action

181 */

182 p r i v a t e Ac t i on SM1 ( ) {
183 i f ( ( t h i s . f o r k == 1 && t h i s . s f o r k != 1) | | t h i s . s a f e Z e r o ) {
184 t h i s . s a f e Z e r o = f a l s e ;
185 re turn Ac t i on .NA;
186 }
187 e l s e {
188 t h i s . p u b l i s h A l l ( ) ;
189 t h i s . p r i v a t e B r a n c h L e n = 0 ;
190 re turn Ac t i on . ALL;
191 }
192 }
193
194 /**

195 * SM2

196 * if trail and not controlled() then

197 * isBehind <- true

198 * do nothing

199 * else

200 * private chain <- public chain

201 * privateBranchLen <- 0

202 *

203 * @return It returns the expected action

204 */

205 p r i v a t e Ac t i on SM2 ( ) {
206 i f ( t h i s . t r a i l == 1 && ! ( c o n t r o l l e d ( ) ) ) {
207 t h i s . i s B e h i n d = t rue ;
208 re turn Ac t i on .NA;
209 }
210 e l s e {
211 t h i s . r e s t a r t ( ) ;
212 t h i s . p r i v a t e B r a n c h L e n = 0 ;
213 re turn Ac t i on . RESTART ;
214 }
215 }
216
217 /**

218 * SM3

219 */

220 p r i v a t e vo id SM3 ( ) {
221 i f ( t h i s . f o r k == 1 && t h i s . s f o r k == 1 && ( c o n t r o l l e d ( )
222 | | t h i s . p r i v a t e B r a n c h L e n == 1) ) {
223 t h i s . s a f e Z e r o = t rue ;
224 }
225 }
226
227 /**

228 * SM4

229 * if lead and (not slead or controlled() or privateBranchLen = 2) then

230 * publish first unpublished block in private chain

231 * else

232 * publish all of the private chain

233 * privateBranchLen <- 0

234 *

235 * @return It returns the expected action
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236 */

237 p r i v a t e Ac t i on SM4 ( ) {
238 i f ( t h i s . l e a d == 1 && ( t h i s . s l e a d != 1 | | c o n t r o l l e d ( )
239 | | t h i s . p r i v a t e B r a n c h L e n == 2) ) {
240 t h i s . p u b l i s h F i r s t ( ) ;
241 re turn Ac t i on . FIRST ;
242 }
243 e l s e {
244 t h i s . p u b l i s h A l l ( ) ;
245 t h i s . p r i v a t e B r a n c h L e n = 0 ;
246 re turn Ac t i on . ALL;
247 }
248 }
249
250 /**

251 * @return It returns true iff the miner who mined the honest block is well

252 * connected with the selfish miners.

253 */

254 p r i v a t e boolean c o n t r o l l e d ( ) {
255 i n t i d = t h i s . c h a i n . g e t ( p u b l i c H e a d ) . prevID ;
256
257 f o r ( Block b : t h i s . c h a i n ) {
258 i f ( b . b lockID == i d ) {
259 re turn b . sMinerID == t h i s . i d ;
260 }
261 }
262 re turn f a l s e ;
263 }
264
265 p r i v a t e vo id r e s t a r t ( ) {
266 t h i s . p r i v a t e H e a d = t h i s . p u b l i c H e a d ;
267 t h i s . i n d e x L a s t P u b l i c = t h i s . p u b l i c H e a d ;
268 }
269
270 p r i v a t e vo id p u b l i s h A l l ( ) {
271 t h i s . p u b l i c H e a d = t h i s . p r i v a t e H e a d ;
272 t h i s . i n d e x L a s t P u b l i c = t h i s . p r i v a t e H e a d ;
273 }
274
275 p r i v a t e vo id p u b l i s h F i r s t ( ) {
276 i n t i d = t h i s . c h a i n . g e t ( t h i s . i n d e x L a s t P u b l i c ) . b lockID ;
277
278 f o r ( Block b : t h i s . c h a i n ) {
279 i f ( b . prevID == i d && b . sMinerID == t h i s . i d ) {
280 t h i s . i n d e x L a s t P u b l i c = t h i s . c h a i n . indexOf ( b ) ;
281 }
282 }
283 }
284
285 p r i v a t e i n t l e n g t h D i f f W a s ( ) {
286 i n t p r i v = t h i s . c h a i n . g e t ( t h i s . p r i v a t e H e a d ) . l e n g t h ;
287 i n t pub l = t h i s . c h a i n . g e t ( t h i s . p u b l i c H e a d ) . l e n g t h ;
288 i n t d = p r i v - pub l ;
289 i f ( t h i s . l a s t S e l f i s h ) {
290 d - - ;
291 }
292 e l s e {
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293 d ++;
294 }
295 re turn d ;
296 }
297
298
299 /********************/

300 /* GETTER FUNCTIONS */

301 /********************/

302
303
304 p u b l i c i n t g e t P u b l i c H e a d ( ) {
305 re turn t h i s . p u b l i c H e a d ;
306 }
307
308 p u b l i c i n t g e t P r i v a t e H e a d ( ) {
309 re turn t h i s . p r i v a t e H e a d ;
310 }
311
312 p u b l i c i n t g e t I s B e h i n d ( ) {
313 re turn ( t h i s . i s B e h i n d ) ? 1 : 0 ;
314 }
315
316 p u b l i c i n t g e t S a f e Z e r o ( ) {
317 re turn ( t h i s . s a f e Z e r o ) ? 1 : 0 ;
318 }
319
320 p u b l i c i n t g e t P r i v a t e B r a n c h L e n ( ) {
321 re turn t h i s . p r i v a t e B r a n c h L e n ;
322 }
323
324 p u b l i c i n t g e t I n d e x L a s t P u b l i c ( ) {
325 re turn t h i s . i n d e x L a s t P u b l i c ;
326 }
327 }

Listing C.3: Test cases selfish miner class.

1 package t e s t ;
2
3 /**

4 * Implementation of the functions returned from UPPAAL states and edges

5 * during test cases.

6 *

7 * Assertions will catch all problems of the implementation on UPPAAL if any.

8 *

9 */

10 p u b l i c c l a s s App {
11
12 p r i v a t e s t a t i c S e l f i s h M i n e r sm ;
13
14 p u b l i c s t a t i c vo id i n i t i a l i z e _ s m ( i n t id , i n t l e ad , i n t s l e a d , i n t fo rk ,
15 i n t s f o r k , i n t t r a i l , i n t t l e n , i n t s e l f i s h ) {
16 sm = new S e l f i s h M i n e r ( id , l ead , s l e a d , fo rk , s f o r k , t r a i l , t l e n , s e l f i s h ) ;
17 }
18
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19 p u b l i c s t a t i c vo id s e l f i s h _ a f t e r _ a c t i o n ( i n t publ icHead , i n t p r i v a t e H e a d ,
20 i n t i sBeh ind , i n t s a f e Z e r o , i n t p r i v a t e B r a n c h L e n ,
21 i n t i n d e x L a s t P u b l i c ) {
22 boolean i s b e h i n d = f a l s e ;
23 boolean s a f e z e r o = f a l s e ;
24 i f ( i s B e h i n d == 1) {
25 i s b e h i n d = t rue ;
26 }
27
28 i f ( s a f e Z e r o == 1) {
29 s a f e z e r o = t rue ;
30 }
31
32 t r y {
33 a s s e r t sm . c h e c k S t a t e ( pub l i cHead , p r i v a t e H e a d , i s b e h i n d , s a f e z e r o ,
34 p r i v a t e B r a n c h L e n , i n d e x L a s t P u b l i c ) : " Unexpec ted s t a t e " ;
35 } catch ( A s s e r t i o n E r r o r e ) {
36 System . o u t . p r i n t l n ( " [UPPAAL] S t a t e { P u b l i c Head : "
37 + p u b l i c H e a d +" , P r i v a t e Head : "+ p r i v a t e H e a d
38 +" , I s Behind : "+ i s B e h i n d +" , Sa fe z e r o : "
39 + s a f e Z e r o +" , P r i v a t e Branch Length : "
40 + p r i v a t e B r a n c h L e n +" , L a s t p u b l i s h e d i n d e x : "
41 + i n d e x L a s t P u b l i c +" } " ) ;
42 System . o u t . p r i n t l n ( " [ J ava ] S t a t e { P u b l i c Head : "
43 +sm . g e t P u b l i c H e a d ( ) +" , P r i v a t e Head : "
44 +sm . g e t P r i v a t e H e a d ( ) +" , I s Behind : "
45 +sm . g e t I s B e h i n d ( ) +" , Sa fe z e r o : "
46 +sm . g e t S a f e Z e r o ( ) +" , P r i v a t e Branch Length : "
47 +sm . g e t P r i v a t e B r a n c h L e n ( )
48 +" , L a s t p u b l i s h e d i n d e x : "
49 +sm . g e t I n d e x L a s t P u b l i c ( ) +" } " ) ;
50 e . p r i n t S t a c k T r a c e ( ) ;
51
52 System . e x i t ( 1 ) ;
53 }
54 }
55
56 p u b l i c s t a t i c vo id n e w _ s e l f i s h _ b l o c k ( i n t blockID , i n t prevID , i n t hMiner ,
57 i n t sMiner , i n t l e n g t h ) {
58 Block b = new Block ( blockID , prevID , hMiner , sMiner , l e n g t h ) ;
59
60 Block e x p e c t e d _ b = sm . a d d S e l f i s h B l o c k ( ) ;
61
62 t r y {
63 a s s e r t b . e q u a l s ( e x p e c t e d _ b ) : " Unexpec ted new s e l f i s h b l o c k " ;
64 } catch ( A s s e r t i o n E r r o r e ) {
65 System . o u t . p r i n t l n ( " [UPPAAL] "+b ) ;
66 System . o u t . p r i n t l n ( " [ JAVA ] "+ e x p e c t e d _ b ) ;
67 e . p r i n t S t a c k T r a c e ( ) ;
68
69 System . e x i t ( 1 ) ;
70 }
71 }
72
73 p u b l i c s t a t i c vo id new_hones t_b lock ( i n t blockID , i n t prevID , i n t hMiner ,
74 i n t sMiner , i n t l e n g t h ) {
75 Block b = new Block ( blockID , prevID , hMiner , sMiner , l e n g t h ) ;
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76
77 sm . addHones tBlock ( b ) ;
78 }
79
80 p u b l i c s t a t i c vo id e x p e c t _ p u b l i s h _ a l l ( ) {
81 Ac t io n e x p e c t e d = sm . a l g o r i t h m E x p e c t e d A c t i o n ( ) ;
82 t r y {
83 a s s e r t Ac t i o n . ALL == e x p e c t e d :
84 "UPPAAL Unexpec ted a c t i o n ( p u b l i s h a l l ) " ;
85 } catch ( A s s e r t i o n E r r o r e ) {
86 System . o u t . p r i n t l n ( " [UPPAAL] "+ A c t io n . ALL) ;
87 System . o u t . p r i n t l n ( " [ JAVA ] "+ e x p e c t e d ) ;
88 e . p r i n t S t a c k T r a c e ( ) ;
89
90 System . e x i t ( 1 ) ;
91 }
92 }
93
94 p u b l i c s t a t i c vo id e x p e c t _ n o _ a c t i o n ( ) {
95 Ac t io n e x p e c t e d = sm . a l g o r i t h m E x p e c t e d A c t i o n ( ) ;
96 t r y {
97 a s s e r t Ac t i o n .NA == e x p e c t e d :
98 "UPPAAL Unexpec ted a c t i o n ( no a c t i o n ) " ;
99 } catch ( A s s e r t i o n E r r o r e ) {

100 System . o u t . p r i n t l n ( " [UPPAAL] "+ A c t io n .NA) ;
101 System . o u t . p r i n t l n ( " [ JAVA ] "+ e x p e c t e d ) ;
102 e . p r i n t S t a c k T r a c e ( ) ;
103
104 System . e x i t ( 1 ) ;
105 }
106 }
107
108 p u b l i c s t a t i c vo id e x p e c t _ r e s t a r t ( ) {
109 Ac t io n e x p e c t e d = sm . a l g o r i t h m E x p e c t e d A c t i o n ( ) ;
110 t r y {
111 a s s e r t Ac t i o n . RESTART == e x p e c t e d :
112 "UPPAAL Unexpec ted a c t i o n ( r e s t a r t ) " ;
113 } catch ( A s s e r t i o n E r r o r e ) {
114 System . o u t . p r i n t l n ( " [UPPAAL] "+ A c t io n . RESTART) ;
115 System . o u t . p r i n t l n ( " [ JAVA ] "+ e x p e c t e d ) ;
116 e . p r i n t S t a c k T r a c e ( ) ;
117
118 System . e x i t ( 1 ) ;
119 }
120 }
121
122 p u b l i c s t a t i c vo id e x p e c t _ p u b l i s h _ f i r s t ( ) {
123 Ac t io n e x p e c t e d = sm . a l g o r i t h m E x p e c t e d A c t i o n ( ) ;
124 t r y {
125 a s s e r t Ac t i o n . FIRST == e x p e c t e d :
126 "UPPAAL Unexpec ted a c t i o n ( p u b l i s h f i r s t ) " ;
127 } catch ( A s s e r t i o n E r r o r e ) {
128 System . o u t . p r i n t l n ( " [UPPAAL] "+ A c t io n . FIRST ) ;
129 System . o u t . p r i n t l n ( " [ JAVA ] "+ e x p e c t e d ) ;
130 e . p r i n t S t a c k T r a c e ( ) ;
131
132 System . e x i t ( 1 ) ;
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133 }
134 }
135
136 p u b l i c s t a t i c vo id i n c _ c u r r e n t I D ( ) {
137 sm . i n c C u r r e n t I D ( ) ;
138 }
139 }

Listing C.4: Test cases App class.
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