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Abstract 

 

Quantum computing is an emerging technological breakthrough and it is making 

strong advancements towards commercialization. Its scope has shifted from the scientific 

community to a wider audience including major industry organizations such as  Google, 

Amazon, IBM, organized communities interested in Quantum development, and finally 

independent developers. However, the quantum computing community is still in its early 

stages and there is a lot more improvement that could be made in the educational aspect 

concerning resources available and general approach. 

 This thesis aims to provide a streamlined workflow for Quantum Computing 

Development with the usage of the IBM Quantum Experience and Qiskit platform. The 

“Quantum Computing Learning Gate” was developed as a repository on GitHub 

consisting of four different levels of complexity. The first level is intended for 

experimenting with Quantum primers. The second level provides an interactive 

experience for understanding quantum computing behavior through the implementation 

of “The Exciting Game”, a two-player game that is based on quantum mechanics 

concepts. The third and fourth levels complete an Implementation and Evaluation of the 

Deutsch-Jozsa and Bernstein-Vazirani algorithms on quantum and classical systems. In 

the evaluation of  Deutsch-Jozsa, we have found that the quantum implementation shows 

an exponential speedup over the classical implementation with sufficient input size, 

however the accuracy of the current quantum systems is not sufficient to produce the 

correct outcome for the quantum solution since the correct result was found less than 1% 

of the time. In the evaluation for Bernstein-Vazirani, we have found that the current 

quantum systems are far from achieving a speedup over the classical implementation, but 

that the quantum accuracy of the algorithm is much higher than Deutsch-Jozsa, achieving 

accuracies close to 40% for the largest possible input on a quantum system. 

 Overall, we conclude that, while Quantum computing is still in its infancy 

commercially, there can be serious benefits to getting acquainted with the current state-

of-the-art quantum frameworks, especially since quantum services are available through 

the cloud and can be a viable solution to real-world problems. 
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The reasoning behind the existence of Computing is solving problems better than 

humans. Better meaning more efficiently, faster, and with fewer errors. The first 

“modern” computers were developed in the 1950s and we have made great strides in 

computation since then. However, as our calculative force increases, so does our curiosity 

and desire to conquer harder problems. Conventional machines, at their strongest form, 

can now output a staggering performance of upwards of 𝟏𝟎𝟏𝟕 Floating Point Operations 

per second [22], 

 

 

 

 

Figure 1-1 Fugaku Supercomputer - by Fujitsu. 

and the time we enter Exascale Computing is only some years away. We have created 

machines that can ridicule any given every day intensive calculation, yet for some 

problems, we can still make them calculate until the end of time and then some. A famous 

example is prime factorization which given a large enough number can prove surprisingly 

time-consuming. The best-known algorithm that solves the prime factorization problem 
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scales in sub-exponential time and as we know we can make some pretty big numbers 

considering the fact they are infinite. Now when we begin to look at some more specific 

problems it can get somewhat overwhelming. Examples of problems that can’t be quite 

contained in a classical environment are quite more common than we would think, 

especially in the scientific community. 

The simulation of a Quantum System for example or complex molecular 

structures found in Chemistry are two major examples that show the weakness of 

Classical Computers. In Newtonian mechanics, we can describe a system in a pretty 

discrete manner. However when we want to describe the dynamics of a Quantum System 

and we have to take into account the “magical” concepts of “Superposition” and 

“Entanglement” we are looking at a behaviour where two quantum objects can be 

perfectly correlated even though when looked individually can be described as random. 

An example given to often describe entanglement is that of a coin toss. Suppose we have 

two double-sided coins. When we measure the first coin it’s up roughly half of the times 

and down the rest. However, the measurement of the second coin is always the opposite 

of that of the first coin. Already we are dealing with some non-classical properties. If we 

increase the number of “coins” or particles it can be shown that the number of all possible 

combinations of such a system can prove to be an intractable problem for a conventional 

machine [14].  

These types of arguments were formally proposed to the Computer Science field 

by renowned physicist Richard Feynman, who urged the Computer Science community 

to take advantage of these concepts to try and move from theory to practice [7]. The initial 

motivation for the notion of Quantum Computing is these complex problems, which 

cannot yet be fully implemented on a practical scale since Quantum Computing is still in 

infancy and still heavily debated as to its contribution capabilities as stated here [10] and 

here [6]. However, the number of people who can experiment with these concepts in their 

simplest form and potentially contribute to the development is vastly bigger than what it 

used to be in the fifties. 

With emerging technologies such as Cloud Computing Services, which give 

access to real quantum systems, communities of like-minded people who are curious 

about the elusive concepts behind what makes Quantum Computing work, we can argue 

that post-quantum cryptography and all the other applications are closer than we think. 
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Although it seems to be that these applications are limited it is very likely that there will 

be some form of commercialized use in areas such as Cybersecurity, Weather 

Forecasting, Drug Development, and Artificial Intelligence. With behemoths such as 

IBM, Google, Microsoft, Amazon, JP Morgan Chase, Volkswagen Group already 

seriously investing in Quantum resources it does not seem like a bad idea to educate 

ourselves in this field. 

 

Figure 1-2 IBM Q System One, The first Integrated Quantum Computing System for 

Commercial Use. 

 

For this undergraduate thesis, our goal is to familiarize with the State of the Art 

Quantum technologies that are available to software developers and share our findings in 

the methodology of implementing some Quantum Algorithms while making practical use 

of the physical resources available through the cloud of IMB Quantum Experience. Along 

the way, we will share our understanding of some famous algorithms and concepts from 

a programmer’s point of view, in our journey to prepare for the upcoming “Quantum 

Revolution.” 
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Quantum Computing is an elusive concept, not only regarding Information Science 

but in Physics as well. This thesis is multi-purposed. Our objectives are as follows: 

• Demystify some of the “simpler” concepts of Quantum Computing with 

pragmatic examples. 

• Demonstrate a practical workflow that allows a somewhat adequately experienced 

individual in terms of pure Programming capability and Internet Technologies to 

start experimenting with Quantum Computing and avoid common pitfalls with the 

creation of the Quantum Computing Learning Gate which we will introduce in 

Chapter 4. 

• Utilize our findings in order to have a better understanding of some of the more 

famous Quantum Computing Algorithms in order to implement them and evaluate 

them against classical implementations. 

• Demonstrate the peculiar functionality of Quantum computers by making a 

minigame that is solely based on the properties of Quantum Mechanics. 

Before proceeding with Qiskit experimentation we must state a few disclaimers as 

well. Below we provide what is not a goal of this thesis. 

• Qiskit is a very elaborate framework that consists of hundreds of dedicated 

instructions, [32], and the purpose of this thesis is not to provide an introductory 

course to Qiskit usages and features. The reader is strongly advised to study the 

official Qiskit material which is provided here [34]. 

• This thesis is not claiming to rigorously prove physical proofs of why these Quantum 

Systems work or how they work. Whatever worked example we provide, is strictly 

based on our level of understanding and for the sake of explaining algorithm 

behaviours. 

During our research, it was quickly made clear that quantum computing is not a final 

solution to all problems of Computer Science [10], [13], [6]. However, since so many 

behemoths of the industry have chosen to move quantum computing forward, we, as 

computer scientists need to raise a number of research questions. 
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The first research question that we raise, concerns the crowd of quantum computing. 

Is quantum computing for everyone? Is it a subject that should be compulsory in every 

university’s curriculum? 

The second research question is about which are the current State-of-the-Art 

resources available for quantum computing and which one we should choose depending 

on our level of expertise or needs. During our research, we had to choose a medium in 

which we could conduct our experiments and acquire valuable information in order to 

educate ourselves on a completely new subject. 

The third and final research question is whether or not a career specialized in 

quantum computing is a viable option in the next 5 to 10 years. This is of course a question 

that is dependent on many different factors. Either that be major technological 

breakthroughs or agenda shifts of major corporations it is still something that we need to 

ask ourselves. 

 

 

With the completion of this thesis we achieve the following milestones: 

The first milestone is the completion of a functional education portal which we 

call “Quantum Computing Learning Gate” or “QCLG”. Through the development of this 

repository in GitHub, we can offer a no-nonsense approach to quantum computing 

education through a variety of different experiments, algorithm analysis, evaluation, and 

interactive tools. 

 

The second milestone is the creation of  “The Exciting Game”, an interactive two-

player game, incorporated in the QCLG platform, which can help individuals familiarize 

themselves with basic quantum concepts through a gaming experience. 

 

The third milestone is a comparison study of algorithms on quantum and classical 

computers. From this, useful data was extracted concerning two major algorithms in the 

field of quantum computation by simply building upon the basic blocks available through 

the Qiskit platform. 
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The fourth milestone is the expansibility of our platform. Not only can one learn 

from QCLG, but they can also contribute to any of the different levels of development 

available in QCLG. 

 

The fifth milestone is that our platform can be a central point for further quantum 

computing exploration since inside QCLG, we list some different sources that we have 

found extremely useful throughout our own research. 

 

 

In the first chapter, we roughly presented the incentive of this thesis and talked 

about the current picture of Quantum Computing. We also raised some research questions 

that will be answered by the end of this thesis. In the second chapter, we will talk about 

the various frameworks available for quantum computing and showcase some interesting 

applications that are closely related to our work. In addition, we will discuss the 

recommended background knowledge required. In the third chapter, we discuss the basic 

components that help us construct more complex algorithms. In the fourth chapter, we 

provide a high-level description of the structure of QCLG. The next chapters will directly 

expand on the structure given in this chapter. In the fifth chapter, we dive into the first 

level of QCLG and execute and analyse some simple experiments that underline the major 

quantum properties we will use in the rest of this thesis. In the sixth chapter, we take an 

extensive look into the second level of QCLG which is about “The Exciting Game” and 

how it can help boost the usefulness of the whole project. In the seventh chapter, we 

showcase level 3 of QCLG by implementing in detail both classical and quantum 

approaches to two famous algorithms, Deutsch-Jozsa and Bernstein-Vazirani. In the 

eighth chapter, we showcase the final level of our platform which is the evaluation of 

algorithms. Here we implement a series of automated tests in order to extract useful data 

about the two algorithms. In the ninth chapter, we present our technical conclusions 

concerning the development of programs with Quantum modules and discuss limitations 

and future work.  
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Since this thesis is multi-purposed, there is a number of different works that are close to 

our efforts. 

 

The first and major example is the Qiskit framework and textbook, which presents 

an abundance of information regarding basic quantum concepts, along with worked 

examples and dives into deeper and more complex problems. The largest portion of this 

thesis was inspired by the Qiskit textbook. Qiskit is an open-source framework that started 

in March of 2017. Developed by IBM Research, it now has a strong following with the 

Qiskit community and has a public repository on GitHub. Qiskit is mainly developed in 

Python and is cross-platform compatible. The Qiskit textbook is a university-level 

supplement to quantum computing courses. It offers the ability to work with machine-

level code with OpenQASM, [4], as well as high-level abstractions using Python. All of 

Qiskit is encapsulated in the IBM Q platform, [25]. IBM offers free experimentation on 

real quantum systems, as well as simulators that work under the Qiskit framework. It also 

offers interactive tools with no need for coding and a plethora of information through a 

very well-built documentation library, [26] . 

 

 

Amazon is a giant in the industry and it is not a surprise that it now offers an 

elaborate cloud quantum computing service for researchers and developers [16]. 

However, Amazon Web Services in general, require a certain level of specialized 

expertise, which was impossible to achieve in an academic semester in order to 

accomplish our goals for this thesis. It is worth noting that Amazon uses D-Wave systems. 

 

 

D-Wave was founded in 1999 and is a commercial supplier of quantum 

computers. D-Wave systems are used by the leading technology organisations including 

Google, NASA, Volkswagen. The research that stems from D-Wave is very rich with 

over 100 peer-reviewed papers in scientific journals. In 2018 D-Wave launched the Leap, 

their own cloud quantum computing service which contains open-source educational 

material meant for developers, researchers, and businesses. Leap2 is directed to people 
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looking for hybrid solutions that tackle problems with the best mix of quantum and 

classical resources. It was made for the development of hybrid quantum applications that 

are not only directed in scientific experimentation but real-world problems, [27],[21]. 

 

In the course of work, we managed to implement a quantum game in its infancy. 

A motivation for this was Quantum Tetris [35]. It is about the famous game but with a 

quantum spin. It is implemented using IBM resources and Qiskit. While it is quite a 

different game than what we will present it opened our eyes concerning the simple 

applications that quantum computing might have. 

 

 

As discussed here, [15], there are major efforts to start producing procedural 

generation for games and more using quantum computing. Concepts such as blur seem to 

have a better place in the hands of the stronger quantum computers that will come. 

 

 

Volkswagen was the first company to demonstrate successfully a real-world 

application for quantum computers. Through demonstration on “quantum buses”, 

Volkswagen presented a live use of a system designed to calculate the fastest routes in 

almost-real time using D-Wave’s systems [38]. 

 

 

In a research paper conducted by joint efforts of IBM and Daimler AG [11], the 

parent company of Mercedes-Benz, simulations were conducted, of molecules that are 

formed in lithium-sulfur batteries while operations. This was demonstrated using IBM Q 

premium-access systems. The goal of this research is to pave the way for the design of 

the next generation of batteries installed in electric vehicles. We can see that more and 

more industries have a direct benefit from the development of quantum computing. 
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For this thesis, we have worked with IBM’S Quantum Experience resources. The 

operating systems we used are Ubuntu 18.04 and Windows 10, the programming 

language is Python and the main external library used to implement quantum programs is 

Qiskit. We have deployed a repository in GitHub and keep all our code. IBM Q offers 

extensive tutorials in order to set up a local environment capable of accessing IBM’S 

systems. It is important to note that the default medium for conducting quantum 

experiments is either’s through Quantum Experience’s interactive tools such as the 

Quantum Lab, where the user can design from scratch and execute a Quantum Circuit, or 

through Jupyter Notebooks where you can write code in normal Python with the necessary 

instructions from Qiskit in order to implement the Quantum Algorithm. For this thesis, 

we chose to work with PyCharm since it’s a very popular Integrated Development 

Environment and good practice for testing out IBM’s API outside of the recommended 

frameworks. 

 

Figure 2-1 PyCharm. 

 

 

Figure 2-2 IBM Quantum. 

 

Figure 2-3 GitHub. 
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PyCharm is an Integrated Development Environment created by JetBrains. Aside 

from being a great Python IDE it also possesses multiple versioning control features with 

built-in GitHub support as well as Conda environments More information can be found 

here [30].    

 

 

In order to maintain universality across Operating Systems, we opted to work with 

Conda environments. They provide the ability to work with a Python interpreter which 

can be used in different Operating Systems, [18]. Our Conda virtual environment 

contains: 

• Python 3.7 

• Qiskit 

• NumPy (version: 1.19.3) 

• Matplotlib 

This environment can easily be created using the online instructions provided in 

the conda documentation and then proceed to install the aforementioned dependencies 

using pip install. Any clarifications for Ubuntu commands can be found here [37]. 

 

 

Python is an open-source, interpreted-style, programming language that is widely 

used both in the industry and in academia, because of its simplicity and open-source 

nature. It is also the underlying language that Qiskit uses. For this thesis, in order to create 

a stable environment where multiple dependencies coexist, we used Python 3.7, [31]. 

 

 

NumPy is one of the dependencies required by Qiskit and one that we had to install 

manually to ensure a stable working environment. Qiskit being dependant on NumPy 

makes a lot of sense, since as we will see later, Qubits and System States, in general, are 

described by vectors and matrices, [29]. 
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GitHub is a famous code hosting platform for version control using Git. We used 

GitHub in order to ensure a clean workflow and easily transfer our work locally to another 

device, [23]. 

 

 

Matplotlib is a very strong library for creating visualizations in Python. This was 

especially useful since Qiskit supports a number of different visualizations and proved 

vital in order to debug Quantum Circuit construction and help us understand the 

algorithms’ structure in a more interactive way, [28]. 

 

 

The IBM Quantum Platform has a lot of useful tools that can help with quantum 

development, without the use of code. An excellent tool is the circuit composer, [24], 

which is a very nice way of experimenting with simple experiments, as well as 

complicated algorithms.  We present a more detailed overview of the circuit composer in 

3.3.2. The interface of the IBM Quantum Platform is very rich. Besides the circuit 

composer, the user can view the available quantum systems, access relevant 

documentation, and develop quantum programs using different tools. 

 

 

 

 

 

 

 

Figure 2-4 IBM Quantum Experience Interfaces. 
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Figure 2-5 IBM Quantum Experience Dashboard 

 

In Figure 2-5 we can see useful information regarding the available systems, as 

well as a history of all experiments. Clicking on one of the systems, the user can see 

information regarding a system’s hardware. 

In the Quantum Lab, shown in Figure 2-4, the user can create Jupyter Notebooks, 

which is the default way for Quantum development using Qiskit. 

In the Jobs label we can see the progress of completed experiments or 

experiments waiting in the systems queues. 

We have implemented necessary methods to bypass long queues by finding the least 

busy backend capable of executing our experiment. These methods can be found in 

Appendix E. 

 

Available Systems, depending 

on account rights. 

Experiments 

awaiting execution. 

Latest completed 

experiments. 
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Qiskit is an open-source Software Development Kit that is used for development 

using Quantum Computers. It can be used to develop low-level Quantum Instructions by 

tinkering with pulses or to develop higher-level applications using Quantum Circuits and 

complete application modules. 

 

 

Figure 2-6 The Qiskit Elements. 

From the picture above we can see that Qiskit is divided into four elements. Each 

element has its purpose. Terra is the base for all other elements. It contains the modules 

necessary to develop on the lowest level, modules necessary for parameter tuning in 

different hardware as well as modules that are responsible to handle the completed circuits 

as executable jobs to the designated systems. Aer is responsible helps as a benchmark of 

the Quantum Computing efforts by providing a realistic simulation of Quantum Systems 

using classical computers. Ignis is an effort to combat error in quantum systems by 

providing different ways of examining quantum circuits, gates, or code. Aqua is focused 

on Quantum Computing Applications. It requires expertise in Quantum Computing and 

was created for domain-specific experts. More information can be found here [1], here 

[32], and here [34]. 
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In our thesis, we mainly focus on the modules provided by Terra and Aer. We list the 

most useful to our thesis: 

 

Terra: 

• qiskit.circuit, A model where operations or qubits are performed using 

quantum gates. 

• qiskit.providers, Useful for interacting with circuits that are currently 

running. 

o Provider: Provides access to different backends, according to provider 

rights. 

o Backend: abstractly represents the real system or simulator and is 

responsible for executing the quantum circuits and returning the results. 

o Job: A job is essentially the key for a certain experiment. It is useful for 

keeping track of the progress of the experiment, queued, running, etc, and 

providing the ability to control it. 

o Result: An object which keeps the quantum data of a remote backend from 

a completed experiment. It can be instantiated using result = 

job.result(). There are multiple ways to manipulate this data but the 

most common is through result.get_counts(circuit). 

• qiskit.visualization, Contains multiple tools for visualizing quantum 

components. 

 

Aer: 

QasmSimulator: Powerful Simulator that allows for the execution of experiments 

in ideal quantum computers or even environments close to real systems. For this thesis, 

we use it for its ability to host ideal circumstances. 
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Quantum computing requires a certain level of experience in linear algebra. From 

complex numbers to vectors to matrices, to multiplication and addition of different 

elements, there is a lot to learn if one wants to understand better how quantum systems 

behave. It is probably the most useful tool in order to have a real understanding of the 

qubit states and how they change. More information on linear algebra for quantum 

computers can be found here [2] on page 17.  

 

 

Quantum computing uses the quantum gates as abstractions to the actions 

performed on qubits. Therefore, although classical and quantum computation have major 

differences, we can see that there is some common ground. Many of the gates used in 

Qiskit are similar to traditional classical gates. 

One example is the classical NOT gate which flips the state of a bit. In quantum 

computing, there is the X gate which flips the state of a qubit. 

Another example is the XOR gate which acts based on two bits. The corresponding gate 

of quantum computing is the CX gate or C-NOT gate. 

An individual would certainly find it easier to experiment with quantum gates if they 

revisit the classical gates [9].   

 

 

The hardware of quantum computing is nothing like a classical computer. It is 

advised that the aspiring quantum programmer acquires basic knowledge of the materials 

needed in order for a quantum system to exist. More can be found in [2], chapter 1. 
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Quantum Computing has some key concept differences from classical Computation. 

More information concerning these concepts can be found here: [2]. 

• Superposition 

• Entanglement 

• Quantum Interference 
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Superposition is something that is not a property of Newtonian mechanics. 

Superposition is the ability of a Quantum System to be in a combination of multiple states 

at once. Suppose we have a Quantum Computer with n qubits, there can be a superposition 

of all possible 2𝑛 states at once. This property is useful in many Quantum Algorithms.  

 

 

Entanglement is perhaps one of the most curious concepts in the world of 

Quantum Mechanics. It is closely related to superpositions and it tells us that two or more 

particles are in such an assortment that their quantum state cannot be described 

independently of the others in that same “correlated” group. Abstractly speaking, the 

behaviour, of one particle will directly affect or be affected by the behaviour of some 

other particles that are somehow related to that particle. 

 

 

A fundamental idea in Quantum Computing is being able to control the probability 

of measuring certain states. It is a by-product of the superposition and it allows us to 

tinker with certain superpositions in order to steer the system in a deterministic outcome 

which is useful to us. 

 

 

The bit is the simplest single point of information a Classical Computer can 

describe. If we strip away all ingenious hardware and software designs of the modern 

machines, a bit is what we are left with. It is the “atom” in the universe of traditional 

Computation. A bit holds a discrete value of either one or zero. The most used processors 

today are children of the 64-bit architecture. Explaining 64-bit architecture very roughly 

we, can say that at least theoretically an architecture of this magnitude that a 64-bit 

processor can address 264 bytes or 16 exabytes of byte-addressable memory, a memory 

that can be referenced for each byte with a different address. In Quantum Computing, our 

“atom” of computation can quite literally be an atom.  
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While a bit can be described with the functionality of the flip-flop, for example, the qubit 

is a bit more complicated. There is a number of ways that a qubit can be implemented but 

let’s just imagine an electron. An electron has the property of spin, which we will not 

delve into, but it can translate to two separate states, spin up and spit down, thus creating 

a two-state quantum-mechanical system [2].  

 

Figure 3-1 Quantum Optics and Quantum Many-body Systems Andrew Daley's 

Research Group at the University of Strathclyde [36]. 

 

 What differentiates the qubit from the bit is the additional physical properties 

acquired by quantum mechanics. Quantum mechanics allow the qubit to exist in a state 

of both 1 and 0 simultaneously. This property of the qubit is fundamental in quantum 

computing. 

 

 

Named after physicist Felix Bloch, the Bloch sphere gives a geometrical 

representation of the qubit. From the figure below we can observe three axes. X, Y, and 

Z. The north and south poles of the system as chosen as the ground and excited states of 

the qubit |0⟩ and |1⟩ and correspond to the spin-down and spin-up of the electron. Points 

on the surface of the sphere are defined as pure states, states that when are measured can 

be expected to yield a certain value, and points within the surface of the sphere are defined 

as mixed states or states that are a statistical ensemble of pure states, which essentially 

means that they are in a state that is a “superposition” of pure states and we cannot be 

certain on which of the pure states we will end up measuring. It is worth noting that the 

“amount” of a pure state in a mixed state configuration is determined by a complex 

number.  
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These states are described using Dirac notation. The general case for the two basis states 

of |0⟩ and |1⟩ is: 

𝑐0|0⟩ + 𝑐1|1⟩ where 𝑐0,  𝑐1 are complex numbers. 

 

Figure 3-2 Bloch Sphere from the Qiskit Textbook [17]. 

 

 

Quantum circuits are a model in which a computation is performed with a sequence 

of quantum gates, which are reversible transformations on a quantum mechanical 

comparable of an n-bit register. This analogous structure is referred to as an n-qubit 

register. Further operations can be performed on a quantum circuit like logical operations, 

barriers in order to control the circuit compilation, and of course measurements in order 

to get results. 

 

Figure 3-3 A Circuit Example, Containing Multiple Quantum Gates, and Operations. 

 



21 

 

 

The reader should be familiar with the classical gates of computation such as the 

AND, OR, XOR, NAND, and so on. The purpose of quantum gates is to set the qubit into 

a certain physical state so that we can dictate with certainty or to some degree the outcome 

of the measurement of the qubit or in order to further develop the state of the quantum 

system as a whole. Quantum gates can be unary operators, acting on a single qubit, or 

even operators that include multiple qubits in order to be implemented. What quantum 

gates essentially do, is rotate the qubit to a state. All quantum gates can be constructed by 

programming them to “rotate” the qubit on any combination of the three axes shown in 

the Bloch sphere in order to reach a distinct state. There is an infinite number of different 

physical states that we can shape but below we show a few significant gates that help us 

on the rest of this thesis. Quantum gates are reversible. Thus, they can be represented as 

matrices, manipulating the state vector of the Bloch Sphere. Each time a gate operation is 

performed on a qubit, we can calculate the new state of the qubit by matrix and vector 

multiplication to find the new state. 

 

 

 

 

 

Figure 3-4 A Qubit State Transformation Through a Quantum Gate Application. 

One important note is that we can perform operations on different bases, the three 

mainstream bases being X, Y, and Z. 

Looking at  

Figure 3-4 we can see that we could have an infinite number of bases by simply using 

two orthogonal vectors each time. For all experiments shown in this thesis, we will use 

the Z-basis, which is the most popular. 

The two basis states,  |0⟩ and |1⟩ are represented in a vector like so: 

|0⟩ =  [
1
0
]    |1⟩ =  [

0
1
] 

Q 
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A very helpful way of understanding and experimenting with quantum gates is the 

Circuit Composer tool, provided by IBM Q, where we can interactively place quantum 

gates on a “quantum circuit” and perform all kinds of operations including, gate 

operations, classical logical operations, measurements and more. 

 

Figure 3-5 A More Comprehensive View on the Circuit Composer. 

 

 

 

 

 

 

 

Figure 3-6 A Detailed View of Circuit Construction. 

Classical 

bits 
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The measurement probabilities section showcase a histogram of all possible states of the 

system. 

Figure 3-7 Measurement Probabilities. 

 

 

Figure 3-8 Q-Sphere Representation. 

The Q- sphere representation is a very nice way of visualizing the global scale of 

the system. There are a lot of compact details about the system in this single frame. It is 

different than a Bloch sphere visualisation since it shows the possible states of the system 

of qubits as a whole. We can also examine the likelihood of each system state and the 

angle that the phase on the measuring base. 

Possible System States: 

• 0 on qubit 2, 

0 on qubit 1, 

0 on qubit 0 

 

• 0 on qubit 2, 

1 on qubit 1, 

1 on qubit 0 
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The NOT gate of Quantum Computing. The X gate acts on a single qubit and switches 

from state |0⟩ to |1⟩ and vice versa.  

The X matrix: [
0 1
1 0

] 

Applying an X gate to a qubit that is in state |0⟩ will then have the following outcome: 

𝑋|0⟩ =  [
0 1
1 0

] ∙ [
1
0
]  =   [

0
1
] = |1⟩   

 

Figure 3-9 X Gate Behaviour. 

On the right side of Figure 3-9, we can see the reversibility of gates since by applying two 

X gates one after the other we return to the 0⟩ gate. 
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The controlled-NOT gate is a binary qubit gate since it needs two qubits to operate 

on. One target qubit and one control qubit. Whenever the control qubit is in the |1⟩  state 

and X operation is acted on the target qubit. Later we will see how this gate helps us 

achieve entanglement. 

 

Figure 3-10 CX or C-NOT Gate Behaviour. 

Put an X gate 

here in order to 

make qubit 0 

have the 1 

value. 

Qubit 0 is in 

the 0 state so 

a flip on qubit 

1 will not be 

performed. 
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The Hadamard gate is a very special operator. It is useful when we want to achieve 

superpositions entanglement or interference. It will be the cornerstone of all major 

experiments in this thesis. 

The H Matrix: 
1

√2
[
1 1
1 −1

] 

Applying an H gate to a qubit that is in state |0⟩ will then have the following outcome: 

𝐻|0⟩ =  
1

√2
[
1 1
1 −1

] ∙ [
1
0
]  =   

1

√2
[
1
1
] = | +⟩   

𝐻|1⟩ =  
1

√2
[
1 1
1 −1

] ∙ [
0
1
]  =   

1

√2
[
1
−1
] = | −⟩   

Both | +⟩ and | −⟩ are states which are essentially in a superposition of exactly equal 

probability of yielding 0 or 1. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-11 Hadamard Gate Behaviours. 
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Once an individual is familiarized with the quantum primers, it is time to move 

forward. We have developed a repository in GitHub in our efforts to create a standalone 

platform capable of hosting experiments of different levels. All necessary instructions to 

deploy this project can be found on Appendix F. 
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After many different designs, we have finalized the structure for this platform with 

simplicity in mind. The idea of QCLG is to allow individuals of different competence 

levels to experiment with Quantum Computing. It is also possible to contribute to 

different levels according to the structure rules. We have implemented four different 

levels of experimentation, each with a different goal. All levels take advantage of Qiskit 

resources but to different degrees.  

 

Figure 4-1 The QCLG Platform. 

 

The first level aims to cement the basic knowledge required in order to proceed 

with more advanced concepts. Based on our learning experience, we believe that an 
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intermediate step was required before tackling quantum algorithms. Although very 

interesting, quantum algorithms can prove to be quite uninviting to beginners. We decided 

to construct a level where the user can fall back on and sharpen their understanding by 

playing quantum games, hence the creation of Level 2. This way they can try again 

experimenting on the next level with more confidence. Level 3 analyses the more 

mainstream quantum algorithms by attacking the problem from both sides of the 

spectrum. Here we provide implementations for both classical and quantum approaches 

to solving certain problems. The final level is for evaluating algorithms. Once the user 

possesses a deeper understanding of an algorithm, they can stress test it and extract useful 

results performance and accuracy-wise. 

 

 

Level 1 is where experimentations concerning the basic concepts of Quantum 

Computing take place. It is the starting place after getting familiarized with the Quantum 

Primers we discussed in Chapter 3. Here, the user can explore and add experimentations 

of very basic quantum circuits in order to test their understanding before moving on to 

the next levels. The currently available experiments in Level 1 are about Superposition, 

Entanglement, and Phase Kickback and we showcase them in more detail in Chapter 5. 

 

 

Level 2 is an intermediate layer that aims to motivate the user to learn about 

Quantum Computing through more interactive mediums. Once the user has become more 

proficient with the basic quantum concepts, they can test their knowledge with a quantum 

game for example. The currently available game is “The Exciting Game” which we cover 

extensively in Chapter 6.  

 

 

Level 3 has two objectives. The first objective is to implement quantum 

algorithms and the second objective is to implement the classical solution to that 

algorithm in order to allow the user to achieve a deeper understanding of that algorithm. 

Level 3 has many choices regarding the execution of experiments. They can choose to 

solve the problem classically by executing the solution onto their local device and observe 
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the results, execute the quantum solution of the problem in the IBM backends or solve 

the problem with both approaches and observe the differences. Below we list the three 

directories included in Level 3. 

 

 quantum_algorithms 

In this directory, we store the implementations of major quantum Algorithms, as 

well as a controller class that allows individual calling of each of these algorithms. Up to 

the current point of development of this thesis, we have implementations for the Deutsch-

Jozsa, which can be found in 7.3.3, and Bernstein-Vazirani, which can be found in 7.6.3, 

offering execution for each algorithm on a simulator, on a real quantum system, on the 

local machine, executed classically, on both a real quantum system and the local machine 

for comparison. 

 

 oracles 

In the oracles directory, we store all the oracle functions necessary for 

implementing the quantum algorithms. Currently, there are implementations for one 

possible oracle function of Deutsch-Jozsa which can be found in 7.3.3, and the 

implementation of the oracle function for Bernstein-Vazirani which can be found in 7.6.3. 

 

 classical 

The classical directory contains all required classes for implementing the classical 

solutions of the Quantum Algorithms. This includes the logic for the classical algorithms, 

as well as some additional implementations for input generation. These can be found in 

7.2.2 and 7.5.1. 

 

 

 

Once the user feels comfortable with all the previous levels, they can proceed to 

Level 4, which is the automated evaluation of an Algorithm based on its classical and 

quantum solution. Here, besides an adequate understanding of Quantum Computation 

concepts, the user must also practice with the Qiskit API in order to extract the necessary 
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data to extract useful results. More information on the evaluation can be found in Chapter 

8. 

 

 

In Figure 4-1 we can see there are four separate entities outside of the QCLG 

Platform. credentials, constants, manager, and tools. 

 

 constants 

The constants entity is a python file containing a variety of different text messages 

as well as stored acceptable inputs for many different parts of the project. Its main purpose 

is to increase readability on the rest of the project. 

 

 manager 

The manager entity is a python file that acts as the main driver of the whole 

project. From this point, we can branch to every different level available in this project. 

 

 credentials 

This is where the user can store their IBM Q credentials to access the remote 

resources of IBM. In order to access the IBM resources an account in IBM Q is required. 

After creating an account, the user can generate a token that allows them to access IBM 

resources remotely. 

 

 tools 

The tools entity is a python file and is the backbone of the whole project. Here we 

implement an amalgamation of methods, consisting of remote calls to IBM resources, 

calls to different parts of the project with customizations, evaluation methods, and more. 
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The project Tree 

 

Figure 4-2 The Project Tree. 
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This project is hosted by the Data Management Systems Laboratory (DMSL) - 

Department of Computer Science, University of Cyprus, more information about DMSL 

can be found here [20]. 

 

 

 

 

 

Figure 4-3 DMSL GitHub Page 

 

The Quantum Computing Learning Gate is an ongoing project, and its current state 

of development, as well as previous or future states of the project, can be found here [19], 

under the “dmsl/quantum” label. This project is under the “GNU General Public License 

v3.0”. 

We have also supplemented Quantum Computing Learning Gate with a separate 

README file, containing the essential information about the project, and the deployment 

guide, shown in Appendix F. 

Figure 4-4 QCLG Table of Contents. 

 

We have decided to provide some additional useful resources that helped us 

during our research, since it can be quite difficult to find a good starting point.  
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At this point, we start implementing a series of simpler experiments to practice on 

both the primers we discussed in Chapter 3 and methods imported from the Qiskit SDK 

as we presented briefly in 2.2.9. Some pointers to help out are to always keep a window 

open with the Qiskit documentation which can be found here [32] and the most important 

to press the control key + left click to be transferred to the class implementing each 

method in order to clear any doubt on what the current method achieves. We have 

supplemented our code with comments where it was deemed necessary, but the user 

should spend as much time as possible understanding both the concepts presented and the 

way they were implemented before moving on to the next level of QCLG. 
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In this experiment, we will set up a circuit such that all qubits are transcended into 

a superposition using the Hadamard gate which will configure each qubit into a state with 

an equal probability of yielding zero or one and then measure the state of the system. We 

will execute this experiment 1024 times and observe the measurements. For this 

demonstration, we will use four qubits. The possible states with three are equal to 23 =

8. Since we use the Hadamard gate to set up our system we expect that each time we 

make a measurement we have an equal probability of measuring one of the 8 possible 

states:  

|000⟩, |001⟩, |010⟩, |100⟩, |011⟩, |101⟩, |110⟩, |111⟩. 

 In an errorless quantum computing system, we expect to approximately measure 

each of the above states 
1024

8
=128 times. Of course, even in an errorless system, this 

should not be the case since what a Hadamard gate guarantees, is an equal probability of 

measuring either one or zero. Hence, we just expect to see all states measured to a number 

very close to 128.  We can simulate the behaviour of an errorless system using the 

simulator provided by IBM Q. After assembling a three-qubit circuit with a Hadamard 

gate attached to each qubit and immediately measuring each qubit we get the two 

following results. The first result is achieved by executing the circuit on the simulator and 

the second by executing on a real device. 

Simulator execution: Total count all possible states are: {'000': 134, '001': 129, '010': 

102, '011': 127, '100': 119, '101': 129, '110': 132, '111': 152} 

Real System execution: Total count for all possible states are: {'000': 185, '001': 167, 

'010': 114, '011': 92, '100': 152, '101': 111, '110': 87, '111': 92} 

 

We can see that indeed we measure roughly as we expected. What we can also 

see is that while a superposition seems very powerful, it doesn’t accomplish much if we 

are eager to measure qubits. Measurements in quantum computing are irreversible on the 

state of a system and we should not be measuring whenever. 
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We implement the quantum circuit with the help of Qiskit. Qiskit offers a plethora 

of different classes, each for a different purpose. Some things to notice in the following 

code is that we import different classes from Qiskit 

from qiskit import execute, Aer, QuantumCircuit, IBMQ 

 

 

class ThreeQubitSuperposition: 

    @classmethod 

    def run(cls): 

        # Use Aer's qasm_simulator 

        simulator = Aer.get_backend('qasm_simulator') 

        # Create a Quantum Circuit acting on the q register 

        circuit = QuantumCircuit(3, 3) 

        # Add a H gate on qubit 0 

        circuit.h(0) 

        circuit.h(1) 

        circuit.h(2) 

        # Map the quantum measurement to the classical bits 

        for i in range(3): 

            circuit.measure(i, i) 

        # Execute the circuit on the qasm simulator 

        job = execute(circuit, simulator, shots=1024) 

        # Grab results from the job 

        result = job.result() 

        # Returns counts 

        counts = result.get_counts(circuit) 

        print("\nTotal count all possible states are:", counts) 

        provider = IBMQ.load_account() 

        backend = provider.backends.ibmq_valencia 

        # Execute the circuit on a real device 

        job = execute(circuit, backend=backend, shots=1024) 

        # Grab results from the job 

        result = job.result() 

        # Returns counts 

        counts = result.get_counts(circuit) 

        print("\nTotal count for all possible states are:", counts)  

Figure 5-1 Code for Achieving the Superposition of Three Qubits. 

The major processes accomplished in this code is the creation of a circuit with 3 

qubits and 3 bits with the call to the QuantumCicuit class. Then we execute the circuit 

both on the simulator and the ibmq_valencia backend using the necessary Qiskit methods. 

We then use the result() method to acquire and display the results. 
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Renowned as the “Hello World” of Quantum Computation, the Bell State 

demonstrates two of the major concepts of Quantum Computing with the use of just two 

gates. By executing the Bell State circuit, we can observe both the Superposition and 

Entanglement of two qubits. 

 

Figure 5-2 Bell State Experiment. 

We can see from the measurement probabilities that we have two possible system 

states. Either both qubits will be zero or both qubits will be one. By applying a Hadamard 

gate on qubit 0 we transcend it to a state of equally zero and one and by applying a CX 

gate with the controller qubit being zero, whenever qubit zero is zero, qubit one will be 

zero and whenever qubit zero is one, qubit one will be one. Hence the two qubits are now 

entangled, which means that the state of qubit zero is now the major contributing factor 

of what the state of qubit one will be. 
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from qiskit import IBMQ 

from qiskit import ( 

    QuantumCircuit, 

    execute, 

    Aer) 

 

 

class HelloWorld: 

    @classmethod 

    def run(cls): 

        with open('./credentials/token', 'r') as file: 

            token = file.read() 

        IBMQ.save_account(token, overwrite=True) 

        # Use Aer's qasm_simulator 

        simulator = Aer.get_backend('qasm_simulator') 

        # Create a Quantum Circuit acting on the q register 

        circuit = QuantumCircuit(2, 2) 

        # Add a H gate on qubit 0 

        circuit.h(0) 

        # Add a CX (CNOT) gate on control qubit 0 and target qubit 1 

        circuit.cx(0, 1) 

        # Map the quantum measurement to the classical bits 

        circuit.measure([0, 1], [0, 1]) 

        # Execute the circuit on the qasm simulator 

        job = execute(circuit, simulator, shots=1000) 

        # Grab results from the job 

        result = job.result() 

        # Returns counts 

        counts = result.get_counts(circuit) 

        print("\nTotal count for 00 and 11 are:", counts) 

        # Draw the circuit 

        print(circuit)  

Figure 5-3 Code for Method run() of Experiment Bell State. 

 

 

Figure 5-4 Results for Experiment Bell State. 

We can indeed see that the only two possible outcomes are the states |00⟩  and |11⟩  with 

almost equal occurrences. 
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Phase Kickback is a phenomenon that occurs in Quantum Computation, and the 

reason why quantum probabilities are different from classical probabilities. If we were to 

imagine that a Hadamard gate’s effect is similar to that of a coin flip, we would expect 

that two consecutive Hadamard gate operations on the same qubit would be analogous to 

a coin being flipped twice. Due to phase kickback, that is not the case.  

 

Figure 5-5 Phase Kickback effect. 

Why does this happen? How can we have a definite outcome by applying randomness? 

Assume a qubit that is instantiated in the |0⟩ state. 
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Applying a Hadamard gate to this qubit will result in the following complex state:  

 

𝐻|0⟩ =  
1

√2
[
1 1
1 −1

] ∙ [
1
0
]  =   

1

√2
[
1
1
] = | +⟩   

 

The | +⟩ state, when classically measured in the Z-basis, yields |0⟩  or |1⟩ with equal 

probability. But we can easily see that when we apply two Hadamard gates to the same 

qubit we have the following outcome: 

 

𝐻| +⟩ =  
1

√2
[
1 1
1 −1

] ∙
1

√2
[
1
1
]  =   

1

2
[
1 ∙ 1 + 1 ∙ 1
1 + (−1 ∙ 1)

] =
1

2
[
2
0
] =  

1

2
∙ 2 [
1
0
] = [

1
0
]= |0⟩   

 

We can see that after two consecutive applications of the Hadamard gate, the 

amplitudes of the mixed states cancel out and we are left  with the definite state of |0⟩. 

We can see that if we choose certain linear combinations, some possible states may be 

destructed, or constructed. 

Phase Kickback plays a vital role in Quantum Algorithm Development because it 

helps to make a transition from a seemingly random system to a useful result. We need to 

be careful in order to destruct the states that we are not interested in and construct the 

states that interest us.  
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from qiskit import execute, Aer, QuantumCircuit 

 

 

class Interference: 

    @classmethod 

    def run(cls): 

        # Use Aer's qasm_simulator 

        simulator = Aer.get_backend('qasm_simulator') 

        # Create a Quantum Circuit acting on the q register 

        circuit = QuantumCircuit(1, 1) 

        # Add a H gate on qubit 0 

        circuit.h(0) 

        # Add another H gate to qubit 0 

        circuit.h(0) 

        # Map the quantum measurement to the classical bits 

        circuit.measure(0, 0) 

        # Execute the circuit on the qasm simulator 

        job = execute(circuit, simulator, shots=1000) 

        # Grab results from the job 

        result = job.result() 

        # Returns counts 

        counts = result.get_counts(circuit) 

        print("\nTotal count for 0 and 1 are:", counts) 

        print(circuit)  

Figure 5-6 Code for the run()Method of the Phase Kickback Experiment. 

 Results 

 

 

Figure 5-7 Results for Phase Kickback. 

Indeed, we see that the only state measured is the |0⟩ state. 

This concludes the chapter. It is worth noting that for all these simple experiments we 

used the simulator in order to observe the behavior of an errorless system without further 

complications. 
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We have explored a plethora of different concepts in quantum computing and 

familiarized ourselves with some of the bizarre and unconventional attributes of quantum 

computation. As a comprehension exercise, we have implemented a quantum minigame, 

which showcases some of the basic quantum concepts we have learnt. 

The game is played like a two-player card game. 

 In this case, the cards are quantum gates and our playing field is two qubits, on which 

our cards operate. 

 The goal of the game is to apply the quantum gates on your possession in the 

correct order to manage to transcend your qubit from the ground state of |0⟩ to the excited 

state of |1⟩ before a certain number of turns. 
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After that, a round is completed, and points are awarded to both players 

accordingly. Once the number of rounds finished, the player that was “excited” for the 

most rounds, wins.  

Hence the name of the game. 

 

The rules are very simple. 

1. Finite limit of rounds and the player with the most winning rounds is the winner. 

2. For each round, there is a countdown where the player is given the choice to draw 

the card from the deck and place it on their hand or they can choose to ignore the 

draw and stay with their current hand. 

3. Once the countdown is finished, is player is required to place their cards in the 

order they want them to be applied on their qubit. 

4. The playing field is evaluated and the player who possesses an excited qubit is 

awarded a point. 

5. The hands and playing field are reset for each round. 

 

 

In the current version of the Exciting Game, there are four different available cards. 

• THE HADAMARD GATE. At this point, we are familiar with the Hadamard 

Gate. The player can use it to insert a randomness effect if they wish to test their 

luck or come up with tricks using quantum interference. 

• THE X GATE. The X gate is a very powerful card in the Exciting Game because 

it can effectively win a round by flipping a qubit from |0⟩ to |1⟩. 

• THE CX GATE. The CX gate provides a sabotage element to the game. It can 

flip the qubit of the enemy player. 

• THE RX GATE. The RX gate has a similar effect to the Hadamard gate with a 

few key differences. It only acts on the X-axis and applying it twice in a row will 

result in a qubit state flip instead of negating the effect. For the purposes of the 

game, it can be thought of as a “half” X gate. It is up to the players to discover all 

of its usages. 
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Below we provide some examples of winning hands in order to get a better grasp of the 

game. 

Example 1 

 

Figure 6-1 The Exciting Game Example 1. 

In  Figure 6-1 we can easily see how we get to the excited state. Applying the X 

gate for the first time flips the qubit from the |0⟩ state to the |1⟩ state. Applying the second 

X gate will lead to another state flip which will lead to the |0⟩ once again. With the third 

application of the X gate, we end up with the |1⟩ state which is a winning hand.  

 

 

Example 2 

 

Figure 6-2 The Exciting Game Example 2. 

Figure 6-2 showcases a scenario where we can take advantage of interference in 

order to achieve a winning hand. By putting the two Hadamard gates one after the other 

we negate their effect and thus keeping intact the initial state of |0⟩. With the application 

of a single X gate, we once again reach a winning position. 
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Example 3 

 

Figure 6-3 The Exciting Game Example 3. 

In Figure 6-3, we have the same gates as in example 2. However, notice how the 

final state is |0⟩ this time. By applying the X gate in the middle of the two Hadamard 

gates, due to the phase kickback effect, the X gate effect on the qubit is destroyed and we 

are left with the |0⟩ state. 

 

 

 

Example 4 

 

Figure 6-4 The Exciting Game Example 4. 

Building on the same logic from Figure 6-3, we can easily see why we reach the 

|1⟩ state in this example. With the first application of the X gate, we reach the |1⟩ state. 

Then, by surrounding the second X gate with two Hadamard gates we add nothing new 

to the |1⟩ state, hence we measure the exciting state.  
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Example 5 

 

Figure 6-5 The Exciting Game Example 5. 

In Figure 6-5, we showcase the simplest winning position possible with two RX 

gates. With the first application of the RX gate, the qubit is rotated by π/2 in the X-axis 

and has an equal probability of measuring |0⟩ or |1⟩. However, with the second 

application, the qubit is rotated another π/2 in the X-axis hence formulating the absolute 

|1⟩ state. 

 

 

 

Example 6 

 

Figure 6-6 The Exciting Game Example 6. 

The RX gate is also subjectable to the phase kickback effect. In Figure 6-6, the 

first three gates effectively do nothing on the state of the qubits, and then by simply 

appending an X gate, we achieve the exciting state. 
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Example 7 

 

Figure 6-7 The Exciting Game Example 7. 

Following the logic from Figure 6-4, we can see that with the first two applications 

of the RX Gate the qubit will be in the |1⟩ state. With the application of the third and 

fourth RX Gate, the qubit will once again reach the |0⟩ state. Hence, by finally appending 

the X gate we reach the desired state. 

 

 

Example 8 

 

Figure 6-8 The Exciting Game Example 8. 

By this point, it should be no surprise that in each round it is not always possible 

to achieve the excited state. This is an example of a hand where despite having an X gate, 

the Hadamard gate causes the qubit to behave with uncertainty. There is an element of 

luck in this case. 
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Example 9 

 

Figure 6-9 The Exciting Game Example 9. 

The CX Gate is what makes the game interesting. We can see that in this scenario, 

player 1 applies an X gate hence putting their qubit to the |1⟩ gate. As we know the CX 

gate is a Controlled Not gate so when player one applies a CX gate they will manage to 

flip the starting state of the player-two qubit. Now player 2’s evaluation starts with the 

|1⟩ state as the initial state. Hence, when player 2 applies their X gate they are now to the 

|0⟩ state. Then with two Hadamard gates, nothing is achieved and player 2 ends up losing 

the round. We can also consider the scenario where player two had a CX gate in their 

possession. The best play for player 2 would be to insert their CX gate as their first card 

to flip the state of player 1 so that neither of them wins the round. 

 

There are is a wide range of different combinations and outcomes that each round 

can follow with just four different gates. We have just shown a few. We have found a few 

good practices in terms of strategy. 
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Through experimentation, or by simply playing the game, one can notice there are a few 

good practices when playing the Exciting Game. 

Below we list a few strategies and a brief reasoning behind each strategy. 

1. Drawing a card is not always a good idea. 

In a surprising number of games, we have found that more often than not, you can 

construct a winning hand before all cards are dealt for the current round. You need to 

careful in order to realize that you possess a hand capable of winning even if you have 

two or three cards. 

 

2. Phase kickback is your friend. 

Even when a hand seems unpromising, there is almost always a way to destroy 

our less useful cards by using phase kickback. Consider a hand where the cards are 

Hadamard, Hadamard, X, X. At first glance, this is not a good hand since we have an 

even number of X gates. However, if we take advantage of phase kickback, we can 

put the one X gate in-between the two Hadamard gates and destroys its effect leaving 

us with effectively one X gate which is enough to make our qubit excited. You should 

always look for a possible phase kickback combo.  

 

3. When all else fails, sabotage your opponent. 

This might seem obvious but even if you can't reach the exciting state, you might 

still be able to sabotage your opponent by applying a CX gate at a point when your 

qubit is for sure excited. 
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This is the driver program for the game. All is done in a while-loop until the number of 

rounds finishes. 

Below we list some of the most useful methods implemented. 

 
@classmethod 

def run(cls, circuit: QuantumCircuit): 

    # use local simulator 

    backend = BasicAer.get_backend('qasm_simulator') 

    results = execute(circuit, backend=backend, shots=1024).result() 

    answer = results.get_counts() 

    max_value = 0 

    max_key = "" 

    for key, value in answer.items(): 

        if value > max_value: 

            max_value = value 

            max_key = key 

    print(answer) 

    if max_key == "00": 

        print("Both players stay grounded :(") 

        return 0 

    elif max_key == "01": 

        print("Player 1 is excited!") 

        return 1 

    elif max_key == "10": 

        print("Player 2 is excited!") 

        return 2 

    elif max_key == "11": 

        print("Both players are excited!") 

        return 3 

    return  

Figure 6-10 Code for the run() Method of The Exciting Game. 

 

Method Definition – run(circuit): 

The purpose of this method is to declare the winner after the end of each round. 

Input: The circuit containing the two players’ qubits along with their placed gates. 

Output: A number between 0 and 3 indicating the four different outcomes. 

Data Structures Used: In order to find the outcome, we need to traverse through the 

dictionary of measurements and find the state measurement with the most counts. 
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@classmethod 

def place_gate(cls, player, field, qubit): 

    card = player.pop() 

    print(f"now inserting card {card} from player {qubit + 1}") 

    if card == "H": 

        field.h(qubit) 

    elif card == "X": 

        field.x(qubit) 

    elif card == "RX": 

        field.rx(np.pi / 2, qubit) 

    elif card == "CX": 

        if qubit == 0: 

            field.cx(qubit, qubit + 1) 

        else: 

            field.cx(qubit, qubit - 1) 

    return  

Figure 6-11 Code for place_gate() Method of The Exciting Game. 

Method Definition – place_gate(player, field, qubit): 

The purpose of this method is to place the player’s gates onto the qubit in the correct 

order. 

Input: The player’s hand, the circuit containing the two players’ qubits, the qubit of the 

current player. 

Output: A modified field circuit. 

Data Structures Used: In order to place the gates to the player’s qubit we pop the items 

in the player list one by one and according to the card’s name we append the 

corresponding quantum gate to the designated qubit of the field circuit, given by the 

qubit parameter. One thing to note is the way of assigning the CX gate. If are dealing 

with player one then that means that we want the CX gate to be placed with qubit 0 as the 

control qubit and qubit 1 as the target qubit and vice-versa. 
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@classmethod 

def fix_hand(cls, player: list) -> list: 

    new_hand = [] 

    print("Your current hand is setup like this:") 

    print(player) 

    i = 0 

    while len(player) > 0: 

        replacement_choice = input(f"Choose one of your cards to be on posi-

tion {i} :") 

        while replacement_choice not in player: 

            replacement_choice = input(f"Choose one of your cards to be on 

position {i} :") 

        new_hand.insert(len(new_hand), replacement_choice) 

        player.remove(replacement_choice) 

        print("Cards remaining in previous hands") 

        print(player) 

        i = i + 1  

Figure 6-12 Code for the fix_hand() Method of The Exciting Game. 

 

Method Definition –fix_hand(player): 

The purpose of this method is to sort the player’s gates according to their liking. 

Input: The player’s hand. 

Output: The new, modified, hand of the player, as designated by the player’s choices. 

Data Structures Used: We display the current hand of the player. Then, in a while-loop 

we make the player choose the next card they want in their ordered final submission for 

the round. We do this by removing each of the valid choices of the player until their hand 

is exhausted and we have constructed a new list containing the previous cards of the 

player but in the order that they would like them to be executed on their qubit. 

 

This concludes the implementation of the Exciting Game. The whole code for this project 

can be found in the appendix under the Exciting Game section. 
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One of the first Quantum algorithms with a substantial speedup over its classical 

counterpart [5]. This is an algorithm that exploits the ability of a quantum system to 

support a huge state space in order to calculate the outcome faster than a conventional 

processor. For the problem this algorithm tackles, let f be a function that accepts as input 

either one or zero and outputs either one or zero. This is what we will call a Boolean 

function.  

 

Deutsch – Jozsa’s task is to determine, given a function f, if it is given a Balanced 

Boolean function or a Constant Boolean function. Consider now the two Boolean types 

of functions: Balanced and Constant. A balanced function is a function where for all 

possible inputs, the outcome is zero for exactly half the possible inputs and one for the 

exact remaining half. A constant function is labelled as such when, regardless of input, 

its outputs are either only zero or only one. 

 

Figure 7-1 Constant-Balanced Function Definition. 
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Let’s go through a scenario for a one-bit input for a classical environment. 

  We want to determine if a one-bit function f is balanced or constant given the fact 

that it can only be either balanced or constant and nothing else. We have two possible 

inputs. Zero and one. We will simply then query the function twice and after accumulating 

the results we will determine by aggregating the results if the function is balanced. In 

simpler words by receiving from the output a single zero and a single one or if the function 

is balanced by receiving two ones or two zeroes. 

 

 

Figure 7-2 Deutsch-Jozsa Classical Approach Abstract Form. 

 

Classical Deutsch-Jozsa Structure 

Input: Sequences of bit-strings. 

Processing: Based on the oracle function, map each input to an output bit 

Output: ‘Balanced’ if outputted both zero and one or ‘Constant’ if outputted only zero 

or only one. 

 

 

 

 

 

 



56 

 

 

Below we provide the code for both the aggregation-oracle function and the driver 

function that calls the algorithm. 

 

Class ClassicalXor: 

This class contains three methods and imports DateTime for time measurement and the 

BitCombinations Class that contains helper methods for generating the worst-case 

scenario. 

Method Definition - _super_secret_black_box_function_f(list_of_inputs): 

This function is responsible for executing the full classical version of Deutsch-

Jozsa. We provide a list of binary strings and then check all of them. Once we find both 

a one and a zero, we can say that it is a balanced function and if not, it is a constant. We 

assume that we are given either a balanced or constant function. 

Input: An arbitrary sequence of bit strings. 

Output: ‘Balanced’ or ‘Boolean’. 

Data Structures Used: The output_bit, which is used as a medium for executing 

multiple xor operations for each input. The output_zero and output_one variables 

are used as Boolean flags which are responsible for keeping track of what kind of values 

the output bit gets after each element. The counts variable keeps track of the amount of 

checks. The method is implemented by taking a list and then with a loop iterate over each 

element of the list. In an encapsulated loop, we take each element and execute a xor 

operation to the output bit with all bits of the element. We then check the output_bit 

value and change the value of the flags accordingly. We then reset it to zero and proceed 

with the conditional statements before continuing with the next iteration. The first 

conditional statement checks if both flags are set which means we have managed to find 

both possible values of the output bit hence we terminate and return a ‘Balanced’ answer. 

The second conditional statement checks if we have reached 2𝑛−1 + 1 inputs checked. If 

that is the case that means we still haven’t managed to set both flags, hence our function 

is Constant. 
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from datetime import datetime 

 

from QCLG_lvl3.classical.BitCombinations import BitCombinations 

 

 

class ClassicalXor: 

 

    @classmethod 

    def _super_secret_black_box_function_f(cls, list_of_inputs: list) -> str: 

        output_bit = 0 

        output_zero = False 

        output_one = False 

        counts = 0 

        for input_bits in list_of_inputs: 

            for bit in input_bits: 

                output_bit = output_bit ^ int(bit) 

 

            if output_bit == 1: 

                output_one = True 

            else: 

                output_zero = True 

            counts = counts + 1 

            output_bit = 0 

            if output_one and output_zero: 

                return f'Balanced After {counts} checks.' 

            if counts > (len(list_of_inputs) / 2): 

                return f'Constant After {counts} checks.' 

        return f'After {counts} checks.'  

Figure 7-3 Code for Constructing the Classical Oracle for Deutsch-Jozsa. 

 

Method Definition - execute_classical_xor(bits): 

Input: Number of bits 

Output: The nature of the function, ‘Balanced’ or ‘Boolean’, and the time it took for 

aggregating all inputs. 

Data Structures Used: The bits parameter is an integer value that determines the length 

of the inputs that are going to be fed to the 

super_secret_black_box_function_f. We must first generate a list that 

contains all possible bit combinations. For this experiment, we have opted to always 

generate the worst-case scenario of inputs. 

Aggregation of all 

inputs 

Application of 

the ‘oracle 

function to each 

input’ 
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We then declare two timestamps using the DateTime class for measuring the time it 

took for the input list to be generated and another two timestamps that measure the time 

it took our black box function evaluation to be finished.  We then return in a list that 

contains two strings, one with the output of the black box function evaluator method we 

discussed above and one with the execution times. 

@classmethod 

def execute_classical_xor(cls, bits) -> list: 

    start = datetime.now() 

    inputs = BitCombinations.produce_worse_scenario(BitCombinations.combina-

tions(bits)) 

    end = datetime.now() 

    elapsed = end - start 

    time_to_generate_worst_input = elapsed.total_seconds() 

    start = datetime.now() 

    function_nature = cls._super_secret_black_box_function_f(inputs) 

    end = datetime.now() 

    elapsed = end - start 

    time_str = elapsed.total_seconds() 

    final = [time_to_generate_worst_input, time_str, bits, function_nature] 

    return final  

Figure 7-4 Code for Executing the Classical Solution of Deutsch-Jozsa. 

By increasing the number of input bits to n we can see that the number of possible 

inputs increases exponentially and thus the number of queries to the function f. The reason 

we chose to pass as input the worst-case scenario every time is that several possible 

scenarios could occur and drastically change the performance of our classical solution.  

For example, if chose to randomly generate n-bit sequences, we could query the function 

f for the first time with our first input and get the answer one and then query it for the 

second time and get the answer zero. Given the fact we can only expect a balanced or 

constant function, we immediately know that by receiving both possible inputs, the 

function cannot be constant, hence it is balanced. These scenarios are mainly affected by 

the nature of the function -the way it reacts to each input- and by the way, the input is fed 

to the function. The latter can greatly increase or decrease the number of queries it takes 

to identify the function. Since the quantum systems that were available to us were not 

very powerful, we decided to always use the worst-case scenario in order to pursue a 

meaningful comparison. 
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Let’s say lay down the absolute worst scenario for verifying that a function is 

balanced. After an arbitrary way of feeding inputs to our function f we manage to force 

our function to output all its ones at once and all its zeroes, if there are any after the ones 

have finished.  

 

 

 

 

 

 

Figure 7-5 Worst-Case Scenario for Classical Deutsch-Jozsa. 

It is easy to see that to verify the function is either constant or balanced we will 

have to query 2𝑛−1 +  1   times in the worst case in order to verify that the function is 

balanced or constant, in this case balanced. 

Below we showcase three helper functions, the main function that generates all 

possible combinations and the function that groups the output of the main function in a 

way that simulates the worst-case scenario in the BitCombinations Class. 

class BitCombinations: 

 

    @classmethod 

    def split(cls, word: str) -> list: 

        return [char for char in word] 

 

    @classmethod 

    def get_child(cls, parent: list) -> list: 

        return parent.pop() 

 

    @classmethod 

    def count_ones(cls, binary_list: list) -> int: 

        count = 0 

        for bit in binary_list: 

            if bit == "1": 

                count = count + 1 

        return count  

Figure 7-6 Helper Methods for Constructing the Worst-Case Scenario. 

Inputs 0..1 1…0 0..0    …       … 01..1   0 

Outputs 1 1 1  1 … 1 1 0 0 0 0 … 0 0 0 0 0 

2𝑛−1 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 

n-bit input 
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Method Definition - split(word): For translating a binary string into a list of ‘0’ and ‘1’.  

Input: String containing zeroes and ones. 

Output: List containing zeroes and ones as characters. 

Data Structures Used: The input parameter is a string word and the method returns a list 

representation of the string that contains all the characters of the string. We do that by 

iterating over each character of the list and by encapsulating that in square brackets we 

return a list of those characters. 

Method Definition - get_child(parent):  

Input: A list containing lists of binary strings 

Output: The last element of the list. 

Data Structures Used: This method takes a list by reference and pops and returns the 

last element of the list. The reason for this small method is to make the main method more 

readable and abstract. 

Method Definition - count_ones(binary list): This function is used to count the number 

of ones contained in a current list. It is helpful when we want to check if we can add any 

more zeroes in the next iteration. 

Input: A list containing ones and zeroes 

Output: The number of ones. 

Data Structures Used: The parameter is a list containing characters that are ‘0’ or ‘1’. 

We initialize a count variable and we iterate through each character and increment 

whenever we find a ‘1’ and return count. 

Given a number of bits n, we want a method that will find all the possible 

combinations of n-bit numbers with k-bits set to one where   0 <= k <= n. The solution 

should print all numbers with one set bit first, followed by numbers with two bits set, etc, 

up to the numbers whose all n-bits are set to one. The only cases where we manually add 

lists if for the all-zero and all one lists, which are added first and last. The number k 

symbolizes how many ‘1’ we will have in each iteration. 
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Tree Diagram for 4-bit combinations.  

 

Figure 7-7 All different Combinations for 4 bits. 
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def combinations(bits: int) -> list: 

    final_layer = [] 

    for n_bits in range(1, bits): 

        parent = [] 

        for layer in range(bits - 1): 

            new_layer = [] 

            if layer == 0: 

                parent = [] 

                b0 = ["0"] 

                b1 = ["1"] 

                parent.append(b0) 

                parent.append(b1) 

            while len(parent) > 0: 

                child = get_child(parent) 

                new_child1 = ["1"] 

                new_child0 = ["0"] 

                remaining_ones_for_child = n_bits - count_ones(child) 

                remaining_length = bits - len(child) 

                if remaining_ones_for_child == remaining_length: 

                    new_child1.extend(child) 

                    new_layer.append(new_child1) 

                elif 0 < remaining_ones_for_child < remaining_length: 

                    new_child1.extend(child) 

                    new_layer.append(new_child1) 

                    new_child0.extend(child) 

                    new_layer.append(new_child0) 

                elif remaining_ones_for_child == 0: 

                    new_child0.extend(child) 

                    new_layer.append(new_child0) 

            parent = new_layer 

        final_layer.append(parent) 

    result = [] 

    all_zeros = [[split("0" * bits)]] 

    all_ones = [[split("1" * bits)]] 

    result.extend(all_zeros) 

    result.extend(final_layer) 

    result.extend(all_ones) 

    return result  

Figure 7-8 Code for Generating n-bit Combinations. 

Method Definition - Combinations(bits): This method is responsible to generate all bit 

combinations and return a list containing all of them. 

Input: The number of bits n to determine the length of the n-bit combinations 

Output: A list that contains all possible combinations with a number of ‘1’ ranging from 

zero to n 
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Data Structures Used: We used an iterative approach to tackle this problem. We 

initialize an empty list, final_layer, which in the end will contain all 2𝑛 

combinations. We then start a loop that will iterate all K parent lists. In each of this loop’s 

iteration, we want to finish producing all the combinations with K bits set to ‘1’. In the 

code, K is named n_bits. The loop is started with K equal to one and ends with K equal 

to n-1. 

 Now, to complete each parent, we initialize an empty list and start to fill each 

layer. The number of layers needed to complete a parent is always equal to n. For layer 

zero, which is the first layer, we initialize our ‘tree’ by appending the two possible 

elements, ‘0’ and ‘1’ to the parent list. 

Now for each layer, using a while loop we take each child of the parent and count 

how many ones, we are allowed to still add to that child according to our current K. We 

do that by using the variable remaining_ones_for_child, which calculates the 

remaining ones by subtracting the current amount of ones that the child list contains using 

the count_ones() method we described previously and subtracting that from the 

n_bits. We then calculate the remaining length of the child list by subtracting the 

current length of the child from the number of bits n. We are now left with two options. 

Either append ‘1’ or ‘0’ to the beginning of the list. The way we do that and prepare the 

child for the next layer is by creating two lists at the beginning of the while loop, one 

starting with ‘1’ and one starting with ‘0’, named new_child1 and new_child0.  We 

then extend to those newly created lists with the child of the previous layer and append 

the new child to the new layer thus slowly creating the next layer. We have the option of 

appending the old child list to the new_child1 or the new_child0 or both, to 

determine to which new children the old child list will be appended and continue its 

evolution to the new layer, a child must fulfil some properties which we lay down in 

conditional statements. If the child’s remaining ones that need to be added are equal to 

the number of bits that this child is allowed, then we can only add ones to this child and 

not zeroes. All these scenarios are shown in Figure 7-7. If the first conditional statement 

is not true, we check if the remaining ones for the child are more than zero and less than 

the remaining length that the current child can take. In this case, we can create two new 

children from the previous child, and we do this by extending both new_child0 and 

new_child1 with the previous child and appending them both to the next layer. 
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Lastly, for the conditions, if the remaining ones are neither equal to the number of 

bits the child is allowed nor more than zero, we are only allowed to extend the 

new_child0 list, which means appending a new child that contains an additional zero 

to the front.  

Once we have done this for all children of the current parent list, we and emptied 

it, we are left with the new_layer list that contains all possible sequences with one 

more bit than the previous layer. We assign that new layer as our new parent list and 

continue until we have reached the final layer iteration and the last parent list pretty much 

contains all possible combinations and we assign it to the final_layer list. 

We then create a new list result and manually append all the combinations with 

zero ones in the sequence, which is only one combination, then all the other combinations 

we have generated, and then all the combinations with n ones in the sequence which is 

again only one combination. So, to summarize, the result list which will be returned is a 

list that contains lists. Each list element result contains, has all combinations of k-bits set 

to one. 

This is depicted nicely in Figure 7-9 for four bits. 

 

Figure 7-9 The n-bit Combinations Grouped by Number of Ones. 

Now we need to re-sort the result list to have its first 2𝑛−1 elements grouped by what they 

would make the black box function output. In the case of the xor operation, having an odd 

number of bits will output one, and having an even will output zero. 

 

With that in mind, we simply must choose all k-one combinations that are either 

of an odd or even sum of ones, for our experiment to put odd sums first and group them 
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together and only then append the even groups. Looking back to Figure 7-5 we can see 

that we have successfully simulated the worst possible scenario for the classical computer, 

which is feeding our algorithm all inputs that make the balanced function output one. 

Only then supply it with an input that will provide zero to the output, thus confirming a 

balanced Boolean function. We do this with the help of the 

produce_worse_scenario method: 

@classmethod 

def produce_worse_scenario(cls, combos: list) -> list: 

    worse_input_list = [] 

    even = [] 

    odd = [] 

    for i in range(len(combos)): 

        if i % 2 == 1:  # list with even amount of zeroes and ones 

            even.extend(combos[i]) 

        else: 

            odd.extend(combos[i]) 

    worse_input_list.extend(even) 

    worse_input_list.extend(odd) 

    return worse_input_list  

Figure 7-10 Code for Rearranging the bit Combinations to Construct Worst Scenario. 

Method definition - produce_worse_scenario(combos): Take the list that contains all 

lists of lists of ones and zeroes and group them into odd and even groups. Then append 

all odd groups to one list and the even group afterwards to produces a list containing all 

the combinations of uneven amounts of ones and zeroes and combinations of ones and 

zeroes with the same number of ones and zeroes in a row following. 

Input: A list containing lists, where each corresponding list contains all combinations for 

1 to n-1 ones. 

Output: A sorted list that groups even and uneven numbers of ones and zeroes. 

Data Structures Used: The combos parameter is the result list from the 

BitCombinations method. We initialize an empty list worse_input_list and 

in a loop, we check to see if the current i modulo 2 is odd. We do that because we know 

how the structure of the combos list is. We know that for four bits for example when i is 

equal to zero, the list contains all the combinations with zero ones which when given to 

the black box function will be balanced. For i equal to one we have an odd number of 

ones,1, for i equal to two we have two ones, etc. This is an easy way to group our lists. 
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Below we can see the worst possible input for four bits. 

 

 

 

 

 

 

 

 

 

 

Figure 7-11 Output of Worst Scenario for 4 bits. 

 Results for Worst-case scenario 

After applying the worst-case scenario, we always need to check for 2𝑛−1 + 1 times. 

12 𝑏𝑖𝑡𝑠 =  212 = 4,096 𝑎𝑛𝑑 𝑓𝑜𝑟 2𝑛−1 + 1 checks we have 211

+ 1 which is 2049 checks.  

 

Figure 7-12 Execution Times for Classical Solution for 12 bits. 
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23 𝑏𝑖𝑡𝑠 =  223 = 8,388,608 𝑎𝑛𝑑 we have 222 + 1 which is 4,194,305 checks. 

 

Figure 7-13 Execution times for Classical Solution for 23 bits. 

 

24 𝑏𝑖𝑡𝑠 = 2 ∗  223 = 16,777,216 𝑎𝑛𝑑 we have 223 + 1 which is 8,388,609 𝑐ℎ𝑒𝑐𝑘𝑠. 

 

Figure 7-14 Execution Times for Classical Solution for 24 bits. 

 

We can see that for each additional bit added the calculation time is exponentially 

increased. For just 32 bits it would take approximately 7 hours to calculate the worst-case 

scenario and approximately 2 hours to come to a solution. 
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We have set up a problem that is exponentially more complex. With the Deutsch – 

Jozsa algorithm we can devise a scheme for calculating all the possible outcomes in 

polynomial time instead of exponential using the quantum parallelism concept. Now we 

will work on an example of n = 2 qubits. Hadamard gates are used to prepare a 

superposition of all four possible states, 22. We also need to implement the function f, or 

oracle function as it is called, in some way. When Deutsch – Jozsa is explained, the oracle 

function is often interpreted as a black box function that uses quantum parallelism to 

compute all values of f(x), x being one of the four possible configurations in our example. 

 

  

 

Another concept that makes Deutsch -Jozsa work, is interference, which is 

achieved with the help of Hadamard gates once again. After applying them for a second 

time to the values that the oracle function outputted the measurement will be zero for all 

constant functions and one for balanced functions. 

In our experiment, we made use of the oracle function implemented with CNOT 

gates, which are the quantum equivalent of the traditional XOR gate. 

  

  

 

 

 

 

Table 1 XOR and CNOT Truth Tables. 

 

XOR Truth table 

00 0 

01 1 

10 1 

11 0 

CNOT Truth table 

00 0 

01 1 

10 1 

11 0 
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If we were to descript an abstract form of the algorithm it would comprise four major 

steps. 

Step 1: Prepare the superposition of the qubits. 

Step 2: The oracle function f. 

Step 3: Interference. 

Step 4: Measurements. 

 

 

 

 

 

 

Figure 7-15 Deutsch Jozsa Structure. 

 

This is the general form of the Deutsch-Jozsa for n qubits. For n qubits, we prepare 

a superpositioned state of 2𝑛+1 different states because of the addition of the output qubit. 

This state is passed into the oracle function and all possible states are evaluated in 

polynomial time. We then proceed with the decoupling of this quantum state by taking 

advantage of Hadamard being its inverse and phase kickback. 

 

 

 

 

 



70 

 

 

Using Dirac notation as a tool we can prove that in an errorless system we can 

expect to get a consistent output for both types of functions. For this worked example, we 

have two-qubit input and must show that for a balanced function the output bits measure 

one and for a constant, zero. It is worth noting that the output qubit is not measured in the 

final step since we can effectively and reliably determine the function while only 

measuring the input qubits. 

 

 

 

 

 

 

 

Figure 7-16 Worked Example. 

 

 

 

 

Step 1: 

Initialise 

qubits and 

prepare 

Superposition. 

Step 2: Apply 

the CX gate with 

each input qubit 

as the control 

qubit and the 

target being the 

output qubit. 

Step 3: 

Create 

interference 

on the input 

qubits 

Step 4: 

Measure 

the input 

qubits. 
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 Step 1 – Initialization 

We initialize two-qubit registers. One contains 2 qubits, q0, and q1, and is 

initialized to the |0> state and the other one contains one qubit, q2, which is initialized to 

the |1> state. 

|𝜓0⟩ = |0001⟩ ∗ |12⟩ 

 We then create a superposition of the three qubits in the following manner: 

|𝜓1⟩ =  
1

√2
(|00⟩ + |10⟩) ∗  

1

√2
(|01⟩ + |11⟩) ∗  

1

√2
(|02⟩ − |12⟩) 

 

Using the distributive property: 

|𝜓1⟩ =  
1

2
(|0001⟩ + |0011⟩ + |1001⟩ + |1011⟩) ∗

1

√2
(|02⟩ − |12⟩) 

 

|𝜓1⟩ =  
1

2√2
(|000102⟩ + |001102⟩ + |100102⟩ + |101102⟩−|000112⟩ − |001112⟩ −

|100112⟩ − |101112⟩)  

 

 

 Step 2 - Oracle 

We have created a superposition of all possible states and we now pass this 

‘variable’ into our function. Our function, which is essentially two C-NOT gates with the 

input qubits as the control qubits and the output qubit as the target qubit, maps the state 

|𝑥⟩|𝑦⟩ to the state |𝑥⟩|𝑦 ⊕ 𝑓(𝑥)⟩. In order to understand this mapping let’s consider the 

C-NOT gate’s properties. It does not alter the control qubit’s state. Hence |𝑥⟩ is outputted 

as itself. Control qubits q0 and q1 follow the |𝑥⟩ mapping. However, the |𝑦⟩ qubit of the 

function, in our case the output-target qubit q2 will have its value XORed with the 

outcome of the next CNOT operation on itself. So, for our case, qubits zero and one will 

remain the same, but qubit two will be transformed according to our oracle’s 

implementation in a manner the following manner: 
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From |𝜓1⟩ in Step 1, after passing through the oracle function, the system will be in this 

state: 

|𝜓2⟩ =  
1

2√2
(|0001 ((02⊕𝑓(00)) ⊕ 𝑓(01))

2
⟩ + |0011 ((02⊕𝑓(00)) ⊕ 𝑓(11))

2
⟩ +

|1001 ((02⊕𝑓(10)) ⊕ 𝑓(01))
2
⟩ + |1011 ((02⊕𝑓(10))⊕

𝑓(11))
2
⟩− |0001 ((12⊕𝑓(00))⊕ 𝑓(01))

2
⟩ − |0011 ((12⊕𝑓(00)) ⊕ 𝑓(11))

2
⟩ −

|1001 ((12⊕𝑓(10)) ⊕ 𝑓(01))
2
⟩ − |1011 ((12⊕𝑓(10))⊕ 𝑓(11))

2
⟩)  

 

 

As we know, 𝑥 ⊕ 0 = 𝑥 and 𝑥 ⊕ 1 = 𝑥 so |𝜓2⟩ is simplified to: 

|𝜓2⟩ =
1

2√2
(|0001(𝑓(00) ⊕ (01))2

⟩ + |0011(𝑓(00) ⊕ 𝑓(11))2⟩ + |1001(𝑓
(10) ⊕

𝑓(01))2⟩ + |1011(𝑓
(10) ⊕ 𝑓(11))2⟩− |0001 (𝑓

(00) ⊕ 𝑓(01))
2
⟩ − |0011 (𝑓(00) ⊕

𝑓(11))
2
⟩ − |1001 (𝑓(10) ⊕ 𝑓(01))

2
⟩ − |1011 (𝑓(10) ⊕ 𝑓(11))

2
⟩)   

 

Before we proceed to Step 3, we need to consider the nature of our function. As 

discussed above, we can summarize by saying that a constant function is where 𝑓(0) =

𝑓(1) and a balanced function is where 𝑓(0) = 𝑓(1) 

If Constant: 

|𝜓2⟩
⇒  |𝜓𝐶⟩ =

1

2√2
(|0001(𝑓(0) ⊕ 𝑓(0))

2
⟩ + |0011(𝑓(0) ⊕ 𝑓(0))

2
⟩ + |1001(𝑓(0) ⊕

𝑓(0))
2
⟩ + |1011(𝑓(0)⊕ 𝑓(0))

2
⟩− |0001 (𝑓(0) ⊕ 𝑓(0))

2
⟩ − |0011 (𝑓(0)⊕

𝑓(0))
2
⟩ − |1001 (𝑓(0)⊕ 𝑓(01))

2
⟩ − |1011 (𝑓(0) ⊕ 𝑓(0))

2
⟩)  
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After factoring: 

|𝜓𝐶⟩ =
1

2√2
(|0001⟩ + |0011⟩ + |1001⟩ + |1011⟩) ∗ ((𝑓(0)⊕ 𝑓(0))

2
− (𝑓(0)⊕

𝑓(0))
2
)  

Simplifying the contents of qubit zero by replacing 𝑓(𝑥) ⊕ 𝑓(𝑥) with zero and 𝑓(𝑥)⊕

𝑓(𝑥) with one. 

|𝜓𝐶⟩ =  
1

√2
(|00⟩ + |10⟩) ∗  

1

√2
(|01⟩ + |11⟩) ∗

1

√2
(|02⟩ − |12⟩) 

 

If Balanced: 

|𝜓2⟩
⇒  |𝜓𝐵⟩ =

1

2√2
(|0001(𝑓(0) ⊕ 𝑓(0))

2
⟩ + |0011 (𝑓(0)⊕ 𝑓(0))

2
⟩ + |1001 (𝑓(0)⊕

𝑓(0))
2
⟩ + |1011 (𝑓(0)⊕ 𝑓(0))

2
⟩− |0001 (𝑓(0) ⊕ 𝑓(0))

2
⟩ − |0011 (𝑓(0)⊕

𝑓(0))
2
⟩ − |1001(𝑓(0) ⊕ 𝑓(0))

2
⟩ − |1011 (𝑓(0)⊕ 𝑓(0))

2
⟩)  

 

Simplifying the contents of qubit zero by replacing 𝑓(𝑥) ⊕ 𝑓(𝑥) with zero and 𝑓(𝑥)⊕

𝑓(𝑥) with one. 

|𝜓𝐵⟩ =
1

2√2
(|00010)2⟩ + |001112⟩ + |100112⟩ + |101102⟩−|000112⟩ − |001102⟩ −

|100102⟩ − |101112⟩)  

 

After factoring: 

|𝜓𝐵⟩ =
1

2√2
(|0001⟩ − |0011⟩ − |1001⟩ + |1011⟩) ∗ (|0⟩ − |1⟩2)  

 

|𝜓𝐵⟩ =  
1

√2
(|00⟩ − |10⟩) ∗  

1

√2
(|01⟩ − |11⟩) ∗

1

√2
(|0⟩ − |1⟩2)  
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 Step 3 - Interference 

Interference is the process of applying a Hadamard gate to each input qubit. 

If Constant: 

|𝜓𝑐⟩
⇒  |𝜓𝐶𝐼⟩ = 

1

√2
(|00⟩ + |10⟩)

𝐻 ∗  
1

√2
(|00⟩ + |10⟩)

𝐻 ∗
1

√2
(|02⟩ − |12⟩)  

|𝜓𝐶𝐼⟩ = |00⟩ ∗ |01⟩ ∗
1

√2
(|02⟩ − |12⟩) 

If Balanced: 

|𝜓𝐵⟩
⇒  |𝜓𝐵𝐼⟩ = 

1

√2
(|00⟩ − |10⟩)

𝐻 ∗  
1

√2
(|00⟩ − |10⟩)

𝐻 ∗
1

√2
(|02⟩ − |12⟩) 

|𝜓𝐵𝐼⟩ = |10⟩ ∗ |11⟩ ∗
1

√2
(|02⟩ − |12⟩) 

We can see that after interference, the input qubits are in the ground state if the 

function is constant and in the excited state if the function is balanced. The driving force 

between all this trickery is the Hadamard gate, which as we have previously found out, is 

its inverse. Matrix multiplication clears the situation quite easily. 

|𝜓𝐻⟩ = (
1

√2
(|00⟩ − |10⟩)

𝐻  ⟺ |𝜓𝐻⟩ =
1

√2
 [
1 1
1 −1

]
1

√2
[
1
−1
] 

|𝜓𝐻⟩ =
1

2
 [
1 ∗ 1 + 1 ∗ (−1)
1 ∗ 1 + (−1)(−1)

] ⇔ |𝜓𝐻⟩ =
1

2
 [
0
2
] 

|𝜓𝐻⟩ =
1

2
∗ 2 ∗ [

0
1
]   ⇔ |𝜓𝐻⟩ = [

0
1
]  ⇔ 

 |𝜓𝐻⟩ = |1⟩ 

Likewise, if the input qubit is in the state, 

 |𝜓𝐻⟩ = (
1

√2
(|00⟩ + |10⟩)

𝐻  ⇔ |𝜓𝐻⟩ = [
1
0
]  ⇔ 

 |𝜓𝐻⟩ = |0⟩ 
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 Step 4 - Measurements 

We now apply two measurements to qubit zero and qubit one. If the function is 

constant, we expect two zeroes and if the function is balanced, we expect two ones. Since 

we know that f-CNOT is a balanced function we expect to see one from both qubits. 

 

Figure 7-17 Measurement Probabilities for Balanced Function. 

 

From Figure four we see that qubit zero’s value is stored in bit zero in the classical 

bit register and qubit one’s value is stored in bit one. We see that indeed one hundred 

percent of the time the result is that bot input qubits have the value one which indicates 

that the f-CNOT is a balanced function. 

This concludes the logic behind the Deutsch-Jozsa algorithm and why it works. 

We now devise a plan to exploit this algorithm to determine a function’s nature and 

compare it to a classical computer using the mainstream tools available to the modern 

software developer. 
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The code is very straightforward. We have a class called DeutschJosza in which 

we will create our quantum circuit object. 

Method definition – run_deutsch_josza(bit_string, eval_mode): 

 We first initialize a quantum circuit with n+1 qubits since we need to account for 

the output qubit as well and apply the necessary Hadamard gates to achieve a 

superpositioned state going into the oracle function appendment. We then apply 

interference and measure all input qubits. 

Input: A bit sequence, a Boolean value dictating whether or not the algorithm will operate 

on eval_mode, which essentially means not to print any display messages. 

Output: The QuantumCircuit object. 

Data Structures Used: In step one we create an empty QuantumCircuit object 

consisting of n+1 qubits and n bits. We then apply Hadamard gates to all input qubits 

using the h() method of the QuantumCircuit class and in a similar manner append 

an X gate and then a Hadamard gate to the output qubit. 

 In step two we create an oracle which is essentially another QuantumCircuit 

object. We do this with the CnotOracle Class. The create_cnot_oracle() method 

is responsible for returning an oracle of appropriate dimensions that works with CNOT 

gates. 

Method Definition – create_cnot_oracle(input_string, input_length, eval_mode): 

Input: The user-given input string, its length, and the operation mode 

Output: A QuantumCircuit object 

Data Structures Used: We create a QuantumCircuit object of input_length+1 

qubits. The first and third for loops are there to initialize the qubits in a different state but 

in our experiments, we always start with the ground state of all qubits being zero. The 

second loop creates a CNOT operation of each input qubit with the output qubit.  Before 

and after appending the CNOT operations we use two barrier objects. If the method is on 

eval_mode, then the printing messages will not be executed. 
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from qiskit import QuantumCircuit 

 

 

class CnotOracle: 

    @classmethod 

    def create_cnot_oracle(cls, input_string, input_length, eval_mode: bool) 

-> QuantumCircuit: 

        balanced_oracle = QuantumCircuit(input_length + 1) 

        # Place X-gates 

        for qubit in range(len(input_string)): 

            if input_string[qubit] == '1': 

                balanced_oracle.x(qubit) 

 

        # Use barrier as divider 

        balanced_oracle.barrier() 

 

        # Controlled-NOT gates 

        for qubit in range(input_length): 

            balanced_oracle.cx(qubit, input_length) 

 

        balanced_oracle.barrier() 

 

        # Place X-gates 

        for qubit in range(len(input_string)): 

            if input_string[qubit] == '1': 

                balanced_oracle.x(qubit) 

        if not eval_mode: 

            # Show oracle 

            print("This is the oracle function, aka the black box. NORMALLY 

THIS WOULD BE HIDDEN!") 

            print(balanced_oracle) 

        return balanced_oracle  

Figure 7-18 Code for Creating a Balanced Oracle. 

 

Ins step 3 we apply Hadamard gates to all input qubits using a loop and then apply 

an additional barrier before applying measurements from all input qubits to the 

corresponding measurement bits. 
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The DeutschJosza class: 

from qiskit import QuantumCircuit 

 

from oracles.cnot_oracle import CnotOracle 

 

 

class DeutschJosza: 

 

    @classmethod 

    def deutsch_josza(cls, bit_string: str, eval_mode: bool) -> QuantumCir-

cuit: 

        n = len(bit_string) 

 

        dj_circuit = QuantumCircuit(n + 1, n) 

        # Apply H-gates 

        for qubit in range(n): 

            dj_circuit.h(qubit) 

 

        # Put output qubit in state |-> 

        dj_circuit.x(n) 

        dj_circuit.h(n) 

 

        # Construct balanced oracle 

        balanced_oracle = CnotOracle.create_cnot_oracle(bit_string, n, 

eval_mode) 

 

        # Add oracle 

        dj_circuit += balanced_oracle 

 

        # Repeat H-gates 

        for qubit in range(n): 

            dj_circuit.h(qubit) 

        dj_circuit.barrier() 

 

        # Measure 

        for i in range(n): 

            dj_circuit.measure(i, i) 

        if not eval_mode: 

            print(dj_circuit) 

 

        # return circuit 

        return dj_circuit 

 

Figure 7-19 Code for Implementing Deutsch-Jozsa/ 
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Indicative Results: 

 

Figure 7-20 Different States Measured for Deutsch-Jozsa. 

 

 

Figure 7-21 Results of a Classical and Quantum Execution for Deutsch-Jozsa. 

 

We can see that indeed Deutsch-Jozsa outputs the “11” state which dictates that the C-

NOT operation is balanced for many executions. 

Also, we can see that our classical approach found the answer in 3 attempts, which for 2 

bits goes according to the scheme we devised for the worst input which is 2𝑛−1 + 1. 
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Suppose a secret binary number X. We want to guess that number as quickly as 

possible, only knowing the length of the binary. We want to create a function that operates 

as few times as possible in order to find the secret number, [3]. 

 

 

 

Figure 7-22 Bernstein-Vazirani Abstract Form. 

 

How would a classical computer go to guess the number? One naïve approach 

would be to guess binary numbers of that length at random until we find it. It’s easy to 

see that for a relatively long binary this would be rather hopeless since there are 2𝑛 

possible guesses. This is far from decreasing the number of possible iterations of our 

algorithm.  
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There is of course a better way. We can take advantage of masking in order to guess 

an n-bit number in exactly n attempts each time. This is the exact algorithm below. 

 

 

Figure 7-23 Bernstein-Vazirani Classical Approach. 

 

We create n different n-length vectors containing only zero except in one place. 

We then proceed to take each vector and perform an AND operation with the secret 

number. 

This way we decrypt a bit one by one. We start with the first vector making bit 

zero have the value one and all other n-1 bits have the value zero. If the zeroth bit is one 

then the AND operation will return one, which is the correct guess for the value of the 

secret bit, and if it returns zero then that is again a correct guess since zero AND one is 

equal to zero. All other bits of the vector will return zero since anything ANDed with zero 

returns zero. Hence, we can effectively check for each one of the secret bits and build the 

secret number in n guesses. 
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Class BernsteinVaziraniClassical: 

This class contains a single method that guesses the secret number. It may seem 

unnecessary to proceed with the masking operations since we already receive the secret 

number as a parameter. This is just for demonstration purposes. In a more realistic 

scenario, we would not have access to the actual secret number and the masking operation 

would be necessary since we would send our vector to be ANDed with the secret number, 

and the vendor which holds the secret number would return to us just the answer of the 

AND operation. Then this is the procedure we would follow. Since we will generate the 

secret numbers though, it rightly seems a bit counterintuitive. 

Method Definition – guess_number(secret_binary): 

Input: A string consisting of  ‘1’s and ‘0’s. 

Output: A string displaying the guess for the number and how many attempts it took. 

 

  

class BersteinVaziraniClassical: 

 

    @classmethod 

    def guess_number(cls, secret_binary): 

        mask = 1 

        guess = "" 

        attempts = 0 

        for bit in secret_binary: 

            hit = int(bit) & mask 

            guess += str(hit) 

            attempts += 1 

        return f"My guess After {attempts} attempts is:\n{guess}."  

Figure 7-24 Code for Guessing a Secret Number. 

 

Operate the AND operation on each individual bit of the secret number. 

In python we can do this very easily without using a vector just by choosing which of the 

secret number to AND with 1. If the secret number was held by another person, we could do 

this with the same logic just by asking them to AND the ith bit of the number with 1 and tell 

us the result. 
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The Quantum approach is identical to that of Deutsch-Jozsa, we take advantage of 

interference while possessing the correct oracle function. 

 

If we were to descript an abstract form of the algorithm it would again comprise of four 

major steps. 

Step 1: Prepare the superposition of the qubits. 

Step 2: The oracle function f. 

Step 3: Interference. 

Step 4: Measurements. 

 

Figure 7-25 Bernstein-Vazirani Quantum Structure. 

 

This is the general form of the Bernstein-Vazirani algorithm for n qubits. For n 

qubits, we prepare a superpositioned state of 2𝑛+1 different states because of the addition 

of the output qubit. This state is passed into the oracle function and all possible states are 

evaluated with the oracle function. We then proceed with the decoupling of this quantum 

state by taking advantage of Hadamard being its inverse and phase kickback. As we can 

see, the structure of Bernstein-Vazirani is identical to that of Deutsch-Jozsa. The only real 

difference is the oracle function. 

 

 

Oracle 

function 

for 

Bernstein

-Vazirani 
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Using Dirac notation as a tool we can prove that in an errorless system we can 

expect to get a consistent output for both types of functions. For this worked example, we 

have a two-bit number so we will need two input qubits and one output qubit and must 

show that we can successfully guess the number that is inside. It is worth noting that the 

output qubit is not measured in the final step since we can effectively and reliably 

determine the number while only measuring the input qubits. We will try and guess the 

secret number “01”. 

 

 

 

 

 

 

 

 

 

 

Figure 7-26 Bernstein-Vazirani Worked Example.
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 Step 1 – Initialization 

We initialize our system the exact way we did in the Deutsch-Jozsa example. 

We end up with the following system: 

|𝜓1⟩ =  
1

2√2
(|000102⟩ + |001102⟩ + |100102⟩ + |101102⟩−|000112⟩ − |001112⟩ −

|100112⟩ − |101112⟩)  

 

 Step 2 - Oracle 

Our function, which is essentially a C-NOT gate wherever necessary to shape the 

secret number. The state |𝑥⟩|𝑦⟩ is once again mapped to the state |𝑥⟩|𝑦 ⊕ 𝑓(𝑥)⟩. Like in 

Deutsch-Jozsa, qubits zero and one will remain the same, but qubit two will be 

transformed according to our oracle’s implementation in a manner that we show below: 

 

From |𝜓1⟩ in Step 1, after passing through the oracle function, the system will be 

in this state: 

|𝜓2⟩ =  
1

2√2
(|0001(02⊕𝑓(00))2

⟩ + |0011(02⊕𝑓(00))2⟩ + |1001(02⊕𝑓(10))2⟩ +

|1011 (02⊕𝑓(10)))
2
⟩ −|0001(12⊕𝑓(00))2⟩ − |0011(12⊕𝑓(00))2⟩ − |1001

(12⊕

𝑓(10))2⟩ − |1011(12⊕𝑓(10))2⟩)  

 

As we know, 𝑥 ⊕ 0 = 𝑥 and 𝑥 ⊕ 1 = 𝑥 so |𝜓2⟩ is simplified to: 

|𝜓2⟩ =  
1

2√2
(|0001𝑓(00)2⟩ + |0011𝑓(00)2⟩ + |1001𝑓(10)2⟩ +

|1011𝑓(10)2⟩−|0001𝑓(00)2⟩ − |0011𝑓(00)2⟩ − |1001𝑓(10)2⟩ − |1011𝑓(10)2⟩)    

 

Before we proceed to Step 3, we need to consider the nature of our function. The 

function f that we use is the CNOT operation which as we now know is balanced.  

Hence 𝑓(0) =  𝑓(1) and  𝑓(0) = 𝑓(1). 
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The equation is transformed as follows: 

|𝜓2⟩ =  
1

2√2
(|0001𝑓(1)2⟩ + |0011𝑓(1)2⟩ + |1001𝑓(1)2⟩ +

|1011𝑓(1)2⟩−|0001𝑓(1)2⟩ − |0011𝑓(1)2⟩ − |1001𝑓(1)2⟩ − |1011𝑓(1)2⟩)    

After factoring: 

|𝜓2⟩ =
1

2√2
(|0001⟩ + |0011⟩ − |1001⟩ − |1011⟩) ∗ (𝑓(1) − 𝑓(1))

2
  

and once more, 

|𝜓2⟩ =
1

2√2
(|00⟩ − |10⟩) ∗ (|01⟩ + |11⟩) ∗ (𝑓(1) − 𝑓(1))

2
  

 

 Step 3 - Interference 

Interference is the process of applying a Hadamard gate to each input qubit, and 

we can also ignore the third qubit now. 

|𝜓3⟩ = 
1

√2
(|00⟩ − |10⟩)

𝐻 ∗  
1

√2
(|01⟩ + |11⟩)

𝐻  

After interference, the input qubits are excited if there was a CX operation 

performed on the qubit inside the oracle function, or in the ground state if there was not 

a CX operation in the corresponding qubit inside the oracle. 

Hence our resulting state is as follows: 

|𝜓3⟩ = |0⟩ ∗  |1⟩ ∗ |𝑠𝑡𝑎𝑡𝑒 𝑜𝑓 𝑞𝑢𝑏𝑖𝑡 2⟩  

 

 Step 4 - Measurements 

We then simply measure the first two input qubits and can expect with certainty 

to measure the secret number which was indeed 01. 
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The code is very straightforward. We have a class called BernsteinVazirani in which we 

will create our quantum circuit object. 

Method definition – bernstein_vazirani (random_binary, eval_mode): 

Input: A given random binary number and a Boolean value determining if the method 

will run on eval_mode, that is not print any display messages. 

Output: A QuantumCircuit object 

Data Structures Used: This method, like in Deutsch-Jozsa is broken down into four 

abstract points.  

In step one we create a QuantumCircuit object of input_length+1 qubits. 

Using a for loop, we append  Hadamard gates to the input qubits. We then append an X 

gate and a Hadamard gate immediately after to the output qubit, thus completing the 

initialization step. 

 

In step 2, we first construct the secret number oracle by calling the 

create_secret_number_oracle() method from the SecretNumberOracle 

class and appending it to the dj_circuit which is the primary circuit object. 

 

In step 3, we need to implement interference. We do that by instantiating a new 

circuit object and with a for loop append Hadamard gate to the first n qubits. We then 

also append a barrier to emphasize the distinct steps of the algorithm, but it is not 

necessary. 

 

In step 4, using a for loop we assign a measurement to be performed on each of 

the input qubits and the value of that measurement to correspond to the correct bit in the 

bits register. 
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The BersteinVazirani class:  

from qiskit import QuantumCircuit 

from oracles.secret_number_oracle import SecretNUmberOracle 

 

 

class BernsteinVazirani: 

 

    @classmethod 

    def bernstein_vazirani(cls, random_binary, eval_mode: bool) -> Quan-

tumCircuit: 

        # Construct secret number oracle 

 

        secret_number_oracle = SecretNUmberOracle.create_secret_number_ora-

cle(random_binary=random_binary, eval_mode=eval_mode) 

        num_of_qubits = secret_number_oracle.num_qubits 

 

        # Construct circuit according to the length of the number 

 

        dj_circuit = QuantumCircuit(num_of_qubits, num_of_qubits - 1) 

        dj_circuit_before_oracle = QuantumCircuit(num_of_qubits,  
 num_of_qubits - 1) 

        # Apply H-gates 

        for qubit in range(num_of_qubits - 1): 

            dj_circuit_before_oracle.h(qubit) 

 

        # Put output qubit in state |-> 

        dj_circuit_before_oracle.x(num_of_qubits - 1) 

        dj_circuit_before_oracle.h(num_of_qubits - 1) 

        dj_circuit += dj_circuit_before_oracle 

 

        # Add oracle 

        dj_circuit += secret_number_oracle 

        dj_circuit_after_oracle = QuantumCircuit(num_of_qubits, num_of_qubits 
  - 1) 
 

 

 

 

        # Repeat H-gates 

        for qubit in range(num_of_qubits - 1): 

            dj_circuit_after_oracle.h(qubit) 

        dj_circuit_after_oracle.barrier() 

 

        # Measure 

        for i in range(num_of_qubits - 1): 

            dj_circuit_after_oracle.measure(i, i) 

 

        dj_circuit += dj_circuit_after_oracle 

        if not eval_mode: 

            print("Circuit before the oracle\n") 

            print(QuantumCircuit.draw(dj_circuit_before_oracle)) 

            print("Circuit after the oracle\n") 

            print(QuantumCircuit.draw(dj_circuit_after_oracle)) 

            print(dj_circuit) 

        return dj_circuit 
 

 

Figure 7-27 Code for Bernstein-Vazirani Implementation. 

Interference  
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Initialization 

Step 2 

Oracle 

Measurements  
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The SecretNumberOracle class: 

This class is responsible for preparing the oracle function for the algorithm. 

from qiskit import QuantumCircuit 

 

 

class SecretNUmberOracle: 

    @classmethod 

    def create_secret_number_oracle(cls, random_binary, eval_mode: bool) -> 

QuantumCircuit: 

 

        n = len(random_binary) 

        secret_number_oracle = QuantumCircuit(len(random_binary) + 1, 

len(random_binary)) 

 

        # Use barrier as divider 

        secret_number_oracle.barrier() 

 

        # Controlled-NOT gates 

        for qubit in range(len(random_binary)): 

            if random_binary[qubit] == '1': 

                secret_number_oracle.cx(qubit, n) 

 

        secret_number_oracle.barrier() 

        if not eval_mode: 

            # Show oracle 

            print("This is the oracle function, aka the black box. NORMALLY 

THIS WOULD BE HIDDEN!") 

            print(secret_number_oracle) 

        return secret_number_oracle  

Figure 7-28 Code for Creating the Oracle for the Bernstein-Vazirani Algorithm. 

 

Method definition – create_secret_number_oracle(random_binary, eval_mode): 

Input: A random binary and a Boolean value determining the method operation mode. 

Output: A QuantumCircuit object 

Data Structures Used: We create a QuantumCircuit object that has one more qubit 

than the length of the secret random binary. In the for-loop, we append a CNOT operation 

with the control qubit being one of the qubits that are in a position corresponding to that 

where one exists in the secret random binary. And the target is the output qubit. We then 

append once again a barrier to create a conceptual box around the oracle and return the 

circuit in order to complete the algorithm. 
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Indicative results: 

 

Figure 7-29 State Measurements for Bernstein-Vazirani. 

 

 

Figure 7-30 Execution Results for Bernstein-Vazirani. 

 

The secret number generated is 101. We can see that for the quantum implementation the 

correct state was measured for many executions. 

 The classical solution as we can see takes three guesses to find 101, which is a 3-bit 

number. 
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It is important that we stress the fact that both Deutsch-Jozsa and Bernstein-

Vazirani are algorithms that solve black-box problems. Shor’s Algorithms is another, 

more famous algorithm, that uses this black-box logic in order to factor integers in 

polynomial time [12]. 

Another major Algorithm, not covered in this thesis, is the Grover Search Algorithm, 

which is used to solve unstructured search problems using a phenomenon called 

amplitude amplification [8], which is not the exact same as Phase-Kickback. We quickly 

realize that Quantum Algorithm Development is highly dependent on Quantum Systems 

behavior and not algorithmic thought alone. 

However, we need to realize, that, like Classical Computation has its own families of 

Algorithms, so does Quantum. There is a certain approach to tackling each different 

problem, and a good quantum intuition, is when we are able to recognise the nature of a 

problem in order to use the correct algorithm, much like conventional computing. 

 

This concludes QCLG Level 3 / Implementation chapter. 
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Since quantum computing is not available as a local device in our home computer 

yet, we need to resort to cloud services. This means that we need to establish a connection 

with a real Quantum Computer and send our code to be executed in a real Quantum 

Machine and fetch back the results for evaluation. We also execute the classical solutions 

of the problems locally to be able to compare the execution times and discuss our findings. 

For this, we have implemented the Evaluation class which is responsible for executing 

both approaches multiple times in an automated manner and then displaying the results 

in a meaningful way. 
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Some keynotes: 

• We compare execution times for the classical execution for 1 bit and the quantum 

execution for 1 qubit, then for 2 bits and 2 qubits, etc. 

• Each classical and quantum experiment is executed 1024 times for each different 

input size. This is done for two reasons. 1024 times is the default number of 

executions for a quantum experiment and we can observe more useful results since 

the execution times for executing each experiment once are very small it would 

be very difficult to extract useful information. 

• For Deutsch-Jozsa specifically: 

o We use a balanced oracle which we explained in section 7.3.2.2. 

o For the classical implementation, we again use the worst-case scenario as 

explained in section 7.2.2. 

• For Bernstein-Vazirani specifically: 

o For the classical implementation, we used the sound classical method, 

which was explained here in section  

After choosing the algorithm for evaluating the process is split as follows: 

1. Classical Execution 

2. Quantum Execution 

3. Comparison 

 

We explain some of the important methods in the evaluation process. 

from QCLG_lvl3.classical.random_binary import RandomBinary 

from tools import Tools 

import constants 

from qiskit.providers import JobStatus 

 

 

class Evaluation: 

 

    @classmethod 

    def evaluate(cls, algorithm): 

 

        if algorithm == "0": 

            cls.evaluate_deutsch_josza() 

        elif algorithm == "1": 

            cls.evaluate_bernstein_vazirani()  

Figure 8-1 Code for Redirecting to Algorithm Evaluation. 
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Method definition – evaluate(algorithm): 

Input: Algorithm key 

Output: Call to the corresponding evaluating method. 

Data Structures Used: We check with an if, elif statement whether we are going to 

evaluate Deutsch-Jozsa or Bernstein Vazirani. 

@classmethod 

def plot_results(cls, inputs: list, quantum: list, classical: list, accuracy: 

list): 

    import numpy as np 

    import matplotlib.pyplot as plt 

    X = np.arange(start=1, stop=len(inputs) + 1, step=1) 

    plt.figure() 

    plt.subplot(211) 

    plt.title("Execution Times") 

    plt.bar(X + 0.00, classical, color='b', width=0.25) 

    plt.bar(X + 0.25, quantum, color='g', width=0.25) 

    plt.ylabel("In seconds") 

    plt.legend(labels=['Classical', 'Quantum']) 

    plt.subplot(212) 

    plt.title("Quantum Accuracy") 

    plt.bar(inputs, accuracy, color='g') 

    plt.ylabel("Percentage") 

    plt.legend(labels=['Accuracy Percentage']) 

    plt.show() 

    return  

Figure 8-2 Code for Plotting Evaluation Results. 

Method definition - plot_results(inputs, quantum, classical, accuracy): 

A simple method for constructing two separate plots. 

Input: The list containing the range of different inputs, the quantum time results, the 

classical time results, and the accuracy of the quantum results. 

Output: A figure containing two different plots. The first plot is for displaying the 

execution times for both the classical and quantum executions for all different input sizes 

and the second plot is for displaying the percentage of correct answers the quantum 

system achieves for different input sizes. 

Data Structures Used: For this method, we need to take advantage of the matplotlib 

capabilities. We instantiate a figure object and then we will create two subplot objects.  
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With the np.arange method we create a NumPy array that we will use for our X-axis 

numbers on both subplots. We will then define two new subplots using 

plt.subplot(211)  and plt.subplot(212). The first two numbers in the 

parentheses mean that we are going to have two rows and one column of plots and then 1 

for the first subplot and 2 for the second. 

Deutsch-Josza Evaluation method 

@classmethod 

def evaluate_deutsch_josza(cls): 

    print(constants.input_message_3) 

    test_range = int(input()) 

    while test_range > 14 or test_range < 1: 

        test_range = int(input("Enter a number between 1 and 14.")) 

 

    circuits = [] 

    n_bits = [] 

    quantum_execution_times = [] 

    classical_execution_times = [] 

    success_rates = [] 

 

    print("Evaluating Deutsch - Josza... This might take a while...") 

 

    for number_of_bits in range(1, test_range + 1): 

        n_bits.append(number_of_bits) 

        circuits.append(Tools.prepare_dj(number_of_bits)) 

        total_time = 0.0 

        for i in range(1024): 

            classical_result = Tools.deutsch_josza_classical(number_of_bits) 

            total_time = total_time + classical_result[1] 

        classical_execution_times.append(total_time) 

        completion_percentage = int((number_of_bits / test_range) * 100) 

        print(f"{completion_percentage}% of classical executions done.") 

 

    print("Now looking for the least busy backend...") 

    least_busy_backend = Tools.find_least_busy_backend_from_open(test_range) 

 

    print("Now waiting for the Quantum Batch Job to finish...\nThis will take 

a while...") 

    quantum_results = Tools.run_batch_job(circuits, least_busy_backend) 

    flag = False 

    while not flag: 

        for status in quantum_results.statuses(): 

            flag = True 

            if status != JobStatus.DONE: 

                flag = False 

    print("Quantum experiments finished.") 

    print("Preparing plots...") 

    count_jobs = 1 

    for job in quantum_results.managed_jobs(): 

        quantum_execution_times.append(job.result().time_taken) 

        counts_dict = job.result().get_counts() 

        correct_counts = counts_dict.get('1' * count_jobs, 0) 

        print(correct_counts) 

        success_percentage = (correct_counts / 1024) * 100 

        success_rates.append(success_percentage) 

        count_jobs = count_jobs + 1 

    cls.plot_results(n_bits, quantum_execution_times, 

classical_execution_times, success_rates) 

    return  
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Figure 8-3 Code for Evaluating the Deutsch-Jozsa Algorithm. 

Method Definition – evaluate_deutsch_josza(): 

This method encapsulates the abstract process we are going to follow for 

evaluation. We will first generate all executions for the classical solutions of the 

algorithm, then proceed with the quantum solutions and finally plot the results to compare 

the two approaches effectively. This method is also greatly assisted by methods 

implemented in the Tools class which can be found at the end of this chapter. 

Input: No input is required 

Output: The figure containing the comparisons. 

Data Structures Used: Using a while-loop we ensure that the input is a number between 

1 and 14 since we are limited by the hardware available by IBM Q. We then define five 

lists. The circuits list will store the different quantum circuits that will be constructed for 

each different number of qubits. The n_bits list stores the number of qubits for each 

iteration. The quantum_execution_times list will store all the execution times for 

each different input size for the quantum circuits. The 

classical_execution_tiimes list will store all the execution times for each 

different input size for the classical solutions. We then use a for-loop that will execute the 

classical solution for each size of the input range and append the execution time on the 

classical_execution_times  list. We then display a completion percentage 

which is calculated easily by dividing the current iteration number, by the total number 

of iterations and multiplying by 100. 

After we conclude with the classical executions, we need to execute the quantum 

solutions. This is done by finding the least busy backend capable of supporting the 

number of qubits required for the largest input we are going to evaluate and then 

submitting a batch job using the run_batch_job() from the Tools class and then 

using a while-loop we wait for all the circuits to finish executing in order to continue with 

the final assembly. 
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For each finished quantum experiment, we append the time to the 

quantum_execution_times list. We also retrieve the dictionary containing all the 

different measurements acquired from running each experiment 1024 times. We then 

search for the number of times the correct answer was measured. In the case of Deutsch-

Jozsa and because we are running it with a balanced oracle, the correct answer is all input 

qubits measuring to 1. Hence, we are looking for the number of times the (‘1’ * amount 

of input qubits) is measured. If it was not measured, we assign the value 0. We then find 

the accuracy for the given input size by dividing by 1024, which is the time the experiment 

was executed for that input size and multiplying by 100. We append that percentage to 

the success_rates list and continue with the rest of the input sizes. With the 

conclusion of this while-loop, we call our plotting method and the 

evaluate_deutsch_josza() method is completed. 

The method definition for Bernstein-Vazirani is almost identical with the only 

difference being how to find how many times the correct answer was measured by the 

quantum system. To do this, we need to search in the dictionary of measurements the key 

which is equal to the secret binary number and find how many times that secret number 

was measured. We do this by storing the different random binaries in a separate list called 

random_binaries and then checking to see the count of the experiment for 3 qubits 

where the measurement is equal to the 3-bit secret number that was generated beforehand. 

The code for the Bernstein-Vazirani method can be found on Appendix D. 
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Figure 8-4 Deutsch-Jozsa Evaluation Measurements. 

We can extract some very important information from the above figure. In the first 

subplot, we observe the execution times for input sizes of 1 to 14. We can see that for an 

input size of up to 11 bits/qubits, the classical computer is much faster. However, as we 

discussed in 7.1, Deutsch-Jozsa is an exponential problem. The exponential increase in 

time taken is obvious for input sizes 12, 13, and 14 with execution times increasing from 

12 seconds to 24 seconds to 44 seconds respectively. At the same time, the execution time 

for the quantum system remains almost constant, a phenomenon that agrees with the fact 

that the quantum solution finds the answer with “one guess”. 
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However, we cannot yet celebrate. While the quantum computer shows a lot of 

promise, timewise, we can see that we run into a lot of problems as the input size 

increases, accuracy wise. 

  Due to physical errors in quantum systems, the amount of times the quantum 

system measures the correct state is greatly decreased as we advance into greater input 

sizes. We can maybe empirically recognize the correct answer for up to 6 qubits, but from 

that point on, the correct measurement was sometimes not even measured once. 

Error correction is another major section of quantum computing as discussed in 

detail here [10] and we can see from our findings, why it is so important. 
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Figure 8-5 Bernstein-Vazirani Evaluation Measurements. 

 

Continuing with the Bernstein-Vazirani algorithm, in the first subplot, we can see 

that the classical execution times are negligible even for plotting. That is because the 

Bernstein-Vazirani is solved in linear time in our classical solution and not in exponential 

time as Deutsch-Jozsa. The accuracy of Bernstein-Vazirani however, is much better. We 

can see that even for a 14-qubit secret number, the correct answer was measured almost 

40% of the time which is substantially more accurate. We think that this is because of 

how the oracle function is implemented. Since Bernstein-Vazirani requires less C-NOT 

gates than Deutsch-Jozsa, there should be fewer physical errors, due to the smaller amount 

of gates. 
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 # Evaluation methods 

 

@classmethod 

def prepare_dj(cls, bits: int): 

    bit_sequence = "0" * bits 

    dj_circuit = DeutschJosza.deutsch_josza(bit_sequence, eval_mode=True) 

    return dj_circuit 

 

@classmethod 

def prepare_bv(cls, random_binary: str): 

    bj_circuit = BernsteinVazirani.bernstein_vazirani(random_binary, 

eval_mode=True) 

    return bj_circuit 

 

@classmethod 

def deutsch_josza_classical(cls, bits: int): 

    return ClassicalXor.execute_classical_xor(bits=bits) 

 

@classmethod 

def bernstein_vazirani_classical(cls, bits: int): 

    random_binary = RandomBinary.generate_random_binary_v2(bits) 

    return BersteinVaziraniClassical.guess_number(random_binary) 

 

@classmethod 

def run_batch_job(cls, circuits: list, least_busy_backend) -> ManagedJobSet: 

    transpiled_circuits = transpile(circuits, backend=least_busy_backend) 

    # Use Job Manager to break the circuits into multiple jobs. 

    job_manager = IBMQJobManager() 

    job_set_eval = job_manager.run(transpiled_circuits, 

backend=least_busy_backend, name='eval', 

                                   max_experiments_per_job=1) # 

max_experiments_per_job =1 very important to get 

    # individual execution times 

    return job_set_eval 

 

Figure 8-6 Code for Supplementary Methods of Evaluation. 

 

The purpose of these methods is to use pre-existing methods from the Tools class 

but call them differently in order to automate some inputs and speed up the evaluation 

process. The methods prepare_dj(), prepare_bv(), 

deutsch_josza_classical(), are almost exact replicas with the slight difference 

that they run on eval mode, which just means that the printing messages are dismissed. 

The bernstein_vazirani_classical() method differs only in the way 

of generating the random binary, which is by randomly generating a random binary 

number of length ‘bits’ directly and not by asking the user. The implementation for 
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generate_random_binary_v2(bits) can be found in the appendix, along with 

the rest of the code. 

Method definition – run_batch_job(circuits, least_busy_backend): 

Input: A list of quantum circuits and the list busy backend capable of executing the 

largest circuit in the given list. 

Output: A ManagedJobSet object that holds all the managed jobs/experiments along 

with all their information. Further information about the ManagedJobSet object can 

be found here [32]. 

Data Structures Used: We first need to use the transpile method which will transpile the 

experiments into a manageable batch job for the backend to execute in parallel. We then 

run this batch job which returns each finished experiment asynchronously. This means 

that it does not wait for all experiments to finish to return the results. This is why we 

created a while-loop which waited for all experiments to finish in the 

evaluate_deutsch_josza() and evaluate_bernstein_vazirani() 

methods previously. The max_experiments_per_job was a very important 

parameter for successfully evaluating the algorithms. By limiting the number of 

experiments per job to 1, we can have discrete execution times for each different input 

size. When we tried to run the batch job with the default settings, this was not possible, 

and we could not extract discrete execution times. 

 

This concludes the QCLG Level 4 / Evaluation chapter. 
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Concluding this thesis, we first need to say that quantum computing is a marvelous 

attempt of humankind to push the limits of knowledge to unprecedented new grounds and 

we are thrilled that we could be a part of the Quantum revolution that is afoot. Most 

importantly, we completed our goals and can answer the four research questions that we 

beset at the beginning of this thesis in section 1.2. 

Firstly, we completed our goals with the development of the “Quantum Computing 

Learning Gate”. Through this platform, we managed to demonstrate how a software 

developer can take advantage of the abundant resources available and initiate their own 

quantum journey. We have demonstrated the most useful examples that helped us proceed 

with more advanced concepts on the matter. We have developed a quantum game that 

capitalizes on the capabilities of a quantum system in order to provide a joyful and 

interactive experience whilst keeping a consistent learning environment. We have 

completed a case study of algorithms on quantum and classical systems to showcase an 

additional point of view of understanding in the emerging scene of quantum research. We 

have implemented a practical workflow for evaluating algorithms using IBM Q’s 

systems. Finally, we have gathered useful material that can be a jumping-off point for any 

aspiring quantum developers to initiate their journey and contribute in their own way. 

Secondly, we managed to find answers to our three questions. 
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The first question was about who should be interested in quantum computing. 

Should it be reserved for researchers? Is it a subject that should be made compulsory in 

all universities across the world? The answer to both of these questions is no. Quantum 

computing is moving forward through a joint effort of a passionate community that is its 

borders are way beyond the scientific community. We are in the age of quantum 

computing and significant contributions have been made through the power of open-

source projects. However, it is our personal belief that it should not be a compulsory 

course in computer science degrees. It differs in many ways from traditional computation, 

and its impact, although significant is not yet at the stage of refinement that is required to 

be taught to undergraduate students. We would advocate the notion of it being available 

as an elective course to more undergraduate or post-graduate curriculums since in 10 

years it could change the ways we approach machine learning, optimization problems, 

and security. 

The second question was is regarding the choice between the available resources 

online for initiating quantum endeavors. The answer to this is not absolute. It largely 

depends on the goals of the individual or organization. We, as students have chosen Qiskit 

since it is a framework that puts education high in its list of priorities by offering a variety 

of tutorials through the Qiskit textbook, online videos, and even has a community on 

Slack for any Qiskit related issue. For professionals or organizations that are interested in 

quantum solutions, the decision is a lot tougher. Since quantum computing is offered 

through cloud services there are a lot of factors to consider. If they have worked with 

Amazon Web Services for conventional solutions previously, they might find it easier to 

make a transition to Amazon Braket. If, however, we are talking about a startup that wants 

to try out the new technology it might be best to explore other options that may offer 

cheaper rates. 

The third and final question that we can answer is whether pursuing a career 

specialized in quantum computing is a viable career path. This question was the main 

inducement for completing this thesis. Quantum computing is a fascinating subject but 

when it comes up in conversations, even in professional software environments, 

especially in Cyprus, it is thought of as a strictly theoretical section of Computer Science 

and deemed as a purely academic career path. In our opinion, this is not the case. Although 

in its early industrial stages, quantum computing could offer solutions to companies, and 
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why not, Cypriot companies. Maybe not in the next 3 to 5 years but definitely into the 

foreseeable future, a quantum computing specialization could be as valuable as a software 

engineering or cybersecurity specialization. The cloud is much closer than we realize and 

with it the quantum or hybrid solutions available. We are optimistic and for sure keeping 

the opportunity of working as a quantum developer high in the list of career paths.  

 

 

During the completion of this thesis, we encountered many obstacles. Our first 

obstacle was the absence of previous friction with quantum computing. Quantum 

computing is not a course that is offered in the standard curriculum or any of the elective 

courses at the University of Cyprus. Therefore, we had to start with very small steps which 

were time-consuming. 

Another limitation was the quantum physics aspect of quantum computing. 

Although there have been many leaps with quantum frameworks, there is still a large 

benefit in having previous experience with complicated concepts such as the 

superposition, entanglement, amplitudes, and all other phenomena found in the world of 

quantum mechanics. 

The third limitation had to do with the resources that were available to us and were 

twofold. IBM Q generously offers quantum systems for free but for this thesis, it was 

difficult to extract the data that we hoped for. Quantum systems are still error-prone, and 

while we were able to plan legitimate workflows for implementing and evaluate 

algorithms, we still could not achieve an advantage with the quantum systems because of 

the very low accuracy. The other issue regarding resources was the queue time required 

for executing experiments. We started working on this thesis in early January of 2020 and 

the traffic on the IBM Q systems was much lower than what it is today. At times, we 

needed to wait for hours to successfully execute jobs on the desired backends. This is of 

course a good thing as well because it means that more and more people are interested in 

quantum research, but it certainly slowed down the progress of experimentation. 

An additional limitation was getting familiar with the Qiskit framework in a short 

amount of time. Qiskit is a very rich framework that is open-source and is three years into 

development. Its public GitHub repository has over 100 contributors [33]. A framework 
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of the magnitude demands thorough research through documentation study and multiple 

trial and error experimentations. We continuously discovered more and more features 

available that were vital to the development of a more complete version of QCLG. We 

were only able to experience a glimpse of what Qiskit can offer through its different 

elements and hundreds of Python classes.  This brings us neatly into our next section 

which is our aspirations for QCLG. 

 

 

Quantum computing, due to its difficulty, and studying demands, is challenging. 

This also leaves a lot of space for improvement in our current work. Concerning the 

QCLG there is a lot of ground to be covered. The four levels could be enhanced by 

additional experiments, additional algorithms for analysis, and more evaluation options. 

Also, there can be a  fifth level, which will contain real-world applications of algorithms. 

Furthermore, “The Exciting Game” is a very promising project that could evolve into a 

standalone application, much like Quantum Tetris [35]. Our idea is that the current code 

can be modified to work as a backend-side application, and we can deploy a front-end 

graphical interface that takes the game to the next level in terms of interaction and 

playability. Another idea is the creation of a separate domain from GitHub that presents 

key points of QCLG and references material relative to quantum computing in order to 

host a portal capable of generating traffic. Finally, we believe that it would be a good idea 

to explore other quantum resources besides IBM and Qiskit to expand our horizons. 
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import constants 

from QCLG_lvl1.hello_quantum_world import HelloWorld 

from QCLG_lvl1.interference import Interference 

from QCLG_lvl1.single_qubit_superposition import SingleQubitSuperposition 

from QCLG_lvl1.three_qubits_superposition import ThreeQubitSuperposition 

 

 

class SimpleExperimentsManager: 

    @classmethod 

    def showcase(cls): 

        print("Hi, these are the available experiments") 

 

        for i in range(len(constants.experiments)): 

            print(f"{i}. {constants.experiments[i]}") 

 

        choice = input(f"Which experiment would you like to try from 0 to 

{len(constants.experiments)-1}? ") 

 

        while choice not in constants.acceptable_experiment_inputs: 

            choice = input(f"Which experiment would you like to try from 0 to 

{len(constants.experiments) - 1}? ") 

        if choice == "0": 

            HelloWorld.run() 

        elif choice == "1": 

            SingleQubitSuperposition.run() 

        elif choice == "2": 

            ThreeQubitSuperposition.run() 

        elif choice == "3": 

            Interference.run() 

 

 

from qiskit import execute, Aer, QuantumCircuit 

 

 

class Interference: 

    @classmethod 

    def run(cls): 

        # Use Aer's qasm_simulator 

        simulator = Aer.get_backend('qasm_simulator') 

        # Create a Quantum Circuit acting on the q register 

        circuit = QuantumCircuit(1, 1) 

        # Add a H gate on qubit 0 

        circuit.h(0) 

        # Add another H gate to qubit 0 

        circuit.h(0) 

        # Map the quantum measurement to the classical bits 

        circuit.measure(0, 0) 

        # Execute the circuit on the qasm simulator 

        job = execute(circuit, simulator, shots=1000) 

        # Grab results from the job 

        result = job.result() 

        # Returns counts 

        counts = result.get_counts(circuit) 

        print("Results for the Quantum Interference experiment.") 

        print("\nTotal count for 0 and 1 are:", counts) 

        print(circuit)  
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from qiskit import IBMQ 

from qiskit import ( 

    QuantumCircuit, 

    execute, 

    Aer) 

 

 

class HelloWorld: 

    @classmethod 

    def run(cls): 

        with open('./credentials/token', 'r') as file: 

            token = file.read() 

        IBMQ.save_account(token, overwrite=True) 

        # Use Aer's qasm_simulator 

        simulator = Aer.get_backend('qasm_simulator') 

        # Create a Quantum Circuit acting on the q register 

        circuit = QuantumCircuit(2, 2) 

        # Add a H gate on qubit 0 

        circuit.h(0) 

        # Add a CX (CNOT) gate on control qubit 0 and target qubit 1 

        circuit.cx(0, 1) 

        # Map the quantum measurement to the classical bits 

        circuit.measure([0, 1], [0, 1]) 

        # Execute the circuit on the qasm simulator 

        job = execute(circuit, simulator, shots=1024) 

        # Grab results from the job 

        result = job.result() 

        # Returns counts 

        counts = result.get_counts(circuit) 

        print("Results for the Bell State experiment.") 

        print("\nTotal count for 00 and 11 are:", counts) 

        # Draw the circuit 

        print(circuit)  

from qiskit import execute, Aer, QuantumCircuit, IBMQ 

 

 

class SingleQubitSuperposition: 

    @classmethod 

    def run(cls): 

        # Use Aer's qasm_simulator 

        simulator = Aer.get_backend('qasm_simulator') 

        # Create a Quantum Circuit acting on the q register 

        circuit = QuantumCircuit(1, 1) 

        # Add a H gate on qubit 0 

        circuit.h(0) 

        # Map the quantum measurement to the classical bits 

        circuit.measure(0, 0) 

        # Execute the circuit on the qasm simulator 

        job = execute(circuit, simulator, shots=1000) 

        # Grab results from the job 

        result = job.result() 

        # Returns counts 

        counts = result.get_counts(circuit) 

        print("\nTotal count for 0 and 1 are:", counts) 

        provider = IBMQ.load_account() 

        backend = provider.backends.ibmq_valencia 

        # Execute the circuit on a real device 

        job = execute(circuit, backend=backend, shots=1000) 

        # Grab results from the job 

        result = job.result() 

        # Returns counts 

        counts = result.get_counts(circuit) 

        print("\nTotal count for 0 and 1 are:", counts) 

        # Draw the circuit 

        print(circuit)  
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from qiskit import execute, Aer, QuantumCircuit, IBMQ 

 

 

class ThreeQubitSuperposition: 

    @classmethod 

    def run(cls): 

        # Use Aer's qasm_simulator 

        simulator = Aer.get_backend('qasm_simulator') 

        # Create a Quantum Circuit acting on the q register 

        circuit = QuantumCircuit(3, 3) 

        # Add a H gate on qubit 0 

        circuit.h(0) 

        circuit.h(1) 

        circuit.h(2) 

        # Map the quantum measurement to the classical bits 

        for i in range(3): 

            circuit.measure(i, i) 

        # Execute the circuit on the qasm simulator 

        job = execute(circuit, simulator, shots=1024) 

        # Grab results from the job 

        result = job.result() 

        # Returns counts 

        counts = result.get_counts(circuit) 

        print("\nTotal count all possible states are:", counts) 

 

        provider = IBMQ.load_account() 

        backend = provider.backends.ibmq_valencia 

        # Execute the circuit on a real device 

        job = execute(circuit, backend=backend, shots=1024) 

        # Grab results from the job 

        result = job.result() 

        # Returns counts 

        counts = result.get_counts(circuit) 

        print("\nTotal count for all possible states are:", counts) 

        # Draw the circuit 

        print(circuit)  

All the above are the entirety of the code for QCLG Level 1. Here there are 

implementations for experimenting with superposition, interference and entanglement. 

All these experiments are managed by a standalone QCLG Level 1 manager class. 
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from random import randint 

 

import numpy as np 

from qiskit import execute, BasicAer 

from qiskit.circuit.quantumcircuit import QuantumCircuit 

 

 

class Game: 

 

    @classmethod 

    def run(cls, circuit: QuantumCircuit): 

        # use local simulator 

        backend = BasicAer.get_backend('qasm_simulator') 

        results = execute(circuit, backend=backend, shots=1024).result() 

        answer = results.get_counts() 

        max_value = 0 

        max_key = "" 

        for key, value in answer.items(): 

            if value > max_value: 

                max_value = value 

                max_key = key 

        print(answer) 

        if max_key == "00": 

            print("Both players stay grounded :(") 

            return 0 

        elif max_key == "01": 

            print("Player 1 is excited!") 

            return 1 

        elif max_key == "10": 

            print("Player 2 is excited!") 

            return 2 

        elif max_key == "11": 

            print("Both players are excited!") 

            return 3 

        return 

 

    @classmethod 

    def place_gate(cls, player, field, qubit): 

        card = player.pop() 

        print(f"now inserting card {card} from player {qubit + 1}") 

        if card == "H": 

            field.h(qubit) 

        elif card == "X": 

            field.x(qubit) 

        elif card == "RX": 

            field.rx(np.pi / 2, qubit) 

        elif card == "CX": 

            if qubit == 0: 

                field.cx(qubit, qubit + 1) 

            else: 

                field.cx(qubit, qubit - 1) 

        return  
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@classmethod 

def create_playing_field(cls, player1: list, player2: list) -> 

QuantumCircuit: 

    field = QuantumCircuit(2, 2) 

    player1.reverse() 

    player2.reverse() 

    while len(player1) > 0: 

        cls.place_gate(player1, field, 0) 

    while len(player2) > 0: 

        cls.place_gate(player2, field, 1) 

    field.measure(0, 0) 

    field.measure(1, 1) 

    return field 

 

@classmethod 

def generate_deck(cls) -> list: 

    cards = ["H", "H", "X", "X", "CX", "RX", "RX"] 

    deck = [] 

    for j in range(4): 

        for i in range(len(cards)): 

            deck.append(cards[i]) 

    return deck 

 

@classmethod 

def shuffle_deck(cls, deck: list): 

    for i in range(len(deck) * 5): 

        j = randint(0, len(deck) - 1) 

        k = randint(0, len(deck) - 1) 

        temp = deck[j] 

        deck[j] = deck[k] 

        deck[k] = temp 

    return 

 

@classmethod 

def deal_starting_hands(cls, player1: list, player2: list, deck: list): 

    for i in range(0, 4, 2): 

        player1.append(deck.pop()) 

        player2.append(deck.pop()) 

    return 

 

@classmethod 

def draw_from_deck(cls, deck: list) -> str: 

    return deck.pop() 

 

@classmethod 

def replace(cls, replacement_choice, card, player): 

    player.remove(replacement_choice) 

    player.append(card) 

    return 
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@classmethod 

def fix_hand(cls, player: list) -> list: 

    new_hand = [] 

    print("Your current hand is setup like this:") 

    print(player) 

    i = 0 

    while len(player) > 0: 

        replacement_choice = input(f"Choose one of your cards to be on 

position {i} :") 

        while replacement_choice not in player: 

            replacement_choice = input(f"Choose one of your cards to be on 

position {i} :") 

        new_hand.insert(len(new_hand), replacement_choice) 

        player.remove(replacement_choice) 

        print("Cards remaining in previous hands") 

        print(player) 

        i = i + 1 

 

    print("New hand") 

    print(new_hand) 

    print() 

    return new_hand 
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@classmethod 

def play_the_exciting_game(cls): 

    deck = cls.generate_deck() 

    cls.shuffle_deck(deck) 

    player1 = [] 

    player1_wins = 0 

    player2 = [] 

    player2_wins = 0 

    rounds = int(input("Enter number of rounds: ")) 

 

    print("The exciting game begins!") 

    current_round = 0 

    while current_round <= rounds: 

        countdown = 4 

        print("#" * (current_round + 1), end="") 

        print(f"ROUND {current_round}", end="") 

        print("#" * (current_round + 1)) 

        print() 

        cls.deal_starting_hands(player1, player2, deck) 

        while countdown != 0: 

            print("\nPlayer 1") 

            print(player1) 

            cls.draw(player1, deck) 

            print("\nPlayer 2") 

            print(player2) 

            cls.draw(player2, deck) 

            countdown = countdown - 1 

            print(f"{countdown} dealings remain before the players have to 

see who's Excited!") 

            if countdown == 0: 

                print("Next turn is going to be Exciting!!!") 

 

        print("Both players get to fix their hands in the order they 

desire!") 

        player1 = cls.fix_hand(player1) 

        player2 = cls.fix_hand(player2) 

        playing_field = cls.create_playing_field(player1, player2) 

        print(playing_field.draw()) 

        round_result = cls.run(playing_field) 

        if round_result == "1": 

            player1_wins = player1_wins + 1 

        elif round_result == "2": 

            player2_wins = player2_wins + 1 

        current_round = current_round + 1 

 

    if player1_wins > player2_wins: 

        print("PLAYER ONE WAS MOST EXCITED!") 

    elif player2_wins > player1_wins: 

        print("PLAYER TWO WAS MOST EXCITED!") 

    else: 

        print("PLAYERS WERE EQUALLY EXCITED!")  

This code is for QCLG Level 2 and is the entire implementation of “The Exciting Game”. 

There is a plethora of helper functions and the driver method play_the_exciting_game() 

which runs the game. 
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Classical Directory 

class BersteinVaziraniClassical: 

 

    @classmethod 

    def guess_number(cls, secret_binary): 

        mask = 1 

        guess = "" 

        attempts = 0 

        for bit in secret_binary: 

            hit = int(bit) & mask 

            guess += str(hit) 

            attempts += 1 

        return f"My guess After {attempts} attempts is:\n{guess}."  

 

 

import random 

 

 

class RandomBinary: 

 

    @classmethod 

    def generate_random_binary(cls, limit: int) -> str: 

        rand = int(random.uniform(0, limit)) 

        print(f"random binary in decimal:{rand}") 

        random_bin = bin(rand)[2:] 

        print(random_bin) 

        return random_bin 

 

    @classmethod 

    def generate_random_binary_v2(cls, binary_length: int) -> str: 

        random_bin = "" 

        for i in range(binary_length): 

            rand = int(random.uniform(0, 1)) 

            if rand >= 0.5: 

                random_bin = random_bin + "1" 

            else: 

                random_bin = random_bin + "0" 

        return random_bin 

 

 

 

  

 



 

C-2 

 

 

from datetime import datetime 

 

from QCLG_lvl3.classical.BitCombinations import BitCombinations 

 

 

class ClassicalXor: 

 

    @classmethod 

    def _super_secret_black_box_function_f(cls, list_of_inputs: list) -> str: 

        output_bit = 0 

        output_zero = False 

        output_one = False 

        counts = 0 

        for input_bits in list_of_inputs: 

            for bit in input_bits: 

                output_bit = output_bit ^ int(bit) 

 

            if output_bit == 1: 

                output_one = True 

            else: 

                output_zero = True 

            counts = counts + 1 

            output_bit = 0 

            if output_one and output_zero: 

                return f'Balanced After {counts} checks.' 

            if counts > (len(list_of_inputs) / 2): 

                return f'Constant After {counts} checks.' 

        return f'After {counts} checks.' 

 

    @classmethod 

    def execute_classical_xor(cls, bits) -> list: 

        start = datetime.now() 

        inputs = 

BitCombinations.produce_worse_scenario(BitCombinations.combinations(bits)) 

        end = datetime.now() 

        elapsed = end - start 

        time_to_generate_worst_input = elapsed.total_seconds() 

        start = datetime.now() 

        function_nature = cls._super_secret_black_box_function_f(inputs) 

        end = datetime.now() 

        elapsed = end - start 

        time_str = elapsed.total_seconds() 

        final = [time_to_generate_worst_input, time_str, bits, 

function_nature] 

        return final 
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class BitCombinations: 

 

    @classmethod 

    def split(cls, word: str) -> list: 

        return [char for char in word] 

 

    @classmethod 

    def get_child(cls, parent: list) -> list: 

        return parent.pop() 

 

    @classmethod 

    def count_ones(cls, binary_list: list) -> int: 

        count = 0 

        for bit in binary_list: 

            if bit == "1": 

                count = count + 1 

        return count 

 

    @classmethod 

    def produce_worse_scenario(cls, combos: list) -> list: 

        worse_input_list = [] 

        even = [] 

        odd = [] 

        for i in range(len(combos)): 

            if i % 2 == 1:  # list with even amount of zeroes and ones 

                even.extend(combos[i]) 

            else: 

                odd.extend(combos[i]) 

        worse_input_list.extend(even) 

        worse_input_list.extend(odd) 

        return worse_input_list 
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@classmethod 

def combinations(cls, bits: int) -> list: 

    final_layer = [] 

    for n_bits in range(1, bits): 

        parent = [] 

        for layer in range(bits - 1): 

            new_layer = [] 

            if layer == 0: 

                parent = [] 

                b0 = ["0"] 

                b1 = ["1"] 

                parent.append(b0) 

                parent.append(b1) 

            while len(parent) > 0: 

                child = cls.get_child(parent) 

                new_child1 = ["1"] 

                new_child0 = ["0"] 

                remaining_ones_for_child = n_bits - cls.count_ones(child) 

                remaining_length = bits - len(child) 

                if remaining_ones_for_child == remaining_length: 

                    new_child1.extend(child) 

                    new_layer.append(new_child1) 

                elif 0 < remaining_ones_for_child < remaining_length: 

                    new_child1.extend(child) 

                    new_layer.append(new_child1) 

                    new_child0.extend(child) 

                    new_layer.append(new_child0) 

                elif remaining_ones_for_child == 0: 

                    new_child0.extend(child) 

                    new_layer.append(new_child0) 

            parent = new_layer 

        final_layer.append(parent) 

    result = [] 

    all_zeros = [[cls.split("0" * bits)]] 

    all_ones = [[cls.split("1" * bits)]] 

    result.extend(all_zeros) 

    result.extend(final_layer) 

    result.extend(all_ones) 

    return result 
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from qiskit import QuantumCircuit 

 

 

class CnotOracle: 

    @classmethod 

    def create_cnot_oracle(cls, input_string, input_length, eval_mode: bool) 

-> QuantumCircuit: 

        balanced_oracle = QuantumCircuit(input_length + 1) 

        # Place X-gates 

        for qubit in range(len(input_string)): 

            if input_string[qubit] == '1': 

                balanced_oracle.x(qubit) 

 

        # Use barrier as divider 

        balanced_oracle.barrier() 

 

        # Controlled-NOT gates 

        for qubit in range(input_length): 

            balanced_oracle.cx(qubit, input_length) 

 

        balanced_oracle.barrier() 

 

        # Place X-gates 

        for qubit in range(len(input_string)): 

            if input_string[qubit] == '1': 

                balanced_oracle.x(qubit) 

        if not eval_mode: 

            # Show oracle 

            print("This is the oracle function, aka the black box. NORMALLY 

THIS WOULD BE HIDDEN!") 

            print(balanced_oracle) 

        return balanced_oracle  

 

from qiskit import QuantumCircuit 

 

 

class SecretNUmberOracle: 

    @classmethod 

    def create_secret_number_oracle(cls, random_binary, eval_mode: bool) -> 

QuantumCircuit: 

 

        n = len(random_binary) 

        secret_number_oracle = QuantumCircuit(len(random_binary) + 1, 

len(random_binary)) 

        # Use barrier as divider 

        secret_number_oracle.barrier() 

        # Controlled-NOT gates 

        for qubit in range(len(random_binary)): 

            if random_binary[qubit] == '1': 

                secret_number_oracle.cx(qubit, n) 

        secret_number_oracle.barrier() 

        if not eval_mode: 

            # Show oracle 

            print("This is the oracle function, aka the black box. NORMALLY 

THIS WOULD BE HIDDEN!") 

            print(secret_number_oracle) 

        return secret_number_oracle  



 

C-6 

 

import constants 

from tools import Tools 

 

 

def print_answers(answer_of_simulation, answer_of_real, least_busy_backend, 

classical_answer, algorithm): 

    print("****************** FINAL * RESULTS *******************") 

    if answer_of_simulation is not None: 

        Tools.print_simul(answer_of_simulation, algorithm) 

        print("******************************************************") 

    if answer_of_real is not None: 

        Tools.print_real(answer_of_real, least_busy_backend, algorithm) 

        print("******************************************************") 

    if classical_answer is not None: 

        Tools.print_classical_answer(classical_answer, algorithm) 

        print("******************************************************") 

    return 

 

 

class AlgorithmsManager: 

    @classmethod 

    def showcase(cls): 

        answer_of_simulation = None 

        answer_of_real = None 

        least_busy_backend = None 

        classical_answer = None 

 

        algorithm = input(constants.input_message_1) 

        while algorithm not in constants.acceptable_algorithm_inputs: 

            algorithm = input(constants.input_message_1) 

 

        execution = input(constants.input_message_2) 

        while execution not in constants.acceptable_execution_inputs: 

            execution = input(constants.input_message_2) 

 

        if execution == "0": 

            classical_answer = Tools.execute_classically(algorithm) 

        elif execution == "1": 

            answer_of_simulation = Tools.execute_in_simulator(algorithm) 

        elif execution == "2": 

            answer_of_real = Tools.execute_in_real_device(algorithm) 

        elif execution == "3": 

            combined = Tools.execute_both(algorithm) 

            classical_answer = combined[0] 

            answer_of_real = combined[1] 

 

        print_answers(answer_of_simulation, answer_of_real, 

least_busy_backend, classical_answer, algorithm) 

 

 

The manager for handling algorithm execution choices. The different choices are to run 

the algorithm classically, on a real quantum device, on the IBM simulator or both on a 

quantum real device and classically on the local device. 
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from qiskit import QuantumCircuit 

 

from QCLG_lvl3.oracles.cnot_oracle import CnotOracle 

 

 

class DeutschJosza: 

 

    @classmethod 

    def deutsch_josza(cls, bit_string: str, eval_mode: bool) -> 

QuantumCircuit: 

        n = len(bit_string) 

 

        dj_circuit = QuantumCircuit(n + 1, n) 

        # Apply H-gates 

        for qubit in range(n): 

            dj_circuit.h(qubit) 

 

        # Put output qubit in state |-> 

        dj_circuit.x(n) 

        dj_circuit.h(n) 

 

        # Construct balanced oracle 

        balanced_oracle = CnotOracle.create_cnot_oracle(bit_string, n, 

eval_mode) 

 

        # Add oracle 

        dj_circuit += balanced_oracle 

 

        # Repeat H-gates 

        for qubit in range(n): 

            dj_circuit.h(qubit) 

        dj_circuit.barrier() 

 

        # Measure 

        for i in range(n): 

            dj_circuit.measure(i, i) 

        if not eval_mode: 

            print(dj_circuit) 

 

        # return circuit 

        return dj_circuit 
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from qiskit import QuantumCircuit 

 

from QCLG_lvl3.oracles.secret_number_oracle import SecretNUmberOracle 

 

 

class BernsteinVazirani: 

 

    @classmethod 

    def bernstein_vazirani(cls, random_binary, eval_mode: bool) -> 

QuantumCircuit: 

        # Construct secret number oracle 

 

        secret_number_oracle = 

SecretNUmberOracle.create_secret_number_oracle(random_binary=random_binary, 

eval_mode=eval_mode) 

        num_of_qubits = secret_number_oracle.num_qubits 

 

        # Construct circuit according to the length of the number 

 

        dj_circuit = QuantumCircuit(num_of_qubits, num_of_qubits - 1) 

        dj_circuit_before_oracle = QuantumCircuit(num_of_qubits, 

num_of_qubits - 1) 

 

        # Apply H-gates 

        for qubit in range(num_of_qubits - 1): 

            dj_circuit_before_oracle.h(qubit) 

 

        # Put output qubit in state |-> 

        dj_circuit_before_oracle.x(num_of_qubits - 1) 

        dj_circuit_before_oracle.h(num_of_qubits - 1) 

 

        dj_circuit += dj_circuit_before_oracle 

 

        # Add oracle 

        dj_circuit += secret_number_oracle 

 

        dj_circuit_after_oracle = QuantumCircuit(num_of_qubits, num_of_qubits 

- 1) 

        # Repeat H-gates 

        for qubit in range(num_of_qubits - 1): 

            dj_circuit_after_oracle.h(qubit) 

        dj_circuit_after_oracle.barrier() 

 

        # Measure 

        for i in range(num_of_qubits - 1): 

            dj_circuit_after_oracle.measure(i, i) 

 

        dj_circuit += dj_circuit_after_oracle 

        if not eval_mode: 

            print("Circuit before the oracle\n") 

            print(QuantumCircuit.draw(dj_circuit_before_oracle)) 

            print("Circuit after the oracle\n") 

            print(QuantumCircuit.draw(dj_circuit_after_oracle)) 

            print(dj_circuit) 

        return dj_circuit 

 



 

D-1 

 

 

from QCLG_lvl3.classical.random_binary import RandomBinary 

from tools import Tools 

import constants 

from qiskit.providers import JobStatus 

 

 

class Evaluation: 

 

    @classmethod 

    def evaluate(cls, algorithm): 

 

        if algorithm == "0": 

            cls.evaluate_deutsch_josza() 

        elif algorithm == "1": 

            cls.evaluate_bernstein_vazirani() 

 

    @classmethod 

    def plot_results(cls, inputs: list, quantum: list, classical: list, 

accuracy: list): 

        import numpy as np 

        import matplotlib.pyplot as plt 

        X = np.arange(start=1, stop=len(inputs) + 1, step=1) 

        plt.figure() 

        plt.subplot(211) 

        plt.title("Execution Times") 

        plt.bar(X + 0.00, classical, color='b', width=0.25) 

        plt.bar(X + 0.25, quantum, color='g', width=0.25) 

        plt.ylabel("In seconds") 

        plt.legend(labels=['Classical', 'Quantum']) 

        plt.subplot(212) 

        plt.title("Quantum Accuracy") 

        plt.bar(inputs, accuracy, color='g') 

        plt.ylabel("Percentage") 

        plt.legend(labels=['Accuracy Percentage']) 

        plt.show() 

        return 

 

 

Appendix D contains all code necessary for evaluating algorithms in level 4 of the QCLG. 
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@classmethod 

def evaluate_deutsch_josza(cls): 

    print(constants.input_message_3) 

    test_range = int(input()) 

    while test_range > 14 or test_range < 1: 

        test_range = int(input("Enter a number between 1 and 14.")) 

 

    circuits = [] 

    n_bits = [] 

    quantum_execution_times = [] 

    classical_execution_times = [] 

    success_rates = [] 

 

    print("Evaluating Deutsch - Josza... This might take a while...") 

 

    for number_of_bits in range(1, test_range + 1): 

        n_bits.append(number_of_bits) 

        circuits.append(Tools.prepare_dj(number_of_bits)) 

        total_time = 0.0 

        for i in range(1024): 

            classical_result = Tools.deutsch_josza_classical(number_of_bits) 

            total_time = total_time + classical_result[1] 

        classical_execution_times.append(total_time) 

        completion_percentage = int((number_of_bits / test_range) * 100) 

        print(f"{completion_percentage}% of classical executions done.") 

 

    print("Now looking for the least busy backend...") 

    least_busy_backend = Tools.find_least_busy_backend_from_open(test_range) 

 

    print("Now waiting for the Quantum Batch Job to finish...\nThis will take 

a while...") 

    quantum_results = Tools.run_batch_job(circuits, least_busy_backend) 

    flag = False 

    while not flag: 

        for status in quantum_results.statuses(): 

            flag = True 

            if status != JobStatus.DONE: 

                flag = False 

    print("Quantum experiments finished.") 

 

    print("Preparing plots...") 

    count_jobs = 1 

    for job in quantum_results.managed_jobs(): 

        quantum_execution_times.append(job.result().time_taken) 

        counts_dict = job.result().get_counts() 

        correct_counts = counts_dict.get('1' * count_jobs, 0) 

        print(correct_counts) 

        success_percentage = (correct_counts / 1024) * 100 

        success_rates.append(success_percentage) 

        count_jobs = count_jobs + 1 

 

    cls.plot_results(n_bits, quantum_execution_times, 

classical_execution_times, success_rates) 

    return 

 

 

 



 

D-3 

 

@classmethod 

def evaluate_bernstein_vazirani(cls): 

    print(constants.input_message_3) 

    test_range = int(input()) 

    while test_range > 14 or test_range < 1: 

        test_range = int(input("Enter a number between 1 and 14.")) 

 

    n_bits = [] 

    circuits = [] 

    quantum_execution_times = [] 

    classical_execution_times = [] 

    success_rates = [] 

    random_binaries = [] 

    print("Evaluating Bernstein - Vazirani... This might take a while...") 

 

    for number_of_bits in range(1, test_range + 1): 

        n_bits.append(number_of_bits) 

        classical_result = Tools.bernstein_vazirani_classical(number_of_bits) 

        random_binary = 

RandomBinary.generate_random_binary_v2(number_of_bits) 

        random_binaries.append(random_binary) 

        circuits.append(Tools.prepare_bv(random_binary)) 

        classical_execution_times.append(classical_result[1]) 

        completion_percentage = int((number_of_bits / test_range) * 100) 

        print(f"{completion_percentage}% of preparation done.") 

 

    print("Now looking for the least busy backend...") 

    least_busy_backend = Tools.find_least_busy_backend_from_open(test_range) 

 

    print("Now waiting for the Quantum Batch Job to finish...\nThis will take 

a while...") 

    quantum_results = Tools.run_batch_job(circuits, least_busy_backend) 

    flag = False 

    while not flag: 

        for status in quantum_results.statuses(): 

            flag = True 

            if status != JobStatus.DONE: 

                flag = False 

    print("Quantum experiments finished.") 

 

    print("Preparing plots...") 

    count = 0 

    for job in quantum_results.managed_jobs(): 

        quantum_execution_times.append(job.result().time_taken) 

        counts_dict = job.result().get_counts() 

        correct_counts = counts_dict.get(random_binaries[count], 0) 

        print(correct_counts) 

        success_percentage = (correct_counts / 1024) * 100 

        success_rates.append(success_percentage) 

        count = count + 1 

 

    cls.plot_results(n_bits, quantum_execution_times, 

classical_execution_times, success_rates) 

    return 
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Credentials Directory
# Put your research token here and additional names for: 

# hub, group and project if you want to access research backends. 

 

# Normal account 

account_token_open = '' 

 

# Research account 

account_token_research = None 

hub = None 

group = None 

project = None  

Account_details.py. This file needs to be filled with the appropriate user information in 

order for the QCLG to function properly and be able to make calls to the remote IBM 

systems. 

For this to happen the user needs to create an IBM Q account and generate their token 

on the starting page of login. 



 

E-2 

 

algorithms = ["Deutsch-Josza", "Bernstein-Vazirani"] 

 

experiments = ["Bell State - Hello World", "Superposition with one Qubit", 

"Superposition with three Qubits", 

               "Interference"] 

 

acceptable_execution_inputs = ['0', '1', '2', '3', '4'] 

 

acceptable_algorithm_inputs = ['0', '1'] 

 

acceptable_experiment_inputs = ['0', '1', '2', '3'] 

 

input_message_1 = "Choose an Algorithm: " \ 

                  "\n0 for Deutsch-Josza." \ 

                  "\n1 for Bernstein-Vazirani" \ 

                  "\nYour input:" 

 

input_message_2 = "Enter:" \ 

                  "\n\n0 for execution on the Local Device Simulator." \ 

                  "\n\n1 for execution on the Qasm simulator." \ 

                  "\n\n2 for execution on a real device." \ 

                  "\n\n3 for execution on the local device and real device." 

\ 

                  "\n\n4 for evaluating the algorithm" \ 

                  "\nby running comparisons of classical and quantum inputs 

with different sized inputs." \ 

                  "\n\nYour input:" 

 

input_message_3 = "\nEnter the maximum size of input you would like to 

evaluate" \ 

                  "\n(in number of bits). The maximum is 14." 

cards = ["H", "H", "X", "X", "CX", "SX", "SXDG"] 

 

acceptable_choice_inputs = ['1', '2', '3', '4'] 

 

experimentation_level = "Enter:" \ 

                        "\n\n1 For Level 1 experimentation. (Simple 

experiments)" \ 

                        "\n\n2 For Level 2 experimentation. (The Exciting 

Game)" \ 

                        "\n\n3 For Level 3 experimentation. (Algorithm 

Experimentation)" \ 

                        "\n\n4 For Level 4 experimentation. (Algorithm 

Evaluation)" \ 

                        "\n\nYour input:"  

 

Useful display messages. 
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import constants 

from QCLG_lvl1.qclg_lvl1_manager import SimpleExperimentsManager 

from QCLG_lvl2.the_exciting_game import Game 

from QCLG_lvl3.quantum_algorithms.algorithms_manager import AlgorithmsManager 

from QCLG_lvl4.evaluation import Evaluation 

 

 

class Manager: 

    if __name__ == '__main__': 

        flag = "Y" 

        while flag == "Y": 

 

            choice = input(constants.experimentation_level) 

            while choice not in constants.acceptable_choice_inputs: 

                choice = input(constants.experimentation_level) 

 

            if choice == '1': 

                SimpleExperimentsManager.showcase() 

            elif choice == '2': 

                Game.play_the_exciting_game() 

            elif choice == '3': 

                AlgorithmsManager.showcase() 

            elif choice == '4': 

                algorithm = input(constants.input_message_1) 

                while algorithm not in constants.acceptable_algorithm_inputs: 

                    algorithm = input(constants.input_message_1) 

                Evaluation.evaluate(algorithm) 

 

            flag = input("Would you like to keep experimenting? (Y/N)") 

            while flag is not "Y" and flag is not "N": 

                flag = input("Would you like to keep experimenting? Please 

give a valid response. (Y/N)") 

        print("\nYour experimenting session is now concluded. \nThank you.") 

 

 

Code for the manager class responsible for branching to the four levels of QCLG. 
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from datetime import datetime 

import matplotlib.pyplot as plt 

from qiskit import QuantumCircuit, BasicAer, execute, IBMQ, transpile 

from qiskit.providers import BaseJob 

from qiskit.providers.ibmq import least_busy, IBMQJobManager 

from qiskit.providers.ibmq.managed import ManagedJobSet 

from qiskit.visualization import plot_histogram 

 

import constants 

from QCLG_lvl3.classical.bernstein_vazirani_classical import BersteinVaziran-

iClassical 

from QCLG_lvl3.classical.classical_xor import ClassicalXor 

from QCLG_lvl3.classical.random_binary import RandomBinary 

from QCLG_lvl3.quantum_algorithms.bernstein_vazirani import BernsteinVazirani 

from QCLG_lvl3.quantum_algorithms.deutsch_josza import DeutschJosza 

from credentials import account_details 

 

 

class Tools: 

    @classmethod 

    def calculate_elapsed_time(cls, first_step: datetime, last_step: 

datetime): 

        difference = last_step - first_step 

        return difference.total_seconds() 

 

    @classmethod 

    def run_on_simulator(cls, circuit: QuantumCircuit): 

        # use local simulator 

        backend = BasicAer.get_backend('qasm_simulator') 

        shots = 1024 

        results = execute(circuit, backend=backend, shots=shots).result() 

        answer = results.get_counts() 

        max_value = 0 

        max_key = "" 

        for key, value in answer.items(): 

            if value > max_value: 

                max_value = value 

                max_key = key 

        return max_key[::-1] 

 

    @classmethod 

    def run_on_real_device(cls, circuit: QuantumCircuit, least_busy_backend): 

 

        from qiskit.tools.monitor import job_monitor 

        shots = int(input("Number of shots (distinct executions to run this 

experiment: )")) 

        job = execute(circuit, backend=least_busy_backend, shots=shots, opti-

mization_level=3) 

        job_monitor(job, interval=2) 

        return job 
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@classmethod 

def find_least_busy_backend_from_open(cls, n): 

    if account_details.account_token_open is None: 

        account_token = input("Insert your account token: ") 

    else: 

        account_token = account_details.account_token_open 

    if IBMQ.active_account() is None: 

        IBMQ.enable_account(account_token) 

    provider = IBMQ.get_provider(hub='ibm-q') 

    return least_busy(provider.backends(filters=lambda x: x.configura-

tion().n_qubits >= (n + 1) and 

                                                          not x.configura-

tion().simulator and x.status().operational == True)) 

 

@classmethod 

def find_least_busy_backend_from_research(cls, n): 

    if account_details.account_token_research is None \ 

            or account_details.hub is None \ 

            or account_details.group is None \ 

            or account_details.project is None: 

        account_token = input("Insert your account token: ") 

        hub = input("Insert your hub: ") 

        group = input("Insert your group: ") 

        project = input("Insert your project: ") 

    else: 

        account_token = account_details.account_token_research 

        hub = account_details.hub 

        group = account_details.group 

        project = account_details.project 

 

    IBMQ.enable_account(account_token) 

    provider = IBMQ.get_provider(hub=hub, group=group, project=project) 

    print(provider) 

    return least_busy(provider.backends(filters=lambda x: x.configura-

tion().n_qubits >= (n + 1) and 

                                                          not x.configura-

tion().simulator and x.status().operational == True)) 

 

@classmethod 

def print_simul(cls, answer_of_simul, algorithm: str): 

    print(constants.algorithms[int(algorithm)]) 

    print("\nMeasurements: ", answer_of_simul) 

    return 

 

@classmethod 

def print_real(cls, job: BaseJob, least_busy_backend, algorithm: str): 

    results = job.result() 

    answer = results.get_counts() 

    print("\nTotal counts are:", answer) 

    elapsed = results.time_taken 

    print(f"The time it took for the experiment to complete after validation 

was {elapsed} seconds") 

    plot_histogram(data=answer, title=f"{constants.algorithms[int(algo-

rithm)]} on {least_busy_backend}") 

    plt.show() 

    return 
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@classmethod 

def execute_classically(cls, algorithm): 

    if algorithm == "0": 

        return cls.execute_deutsch_josza_classically() 

    elif algorithm == "1": 

        return cls.execute_bernstein_vazirani_classically() 

 

@classmethod 

def execute_in_simulator(cls, algorithm): 

    dj_circuit = None 

    if algorithm == "0": 

        bits = str(input("Enter a bit sequence for the quantum circuit:")) 

        dj_circuit = DeutschJosza.deutsch_josza(bits, eval_mode=False) 

    elif algorithm == "1": 

        decimals = int(input("Give the upper limit of the random number: ")) 

        random_binary = RandomBinary.generate_random_binary(decimals) 

        dj_circuit = BernsteinVazirani.bernstein_vazirani(random_binary, 

eval_mode=False) 

    return cls.run_on_simulator(dj_circuit) 

 

@classmethod 

def execute_in_real_device(cls, algorithm): 

 

    if algorithm == "0": 

        answer = cls.execute_dj_in_real_device() 

        return answer 

    elif algorithm == "1": 

        decimals = int(input("Give the upper limit of the random number: ")) 

        random_binary = RandomBinary.generate_random_binary(decimals) 

        answer = cls.execute_bv_in_real_device(random_binary) 

        return answer 

 

@classmethod 

def execute_dj_in_real_device(cls): 

    bits = str(input("Enter a bit sequence for the quantum circuit:")) 

    least_busy_backend = Tools.choose_from_provider(len(bits) + 1) 

    dj_circuit = DeutschJosza.deutsch_josza(bits, eval_mode=False) 

    answer_of_real = Tools.run_on_real_device(dj_circuit, least_busy_backend) 

    print(f"least busy is {least_busy_backend}") 

    return answer_of_real 

 

@classmethod 

def execute_bv_in_real_device(cls, random_binary: str): 

    dj_circuit = BernsteinVazirani.bernstein_vazirani(random_binary, 

eval_mode=False) 

    least_busy_backend = Tools.choose_from_provider(dj_circuit.qubits) 

    answer_of_real = Tools.run_on_real_device(dj_circuit, least_busy_backend) 

    print(f"least busy is {least_busy_backend}") 

    return answer_of_real 
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@classmethod 

def choose_from_provider(cls, size: int): 

    least_busy_backend = None 

    research = input("Do you want to run this experiment on the research 

backends? (Y/N)") 

    while research != "Y" and research != "N": 

        research = input("Do you want to run this experiment on the research 

backends? (Y/N)") 

    if research == "N": 

        least_busy_backend = Tools.find_least_busy_backend_from_open(size) 

    elif research == "Y": 

        least_busy_backend = Tools.find_least_busy_backend_from_re-

search(size) 

    return least_busy_backend 

 

@classmethod 

def execute_deutsch_josza_classically(cls): 

    number_of_bits = int(input("Enter number of bits for a the classical so-

lution:")) 

    return ClassicalXor.execute_classical_xor(bits=number_of_bits) 

 

@classmethod 

def execute_bernstein_vazirani_classically(cls): 

    decimals = int(input("Give the upper limit of the random number: ")) 

    random_binary = RandomBinary.generate_random_binary(decimals) 

    return BersteinVaziraniClassical.guess_number(random_binary) 

 

@classmethod 

def print_classical_answer(cls, classical_answer, algorithm): 

    time_to_generate_worst_input = classical_answer[0] 

    execution_time = classical_answer[1] 

    bits = classical_answer[2] 

    function_nature = classical_answer[3] 

    print(f"Results of classical implementation for the {constants.algo-

rithms[int(algorithm)]} Algorithm:") 

    print(f"Function is {function_nature}") 

    print(f"Time to generate worse input for {bits} bits took {time_to_gener-

ate_worst_input} seconds.") 

    print(f"Determining if xor is balanced for {bits} bits took {execu-

tion_time} seconds.") 

    print(classical_answer) 

 

@classmethod 

def execute_both(cls, algorithm): 

    answer = [] 

    if algorithm == "0": 

        classical = cls.execute_deutsch_josza_classically() 

        real = cls.execute_dj_in_real_device() 

        answer.append(classical) 

        answer.append(real) 

    elif algorithm == " 1": 

        classical = cls.execute_bernstein_vazirani_classically() 

        real = cls.execute_bv_in_real_device(classical) 

        answer.append(classical) 

        answer.append(real) 

    return answer 
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# Evaluation methods 

 

@classmethod 

def prepare_dj(cls, bits: int): 

    bit_sequence = "0" * bits 

    dj_circuit = DeutschJosza.deutsch_josza(bit_sequence, eval_mode=True) 

    return dj_circuit 

 

@classmethod 

def prepare_bv(cls, random_binary: str): 

    bj_circuit = BernsteinVazirani.bernstein_vazirani(random_binary, 

eval_mode=True) 

    return bj_circuit 

 

@classmethod 

def deutsch_josza_classical(cls, bits: int): 

    return ClassicalXor.execute_classical_xor(bits=bits) 

 

@classmethod 

def bernstein_vazirani_classical(cls, bits: int): 

    random_binary = RandomBinary.generate_random_binary_v2(bits) 

    return BersteinVaziraniClassical.guess_number(random_binary) 

 

@classmethod 

def run_batch_job(cls, circuits: list, least_busy_backend) -> ManagedJobSet: 

    transpiled_circuits = transpile(circuits, backend=least_busy_backend) 

    # Use Job Manager to break the circuits into multiple jobs. 

    job_manager = IBMQJobManager() 

    job_set_eval = job_manager.run(transpiled_circuits, 

backend=least_busy_backend, name='eval', 

                                   max_experiments_per_job=1) # 

max_experiments_per_job =1 very important to get 

    # individual execution times 

    return job_set_eval 

 

 

The supplementary code is required to support all actions involved in the QCLG levels. 

There is a plethora of backend calls to IBM resources, and calls to local implementations 

of classical solutions. 

 

 

 

 

 

 

 

 



 

F-1 

 

 

 

We demonstrate the procedure of setting up QCLG in a new Windows 10 machine. 

The instructions are very similar for Ubuntu with slight modifications required for paths. 

Clone the repository locally by doing the following: 

1. Launch PyCharm. 

 

2. From the “VCS” tab, choose the option “Get from Version Control…” 

 

3. From the pop-up window paste the https URL of the dmsl/quantum repository: 

https://github.com/dmsl/quantum.git 

 

4. Press the Clone button and choose to open on a new window. 

 

The project will not yet work. We need to create and setup the conda environment and 

setup a Run Configuration in PyCharm. 

 

For the conda environment. 

Install Anaconda. 

Open an Anaconda cmd. 

We will now need to create the environment using these instructions: 

https://docs.anaconda.com/anacondaorg/user-guide/tasks/work-with-environments/ 

We have uploaded our environment into our personal account, (sooodos/quantum) and 

we can activate it with the following command. 

conda create --name my_env_name sooodos/quantum 

 

After the installation finishes, go back to PyCharm. In the bottom-right corner click on 

the Project Interpreter box. 

Choose the “Add Interpreter…” option. 

From the pop-up window choose “Conda Environment” and then click on the “Existing 

environment” option. 

https://github.com/dmsl/quantum.git
https://docs.anaconda.com/anacondaorg/user-guide/tasks/work-with-environments/
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Now you need to search for the python.exe script responsible for the Interpreter. 

By default, it should be located in C:\Users\NameOfUser\Anaconda3\envs\ 

my_env_name \python.exe. 

Save changes. 

Now we need to add a Run Configuration from PyCharm. 

Go to the upper-right corner of the window, the Run Configurations box is located to the 

left of the “run” icon. 

Click on it and then click “Edit Configurations”. 

On the pop-up window click the “+” icon and choose “Python”. Now we need to add the 

script path of manager.py in order to create our Run Configuration. Just click on the folder 

icon which is on the far-right corner of the “Script path” place holder and find manager.py 

from the project hierarchy. 

Click Apply and OK. 

 

Now add the token generated by your IBM Account and insert into the account_details.py 

file in the corresponding token placeholder. 

 

QCLG is now operational. 

 

 


