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Abstract

Nowadays, the presence of fake news on the Internet is a common and daily phenomenon.

The freedom of speech and expression that characterises the Internet has become a plat-

form of exploitation and misinformation to serve interests that spread confusion and has

made the uncontrolled rise of fake news an important social issue. In order to find new

ways to reduce the spread of this infection, it is first necessary to understand its behaviour

and how it spreads. Our thesis has multiple primary goals. First, we contribute to a greater

project for "Fake News Evolution", whose aim is to examine the evolution of fake news

by gathering a vast amount of articles from 2009 to 2019. Furthermore, to help people

identify fake news over the web, we experimented with various state-of-the-art algorithms

for detecting near-duplicate articles, web-scraping and natural language processing tech-

niques. Using these methods, we have developed a system that, upon given the URL of a

suspicious article, searches across various well-acclaimed fact-checking domains to prove

the articles’ misinformation. With our vast collection of fake news articles, we evaluated

our system’s performance on 16.5k manually labelled articles. We have also provided a

highly programmable annotation platform that can be easily modified for future experi-

mentation to further optimise our system.
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Chapter 1

Introduction

Contents
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Outline Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1 Motivation

Since the beginning of the 20th-century journalists have dealt with the spread of misinfor-

mation without many obstacles. However, with the rise of information and communica-

tion technologies and its immense impact on our society, fake news became an everyday

phenomenon. The rapid growth of the Internet and the enormous influence of the Internet

media in our lives makes the problem of the uncontrolled rise of fake news an important

social issue. For the above reasons, the necessity for the reinvention of how journalists

work but also how the public is informed has sparked the interest of many researchers

and the general public. This interest began escalating with the 2016 United States elec-

tions [1] and continued to expand with the U.K. referendum. On even more recent events,

the Covid-19 virus and the 2020 United States elections have also been a cause of a new

outbreak for fake news misinformation. In particular, rumours and false information for

Covid-19 circulating social media became so increasingly challenging to distinguish from

the real facts that many governments and authorities urged citizens to confirm a news sto-

ries’ veracity before circulating them.
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In addition, the fact that the president of one of the most powerful nations in the world is

affected by fake news dissemination has baffled the public and forced them to awake to

the idea of misinformation. Figure 1.1 shows the increase of interest over time with the

search for fake news in the Google search engine. It clearly shows this exponential in-

crease in public’s interest in the term "fake news" by the end of 2016 and forward. A few

significant peaks on the graph were in February of 2017 when President Trump used the

phrase "fake news" in several of his tweets and interviews. Furthermore, on the 14th of

January of 2018, he attacked the Wall Street Journal as ’fake news’ over his North Korea

comments, and lastly on March of 2020 when Covid-19 related fake news escalated as

the virus took a global scale.

Figure 1.1: Google trends for U.S. in category: Fake News

Even though the need for an autonomous fake news detection system is undeniable, not

much work has been done to cover the demand due to the vast complexity of the problem.

Humans find it very difficult to distinguish between real and fake news without extensive

knowledge of the topic in question. As Automated Fact-Checking concerns many differ-

ent academic fields, it is expected to be an inconsistency in the terminology used across

them. With this survey, Thorne and Vlachos [18] identify the issue and try to unify the

task formulations and methodologies for better future understanding and research across

those fields. Furthermore, Pérez-Rosa et al. [12] describe the process of collection, anno-

tation, and validation of fake news in more detail, while showing the different approaches
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used in their detection. In this research, we are focusing on creating a fake news detection

system using fact-checking domains as a reference to determine the classification of the

article.

1.2 Challenges

Overall, Fake News detection is a very complex and challenging problem. Even fact-

checking experts, like journalists, need to conduct thorough research for the topic of ev-

ery news article they want to check to give a correct confirmation of the articles’ claim.

Furthermore, the binary classification of truth or fake is not always possible as it might

be partial truth or false. An even more challenging case is if the article is intentionally

exaggerated to give a satirical view of a subject for the readers’ entertainment. The identi-

fication process becomes even more challenging when expert journalists write the article

with the malicious goal of disinforming the reader to comply with their political agenda,

as we have seen with the 2016 United States elections, the U.K. referendum for leaving

the U.K. and the Covid-19 outbreak. These journalists are experts in fabricating the truth

in a well-written article while hiding their purpose behind strong and powerful words,

making it harder to extract the article’s exact claim.

The Internet, being the most extensive collection of data globally, makes the process of

identifying similar articles like searching for a needle in a haystack. Therefore, we need

to filter our search to the best possible way. In doing so, the claim of the article needs

to be extracted. Finding a text article’s claim is an open problem in the world of natural

language processing, as shown by already conducted research [7], as text is complicated

for a computer to understand its meaning entirely. Thus the outcome might not be as

accurate as expected.

In addition, since the fact-checking domains make a complete analysis of any question-

able article by trying to explain its falsy claim using facts from different trusted sources,

another problem we need to face is to correctly identify that the article we are trying to

disprove is the same, or similar, to the article we are trying to classify. Using techniques

for near-duplication text and natural language processing, we need to identify the rela-

3



tionship between the two; thus we need to be very precise in our metrics and the variables

we use in order to get the best result.

The data collection is another challenging part of the research. Most of the manually la-

belled datasets are too small, making them inadequate for machine learning approaches.

On the other hand, the datasets that consist of enough data for such approaches make

assumptions to declare the veracity of an article. For example, they declare an article as

fake if its origin is an untrusted domain that usually publishes fake news. To deal with

this assumption, we need to find a way to automate verifying an article’s veracity.

Furthermore, we need to consider the amount of irrelevant information that those datasets

might contain, for example all non-English articles, since our algorithms only work for

the Latin alphabet. Furthermore, because of the extensive amount of time and resources

needed to gather and evaluate the system results, there is not enough time for a thorough

investigation and re-examination of the system and its parameters.

Additional to the above challenges, we also had to deal with some technical restrictions.

Along with the system’s implementation, we also wanted to create an annotation website

to host the system and be used as a tool for crowdsourcing the evaluation system’s re-

sults. Since the system itself needs to perform complex calculations with features such as

N-grams and keyword extraction, we required a programming language suitable for that

purpose. With a vast collection of libraries in Natural Language Processing and more,

the Python language was a perfect candidate. The website, which was implemented as

a NodeJS1 project with the ReactJS2 library’s use, had to communicate with the system

written in Python and collect the results in Javascript. Also, the system needed to remain

under the University of Cyprus domain to communicate with the database for the crowd-

sourcing evaluation process and stay secure under the university’s firewalls. An API was

created using the Flask API3, which is also written in Python and can run the system in

the background. The annotation website communicates with the API using restricted and

1https://nodejs.org/en/
2https://reactjs.org/
3https://flask.palletsprojects.com/en/1.1.x/
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secure HTTP requests. While this makes the system slower, it keeps it protected as it

communicates with the API.

1.3 Contributions

This research has multiple goals. To better understand the impact of fake news and gain

insight into how they continue existing, we conducted an evaluation of their evolution

of the past decade. Using a vast dataset with news articles, both fake and truthful, we

extracted all relevant information to give a picture of how they behaved over some signif-

icant events in the past decade and suggest ways of fighting against misinformation.

Furthermore, another goal is to create a system that, with decent precision, can classify a

given article as truthful or fake news by cross-checking with articles from fact-checking

domains with similar claim. We use multiple state-of-the-art algorithms for near-duplicate

detection, keyword, and claim extraction with web crawlers’ help to locate and identify

said articles under some of the most well-acclaimed fact-checking domains.

The ultimate goal of our research is to set the roots for the perfection of the above system

so future researchers can use it to perform the evaluation and calculate the precision of

their fact-checking systems to further our efforts to reduce the spread of fake news and

misinformation across the Internet and its users. The general public could also benefit

from such a system by fact-checking an article, when they doubt its claim, without the

need for extensive knowledge.

Moreover, this research contributes to a study performed in the University of Cyprus

for "Fake News Evolution", which developed the web crawlers and gathered articles to

complete the dataset collection we are going to use for our needs. Their goal by collect-

ing articles from both trusted and untrusted sources over a period of ten years is to extract

different linguistic features from those articles and visualise them to study their evolution

over time.

5



To sum up, our contribution is as follow:

• Implementation of a text similarity system for identifying articles’ truthfulness, by

utilising known fact-checking organisations.

• Implementation of a user-friendly annotation platform.

• Contribute to a greater project "Fake News Evolution", which gathers a vast amount

of articles from 2009 to 2019 to examine the evolution of Fake News.

Our contribution to detecting online misinformation has to be effective and help the re-

searchers and the public to address this problematic issue.

1.4 Outline Contents

The organisation of our contents is as follows.

Chapter 1: Introduction

The Introduction explains our research’s motivation and why this is a significant problem

that needs to be addressed. It lists the multiple challenges we had to face and the goals

we want to achieve to provide a good contribution to our study and the general public.

Chapter 2: Related Work

This chapter focuses on the analytical review of the literature used in creating this paper,

consisting of fake news classification and detection techniques with the help of natu-

ral language processing. Furthermore, methods for web scraping and detection of near-

duplicate articles are listed, with state-of-the-art algorithms used for the implementation

of our system.

Chapter 3: Fake News Evolution

In this chapter, we explain in detail the process we took in analysing the evolution of fake

news over the past decade. We show the dataset used to collect the data, the process of

feature selection, and the cleaning of unwanted data. Then we present the visual repre-

sentation and give a description of our findings.
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Chapter 4: Implementation: Fake News Identifier

Here we define the methodology and explain each step of the implementation of the sys-

tem for fake news identification. We explain the reasoning behind each variable used for

the training of the algorithms and how they work. Then we give a detailed description

of the annotation system, how it operates, and how it is implemented with the best user

experience. Lastly, we give an overview of how crowdsourcing was conducted to gather

and evaluate the final results of the system.

Chapter 5: Evaluation

In the evaluation chapter, we describe the datasets we used and their role in our study.

Then we conduct an in-depth investigation of the above, presenting our experiments’ re-

sults and how they measure our original goals, while also giving a detailed description of

what did not work and suggestions for future optimisation. We offer a visual comparison

of our results and a table with specific values used for each experiment.

Chapter 6: Conclusion

Chapter 6 defines our closing thoughts and conclusions to summarise our research and

results. Finally, we provide important future work that could be done to further extend

and improve our work and help the research with fake news detection.
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Chapter 2

Related Work

Contents
2.1 Fake News Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Natural Language Processing . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Web Scraping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Near Duplicate Detection . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Fake News Detection

Since the 2016 U.S. presidential elections, where fake news is claimed to have had a sig-

nificant impact on the result [1], fake news detection has earned much interest in not only

Computer Scientists but in journalists as well. Fact-checking as a whole is considered as

an arduous process even for a human and even experts claim that someone cannot give an

outright opinion of the authenticity of an articles’ claim without having extensive knowl-

edge on the whole topic. Furthermore, it is assumed that experts write these articles with

the malicious attempt to disinform the reader by writing it to look as realistic as possible

at the point where the reader may not even think to question its reliability nor check for its

authenticity using sources or evidence in its content. Horne et al. [6] in their study show

that fake news is more similar to satire than real news leading us to conclude that per-

suasion in fake news is achieved through heuristics rather than the strength of arguments.

With the use of three different datasets with real, fake and satire political news, gath-

ered from well-known domains and different features that can be categorised as stylistic,

complexity and psychological, they prove how title structure and the use of NNP (Proper

Noun) are the main threat in persuading the reader about an articles’ reliability.
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Because declaring an article as real or fake news is somewhat tricky, there is no uni-

versal approach to a solution. So it comes to no surprise that there are many different

approaches to reach a result. One of these approaches is proposed in the article Five

Shades of Untruth: Finer-Grained Classification of Fake News [19] as a classification to

distinguish between hoaxes, irony and propaganda by combining the work of other re-

searchers. Wang et al. wanted to show that everything is not just black and white in the

classification of fake news, like prior work that focused on binary classification (factual

or fake). This approach combined both the SHPT scheme (satire, hoax, propaganda and

trusted news) and the Politifact six-way "Truth-O-Meter" (true, mostly true, half true,

mostly false, false and pants-on-fire) in a classification hierarchy. By mapping both of

their labels into a tree format they were able to capture the five major categories of fak-

eness: Factual, Hoax, Irony, Incomplete Propaganda and Manipulative Propaganda, and

in doing so, give a more in-depth understanding in the pattern of fake contents and how it

influences and spreads to the public. The results also showed that combining content and

social media information can improve the prediction quality.

The spread of fake news does not stop on blogs and news articles. Social media sites

have also been known to spread misinformation uncontrollably. More approaches have

been developed in analysing the network characteristics and the spread of fake news over

social media to extract features that will help us determine an article’s truthfulness. To

further understand this phenomenon, the scientific study for creating the FakeNewsNet

dataset [15] has analysed data collected in the Twitter social media platform. By analysing

the data, we can see that newly created accounts tend to spread more fake news than oth-

ers. This is due to social bots creating Sybil attacks on these platforms, which means that

a large number of pseudonymous identities are used to gain a disproportionately large in-

fluence. Fake news Tweets tend to have a higher ratio of negative sentiment, fewer replies

and more retweets, while real news Tweets have more likes, possibly because people

agree on them. Also, fake news Tweets are mostly posted at night when most people are

inactive, but their density is close to peak hours, possibly due to bot accounts. Although

fake news in social media is significantly faster, their life span is shorter and are easier to

diffuse due to the revelation of the truthfulness.
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2.2 Natural Language Processing

Natural Language Processing, or NLP for short, is a subfield of linguistics, computer sci-

ence, and artificial intelligence concerned with translating large amounts of natural lan-

guage data into a programmer-friendly data structure that correctly captures the meaning

of the original text including the contextual nuances of the language within them. Since

artificial intelligence plays a significant role in Natural Language Processing, machine-

learning approaches are the dominant method in analysing text, using SVM (Support

Vector Machine) or logistic regression.

In their survey about fake news detection, Conroy et al. [4] introduce several assessment

methods for detecting fake news, with one of them being linguistic cue. In linguistic ap-

proaches, the content of a message is analysed in search of language patterns that show

deception. Data is represented in "n-gram" frequencies. Deep syntax can be implemented

using PCFG (Probabilistic context-free grammar) to better predict deception by under-

standing the syntax used in the document in question. Semantic analysis can be used to

understand the meaning behind the linguistic input. Rhetorical Structured and Discourse

Analysis identify instances of rhetoric relations between the linguistic elements. They

show how the training of classifiers, like in Support Vector Machines (SVM), can be use-

ful in automated numerical analysis.

A similar technique was used in the paper Automatic Detection of Fake News [12] with

a focus was on serious news fabrication and celebrity gossip. They used linguistic clues,

such as "n-grams", punctuation, psycholinguistic features, readability and syntax, to dis-

tinguish between the truth-tellers from liars. The two new datasets they produced comply

with the nine requirements of a fake news corpus proposed by Rubin et al. [13]. Several

experiments were made using a linear SVM classifier and five-fold cross-validation, with

accuracy, precision, recall and F1 measures averaged over the five iterations. Different

amounts of training data were designated to find the learning curve and found out that

larger training data can improve the classification performance. Another test was per-

formed to assess the human performance of fake news detection in the datasets created.

The results showed that humans are better at identifying celebrity fake news than any
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other domains. The system created here outperforms humans while detecting fake news

in more serious and diverse news sources.

Neural networks are most commonly used in analysing visual images but have shown

encouraging results in natural language processing as well. Due to their excellent effi-

ciency in analysing and locating patterns, they can be used to find an article’s claim by

determining specific sentences or phrases. A great example of a neural network in action

is the browser plugin Check-It, developed by faculty and students of the University of

Cyprus in collaboration with the University of Crete [11]. This plugin was created to de-

tect fake news over the web and combine different approaches to solve the problem, such

as fact-checking, linguistic, social networks and flag-listing, and it is GDPR compliant.

It also uses a linguistic model which incorporates textual features (stylistic, complexity,

psychological) for headlines and bodies of articles using a trained Deep Neural Network

to predict veracity. Due to its top-notch Deep Neural Network, Check-It outperformed

other state-of-the-art models on commonly used datasets.

Thorne and Vlachos [18] explained some different types of inputs we can use when

using NLP. One frequent input method is subject-predicate-object triples, e.g. (Bob,

knows, John), which enables knowledge to be represented in a machine-readable way.

Another type of input is textual claims. They are usually short sentences constructed

from longer passages where different claims can be considered like numerical claims,

entity and event properties, position statements and quote verification. In addition, they

declare the difficulties of each approach, and they propose future NLP research on auto-

mated fact-checking.

While NLP is not the direct focus of this research, it is essential to understand as it plays

a significant impact on the declaration of fake news articles.
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2.3 Web Scraping

Web Scraping is the process of using bots to extract content and data from a website. Un-

like screen scraping, which copies only the pixels displayed on the screen, web scraping

extracts underlying HTML code and replicates entire website content elsewhere. In our

research, web scraping is used to extract the vital information of an article, like its title,

content, links, and so forth, so we can compare it and check its truthfulness.

Different kind of bots or API can be used to achieve this. One of these uses Scrapy1, a free

and open-source web crawling and web scraping framework used to crawl websites and

extract structured data from their pages. A spider bot can easily be scripted to only extract

the relevant information of a website. Its advanced item pipelines allow the programmer

to write functions in their spider to process their data such as validating, removing or

saving their data to a database. Scrapy also provides techniques for preventing the bot

from getting blocked by more clever websites by mimicking human-like behaviour, such

as the use of random intervals between requests, autothrottle for automatically throttling

crawling speed, providing a USER_AGENT for correct identification, and more.

Extracting website information can also be done with more straightforward API like

Beautiful Soup2, parsing the HTML code into a tree that you can easily navigate, search

and modify. More advanced options include the Newspaper3k3 API explicitly designed

to extract and curate online articles. Not only does it extract the articles important infor-

mation like title, authors and text, but it uses Natural Language Processing to extract its

keywords and summary as well. Google created its own tool, called Fact Check Explorer4

5, that allows users to easily browse and search for fact checks on various fact-checking

domains. An example of web crawlers used for information extraction from online arti-

cles is done in the survey by Shu et al., who provide a fake news data repository, called

FakeNewsNet [15]. The data repository contains two comprehensive datasets that include

1https://docs.scrapy.org/en/latest/intro/tutorial.html
2https://www.crummy.com/software/BeautifulSoup
3https://newspaper.readthedocs.io/en/latest
4https://toolbox.google.com/factcheck/explorer
5https://developers.google.com/fact-check/tools/api
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news content, social context and dynamic information from different types of news do-

mains such as political and entertainment sources. For the construction of the dataset,

different types of crawlers were used. Fact-checking websites were utilised to collect

reliable sources for true and fake news, such as PolitiFact and GossipCop. A PolitiFact

crawler was used to gather URLs of truthful and fake articles. When the link was depre-

cated, a Google web search was conducted to identify a closely related article. Another

GossipCop crawler was created to gather URLs for entertainment articles. Since most of

them are fake stories, true stories were collected from E! Online. A Google search of

each article’s headline was used to gather the URLs, since GossipCop does not explicitly

provide it, using NLP and negative sentiment lexicons to formulate the search query. A

news content crawler extracted the original news source from the provided URLs, such as

headline, body text, images, author information and links.

2.4 Near Duplicate Detection

When a fact-check is conducted for a particular article, the fact-checking websites either

presents a rating based on the accuracy of the article as a whole or they rate each fact

individually. The issue here is that different fake news sites can copy a story and provide

it with similar content. While one article can be detected as false, several near-duplicates

might still be out there. That is why near duplication detection is also an essential field in

fake news detection.

An interesting approach for determining the syntactic similarity of documents was done

in the paper Syntactic Clustering of the Web by Broder et al. [2]. This method can

discover if two documents are "roughly the same" (resemblance) and/or "roughly con-

tained" (containment) in one another. The resemblance and containment are valued from

0 to 1, where each document D can be viewed as a sequence of words, defined as a w-

shingle of size w, as S(D, w). So they define the resemblance of two docements A and B

as r(A,B) = |S(A)∩S(B)|/ |S(A)∪S(B)|, the containment between them as c(A,B) =

|S(A)∩S(B)|/ |S(A)|, and the resemblance distance as d(A,B) = 1− r(A,B). Hence

r(A,A) = 1, because the documents resembles itself 100% and the containment if A⊆ B is

c(A,B) = 1. For a shingle of size w, U as the set of all shingles of size w and a fixed param-
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eter s where W ⊆U they define MINs(W ) as the set of the smallest s elements in W and

MODm(W ) as the set of elements of W that are 0 mod s. Using a random permutation of

π : U →U they define F(A) = MINs(π(S(A))) and V (A) = MODm(π(S(A))). So the re-

semblance is estimated as |MINs(F(A)∪F(B))∩F(A)∩F(B)|/ |MINs(F(A)∪F(B))| or

|V (A)∩V (B)|/ |V (A)∪V (B)| and the estimated containment as |V (A)∩V (B)|/ |V (A)|.

Then in their system, using 10-shingles, with 40-bit Rabin fingerprints as a random per-

mutation, and the "modus" method described above with an m of 25, they generate a list of

document pairs that share any shingles, along with the number of their common shingles,

and decide if it exceeds the threshold of resemblance to classify them as near duplicate.

Charikar proposes another state-of-the-art method in his research of Similarity Estimation

Techniques from Rounding Algorithms [3]. He shows an interesting relationship between

rounding algorithms and the construction of locality-sensitive hash functions for classes

of objects and shows new construction possibilities. A locality-sensitive hash scheme

refers to a family of hash functions F with a collection of objects so that for objects x and

y Pr[hεF ][h(x) = h(y)] = sim(x,y)ε[0,1]. The similarity of objects can be estimated from

their compact sketches (signatures) with the use of min-wise independent permutations

and the similarity measure of sim(A,B) = |A∩B|/ |A∪B| (Jaccard coefficient). Charikar

constructed new locality-sensitive hash schemes for a collection of vectors using cosine

similarity [θ(u,v)/π] and a collection of distributions on n points in a metric space using

the Earth Mover Distance (EMD). The advantage of a locality sensitive hashing based

scheme is that this directly yields techniques for the nearest neighbour search for the co-

sine similarity measure. For the existence of locality-sensitive hash function families, it

must satisfy the triangle inequality, maps objects to {0, 1} and corresponds to the similar-

ity function 1+ sim(x,y)/2 and the distance function 1− sim(x,y) must be isometrically

embeddable in the Hamming cube.

Finally, an approach by Henzinger [5] compares the two algorithms discussed above and

implements a combined version to get a better result, using the map-reduce framework.

For the Broder et al. algorithm [2], pages were converted into token sequences of w-

shingles and then hashed into m 64-bit Rabin fingerprints, using m different fingerprint

functions. The min value is stored to create an m-dimensional vector of min-values for
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each function, which is then reduced to an m’-dimensional vector of supershingles to

save space and calculation time. Two pages are near-duplicate iff their supershingle vec-

tor similarity is at least 2, called B-similarity. The parameters were set as follows: m =

84, m’ = 6 and k = 8. For Charikar’s algorithm [3], which is based on random projections

of words in documents, each token is projected into a b-dimensional space by randomly

choosing b entries from [-1, 1]. All positive entries are set to 1 and all non-positive to 0,

resulting in a random projection for each page. Two pages are near-duplicates if the num-

ber of agreeing bits in their projections is above a fixed threshold t, called C-similarity.

For both algorithms to require the same amount of space per document t was set to 372.

Henzinger’s combined algorithm first computes all B-similar pairs and then filters out

those pairs whose C-similarity falls below a certain threshold. While neither of the two

algorithms alone performed well on pages from the same site, this combined algorithm

performed well without sacrificing mush recall.
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Chapter 3

Fake News Evolution
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3.1 Data Collection

In an effort to understand how fake news have continued to affect us through the years

and show how important it is for more research to be conducted in the detection and

limitation of fake news over the web, we completed an analysis of their evolution over the

last decade. We explain the data used in this analysis, how we prepared it, and how we

visualise our findings.

3.1.1 Data Overview

The first step was the data collection and finding the best dataset for our needs. Fortu-

nately, one was provided to us by the University of Cyprus where the "Fake News Cor-

pus"1 open-source dataset was used and expanded using locally developed web crawlers

to gather articles from trusted and untrusted sources, covering a period of ten years from

2009. While the "Fake News Corpus" dataset collected different types of articles from

satire, to political, to conspiracy theories, only articles from the Fake News and Credible

1https://github.com/several27/FakeNewsCorpus
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categories were used to create this dataset.

This dataset provides a comprehensive collection of articles containing almost daily basis

data with 581.9K documents published from 2009 to 2019. Most of the URL were col-

lected from the web-archive2, an Internet archive storing past websites, allowing the user

to go "back in time" and gather the information that might have been modified or deleted.

Table 3.1 explains the columns that make the dataset that was used.

Columns Description

_id Unique identifier for each new document

title The title of the published article

author The author who wrote the article

publish_date The timestamp when the article was published

content The content of the article

domain The url of the domain that published the article

timestamp The timestamp the article had when it was extracted

year The year the article was published

url The url where the article was published

fake A boolean to express if the article is considered fake or truthful

Table 3.1: Columns of the new Fake News Corpus dataset

3.1.2 Data Cleaning

After examining the data, it was clear that a subset of the URL in the dataset was either

corrupt, deprecated or did not even contain an article. Many advanced regular expressions

were implemented to remove the unwanted data to have a more clear final result.

The regular expressions passed from each URL in the original collection. They checked

its format for any irregularities like false protocol identifiers (such as HTTP, HTTPS),

corrupt web-archive pages since each URL must comply with some guidelines created by

2https://archive.org/about/
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the domain like having a 14 integers long unique key identifier, or if the URL was col-

lected from social media sites (such as Facebook, Twitter, Youtube). If any of the URLs

complied with the above, it was considered false data, which this analysis is interested in,

and was removed.

The updated dataset holds the new collection of data that was optimised for our needs.

This dataset contains 573K entries, meaning that we have cleared about 2GB of unwanted

data. The collection is still following the same structure as before.

3.2 Data Visualisation

An understanding of the data was achieved via data visualisation techniques. Data visu-

alisation helps to get a better awareness of the data and extract conclusions from it. We

used the Matplotlib plotting library for the Python programming language to produce our

visualised data. We produced three types of graph: Bar Chart, Pie Chart and Scatter plots.

Figure 3.1: Unique domains and URLs classified by their type (fake or true)

Figure 3.1 displays two Pie charts to show the dataset’s variety. The left chart shows how

many unique domains are included in the dataset. With a total of 947 domains, at the time

of writing, a stunning 89.7% are domains that published an article classified as fake news.

The right chart, however, displays the total of unique URLs that consist in the dataset.

With a 63.9% total of URL that links to fake news articles, it shows that the dataset is

well balanced with both true and fake articles.
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Figure 3.2: Fake and True articles classified by year published

Figure 3.2 shows two side by side Bar charts. The left chart shows the number of total

classified fake news articles in the dataset per year, while the right chart shows the total

classified true news articles per year. The total fake news seems to be much higher than

the true news entries almost every year. The total is abnormally high, comparing to the

rest, in the year 2017 with almost 190K results for fake news articles. This phenomenon

is consistent with the results of Figure 1.1, were in the year 2017, we saw an extremely

high amount of requests for fake news on the Google search engine. According to that,

the web crawlers found a higher amount of articles on the web to extract. The spread

of misinformation seems to have continued through 2019, where fake news articles take

88% of entries on that year. The difference is seen more clearly on Figure 3.3. Here, both

fake and true entries in the dataset are shown in the same chart to better visualise their

relationship.

The set of Scatter plots, shown across Appendix A.1, visualise the total of fake news

articles produced by the different publishing domains in our dataset for each year. To

better show this data, we split it into ten subplots where we divided the domains by cal-

culating the median of their total entries through the decade to have more close results

in each subplot. The median, also called "the middle" value, is the value separating the

higher half from the lower half of a data sample. To find the median, we list the values

in ascending numerical order, from smallest to largest and extract the list’s median value.

Each dot in the graph represents the total entries of a domain for that specific year. The

lines connecting those dots show how that domain developed over the years.
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We can see several domains with a high amount of fake news articles that kept misin-

forming their readers throughout the decade, such as redstate.com, chron.com and hol-

lywood.com. These sites show an obscure amount of fake news activity and possible

intentional disinformation of their readers. There is also a higher number of domains in

2017, as shown from the previous figures.

Figure 3.3: Fake and True articles classified by year published (side by side)
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Chapter 4

Implementation: Fake News Identifier
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4.1 Methodology Overview

As previously discussed, part of this research is creating a system that can classify a given

article as true or fake news by cross-checking it with articles from fact-checking domains

with a similar claim. Our methodology for creating such a system is based on five ma-

jor components: Article Data Extraction, Preprocessing of Article Content, Article Claim

Extraction, Web Scraping and Near-Duplicate Detection. To better visualise our structure,

Figure 4.1 shows an overview of the architectural design used the system’s development

process.
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Figure 4.1: An overview of our methodology

This work aims to contribute to the growing and ongoing need to detect and reduce fake

news over the Internet. More specifically, the implementation of this programming work

aims to create a fully functional, applicable and integrated system that cross-checks fact-

checking domains for given articles and use our results to produce an evaluation of the

growth and the evolution of fake news on the Internet. To achieve this goal, it is neces-

sary to utilise auxiliary algorithms, the selection of which is based upon previous similar

studies and the evaluation of their efficiency experimentally with comparative input data

used in the implementation of this work.

Firstly, articles are given by a dataset (more about the dataset used in Section 5.1), or

a user, along with a set of known fact-checking domains to use as a guideline for our

search. We have manually integrated the following as our system’s default domains: Poli-

tifact1, Snopes2, FactCheck3, FullFact4 and MediaBiasFactCheck5. We will refer to the

article the system is processing as the "original article". A processing of the original ar-

1https://www.politifact.com/
2https://www.snopes.com/
3https://www.factcheck.org/
4https://fullfact.org/
5https://mediabiasfactcheck.com/
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ticle’s content is then conducted to remove all unwanted data and prepare it for the next

phases. After that, we extract the given original article’s claim to use as a query in the Web

Scraping phase so we can isolate the search spectrum as much as we can. We then search

the web using the produced claim as our query. First, we search Google plainly, while

isolating the results for the fact-checking domains given at the beginning. If no results

are found, we search the Google Fact Check Explorer6 7, a tool developed by Google that

searches various fact-checking domains for news articles. Finally, if no results are found,

we search each of the given domains separately using their integrated search engine. For

each result found we need to determine if it is referring to our original article or a near-

duplicate one. The sheer number of available articles and duplicates containing fake news

makes it virtually impossible to compare their entire content to verify similarity, as the

process would be too time-consuming. For this reason, effective algorithms that create

fingerprints of the said documents needed to be utilised, which will examine their similar-

ity fast and efficiently. For our purposes, the Simhash algorithm was selected. A bit-to-bit

comparison of the fingerprints using the Hamming Distance measurement can validate

the two documents comparison. We go on to explain each of these steps in more detail.

The system’s implementation process is characterised by some essential milestones that

summarise the system overview shown by Figure 4.1. We go on to explain each of these

steps in more detail.

4.1.1 Article Data Extraction

Given the original article, the implementation process’s first challenge was to understand

the data format and modify them for their proper use in extracting data from the articles.

The article’s URL address was used to extract only the article’s necessary information

(such as the title and its content) for each request. The extraction of this data was achieved

using the Newspaper3k8 library API of the Python programming language. This library

is explicitly designed to extract and curate online articles. The Internet Archive9 was also

used as a backup to refer to older saved versions of the Internet if an article URL address

6https://toolbox.google.com/factcheck/explorer
7https://developers.google.com/fact-check/tools/api
8https://newspaper.readthedocs.io/en/latest
9https://archive.org/about/
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is no longer available. The data is extracted and stored to be used in the following phases

of the process. The above steps are used for the original article’s data extraction. They

will also be used on all possible duplicates we will identify at the Web Scraping phase on

Section 4.1.4.

4.1.2 Preprocessing of Article Content

For the most successful processing of the data by the algorithms, it is necessary to elimi-

nate the unnecessary "noise". For the proper preprocessing the text needs to be subjected

to certain refinements explained bellow:

1. Convert all characters to lowercase.

2. Tokenisation.

Tokenisation helps us split the text into tokens of words. For our purposes, we split

them into tokens of overlapping phrases consisting of n number of words, called

n-shingles.

3. Removal of white space characters.

4. Removal of Stopwords.

Stopwords are words that often appear in texts but are unnecessary for data process-

ing if they do not express any meaning (such as and, of, in, the, is, that, these).

5. Stemming and Lemmatization.

These are techniques aimed at retaining the root of the meaning of words. Stem-

ming transforms words into their original form (e.g. tokenisation → tokenise).

Lemmatisation groups together the inflected forms of a word to analyse them as a

single term called the word’s lemma (e.g. am, are, is→ be).

The NLTK library10 of the Python programming language was used to implement the

stopwords, Porter Stemming and Lemmatization techniques to avoid repetitive calculation

of similar information.
10https://www.nltk.org/
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4.1.3 Article Claim Extraction

The next step is to extract the core claim of the original article. Two approaches were

implemented and tested. The first approach uses the requested article’s title after a noise

elimination preprocessing to remove any unnecessary punctuation characters, white spaces

or repetitions. The second approach uses the TextRank algorithm [20], often used in key-

word extraction and text summarisation. We use this algorithm to extract the most impor-

tant sentences of the text article.

The TextRank is similar, and based, on the PageRank algorithm [10], which is used to

calculate the weight for web pages. The PageRank is visualised as a directional graph of

webpages and their links to other web pages and they can be assigned a weight using the

following formula:

S(Vi) = (1−d)+d ∗ ∑
jεIn(vi)

1∣∣Out(Vj)
∣∣S(Vj)

• S(Vi) - the weight of webpage i

• d - damping factor, if there are no outgoing links

• In(Vi) - set of inbound links of i

• Out(Vi) - set of outgoing links of i

•
∣∣Out(Vj)

∣∣ - number of outbound links

As shown by the equation, the weight of a webpage is dependent on the weights of its

inbound web pages. This iteration is run miltiple times to get the final weight.

For the TextRank algorithm to find the most relevant sentences, the web page is rep-

resented by the text and follows the same ideology as in the PageRank. We split the

document into several sentences and tokenise their words to generate a list of tokenised

sentences. We then build a Similarity matrix between the sentences, calculated using the

Cosine Similarity metric, as shown in the equation below, to measure distances between

documents irrespective of their size.

similarity(A,B) =
A∗B

‖A‖×‖B‖
=

∑
n
i=1 Ai×Bi√

∑
n
i=1 A2

i ×
√

∑
n
i=1 B2

i
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We can now run the PageRank algorithm on the similarity matrix we have produced and

generate a PageRank matrix that will hold the score for all the sentences, and the sentence

with the highest score is considered the most important.

We use the highest-ranking sentence to extract its core with the use of semantic triples.

A triple is a set of three entities that codifies a statement about semantic data in the form

of subject-predicate-object expressions, as shown in Figure 4.2. The Stanford Core NLP

library was used for the implementation [9]. The system splits the sentence into a set of

entailed clauses. Each clause is then shortened even more and finally produces a set of

entailed shorter sentence fragments, semantic triples.

Figure 4.2: Semantic Triples: Overview

A small sample of articles was preselected and manually evaluated to test these two

methodologies, and how effected they were when used as a query for the web scrap-

pers. The second approach with the TextRank seemed to have performed slightly better

than the first but has the drawback of being more resource and time demanding, due to

the need of more calculations and the connection it has to keep with the Stanford server

to keep the pipeline active for the NLP Core library to work.

For those reasons, the first approach using the preprocessed original articles’ title is used

in the final implementation.
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4.1.4 Web Scraping

Next, the implementation process predicts the identification of fact-checking domain arti-

cles that have evaluated the original article’s authenticity and reliability so we can classify

the original article as true or fake. To collect these articles across the World Wide Web,

we use the claim, found in the previous step of Article Claim Extraction in Section 4.1.3,

as our query. For its implementation, we first tested the Google API11 for article recovery

from the Google Search Engine. While this tool was free and registered as the official

Google API for web searching, it came with restrictions. Due to its limitation of not al-

lowing us to retrieve many items too quickly, it was condemned as not suitable for our

current work.

For the final implementation, different web crawlers were implemented with the Beu-

tifulSoup library12 for the search engines’ result collection. For each search query, the

claim is used as the query. A range restriction is implemented to search only for articles

published close to the original article’s publication. The search is done in three different

ways to widen the search spectrum to find a result:

1. Google Searching

We are searching for articles on the World Wide Web using the Google search en-

gine. A Web Crawler searches for the search engine’s first n results and extracts the

links using the BeaurifulSoup library. Each link is then evaluated if it is published

under the set of fact-checking domains given to us as input on the Data Extraction

phase on Section 4.1.1.

2. Google’s Fact Check Explorer Searching13 14

Again, using a Web Crawler, we get the top results of Google’s Fact Check Explorer.

This tool’s API also gives us the option to isolate the search to a specific domain

from our given input list of domains and to a range of dates to match the original

article’s.
11https://github.com/googleapis/google-api-python-client
12https://www.crummy.com/software/BeautifulSoup
13https://toolbox.google.com/factcheck/explorer
14https://developers.google.com/fact-check/tools/api
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3. Fact-Checking Domain Searching

If all others fail, we also search each of the domains from their integrated webpage

search engine. Some of them can be implemented using a simple BeutifulSoup

crawler. However, others use third-party search engines where the Selenium frame-

work was needed to collect the results, because of the extra delay required for the

search engine to return its findings.

Immediately after retrieving the results’ URLs, it is necessary to extract the articles’ nec-

essary data (such as their title and content). The Newspaper3k API is used once again,

as shown in Section 4.1.1 for the Data Extraction process. The result is then being pre-

processed using the techniques shown in Section 4.1.2 to prepare it for the next step of

Near-Duplication Detection.

4.1.5 Near-Duplicate Detection

The final, and arguably the most critical step of the process is the comparison of the con-

tent of the original article with that of the candidate duplicates retrieved from the World

Wide Web in Section 4.1.4. For each result, which points to a fact-checking domain’s

evaluation of an article, we need to determine if it refers to our original article or a near-

duplicate one. We have implemented three techniques to give an approximation of that

answer as best as we could.

First, we check if our fact-checking domain result is redirecting in any way to the original

article by checking the hyperlinks of the article and its sources. If this is true, then the

article is most probably an evaluation of the original article and therefore a correct result

for our detection process.

The second technique uses state-of-the-art algorithms for near-duplication detection of

text documents. Two approaches were used and tested for their detection. In the first

approach, the Minhash algorithm was utilised to create signatures for each article and

the LSH (Locality Sensitive Hashing) algorithm for identifying similarities between the

articles with the calculation of distances to be done using the Jaccard Similarity. In the

second approach, the Simhash algorithm was utilised for creating signatures for each ar-
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ticle and the Hamming Distance to calculate their distances. A detailed description of

how the algorithms were implemented and how they work follows, along with the way

we have evaluated and compared them.

Finally, suppose the two previous approaches fail. In that case, we use the TextRank

algorithm to extract the top keywords from the articles and determine if a large percent-

age of those keywords are included with similar weight in both articles. This method is

experimental. Due to time limitations, it was not fully optimised but still held a decent

precision score in the later evaluation of the system (Chapter 5).

Following is a detailed description of how our algorithms were implemented and what

parameters we chose for our experiments. On Section 4.1.6, we describe how we have

evaluated and compared our two approaches for the similarity algorithms.

Minhash Algorithm

For the implementation of the Minhash and the LSH algorithms [2] the Snapy15 Python

library was utilised. Initially, large-scale data management creates multiple issues, such

as the inability to fit the entire text to be examined in the main memory. The approach

implemented to deal with this issue requires converting the text in smaller sets, dividing

it using the logic of n-shingles (or n-gram). More specifically each shingle is a sequence

of n tokens which appear in the article. In this case, the tokens are words and n is an

empirically preselected constant number for the algorithms’ execution.

The Minhash algorithm is utilised, whose primary purpose is to convert large sets of text

into short text signatures. Therefore, the shingles produced contain the articles’ entire

content and are utilised by the Minhash algorithm resulting in small-scale vectors repre-

senting the original text while maintaining the necessary similarity.

The Minhash algorithm is based on the presence of one boolean input panel of Shin-

gles and the to be examined articles. The presence of a shingle in an article is denoted

15https://pypi.org/project/snapy/
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by 1. Each article mutates through a random permutation π , and this is achieved with the

utilisation of a "hash" function that expresses the following methodology: "The number

of the first line in which column C has the value 1", as shown in the following equation

hπ(C) = minπ(C). The value C represents one feature of the text article.

Figure 4.3 represents an example of the Minhash algorithms execution and its resulted

signature. After executing Minhash on each candidate article and producing their signa-

tures, we are left with a set of candidate signatures and the original article’s signature

whose duplicate we are trying to find. To verify their similarity, we run the LSH algo-

rithm, which works with the philosophy that focuses on pairs of signatures that are likely

to belong to similar documents. According to LSH, the columns of matrix M, shown in

Figure 4.3, containing the candidate signatures are split into many buckets so that the ar-

ticles that are in the same bucket represent possible duplicates or candidate pairs.

Figure 4.3: Minhash Algorithm: Overview

To find those candidate pairs, given a matrix M from the Minhash algorithm, we se-

lect a value s (fraction < 1) indicating the similarity threshold. More specifically, the

x and y columns of the matrix M represent a candidate pair if and only if their signa-

tures agree for at least s percentage of their rows. The relation is given by the equation

M(i,x) = M(i,y) f or at least f rac. s values o f i.
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The LSH algorithm divides the table M into smaller parts called bands, to achieve dis-

playing only the similar columns in a bucket with a high probability of similarity. The

columns of matrix M are hashed multiple times. Each band consists of a fixed number

of lines. Additionally, for calculating the signatures’ similarity distances, the Jaccard

Similarity metric was utilised because it is considered ideal for the Minhash and LSH

algorithms.

The variables used for our implementation were selected from suggestions of other re-

searches and experimental tests. A word tokenisation for 3-shingles was conducted using

prime numbers to create the hash function for 100 permutations under a number of 50

bands to break the minhash signature into buckets with no set threshold.

Simhash Algorithm

For the Simhash algorithm’s implementation, the Simhash Python library16 was utilised,

which is based on the algorithm proposed by Charikar in his research [3]. This method is

based on dimensionality reduction, converting a large-scale matrix into small f-fingerprints.

After a preprocessing of the document by n-shingle tokenisation, just like with Minhash,

the algorithm follows the following procedure to create that f-fingerprint, also shown in

Figure 4.4.

An f-dimensional matrix, called V, is created where each of its values is first set to 0.

Each value is hashed by an f-bit hash-function, creating an f-bit unique feature. These

features make the matrix V as follows: if the i-th bit of the hash function is 0, then the

i-th value of matrix V will increase its weight by one, and if the i-th bit is 1, then the i-th

value of matrix V will decrease its value by one. When all features are processed like

above, matrix V will consist of positive and negative values. Each negative value will be

modified to 0 and each positive value to 1. We are then left with an f-fingerprint which

describes the original article.

16https://pypi.org/project/simhash/
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Figure 4.4: Simhashing Algorithm: Overview

After running the Simhash algorithm and collected a set of f-fingerprint for each candi-

date article and an f-fingerprint for the original article F, we want to detect if any of the

fingerprints in the set differ from F at most k bits, with k as our similarity threshold. The

Hamming Distance is utilised, a technique for measuring the distance from two binary

tables, where it measures how many bits they differ. Two articles, A and B, are near-

duplicates if their Hamming Distance d(A, B) is less than or equal to k, d(A,B)≤ k.

The variables used for our implementation were selected from suggestions of other re-

searches [3, 8] and experimental tests. A word tokenisation for 3-shingles was conducted

for the creation of 64-bit Rabin fingerprints. The threshold of 13 was selected after an

evaluation analysis was conducted. Figure 4.5 was created after a human evaluation of a

dataset of near-duplicate articles, more on that on the Algorithm Comparison of Section

4.1.6, visualising our experiments precision and recall. The precision is defined as the

fraction of our model’s True Positive results, meaning the pairs whose Hamming distance

was at most k. Our True Positives (TP) are the number of accurate predictions made by

our algorithm, and False Positives (FP) are the number of inaccurate predictions found

falsy as true near-duplicates.

Precision =
T P

T P+FP
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The recall measures how well we predicted the positive results when they were actually

positive. False negatives (FN) describe the inaccurate predictions that were genuinely

negative.

Recall =
T P

T P+FN

Figure 4.5 shows the compensations for various values of k, where a too-low value shows

many False Negative results, and a too-high value indicates a lot of False Positive results.

Our choice for k is k = 13 based on the above where recall and precision intertwine close

to each other. To summarise, our sample for 64-bit fingerprints declares two documents

as near-duplicate when their fingerprints are at most 13 bits different.

The relatively high value of k can be attributed in the presence of noise that was not

removed during the preprocessing of the data before executing the Simhash algorithm.

The noise in which we are referring to may include: links referring to other websites, text

from cookies or privacy policies incorrectly extracted by the Newspaper3k API instead

of the articles’ content and more. In addition, in some cases the large difference in the

length of the original article’s contents with the possible candidates may leed to inefficient

operation of the algorithm, producing a false result.

Figure 4.5: Simhashing Algorithm: Precision-Recall Graph for different k
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Keyword Extraction

The final technique uses the TextRank algorithm [20], described in the claim extraction

on Section 4.1.3, to extract the articles’ most important words. Instead of the web page,

we have in PageRank [10], TextRank is represented by text but follows the same ideology.

We split the document into several sentences and, since not all words are useful to us, we

store words with the specific POS (Part-of-Speech) tags of NOUN, PROPN and VERB,

using Python’s Natural Language Toolkit17 (NLTK). Each word is the same as a node in

the PageRank algorithm, so our nodes are represented by the words w1,w2,w3, ...,wn. By

setting a window size of k, [w1,w2, ...,wk], [w2,w3, ...,wk+1], [w3,w4, ...,wk+2] represents

our windows and two-word pairs in a window are an undirected edge on our graph. By

following the PageRank algorithm’s equation and running it multiple times, we can cal-

culate each node’s weight (word) and find the important words, called the keywords.

After extracting the keywords, we pick the top n keywords and calculate if at least k

of these keywords appear in both articles with a precision factor of +/- m. In short terms,

we are trying to find if a large percentage of those keywords are included with similar

weight in both articles and therefore describe a similar claim. In our system, we used the

10 top keywords, where at least half of them should appear in both articles and may have

a weight difference of 60% or less. This feature was not fully developed and optimised

due to time limitations, and the variables were selected from experimental tests.

4.1.6 Evaluation of Similarity Algorithms

Similarly to the research Finding Near-Duplicate Web Pages: A Large-Scale Evaluation

of Algorithms [5], we compared the similarity algorithms of Minhash (Section 4.1.5) and

Simhash (Section 4.1.5) to picked the best one to utilise in our system.

The FakeNewsNet open-source dataset [14–17] was utilised for the evaluation and the

comparison of the two algorithms. This dataset consists of preselected true and fake arti-

cles from the PolitiFact fact-checking domain, containing political news articles, and the

Gossipcop domain, containing entertainment and gossip articles. The dataset’s purpose

17https://www.nltk.org/
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is "collecting, analysing and visualising fake news and related dissemination on social

media". The dataset contains multiple CSV files that follow the structure, as shown in

Table 4.1.

Columns Description

_id Unique identifider for each news

url Url of the article from web that published that news

Title Title of the news article

tweet_ids Tweet ids of tweets sharing the news. This field is list of tweet ids separated by tab.

Table 4.1: Columns of the new FakeNewsNet dataset

The tweet_ids tag was not used because we are focusing on web news articles and not so-

cial media feed from Twitter. For the data extraction the Newspaper3k18 library was used

once again in cooperation with the Internet Archive19 as we have shown in Section 4.1.1.

The preprocessing of the articles’ contents also follows the same process as in Section

4.1.2. For the claim, the title tag from the dataset is being utilised. As for web scraping

the web for near-duplicate articles, only the Google Searching technique was used from

Section 4.1.4.

Possible near-duplicate articles were identified for each entry of the dataset using the

Google search engine’s first page for querying. A human evaluation was conducted from

a sample of results where each pair of possible near-duplicate articles was classified as:

• Near-Duplicates

The pairs whose signature was under or equalled the algorithm’s threshold.

• Non-Near-Duplicates

The pairs whose signature was over the algorithm’s threshold

• Undefined

These articles might have had a false content extracted from the Newspaper3k API

or linked to a video, image, privacy policy or cookie warning by accident.

18https://newspaper.readthedocs.io/en/latest
19https://archive.org/about/
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Minhash & LSH Approach

Datasets Duplicate Rate Median Max

Politifact 1.322 1 4

Gossipcop 1.256 1 11

Both 1.260 1 11

Table 4.2: Minhash and LSH Algorithm Statistics

Simhash Approach

Datasets Duplicate Rate Median Max

Politifact 2.259 2 8

Gossipcop 2.077 1 18

Both 2.092 1 18

Table 4.3: Charikar’s Simhash Algorithm Statistics

We calculated the duplication rate for the two approaches, showing the mean number of

near-duplicate articles identified for each article in the dataset, since one article may have

multiple near-duplicates.

For each of the two algorithmic approaches, a separate output file was generated with

results. Each URL address of the original articles is linked to a different URL address of

a possible near-duplicate article, verified according to the algorithmic approach’s compar-

ison method. These collections were used for the evaluation and comparison of the algo-

rithms. The Tables 4.2 and 4.3 show the results for the data between the two approaches.

We also show the difference between the Politifact and the Gossipcop published articles.

The median and max total near-duplicates are shown for each of the above to better un-

derstand our results.

It is clear that the Simhash method had higher success in locating near-duplicate articles

in both political and gossip articles. It is worth mentioning that the maximum number of

near-duplicate for an article was by far higher for the Gossipcop dataset, indicating that

a news item with false gossip content was reproduced an extensive amount of times. Re-

garding the duplication rates and median numbers, they are relatively close to one another,
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showing that we get a similar number of duplicates for an article regardless of content.

Lastly, the tables also show that the total amount of political news articles had a higher

rate of near-duplicate articles, possibly because of their higher interest and demand from

readers than gossip articles.

With the above findings, we have chosen Simhash as the algorithm to be used in our

system for near-duplicate detection. The article’s content is tokenised into 3-shingles

with a threshold of 25. The threshold had to be increased because, in contrast with the

articles used to compare the algorithms, the articles our system is comparing are from

fact-checking domains where they evaluate the original article by providing sources and

arguments. So it is expected that the two articles may need a slightly higher similarity

threshold.

4.2 Annotation System

After our system was fully developed an annotation website was needed to host our system

for execution and as a crowdsourcing tool to fully evaluate our system. This website

needs to follow some usability heuristics for the best user experience while using the

system. It needs to be easy to use, provide feedback to the user when performing a

task and be secure and respectful to the university guidelines. The final application was

host using the Surge20 static web publishing tool and can be accessed when connected

under the University of Cyprus domain with a direct or VPN connection, using this link

http://fake-news-dissertation.surge.sh/.

4.2.1 Front End

Our web application was created using the open-source NodeJS21 cross-platform runtime

environment that executes JavaScript code outside of the web browser, designed to build

scalable network applications. For the implementation of our web application’s user in-

terface, the ReactJS22 library for JavaScript was utilised for the creation of a Single-Page-

Application (SPA). The React library offers us the ability to represent parts of our code

20https://surge.sh/
21https://nodejs.org/en/
22https://reactjs.org/
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as components integrated based on a specific hierarchy between them, thus resulting in a

clear and user-friendly structure in our application. Each component consists of exclusive

features and states responsible for renewing and initiating their component only when ren-

dered on the screen. Components are written using JSX, a syntax extension to JavaScript

designed to understand and process HTML code inside the JavaScript language.

Figure 4.6: Annotation System: Home

Three pages were implemented to satisfy our needs. The Home page, shown in Figure

4.6, is the first page you see when entering the application. It displays a short description

of this application’s capabilities and why it was created. The users can use the navigation

bar on the top of the page to move between our other pages and change the application

theme from dark to light using the slide button on the top-right side (Figure 4.7).

Figure 4.7: Annotation System: Home - Light Theme
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When navigated to the Demo page (Figure 4.8), we can see the interface designed for the

user’s communication with the system. Here they can run URL addresses of suspicious

articles with the hope of identifying them through a fact-checking domain. The user sees

a form that they can fill to feed the system the data it needs to execute their request.

Figure 4.8: Annotation System: Demo

The first input is a drop-down list of fact-checking domains that we have already imple-

mented in the system, and the user can use as many as they want to be used for the web

scraping of the results. If none are selected, then the system will use all of them as per

default. The second input box is optional, and the user can enter more fact-checking do-

mains if they wish to broaden the search spectrum through the web. If more than one

URL is entered, they have to be comma-separated as instructed under the input box. The

last input will hold the URL of the article or articles requested for identification from the

system. Like before, if more than one input is entered, they have to be comma-separated.

If the user is more experienced with the use of similar systems, they can use the Advanced

feature to change the system parameters to whatever they prefer. The default values are

the same ones we used when running the system to gather our results. After the user is

done filling the form, they can run the system by pressing the RUN! Button or reset the

form and start again. An image of this process can be seen in Figure 4.9.
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Figure 4.9: Annotation System: Demo - Instructions

We have implemented some helpful features for the better user experience to help the

user know how the Demo works and what state it is currently executing. Next to each

parameter’s input box, in the Advance section, we have created a helpful note for the user

with a short description of each parameter, as shown in Figure 4.10. When the system be-

gins executing their request, the system’s state is shown in the run button’s place to show

how many of the requested articles are done executing, so the user knows that the system

is still processing and has not run into an error. Finally, appropriate error messages are

shown in the form of a browser warning if the system runs into any problems, like if there

is no connection to the system’s API.

Figure 4.10: Annotation System: Demo - Help
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When the system is executed, the results are displayed in the big text boxes at the bot-

tom of the screen, as seen in Figure 4.11. The left box represents the original article, as

requested by the user, and the right one is the result found by the system. If no result is

found, an appropriate text is written instead. Along with each of the articles content, their

Title and URL address are also displayed. When the user has requested multiple articles

for identification, they can use the two arrow buttons, between the text boxes, to navigate

them.

Figure 4.11: Annotation System: Demo - Results

The third and final page is the Crowdsourcing page. Our crowdsourcing team uses this

page to evaluate our results. More on that on Section 4.2.3.

4.2.2 Back End

The website, which was implemented as a NodeJS23 project with the ReactJS24 library’s

use, had to communicate with the system written in Python and collect the result in

Javascript to display the information to the user correctly. The system needed to remain

under the University of Cyprus domain to communicate with the crowdsourcing evalua-

tion process database and stay secure under the university’s firewalls.

23https://nodejs.org/en/
24https://reactjs.org/
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An API was created using the Flask API25, which is also written in Python and can run

the system in the background. The annotation website communicates with the API using

restricted and secure HTTP requests. While this makes the system slower, it keeps it pro-

tected because it needs to communicate with the API. After the API receives the HTTP

request with the chosen fact-checking domains, the requested query URL, and the system

parameters’ values, the fake news identification system begins its execution. After all the

results have been gathered, they are returned to the user, again using HTTP requests. The

web application receives the data and displays them to the user as we saw in Figure 4.11.

Because the API runs under the university’s domain, to use it, users need to be connected

to the UCY domain, either directly or with VPN to run it.

4.2.3 Crowdsourcing

Our resulting dataset used in our research evaluation process was assessed using a com-

bination of manual and crowdsourcing annotation efforts. We will later use this dataset

to conduct several exploratory analyses to identify our system’s performance in detecting

articles from fact-checking domains and extract essential conclusions about our work and

ways it can improve. More about the dataset in Chapter 5.

Because of the enormous size of the dataset collected of 16.5K entries of possible iden-

tified articles, crowdsourcing was a deep necessity to finish the manual evaluation of our

collection in time. Several University of Cyprus students were asked and agreed to assist

on our efforts as free-agents. We explained how the manual evaluation of our data works

and what they had to be aware of while deciding if the article the system identified is a

proper evaluation of the original article’s reliability. The fact that none of our evaluation

team is a journalism major possesses the challenge of fully understanding the journalistic

style of writing in articles versus the informal style they are used to read daily. Journal ar-

ticles are usually lengthier than consumer reviews and opinions, thus increasing the task’s

difficulty as they are required to read full news articles and compare them by identifying

both their core claim. Since there was not enough time or budget to hire news experts,

25https://flask.palletsprojects.com/en/1.1.x/
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our team of students was kind enough to assist us.

As part of our annotation system, we set up a page to hold the evaluation process for

our crowdsourcing team and us to easily classify our results, as seen in Figure 4.12.

Figure 4.12: Annotation System: Crowdsource

The logic behind how we display the data is the same as the results of the Demo page.

There are two main boxes. The left one represents the original query that the system was

asked to identify, and the right one holds the result. The articles title and URL addresses

are also displayed above them. The web application asks our API to fetch the next un-

defined entry in our database that the system has found a result. The person evaluating

the two articles has to read both of them and manually extract their claims. Suppose they

deem that the system’s resulted article (right) is a fact-check evaluation of the original

article (left). In that case, they press the "Yes" button to update the dataset and identify it

as a correct result. If not, they press the "No" button to identify it as a false-positive result.

After a pair has been evaluated, the next one on the list is brought forth. The evaluation

process took a whole month and hundreds of working hours to complete.
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Chapter 5

Evaluation
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5.1 Data Collection

In order to test and evaluate our system, a dataset with a plethora of fake news articles was

needed. This dataset should have an already pre-evaluated collection of articles that we

can use to test our system’s detection rate and later evaluate our results with a crowdsourc-

ing team for human evaluation, as discussed in Section 4.2.3. We continue to explain the

data used in the evaluation phase, how we prepared it, and how we visualise our finding.

5.1.1 Data Overview

The dataset used to gather our results is the optimised collection we have extracted from

the open-source "Fake News Corpus"1 dataset, which we have already described in-depth

in Chapter 3. This dataset consists of thousands of news articles gathered from trusted

1https://github.com/several27/FakeNewsCorpus
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and untrusted sources published from 2009 to 2019. The "Fake News Corpus" dataset’s

structure is shown on Table 3.1. For our purposes, a random sample of 30K entries of

fake news articles was collected. It was not feasible to run the system for all the dataset

entries due to time and resource limitations.

Our system’s results are stored as part of a new collection consisting of a pair of two

articles. The original article used in the identification process and the possible duplicate

found and returned from a fact-checking domain article. The isDup variable can have a

value of Undefined, True or False. The above helps the evaluation system of our annota-

tion web application recognise which of the entries are yet to be evaluated if they have a

value of Undefined and the duplicate object is not empty, meaning that the system found

a possible result for the original article. When someone evaluates a pair of articles, this

variable changes to either True or False, depending on their choice of ’Yes’ or ’No’ but-

tons shown in Figure 4.12. The similarity variable is a number from {0, 1} describing

the similarity rate found by the Simhash algorithm. Finally, the type variable describes

which of the three near-duplicate techniques (Section 4.1.5) provided a possible result for

this article and can have a value of simhash, link or keywords. The structure of the new

dataset is shown in Table 5.1.

Columns Description

_id Unique identifier for each new entry

original An object describing the original article, with the same features as in Table 3.1

duplicate An object describing our systems’ resulted article, with the same features as in Table 3.1

isDup A classification of the current article pair

similarity The similarity percentage found from the Simhash algorithm

type The type of near-duplication technique that identified the pair as a possible result

Table 5.1: Columns of our evaluation dataset

5.1.2 Data Extraction

Our data was collected from the MongoDB dataset that stores the above collection. As

mentioned before, only a sample of 30K entries was selected. The identification system

was prepared with our default parameters discussed across Chapter 4. Table 5.2 also
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shows a complete collection of these parameters. For each entry of the dataset our system

executed, a new entry was created to the new dataset to hold the result. The system ran for

two weeks, and from the 30 thousand original entries, 16.5 thousand results with duplicate

fact-checked articles were found.

Parameter Value Description

width 3 This describes the width of the n-shingles that tokenised our text

k 25 The threshold used for our Simhash algorithm

stem True Porter’s Stemming was used to process our text

lem True Lemmatisation was used to process our text

keyword_sum 10 The top 10 keywords of the text were extracted

keyword_sum_factor 50 At least 50% of the keywords should appear in both texts

factor 60 Precision factor for keywords is 60%

Table 5.2: Evaluation: Complete list of system parameters used

5.2 Results

This section presents our study results and provides a summary with the precision for

each technique used to identify the articles. Moreover, we provide a visual representation

of our findings, explaining the reasons behind the false-positive results, and suggesting

future optimisations and a suggested threshold for a better precision score.

5.2.1 Metrics

There are multiple measurement techniques for evaluating our system’s performance,

such as precision, recall, accuracy and F1-score. For our purposes, we want to test the

precision of our system of accurate predictions. Since we do not have an accurate clas-

sifier of our results that remain undefined, because our system did not find a candidate

article to pair them with, any other metric would provide only an estimation that relies

on assumptions. For those reasons, we have decided only to use the precision metric to

evaluate our system’s performance since it is more suited to our needs.
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True Positives (TP) are the total of accurate predictions made by our algorithm that were

positive, meaning all pair of articles identified by the system, and we have evaluated as

True. False Positives (FP) are defined by the total number of inaccurate predictions our

system identified as positive, and we have evaluated as False. Furthermore, True Nega-

tives (TN) are described by the total number of accurate predictions identified as negative

and False Negatives (FN) are all inaccurate predictions described as negative. For our

model, we assume that all entries run through the system should have been paired with a

fact-checked article, so every article not matched with a result is considered a False Neg-

ative.

By correctly identifying the above, we can calculate our performance metrics. The preci-

sion is defined as the fraction of our model’s True Positive results divided over all relevant

instances among our sample, as shown in the equation below:

Precision =
T P

T P+FP

5.2.2 Performance

Our sample of 30 thousand articles produced 16.5K results, which is about 55% detection

rate. After our manual evaluation, Figure 5.1 shows the resulted article pairs that were

correctly and incorrectly identified by the system as a fact-checking domain article eval-

uating its original paired article, identified as the True and False Positives.

Figure 5.1: Evaluation: True and False Positive results after human evaluation

47



The system’s performance was 30%, as derived from the results of the combination of

all the detection techniques. We will discuss the difficulties the system faced and ways of

optimisation. Table 5.3 provides a summary of the precision score for all three detection

techniques, along with the overall precision of the system.

Detection Technique Total results Precision

Simhash 99.991% 0.301

Keywords 0.004% 0.672

Links 0.005% 1

All 100% 0.304

Table 5.3: Evaluation: List of the precision score for each detection technique

As we can see the Simhash method was the cause for almost all of the system’s results

(16.5K), with a precision of only 0.301. Although we do not have a large sample to get a

more accurate estimation, the keywords technique had a precision score of 0.672. Finally,

the method of detecting a link to the original article, referenced by the fact-checking do-

main evaluation article, had a perfect prediction rate of 1. Although the sample is too

small to provide a more detailed evaluation of the technique, it was expected from the

beginning that this detection method has a high precision score.

5.2.3 Optimisations

Our system did not have a high precision score, mostly because of time limitations that

did not make it possible to run the system multiple times with different parameters in

order to optimise it fully. The fact that two of the three detection techniques held a high

precision score indicates its potential and what it can achieve with more experimentation.

First of all, we need to talk about the Simhash technique since it holds the higher percent-

age of the resulted article pairs found by the system and therefore is responsible for its

lower precision score. In our experiments in Section 4.1.5 when explaining the Simhash

algorithm, we provided the reasoning behind the parameters selected. Since the dataset

used to extract the original threshold was for near-duplicate web articles and not for iden-

tifying articles through fact-checking domains, we had to increase it to compensate for
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the extra information that the fact-checking domain includes in their articles. The value

of 25 was selected as a threshold and 3-shingles for the tokenisation of the text.

After examining our results, we found that Simhash is weak against comparing texts with

a considerable difference length, with the one being too small and the other too large.

Also, if both texts are too small, then there is not enough information to make an accu-

rate calculation. One such example was an article pair where the original article suggests

ways of ordering a pepperoni pizza. The resulting article fact-checks a 911 call disguised

as an order for a pepperoni pizza. We have determined that the threshold value selected

can decrease to provide us with a more accurate prediction score. When the above occurs,

another way of optimising our results is to use the keyword extraction method instead,

which could have a higher precision score.

Several results were also falsely selected by our Newspaper3k API. Instead of the main

content of the article, a warning or cookie alert appeared. Due to the Simhash algo-

rithm’s weakness for small texts, it held a falsely high similarity rate. More techniques

can be utilised to prevent the detection of such messages or to identify popular key-

words used in such texts as privacy-policy or cookie-warning. Furthermore, websites such

as https://mediabiasfactcheck.com/help-us-fact-check/ with a high similarity

rate kept appearing throughout the results, possibly because of the search engines giving

them a high priority or because there were not enough results for specific queries, since

filtered for the top N results. These websites could be blacklisted to prevent them from

appearing and decrease our processing time since they will not be queued for processing.

More experimentation is needed for the keyword extraction technique. The system can

be executed with only that as a detection method and attempt to find a more optimised set

of parameters, while also getting a more extensive data sample. The same could happen

for the method of detecting the original URL address as a reference. This method should

always have an almost perfect result since it was used from the fact-check domain as one

of the few sources to evaluate the original article’s reliability, so not much optimisation

can be done.
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As mentioned in the Introduction, our research will contribute to a larger scale project

for Fake News Evaluation. For this system to be better equipped and make better predic-

tions, a threshold needs to be identified to classify our results correctly. The following

graph in Figure 5.2 shows the total number of FP and TN as a function of a threshold,

beginning from 0.50 to 0.99 with a step of 0.1. As observed from the graph, as our thresh-

old increases the number of true negatives increases and the number of false positives

decreases. Both of them seem to change linearly, until close to 0.95, where the TN starts

a more dramatic increase while the FP begins a more considerable decrease.

Our system had a 0.304 precision rate with a threshold of zero, as shown in Table 5.3.

It is essential for a correct threshold to be selected to suit that project’s needs for a high

precision rate to be achieved. If a small threshold is selected, we will have a larger detec-

tion rate but with a low precision score that can genuinely damage our system’s reliability.

On the other hand, with a large threshold, a high precision score will be achieved but with

a very low detection rate, making it hard for the system to produce results.

All the above suggestions should be taken into account for future optimisation of the

system to improve its prediction rate and make it more suitable for research and possibly

commercial use.

Figure 5.2: Evaluation: Number of False Positives and True Negatives as Function of

Threshold
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Chapter 6

Conclusion
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6.1 Conclusion

This thesis aims to examine the impact of fake news on the Internet over the last decade

and provide with a fake news detection system for identifying fake news articles through

fact-checking domains, already expertly evaluated. We have shown that the interest in

fake news has never been higher and the demand for more research and ways of fight-

ing against misinformation is at a new peek. In doing so, we have contributed to the

fake news classification challenge. We firmly believe that we have achieved our objec-

tive and gathered valuable data that will help researchers address this global pandemic

of misinformation. The variety of state-of-the-art techniques used for the creation of our

identification system and the datasets collected provide with ample opportunities for fu-

ture work that can be done to expand the above research and significantly optimise the

developed system to be used as a tool for fake news identification for both research and

possibly commercial use. We are convinced that fake news detection is one of the most

critical components of overcoming this challenging issue called Fake News.
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6.2 Future Work

Our study approaches the challenge of fake news classification with state-of-the-art al-

gorithms for fake news detection and natural language processing techniques. However,

there is an excessive amount of more complex and sophisticated algorithmic approaches

to the problem that studies have shown to be very promising and can significantly im-

pact our methodology in improving our precision score when possibly combined with

our methodology. Further future work consists of the optimisation techniques we pro-

posed in Section 5.2.3 on how our system can be better utilised. Along with our easily

programmable API, our identification system can easily be modified to suit another re-

searcher’s needs and perform more experiments for fake news.

Feature-based fake news studies aim to create systems that automatically learn from a

set of collected observations and features to identify fake news correctly. By offering

these features to a machine learning framework, several potentially useful patterns in the

identification process can be detected. Since fake news keeps evolving in order to stay

relevant and avoid further detection, the time of publishing plays a significant role in the

identification. With the help of the datasets used in this research, a model could be trained

to detect these patterns through different publication years using samples of data collected

in that particular year. When all are combined a comprehensive set of features can be ex-

tracted to be used within a supervised learning framework that can be used to predict fake

news.

Moreover, a greater analysis of fake news evolution through earlier years and years to

come could provide an even more in-depth understanding. As our data suggest, fake news

will continue to evolve throughout the years and adapt to defend themselves against more

sophisticated detection techniques. The spread of fake news shows no form of slowing

down due to humans’ opportunistic and exploitive nature, which would benefit from de-

livering false news, mainly in terms of exposure and traction. Therefore, more research is

required to enhance our ability to identify Fake News and combat its rising emergence in

today’s age.
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Appendix A

A.1 Fake articles classified by domain published

Figure A.1.1: Fake articles classified by domain published (Part 1)
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Figure A.1.2: Fake articles classified by domain published (Part 2)
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Figure A.1.3: Fake articles classified by domain published (Part 3)
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