
Thesis Dissertation

AN INSTRUMENTATION APPROACH TO WEB
FUZZING

Orpheas van Rooij

UNIVERSITY OF CYPRUS

COMPUTER SCIENCE DEPARTMENT

Jan 2020

UNIVERSITY OF CYPRUS
COMPUTER SCIENCE DEPARTMENT

An Instrumentation Approach to Web Fuzzing

Orpheas van Rooij

Supervisor

Dr. Elias Athanasopoulos

Thesis submitted in partial fulfilment of the requirements for the award of

degree of Bachelor in Computer Science at University of Cyprus

Jan 2020

Acknowledgements

First and foremost, I would like to thank my supervisor Dr. Elias Athanasopoulos for

his guidance and support throughout this project, and for encouraging us to strive higher.

To my fellow project members Marcos Charalambous and Demetris Kaizer, even though

we had some disagreements, thank you for your help and contribution. This experience

has taught me valuable lessons concerning web security, application development, and

team-work skills.

I would like to also thank my professors here in the University of Cyprus that have

taught me invaluable knowledge and have further sparked my interest in the field of com-

puter science.

Lastly, a big thank you to my family and friends that have provided love and support

throughout this journey.

1

Abstract

The advent of web applications has been the key driving force for the success of the web

and internet as a whole. Numerous security critical web applications such as Internet

banking sites are available making the need for robust security tools that can uncover

vulnerabilities in them evermore important.

Web Fuzzers are a de facto tool for finding web vulnerabilities but to the best of

our knowledge, coverage-based web fuzzers have yet to be developed regardless of their

notable successes in native application fuzzing.

In this thesis we introduce a library for instrumenting web applications to enhance

the performance of Web fuzzers and provide the first coverage-based grey-boxed fuzzer

named webFuzz developed specifically for detecting Reflective Cross Site Scripting (RXSS)

bugs. With the feedback received from the instrumented applications, webFuzz can clev-

erly choose its next fuzzing input based on the previous coverage observed and thus fuzz

more of its intended logic.

We evaluate our solution in terms of instrumentation overhead, code coverage, through-

put and vulnerability detection. We show that the instrumentation can provide a signifi-

cant enhancement to web fuzzers, as webFuzz can successfully discover RXSS bugs faster

than the prominent black-box fuzzer wFuzz.

2

Contents

1 Introduction 7

2 Background 10
2.1 Basic Blocks and Flow Graphs . 10

2.2 Coverage Criteria . 11

2.3 Fuzzing . 13

2.4 Reflective Cross-Site Scripting . 13

3 Architecture 15
3.1 webInstr . 15

3.1.1 Overview . 15

3.1.2 Edge Coverage . 16

3.1.3 Node Coverage . 17

3.1.4 Path Coverage . 17

3.1.5 Coverage Report Output . 18

3.2 webFuzz . 19

3.2.1 High-Level Conceptual View . 19

3.2.2 Coverage Feedback . 20

3.2.3 Mutations . 23

3.2.4 Vulnerability Detection . 24

4 Implementation 26
4.1 Instrumentation . 26

4.1.1 PHP-Parser . 26

4.1.2 webInstr . 28

4.2 Fuzzer . 31

4.2.1 Design Choices . 31

4.2.2 Maintainability . 32

3

5 Evaluation 34
5.1 Instrumentation Overhead . 35

5.2 Code Coverage . 37

5.3 Throughput . 38

5.4 Vulnerability Detection . 40

5.5 External tools . 43

5.5.1 WFuzz . 43

5.5.2 Centaur . 43

6 Related Work 45
6.1 Instrumentation . 45

6.2 Web Fuzzing . 46

7 Future Work 48
7.1 Instrumentation . 48

7.1.1 Path differentiation . 48

7.1.2 Additional Improvements . 50

7.2 Fuzzer . 51

8 Conclusion 53

4

List of Figures

3.1 A simplified UML Class Diagram of webFuzz. Note that almost all classes

have a dependency relationship with the Request class. For readability

purposes this is not shown. 20

4.1 The UML Class Diagram for webInstr. Note the italic font which speci-

fies that it is defined as abstract. 29

4.2 Snapshot of webInstr after having successfully instrumented WordPress. . 31

5.1 Accumulated Basic-Block coverage in 4 web applications using webFuzz. 38

5.2 Throughput (request/sec) of webFuzz and wFuzz in Drupal and Word-

press. webFuzz is seen to be around 3 to 5 times slower. 39

5.3 Artificial RXSS bug detections with webFuzz and wFuzz. webFuzz man-

ages to uncover bugs faster than wFuzz from early on the fuzzing process.

. 42

7.1 The CFG of function bar is seen in graph a and the corresponding pre-

dominator tree from a is seen at b. Only nodes (basic blocks) v2, v3, v4

need to be instrumented (the leaves of tree b). 49

5

List of Tables

5.1 Instrumentation overhead factor in 4 PHP Web applications. The first

row shows the total number of instrumented basic-blocks in each project.

The following rows show the minimum, average and maximum overhead

observed from all the URLs in each project. 36

6

Chapter 1

Introduction

With the advent of the World Wide Web in 1989, the internet has observed an exponential

growth in its users, with 2019 seeing around 6,700 new users (new broadband subscrip-

tions) every hour [46]. Web applications have been a key driving force for this success,

as through their ability to generate dynamic content they can provide live finance man-

agement, over-the-globe communication, interactive media and many more capabilities.

Web applications usually follow a multi-tiered client-server architecture that incor-

porates a web-server for serving static files, an application server to generate dynamic

content and a back-end database system for data management and access. They posses

an extremely heterogeneous nature as they can be executed in different web servers and

browsers, and are made up of various components each possibly developed in a different

programming language and model [14].

All though the heterogeneous nature of them makes vulnerability testing a challenging

task, the overwhelmingly large number of web users makes the task ever-more important.

The severities of web vulnerabilities have been realised by both commercial and gov-

ernmental bodies and their remedies have been incorporated into major standards such as

Health Insurance Portability and Accountability Act (HIPAA) and Payment Card Industry

Data Security Standard (PCIDSS) [8].

Despite this fact, the research community has given comparatively less attention to

web security tools, especially in the area of fuzzing. Currently, most if not all security

tools that target web applications only exist in two flavors namely black- and white-box

approaches.

Black-box fuzzers are unaware of the internal program structure, that is, their target is

a black-box, no feedback other than what is directly observable is provided. One of their

main advantages is their low overhead which allows them to exercise the Program Under

Test (PUT) with millions of inputs. In this way their chances of triggering a bug increases.

On the other hand, their lack of knowledge on the program’s structure comes with a cost.

AFL Fuzzer has shown that its feedback loop that uses previously generated interesting

7

inputs to built new test cases from them is a key idea for successful bug discovery [6,

52], Black-box fuzzers though lack the ability to make sound judgements on what is

considered interesting input [27, 41]. As a result they either do not retain generated

inputs for further mutation [21, 24, 37] or the heuristic used to identify favorable inputs

is insufficient as it can only rely on what is observable in the response of the PUT [16].

This limits the effectiveness of black-box solutions.

On the other side of the scale exist the white-box solutions that require access to

source code and rely heavily on static-analysis. Most of these approaches will utilize

constraint-solving and a combination of symbolic and concolic execution [3, 4] to iden-

tify vulnerable code statements. All though sophisticated in their approach, their inherent

limitation lies in the computationally demanding constraint solver. For instance, [3, 4],

utilise static analysis to perform a mapping between source variables such as URL param-

eters to sink statements, that is, server-side code statements (such as the print command)

that output the source back to the client. Creating this source-sink pair link and identifying

whether sanitisation happens is the key ingredient for exposing a vulnerability. For each

associated pair to be created though, lies an expensive constraint solving operation, and

the magnitude of this problem only increases with the number of sources and sinks. To get

a scale on this problem, AflGO, a directed grey-box fuzzer, can uncover the Heartbleed

vulnerability within less than 20 minutes. A white-box fuzzer that employs constraint

solving such as the tool Katch struggles to identify the bug even after 24 hours of trying

[11].

Coverage-based grey box fuzzing comes with an ideal comprise between sophisti-

cation and scalability. Instead of statically analysing the source code, it relies on input

mutations and lightweight coverage feedback to explore the restricted input-space within

a limited time frame. Given that the input-space can be enormous, possibly infinite, a

fuzzer can leverage the instrumentation feedback to deduce if an input is interesting and

thus built upon it new test cases. Ways of defining an interesting input can be if it ex-

plores new unobserved code paths or if it exercises the business logic of the application

and does not fail early on in the input-format checks. In this way, it maximises code cov-

erage, whether that it on a global or function level [11], and thus increasing the chances

of triggering a vulnerability.

Notable fuzzers such as AFL [52] and libfuzz [42] have pioneered the technique of

coverage-based grey-box fuzzing in native applications, with both of them having found

thousands of vulnerabilities in security critical projects such as PHP, Python, Linux Ker-

nel, Mozilla Firefox, OpenSSL, OpenSSH, Nginx [12, 51].

In this thesis, we design, implement and evaluate a coverage-based fuzzing solution

for web applications aimed at detecting Reflective Cross-Site scripting vulnerabilities.

Named webFuzz, it features input-mutation, coverage-aware request ranking and an in-

8

built crawler. Additionally we have developed webInstr, the instrumentation tool counter-

part that statically augments the program under test (PUT) with stub code that provides to

webFuzz coverage statistics about the current request. This thesis focuses on the instru-

mentation side of our approach, while still analysing the core concepts and the evaluation

of webFuzz.

Our main contributions are:

1. We design and implement an instrumentation library named webInstr. Instrumen-

tation is applied on the AST level of PHP-based web applications. We provide 3

instrumentation policies, with different granularity and overheads. Our library is

designed to be easily extendable for custom use-cases.

2. We design and implement the first coverage based fuzzer designed to detect Cross-

Site scripting vulnerabilities. We further evaluate webFuzz in terms of coverage,

throughput and efficiency in finding unknown bugs. webFuzz manages to explore

27% and 21.5% of the entire Drupal and WordPress code respectively, which both

consist of over half a million source lines of code (SLOC). To further evaluate the

capabilities of webFuzz we compare our results with the prominent web-application

fuzzer, wFuzz. In terms of vulnerabilities detected, it finds the most RXSS vulner-

abilities (31 with wFuzz having found 29) for a fuzzing session that lasts 65 hours.

3. To foster further research in the field, we release all of our contributions, namely the

toolchain for instrumenting PHP applications and the actual fuzzer as open source.

The remainder of this thesis is structured as follows. Chapter 2 discusses the core

concepts that will be used throughout the thesis. Chapter 3 analyses the instrumentation

policies and mechanisms of webInstr, elaborates on how instrumentation is leveraged by

the fuzzer and finally discusses the mutation and vulnerability detection mechanisms of

webFuzz. Chapter 4 follows, in which it dives deeper into the implementation details of

webInstr and on the main design choices of webFuzz. The following Chapter 5 covers

the evaluation of our two tools, and lastly related and future work concerning both tools

is discussed.

9

Chapter 2

Background

In order to have a detailed understanding of this thesis, certain key background informa-

tion must be discussed. In this section we firstly discuss the methods for defining code

coverage, we then describe the different approaches to fuzzing and lastly give a trivial

example showing an RXSS vulnerability which is the main type of web vulnerability that

our web Fuzzer webFuzz aims to detect. References for the reader to dive further into

these topics are also provided.

2.1 Basic Blocks and Flow Graphs

It is helpful to split the code to basic blocks and create flow graphs from them that visu-

alise the possible control flows in the program. As shown below, a basic block has two

requirements [2]. Simply put, it is the maximal block of consecutive statements that are

always executed together in one batch. There exists a simple algorithm to identify leader

statements which mark the beginning of a new basic block and the end of the preceding

block [2]. The three criteria to identify such statements are also stated below.

Requirements of a basic block

The two requirements for a set of statements to be considered a basic-block.

1. The entry point of the basic block is only through its first statement (the leader

statement). There can not be any jump targets that are in the middle of a block.

2. The exit point of the block is the last statement in it. That is, as soon as the leader

statement is executed, all the other statements in the block are guaranteed to be

executed sequentially as well without the control halting or branching elsewhere in

the code (except in the presence of an exception where control is transferred to an

10

exception handler or the program aborts. For simplicity purposes this scenario is

not taken into account).

Identifying leader statements

There are three rules to determine leader instructions and these are stated below.

1. The first statement to be executed in a program is a leader.

2. Any statement that immediately follows a conditional or unconditional jump is a

leader. That is, the first statement inside a control statement’s body is a leader.

3. Any statement that is the target of a conditional or unconditional jump is a leader.

This can be the first statement following the end of a control statement’s body, but

can also be the conditional expression that checks if control should continue inside

or after the loop’s body.

Control Flow Graphs

A Control Flow Graph (CFG), is a directed, possibly cyclic graph where all the nodes are

basic blocks and all the edges are the possible transitions between the basic blocks. Two

pseudo-nodes are also added that indicate the entry and exit node of the program. Every

basic block that the program can start with has an edge with the Entry node, and every

basic block that can terminate the program has an edge with the Exit node. Control flow

graphs are useful in optimising the register allocation process during code generation [2],

in probe-pruning for instrumentation optimisation (Section 7) and in many more use-

cases.

2.2 Coverage Criteria

There are different kinds of instrumentation policies with each providing different mea-

sures on the code coverage of an execution. They can be quantified according to whether

they measure basic blocks, control flow edges, execution paths and more. In this section

we describe their differences. We also note that our instrumentation tool webInstr can

provide both Node, Edge and Path coverage feedback.

Basic Block Coverage

Basic Block coverage also known as Node (nodes in a CFG), statement or line coverage,

measures the amount of unique blocks executed during an execution [5]. Since basic

blocks are non-branching sequences of code, it is equivalent to measuring the total unique

11

Definition 1 An arbitrary function foo.
function FOO(x,y)

numerator← x . Block A

denominator← y . Block A

if numerator < denominator then . Block A

numerator← y . Block B

denominator← x . Block B

end if
return numerator/denominator . Block C

end function

statements executed. This approach provides the least granularity in comparison with the

other methods described below as the ordering of the blocks executed is not accounted

for. For instance, in Definition 1, an execution of foo(2,4) is sufficient for a 100%

coverage score as Block A, B and C are executed. The execution path that flows from

block A directly to block C (not taken case) is not accounted though.

Branch Coverage

Similarly in Branch Coverage, which is also called Edge coverage, to reach complete

coverage all the edges in the CFG of an application must be visited. This means that

every possible sequence of two consecutive blocks must be executed, meaning all branch

decisions must be exercised [5,14]. For this reason, in Definition 1 we need an execution

such as foo(4,2) in addition to foo(2,4) to reach 100% as it takes into account the Not

Taken case. Complete Branch coverage also implies complete Basic Block coverage, as

to visit all the edges of a graph one must visit all its nodes as well.

Path Coverage

Path Coverage measures the number of unique paths traversed in the CFG out of all possi-

ble paths. Since cyclic graphs can produce infinitely many paths, this method is not very

applicable unless a variant of it that poses additional restrictions is used such as Specified

Path Coverage and Prime Path Coverage [5]. Nevertheless determining the CFG path

traversed by an execution can be useful on its own, even without knowledge of the upper

limit (total paths).

Other Criteria

There are other more advanced methods to measure code coverage which will not be

analysed in this thesis. We nevertheless briefly state some of them here for the sake of

12

completeness.

Conditional Coverage provides stronger guarantees than Edge coverage as it requires

that every possible combination of truth values for the clause in every conditional branch

is evaluated.

Data-Flow Coverage measures how many of the data-flow paths between each defini-

tion and use of a variable are traversed. More specifically, it measures for each definition

of a variable x, how many of the possible paths from the definition to a use statement that

accesses the value of x were executed. It is further divided to more stringent definitions

such as all def-use, all uses, all defs and more [14].

2.3 Fuzzing

Fuzzing is a software testing technique that relies on bombarding a program under test

(PUT) with a large number of malicious or unexpected inputs, generated in some au-

tomated fashion, in hopes of triggering an underlying bug. The bugs found can have

security implications, degrade the quality of a service, open the gate for denial of service

attacks or perform any other undesired behavior [44]. In this thesis we use fuzzing in the

scope of finding security critical flaws, more specifically in detecting RXSS bugs in web

applications.

The input generation technique can be generation based, or mutation based. Genera-

tion based approaches use a provided attack-grammar that specifies the general payload

format for triggering a specific vulnerability [16], or use a file-format structure gram-

mar to guide the input generation process. On the other hand, mutation-based approaches

start form a provided initial-seed (e.g. default application inputs) and perform a series of

mutations like insertion of random characters or syntax-related tokens to create new test

cases. Both approaches can use previously generated inputs to further built upon them

new test cases. Hybrid approaches that perform mutation-based input generation with the

constraints of adhering to a known grammar also exist [27].

Fuzzing is further characterised in relation to its awareness of the program structure

into black-, grey- (coverage-guided), white-box fuzzers.

2.4 Reflective Cross-Site Scripting

In the OWASP Top 10 web vulnerabilities list that represents a consensus of the most

critical security risks in web applications [26], Cross-Site Scripting (XSS) is listed as

number 7.

XSS flaws occur when an application includes untrusted input data in its HTML re-

13

sponses without validating or escaping them first. As a result these untrusted data can

get executed which can in turn hijack the browser, deface the web site, redirect the user

to dangerous sites and many other attacks. Some XSS types include Reflected (aka Non-

Persistent or Type II), Stored (Persistent or Type I) and DOM-based(Type-0) [19].

Reflected XSS (RXSS) vulnerabilities arise when input data from a request is reflected

back to the application’s immediate response whereas in Stored XSS vulnerabilities the

malicious payload is firstly stored in an intermediate repository (such a database) and is

only later reflected by another request.

As an example to better grasp what a server-side RXSS bug typically looks like, let

us assume a web application provides a login page with two input fields: username and

password. A naive server-side PHP implementation for this is shown in Listing 2.1.

1 <?php
2 $username = $_POST [’ username ’] ;
3 $passwd = $_POST [’ password ’] ;
4 $ u s e r = s e a r c h _ u s e r n a m e _ i n _ d b ($username) ;
5
6 i f (! $ u s e r) {
7 echo ’ E r r o r ’ . $username . ’ was n o t found . ’ ;
8 } e l s e {
9 i f (match_password ($use r , $passwd)) {

10 r e d i r e c t _ t o _ a p p ($ u s e r) ;
11 } e l s e {
12 echo ’ Wrong Password ’ ;
13 }
14 }
15 ?>

Listing 2.1: Vulnerable code that handles login form submissions.

The source of the bug is on line 7 where the error message ’the $username was not

found’ is displayed. Because the $username variable receives no sanitization, an attacker

can inject a malicious payload in this variable using the $_POST[’username’] parameter

and then be outputted to the response unmodified. The HTML parser in the client would

then freely interpret it according to its content thus executing the XSS payload.

Exploit: A victim is fooled into submitting a form located in an attacker controlled

website. This malicious form is designed to trigger the vulnerability found in the above

login form. As soon as the form is submitted the vulnerable login page is opened with

the XSS script executed in it. If the victim now tries to login, the XSS script can easily

send the credentials to the attacker as well. This is a probable scenario, as the page that

was opened is the original page with the identical layout and with the possible HTTPS

padlock icon in the address bar. The XSS script can also hide the error message of line 7,

thus ensuring its stealthiness even more.

14

Chapter 3

Architecture

Our instrumentation tool can provide coverage in the form of Node, Edge and Path cov-

erage. In this section we elaborate on how it achieves this, while also describe certain

key concepts of webFuzz like how it leverages the instrumentation feedback, the mutation

process, and its vulnerability detection mechanism.

3.1 webInstr

3.1.1 Overview

Our instrumentation tool, webInstr, is focused on instrumenting PHP applications. We

have additionally created a preliminary version that instruments HACK applications to

demonstrate the general applicability of our approach. Since there is only a limited frac-

tion of HACK applications released as open source, we further focus on the PHP imple-

mentation of our approach.

In contrast to other known instrumentation frameworks such as sancov [23] and bcov

[10] that target the Intermediate Representation (IR) and the native code respectively,

our tool works on the Abstract Syntax Tree (AST) level. Working with the bytecode

representation of the PHP language is also possible as other similar libraries have shown

[36] and it left as a future goal. Our approach parses the AST of each PHP source file,

adds instrumentation code to it and reverts it back to source code form. This work flow

is achieved using the PHP-Parser [32] library, a stable fully featured AST modification

library actively developed by a PHP core developer. Section 4 analyses the procedure of

identifying basic blocks whereas this section focuses on how we can measure node, edge

and path coverage once the basic blocks have been identified.

15

3.1.2 Edge Coverage

Inspired by AFL’s method of providing edge coverage information, we have adapted this

approach to web applications. Listing 3.1 shows the instrumented version of a function

foo. At the beginning of every basic block, a unique randomly generated number (the

basic block’s label) is XORed with the label of the previously visited block. The result

of this operation represents the edge label. Since large numbers are used to represent the

basic block labels, we can assume that clashes between identical edge labels are minimal.

AFL goes a step further and stores additional bookkeeping information such as hit

counts that measure how many times an edge has been executed in a single run. This

functionality has also been implemented by our instrumentation tool. The edge label is

used as index in the global ’map’ array where the counters for each edge are stored. For

every increment in the edge hit-count, we must first check that the entry is initialised

(using the coalesce operator) and only then increment the counter.

The last statement in the stub code performs a right bitwise shifting on the current

basic block label and stores the result as the label of the previously visited block. The

shifting is needed to avoid cases where a label is XORed with itself thus giving zero

as a result. This can happen for instance, with simple loops that do no contain control

statements in their body [52].

The super-global variable of PHP (GLOBALS) allows us to have access to the instru-

mentation data structures anywhere in the code, regardless of scope.

1 <?php
2 f u n c t i o n foo (i n t $x , i n t $y) {
3
4 # BEGIN instrumentation code for basic block A
5 # $____key represents Edge CallSite->A
6 $____key = BASIC_BLOCK_A_LABEL ^ $GLOBALS[" _ _ _ _ i n s t r "] [" p rev "] ;
7 # check that counter is initialised first
8 $GLOBALS[" _ _ _ _ i n s t r "] ["map"] [$____key] ??= 0 ;
9 $GLOBALS[" _ _ _ _ i n s t r "] ["map"] [$____key] += 1 ;

10 $GLOBALS[" _ _ _ _ i n s t r "] [" p r ev "] = BASIC_BLOCK_A_LABEL >> 1 ;
11 # END instrumentation code
12
13 $z = 0 ;
14
15 i f ($y == 0) {
16 # BEGIN instrumentation code for basic block B
17 # this represents Edge A->B
18 $____key = BASIC_BLOCK_B_LABEL ^ $GLOBALS[" _ _ _ _ i n s t r "] [" p rev "] ;
19 $GLOBALS[" _ _ _ _ i n s t r "] ["map"] [$____key] ??= 0 ;
20 $GLOBALS[" _ _ _ _ i n s t r "] ["map"] [$____key] += 1 ;
21 $GLOBALS[" _ _ _ _ i n s t r "] [" p r ev "] = BASIC_BLOCK_B_LABEL >> 1 ;
22 # END instrumentation code
23
24 $z = 1
25 }
26

16

27 # BEGIN instrumentation code for basic block C
28 # this represents Edge A->C or B->C
29 $____key = BASIC_BLOCK_C_LABEL ^ $GLOBALS[" _ _ _ _ i n s t r "] [" p rev "] ;
30 $GLOBALS[" _ _ _ _ i n s t r "] ["map"] [$____key] ??= 0 ;
31 $GLOBALS[" _ _ _ _ i n s t r "] ["map"] [$____key] += 1 ;
32 $GLOBALS[" _ _ _ _ i n s t r "] [" p r ev "] = BASIC_BLOCK_C_LABEL >> 1 ;
33 # END instrumentation code
34
35 $ r e s u l t = $x / ($y + $z) ;
36 r e t u r n $ r e s u l t ;
37 }

Listing 3.1: Example of an instrumented function using edge coverage policy.

3.1.3 Node Coverage

The aforementioned approach for estimating edge coverage comes with its costs. De-

pending on the code structure of the targeted application (whether it contains many small

control statements), the instrumentation overhead can be significant. The impact on the

application’s response time is more thoroughly analysed in Section 5. In the Node Cover-

age policy the instrumentation code is lighter as we are only concerned with which basic

blocks were triggered regardless of the flow between basic blocks. The instrumentation

code inserted at each block is shown in Listing 3.2. Just like in Edge Coverage policy,

the hit-count of each basic block are stored.

1 <?php
2 f u n c t i o n d i v i d e (i n t $x , i n t $y) {
3 # BEGIN instrumentation code for Block A
4 $GLOBALS[" _ _ _ _ i n s t r "] ["map"] [BASIC_BLOCK_A_LABEL] ??= 0 ; # initialisation guard
5 $GLOBALS[" _ _ _ _ i n s t r "] ["map"] [BASIC_BLOCK_A_LABEL] += 1 ;
6 # END instrumentation code
7
8 r e t u r n $x / $y ;
9 }

Listing 3.2: Example of the stub code inserted in a basic block for estimating node

coverage.

3.1.4 Path Coverage

Similarly, path coverage is implemented by keeping track of which basic block is currently

being executed. Listing 3.3 shows the basic block stub code inserted with this policy.

Using PHP’s syntax sugar for inserting an element in an array (the empty square brackets),

no array index information need to be retrieved.

All though requiring the smallest stub code out of all three methods, this policy can

introduce heavy memory overheads. The order of the basic-blocks executed must be kept

17

in the array, and thus executions that contain multiple loop iterations can increase the

memory usage significantly.

1 <?php
2 f u n c t i o n d i v i d e (i n t $x , i n t $y) {
3 # BEGIN instrumentation code for Block A
4 $GLOBALS[" _ _ _ _ i n s t r "] ["map"] [] = BASIC_BLOCK_A_LABEL ;
5 # END instrumentation code
6
7 r e t u r n $x / $y ;
8 }

Listing 3.3: Example of the stub code inserted in a basic block for estimating node

coverage.

3.1.5 Coverage Report Output

By leveraging the rich set of features PHP provides to us, we can output the ’map’ array on

program exit in an easy and cost-friendly manner. We have implemented three different

output formats, namely using HTTP headers, regular files and shared-memory regions.

In general we have observed that the header output method has the largest overhead out

of all three methods but has the advantage of being self-contained. There are no external

files involved and it does not require sharing the same address space.

As seen in Listing 3.4, every PHP source file is prepended with stub code that ini-

tialises the instrumentation data structures and registers a function to be called upon script

exit. This stub code will be the first statements executed during an execution, and will only

be called once.

This particular function will write the ’map’ array to a regular file. The version

for the shared-memory output is identical except that the fopen call is replaced with a

shmop_open and the fwrite call is replaced with a shmop_write. For the header output

method, the fwrite call is replaced with a header call and an additional ob_start(null,0,0)

call is required to enable response output buffering so as to avoid sending the HTTP body

before all the HTTP headers have been written.

1 <?php
2 i f (! a r r a y _ k e y _ e x i s t s (" _ _ _ _ i n s t r " , $GLOBALS)) {
3 $GLOBALS[" _ _ _ _ i n s t r "] ["map"] = a r r a y () ;
4 $GLOBALS[" _ _ _ _ i n s t r "] [" p r ev "] = 0 ;
5 f u n c t i o n _ _ _ _ i n s t r _ w r i t e _ m a p ()
6 {
7 $f = fopen (" / v a r / i n s t r / map . " . $_SERVER ["HTTP_REQ_ID"] , "w+") ;
8 f o r e a c h ($GLOBALS[" _ _ _ _ i n s t r "] ["map"] a s $k => $v) {
9 f w r i t e ($f , $k . "−" . $v . " \ n ") ;

10 }
11 f c l o s e ($ f) ;
12 }
13 r e g i s t e r _ s h u t d o w n _ f u n c t i o n (" _ _ _ _ i n s t r _ w r i t e _ m a p ") ;

18

14 }

Listing 3.4: The instrumentation header code that is inserted at the beginning of each file.

3.2 webFuzz

This section begins with the high-level view of webFuzz delving into how it is structured

and its work flow. A thorough discussion on how the coverage feedback is leveraged by

the fuzzer is provided next. We end this section by briefly analysing the type of input

mutations it implements and the web vulnerabilities it can detect.

3.2.1 High-Level Conceptual View

Figure 3.1 shows the UML Class diagram of webFuzz. It has been designed in an Object-

Oriented way with each class focused on a single task thus adhering to the Single Respon-

sibility Principle (SRP).

The Fuzzer class is the main link between the classes where it combines their func-

tionalities to provide a fuzzing session. It consists of multiple workers, with each respon-

sible in sending, receiving and analysing requests in an endless fashion.

The elementary class Request is utilized by all the other classes and represents one

request. A request can be complete (its response has been received and analysed) or

incomplete (has not been sent to the PUT yet).

The RequestQueue class handles the storing of the most favorable complete requests

while providing efficient insertion and retrieval operations.

The Crawler class handles the bookkeeping of all complete requests so as to avoid

revisiting the same links. It further keeps track of incomplete requests that are awaiting

execution and manages URL blocking.

The Mutator class is responsible in creating mutated versions of previous completed

requests by modifying their GET and POST parameters.

The Parser class handles the HTML document analysis which consists of checking

for XSS vulnerabilities and scanning for new URLs.

Workflow

Initially a worker will either fetch a new, incomplete request that is provided by the

crawler (getNextRequest in Crawler class) or will mutate the most favorable com-

plete request which is provided by the getNextRequest from the RequestQueue class.

Currently webFuzz will strictly prioritise new unvisited requests over mutated existing

ones. Its HTML response is then analysed using parseDocument from the Parser class.

19

Request

+ url: String
+ method: HTTPMethod
+ parameters: HTTPParameters
+ referenceCount: int = 0
- coverageScore: int
- mutatedScore: int
- executionTime: float
- size: int

+ compare(request2: Request): int
+ isLighterThan(request2: Request): bool
+ getCoverage: float
+ parseInstrumentation(httpHeaders:
Dictionary<string, string>, workerId: int): CFG

RequestQueue

- accumulatedCFG: Dictionary<BasicBlockLabel,Request[9]>
- requestsHeap: Request[*]

+ getNextRequest(): Request
+ addRequest(request:Request, cfg: CFG): int
+ getAccumulatedCoverageScore(): float
+ getRequestsHeap(): Request[*]{ordered,unique}
- removeRequestsFromHeap(requests: Request[*]): void
- addRequestToHeap(request: Request): void

0..*

0..1 in Heap Tree

Crawler

- pastRequests: Request[*]{unique}
- pendingRequests: Request[*]{ordered,unique}
- urlBlockRules: BlockRule[*]{unique}

+ getNextRequest(): Request
+ addNewRequests(requests: Request[*]): void
- shouldBlockUrl(request: Request): bool

0..*

0..1

in Pending Requests

Mutator

- xssPayloads: String[1000]
- syntaxTokens: String[1000]

+ mutate(request: Request, reqs: RequestQueue): Request
- addRandomString(params: Parameters): Parameters
- addXssPayload(params: Parameters): Parameters
- addSyntaxToken(params: Parameters): Parameters
- alterParameterType(params: Parameters): Parameters
- performCrossOver(currentReq: Request,
 reqs: RequestQueue): Request

Parser

- detectedXss: Dictionary<String, Request>

+ parseDocument(doc: HTML): Request[*]
+ getXssDectected: Dictionary<String, Request>
- observe_xss(doc: HTML): int
- extractRequestsFromForms(doc: HTML): Request[*]
- extractRequestsFromHref(doc: HTML): Request[*]

BlockRule

+ urlMatch: Regex
+ parameterNameMatch: Regex
+ parameterValueMatch: Regex

0..*1

Fuzzer

- requestQueue: RequestQueue
- crawler: Crawler
- parser: Parser
- mutator: Mutator
- statistics: Dictionary<String,String>
- numWorkers: int
- initialSeed: Request[1..*]
- cookies: String[*]
- headers: String[*]
- timeoutSec: int
+ currentExecutingRequest: Request

+ run(): int
+ getStatistics(): Dictionary<String,String>
- runWorker(worker_id: int): int

1

1

HTTPParameters

+ getParameters: Parameter[*]
+ postParameters: Parameter[*]

Parameter

+ name: String
+ value: String[1..*]{unique}
+ xssInjected: String[*]

1..*

1

POST

1

1

CFG

+ hitcountPerLabel: Dictionary<BasicBlockLabel,int> {readonly}

BasicBlockLabel

+ label: int

UserInterface

- fuzzerInstance: Fuzzer

+ runInterface(): void

11

1..*

1

GET

0..1

0..*in Past Requests

in accumulatedCFG0..*

0..*

1

1

1

1

1

1

Figure 3.1: A simplified UML Class Diagram of webFuzz. Note that almost all classes

have a dependency relationship with the Request class. For readability purposes this is

not shown.

In here, the document is checked for RXSS vulnerabilities and any new unseen URLs

from form and anchor elements are also extracted. These new links are fed back to the

crawler using addNewRequests in the Crawler class. Depending on the type of instru-

mentation, the coverage feedback will either be in the HTTP header, an external file, or in

a shared-memory region. The static method parseInstrumentation in Request class

is responsible for reading the feedback and returning a CFG dictionary that holds all the

triggered labels by the current request together with their hit-counts. Whether this request

will be stored for future mutation is handled by the addRequest in the RequestQueue

class. The decision process is thoroughly discussed in Section 3.2.2. From this point

onwards the cycle repeats endlessly.

3.2.2 Coverage Feedback

webFuzz leverages the instrumentation feedback in two ways. First, it can reduce its

memory footprint by grouping similar requests and storing only the most favorable from

each group. In this way, it only stores just enough requests to cover every single label it

has observed. As it has been explained earlier, a label can either be a CFG edge or a basic

20

block. Secondly, by knowing the code paths a request triggers, it can prioritise requests

that have explored code paths not previously observed or that exercise large parts of the

code. In fact, webFuzz computes a weighted rank for each request using the aforemen-

tioned metrics and a few other such as the request’s response time. At its core, webFuzz

will utilize two data structures to achieve these goals: a dictionary of all the labels it has

observed and a Heap Tree of all the favorable requests in a semi-ordered fashion. Using

these two structures which are stored in RequestQueue class, it can decide whether a new

request will be kept or discarded, and which is the most favorable request.

Discarding Requests

Since many requests do not trigger new labels, an algorithm is needed to compare such

similar requests so as to store only the most favorable. Algorithm 2 shows the AFL-

inspired algorithm that determines if a new request will be kept or discarded. The cov-

erage feedback of a new request is checked against a dictionary (accumulatedCFG) that

holds information about all the labels that have been observed so far together with the

requests that have triggered it. Each entry in the dictionary is further split to 9 buckets,

with each bucket corresponding to the different number of times the label was executed

in a single run. The use of buckets aims to distinguish requests that have executed a CFG

node or edge only a few times versus many more [52].

When the hit-count of a label returned by a new request falls in a bucket that has

already been observed, there will be a clash for the same bucket in the same entry in the

dictionary. The two requests will be compared in terms of execution time and request size

and the lightest node will get the entry.

Each Request object has an additional referenceCount attribute that holds how

many entries it contains in this dictionary. A reference count of zero means that for each

label the request triggered, there exists a lighter request that has also triggered it.

As soon as a request has no longer entries in this dictionary it will be removed as well

from the Heap structure that is described next.

Request Ranking

As soon as a request has successfully acquired at least one entry in the dictionary it will

then be inserted to the internal min-Heap tree that contains all the favorable, complete

requests. For the insertion to work, a method of comparing two requests is needed. This

is provided by compare in Request class. It calculates a weighted difference score of the

two requests based on their attributes. The metrics it uses are listed below. Note that a (+)

symbol indicates higher values are better while the opposite applies to (-).

• Coverage Score (+): Total number of labels it has triggered

21

Algorithm 2 Adding a new request. addRequest method in RequestQueue class
function ADDREQUEST(accumulatedCFG,newRequest,coverageFeedback)

for (blockLabel,hitCount) in coverageFeedback do
bucket← 0 . Calculate bucket number from hit count

if hitCount ≥ 256 then
bucket← 8

else
bucket← ceiling(log2(bucket))

end if

pendingRemoval←{}
existingRequest← accumulatedCFG[blockLabel][bucket]

if existingRequest == /0 then . Has this bucket been hit before ?

accumulatedCFG[blockLabel][bucket]← newRequest

newRequest.re fCount← newRequest.re fCount +1

else if newRequest.isLighterT han(existingRequest) then
accumulatedCFG[blockLabel][bucket]← newRequest

newRequest.re fCount← newRequest.re fCount +1

existingRequest.re fCount← existingRequest.re fCount−1

if existingRequest.re fCount == 0 then
pendingRemoval.insert(existingRequest)

end if
end if

end for

if newRequest.re fCount == 0 then
return −1 . request is discarded

end if

removeRequestsFromHeap(pendingRemoval) . Replaced requests are discarded

addRequestToHeap(newRequest) . New request is kept

return size(pendingRemoval) . Number of previous requests it has removed

end function

22

• Mutated Score (+): Crude approximation on how much the execution trace differed

from that of its parent request (the request that it got mutated from)

• Execution Time (-): Round-trip time of the request

• Size (-): Total number of characters in the URL and in the POST parameters

• Picked Score (-): How many times it has been picked for further mutation. This

ensures that all requests in the Heap will eventually be fuzzed.

3.2.3 Mutations

Mutation is a necessary step in the fuzzing process in order to maximize the number of

paths explored and to trigger bugs lying in vulnerable pieces of code. The choice of mu-

tation functions is both a challenging and empirical task. Aggressive mutating functions

can destroy much of the input data structure which will result in the test case failing early

on during program execution. On the other hand, too conservative mutations may not be

enough to trigger new control flows [50].

Currently five mutation functions are supported but webFuzz can easily be extended

to support custom GET or POST parameter mutations. The mutation functions it employs

are as follows:

• Injection of real-life XSS payloads found in the wild into GET or POST parameters

• Mixing GET or POST parameters from other favourable requests (in Evolutionary

Algorithms this is similar to Crossover)

• Insertion of a randomly generated payload (can be a string or an integer) into a

parameter

• Insertion of HTML, PHP or JavaScript syntax tokens into a parameter

• Altering the type of a parameter (from an Array to a String and vice versa)

Conversely to many fuzzers that employ malicious payload generation via the use of

specific attack grammar [16, 41], webFuzz has taken a mutation-based approach [34]

where starting with the default input values of an application (e.g. specified by the value

attribute in a HTML input element), real-life XSS payloads, random strings or specific

HTML, JavaScript and PHP syntax tokens are prepended and appended to them. Some

parameters may also get randomly opted out from the mutation process. This can be

useful in cases where certain parameters need to remain unchanged for certain areas of

the program to execute.

23

Although arrays in URL strings are not clearly defined in RFCs and their format is

more framework specific, a number of web applications rely on them or are even obliv-

ious to their existence. For this purpose we have added an input type altering mutation,

where an input parameter that is expected to be parsed as a string in the web application

is transformed into an array or vice versa. Web applications that do not guard against

unexpected types could fall victims of unintended code execution behavior.

Lastly, as the incorporation of evolutionary algorithms in the test case creation process

has been widely used in fuzzers to optimize the solution searching process [16,34,41,52],

webFuzz will also mix GET or POST parameters from different favorable requests to

generate new inputs. Conversely to how evolutionary algorithms specify, this crossing

over of input is not defined as a necessary step in each new input creation but can happen

with a medium probability.

3.2.4 Vulnerability Detection

webFuzz is currently designed to detect Reflective Cross Site Scripting bugs. Additionally

detecting Stored Cross-site Scripting vulnerabilities and endpoints susceptible to Denial

of Service (DoS) attacks should not require heavy changes and will be implemented in

the future. To detect RXSS vulnerabilities we use the method of string searching for the

injected malicious payload in the returned HTML response. This method is the most per-

forming in terms of speed but can induce false positives as the location of the payload

in the HTML response is not accounted for. One example of this would be if the XSS

payload is returned unsanitized inside an HTML element’s attribute. If the web applica-

tion correctly sanitizes any quotes found in the XSS payload then the payload will not

be executable. Listing 3.5, shows this difference. In the first two form elements, due to

correct sanitization of double quote characters and the location of the JavaScript code, the

alert message will not be shown. In the third form, the double quote character found

in the XSS payload is not sanitized and will thus be executed. Plans on improving the

accuracy of our XSS detector are discussed in Section 7.

1 <html >
2 <body>
3 <form c l a s s =">< s c r i p t > a l e r t (1) </ s c r i p t >" method="GET">
4 < i n p u t name= ’ submi t ’ t y p e = ’ submi t ’ >
5 < / form>
6
7 <form c l a s s ="&quo t ; > < s c r i p t > a l e r t (1) </ s c r i p t >" method="GET">
8 < i n p u t name= ’ submi t ’ t y p e = ’ submi t ’ >
9 < / form>

10
11 <form c l a s s =" \ ">< s c r i p t > a l e r t (1) < / s c r i p t >" method="GET">
12 < i n p u t name= ’ submi t ’ t y p e = ’ submit ’ >
13 </ form >
14 </ body >

24

15 </ html >

Listing 3.5: How JavaScript code inside HTML attributes is threated by the HTML parser.

In the first two form elements, the payload <script>alert(1);</script> will not be

executed. But in the third form, the quote character is not properly sanitised and so an

alert message will be displayed.

25

Chapter 4

Implementation

4.1 Instrumentation

To implement webInstr, we have used the library PHP-Parser that works on the AST level

of the code. The library offers multiple features such as providing an interface to traverse

and modify the tree, ability to convert the tree back to PHP source code, and fully supports

PHP version 5, 7 and 8. In this section we will dive deeper in the implementation details

of webInstr, showing how we can use the interface provided by the PHP-Parser library to

implement our tool.

4.1.1 PHP-Parser

PHP-Parser is designed to provide an easy to use mechanism to parse, analyse and modify

the AST of individual PHP source files. This process happens on the file-level, meaning

the AST produced contains the statements and expressions of a single file only. Listing

4.2 shows the resulting AST parsed from the ReLu function as defined in Listing 4.1.

In the AST, the statements are the nodes (type starting with Stmt_), and the edges be-

tween the nodes are defined in attributes like stmts, elseifs, else. These attributes

themselves hold an array of statements that define the body of the enclosing statement.

Expressions are not nodes in the tree but properties of a node statement. This means that

a depth-first traversal of the tree would begin with the top-level statements (as defined by

the outermost array()) and recursively jump to each statement, followed by its body.

Expressions can be retrieved only by inspecting the properties of a node. The tree is self-

contained and can thus be transformed back to source code without breaking function-

ality in the original code (except perhaps code formatting). For instance, metadata such

as passing by reference or by value, and type-hints are provided in the properties of each

associated statement. In addition, each token can easily be differentiated by inspecting its

type.

26

1 <?php
2
3 f u n c t i o n reLu (f l o a t $x) : f l o a t {
4 i f ($x <= 0)
5 r e t u r n 0 ;
6 e l s e
7 r e t u r n $x ;
8 }

Listing 4.1: Definition of the ReLu function in PHP for demonstration purposes.

1 <?php
2
3 a r r a y (
4 0 : S t m t _ F u n c t i o n (
5 a t t r G r o u p s : a r r a y ()
6 byRef : f a l s e
7 name : I d e n t i f i e r (name : reLu)
8 params : a r r a y (
9 0 : Param (

10 a t t r G r o u p s : a r r a y ()
11 f l a g s : 0
12 t y p e : I d e n t i f i e r (name : f l o a t)
13 byRef : f a l s e
14 v a r i a d i c : f a l s e
15 v a r : E x p r _ V a r i a b l e (name : x)
16 d e f a u l t : n u l l
17)
18)
19 r e t u r n T y p e : I d e n t i f i e r (name : f l o a t)
20 s t m t s : a r r a y (
21 0 : S t m t _ I f (
22 cond : Expr_Bina ryOp_Smal le rOrEqua l (
23 l e f t : E x p r _ V a r i a b l e (name : x)
24 r i g h t : Scalar_LNumber (v a l u e : 0)
25)
26 s t m t s : a r r a y (
27 0 : S tmt_Re tu rn (
28 exp r : Scalar_LNumber (v a l u e : 0)
29)
30)
31 e l s e i f s : a r r a y ()
32 e l s e : S t m t _ E l s e (
33 s t m t s : a r r a y (
34 0 : S tmt_Re tu rn (
35 exp r : E x p r _ V a r i a b l e (name : x)
36)
37)
38)
39)
40)
41)
42)

Listing 4.2: The resulting AST converted from the ReLu function defined in Listing 4.1

27

The library also provides methods to traverse the tree and modify it in place. This

functionality is provided by a visitor class that a user can extend to specify the desired

changes to the tree. This class provides four methods to implement, namely beforeTraverse,

afterTraverse, enterNode and leaveNode. The first two methods define what changes

should happen to the top-level statements before and after the tree traversal process re-

spectively. The latter two methods define the changes on individual nodes (statements).

enterNode method is called for each node at the point of entry to its branch in the AST

and leaveNode is called when leaving this branch rooted at this node [30].

4.1.2 webInstr

The general concept of webInstr is that it identifies basic-blocks in the code during the

AST traversal process and inserts stub code at the beginning of each block. In addition, it

will prepend each source file with extra stub code that registers a shutdown function to be

called upon script exit. This function is responsible in outputting the coverage information

gathered from the execution.

webInstr has been designed to be extendable, where custom basic block stub code and

custom output methods can easily be used. Figure 4.1 shows the hierarchy of the classes

that webInstr is composed of. An abstract base class (BasicBlockVisitorAbstract) is

implemented that identifies the basic blocks and provides abstract methods to extend that

define the actual stub code to be inserted.

Base Class

The base class of webInstr is named BasicBlockVisitorAbstract and is a Visitor class

that extends the NodeVisitorAbstract class provided by PHP-Parser. This class is

responsible in identifying the basic blocks from the AST while the stub code to be inserted

is left to the deriving classes to provide.

As mentioned in Section 2.1, there are 3 rules that determine leader statements and

thus identify the boundaries between the basic blocks. For the sake of performance our

approach identifies leader statements as being only (i) the first statement inside a control

statement’s body (Rule 2) and (ii) the first statement that follows after a control state-

ment’s body (Rule 3). This method does not strictly adhere to the definition of a basic

block, as clause expressions are not instrumented.

Since Rule 3 specifies that the target statement of a jump is a leader, the clause ex-

pression in loop statements is a basic block itself, while the start of its body another.

This is because in loops, control can jump directly to the clause expression using either a

continue statement or after the last statement in the loop is executed. By this logic, and

as Rule 3 specifies, the clause expression in a loop statement would be a jump target and

28

BasicBlockVisitorAbstract

currentTreeDepth: int
totaInstrumentedBlocks: int

beforeTraverse(nodes: Node[1..*]): void
afterTraverse(nodes: Node[1..*]): Node[1..*]
enterNode(node: Node): void
leaveNode(node: Node): Node | Node[*]

+ getNumInstrumentedBlocks(): int

makeBasicBlockStub(): Node[*]
makeModuleStubFile(): Node[*]
makeModuleStubHeader(): Node[*]
makeModuleStubShmop(): Node[*]

NodeVisitorAbstract

beforeTraverse(nodes: Node[1..*]): Node[*]
afterTraverse(nodes: Node[1..*]): Node[*]
enterNode(node: Node): Node | void | Node[*]
leaveNode(node: Node): Node | void | Node[*]

EdgeCoverage

makeBasicBlockStub(): Node[4]
makeModuleStubFile(): Node[1]
makeModuleStubHeader(): Node[1]
makeModuleStubShmop(): Node[1]

NodeCoverage

makeBasicBlockStub(): Node[2]
makeModuleStubFile(): Node[1]
makeModuleStubHeader(): Node[1]
makeModuleStubShmop(): Node[1]

Figure 4.1: The UML Class Diagram for webInstr. Note the italic font which specifies

that it is defined as abstract.

thus a separate basic block. Some information is lost when not accounting this scenario,

such as control flows produced by statements such as break and continue inside loops

can in some cases not be differentiated.

More importantly, multiple blocks can be missed by not instrumenting the clause ex-

pression, as it can be composed of multiple basic blocks itself. An expression such as

Condition1 && Condition2 && Condition3, can cause the control flow to branch at

the location of every && operator. This is because PHP evaluates clauses in a lazy man-

ner. Thus each logical operator in a clause expression corresponds to one possible jump

29

statement and thus to one leader statement.

Nevertheless, to identify the control statements and add the needed stub code, the

leaveNode method has been implemented. Identification is done by inspecting the type

of each node visited during the traversal process. For every control statement identified,

it will prepend the array in its stmts property with nodes (the stub code) generated using

the abstract method makeBasicBlockStub. This handles the case (i) as mentioned be-

fore. In addition, the leaveNode method will return an array of nodes instead of a single

one. This array will contain the modified control statement, and new nodes generated us-

ing makeBasicBlock again. In this way, PHP-Parser knows that the extra nodes added

should be placed after this control statement. This handles the case (ii).

Certain statement types such as the Stmt_Else must be handled differently. Since

they share the same ending target as their enclosing Stmt_If statement, stub code should

only be added at the beginning of their body. Case (ii) would already be handled when

visiting their enclosing Stmt_If. Similar reasoning happens for the switch-case state-

ments.

The class also implements the afterTraverse method, in which it finds the right

location between the top-level statements of a script to insert the initialisation stub code.

The actual stub code is provided using the abstract methods makeModuleStub* for each

output method selected.

In PHP, if a script uses Declare or Namespace statements, then these must be placed

at the beginning of the script before all other statements. Our implementation guards

against this scenario, and will prepend each source file with initialisation code only after

such statements. The overhead that these initialisation statements impose is also minimal.

Because they are added as top-level statements, they will be executed at most once per

file instrumented. This can happen when a file is directly executed (i.e. not imported by

another file) or during the first call of include or require where files are imported to

scope (included files are only loaded once).

Lastly, the implementation of enterNode and beforeTraverse nodes is rather sim-

ple, as they only keep track of the current tree depth during the traversal process. The

depth is provided using the attribute currentTreeDepth.

Deriving Classes

There are four methods that these classes must implement. Firstly, the makeBasicBlockStub

method in which it generates code to be inserted at the beginning of each basic block. Sec-

tion 3.1.2 has shown the stub code inserted in each basic-block for the edge instrumenta-

tion policy. The rest three methods generate the header code for each output method pos-

sible. Section 3.1.5 again showed a possible implementation for the file output method.

30

In general, these methods should initialise the data structures used by the basic block stub

code, and further register a shutdown function to output the coverage feedback on script

exit.

CLI Interface

Figure 4.2 shows the result of a successful instrumentation of WordPress. The CLI In-

terface of webInstr is responsible in parsing the command-line arguments, providing fea-

tures such directory/file exclusion, and finally initialising and running the derived Visitor

classes.

Figure 4.2: Snapshot of webInstr after having successfully instrumented WordPress.

4.2 Fuzzer

This section discusses some of the implementation choices for webFuzz and the reasoning

behind them. Thorough analysis of its implementation is not provided as it is outside the

scope of this thesis.

4.2.1 Design Choices

Language of Choice

webFuzz is written in Python 3 due to its ease of use, rapid development, high code

readability and conciseness and a delegation of concerns from the programmer such as

memory management.

Since the Python language itself is only a specification, there exist multiple imple-

mentations of it. webFuzz runs in both CPython (the reference implementation) and PyPy.

PyPy generally runs Python code faster but with a higher memory footprint than CPython,

as it uses Just-In-Time compilation rather than an interpreter [38]. We have not noticed

substantial speed improvements with PyPy though, possibly because it is optimized for

CPU heavy tasks and not I/O heavy such as our task [35].

Alternative implementations such as Jython and IronPython are not applicable due

to their lack of support for Python 3 and their higher overhead with respect to CPython.

31

These implementations are more suitable in situations where Python needs to be interop-

erated with other languages such as Java and .NET languages correspondingly [35].

Concurrency

Since sending HTTP requests is an I/O heavy process, utilizing asynchronous execution,

multi-threading or multi-processing can offer substantial speed improvements. While

waiting for the response from the web server, we could process the response of other

requests thus the CPU can remain busy throughout the fuzzing session.

webFuzz relies on asynchronous execution rather that multi-threading or multi-processing

to provide concurrency largely due to the idiosyncrasies of Python. In its most prevalent

implementations (CPython and PyPy), each thread must acquire a special mutex named

the Global Interpreter Lock (GIL), before it can actually execute Python bytecode. This

is needed because the internal memory management unit is not thread-safe [33]. As a

result of this, parallel execution of threads is not possible, as at any one instance, only

one thread can execute, the thread that holds the Lock. For this reason, multi-threading

approaches would not offer substantial performance improvements over asynchronous

execution (which is single-threaded).

In addition, multi-threading and multi-processing approaches utilize multiple proces-

sor cores, and so the effect of race-conditions is present. The GIL mutex only provides

thread-safety on the internal operations of the interpreter/JIT engine and not on the ap-

plication level. Since webFuzz uses multiple data-structures to achieve its goals, fine-

grained locking solutions would need to be implemented to protect them. This would in

turn reduce the maintainability of the code while also require more developing time in

implementation and debugging.

If on the other hand asynchronous execution is used (as provided in Python by the

asyncio library), no locks would be required. This is because concurrent tasks run on

a single processor, and await statements are not used during writes to the shared data-

structures. A context-switch between tasks can only happen while waiting for a HTTP

request and while reading the HTTP response from the socket. Any modification to the

shared data-structures is guaranteed to succeed with no interruption.

4.2.2 Maintainability

Test Suite

The use of a Test Driven Development approach inspires confidence in the correctness of

the code and reduces debugging time. Python only catches type errors during run-time

thus an even bigger need for code testing exists as Test suites need to catch both type

32

and application logic errors. For this reason, we have developed a Test Suite which is

composed of Unit Tests that target each module that webFuzz is made of. Our test suite it

is not yet complete but we plan on maximising its code coverage in the future.

Type-Hints

Given the benefits that dynamic typing provides such as polymorphism (e.g. via duck

typing), and rapid development, it has proven to be a highly cherished feature by devel-

opers. This of course does not come without its disadvantages, as the lack of static type

checking and type information in the code reduces the readability and maintainability in

the long run [25]. As the need for type information in Python became apparent, PEP 484

[48] introduced the concept of type hints i.e. type annotations for functions and variables

that are accompanied at their declaration but are not enforced nor are used internally by

the Python run-time engine. These type annotations are only hints for programmers to get

a better idea on the functionality of a function or method. Additionally external Python

tools can perform static type analysis using these hints thus provide static type checking

for dynamic languages such as Python. For this reason, we have extensively annotated

webFuzz with type hints to improve its maintainability and readability.

33

Chapter 5

Evaluation

To effectively evaluate our two tools, we identified four key metrics that our experiments

should measure. These are the instrumentation overhead, code coverage, throughput and

vulnerability detection. For each measurement we raised a research question that we aim

to answer from the results. Our research questions are as follows:

RQ1 How much overhead does the instrumentation pose to an application and how

does this relate with different software design patterns and project sizes?

RQ2 Does our approach of coverage-guided input selection and mutation achieve

high code coverage? Do we still notice an increase in code coverage after the initial

crawling process is finished (i.e. are the input mutations effective in triggering new

paths)?

RQ3 What is the combined overhead of our solution (instrumentation and coverage

processing) in terms of throughput, and how does this compare with black-box

approaches?

RQ4 Can webFuzz detect more RXSS bugs within a given time frame in compari-

son with other fuzzers?

To answer RQ1-2 we applied webInstr and webFuzz on 4 well known PHP projects.

In RQ1 we measured how different page response times compare in the instrumented and

uninstrumented versions of the same application. Section 5.1 discusses the methodology

used to obtain our results and the analysis of our findings. For RQ2 we have measured

how the accumulated code coverage develops in these 4 applications, for a fuzzing session

lasting at least 17 hours in each. The experiment is thoroughly analysed in Section 5.2.

For RQ3-4, we selected one of the most prominent open-source black-box fuzzers,

wFuzz [24], to compare webFuzz with. Our test subjects are 2 prevalent Content Man-

agement Systems (CMS) namely WordPress and Drupal. Sections 5.3, 5.4 focus on

answering these questions.

34

All the tests were executed on two Ubuntu 18.04 LTS Linux machines both possessing

a quad-core Intel® Xeon® W-2104 Processor @3.20 GHz and 64GB of RAM. The web

server used for our experiments is Nginx 1.19.6 and for the database back-end we use

MariaDB 10.5.8, with InnoDB engine the primary storage engine used by all the web

applications tested. In total, we have spend around 450 computational hours in running

our experiments.

5.1 Instrumentation Overhead

To evaluate the overhead that the instrumentation introduces, we have selected 4 PHP

projects from GitHub’s trending PHP project list and compared the response time be-

tween identical instrumented and uninstrumented versions. The projects are Mautic 3.2.1

a marketing automation application, Drupal 9.0.6 a CMS web application, WordPress 5.6

also a CMS web application, and Firefly-III 5.4.6 a personal finance management appli-

cation. All these projects are listed as open-source and they consist of 803000, 707000,

647000 and 533000 PHP lines of code respectively (including external libraries).

Methodology

The methodology followed to generate the data firstly consisted of producing two iden-

tical versions of each application. To ensure this, the same installation steps were taken

with no further interactions (e.g. submitting forms, and altering the application state).

The only difference in the installation procedure is the name of the database used. One of

this versions was additionally instrumented using the edge coverage policy.

We then crawled each project using the uninstrumented version and selected a set of

URLs to represent each one. Each link had to return a HTTP code 200 for both versions

for it to be selected. The number of links for each project varied, with WordPress consist-

ing of 65 URLs, Drupal with 60, Firefly-III with 23, and finally Mautic with 80 URLs.

This is due to their different project sizes, features, and their difficulty in crawling them

(e.g. input validating forms blocked further crawling).

For each URL, we measured the time taken to send and receive its response (together

with reading the response body) in both the instrumented and uninstrumented version. To

further eliminate measurements errors, the response time of each link was calculated using

the following procedure. We firstly send the link 20 times to ensure that the opcache [28]

had compiled and cached the source code into bytecode, and we then took the average

response time from 10 runs. This was to ensure that external factors that could affect the

final result such as context switches in the PHP/Zend engine and database latencies were

minimized.

35

Finally, we calculated the overhead factor of each link, and then computed the mini-

mum, average and overhead factor out of all the links in each project. The overhead factor,

was simply calculated by dividing the response times produced from the two versions.

Table 5.1 shows the results of our experiment. Each column represents one PHP

project, and each row states the minimum, average and maximum overhead factor.

Analysis

Mautic 3.2.1 Drupal 9.0.6 Firefly-III 5.4.6 WordPress 5.6

Basic-Blocks 227000 128000 102000 77700

Min. Overhead 1.27x 1.71x 1.81x 1.06x

Avg. Overhead 2.92x 1.85x 2.19x 2.51x

Max. Overhead 3.51x 2.06x 3.37x 3.89x

Table 5.1: Instrumentation overhead factor in 4 PHP Web applications. The first row

shows the total number of instrumented basic-blocks in each project. The following rows

show the minimum, average and maximum overhead observed from all the URLs in each

project.

The results of the experiment show that the instrumentation overhead is significant in

all four projects. Mautic which has the largest number of instrumented blocks also has

the highest average overhead, with it being about 3 times slower than the uninstrumented

version. Drupal on the other hand, all though holding the second largest number in instru-

mented blocks, has the least average and maximum overhead. This result may suggest that

the software architecture design may play a bigger role in the instrumentation overhead

in comparison to the basic-block count. Drupal uses a Presentation-Abstraction-Control

(PAC) model whereas Mautic and Firefly-III (based on Symphony and Laravel web frame-

works) are largely MVC based. Both Mautic and Firefly-III, all though possessing largely

different block counts, incurred high overheads, with both having higher average and

maximum overhead factors than Drupal.

On the other hand, the semi-structured nature of WordPress, which uses an Event-

Based model but with a less rigid software design pattern than the other three, produced

the largest variations in overhead.

Our data though, are not enough to produce any certain conclusions on the relation

between basic-block count, software design pattern and the instrumentation overhead.

Nevertheless, all four projects noticed substantial decrease in performance with webIn-

str. Section 7 discusses possible improvements that could dramatically decrease this

overhead.

36

5.2 Code Coverage

Measuring code coverage can be an important metric to evaluate a fuzzer, as higher code

coverages may entail higher chances in triggering vulnerabilities. This can be explained

by the fact that to trigger a given bug, the fuzzer must first be able to reach the associ-

ated code path that the bug lies. In addition, code coverage can provide feedback on the

effectiveness of the mutation functions employed i.e. whether they can trigger new code

paths.

Methodology

For this experiment we have used the same 4 PHP applications specified in Section 5.1.

All 4 applications were instrumented using a hybrid node-edge coverage policy. This

policy simply provides both node and edge coverage information. The reason for this

choice is only to provide an accurate means to measure code coverage as a percentage

of the total code coverage possible. If we instrumented the application using only the

edge policy, we would not know the number of all possible edges (as that requires CFG

generation) and thus the coverage percentage would not be available. Internally webFuzz

utilizes only the edge information to drive its decision process (as explained in Section

3.2.2) and the node coverage is only used to measure the code coverage percentage.

Analysis

Figure 5.1 shows how the accumulated code coverage progresses with time in the 4 appli-

cations. webFuzz managed to trigger 27% and 21.5% of the total basic blocks in Drupal

and WordPress respectively, while for both Firefly-III and Mautic, the code coverage was

lower than 10%. With WordPress the code coverage is seen to increase even after 50

hours of fuzzing. This is a good sign that the mutation functions employed are effective

enough to trigger new code paths at least in WordPress. Drupal also notices increases in

code coverage late in the fuzzing session, but at a much smaller degree.

There are a number of reasons that can explain the low coverages observed. Firstly,

the code coverage percentage can be considered an underestimation for both Mautic and

Firefly-III, as instrumentation was applied to both the project’s source code, and to its

external libraries. Since more than 50% of the total SLOC in these two projects resided

in the external libraries, it is possible that a large number of the instrumented basic blocks

cannot be executed. This can happen for instance, if features provided by an external

library are not used by these projects. The fact that both libraries are implemented on top

of feature-dense web frameworks such as Symphony and Laravel indicates that this may

indeed be the case. A preliminary evaluation for this hypothesis on Mautic shows that

37

 0

 5

 10

 15

 20

 25

 30

2 4 8 16 32 64 128 256 512 1024 2048 4096

Drupal

WordPress

Firefly-III

Mautic

B
a
si

c-
B

lo
ck

 C
o
v
e
ra

g
e
 (

%
)

Time in minutes (m)

Figure 5.1: Accumulated Basic-Block coverage in 4 web applications using webFuzz.

by excluding external libraries the instrumented basic-block count is reduced by 73% and

the code coverage increases up to 19% in just 20 minutes of fuzzing.

Perhaps more importantly, both applications perform input validation in their HTML

forms, and default input values are most of the times not provided. As a result, webFuzz

struggles to conceive valid inputs for a large number of forms, and thus code coverage

suffers. This can be seen for instance with Firefly-III, where the first 2 minutes contributed

for the 9.6% whereas the rest 1000 minutes only provided 0.2%.

Mautic had the shortest fuzzing session as it contained multiple I/O heavy links that

stalled the fuzzing process considerably. After 512 minutes in the session, the throughput

fell to almost 0 (with response times as high as 20 seconds) and so the session was termi-

nated early. More experiments need to be run with Mautic to identify appropriate weight

values in request ranking metrics (as seen in Section 3.2.2) and thus avoid fixations on

I/O heavy links.

5.3 Throughput

One reason for the effectiveness of fuzzers in discovering vulnerabilities is their ability

to test millions of inputs in a short time frame. It is thus of paramount importance that

38

the coverage-guided approach to fuzzing does not severely degrade the fuzzing through-

put. For this reason we have conducted an experiment to test the relative difference in

throughput (requests/sec) between the black-box fuzzer wFuzz and webFuzz.

Methodology

Two identical versions of WordPress and Drupal were used for this experiment, with the

only difference that one version was additionally instrumented using the edge coverage

policy. In addition, wFuzz was extended to include a complete crawling functionality and

was instructed to fuzz each URL target 5000 times before moving on to the next target.

More details on the exact modifications done are discussed in Section 5.5.1. Lastly, we

specified wFuzz to use 10 concurrent workers while webFuzz used only 8 to account for

the additional server load introduced by the instrumentation.

Analysis

 0

 10

 20

 30

 40

 50

 60

 70

16 32 64 128 256 512 1024 2048

Drupal (WFuzz)

WordPress (WFuzz)

Drupal (webFuzz)

WordPress (webFuzz)

T
h
ro

u
g
h
p
u
t

(r
e
q
u
e
st

s/
se

c)

Time in minutes (m)

Figure 5.2: Throughput (request/sec) of webFuzz and wFuzz in Drupal and Wordpress.

webFuzz is seen to be around 3 to 5 times slower.

As seen in Figure 5.2, the black-box fuzzer wFuzz is about 3 times faster than webFuzz

in the case of Drupal and 5 times faster in WordPress.

39

In the case of Drupal, the instrumentation overhead alone introduces a factor of 2x in

the response time (as seen from Section 5.1). The post-processing steps taken by webFuzz

for each request, together with any implementation differences between the two fuzzers

added an additional 1x factor to the overall overhead. With WordPress, the performance

difference between the two fuzzers is even more accentuated as it introduces an additional

factor of 2x (if we deduct the average instrumentation overhead).

One reason for the performance difference in the two fuzzers is from the additional

post-processing steps taken by webFuzz together with its live crawler functionality. Firstly

webFuzz employs HTML parsing for each request in order to extract new URLs from

anchor and form elements. These new links will then be filtered so as to identify only the

unique new links (that were not already sent in the past). wFuzz on the other hand does

not feature a live crawler and only applies simple string searching to identify XSS bugs in

the returned document. In addition, webFuzz needs to analyse the coverage feedback and

update the relative data structures as described in Section 3.2.2.

Another possible reason is that wFuzz can exploit the opcache, and the server and

database resources more effectively than webFuzz. Because its work-flow consists of

sending the same request 5000 before moving on to new fuzz targets, caching mechanisms

in all levels will have a higher hit ratio than in webFuzz. For instance, the pages in InnoDB

buffer pool [40] (caches table indexes, data and more) have a higher chance of being

located in the CPU caches. The opcache in the Zend engine is more likely to receive a

CPU cache hit for a needed bytecode. On the other hand, webFuzz changes its fuzz target

rapidly (on average every 3-4 requests), thus the cache hit-ratio will suffer. We note here,

that Page Faults (due to a full main-memory) should not have been a limiting factor as

both caching mechanisms mentioned and the RAM of the Linux machines had enough

available free space throughout the fuzzing session.

Ideas on how to optimise webFuzz’s internal mechanisms are discussed in Section 7.

5.4 Vulnerability Detection

The most crucial test for webFuzz is whether it can detect more RXSS vulnerabilities in

a limited time frame than other black-box fuzzers. RXSS is a common web vulnerability

[26], but apart from non-descriptive records in publicly known vulnerability databases

such as CVE [13], there does not exist a standard test suite to evaluate web penetration

tools [15]. A search for the term "XSS" in CVE produces 16500 results at the time

of writing but these vulnerabilities are scattered across different projects and versions.

To further complicate matters, each vulnerability is stated only as a reference guide and

reproducible steps are not provided to preserve confidentiality. As a result identifying a

project with sufficient RXSS vulnerabilities is a challenging task.

40

Nevertheless, conducting an evaluation on real-life vulnerable projects is possible as

[3,4] have showed. To evaluate their PHP web vulnerability detection tools, they managed

to identify 15 inactive or out-dated, known to be vulnerable PHP projects. The two tools

combined managed to detect a total of 95 RXSS bugs spanning across these 15 projects,

with a vulnerable application named osCommerce 2.3.3 possessing the most RXSS bugs

(42 bugs). The disadvantage of this approach though, is that the bugs per project ratio

is rather small (on average around 4 for the 15 projects). This would in turn mean that

numerous experiments would need to be conducted to cover multiple projects, and with

each project possibly requiring multiple repetitions. In addition, the actual number of

RXSS bugs present in each application is not known, thus the detection capability of a

fuzzer as a percentage of the total bugs present cannot be known.

For this reasons, we instead decided to create our own artificial RXSS bug injection

tool, that can inject reasonably realistic RXSS bugs in the scale of hundreds in just a single

project. Section 5.5.2 briefly describes the workings of our bug injection tool named

Centaur. In total, we have injected 150 triggerable RXSS bugs in WordPress and have

compared webFuzz and wFuzz on their detection capabilities in this modified WordPress

CMS. Section 5.4 illustrates and discusses our findings.

Methodology

The methodology used to evaluate the two fuzzers in terms of RXSS detections firstly

consisted of running the two fuzzers independently for 65 hours against two copies of the

artificially bugged WordPress application. The two copies were identical with the only

difference that one version was instrumented using the edge coverage policy. As it has

been already mentioned, in total 150 artificial RXSS bugs were injected in each copy.

1 <?php
2
3 i f ($_POST [’ v1 ’] % 10 === MAGIC_NUMBER % 10) {
4 i f ($_POST [’ v2 ’] % 100 === MAGIC_NUMBER % 100) {
5 # ...
6 # more IF statements follow
7 # depending on the number of digits in the Magic number
8 # ...
9

10 i f ($_POST [’ v1 ’] === MAGIC_NUMBER) {
11 echo $_POST [’ v2 ’] ;
12 }
13 }
14 }

Listing 5.1: The Bug Template used in Centaur for this experiment. The two POST

variables v1, v2 are only provided for demonstration purposes. In actuality, the parameter

names are retrieved from the URL that is currently being examined.

41

The bug template used with Centaur can be seen in Listing 5.1. It consists of a series

of nested if statements, that lead to a vulnerable sink (the echo statement in line 11). It

utilizes two URL parameters that are found from the link being examined (see Section

5.5.2 for more details). For a fuzzer to trigger the bug, it would need to guess the magic

number and place it in variable v1 and then further include an XSS payload in variable v2.

To evaluate the coverage-guided mechanism of webFuzz we have further placed a series of

nested if statements before the final if that leads to the bug. In this way, when webFuzz

correctly guesses one digit from the magic number, it can receive coverage feedback (as

this bug template is also instrumented), and thus prioritise the request that triggered it.

Analysis

 0

 5

 10

 15

 20

 25

 30

 35

 40

8 16 32 64 128 256 512 1024 2048 4096

wFuzz w/ Session

webFuzz w/ Session

R
X

S
S

 b
u
g
s

fo
u
n
d

 i
n
 t

o
ta

l

Time in minutes (m)

Figure 5.3: Artificial RXSS bug detections with webFuzz and wFuzz. webFuzz manages

to uncover bugs faster than wFuzz from early on the fuzzing process.

The results of our 65-hour experiment comparing the fuzzers webFuzz and wFuzz

in terms of artificial RXSS bugs detected is shown in Figure 5.3. Throughout the run,

webFuzz is on the lead with their difference slowly decreasing over time. By leveraging

the instrumentation feedback, webFuzz could find the artificial bugs faster than wFuzz’s

brute force approach. Since correctly guessing a digit of a magic number–situated in a

vulnerable payload–will trigger a new CFG edge, webFuzz will detect this change and

will thus prioritize the request that causes it. With this method, the finding of a magic

number is done incrementally, one correct digit at a time which is faster than guessing

the whole number all at once (wFuzz’s approach). As a real-world analogy, each digit of

the magic number can represent one correct mutation that gets us closer to the vulnerable

sink.

42

5.5 External tools

This section discusses the external tools that have been used in some of our experiments.

We firstly discuss how wFuzz was extended to better fit our needs, and then briefly de-

scribe the artificial RXSS bug injection tool we have used in the experiment for RQ4.

5.5.1 WFuzz

wFuzz is a black-box web application fuzzer, designed to work as a standalone tool and as

an external library to further develop state-full fuzzers i.e. that exploit knowledge gained

from previous requests. In its standalone form, it works in a state-less fashion, that is,

previous test cases are not used in the succeeding test case generation process, and has

the ability to fuzz HTTP headers, cookies, GET and POST parameters and more. With

over 10 thousand monthly downloads [18], it is considered an effective web penetration

tool.

It is an appropriate candidate to compare webFuzz with in our experiments for RQ3-4,

as it (i) it is considered a black-box fuzzer, and (ii) can identify RXSS bugs.

wFuzz offers crawler-like functionality, that parses URLs found in HTML responses

and enqueues them in its list of fuzzing targets. This functionality is limited though to

certain types of URLs (such as from href attributes and meta HTML tags) as it does

not employ full HTML parsing. For instance, HTML forms together with their input

elements are omitted. To make a fair comparison between the two tools, we decided

to extend its crawler functionality using webFuzz’s own crawler-related methods. Our

aim is to evaluate the coverage-guided input mutation of webFuzz and not the crawling

effectiveness.

In addition, since wFuzz requires explicit definition of the fuzzing payloads, we have

further instructed wFuzz to use random strings and numbers, HTML, PHP, JavaScript

syntax tokens and real-life XSS payloads similar to what webFuzz uses.

The resulting work-flow of wFuzz is as follows. First we run a crawler to identify the

entry points (links) of the targeted web application. When the crawler finishes, we feed

this list of fuzz targets to wFuzz and further instructed it to fuzz each URL target for a

predefined number of times (5000) before moving on to another target. The links in the

list are fuzzed repeatedly until a SIGINT signal is received.

5.5.2 Centaur

Our artificial RXSS bug injection tool named Centaur, relies on the coverage feedback as

given by webInstr to find the appropriate location to inject a bug. It uses the node coverage

instrumentation policy in which the actual executed basic blocks are given. It additionally

43

utilizes a crawler to select entry points (URLs) in which to target. A simplified working of

the algorithm is shown in Algorithm 3. The tool firstly crawls a targeted web application

to identify its entry points. For each URL it finds, it runs the request and its execution trace

showing the executed basic blocks is retrieved. The instrumentation policy additionally

provides the depth that each block is located, i.e. in how many control statements a

basic block is nested in. Given a basic block selection policy, it then iteratively selects

a basic block, injects an RXSS bug given a bug template, and lastly tests that the bug is

triggerable. This process it repeated a number of times for each link. We note here that

the basic-block selection policy can be a user-defined method, such as random selection

or based upon the block’s depth. In addition the Bug Template is again user-provided,

where each template requires a different format of XSS payload for it to be triggered. For

instance, one template may require that the XSS payload contains quote characters for it

to be executed whereas another require the <script> tag.

Algorithm 3 Simplified work-flow of Centaur
function BUGINJECTION(application,blockSelectionPolicy,bugTemplate)

in jectedBugs←{}
links← crawl(application) . retrieve the entry points

for url in links do
executionTrace← run(url) . get the coverage feedback

for i← 1 to n do . try inserting n bugs per url

basicBlock← selectBlock(executionTrace,blockSelectionPolicy)

bug← createBug(url.parameters,bugTemplate)

in jectBug(basicBlock,bug,application) . inject bug in source code

if isTriggerable(url,bug) then . can bug be triggered

in jectedBugs.insert(url,bug)

else . Remove the injected bug from application

revertChanges(basicBlock,bug,application)

end if
end for

end for
return in jectedBugs

end function

44

Chapter 6

Related Work

This section discusses the related work concerning instrumentation tools for measuring

code coverage and in RXSS vulnerability detection scanners. In general, most research

has been focused in applications written in native code while for web applications, specif-

ically written in PHP which is the leading web development language, relatively little

attention has been given by the research community.

6.1 Instrumentation

Native Applications

bcov provides instrumentation on the binary level for x86_64 ELF binaries without any

compiler support [10]. It extends the data and code segment of the binary to accom-

modate the instrumentation data structures and code. Through the use of trampolines–a

common technique found in native code instrumentation–once the execution flow reaches

the beginning of a basic block, it is momentarily redirected to the injected code segment

which records that the block has been observed. The control-flow will then be redirected

back to its original course while making sure the program state (e.g. the register contents)

are at their original state before the trampoline jump.

Similarly, Tikir et al. (2002) with their extensions developed for dyninst, provide

dynamic, runtime instrumentation to binaries [45]. With the use of trampolines which are

injected to specific areas called probes (carefully selected basic-blocks using optimisation

techniques) and features like instrumentation code deletion they manage to reduce the

instrumentation overhead significantly.

insTrim on the other hand is implemented as an LLVM pass, and provides an effi-

cient instrumentation alternative to fuzzers such as AFL [20]. Their work achieves higher

performance than current AFL instrumentation techniques, which are InstrRand (instru-

menting a random subset of blocks) and InstrAll(instrumenting all blocks).

45

PHP Applications

Instrumentation tools for PHP applications do exist but with different use-cases. For in-

stance, XDebug, is used for debugging and profiling purposes and utilizes instrumentation

to provide node, edge and path coverage information back to the user [36]. Because it is

designed as a debugging tool, primarily used for observing the code coverage in unit tests,

it introduces overheads in the scale of 6x-120x depending on the application and cover-

age policy used. Similarly, PHPDBG, a debugger shipped with PHP itself can provide

node code coverage information but with similar overheads to that of XDebug. pcov on

the other hand, is a faster alternative for measuring code coverage. Its overhead is com-

parable with that of webInstr but can only provide node coverage information [29]. All

three tools are written as PHP extensions, that is, non-portable libraries written in the C

language that directly interact with the API exposed by the underlying PHP/Zend Engine.

They can be statically compiled inside the PHP binary itself or be dynamically loaded at

runtime.

6.2 Web Fuzzing

Concerning black-box fuzzing, multiple tools have been developed throughout the years,

which range from free open-source to subscription-based enterprise focused solutions.

There also exists an extensive body of literature that analyses their effectiveness [8, 15,

22, 43, 47]. Doupé et al. report in their analysis of eleven prominent black-box vulner-

ability scanners, that automated software testing suffers from issues such as insufficient

support for prevalent technologies such as JavaScript and unsophisticated crawlers. They

conclude that plenty of research and progress still needs to be made [15]. More recent

studies such as [22], show that many black-box fuzzers still suffer from the same issues.

The vulnerability detection rates vary depending on the tool, the Program Under Test, and

the amount of user configuration supplied. In general the detection rates are below 50%

[8, 15, 22]

While most of the black-box fuzzers have been developed outside of academic scope,

certain black-box fuzzers are more research aimed [16, 21]. KameleonFuzz for instance,

is a black-box fuzzer that can detect reflected and stored XSS vulnerabilities [16]. It

relies upon the pre-existing LigRE tool for producing a control+taint flow model from the

targeted web application, and further builds upon on it by providing malicious input gen-

eration and double-taint inference. To generate test cases it uses a genetic algorithm and

an attack grammar for each reflection context i.e. the location of the reflected input such

as inside an HTML attribute or inside an HTML element. Its double-taint inference algo-

rithm can accurately distinguish True and False positive test cases while also providing

46

a means for ranking a test case (its fitness score). All though it requires manual specifi-

cation of attack-grammars to achieve good performance, their approach has nevertheless

been successful in finding XSS vulnerabilities.

There also exist multiple subscription-based, commercial web vulnerability scanners

such as Burb, Acunetix, AppScan. These tools are highly feature-dense, can detect a large

variety of web vulnerabilities including XSS and provide cloud-based monitoring. Their

associated costs reflect this fact, as their business model is aimed towards enterprises.

Concerning web applications written in the PHP language, to our knowledge there

exists one open-source project related to coverage-based fuzzing. Named PHP-Fuzzer

[31], it is developed by the same author of PHP-Parser library that we internally use

to implement webInstr. The instrumentation policy it uses is similar to our Edge cov-

erage implementation with additional basic block stub inserted in clause expressions of

control statements. Just like webInstr, no optimisation techniques such as probe pruning

(discussed in Section 7) have been implemented. On the other hand, it relies on run-

time instrumentation, where a file is instrumented as soon as it is included by a script to

scope. Since the fuzzer is aimed at detecting run-time errors and not web vulnerabilities

such as XSS, its feedback loop happens on the function-level instead on the HTTP level.

Similar to libfuzz [42], the targeted application is an entry-point function, and the fuzzer

is coupled with the function under test in one long running process. For this reason, it

can benefit from techniques such as run-time instrumentation. For web fuzzing though

where a server-client interaction is needed, run-time instrumentation would bring unnec-

essary overheads as instrumentation needs to be re-injected for each new request (unless

inter-request caching is used which is not the case for PHP-Fuzzer).

Lastly, there also exist white-box web penetration tools that do not fall in the fuzzing

category. For instance tools such [3, 4], rely on static analysis and constraint solving to

identify vulnerable source-sink pairs. Backes et al. in their PHP aimed tool, rely on Code

Property Graphs and on modeling of vulnerabilities as graph traversals [7]. They do not

repeatedly test the PUT with inputs generated in an automated fashion but on the other

hand carefully craft a bug largery using static analysis.

47

Chapter 7

Future Work

7.1 Instrumentation

As it can be seen from Section 5, the instrumentation overhead imposed to the targeted

web application substantially increases the execution time, with Wordpress increasing it

almost three-fold. It is thus essential to explore ways to reduce its performance footprint

on the PUT.

Multiple research papers have explored innovative ways to decrease this overhead,

with primary focus in native application instrumentation [1, 10, 20, 45]. In this section,

we discuss how certain key ideas can be adapted to webInstr. We will first explore the

path differentiation problem and how solving this can reduce the number of instrumented

basic blocks significantly and then briefly outline other future improvements.

7.1.1 Path differentiation

The path differentiation problem also referenced as probe pruning in literature consists of

finding the minimum set of basic blocks in a CFG, where instrumenting only these blocks

still provides us enough information to distinguish all executions from each other.

Consider the CFG in Figure 7.1 of the function bar as defined in Definition 4. Only

marking the basic blocks v2, v3 and v4 can provide us the same information as instru-

menting all the blocks in the function.

One possible approach to identify the minimal set of blocks involves generating the

Pre-Dominator and Post-Dominator trees from a CFG [45]. Using just the Pre-Dominator

tree can produce acceptable non-optimal solutions. The nodes in a Pre-Dominator tree are

defined as the basic blocks just like in a CFG. For a directed edge to exist from node u to

node v, then all execution paths that lead to basic block v must pass through basic block

u first. If such a directed edge exists, then node u is said to pre-dominate node v. This

would also mean that nodes pre-dominating node u also pre-dominate node v.

48

Definition 4 An arbitrary function bar
function BAR(x,y)

result← 0 . Block 0

if x > y then . Block 0

x← x∗2 . Block 1

if x≤ y then . Block 1

result← x . Block 2

else
result← 2∗ y . Block 3

end if
end if
result← result ∗ result . Block 4

return result . Block 4

end function

v0v1

v3

vexit
v4

v2

ventry

v0v1

v3

v4

v2

(a) (b)

Figure 7.1: The CFG of function bar is seen in graph a and the corresponding pre-

dominator tree from a is seen at b. Only nodes (basic blocks) v2, v3, v4 need to be

instrumented (the leaves of tree b).

In the case that the CFG is acyclic, a –possibly non-optimal– solution to the problem

involves only selecting the leaf nodes of the Pre-Dominator tree. As seen in Figure 7.1

selecting the leaf nodes would actually give us the optimal solution in this case. On the

other hand, cycles in the CFG create execution paths that cannot be differentiated if only

the leaf nodes are selected. To overcome this problem, one solution is to additionally

mark each node that has an outgoing edge in the CFG headed to a node that it does not

pre-dominate [45].

Such work to optimise the instrumentation process has been implemented by [10,

20, 45]. Tikir et al. (2002) using on-demand instrumentation and Dominator Trees have

observed reduction in blocks instrumented ranging from 42% to 79% [45]. Hsu et al.

(2018) with their tool named InsTrim report up to 80% fewer basic blocks instrumented

49

[20]. Similarly, Khandra et al. (2020) based on the instrumentation policy used, their tool

bcov instruments on average 46% and 30% out of the total basic blocks as identified on

the binary level [10].

Adopting this approach to webInstr would require an accurate CFG generation tool.

Backes et al. (2017), developed a static-analysis based tool that uses graph traversals on

Code Property Graphs (CPG) [49] to identify code patterns and source-sink flows that

expose vulnerabilities [7]. As one element of CPG are the Control flow graphs, they

have showed that generating inter-procedural Control flow graphs (function-level CFG

connected using their call sites) is possible in PHP all though with some caveats. Due to

the dynamically typed nature of PHP and its lack of a strong type system that can infer

an object’s type statically, mapping each function and method call site to its declaration

is not always trivial. For this reason, their inter-procedural CFG accuracy ranged around

88% [7].

We can infer that solving the path differentiation problem to an acceptable degree is

possible in PHP, if we utilize the CFG generation tool provided by [7]. A simpler ap-

proach could also ignore call-sites and apply this optimization technique only on function-

level CFG. This would still reduce the basic-block count but not to the same extend if we

use inter-procedural CFG. Future work can expand on this and develop an efficient version

of webInstr.

It is worthy of noting that such optimisations would introduce additional overhead

in the application that receives the reduced coverage feedback. Additional book-keeping

information and post-processing steps are needed. Each label (basic block) received in the

execution trace must be assigned with its weight value, thus the need for additional data

structures to hold such information. For instance, the weight of node v3 in an execution

trace where only v3 is received has value of 4, indicating that the path exercises four

blocks, namely [v0, v1, v3, v4].

7.1.2 Additional Improvements

It can be useful for webInstr to provide an option to dump coverage data on demand.

For instance, fuzzers usually kill long duration requests so as to avoid stalling. With on-

demand dumping the coverage data would not be lost. Such feature would also not be

hard to implement as it can be done by registering a signal handler for a user signal such

SIGUSR1 or SIGUSR2.

Concerning the basic block stub code, as seen in Listing 3.1, an initialisation check

(using the coalesce operator) happens before every counter incrementation. Because PHP

does not offer any substitute data structure or special instruction that can solve this prob-

lem with a single instruction the overhead adds up. On the other hand, simply recording

50

whether an edge has been executed without keeping hit-counts can be implemented using

a single instruction. For this reason more evaluation is needed to weigh the benefits of

keeping counters for each edge. Migrating the instrumentation library as an internal PHP

extension can possibly offer more performance improvements as well.

Lastly, extending the support to other server-side languages should be possible as

long as some method of working with their AST, bytecode or native code exist. We have

already experimented with instrumenting HACK programs on the AST level using the

HHAST [17] library with success although more work needs to be done for it to be

considered a complete instrumentation method.

7.2 Fuzzer

One of our main future goals is to improve our in-built crawler. Weak crawlers that cannot

uncover JavaScript generated URLs, or are unable to pass through simple input validation

barriers substantially hinder the performance of a fuzzer. Our evaluation showed that this

was indeed the case for Mautic and Firefly-III. The problem of unsophisticated crawlers

is a general problem affecting all security tools that target web applications. Due to the

complex and heterogeneous nature of web applications, effectively crawling deep into the

application structure while still ensuring genericness can be an almost impossible task to

do [15, 43].

Certain ideas can be adopted from existing work that tackles this problem. For in-

stance, Alhuzali et al. (2018) in their tool NAVEX use a combination of static and dynamic

analysis to maximise the explored state of an application. They utilise concolic execution,

constraint solving and execution tracing. More specifically, in order to crawl deep into an

application, it must find valid inputs to HTML forms that comply with the input restric-

tions (such as type and length) enforced by both the client-side JavaScript and server-side

code. To tackle this, they create input constraints to be fed to a solver using the form’s

HTML attributes and from a hybrid concrete-symbolic execution of JavaScript client-side

code. In addition, to pass the server-side input checks, they will additionally monitor the

server’s execution trace for accesses to external databases, changes to superglobal vari-

ables and more, to identify whether a request is successful. They resort to server-side

concolic execution once again to find the right set of inputs [4]. All though heavy use

of concolic execution can hinder the performance of the fuzzer, we can still utilize some

HTML and JavaScript static analysis as such mechanisms would only need to be run once

per JavaScript file and form element throughout the fuzzing session.

To decrease the number of false positives that occur during XSS detection, we plan on

improving our current string searching method by taking into consideration the location of

the payload in the document as well. Such work will allow us to detect cross-site scripting

51

bugs that do not get triggered due to the HTML’s <script> tag but on the contrary due to

HTML attributes such as onload and onmouseclick. Additionally, any request that is

flagged as vulnerable, can be be tested on a real browser environment to observe if it can

truly be considered a true positive. The Selenium library can help automate this task.

We can additionally add support for cookie and in general HTTP header fuzzing since

these can also be input sources in RXSS bugs. Many black-box fuzzers and white-box

scanners do provide such options such as [7, 24, 37].

Regarding webFuzz’s overhead in the response post-processing step, certain perfor-

mance critical code sections can be ported to Cython. Cython provides the ability to

compile certain Python modules to C extensions via the use of C-like type annotations

[9]. In this way, CPU heavy algorithms such as the addRequest method in Algorithm

2 that rely on Heap insertion and sorting can be statically compiled and embedded as

C-extensions to the CPython runtime.

As a long-term goal we are also planning on introducing netmap [39], a tool to ef-

fectively bypass the Operating System’s expensive network stack and allow the client and

server to communicate efficiently.

52

Chapter 8

Conclusion

This thesis has explored the topics of web application instrumentation and its utilization

in coverage-based web fuzzers. We have developed two tools webInstr and webFuzz

respectively, and have evaluated them using a number of metrics.

Currently the instrumentation overhead introduced by webInstr is significant (around

2.5x), but judging from other related work concerning code coverage measurement in

PHP applications, it compares perfectly well. Nevertheless, there is plenty of room for

improvement. For instance, we can implement probe pruning techniques as utilized by

the majority of native application instrumentation tools and thus reduce the number of

instrumented basic blocks up to 80% less.

Our fuzzer webFuzz managed to outsmart the prominent black-box fuzzer wFuzz, as

in our experiments it could find more RXSS bugs and with a faster rate. The overall over-

head of the coverage-based approach though introduced overheads in the range of 2x-5x.

In some input-validation heavy applications, it has also been unsuccessful in exercising

much of their application logic. As it has been discussed in Section 7 there is still plenty

of work to be done in improving the fuzzer, such as detecting input validation rules en-

forced by JavaScript, uncovering JavaScript generated URLs, optimizing the work-flow

and internals of the fuzzer, and improving the accuracy of our XSS detector.

53

Bibliography

[1] H. Agrawal. Dominators, super blocks, and program coverage. In Proceedings of the

21st ACM SIGPLAN-SIGACT symposium on Principles of programming languages,

pages 25–34, 1994.

[2] A. Aho, M. Lam, J. Ullman, and R. Sethi. Compilers: Principles, Techniques, and

Tools. Pearson Education, 2011.

[3] A. Alhuzali, B. Eshete, R. Gjomemo, and V. Venkatakrishnan. Chainsaw: Chained

automated workflow-based exploit generation. In Proceedings of the 2016 ACM

SIGSAC Conference on Computer and Communications Security, pages 641–652,

2016.

[4] A. Alhuzali, R. Gjomemo, B. Eshete, and V. Venkatakrishnan. {NAVEX}: Precise

and scalable exploit generation for dynamic web applications. In 27th {USENIX}
Security Symposium ({USENIX} Security 18), pages 377–392, 2018.

[5] P. Ammann and J. Offutt. Introduction to software testing. Cambridge University

Press, 2016.

[6] C. Aschermann, S. Schumilo, T. Blazytko, R. Gawlik, and T. Holz. Redqueen:

Fuzzing with input-to-state correspondence. In NDSS, volume 19, pages 1–15, 2019.

[7] M. Backes, K. Rieck, M. Skoruppa, B. Stock, and F. Yamaguchi. Efficient and flexi-

ble discovery of php application vulnerabilities. In 2017 IEEE european symposium

on security and privacy (EuroS&P), pages 334–349. IEEE, 2017.

[8] J. Bau, E. Bursztein, D. Gupta, and J. Mitchell. State of the art: Automated black-

box web application vulnerability testing. In 2010 IEEE Symposium on Security and

Privacy, pages 332–345. IEEE, 2010.

[9] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. S. Seljebotn, and K. Smith. Cython:

The best of both worlds. Computing in Science Engineering, 13(2):31–39, 2011.

54

[10] M. A. Ben Khadra, D. Stoffel, and W. Kunz. Efficient binary-level coverage analy-

sis. In Proceedings of the 28th ACM Joint Meeting on European Software Engineer-

ing Conference and Symposium on the Foundations of Software Engineering, pages

1153–1164, 2020.

[11] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury. Directed greybox

fuzzing. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and

Communications Security, pages 2329–2344, 2017.

[12] O. Chang, A. Arya, K. Serebryany, and J. Armour. Oss-fuzz: Five months later,

and rewarding projects, 2017. https://opensource.googleblog.com/2017/

05/oss-fuzz-five-months-later-and.html.

[13] T. M. Corporation. Common vulnerabilities and exposures (cve), 2020.

[14] G. A. Di Lucca and A. R. Fasolino. Testing web-based applications: The state of

the art and future trends. Information and Software Technology, 48(12):1172–1186,

2006.

[15] A. Doupé, M. Cova, and G. Vigna. Why johnny can’t pentest: An analysis of black-

box web vulnerability scanners. In International Conference on Detection of Intru-

sions and Malware, and Vulnerability Assessment, pages 111–131. Springer, 2010.

[16] F. Duchene, S. Rawat, J.-L. Richier, and R. Groz. Kameleonfuzz: evolutionary

fuzzing for black-box xss detection. In Proceedings of the 4th ACM conference on

Data and application security and privacy, pages 37–48, 2014.

[17] Facebook. Hhast. https://github.com/hhvm/hhast.

[18] Flynn. Pypi stats: wfuzz, 2020. https://pypistats.org/packages/wfuzz.

[19] A. Hoffman. Web Application Security: Exploitation and Countermeasures for Mod-

ern Web Applications. O’Reilly Media, 2020.

[20] C.-C. Hsu, C.-Y. Wu, H.-C. Hsiao, and S.-K. Huang. Instrim: Lightweight instru-

mentation for coverage-guided fuzzing. In Symposium on Network and Distributed

System Security (NDSS), Workshop on Binary Analysis Research, 2018.

[21] S. Kals, E. Kirda, C. Kruegel, and N. Jovanovic. Secubat: a web vulnerability

scanner. In Proceedings of the 15th international conference on World Wide Web,

pages 247–256, 2006.

55

https://opensource.googleblog.com/2017/05/oss-fuzz-five-months-later-and.html
https://opensource.googleblog.com/2017/05/oss-fuzz-five-months-later-and.html
https://github.com/hhvm/hhast
https://pypistats.org/packages/wfuzz

[22] R. F. Khalil. Why Johnny Still Can’t Pentest: A Comparative Analysis of

Open-source Black-box Web Vulnerability Scanners. PhD thesis, Université

d’Ottawa/University of Ottawa, 2018.

[23] LLVM. Sanitizer coverage. https://clang.llvm.org/docs/

SanitizerCoverage.html.

[24] X. Mendez. Wfuzz - the web fuzzer, 2011. https://github.com/xmendez/

wfuzz.

[25] N. Milojkovic, M. Ghafari, and O. Nierstrasz. Exploiting type hints in method ar-

gument names to improve lightweight type inference. In 2017 IEEE/ACM 25th

International Conference on Program Comprehension (ICPC), pages 77–87, 2017.

[26] OWASP. Owasp top ten web application security risks, 2017. https://owasp.

org/www-project-top-ten/.

[27] V.-T. Pham, M. Böhme, A. E. Santosa, A. R. Caciulescu, and A. Roychoudhury.

Smart greybox fuzzing. IEEE Transactions on Software Engineering, 2019.

[28] PHP. Opcache. https://www.php.net/manual/en/intro.opcache.php.

[29] PHP.WATCH. Php code coverage tools, 2020. https://php.watch/articles/

php-code-coverage-comparison.

[30] N. Popov. Documentation on the visitor class in php-parser. https:

//github.com/nikic/PHP-Parser/blob/master/doc/component/Walking_

the_AST.markdown.

[31] N. Popov. Php fuzzer. https://github.com/nikic/PHP-Fuzzer.

[32] N. Popov. Php parser. https://github.com/nikic/PHP-Parser.

[33] Python. Global interpreter lock, 2020. https://docs.python.org/3/glossary.

html#term-global-interpreter-lock.

[34] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos. Vuzzer:

Application-aware evolutionary fuzzing. In NDSS, volume 17, pages 1–14, 2017.

[35] J. M. Redondo and F. Ortin. A comprehensive evaluation of common python imple-

mentations. IEEE Software, 32(4):76–84, 2015.

[36] D. Rethans. Xdebug - code coverage, 2020. https://xdebug.org/docs/code_

coverage.

56

https://clang.llvm.org/docs/SanitizerCoverage.html
https://clang.llvm.org/docs/SanitizerCoverage.html
https://github.com/xmendez/wfuzz
https://github.com/xmendez/wfuzz
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://www.php.net/manual/en/intro.opcache.php
https://php.watch/articles/php-code-coverage-comparison
https://php.watch/articles/php-code-coverage-comparison
https://github.com/nikic/PHP-Parser/blob/master/doc/component/Walking_the_AST.markdown
https://github.com/nikic/PHP-Parser/blob/master/doc/component/Walking_the_AST.markdown
https://github.com/nikic/PHP-Parser/blob/master/doc/component/Walking_the_AST.markdown
https://github.com/nikic/PHP-Fuzzer
https://github.com/nikic/PHP-Parser
https://docs.python.org/3/glossary.html#term-global-interpreter-lock
https://docs.python.org/3/glossary.html#term-global-interpreter-lock
https://xdebug.org/docs/code_coverage
https://xdebug.org/docs/code_coverage

[37] A. Riancho. w3af-web application attack and audit framework, 2011. http://

w3af.org/.

[38] A. Rigo and S. Pedroni. Pypy’s approach to virtual machine construction. In Com-

panion to the 21st ACM SIGPLAN symposium on Object-oriented programming sys-

tems, languages, and applications, pages 944–953, 2006.

[39] L. Rizzo and M. Landi. Netmap: Memory mapped access to network devices. SIG-

COMM Comput. Commun. Rev., 41(4):422–423, Aug. 2011.

[40] B. Schwartz, P. Zaitsev, and V. Tkachenko. High performance MySQL: optimization,

backups, and replication. " O’Reilly Media, Inc.", 2012.

[41] S. M. Seal. Optimizing web application fuzzing with genetic algorithms and lan-

guage theory. Master’s thesis, 2016.

[42] K. Serebryany. libfuzzer–a library for coverage-guided fuzz testing. LLVM project,

2015.

[43] L. Suto. Analyzing the accuracy and time costs of web application security scanners.

San Francisco, February, 2010.

[44] A. Takanen, J. D. Demott, C. Miller, and A. Kettunen. Fuzzing for software security

testing and quality assurance. Artech House, 2018.

[45] M. M. Tikir and J. K. Hollingsworth. Efficient instrumentation for code coverage

testing. ACM SIGSOFT Software Engineering Notes, 27(4):86–96, 2002.

[46] I. T. Union. Itu world telecommunication/ict indicators database 2019. 2019.

[47] F. van der Loo. Comparison of penetration testing tools for web applications. Mas-

ter’s thesis, Master’s thesis, University of Radboud, Netherlands, 2011.

[48] L. van Rossum, Lehtosalo. Pep484, 2014. https://www.python.org/dev/peps/

pep-0484/.

[49] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck. Modeling and discovering vul-

nerabilities with code property graphs. In 2014 IEEE Symposium on Security and

Privacy, pages 590–604. IEEE, 2014.

[50] M. Zalewski. Binary fuzzing strategies: what works, what

doesn’t, aug 2014. https://lcamtuf.blogspot.com/2014/08/

binary-fuzzing-strategies-what-works.html.

[51] M. Zalewski. American fuzzy lop trophy case, 2015.

57

http://w3af.org/
http://w3af.org/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://lcamtuf.blogspot.com/2014/08/binary-fuzzing-strategies-what-works.html
https://lcamtuf.blogspot.com/2014/08/binary-fuzzing-strategies-what-works.html

[52] M. Zalewski. More about afl - afl 2.53b documentation, 2019. https://afl-1.

readthedocs.io/en/latest/about_afl.html.

58

https://afl-1.readthedocs.io/en/latest/about_afl.html
https://afl-1.readthedocs.io/en/latest/about_afl.html

	Introduction
	Background
	Basic Blocks and Flow Graphs
	Coverage Criteria
	Fuzzing
	Reflective Cross-Site Scripting

	Architecture
	webInstr
	Overview
	Edge Coverage
	Node Coverage
	Path Coverage
	Coverage Report Output

	webFuzz
	High-Level Conceptual View
	Coverage Feedback
	Mutations
	Vulnerability Detection

	Implementation
	Instrumentation
	PHP-Parser
	webInstr

	Fuzzer
	Design Choices
	Maintainability

	Evaluation
	Instrumentation Overhead
	Code Coverage
	Throughput
	Vulnerability Detection
	External tools
	WFuzz
	Centaur

	Related Work
	Instrumentation
	Web Fuzzing

	Future Work
	Instrumentation
	Path differentiation
	Additional Improvements

	Fuzzer

	Conclusion

