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Abstract

This thesis aims to gain a better understanding of the operational mode of neurons. More
specifically, we focus on simple cells of the cat primary visual cortex. First, we apply
an existing metric to determine single neurons’ operational mode. We then develop two
novel methods with which we try to infer the amplitude, duration and synchronicity of
the individual presynaptic input from the postsynaptic membrane potential. Understand-
ing the underlying input parameters and especially the level of synchrony is essential in
determining the neural operational mode. The methods are tested on simulated data and
later applied to the real data.

According to the first proposed method, we examine the distribution of local maxima
during the pre-spiking period and local minima during the inhibitory period of the mem-
brane potential. We show that an estimate of the amplitude can be extracted by fitting
Gaussian bells on the histograms, suggesting that peaks of the histogram arise on discrete
multiples of its magnitude.

For the second method, we measure the variability of a filtered version of the mem-
brane potential, with the filter being tuned to events of a given duration. We then in-
vestigate how the variability is affected by the different parameters of presynaptic input,
namely amplitude, duration and synchrony of individual events, using simulated data.
Each parameter is examined separately through simulations of uniformly or randomly
distributed alpha functions.

For a series of isolated peaks of the potential, the variability is highest for filter time
window equal to the duration of the peaks. Thus, by increasing the duration of the indi-
vidual peaks, we note slower increase of variability as a function of filter window size.
Moreover, for randomly timed peaks the variability remains relatively at the same level
after reaching a certain maximum value. There is also a clear correlation between the
height of the peaks and variability. The effects of synchrony require further study.

Based on the observations on simulated data, we provide an estimate of the features

of presynaptic excitatory and inhibitory input of the real neuron.
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Chapter 1

Introduction
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1.1 Introduction

Neurons constitute the fundamental units of the brain and nervous system, propagating
signals through the generation of characteristic electrical pulses, also called action po-
tentials or spikes. Neural coding refers to the study of how information is encoded into
sequences of spike trains to be processed by neurons and how it can be decoded back.
The two most prevailing views are that information is encoded on the average firing rate,
termed as rate code [2]], or it is conveyed in the precise inter-spike intervals, termed as
temporal code [40)].

The neural operational mode drew a lot of attention and became the center of a debate
among the neuroscience community. Based on the above encoding schemes arise the neu-
ral operational modes of temporal integration [8,37,38]] and coincidence detection [ 1,4 1],
which correspond to rate and temporal code, respectively. Among the contributions, that
were made in order to determine the operational mode of a neuron is the normalized
pre-spike slope (NPSS) [27]]. The metric provides a measure of the contribution of tem-
poral integration or coincidence detection to the operation of a neuron, by normalizing
the slope of the membrane potential preceding each spike between a lower and an upper
bound. The lower bound corresponds to the case of temporal integration, where as the
upper to a perfect coincidence detection. A modified version of the NPSS was later in-

troduced addressing the limitations of the initial definition, which did not consider any



inhibitory input [47]].

The major purpose of this thesis is to investigate the behavior of neurons from the cat
primary visual cortex and determine their operational mode. A characteristic attribute of
mammalian’s area V1 of the visual cortex is its orientation selectivity. The behavior of
V1 neurons is captured by the broadly accepted and used Hubel & Wiesel model [22].
The model distinguishes V1 cells into two types, namely, simple and complex, according
to their response on different stimuli, in the form of rotating black and white stripes. It
is based on the principle, that simple cells’ receptive field consist of elongated ON and
OFF type subfields. In case of stimulus, where light covers the ON area and dark the
OFF area, the cell is excited, while in the opposite scenario the cell in inhibited. Thus, the
rotation angle of the receptive fields determines their preferred orientation. Consecutively,
complex cells receive input from simple cells. In contrast with simple cells, the receptive
fields of complex cells are not divided into ON/OF F subfields, as they consist of multiple
overlapping simple cells’ receptive fields of the same orientation preference.

The study is focused on simple cells. We first apply the empirical procedure of the
modified NPSS metric [47] and implement a computational model of the simple cell and
the LGN receptive fields, according to the Hubel & Wiesel model with the push-pull
mechanism. Additionally, we propose two methods of inferring characteristics of the
presynaptic input from the postsynaptic membrane potential, in order to be used in the
simulation. In particular, we analyze the distribution of the local extrema and measure the

variability of the membrane potential.

1.2 Thesis outline

The thesis consists of five chapters. The second chapter makes a brief reference to the
background and previous work on neural coding and operational mode. In addition, the
basic concepts underlying the primary visual cortex are reported, as well as how such
cells can be modeled. The third chapter includes details of the methodology, that was
followed and the implementation of the work and a short presentation of the intracellular
recordings, on which the study is based. The results are discussed on the fourth chapter.
The last chapter is a summary of the conclusions and possible future work, around this

thesis.
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Background

Contents
2.0 NeuralCodel ....... ... ..t ineen 3
2.2 Neural operationalmodes|. . . . ... ................. 4
[2.2.1  Temporal integration or coincidence detection|. . . . . . . . .. 4
[2.2.2  'The normalized pre-spike slope (NPSS) measure| . . . . . . .. 5
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2.1 Neural Code

Neurons in the brain process information by converting the receiving continuously vary-
ing spatiotemporal pattern/information into a train of spikes. Neural coding refers to the
study of how information is representated and processed by neurons. The problem of neu-
ral code can be viewed from two opposite perspectives, considered as the opposite sides
of the same coin. Neural encoding is the mapping from stimulus to the neuron’s response,
which involves the observation of how the neuron responds, to different stimuli and the
definition/implementation of models, with the aim of understanding and predicting re-
sponses to other occasions. Neural decoding is the reverse mapping of neuron’s response

to external stimulus.



There has been a long-standing debate among the neuroscience community, about the
mechanisms used by neurons to encode information into spike trains. The main focus of
the controversy was whether neurons use rate or temporal coding.

Rate code is the earliest proposed mechanism, which states that all the information
is conveyed on the average rate of firing (generally stochastic) [2]]. This hypothesis was
supported by the fact, that in many cases, neurons responded to the same stimulus with
different spike trains, while the average firing rate showed relatively small fluctuations
[6,44]. Rate code is considered to be robust to noise/inter-spike interval variability, since
temporal jitter might alter the relative timing of individual spikes, but not the overall rate.

On the other hand, in temporal code, information about the stimulus is conveyed in the
precise inter-spike intervals. Temporal code is generally more complex and theoretically

much more efficient than rate code [40].

2.2 Neural operational modes

2.2.1 Temporal integration or coincidence detection

The two most dominant modes of neural operation are temporal integration and coinci-
dence detection. The first suggests that the neuron acts as an integrate and fire device,
depending on the input rate (rate code) [8,37,38]], where as the latter takes into account
the synchronous arrival of the input (temporal code) [1,41]. The difference between these
two modes, can be characterized by the duration of the interval over which the neuron
summates the presynaptic input, in other words, the temporal accuracy, that the input is
taken into account. In case the integration interval is short, in respect to the presynaptic
interspike interval, the neuron can be described as a coincidence detector. On the other
hand, if this interval is longer, the neuron acts as a temporal integrator, firing a response
after a certain number of presynaptic spikes on average.

Functional implications of both mechanisms have been proposed in the past. Coin-
cidence detection has been associated with Hebbian learning and memory formation in
the brain [9,20] and synaptic plasticity [31]. Temporal integration has been linked with
different cognitive processes, namely decision making [32] and motion perception [[17].

Several contributions were made, in order to determine/characterize the operational

mode of a neuron. For instance, the coincidence advantage measure tried to assess the
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ability of synchronous and asynchronous presynaptic spikes (termed synchronous and
asynchronous gain) to cause a postsynaptic spike [1]. The results suggested that the cor-
tical neurons act as coincidence detectors, than temporal integrators. Other contributions
followed the argument that in integration mode, the spike train should be regular at high
firing rates and tried to explain the high firing irregularity of cortical neurons, using the
term coefficient of variation (CV) [7,11,41]]. Integration time window was another mea-
sure, based on the idea that a temporal integrator would have long integration time in
respect to the response rate, while in contrast for coincidence detection that interval is

short [26].

2.2.2 The normalized pre-spike slope (NPSS) measure

Another proposed measure to identify the operational mode of a neuron is the normalized
pre-spike slope (NPSS) [27]]. 1t is based on the normalized slope of the membrane poten-
tial during a predefined time window prior to the spike. The slope is linearly normalized
for each spike between a lower bound, representing the case where the neuron acts as a
perfect integrator and an upper bound as if the neuron acts as a perfect coincidence detec-
tor. One of the limitations of the initial definition of NPSS, is the fact that it relied on the
assumption that there were no inhibitory inputs.

An adaptation of the NPSS was introduced in [47] taking into account both excitatory
and inhibitory inputs. In addition to the theoretical estimation of the bounds, an empirical
process was demonstrated applying the metric on experimental data. Spikes were identi-
fied after the potential reached a specified value, adopted from previous work on the same
data [29]. The ISIs during the non-stimulated period are defined as time between the low-
est point of the "valley" (a term introduced in [29]) and a specified time prior to the next
spike. For the stimulated period, the same definition of ISIs was used, as in [30]], from
the lowest point of the valley until the last decaying point before the following spike. The
pre-spike slopes were grouped according to the ISI and for each group the upper and lower
bounds were set to the maximum and minimum slopes, respectively. In order to smooth
the results two 3rd degree polynomial functions were fitted on the bounds and shifted, so
that they encompass the majority of the values. However as noted by the authors [47], the
adapted theoretical NPSS cannot correctly infer the operational mode of a neuron, as the

theoretical upper bound calculation should be modified such that it becomes a function of
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the excitatory/inhibitory input ratio.

2.3 Neural mechanisms in the visual cortex

2.3.1 Primary visual cortex

The visual cortex can be described at several levels of functional organization. The pri-
mary visual cortex, also known as visual area 1 (V1) is considered to be the first level
of cortical processing of visual information. V1 neurons receive their main visual input
from the lateral geniculate nucleus of the thalamus (LGN) and send their main output
to subsequent, higher visual areas and subcortical structures e.g., V2, V3, MT etc. [16].
V1 also receives input from other brain regions, including pulvinar, claustrum, nucleus
paracentralis, raphe system, locus coeruleus and the nucleus basalis, that are thought to
have modulatory role [39]. One example is the cholinergic input from the nucleus basalis,
which is suggested to be associated with alertness and attention, by changing the excitabil-
ity of V1 neurons [19].

Area V1 is found in the cortex of all mammalian species [28], however research
has been mainly conducted in carnivores (cats and ferrets), rodents (mice) and primates
(macaques and humans). In primates, V1 corresponds to Brodmann’s area 17, also called
striate cortex [45]], while in cats, V1 includes both areas 17 and 18, since both receive
direct input from the LGN [34]]. Cat primary visual cortex drew a lot of attention, due to
the fact that the majority of cells in layer 4, the cortical layer that receives the dominant
LGN input, are highly selective for stimulus orientation, although the same is not true in

many other species.

2.3.2 Orientation selectivity of neurons in the visual cortex

A remarkable attribute of V1 neurons is their orientation selectivity, which does not apply
to the relay cells of LGN, that provide the most information to the cortex. This property
was first studied by Hubel & Wiesel [22], who proposed a simple model, which still
remains at the center of a long-standing controversy over the synaptic mechanisms that
underlie the orientation selectivity. Their model explains orientation selectivity of the cat

visual cortex, considering only the thalamic input to a simple cell in layer 4.



Based on the Hubel & Wiesel model V1 neurons are divided into two types: simple

and complex.

Simple cells

Simple cells are characterized by the elongated, adjacent ON and OF F subfields of their
receptive fields. The subfields are positioned alongside each other, with their long axes
rotated in an angle, that determines the preferred orientation of the cell. An illustration the
simple cell receptive field is shown in Fig. Simple cells’ receptive fields are derived
from the receptive fields of geniculate relay cells. An ON subfield consists of several ON-
center relay cells, whose receptive field centers are aligned along the same region (Fig.
[2.1). Subsequent studies provided further support to the above statement [[14,36]. Other
arrangements of the subregions are also possible, e.g., a central OF F region surrounded
by ON regions, or one ON and one OF F region.

A simple cell is excited when light spots fall in the ON area and dark spots on the OF F
area. In the case of the reverse pattern of stimulation (dark on ON and light on OFF),
the neuron is inhibited. This is also referred to as the push-pull mechanism. Source of
the inhibition is shown to be intra-cortical relay cells [21]. Moreover, when the receptive
field is uniformly illuminated or darkened, simple cells respond noticeably less, because
of the mutually antagonistic relationship of the subregions. It is also suggested that the
intracortical inhibition is the dominant mechanism of suppression [21]]. Estimation of the
fraction of excitatory input and the strength of inhibitory input in a push—pull model of
the inputs to V1 simple cells is described in [10]]. The results indicate that the maximum
strength of the inhibition is about 30% of the maximum strength of excitation and that the
V1 cells’ firing can be induced if the percentage of active excitatory LGN inputs, exceeds
about 40%.

The ratio of the elongation (length:width) of a subfield has been reported to range from
1.7 to 13 [23]. Similar values were proposed by [18}25]. Furthermore, as it is predict-
ed/implied by the Hubel & Wiesel model, the shape of the subfields is correlated with the
width of the orientation tuning curves; cells with longer receptive fields, showed sharper
sensitivity to the optimally oriented stimulus. [18,23]. At later study the elongation was
found to be minimal, having mean ratio of 1.7 [35]. These authors mentioned that the

methodology used in previous work to determine the length of the receptive fields might
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have led to overestimation of that ratio.

Figure 2.1: (Left) A receptive field of a simple cell in the cat visual cortex. A light
covering the ON subregion (x) or dark the OF F region (triangles) excites the cell, whereas
the reverse arrangement, light on OF F region or dark on the ON region inhibits the cell.
(Right) The model of Hubel & Weisel [22] explaining the organization of simple receptive
fields. The V1 simple cell (bottom right) receives input from relay cells (top right) whose
receptive-field centers are located on the simple cell’s central ON region. OF F relay cells
whose receptive- field centers would be located on the simple cell’s OF F' regions are not

shown. Adapted from [22]

Complex cells

Complex cells are selective for orientation and spatial frequency, similar to the simple
cells, although their selectivity cannot be directly predicted from the substructure of their
receptive field [22]]; there is no clear division of ON/OFF subregions. Thus, complex
cells respond to a stimulus of the appropriate orientation regardless of position within the
receptive field, e.g., in the case of a drifting visual grating, for simple cells the response
is periodic, whereas in complex cells it is relatively continuous in time. Complex cells
receive input from several simple cells and can be modeled by spatial pooling of simple
cells, with overlapping receptive fields but different arrangements of ON and OF F regions
[33]].

For the purposes of this thesis, we are focused on the operational mode of simple cells,

only.



2.3.3 Operational mode of Visual Cortical Neurons

Several evidence suggests that cortical neurons lower their threshold in response to rapid
depolarizations, a form of sensitivity that increases according to the level of membrane
potential [4}/13]]. Further to that statement, findings support an adaptive coincidence-
detection mechanism [5]. In the latter work, spike threshold showed an inverse nonlinear
dependence on the rate of depolarization, which became steeper, with broader range of
thresholds, when the cell was more depolarized. Based on these results, it was proposed
that under high-input conditions the neuron adaptively enhances the sensitivity to syn-
chronous inputs while simultaneously decreasing the sensitivity to temporally uncorre-
lated inputs (see Fig. 2 of [5]). In addition, spike activity and high-frequency fluctuations
in membrane potential are both better tuned for stimulus orientation than the mean mem-

brane potential.
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Methods
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3.1 Procedure of investigation

We first analysed intracellular recordings from simple cells of cats’ visual cortex and ap-
plied the empirical procedure of the modified NPSS metric [47]. Taking into account the
bursting behavior of the simple cells in certain stimuli, we made a selection of the spikes
to be considered for the NPSS metric. Secondly, the neuron, the LGN receptive fields
and stimulus were simulated with the prospect to apply the same metric to the simulated
data. Knowing the underlying mechanisms of the simulation model, we would be able to
validate the results and specify the operation of the real neuron. A critical point was the

determination of the parameters of the simulation, namely amplitude, duration and degree
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of synchronization of the presynaptic input. Information about these parameters was de-
rived after the examination of the postsynaptic potential of intracellular recordings. More
specifically, we investigated the distribution of local maxima and local minima of the
postsynaptic potential and tried to interpret the variability of the potential, after a series

of simpler and gradually increased complexity simulations.

3.2 Data

The data used consisted of intracellular recordings from simple and complex neurons of
area 17 of a cats’ visual cortex, previously described in [[12]]. Estimation of membrane re-
sistance and time constants of the same data based on off-line fitting of the cells’ responses
to current pulses of different amplitude was demonstrated in [3]]. Neurons were stimulated
by monocularly presented drifting sine-wave gratings. Optimal spatial frequency was de-
termined from computer-generated spatial frequency tuning curves. Grating size, position
and temporal frequency (1, 2, or 4 Hz) were adjusted to be optimal. The stimuli consisted
of 12 different orientations (0-330° in 30° steps) and an additional blank screen presenta-
tion, 13 stimuli in total. The duration of each orientation was 4 sec. Sample-rate of the
recordings was 4.0984e+03 Hz (time-step of 0.244 msec). Junction potentials according
to the authors were measured to be 10 mV and were taken into account (added to the
reported membrane potential values).

We focused on simple cells; cell 61 was chosen as a representative. As shown in
Fig. and the orientation tuning curves Fig. 4 of [12], cell 61 has a clear preference
of orientation, eliciting no response to stimuli of non-preferred orientations and display-
ing greater activity for one direction of motion (270°) over the opposite (90°). The cell
was stimulated by sinusoidal grating of frequency 4 Hz. A sine wave of the same fre-
quency matches the elicited bursts in the response for preferred orientation and direction,
as illustrated in Fig. [3.1]

Spike times in membrane potential traces were found by high-pass filtering the po-
tentials and finding the crossings of the result with a threshold. For the purposes of the
following experiments the spikes were removed, by replacing them with a straight line
connecting the points before and after the spikes. According to [|12]], the spikes predomi-

nantly begin 1msec before and end Smsec after the peak in the membrane potential (mean
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duration 6.5msec).
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Figure 3.1: Responses of cell 61 for each stimulus direction. The cell shows intense
activity for the preferred (270°) and opposite direction (90°), while nearly no response for
the other directions. Below the membrane potential, a sine wave is shown with the same

temporal frequency (4 Hz) as the stimulus.

3.3 Application of NPSS on intracellular recordings

In order to examine the operational mode of the given neuron based on its activity, we
used the NPSS metric. Instead of applying NPSS on every spike, we chose the first spike
of each burst and burst-group. Bursts were defined as the spikes having interspike interval
at most 0.007 sec (colored red in Fig. [3.2)) and burst-groups as the bursts with maximum
interval time of 0.05 sec (colored green in Fig. [3.2)).

Inter-burst interval ("interspike-interval") was defined as the time between the last
spike of the previous burst (the time after that spike at V;;) and the first spike of the next
burst (at V;;,). The histogram (Fig. shows two clusters of time-intervals, the shorter
(more frequent) between the bursts belonging to a burst-group and the longer intervals

between the burst-groups.
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Figure 3.2: Membrane potential of cell 61 for preferred orientation (270°).

The NPSS measure requires to define a coincidence window, that corresponds to the
maximum time-difference between a set of spikes, which is considered synchronous. The
slope is later calculated from the beginning of the window to its end. In our case, this
window had variable duration, as the start-point was set at the time when potential reaches
Viest for the last time and end-point as the time the potential reaches V;;, before the spike.
In case of burst-groups, when the potential stays close or even above the V;;, the start-point
was set at the time of minimum potential value between the spikes and the end-point at

Vi1, 1f the start-point is below V;;, otherwise at the exact time of the spike. An example is

illustrated at Fig. [3.3]
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Figure 3.3: Close-up of the membrane Figure 3.4: Histogram of ISI lengths of cell
potential of cell 61 for preferred orienta- 61 for preferred orientation (270°).

tion (270°). Stars indicate the start- and

end-points used for the slope calculation

(dashed grey line).
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Figure 3.5: Spikes of cell 61 for preferred orientation.

To verify the correctness of the implementation, we reproduced Fig. 3 of [47] using
the same data. The original figure is shown in Fig. [3.6p and its reproduction in Fig. [3.6p.
We used a coincidence window of 7 msec, as described in the paper. The differences
compared with the original figure lie in the different methodology used to calculate the
interspike intervals (ISIs). According to the authors, for the silent period (non-stimulated
period of the recording) the start of the ISI was defined as the lowest point of a valley,
as in [29] and the point at 0.01005 sec prior to the next spike as the end. In addition, for
the stimulated period, the ISI definition differed slightly i.e., the end of ISI was the last
decaying point before the spike. In contrast, we empirically defined the ISIs, as the last
time the membrane potential had value above -50 mV until the time it reached -30 mV.
Moreover, for the original figure, the ISIs longer than 3 sec were grouped together; that is

the reason why the fitted functions remain constant after that duration.

55

fitted function of upper bounds
O upper bounds per isi

rrrrrrrr fitted function of lower bounds
+  lower bounds per isi

fitted function of upper bounds
O  upper bounds per isi

""""" fitted function of lower bounds
+ lower bounds per isi

U
o
1]

o
8 o

pre-spike slope bounds
&
- LT LA
Boe8
o o
oso
°
oo
°®
£
pre-spike slope bounds
w
[07e} O
@08
o
o
00
&

@
® o . 8o o &5
4 %ﬁ%’%‘ °”g: 00 : R ° FOOCD@ED SO0 GBED o ® ®
®
1HO@BtaD D HOd @ b @ ®
B e et et & P b 4.5 [+ SEDr @o-osid
+ e 10RO © 00 + L
HeolH  + Ho & ® ° ° HHHE +O Srd & @
3.5 [HHHHHHE + ® ® e H-Hbd @D D ® ®
T F AL @ e m————————— O @ T e
++ F_——— ® @ D
e ® H Ot heeeeen ]
Qe ®©
N [T
3 - '
0 1 2 3 4 5 6 0 1 2 3 4 5
length of ISI (s) length of ISl (s)

Figure 3.6: Upper and lower bounds for each group range of ISIs, indicated by circle and
cross, respectively. The solid and dashed lines represent the fitted functions for each case.

(Left) Original Fig. 3 of [47]. (Right) Our reproduction of the same figure.
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The implementation of the NPSS and its application on the intracellular recordings is

in[AIland[A2

3.4 Simulation of V1 neuron

The simulation consists of a V1 simple cell, modeled by a Leaky Integrate-and-Fire (LIF)
neuron [43]], receiving presynaptic input from LGN cells of centre-ON or centre-OF F
type. Presynaptic spike trains were generated by inhomogeneous Poisson processes,
whose rate was modulated by the stimulus and position of the LGN receptive fields at

the current time.

3.4.1 Neuron model

The V1 simple cell was defined as a LIF model (Eq. using the BRIAN simulator
[42], with membrane time constant 7, spike threshold V;;,, refractory period T, reset

potential V,s; and membrane resistance Ry,.

Y V0~ Vinal + Rl ()
: 3.1

V(t) = Vyeser, during refractory period
The synaptic input current to the neuron was defined as the summation of ¢-function

shaped postsynaptic currents (PSC), described by

1(1) =Y hs(r — 1) (3.2)

where ¢; is the time of presynaptic action potentials and &,(¢) is the PSC kernel

-1
weT, 'texp(—t/Ts), t>0.
hy(t) = ! (~t/%) (3.3)

0, otherwise.

where w is the synaptic weight and 7 the synaptic time constant. /4(¢) peaks at value
determined by w at time equal to 7;. Excitatory and inhibitory synapses may have different
weight and time constant.

The implementation/definition of the neuron and synapses is in|A.9

15



3.4.2 Stimulus and receptive fields

The neuron was stimulated by sinusoidal grating varying both in space and time. The

stimulus is described by

s(x,y,t) = Acos(Kxcos® + Kysin® — ®)cos(wt) (3.4)

where x and y are the coordinates on the grid; 7 is the time; K and @ are the spatial
and temporal frequency; ® and & are the orientation and spatial phase of the grating; A

is the contrast amplitude. Fig. is an illustration of the stimulus, showing the effect of

o B
0_
2/ K
X

Figure 3.7: (A) A square-wave grating analogous to the sinusoidal grating of Eq.

each parameter.

27 Jw

t

where the lighter stripes are areas of s > 0 and darker stripes of s < 0. K determines the
spatial frequency of the wave and O, its orientation. & is the spatial phase, which shifts
the pattern in the direction perpendicular to the direction of the stripes. (B) The light-
dark intensity at any point of the spatial grating oscillates sinusoidally in time with period

27/ ®. Adapted from Fig. 2.8 of [15].

The spatial structure of the receptive fields of the LGN cells were captured by the

difference of two Gaussians (DoG), adapted from the spatiotemporal LGN model of [46].

x2 +y2 ) Ksurround < ( x2 +y2 ))

;) o 2 )
2GC€HI er 2n Gsurround 2O-surround

K
DS — i(ﬂ exp(

3.5
27r6c‘zenter

and parameter values Ocenrer = 10.6°, Ogyrrouna = 31.8° and Keenter / Ksurrouna = 17/16.
The sign 4 determines the type of the receptive field, center-ON (+) and center-OF F

(-). The result was then normalized, so that the sum of absolute values is one, in order
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to control the firing rate. Fig. [3.8p illustrates a center-ON spatial receptive field. The

implementation of the receptive field’s kernel is in[A.T1]

T —os
0.0 0.0
y(crggmeg) 05 . 0.5 x(degfea"‘

(a) (b)

Figure 3.8: (a) A center-ON spatial receptive field modeled as a DoG. The positive and
negative areas are colored red and blue, respectively. (b) Illustration of the stimulus and
receptive fields. On the left side there is one center-ON receptive field (with red/positive
center and blue/negative surround area) and on the right one center-OF F receptive field
(with blue/negative center and red/positive surround area). The black(=-1) and white(=1)

stripes represent the stimulus used in the simulations.

The firing rate of each LGN cell at each time is equal to the sum of the element-wise
product of the receptive field kernel with the stimulus, negative firing rate set to zero. The
optimal stimulus for a center-ON receptive field, in order to achieve the maximum firing
rate is white (=1) in the center and black(=-1) in the surrounding area. This position was
never achieved because of the stimulus’ shape, i.e., stripes instead of circles. As shown
in Fig. [3.8b, the spatial frequency of the stimulus was set so that the width of each black
and white stripe is equal to the diameter of the center of each receptive field and the
surrounding area falls into the opposite colored stripe. This has as a result the maximum
possible firing rate. The calculation of the firing rate in the simulation is in[A.13]

For the purposes of the experiments, the receptive fields were placed in two rows; a
row with excitatory center-ON and inhibitory center-OF F receptive fields and a row of
the opposite combination, inhibitory center-ON and excitatory center-OF F'. The optimal
case of the stimulus for excitation is when there is light on the first row (activation of

excitatory center-ON) and dark on the second row (activation of excitatory center-OF F'),
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thus the V1 cell receives only excitatory input. On the other hand, the optimal case for
inhibition is when the first row is in the dark (activation of inhibitory center-OF F') and

light on the second row (activation of inhibitory center-ON).

3.5 Determination of presynaptic input parameters

We tried to infer the following parameters of presynaptic input, from the postsynaptic

potential, in order to optimize the simulation’s parameters:

1. Amplitude of individual presynaptic events
2. Duration of individual presynaptic events

3. Level of synchronization

For the purpose of determining the amplitude of the presynaptic events, we examined
the distribution of the local maxima/minima of the postsynaptic potential. We also intro-
duced a measure of the variability of the postsynaptic potential and used the method for
specifying the above parameters, which were required by the simulation.

Considering the fact that at the preferred orientation the neuron receives presynaptic
input mostly only excitatory or inhibitory, we separated these two cases, by dividing the
postsynaptic membrane potential into three different regions based on neuron’s resting

potential:

1. Pre-spiking period: the period starting from the time the membrane potential is

above the resting potential until the first spike of each burst (colored green in Fig.

3.9)

2. Excitatory period: when the membrane potential is above the resting potential
(colored blue in Fig. [3.9). Note that the pre-spiking period in included in the

excitatory. Spikes are not considered in the calculations.

3. Inhibitory period: when the membrane potential is below the resting potential

(colored orange in Fig. [3.9).
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Because the spikes of the postsynaptic neuron affect its potential, keeping the potential
high and “hiding” the effects of the presynaptic input, attention was focused on the pre-

spiking and inhibitory periods.

0 T T T T T T T
spikes
excitatory
-20 - inhibitory
pre-spiking
S
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o
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Figure 3.9: The different periods on intracellular recordings (cell 61 - preferred orienta-
tion). Note that the pre-spiking period (green line) in included in the excitatory period

(blue line).

3.5.1 Distribution of local extrema of postsynaptic potential

We examined the distribution of local maxima for the pre-spiking period and local minima
for the inhibitory period, with the hypothesis that the height of presynaptic inputs would
be reflected on the resulted histogram as peaks on discrete multiples of the inputs’ height.
In other words, the histogram captures the frequency of the values of local maxima/min-
ima of the membrane potential. In the ideal case of perfect synchrony of the presynaptic
input, the local maxima/minima of the postsynaptic potential will be equal to the number
of the presynaptic events at the current time multiplied by their amplitude. Thus, it is more
likely to have peaks in the histogram every certain values - multiples of the amplitude of
presynaptic events. Intermediate values on the histogram are obtained from overlapping
presynaptic potentials, whose timing differs to a small degree.

To justify the results, Gaussian bells (Eq. [3.6) were fitted into the histogram, with
individual width (w;) and amplitude (4;) and distance from initial point (@) in multiples of
b. Parameter b is the predicted amplitude of the presynaptic inputs. The number of the
fitted Gaussian bells (parameter k) is empirically set. During the fitting process lower and

upper bounds were set, in order to prevent overfitting (very sharp) or any Gaussian bell to
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cover the rest of them (very wide).

k
;hiexp(—(x— (@a—ixb)*/w;)) (3.6)

The method was tested on simplified numerical experiments and then applied on the

intracellular recordings. The implementation of the method is in[A.4]

3.5.2 Measure of variability
Definition

For the sake of simplicity, we use the terms Pold, as the cell’s membrane potential and
Pnew, as the difference of every value of Pold, from the average of its values preceding
and succeeding at a specific interval. The variability of the membrane potential is defined
as the standard deviation of Pnew over different intervals. A pseudocode of the measure

of variability is shown below.

Algorithm 1: Pseudocode of the measure of variability
output: Variability of the membrane potential

Pold <— membrane potential

for each interval in range of intervals do
Pnew | |

for i < 0to LENGTH (Pold) — 1 do
| Pnewli] <— Pold[i] — AV ERAGE (Pold[i + interval], Pold[i — interval])

end

variability[interval| <— STANDARD DEVIATION (pnew)

end

Oscillatory structures and fluctuations of the membrane potential, such as peaks, are
identified by calculating Pnew, which for short intervals acts as an edge detector. For
instance, maximum values of Pnew occur when the central value of Pold is located on a
peak, so it differs the most from the average of its next and previous values. The intensity
of these oscillations and their temporal relationship between one another are captured by
the standard deviation of Pnew and by varying the duration of intervals.

The membrane potential’s periods of interest were the pre-spiking and inhibitory,

where the effects of the presynaptic input are not affected by the postsynaptic neuron
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responses. For each different period, only Prew values, that use data of the same type of
period were taken into account. This had as a result, the number of Pnew points used in
the calculation of standard deviation to decrease, as the duration of the interval increased.
This effect was mostly noticeable for the pre-spiking period, which has much shorter du-
ration compared to the inhibitory. For higher confidence of the results, a lower limit to

the number of Pnew values was set at 100.

Methodology - Application of the measure

For the purpose of understanding the role of input’s parameters on variability, we con-
ducted a series of gradually increased complexity numerical experiments. Using simula-
tions, we examined separately the effects of each parameter, namely amplitude, duration
and synchronization of the individual presynaptic events, which were represented as alpha
functions. We chose to use alpha functions, because they were considered more realistic
for our purposes and we had control over the parameters of interest. For the timing of the
alpha functions we used uniform and Poisson distributions.

We first examined the effects of amplitude, by varying the height of the alpha func-
tions. The duration of the individual events was tested by controlling the width of each
alpha function based on their shape parameter. At last, for the synchronization we used
different rate and multiple number of independent Poisson processes.

Using the acquired knowledge, we tried to approach and interpret the variability of the
real intracellular recordings. In order to validate our conclusions, the observations will
later be tested on the simulated neuron.

The implementation of the measure and its application on numerical experiments and

intracellular recordings is in[A.5and [A.6]
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Chapter 4

Results and Discussion

Contents
4.1  Application of NPSS on intracellular recordings| . . ......... 22
4.2 Simulationof Vineuron| .................. ..., 24
4.3  Determination of presynaptic input parameters| . .......... 25
4.3.1 Test and validation of the proposed methods|. . . . . . . .. .. 25
4.3.2  Application of the proposed methods on intracellular recordings| 31
M4 Discussion] . . . .o vt v it i e e e e e 37

4.1 Application of NPSS on intracellular recordings

The NPSS metric was first applied to the membrane potential of cell 61, in order to deter-
mine its operational mode. Fig. shows the results of NPSS on three cases, for the first
spike of all bursts, of each burst-group only and of each burst belonging to a burst-group.
Because of the smaller number of spikes in the case of burst-groups, the bin-size was set
to 0.025 sec, instead of 0.008 sec like in the other two cases. Considering all the spikes,
the results indicate that the neuron acts more as a temporal integrator, as the maximum
NPSS value (excluding the outliers) is at 0.69 and the median at 0.39 (Fig. {.Th). Tak-
ing into account only the first spike of each burst-group, NPSS values are more evenly
distributed, with maximum number at 1 and median at 0.45 (Fig. @.Tk). For the case of
the NPSS applied to the first spike of each burst belonging to the burst-group, the NPSS
values are slightly lower than the case of all spikes (Fig. {.Tk).
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Figure 4.1: NPSS on cell 61 on preferred orientation and direction.
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4.2 Simulation of V1 neuron

The simulation of V1 neuron was implemented with the prospect to apply the NPSS
metric to the simulated data and further examine neuron’s behavior. Fig. .2] shows the
membrane potential of the simulated neuron, stimulated by different orientations. Blue
and red lines below the membrane potential show the time of presynaptic excitatory and
inhibitory input. Preferred orientation was set at 0° (and opposite 180°). The results are
only preliminary, as the simulation parameters had not yet been optimized. Nevertheless,
there is clear preference to the orientation, since the presynaptic excitatory and inhibitory
input are aligned. For non-preferred orientations the neuron is excited and inhibited at
the same time, because of the fact that the light of the stimulus covers both ON and OF F
receptive subfields, which contradict each other. As a result, the membrane potential
stays at lower levels, never reaching the firing threshold. This also shows that the push-
pull mechanism can be characterized by a certain level of synchrony on its own. The
LGN relay cells, which are the main source of input, begin to fire at relatively the same
time during the preferred orientation, since they all fall in the same brightness-region

(light/dark stripe) of stimulus.
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Figure 4.2: Membrane potential of the simulated V1 neuron for different orientations.
The time of presynaptic excitatory and inhibitory input, each one corresponding to a re-
ceptive field, is shown beneath the membrane potential by blue and red lines, respectively.
The preferred orientation of the neuron is 0° (and opposite 180°). Note that simulation

parameters have not been optimized.
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4.3 Determination of presynaptic input parameters

4.3.1 Test and validation of the proposed methods
Distribution of local extrema

One approach, that we tested in order to determine the amplitude of the individual presy-
naptic events is the study of the distribution of the local extrema. An example is in Fig.
4.3l We used a single Poisson process of alpha functions. The rate was set at 200 Hz,
height of alpha functions was 4 mV and shape parameter 0.002 sec. The histogram of the
local maxima along with the fitted curve and the predicted bounds is shown below. The
size of the bins was adjusted at 0.6 mV, so that the pattern/peaks of the histogram were

more discernible.
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Figure 4.3: (Top) A single Poisson process of alpha functions of rate 200 Hz, height 4 mV

and shape parameter 0.002 sec. (Bottom) The histogram (bin size 0.6 mV) of the local

maxima, the fitted curves of Gaussian bells (red line) and the prediction bounds (dotted

red lines).

We empirically fitted five Gaussian bells (Eq. [3.6)), because of the five distinct peaks
on the histogram. The fitted curve is illustrated by a solid red line. The key element,
which provides us with the predicted amplitude, is that each Gaussian bell is positioned

with equal distance between them (parameter b from Eq. [3.6). Equivalently, every Gaus-
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sian bell has distance from an initial point (parameter a) in multiples of the same value
(parameter b). The fitted value corresponding to parameter a was -0.65 mV (95% con-
fidence bounds -1.6 — 0.29 mV) and to b was 4.28 mV (95% confidence bounds 3.86
— 4.69 mV), which managed to approach the height of the alpha functions (4 mV). It
is worth noting that the starting point of the coefficients affected the resulted coefficient
confidence-bounds. The adjusted R-squared value for the fitting was 0.91. Another re-
mark is that the results were more accurate when the alpha functions had shorter duration,
which reduced the probability of intermediate values between peaks and made the his-

togram clearer.

Measure of variability

Effect of amplitude of individual events on variability.
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Figure 4.4: Effect of the amplitude of individual alpha functions on variability of the
resulting potential. Numerical experiment, using a single Poisson process of alpha func-
tions, with constant rate (100 Hz), shape parameter of alpha functions (0.003 sec), but

variable amplitude (2.0 — 4.5 mV).

We examined the effect of amplitude of individual presynaptic events on variability,
through simpler simulations. We used a single Poisson process of alpha functions, whose
rate and duration remained constant and increased the amplitude of each alpha function.
The results are shown on Fig. 4.4] As the height (h) of alpha functions increases, we
notice an increase of the variability, as well; the standard deviation is shifted upwards.
Similar results were obtained using different values for rate and duration of the alpha

functions. The changes of the potential become stronger, as a consequence of higher al-
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pha functions. Thus the difference of each point from the average of the points before and
after each interval (value referred to as Pnew) also increases. This has as a result the rise
of the standard deviation of Pnew.

An interesting observation is that the variability of potential seems to be linear, while

changing the height of EPSPs.

Effect of duration of individual presynaptic events on variability

In order to understand how the duration of the individual events affect variability, we
first examined the variability of uniformly distributed alpha functions and changed their
duration by increasing the shape parameter (alpha) of the functions. The shape parameter
equals the time required to reach the peak of the alpha function. Note that alpha functions
are not symmetrical, so the shape parameter does not represent directly the duration of
the function.

The initial experiment was conducted using low (25 Hz) and high (100 Hz) rate. The
results are illustrated in Fig. Before proceeding with the interpretation of the effects
of duration of alpha functions, it is worth mentioning the impact of rate on the variability.
On both plots, we notice that the variability follows a periodical pattern; this is more
pronounced when the rate is high at 100 Hz (Fig. [4.5] (right)). This behavior is linked
with the time between each alpha function. The variability reaches its highest point for
the first time, at the interval, equal to the half of distance between the peaks of the alpha
functions. For instance, for the case of rate at 100 Hz, there is an alpha function every 0.01
sec. Therefore the variability has a maximum at the interval of 0.005 sec. At that interval,
we compare the value of the peak of every alpha function, with the points located at the
valleys, resulting to the maximum/minimum possible values of Prnew and consequently
to the peak of the standard deviation. As the interval increases until the point that is
equal to the distance between the alpha functions, we end up comparing corresponding
values of the potential, from different alpha functions. In other words, for a rate of 100
Hz, 0.01 sec before and after a peak of any alpha function, correspond to the peaks of the
alpha functions preceding and succeeding that interval. This implies the decrease of Pnew
values and of the standard deviation. The pattern repeats, as the intervals are increased
further, reaching subsequent alpha functions with equivalent combinations.

Regarding the variability during high rate of input, we notice an upward trend on
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the minimum values. Because of high rate the alpha functions are densely positioned,
the potential remains relatively at high levels. The initial increase of the potential is
responsible for the increasing minimums, as the interval grows. In contrast, excluding

that short period, the minimum values are constant.
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Figure 4.5: Effect of the duration of individual alpha functions, uniformly distributed,
on the variability of the resulting potential. Numerical experiment, using alpha functions,
with constant rate of 25 Hz (left) and 100 Hz (right), amplitude (4 mV), but variable shape

parameter (a) - time to reach peak (0.001 —.009 sec).

Concerning the effects of the duration of each input, in both cases, we notice that for
shorter duration of events, the variability rises more steeply. Moreover, on the one hand,
when the rate is low, the variability reaches higher values, as the duration increases (for
a=0.001 — 0.007 sec) and the alpha functions overlap together. However for the longest
duration (a=0.009 sec) variability is a bit lower compared to the previous value (a=0.007
sec). This is also the case of the rate at 100 Hz. This is due to the overlapping alpha
functions, which keep the valleys of final potential at relatively high (do not reach O mV).

Comparing the variability between low and high rate, the duration of the alpha func-
tions controls the growth rate of the variability, where as the input rate controls the inter-
vals of the extrema of the variability (maxima and minima), acting as a bound-interval up
to which the variability can increase.

The same experiment was repeated, but instead of the timing of alpha functions to
be uniform, we use a single Poisson process of constant rate (100 Hz). The results are
presented in Fig. .6] Instead of the periodic pattern shown in the previous experiment,
the variability after reaching a maximum value remains at similar levels. It is clearly seen

again that the duration of the alpha functions affects the rate, at which the variability in-
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creases for the first intervals; longer duration of the alpha functions implies slower/gradual

increase of variability.
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Figure 4.6: Effect of the duration of individual alpha functions, following the Poisson dis-
tribution, on the variability of the resulting potential. Numerical experiment, using alpha
functions, with constant rate (100 Hz), amplitude (4 mV), but variable shape parameter
(a) - time to reach peak (0.001 — 0.009 sec). The parameters used are the same as on
Fig. 4.5] (Top) The variability of the resulting potential. (Bottom) The individual alpha

functions.

Effect of input synchronization on variability

We further examined the role of input rate. The plots of Fig. arise from alpha func-
tions of constant duration and amplitude, uniformly distributed (on the left) and based on
a single Poisson process (on the right) for various rates (30 — 500 Hz). In general, the
variability of uniformly distributed alpha functions was explained in the previous section.
Nevertheless, it is mentioned again as a comparison with the corresponding Poisson pro-
cesses. The periodic nature of the variability, when timing between input is uniform, is
not visible after the introduction of randomness (use of a single Poisson process). Due to
the randomness, there is not a single interval to match the distances between every alpha
function in the Poisson process. In other words, for every interval there are still high Pnew
values.

The oscillations of the variability shown, especially at higher rates (300 Hz and 500

Hz) are due to random structures in each case. To verify that, the experiment was repeated
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with different random seed. It seems that the major effect of the rate is the increase of the

variability, since there are more overlapping alpha functions, from which bigger structures

emerge.
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Figure 4.7: Effect of the rate of alpha functions on the variability of the resulting poten-
tial, following the uniform distribution (left) and Poisson distribution (right). Numerical
experiment, using alpha functions, with constant shape parameter (0.003 sec), amplitude

(4 mV), but variable rate (30 — 500 Hz).

The effect of the number of inputs on the variability was tested by using multiple
Poisson processes, whose accumulated value remained constant, i.e., the total value was
divided by the number of Poisson processes. As illustrated on Fig. [.8] the number of
inputs has no effect on the variability, since the sum of independent Poisson processes is
equivalent with a single Poisson process, if the total rate remains the same. Any variation

between the results, are due to the randomness.
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Figure 4.8: Effect of the number of inputs on the variability. Numerical experiment, of
variable number (n) of Poisson processes of alpha functions, with constant total rate (100
Hz), height (4 mV) and shape parameter (0.003 sec). The two plots resulted from the

same experiment, but with different random seed.
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4.3.2 Application of the proposed methods on intracellular recordings
Distribution of local extrema of postsynaptic potential

The method was applied on the membrane potential of cell 61 on the preferred orientation.
The results are shown in Fig. In both histograms, we can see peaks emerging at
relatively equal intervals. More specifically, for the pre-spiking period, there seem to be
six peaks, separated by about 5 mV interval and for the inhibitory period four peaks, every
about 3 mV. Regarding the histogram of local maxima, we fitted five Gaussian bells. In
terms of the Eq. the fitted value corresponding to parameter a (initial point) was -76.1
mV (95% confidence bounds -76.91 — -75.29 mV) and to b (estimated amplitude) was
4.74 mV (95% confidence bounds 4.38 — 5.01 mV). Regarding the local minima values,
three Gaussian bells were fitted. The resulting value for parameter a was -76.09 mV (95%
confidence bounds -77.04 — -75.13 mV) and for » was 3.13 mV (95% confidence bounds
2.54 — 3.73 mV). The adjusted R-squared value for the fitting for the local maxima was
0.81 and for local minima 0.76. The fitted parameter a for both cases are close to real

neuron’s resting potential which is -76.33 mV.
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Figure 4.9: (Top) The membrane potential for cell 61 on preferred orientation. Red and
green circles indicate the local minima and maxima, respectively. (Bottom) The his-
tograms of the local minima (Left) and maxima (Right) and the fitted curves of Gaussian
bells (red line). Histogram’s bin size of local minima was set at 0.5 mV and for local

maxima at 1 mV.
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Measure of variability

The measure of variability was applied to the intracellular recordings. Fig. 4.10[shows the
variability of each defined period, namely pre-spiking period, inhibitory, excitatory and
for all the duration of the recording. The dashed lines represent the variability of simulated
data, estimating the pre-spiking and inhibitory period. More details about the estimation
process are in the following subsection. As it was mentioned earlier, we focused only
on the pre-spiking (green line) and inhibition (orange line) periods, since the spikes of
the postsynaptic cell affect the shape of the membrane potential. The variability of the
pre-spiking period stops at earlier intervals, due to its short duration and the defined limit
of 100 points to be used in the calculation.

The variability of the pre-spiking period increases until the 0.01 sec interval, much
sharper than that of the inhibitory period. Following that initial increase, the variability
oscillates with a decreasing trend. The maxima of the oscillations appear at relatively
uniform intervals. Specifically, the variability peaks at 0.01 sec, 0.02 sec and approaches

a peak at 0.03 sec. In between these peaks, its value is minimized.
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—— pre-spiking
6 all 5
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Figure 4.10: Variability of the membrane potential of cell 61 on preferred orientation for
each defined period pre-spiking (green), inhibitory (orange), excitatory (blue) and for all
the duration of the recording (black). We focus only on the pre-spiking and inhibitory
periods. Standard deviation of the pre-spiking period stops at interval 0.028 sec, because
for longer intervals there are less points than the limit set to be considered in the calcula-
tion. The dashed lines show the variability of simulated data, estimating the features of

the presynaptic input.
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These oscillations, drew our attention and we tried to explain this behavior. It seems
that this is due to a combination of the short duration of the pre-spiking period and the
increase of the membrane potentials in steps. As the intervals used in the calculation
become longer, in order to compare farther points, the points located at the bounds of
each period are excluded. These affects the standard deviation, since the mean of the
Pnew values could be greatly affected. Such a case is illustrated at Fig. {.T1 where the
number of bursts, whose Pnew values (green line) are used, becomes significantly small.
For this reason, we may need to consider even shorter intervals.

Another characteristic that contributes to these oscillations is the way that the mem-
brane potential increases. The greatest values of Pnew are in cases, where the point of
interest has value different from the average of the two other points. For instance, the
central point is a local minimum, whereas the points located before and after the exam-
ined interval are on peaks. A common case, due to the increasing trend of the pre-spiking
period, is that the point of interest and the preceding point have similar values, while on
the contrary the preceding point has much higher value, since it is closer to the firing
threshold. Fig. .12 shows periods of the membrane potential, where this is the case for
certain intervals.

In contrast, the variability of the membrane potential during inhibition increases more
smoothly and stays at lower levels compared to the pre-spiking period. Also, the variabil-
ity does not oscillate. The findings agree with the outcomes of the study of the distribution
of local minima, where the results suggested lower amplitude of inhibitory presynaptic in-
put compared to the excitation. Additionally, the membrane potential during periods of
inhibition, stays relatively close to the resting potential (about -76 — -85 mV), compared to
periods of excitation, where we see values of larger scale (about -76 —-50 mV). Moreover,
the slower/smoother increase of the variability is linked with presynaptic input of longer
duration, which may be possible in this case. The decrease after 0.03 sec and sharper de-
cline after 0.045 sec are due to the long duration of the intervals compared to the duration
of the inhibition, which has as a result the exclusion of Pnew values from the calculation

of the standard deviation.
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Figure 4.11: Pnew values at the corresponding intervals that cause oscillations of the stan-
dard deviation (Figl.10). The colored lines represent the different periods (pre-spiking
(green), inhibitory (orange), excitatory (blue) and the duration excluded completely from

the calculation (black)). The grey lines show the membrane potential.
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Estimating variability of intracellular recordings

Based on the observations of the previous sections and the understanding gained so far
about how variability is affected by the different parameters of alpha functions, we tried
to estimate real neuron’s variability by simulation. The estimated variability is shown
with dashed lines in Fig. The duration of the experiments was 1 sec. For this reason
the estimated pre-spiking variability does not show a decreasing trend. A single Poisson
process of alpha functions with constant rate 90 Hz was used in each case. For the pre-
spiking period, we used alpha functions of height 3.8 mV and shape parameter of 0.0028
sec. On the other hand, we used wider alpha functions for the estimation of the inhibitory
period’s variability, shape parameter was set at 0.0045 sec. The height of alpha functions

was adjusted at 1.3 mV.
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Figure 4.13: Comparison of cell’s 61 membrane potential and the estimation of a single
Poisson process of alpha functions. (Left) Close-up of inhibitory period of the membrane
potential of cell 61. (Right) Close-up of the estimated membrane potential for the in-
hibitory period (black dotted line), as the sum of alpha functions (red lines). Note that the
resting potential of real neuron (left) is -76.3 mV, whereas for the simulation it was set at

0 mV.

A closer look to the estimated potential is shown in Fig. The numerical experi-
ment captures the big structures of real neuron’s membrane potential. However, smaller,
sharper oscillations of the membrane potential are not shown in the estimated data. This

explains the lower estimated variability for intervals shorter than 0.005 sec (see Fig. 4.10).
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Decreasing the duration of alpha functions had as a result a higher increasing rate of the
variability compared to the real data. This observation raises questions on what could be
the duration of intervals that are more informative on the presynaptic input parameters.
Standard deviation of Pnew for longer intervals provides information for the general form
of the membrane potential, which can be useful for the understanding the synchrony and
rate of the input; an area that has not been extensively studied at the current work. In con-
trast, shorter intervals reveal more details on the features of individual presynaptic input,

such as amplitude and duration.

4.4 Discussion

We first approached the problem by applying the NPSS metric on the first spike of each
burst and burst-group. In Fig. [3.5] we can see that there is a clear distinction between the
two categories of spikes, with the first spike of burst-groups (colored green) having lower
firing threshold than the first spikes of bursts (colored red), where the membrane potential
is at higher levels. Previous research suggests that "when cells (recordings from visual
cortex in vivo) become depolarized, spike threshold will increase to reduce cellular sen-
sitivity to further slow depolarizations while preserving, or even enhancing, the relative
sensitivity to rapid depolarizations" [5].

Comparing the results of NPSS applied on the first spike of each group of bursts only
and of each burst, we notice a difference in normalized slope values, as well as bigger
variation of the bounds in the case of burst-groups. The reason of this variance and as a
consequence possible inexact results could be the fact that the slope of the first spike of
burst-groups might not represent the actual slope of the membrane potential. According
to the definition of the slope, start-point of the slope was set at the last time the membrane
potential reaches V,.,;. However, as shown in Fig. the actual pre-spiking slope for
the first spike of the group (green spike) starts at a later point (about 0.02 sec later) and it
is much steeper. Underestimating the pre-spiking slope could result in inaccurate bounds
and in considering the contribution of coincidence detection to the firing to be smaller
than it really is.

For the specific cell examined so far, in cases of stimulus with angle different than

the preferred (and opposite direction) the cell did not fire, so we could not test the NPSS
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metric and confirm the initial hypothesis. Another question that emerged was the fact that
after the first spike of a burst-group the membrane potential stayed high (even higher than
the firing-threshold) and the following spikes might result only from one EPSP. If that is
the case, the operational mode of the neuron can not be determined. Furthermore, there is
a big variation of bound values, as shown in Fig. 4.Tb, which might lead to inaccuracies.

In order to learn about real neuron’s presynaptic input, we developed two methods: (1)
the study of the distribution of membrane potential’s local extrema and (2) the measure of
variability. Both methods were applied first on simplified numerical experiments, before
their application on the real data.

We were able to obtain an estimate of the presynaptic input’s amplitude, by fitting a
curve of Gaussian bells on the histogram of membrane potential’ s local extrema. We
noted the sensitivity of confidence bounds to the starting coefficient values and depen-
dency of the method on the clarity of histogram’s peaks due to histogram’s resolution (bin
size). Furthermore, another factor that affects the results and can be considered as almost
decisive is the number of fitted Gaussian bells, which is empirically set. After solving
these dependencies and ensuring a better accuracy of the results, we could combine the
estimated amplitudes with the measure of the variability. Specifically, by normalizing the
measured variability with the estimated amplitude from the fitting, we could "remove" the
effects of input amplitude and focus on the duration and synchrony of the input.

The histograms were used initially for the determination of the amplitude of the presy-
naptic input. However, they may also provide information about the synchrony of the in-
put i.e., for synchronized EPSPs, the histogram would have more values on higher mem-
brane potential, because more EPSPs would occur at the same time. Focusing on the his-
togram of local maxima, we notice that the frequency of values above -65 mV decreases
significantly compared to the preceding values. In other words, more than two simultane-
ous EPSPs occur less frequently. This is also visible from the plot of membrane potential
(Fig. .9 (top)). The local maxima, marked with green circle, are more dense on lower
values of membrane potential. Based on these preliminary results, it will be interesting to
examine the potential of the method to extract any characteristics of the synchronization
of the presynaptic potentials. A fact that contributes to these results is that the membrane
potential tends to rise steeply to the first spike of the burst, after a certain point, without

having any peaks along the way. For instance, see burst at 1.3 — 1.47 sec of Fig. {.9]
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where the only peaks are concentrated at -70 mV. Such behavior might prevent us from
gaining a better understanding of the synchronization, since the method mentioned above
relies on the peaks - local maxima and minima of the membrane potential.

Further to our study, we examined membrane potential’s variability and managed to
approach it using a single Poisson process of alpha functions. The results from the sim-
plified numerical experiments showed a clear correlation between amplitude, duration of
presynaptic input and variability, on which the estimation of real neuron’s variability was
based. However, the amplitude of excitatory and inhibitory input used for the estimation
is lower compared to the results from the study of local extrema distribution. As sug-
gested by the fitting of Gaussian bells on the histograms, the amplitude of excitatory and
inhibitory input is 4.74 mV and 3.13 mV, respectively. In contrast, for the simulation
the corresponding values were 3.8 mV and 1.3 mV. Possible reasons for this discrepancy
are the reliance of the fitting method on the number of Gaussian bells, initial coefficient
values and resolution of the histogram, that could lead to biased results. Moreover, al-
though the estimated variability through the simulation is close to that of the real neuron,
as shown by Fig. d.13] the simulated potential lacks smaller/sharper oscillations, that ex-
ist in the real data. This difference is also reflected as lower variability of the simulated
data for short intervals. This is an area that requires to be further examined. Is the lower
variability related to the duration of the alpha functions used in the simulation, or could
rate and synchrony improve the estimation?

The role of synchrony on variability still remains an open question, since it was not
examined to the extent required in order to provide sufficient information and come to a
conclusion. Better understanding of the input synchrony could have also been helpful in
the definition of more precise coincidence window for the application of the NPSS metric,

in order to achieve more accurate results.
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Chapter 5

Conclusion
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5.1 Conclusion

The work presented in this thesis aimed to provide us with a better understanding of the
operation mode of simple cells of the cat primary visual cortex. Moreover, we demon-
strated two novel methods, that were used to extract information about the presynaptic
input.

We first used the NPSS metric on the experimental data to determine its operation
mode. Due to the bursting behavior of the simples cells, the measure was applied on
selected spikes i.e., first spikes of burst and groups of bursts. The results suggest that the
neuron acts more as a temporal integrator than as a coincidence detector. However, the
accuracy of the results is questionable, due to the big variations of the bounds and possible
non-representative slope that was taken into account to the calculation. Another question
that arises, is that the NPSS is based on the slope of the membrane potential before the
spikes, which are the limited or even non-existent in cases of non-preferred stimuli.

Then, the need arose to determine the parameters of the presynaptic input, i.e. ampli-
tude, duration and degree of synchronization, since they are required for the simulation
and necessary to understand the neural behavior. We provided preliminary results of the
study of the distribution of local extrema, in order to infer the amplitude of the individ-

ual presynaptic events, from the postsynaptic membrane potential. More specifically, we
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studied the distribution of local minima during inhibition and local maxima during the
pre-spiking period.

The last part of this thesis is devoted to the calculation and interpretation of the vari-
ability of the membrane potential, through simpler experiments. The results showed, that
the changes in the amplitude of presynaptic input shift vertically the variability. Further-
more the duration of the individual presynaptic events is related with the initial increase
of the variability. The synchrony of the input was discussed briefly and requires to be

further examined.

5.2 Future Work

The current thesis provides the grounds for future work. We firstly identified some lim-
itations and doubts for the accuracy of the application of the NPSS measure on the ex-
perimental data. We may need to reconsider how the slopes are defined, since the slopes
especially for the first spike of burst-groups might not be representative. A definition of a
more precise coincidence window would also be possible, if more information about the
input synchrony could be acquired using the proposed methods.

The study of the distribution of local extrema of the membrane potential was initially
used to determine the amplitude of the presynaptic input. Future work could attempt to
eliminate the dependency of the method to empirically set factors, namely the number of
fitted Gaussian bells, initial coefficient values and histogram’s resolution. Moreover, the
method could be combined with the measure of variability, by normalizing the variability
with the estimated input amplitude and using the measure for the determination of input
duration and synchrony. In addition, as mentioned in previous chapters, the histograms
could provide us with information about the synchrony of the input, as well. The statistical
properties of the distributions could be further examined and any potential outcome could
be used to the completion of the simulation.

So far, only the membrane potential of the preferred orientation was used in the
methodology. Applying the measure of variability and studying the distribution of the
local extrema of the membrane potential for non-preferred stimuli could be valuable to
the understanding of the characteristics of the presynaptic input and of cells behavior in

general.
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The effects of input’s synchrony on the variability of the postsynaptic membrane po-
tential is another point that requires further work. The use of inhomogeneous Poisson
processes or added noise to the timing of the events could be a possible part of the subse-
quent work.

At last, after acquiring enough information about the parameters of the input and the
neuron itself, we could use the simulation to verify the results of the NPSS metric and
come to a conclusion about the operational mode of the neuron. At that point, we could
test other existing metrics for the same purpose, i.e., the neural mode and drive [24] and

compare their suitability and accuracy for the current experimental data.
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Appendix A

Source code

The following source code was implemented using the following tools:

MATLAB version R2020a

* Python version 3.7.6

¢ Anaconda version 4.8.3

¢ Brian version 2.3

A.1 NPSS

Listing A.1: NPSS.m - Implementation of the NPSS metric.

%

function [m, M]

= NPSS(str_values ,

Calculate NPSS values.

Parameters
str_values:

end_values:

ISIs:

shiftUpBound:

shiftLowBound:

Returns

str_values(:,1) the
str_values(:,2) the
end_values(:,1) the

end_values(:,2) the

end_values, ISIs, bin, shiftUpBound, shiftLowBound)

time of each start-point (sec).
value of each start-point (Volts).
time of each end-point (sec).

value of each end-point (Volts).

inter-spike intervals for each spike (sec).

size of bin in order to calculate upper/lower bounds per isi

size (sec).

vertical shifting of the upper bound.

vertical shifting of the lower bound.

vector of slope values for each spike.

vector of normalized slope values for each spike using the

bounds from polynomial fitted function.

%% Calculate slope

m = (end_values (:,2) — str_values(:,2))./(end_values(:,1) — str_values(:,1));

%% Calculate upper and lower bounds
[lowBounds, upBounds,

UpperLowBounds (ISIs , m, bin,

polyfit_lowBounds , polyfit_upBounds, timeslots] =
shiftUpBound , shiftLowBound);
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end

%% Normalize slopes - Calculate NPSS
M = [];% vector of normalized slope for each spike
slots = [];
for i = l:length (m)
% find in which timeslot does the current ISI lie
temp = find (timeslots >= ISIs(i),1);
if length(temp) == 0
temp = length(timeslots)+1;
end
slots = [slots;temp—1];

end

L=1[1U=1[I

for i = l:length(slots)
L = [L;polyfit_lowBounds(slots(i))]; % lower bound for each spike
= [U;polyfit_upBounds(slots(i))]; 7% upper bound for each spike
end

M= (mL)./(U-L);

function [lowBounds, upBounds, polyfit_lowBounds, polyfit_upBounds, timeslots] =

UpperLowBounds (ISIs, m, bin, shiftUpBound, shiftLowBound)
%% Histogram of ISI and slopes
split = []; lowBounds = []; upBounds = [];

max_isi = max(ISIs); max_isi = round(ceil (max_isixle2)) / le2;
timeslots = 0:bin:max_isi;
binCounts = []; counts = zeros(l,length(timeslots));

for i = l:length(timeslots)
% separate all gradients in timeslot ranges where they lie into
temp = find (ISIs >= ((i—1)xbin) & ISIs<(ixbin));
if length (temp)==0
timeslots (i) = —1;
counts (i) = 0;
else
split{i} = m(temp);
lowBounds = [lowBounds;min(m(temp))]; 7 lowest slope in the specific bin
upBounds = [upBounds;max(m(temp))]; % highest slope in hte specific bin
binCounts = [binCounts ,repmat((i—1)*bin,1,length(temp))];
counts (i) = length(temp);
end
end
temp = find (timeslots >—1);

timeslots = timeslots (temp);
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1
2

end

%% Initial bounds

bins_num = length(timeslots);
figure; box;

subplot(2,1,1);

hold on;

plot(timeslots ,upBounds, 'bo”);
plot(timeslots ,lowBounds, 'r+’);

hold off;

legend (" upper_bound’, lower_bound’);

xlabel ("ISI_length[s]’); ylabel(’slope_bounds’);

subplot(2,1,2);

hist (binCounts ,bins_num, ’b’);

xlim([—inf inf]); ylim([—inf inf]);

xlabel ("ISI_length[s]’); ylabel(’frequency’);

axis ([0, max_isi,0 ,max(counts)]);

%% Fit 3rd degree polynomial
polyfit_upper = polyfit(timeslots ’, upBounds, 3);
polyfit_low = polyfit(timeslots’, lowBounds, 3);

polyfit_upBounds = polyval(polyfit_upper, timeslots);

polyfit_lowBounds = polyval(polyfit_low , timeslots);

% Shift fitted function so as to enclose the majority of slope values
polyfit_upBounds = polyfit_upBounds + shiftUpBound;
polyfit_lowBounds = polyfit_lowBounds + shiftLowBound;

figure (’Position’, [10 10 8 10]); box; hold on;
% Plot bounds
pl = plot(timeslots ,upBounds, 'bo’);

p2 = plot(timeslots ,lowBounds, 'r+’);

p3 plot(timeslots , polyfit_upBounds, ’k’);

p4

plot(timeslots ,polyfit_lowBounds ,’—k’);

xlim([—inf inf]); ylim([—inf inf]);

1 = legend ([pl (1), p2(1), p3(1l), p4(1)], ’upper_bounds_per_isi’, ’lower_bounds_per
isi’, ’“fitted_function_of_upper_bounds’, ’fitted_function_of_lower_bounds’);
set(l, ’Location’,’southoutside’);

xlabel (’length_of_ISI_(sec)’); ylabel(’pre—spike_slope_bounds’);
hold off;

Listing A.2: bursts_npss.m - Application of the NPSS metric on real data.

GLOBALS;

close all; clear all;
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%% Load selected cell and orientation data

icell = 61;

[time ,potential , Vth, Vrest, samplerate, nsamples, spikes, spikeheight, spikeduration ,

istim, iexp] = loadcellinfo (icell ,270);

timestep = 1/samplerate;

%% Plot membrane potential for the total duration

figure (’Position’, [10 10 21 7]); clf; hold on;
plot(time, potential);

plot(time, ones(size(time))=Vth);

plot(time, ones(size(time))=Vrest);

plot(time, ones(size(time))xspikeheight);

hold off;

xlim([—inf inf]); ylim([—inf inf]);

xlabel ("Time_(sec)’); ylabel(’Membrane_potential_(mV)’);

legend ('membrane_potential >, ’spike_threshold’, ’resting_potential’, ’spike_height’)

%% Define Bursts
[t_bursts , t_burst_groups, index_pre_burst_spikes, index_burst_groups, in_bursts] =
detect_bursts (potential , spikes, timestep);

sprintf ("Number of bursts found: %d", size(t_bursts,2))

% Plot membrane potential showing the beginning of each burst
figure (’Position’, [10 10 21 7]); clf; hold on;

pl = plot(time, potential); hold on

p2 plot([t_bursts; t_bursts], repmat(ylim’,l,size(t_bursts ,2)), ’—r’);

p3

plot ([ t_burst_groups; t_burst_groups], repmat(ylim’,1,size(t_burst_groups ,2)),
)

p4 = plot(time, ones(size(time))*Vrest, ’'k:’);
p5

B

plot(time, ones(size(time))=Vth, r:’);

%% Find start/end *index-time-point* to be used to calculate the slope
% For burst_group : last time when potential is at the resting potential
% before a spike, until time when reaches threshold (and spike follows)

% For in_bursts: use the minimum potential until the spike

% Start index of slope (for burst groups)
str_index_burst_groups = [];
for i = l:numel(index_burst_groups)
str_index_burst_groups(end+1) = find(potential (1:index_burst_groups(i)) < Vrest,
last’) + 1;

end

% End index of slope (for burst groups)

end_index_burst_groups = [];
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for i = l:numel(str_index_burst_groups)
end_index_burst_groups(end+1) = find (potential (str_index_burst_groups(i):end) > Vth
, 1, “first’) + str_index_burst_groups(i) — 1;

end

% Find bursts index, excluding the beginning of each burst-group
intersect_spikes = intersect(in_bursts ,index_burst_groups);

index_bursts_ingroup = setxor(in_bursts ,intersect_spikes);

% Find previous spike of those in in_bursts_only
tmp = ismember(spikes , index_bursts_ingroup);

temp_index = find (tmp);

index_bursts_ingroup_pre = spikes(temp_index — 1);
str_index_bursts_ingroup = [];
end_index_bursts_ingroup = [];
for i = l:numel(index_bursts_ingroup)
% Start index of slope (for bursts IN groups) - minimum between the spikes

% Find the minimum potential value between the spikes
% min(potential(index_bursts_ingroup_pre(i) + 1:index_bursts_ingroup(i)) to find

the minimum after the previous spike

str_index_bursts_ingroup (end+1) = find(potential (index_bursts_ingroup_pre(i):
index_bursts_ingroup(i)) == min(potential (index_bursts_ingroup_pre(i)+1:
index_bursts_ingroup(i))), 1, ’last’) + index_bursts_ingroup_pre(i) — 1;

% End index of slope (for bursts in groups)
if potential (str_index_bursts_ingroup(i)) > Vth 7 if start is above Vth set end to

the time of spike as found by Carantini

end_index_bursts_ingroup (i) = index_bursts_ingroup (i);
else
end_index_bursts_ingroup (end+1) = find(potential (str_index_bursts_ingroup (i):
index_bursts_ingroup (i) + 1) < Vth, 1, ’last’) + str_index_bursts_ingroup (i
) — Ly
end

end

%% Find start/end #*values* of potential
% For burst_group: set start/end potential values to Vrest and Vth, respectively

% For in_bursts: start value is set as it 1is

str_values_burst_groups = [time(str_index_burst_groups) Vrest(ones(size(
str_index_burst_groups, 2),1))1;
end_values_burst_groups = [time(end_index_burst_groups) Vth(ones(size(

end_index_burst_groups, 2),1))];

str_values_bursts_ingroup = [time(str_index_bursts_ingroup) potential(

str_index_bursts_ingroup) ];
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% If start value is under the Vth end value is set to Vth otherwise,

% is left as it is found by Carandini

end_values_bursts_ingroup = [time(end_index_bursts_ingroup) Vth(ones(size (
end_index_bursts_ingroup, 2),1))]; % set all to Vth
end_values_bursts_ingroup (find (potential (str_index_bursts_ingroup) > Vth), 2) =

potential (end_index_bursts_ingroup (find (potential (str_index_bursts_ingroup) > Vth))

)

p6 = plot(str_values_burst_groups (:, 1),str_values_burst_groups(:, 2), ’rx’);

p7 = plot(end_values_burst_groups(:, 1),end_values_burst_groups(:, 2), ’rx’);

p8 = plot(str_values_bursts_ingroup (:, 1),str_values_bursts_ingroup (:, 2), 'rx’);
p9 = plot(end_values_bursts_ingroup (:, 1),end_values_bursts_ingroup (:, 2), 'r=’);
xlim([—inf inf]); ylim([-90 0]); box on;

I = legend ([pl (1), p2(1), p3(1), p4(l), p5(1), p6(1)], 'membrane_potential’, *burst’, ’
burst—group’, ’‘resting_potential’, ’spike_threshold’, ’start/end_point_slope’);
xlabel (’Time_(sec)’); ylabel(’Membrane_potential_(mV)’);

hold off;

%% Merge results for all the bursts
str_values_all_bursts = sortrows ([ str_values_burst_groups; str_values_bursts_ingroup]);

end_values_all_bursts = sortrows ([ end_values_burst_groups; end_values_bursts_ingroup]);

%% Calculate ISI between bursts
% Define window size as the time at Vth between the end and start of the

% spikes.

% in_bursts: index of all the burst-spikes found by Carandini

% index_pre_burst_spikes is the index of the previous spikes of each burst.

% ’Fix?’ index of spike in case the membrane potential at the time is below Vth
index_pre_burst_spikes_Vth = [1];
for i = 2:numel(index_pre_burst_spikes)
index_pre_burst_spikes_Vth(end + 1) = find(potential (index_pre_burst_spikes(i):end)
> Vth, 1, *first’) + index_pre_burst_spikes(i) — 1;

end

% Start of ISI
isi_start=[1]; % for the first spike of the sequence

for i = 2:numel(in_bursts)

P find (potential (index_pre_burst_spikes_Vth(i):in_bursts(i)) < Vth, 1, *first’);
if length(p) == 0 7 in case p is empty
p = find(potential (index_pre_burst_spikes_Vth(i):in_bursts(i)) < potential(
index_pre_burst_spikes_Vth(i)), 1, *first’);
end
isi_start = [isi_start;(index_pre_burst_spikes_Vth(i) + p — 1)];

end
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% End of ISI

isi_end = int64 (end_values_all_bursts(:,1)/timestep); %in_bursts;

ISIs = time(isi_end)—time(isi_start);

%% NPSS for all bursts

[m, M] = NPSS(str_values_all_bursts ./ [1 1000], end_values_all_bursts ./ [1 1000],
ISIs, 0.008, 0.6, —0.25);

% Plot NPSS/slope

figure (’Position’, [10 10 8 10]);

subplot(2,1,1);plot(time(in_bursts) ,m,’.”);ylabel(’slope’);
subplot(2,1,2);plot(time(in_bursts) ,M,’ . );ylabel(’Normalised_Slope/M’);

xlabel (’Time_in_record[s]’);

figure (' Position’, [10 10 8 10]);boxplot(M);
xlabel(’’); ylabel(’Normalised_Slope/M’);

%% NPSS for burst-groups only

[val ,index] = (intersect(in_bursts, index_burst_groups));

[m, M] = NPSS(str_values_burst_groups ./ [1 1000], end_values_burst_groups ./ [1 1000],

ISIs (index), 0.025, 0, 0);

% Plot NPSS/slope

figure (’Position’, [10 10 8 10]);box;
subplot(2,1,1);plot(time(index_burst_groups).m, .’ );ylabel(’slope’);
subplot(2,1,2);plot(time(index_burst_groups) M, .’ );ylabel(’Normalised_Slope/M’);

xlabel (’Time_in_record[s]’);

figure (’Position’, [10 10 8 10]);boxplot(M);
xlabel(’’); ylabel(’Normalised_Slope/M’);

%% NPSS for bursts in group only

[val ,index] = (intersect(in_bursts, index_bursts_ingroup));

[m, M] = NPSS(str_values_bursts_ingroup ./ [l 1000], end_values_bursts_ingroup ./ [l
10007,
ISIs (index), 0.008, 0, 0);

% Plot NPSS/slope

figure (’Position’, [10 10 8 10]);
subplot(2,1,1);plot(time(index_bursts_ingroup),m,’.’);ylabel(’slope’);
subplot(2,1,2);plot(time(index_bursts_ingroup),M,’.’);ylabel (’Normalised_Slope/M’);

xlabel (’Time_in_record[s]’);
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figure (’Position’, [10 10 8 10]);boxplot(M);
xlabel(’’); ylabel(’Normalised_Slope/M’);

%% Plot of spikes
tt = [—50:19];
t0 = 51;

pots = NaN=xones(length(tt) ,1);
pots_group = NaN=zones(length(tt), 1);
pots_IN_group = NaN=zones(length(tt) ,1);
nsamples = size(potential ,1);
for spike = spikes(:)’
samples = spike + tt;
samples (find (samples>nsamples)) = nsamples;
samples (find (samples<1)) = 1;
pots (:,end+1) = potential (samples); % all spikes
if ismember(spike, double(index_burst_groups(:) ’))
pots_group (: ,end+1) = potential (samples); % first spike of group
elseif ismember(spike, double(index_bursts_ingroup (:) ’))
pots_IN_group (: ,end+1) = potential (samples); % first spike of burst
end

end

% then drop the first column (they are Nals)
if size(pots,2)>1
pots = pots(:,2:end);

end

if size(pots_group ,2)>1
pots_group = pots_group (:,2:end);

end
if size(pots_IN_group ,2)>1

pots_IN_group = pots_IN_group(:,2:end);
end

meds = median(pots, 2 );

figure (' Position’, [10 10 8 10]); clf; hold on;

ttms = [tt]+*1000/samplerate;

pl plot( ttms, [pots], ’color’, 0.8x%[1 1 1] ); hold on % grey

p2 = plot( ttms, [pots_group], ’color’, 0.8«[0 1 0] ); hold on % green
p3 = plot( ttms, [pots_IN_group], ’“color’, 0.8x[1 O O] ); hold on 7 red
p4 = plot( ttms, [meds], ’linewidth’,3, ’color’, 'k’ );

box on;

xlim([—inf inf]); ylim([—inf inf]);
1 = legend ([pl (1), p2(1), p3(1), p4(1l)], ’all_spikes’, ’first_spike_of_burst—group’,

A-8

>




first_spike_of_burst’, 'median_membrane_potential’);
221 |set(l, ’Location’,’southoutside’);

222 | xlabel (’Time_(msec)’); ylabel( Membrane_potential_(mV)’);

Listing A.3: detect_bursts.m - Utility function that returns the index of bursts and burst

groups.
1 | function [t_bursts, t_burst_groups, index_pre_burst_spikes , index_burst_groups,
in_bursts] = detect_bursts(potential , spikes, timestep)
2
3 % Empirically choose a time period so that close spikes are considered a burst.
4 b = 0.007; % sec maximum time between spikes in a burst
5 b_group = 0.05; ¥ sec maximum time between spikes in a burst-groupl[!]
6 t_spikes = spikesstimestep; % multiply index of spikes with time step
7
8 t_bursts = [t_spikes(1)]; % set first burst to the first spike
9 t_burst_groups = [t_spikes(1)]; % set first burst to the first spike
10 previous_spike = t_spikes (1);
11 index_pre_burst_spikes = [1]; % set index of first pre spike at 1
12
13 % Find beginning of each burst
14 for spike = t_spikes(2:end)’
15 % Find beginning of a burst
16 if spike—previous_spike > b
17 t_bursts (end+1) = spike;
18 index_pre_burst_spikes(end +1) = int64 (previous_spike/timestep);
19 end
20
21 % Find beginning of a burst-group
22 if spike—previous_spike > b_group
23 t_burst_groups(end+1) = spike;
24 end
25 previous_spike = spike;
26 end
27
28 index_burst_groups = int64 (t_burst_groups (:)/timestep); % index of burst group
29 in_bursts = int64 (t_bursts (:)/timestep); % index of burst
30
31 |end

A.2 Proposed Methods

A.2.1 Distribution of local extrema

Listing A.4: peaks.m - Application of the method on real data.
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GLOBALS;

close all; clear all;

%% Get cell’s data
[time, potential , Vth, Vrest, samplerate, nsamples, spikes, spikeheight, spikeduration ,
istim, iexp] = loadcellinfo(61,270);

timestep = 1/samplerate;

%% Local minima for inhibitory period
min_indx = intersect(find(islocalmin(potential)), find(potential <Vrest));

localmin = potential (min_indx);

%% Local maxima for prespiking period

% Pre-spiking period
prespiking_index = [];

if spikes
[t_bursts , t_burst_groups , index_pre_burst_spikes , index_burst_groups, in_bursts] =
detect_bursts(potential , spikes, timestep);

sprintf ("Number of bursts found: %d", size(t_bursts,2))

% Start index of slope
preburst_rest_index = []; % index before burst at resting potential
for i = l:numel(index_burst_groups)
preburst_rest_index (end+1) = find(potential (1:index_burst_groups(i)) < Vrest,
1, ’last’) + 1;

end

% In case the potential is above thresh before the first burst

% insert at the beginning of the list 0

if preburst_rest_index (1) > index_burst_groups (1)
preburst_rest_index = [l preburst_rest_index ];

end

for i = l:min(length(preburst_rest_index),length(index_burst_groups))
prespiking_index = [prespiking_index , preburst_rest_index (i):index_burst_groups
(i) —11;
end

end

[localmax ,max_idx] = findpeaks(potential);

max_idx = intersect(max_idx, prespiking_index);

%% Plot results

>

figure (’Renderer’, ’painters’, ’Position’, [5 10 35 20]);
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% Membrane potential

subplot (2,2 ,[1,2]);

pl = plot(time(max_idx), potential (max_idx), o’, ’MarkerSize’, 4, MarkerEdgeColor’,’g’)
; hold on;

p2 = plot(time(min_indx), potential (min_indx),’o’, *MarkerSize’, 4, *MarkerEdgeColor’,’
r’);

p3 = plot(time, potential ,’k—");

title (’Cell_61_—_Preferred_Orientation’)

xlabel (’Time_(sec)’); ylabel (’Membrane_Potential_(mV)’);

legend ([pl (1), p2(1), p3(1l)], ’local_maxima’, ’local_minima’, ’mem_potential’);

xlim ([0 4.1])

ylim([-90 5])

bins = 25; % number of bins for histograms

%% Local minima

subplot(2,2,3);

[counts, bin_edges] = histcounts(potential (min_indx), ’BinWidth’, 0.5);

centers = bin_edges (l:end—1)+mean( diff (bin_edges))/2;

bar(centers , counts, ’'r’);alpha(.2);
title ({ Histogram_of_local_minima_values’, ’of_inhibitory_period’});

xlabel (’Value_(mV)’); ylabel(’Frequency’);

% Fit Gaussian bells on histogram for pre-spiking period

X = centers; y = counts;

ft = fittype ([ "hl_*_exp(—(x_—_(a_—_1%b)) . "2/wl)_+_~°
"h2_x_exp(—(x_—_(a_—_2%b))."2/w2) _+°
"h3_xexp(—(x_—o(a=.3%b)) . "2/w3) " 1) ;

% Print coefficient names

coeffnames (ft);

% Guess values to start with.

% [a, b, hi, ..., h3, wil, ..., w3]

startPoints = [Vrest, 3, 100, 70,1.5, 4, 2, 1.5];
Lower_bounds = [-80, 0, 50, 25, 5,0.5, 0.5, 0.57;
Upper_bounds = [-70, 6, 200, 200, 200, 8, 8, 8];

% Now the next line is where the actual model computation is done.
[curvefit ,gof ,output] = fit(x’, y’, ft,

’Lower’, Lower_bounds ,...

>Upper’, Upper_bounds ,...

>Start’, startPoints)

hold on;
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90 | plot(curvefit ,x’, y’, predfunc’);
91 |ylim ([0, 170])

92 | xlabel (’ Value_(mV)’);

93 | ylabel (’Frequency’);

94
95 |%% Local maxima

96 | subplot(2,2,4);

97 | [counts, bin_edges] = histcounts(potential (max_idx), *BinWidth’, 1);
98 | centers = bin_edges(l:end—1)+mean(diff (bin_edges))/2;

99

100 | bar(centers, counts, ’g’);alpha(.2);

101 | title ({ *Histogram_of_local_maxima_values’, ’“of_pre—spiking_period’});
102 | xlabel (’Value_(mV)’); ylabel(’Frequency’);

103

104 |% Fit Gaussian bells on histogram for pre-spiking period

105 |x = centers; y = counts;

106

107 | ft = fittype ([ "hl_*_exp(—(x_—_(a_+_1%b))."2/wl)_+_°
108 "h2 = _exp(—(x_—_(a_+_2%b))."2/w2) _+_’°
109 "h3_#_exp(—(x_—_(a_+_3%b)) .~2/w3)_+_’°
110 "h4_x_exp(—(x_—_(a_+_4x%b)) . "2/wd)_+_~°
111 "hS_x_exp(—(x_—_(a_+_5%b))."2/w5) ]);
112

113 |% Print coefficient names
114 | coeffnames (ft);

115
116 |% Guess values to start with.

117 {% [a, b, h1, ..., h5, wil, ..., w5]

118 | startPoints = [Vrest, 4.5, 17, 31, 27, 10, 10, 1.5, 1.5, 1.5, 1.5, 1.5];
119 | Lower_bounds = [-78, 3, 1, I, I, I, I, 0.5, 0.5, 0.5, 0.5, 0.5];

120 | Upper_bounds [-74, 6, 45, 45, 45, 45, 10, 10, 10, 10, 10, 10];

121

122 |% Now the next line is where the actual model computation is done.

123 | [curvefit ,gof ,output] = fit(x’, y’, ft,

124 ’Lower’, Lower_bounds ,...
125 *Upper’, Upper_bounds ,...
126 >Start’, startPoints)

127

128 | hold on;

129 | plot(curvefit ,x’, y’, predfunc’);
130 | ylim ([0, inf])

131 | xlabel (’ Value_(mV)’);

132 | ylabel (’ Frequency ’);
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A.2.2 Measure of variability

Validation - Numerical Experiments

Listing A.5: variability_experiments.py - Simulations for each input parameter to study

the effects on variability.

import matplotlib.pyplot as plt
import math

import random

import params as pms

import utils as local_utl

from scipy import signal

import pandas as pd
import numpy as np
np.random. seed (0)

random . seed (0)

def get_alpha_fun(t, a, scale_fac):

Args:
t (list of float): time.
a (float): shape parameter alpha (time to reach the peak).

scale_fac (float): height of the alpha function.

Returns:

list of float: alpha function.

f = (t/a)snp.exp(—t/a)

return scale_facs*f/np.max(f)

def poisson_process (num, rate, dur, dt, t0=0.0, p=None):

"""Returns the time of events in a Poisson process.

process

Args:

A-13

plt.rcParams.update({ font.size’: 13, ’axes.titlesize’ : 13, “axes.grid’:

"""Returns a single alpha function based on the given parameters.

True })

Reference: https://stackoverflow.com/questions/1155539/how-do-i-generate-a-poisson-

Note: inter-arrival times are exponentially distributed with mean 1/rate
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def

num (int): number of events.

rate (float): rate.

dur (float): duration.

dt (float): time step.

t0 (float, optional): initial time. Defaults to 0.0.

p (list of float, optional): probability of each time step to exclude

the event. Defaults to None.

Returns:

list of float: time of events.

if p is None:

p = np.ones(int(dur/dt))

e =[] # time of events
for i in range(l, int(num)):
# exponentially distributed random numbers
t0 += random.expovariate (rate)
if t0 > dur:
break
e.append(t0)

e = np.array(e) # convert e to np array
e_i = np.array(e/dt, dtype=int) # index of events
#e_i = e_i[np.where(np.random.binomial(l, ple_i], e_i.shape[0]))]

return e_i

alpha_wave(a, scale_fac, intervals , dt, spike_index_per_input=None, rate=100.0,
pold=None, dur=1.0, num_input=1, p=None, plot_results=True):

"""Generates a signal of alpha functions based on the given parameters.

Args:

a (float): shape parameter alpha (time to reach the peak).

scale_fac (float): height of the alpha function.

intervals (list of float): intervals to be used for the variability
measure.

dt (float): time step.

spike_index_per_input (list of int, optional): indices of each alpha
function. Defaults to None.

rate (float, optional): Rate of the Poisson process. Defaults to 100.

pold (list of float, optional): Initial Pold. Defaults to None.

dur (float, optional): duration. Defaults to 1.0.

num_input (int, optiomnal): number of presynaptic inputs. Defaults to 1.

p (list of float, optional): probability of each time step to exclude
the event. Defaults to None.

plot_results (bool, optional): if True plots intermediate results.
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114
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Defaults to True.

Returns:
(list of float, list of float, list of float, list of float, ): the
standard deviation of Pnew for the given intervals, for: (1) all the
duration, (2) pre-spiking, (3) excitatory and (4) inhibitory period

periods.

t = np.arange (0, dur, dt)

if pold is None:
pold = np.zeros(len(t))

if plot_results:
plt.figure(figsize=(10, 5))
plt.plot(t, pold, ’r—’, alpha=0.3)

if spike_index_per_input is None:
spike_index_per_input = []
for i in range(num_input):
spike_index_per_input.append(

poisson_process (ratesdur, rate, dur, dt, p=p))

alpha_fun = get_alpha_fun(t, a, scale_fac)

for spike_index_i in spike_index_per_input:
for i in spike_index_i:
if plot_results:
plt.plot(t[:len(t)—i]+ixdt, alpha_fun[:len(alpha_fun)—i], ’r—",
lw=2, alpha=0.3, label="alpha_functions’)

pold[i:] = pold[i:]+alpha_fun[:len(alpha_fun)—i]

if plot_results:
plt.plot(t, pold, k=", alpha=0.4)

plt.plot(t, pold, ’ko’, markersize=1, label="sum_of_alpha_functions’)

plt.ylabel (’Pold’)
plt.xlabel (’Time_(sec)_(dt={}_sec)’.format(dt))

# to avoid duplicate legend entries

handles , labels = plt.gca().get_legend_handles_labels ()
labels , ids = np.unique(labels, return_index=True)
handles = [handles[i] for i in ids]

plt.legend (handles, labels, loc=’best’)

return get_std(pold, t, dt, intervals, plot_results=plot_results)
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136

137 | def get_std(pold_all, time, dt, intervals, prespiking_index=None,

138 excitatory_index=None, inhibitory_index=None, plot_results=True):
139 """Plots the standard deviation of Pnew with different color each period
140 i.e. excitatory(blue), inhibitory(orange) and pre-spiking(green).

141

142 Args:

143 pold_all (list of float): membrane potential (Pold).

144 time (list of float): time.

145 dt (float): time step.

146 intervals (list of floats): duration of intervals used for Pnew

147 calculation.

148 prespiking_index (list of int, optional): indices of pre-spiking period.
149 Defaults to None.

150 excitatory_index (list of int, optiomal): indices of excitatory period.
151 Defaults to None.

152 inhibitory_index (list of int, optional): indices of inhibitory period.
153 Defaults to Nomne.

154 plot_results (bool, optional): if True plots intermediate results.

155 Defaults to True.

156

157 Returns:

158 (list of float, list of float, list of float, list of float, ): the

159 standard deviation of Pnew for the given intervals, for: (1) all the
160 duration, (2) pre-spiking, (3) excitatory and (4) inhibitory period
161 periods.

162 nn

163

164 if plot_results:

165 # Plot pold values

166 plt.figure(figsize=(10, 5))

167 plt.plot(time, pold_all, ’k—’, alpha=0.4, label="all"’)

168 plt.plot(time, pold_all, ’k—’, linewidth=1, ms=4)

169

170 std_all = np.full(len(intervals), np.nan)

171

172 std_prespiking = None

173 std_excitatory = None

174 std_inhibitory = None

175

176 if not excitatory_index is None:

177 std_excitatory = np.full(len(intervals), np.nan)

178 pold_excitatory = np.full(len(pold_all), np.nan)

179 pold_excitatory[excitatory_index] = pold_all[excitatory_index]

180 if plot_results:

181 plt.plot(time, pold_excitatory, 'CO-’, label=’excitatory’)

182

183 if not prespiking_index is None:
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184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

std_prespiking = np.full(len(intervals), np.nan)
pold_prespiking = np. full(len(pold_all), np.nan)
pold_prespiking[prespiking_index] = pold_all[prespiking_index ]
if plot_results:

plt.plot(time, pold_prespiking, 'C2—’, label=’"prespiking’)

if not inhibitory_index is None:
std_inhibitory = np.full(len(intervals), np.nan)
pold_inhibitory = np.full(len(pold_all), np.nan)
pold_inhibitory[inhibitory_index] = pold_all[inhibitory_index]
if plot_results:

plt.plot(time, pold_inhibitory , ’Cl-’, label="inhibitory’)

if plot_results:
plt.xlabel (’Time_(sec)_(dt={}_sec)’.format(dt))
plt.ylabel (’Pold’)
plt.legend ()

# Pnew subplots
fig, _ = plt.subplots(figsize=(16, 8))
step = 15
axes_y = 3
axes_x = math.ceil (
len([i for i in intervals if (i—1) % step == 0])/axes_y)

subplot_index = 1

for j in range(len(intervals)):

pnew_all = np.full(len(pold_all), np.nan)

for i in range(intervals[j], len(pold_all)—intervals[j]):
pnew_all[i] = pold_all[i] — 0.5 = \
(pold_all[i—intervals[j]]+pold_all[i+intervals[j]])

if len(pnew_all[~np.isnan(pnew_all)]) > 100:
# exclude nan values

std_all[j] = np.std(pnew_all[~np.isnan(pnew_all)])

if not prespiking_index is None:
pnew_prespiking = np. full (len(pold_all), np.nan)
pnew_prespiking_index = local_utl.get_interval_indexes (
intervals[j], prespiking_index)

pnew_prespiking [ pnew_prespiking_index] = pnew_all[pnew_prespiking_index]
if len(pnew_prespiking[~np.isnan(pnew_prespiking)]) > 100:
std_prespiking[j] = np.std(

pnew_prespiking [ pnew_prespiking_index ])

if not excitatory_index is None:
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233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279

pnew_excitatory = np.full(len(pold_all), np.nan)
pnew_excitatory_index = local_utl.get_interval_indexes(
intervals[j], excitatory_index)

pnew_excitatory [ pnew_excitatory_index] = pnew_all[pnew_excitatory_index ]

if len(pnew_ex[~np.isnan(pnew_ex)]) > 100:
std_excitatory[j] = np.std(

pnew_excitatory [ pnew_excitatory_index ])

if not inhibitory_index 1is None:
pnew_inhibitory = np. full(len(pold_all), np.nan)
pnew_inhibitory_index = local_utl.get_interval_indexes (
intervals[j], inhibitory_index)

pnew_inhibitory [ pnew_inhibitory_index] = pnew_all[pnew_inhibitory_index]

if len(pnew_inhibitory[~np.isnan(pnew_inhibitory)]) > 100:
std_inhibitory[j] = np.std(

pnew_inhibitory [ pnew_inhibitory_index])

if plot_results and (intervals[j]—1) % step ==
# Plot pnew values for current interval
ax = plt.subplot(axes_y, axes_x, subplot_index)
subplot_index += 1
ax.plot(time, pold_all, 'k—', alpha=0.2, ms=4, label="pold’)

ax.plot(time, pnew_all, 'k—’, label="all"’)

if not excitatory_index is None:

ax.plot(time, pnew_excitatory, 'CO-", label="excitatory’)

if not prespiking_index is None:

ax.plot(time, pnew_prespiking, 'C2—’, label="prespiking’)

if not inhibitory_index is None:

ax.plot(time, pnew_inhibitory, 'Cl-’, label="inhibitory’)

ax.set_title ( interval_{:.4}sec’.format(intervals[j]=dt))

ax.set_xlim (0, 1)

plot_results:
handles , labels = ax.get_legend_handles_labels ()
plt.legend (handles, labels , bbox_to_anchor=(2, 0), loc="lower_right’)
plt.subplots_adjust(top=0.97, bottom=0.065, left=0.05,
right=0.975, hspace=0.5, wspace=0.4)

# add a big axis, hide frame
fig.add_subplot(111, frameon=False)
# hide tick and tick label of the big axis

plt.tick_params(labelcolor="none’, top=False,
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280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
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300
301
302
303
304
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306
307
308
309
310
311
312
313
314
315
316
317
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319
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322
323
324
325
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bottom=False , left=False, right=False)
plt.xlabel ("Time")
plt.ylabel ("Pnew")
plt. grid (b=None)

return std_all , std_prespiking , std_excitatory , std_inhibitory

def plot_std(std_all, intervals, std_prespiking=None, std_excitatory=None,
std_inhibitory=None, std_exp_df=None, ax=None, kwargs={}):
"""Plots the standard deviation of Pnew with different color each period

i.e. excitatory(blue), inhibitory(orange) and pre-spiking(green).

Args:

std_all (list of float): standard deviation of Pnew, during the
total duration for all the given intervals.

intervals (list of floats): duration of intervals used for Pnew
calculation.

std_prespiking (list of float): standard deviation of Pnew, during the
pre-spiking period for all the given intervals. Defaults to None.

std_excitatory (list of float): standard deviation of Pnew, during the
excitatory period for all the given intervals. Defaults to None.

std_inhibitory (list of float): standard deviation of Pnew, during the
inhibitory period for all the given intervals. Defaults to None.

std_exp_df (pandas dataframe, optional): The corresponding results of
the experimental data. Defaults to None.

ax (axes object, optional): specified target axes. Defaults to Nome.

kwargs (dict, optional): pyplot arguments. Defaults to {}.

if ax is None:

fig, ax = plt.subplots(figsize=(5, 5))

if not (std_exp_df is None):

ax.plot(intervals , std_exp_df[’std_ex’],
color="C0’, linestyle="—", alpha=0.4)

ax.plot(intervals , std_exp_df[’std_in’],
color="Cl’, linestyle="—", alpha=0.4)

ax.plot(intervals , std_exp_df[’std_prespiking’],
color="C2’, linestyle="—", alpha=0.4)

ax.plot(intervals , std_exp_df[’std_all’],
color="k’, linestyle="—", alpha=0.4)

ax.plot(intervals , std_all, color="k’, label="all")

if not std_excitatory is None:

ax.plot(intervals , std_excitatory , color="C0’, label="excitatory’)
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if not std_prespiking is None:

ax.plot(intervals , std_prespiking, color="C2’, label="prespiking’)

if not std_inhibitory is None:

ax.plot(intervals , std_inhibitory , color="Cl’, label="inhibitory’)

ax.set_xlabel (’Time_interval_(sec)’)

ax.set_ylabel (’Standard_deviation’)

ax.legend ()

ax.set(xxkwargs)

def plot_std_compare(std_arr, label_arr, intervals , std_exp_df=None,
ax=None, kwargs={}):

"""Plots given data on a single figure.

Args:

std_arr (list of list of float): multiple lists of the standard
deviation.

label_arr (list of str): the label for each corresponding list in
std_arr.

intervals (list of floats): duration of intervals used for Pnew
calculation.

std_exp_df (pandas dataframe, optional): The corresponding results of
the experimental data. Defaults to None.

ax (axes object, optional): specified target axes. Defaults to Nome.

kwargs (dict, optional): pyplot arguments. Defaults to {}.

if ax is None:

fig, ax = plt.subplots(figsize=(5, 5))

if not (std_exp_df is None):

ax.plot(intervals , std_exp_df[’std_all’],

color="k’, linestyle="—", alpha=0.4, label="all")
ax.plot(intervals , std_exp_df[’std_ex’],

color="C0’, linestyle="—", alpha=0.4, label="excitatory’)
ax.plot(intervals , std_exp_df[’std_in’],

color="Cl’, linestyle="—", alpha=0.4, label="inhibitory’)
ax.plot(intervals , std_exp_df[’std_prespiking’],

color="C2’, linestyle="—", alpha=0.4, label="pre—spiking’)

for i, std in enumerate(std_arr):

ax.plot(intervals , std, label=label_arr[i])

ax.set_xlabel (’Time_interval_(sec)’)

ax.set_ylabel (’Standard_deviation’)
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if len(std_arr) < 7:
ax.legend (loc="best’)
else:
plt.legend (loc="center_left’, bbox_to_anchor=(1, 0.5))

ax .set(xsxkwargs)

if __name__ == "__main__
# read membrane potential of experimental data
mem_filename = ’/home/george/Undergraduate—Thesis[Git]/Data/Carandini/61.csv’

pold_exp_df = pd.read_csv(mem_filename, header=0, squeeze=True)

# read std of experimental data
stds_filename = ’~/Undergraduate—Thesis[Git]/Data/Simulation/std.csv’

std_exp_df = pd.read_csv(stds_filename , header=0, squeeze=True)

intervals = np.array(range(l, 200, 5)) # in time steps
dt = pms.dt # time-step ( seconds)
dur = 1.0

# 1. Duration (width/alpha parameter)
# 1.1 Alpha functions (equal distance between spikes)
# 1.1.1 Low rate

std_cmp = []

r = 25.0

h = 4.

a_list = np.arange(0.001, 0.01, 0.002)

for a in a_list:
std_all , std_prespiking , std_excitatory , std_inhibitory = alpha_wave(
a, h, intervals , dt,
spike_index_per_input=[(np.arange (0.0, dur, dur/r)/dt).astype(int)],
plot_results=False)

std_cmp.append(std_all)

fig, (a0, al) = plt.subplots(2, 1, gridspec_kw={
*height_ratios’: [3, 1]}, figsize=(5, 8))
fig.suptitle (
"Constant_height(h={})_and_rate(r={})\n_Variable_shape_parameter(a)_—_width".
format(h, r))
a0.set_title (" Variability ")
plot_std_compare (std_cmp, ["a={:.3f}".format(a)
for a in a_list], intervals=dt, None, a0)
a0.set_ylim ([0, 3])
a0.set_xlim ([0, 0.05])
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1

for a in a_list:
alpha_fun = get_alpha_fun(np.arange(0, 1.0, dt), a, h)
al.plot(np.arange (0, len(alpha_fun), 1)=dt, alpha_fun)
al.set_xlim ([0, 0.05])

al.set_title ("Alpha_function")
al.set_ylabel (’Value_(mV)’)

al.set_xlabel (’Time_(sec)’)

plt.tight_layout ()
fig.subplots_adjust(top=0.88)

plt.show ()

.1.2 High rate

std_cmp = []

r 100.0

h = 4.

a_list = np.arange(0.001, 0.01, 0.002)

for a in a_list:
std_all , std_prespiking , std_excitatory , std_inhibitory = alpha_wave(
a, h, intervals , dt,
spike_index_per_input=[(np.arange (0.0, dur, dur/r)/dt).astype(int)],
plot_results=False)

std_cmp.append(std_all)

fig, (a0, al) = plt.subplots(2, 1, gridspec_kw={
"height_ratios’: [3, 1]}, figsize=(5, 8))
fig.suptitle (
"Constant_height(h={})_and_rate(r={})\n_Variable_shape_parameter(a)_—_ width".
format(h, r))
a0.set_title (" Variability ")
plot_std_compare (std_cmp, ["a={:.3f}".format(a)
for a in a_list], intervals=dt, None, a0)
a0.set_ylim ([0, 3])
a0.set_xlim ([0, 0.05])

for a in a_list:
alpha_fun = get_alpha_fun(np.arange(0, 1.0, dt), a, h)
al.plot(np.arange (0, len(alpha_fun), 1)xdt, alpha_fun)
al.set_xlim ([0, 0.05])

al.set_title ("Alpha_function")
al.set_ylabel (’Value_(mV)’)

al.set_xlabel (’Time_(sec)’)

plt.tight_layout ()
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fig.subplots_adjust(top=0.88)

plt.show ()

.2 Poisson process

std_cmp = []

h = 4.0

r = 100

a_list = np.arange(0.001, 0.01, 0.002)

for a in a_list:
random . seed (0)
std_all , std_prespiking , std_excitatory , std_inhibitory = alpha_wave(
a, h, intervals, dt, rate=r, plot_results=False)

std_cmp.append(std_all)

fig, (a0, al) = plt.subplots(2, 1, gridspec_kw={

"height_ratios’: [3, 1]}, figsize=(5, 8))
fig.suptitle (

"Constant_height(h={})_and _rate(r={})\n_Variable_shape_parameter(a)_—_width".

format(h, r))
a0.set_title (" Variability ")
plot_std_compare(std_cmp, ["a={:.3f}".format(a)
for a in a_list], intervals=dt, None, a0)

a0.set_xlim ([0, 0.05])

for a in a_list:
alpha_fun = get_alpha_fun(np.arange(0, 1.0, dt), a, h)
al.plot(np.arange (0, len(alpha_fun), 1)xdt, alpha_fun)
al.set_xlim ([0, 0.05])

al.set_title ("Alpha_function")
al.set_ylabel (’Value_(mV)’)

al.set_xlabel (’Time_(sec)’)

plt.tight_layout ()
fig.subplots_adjust(top=0.88)

plt.show ()

1 Amplitude (single Poisson process)
std_cmp = []
a = 0.003

r 100

h_list = np.arange(2, 5, 0.5)

for h in h_list:

random . seed (0)
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517 std_all , std_prespiking , std_excitatory , std_inhibitory = alpha_wave(
518 a, h, intervals, dt, rate=r, plot_results=False)

519 std_cmp.append(std_all)

520

521 fig, (a0, al) = plt.subplots(2, 1, gridspec_kw={

522 *height_ratios’: [3, 1]}, figsize=(5, 8))

523 fig.suptitle (

524 "Constant_width(a={})_and_rate (r={})\n_Variable_height(h)".format(a, r))
525

526 a0.set_title (" Variability ")

527 plot_std_compare (std_cmp, ["h="+str (h)

528 for h in h_list], intervals=dt, None, a0)

529

530 for h in h_list:

531 alpha_fun = get_alpha_fun(np.arange(0, 1.0, dt), a, h)

532 al.plot(np.arange (0, len(alpha_fun), 1)=xdt, alpha_fun)

533 al.set_xlim ([0, 0.018])

534

535 al.set_title ("Alpha_function")

536 al.set_ylabel (’Value_(mV)’)

537 al.set_xlabel (’Time_(sec)’)

538

539 plt.tight_layout ()

540 fig.subplots_adjust(top=0.88)

541

542 plt.show ()

543

544 |# 2.2 see Matlab

545

546 |# 3. Rate

547 |# 3.1 Compare rate - Alpha functions equal distance between spikes

548 |# intervals resolution affects the accuracy of the results for high rates and
549 |# appear wrong oscillations in variability

550 intervals = np.array(range(l, 200, 1))

551 std_cmp = []

552 a = 0.004

553 h = 4.0

554 r_list = np.arange (30, 100, 20)

555 r_list = np.append(r_list, 300)

556 r_list = np.append(r_list, 500)

557

558 for r in r_list:

559 std_all , std_prespiking , std_excitatory , std_inhibitory = alpha_wave(
560 a, h, intervals , dt,

561 spike_index_per_input=[(np.arange (0.0, dur, dur/r)/dt).astype(int)],
562 plot_results=False)

563 std_cmp.append(std_all)

564
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fig, a0 = plt.subplots(l, 1, figsize=(5, 5))
fig.suptitle (
"Constant_width (a={})_and_height(h={})\n_Variable_rate(r)".format(a, h))

a0.set_title (" Variability ")
plot_std_compare (std_cmp, ["r="+str(r)

for r in r_list], intervalssxdt, std_exp_df=None, ax=a0)

plt.tight_layout ()
fig.subplots_adjust(top=0.83)

# reset values for the rest experiments

intervals = np.array(range(l, 200, 5))

dt = pms.dt
plt.show ()
2 Compare rate - single Poisson process
random . seed (0)
std_cmp = []
a = 0.003
h = 4.0
r_list = np.arange (30, 100, 20)
r_list = np.append(r_list, 300)
r_list = np.append(r_list, 500)
n_list = [1]
for r in r_list:
for n in n_list:
std_all, std_prespiking , std_excitatory , std_inhibitory = alpha_wave(
a, h, intervals, dt, rate=r, num_input=n, plot_results=False)

std_cmp.append(std_all)
fig, a0 = plt.subplots(l, 1, figsize=(6, 5))
fig.suptitle (

"Constant_width(a={}),_height(h={})\n_Variable_rate_(r)".format(a, h))
a0.set_title (" Variability ")
plot_std_compare (std_cmp, ["r="+str(r)
for r in r_list], intervals=dt, None, a0)

plt.tight_layout ()
fig.subplots_adjust(top=0.83)
plt.show ()
3 Compare Multiple Poisson processes - Equal accumulated rate

random . seed (800)
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r_list = [100] # range(50,500,50)
range(1, 10, 2)

=
|
—
—-
»
-
1l

for r in r_list:
for n in n_list:
std_all , std_prespiking , std_excitatory , std_inhibitory = alpha_wave(
a, h, intervals, dt, rate=r/n, num_input=n, plot_results=False)

std_cmp.append(std_all)

fig, a0 = plt.subplots(l, 1, figsize=(6, 5))
fig.suptitle (
"Constant_width(a={}),_height(h={}),_rate(r={})\n_Variable_number_of_inputs_(n)

".format(a, h, r))
a0.set_title (" Variability ")
plot_std_compare (std_cmp, ["n="+str(n)

for n in n_list], intervals=dt, None, a0)

plt.tight_layout ()
fig.subplots_adjust(top=0.83)

plt.show ()

# Same experiment different random seed

random . seed (0)

std_cmp = []
a = 0.003
h = 4.0

r_list = [100] # range(50,500,50)
n_list = range(l, 10, 2)

for r in r_list:
for n in n_list:
std_all, std_prespiking , std_excitatory , std_inhibitory = alpha_wave(
a, h, intervals, dt, rate=r/n, num_input=n, plot_results=False)

std_cmp.append(std_all)

fig, a0 = plt.subplots(l, 1, figsize=(6, 5))
fig.suptitle (
"Constant_width(a={}),_height(h={}),_rate(r={})\n_Variable_number_of_inputs_(n)

".format(a, h, r))
a0.set_title (" Variability ")

plot_std_compare (std_cmp, ["n="+str(n)

for n in n_list], intervals=dt, None, a0)
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plt.tight_layout ()
fig.subplots_adjust(top=0.83)

plt.show ()

# Final estimation result

random . seed (0)

std_all , std_prespiking , std_excitatory , std_inhibitory = alpha_wave(
0.0028, 3.8, intervals, dt, rate=90, num_input=1,
plot_results=False)

std_cmp = [std_all]

std_all , std_prespiking , std_excitatory , std_inhibitory = alpha_wave(
0.0045, —1.3, intervals , dt, rate=90, num_input=1,
plot_results=False)

std_cmp.append(std_all)

fig, a0 = plt.subplots(l, 1, figsize=(6, 5))
plot_std_compare (std_cmp, [’estimated_pre—spiking’, ’estimated_inhibitory’],

intervalss=dt, std_exp_df, a0)

plt.show ()

Application to intracellula recordings

Listing A.6: variability.m - Application of the measure to real data.

GLOBALS;

close all; clear all;

%% Get cell’s data
[time ,potential , Vth, Vrest, samplerate, nsamples, spikes, spikeheight, spikeduration ,
istim, iexp] = loadcellinfo(61,270);

timestep = 1/samplerate;

%% Remove spikes from data

dt0 = —1;
dtl = spikedurationssamplerate—dt0;
pold_all = remove_spikes( potential , spikes, nsamples, samplerate, dt0, dtl);

%% Separate presynaptic excitatory and inhibitory periods
thresh = Vrest;

pold_ex = NaNxones(length(pold_all) , 1);

pold_ex (pold_all>thresh) = pold_all(pold_all >thresh);

pold_in = NaN=xones(length(pold_all), 1);
pold_in(pold_all <=thresh) = pold_all(pold_all <=thresh);
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%% Pre-spiking period

prespiking_index = [];

if

end

N

pikes
[t_bursts , t_burst_groups, index_pre_burst_spikes, index_burst_groups, in_bursts] =
detect_bursts(potential , spikes, timestep);

sprintf ("Number of bursts found: %d", size(t_bursts,2))

% Start index of slope
preburst_rest_index = []; % index before burst at resting potential
for i = l:numel(index_burst_groups)
preburst_rest_index (end+1) = find(potential (1:index_burst_groups(i)) < Vrest,
1, "last’) + 1;

end

% In case the potential is above thresh before the first burst

% insert at the beginning of the list 1

if preburst_rest_index (1) > index_burst_groups (1)
preburst_rest_index = [l preburst_rest_index];

end

for i = 1:min(length(preburst_rest_index),length(index_burst_groups))
prespiking_index = [prespiking_index , preburst_rest_index (i):index_burst_groups
(i) -1

end

prespiking_potential = NaNxones(length(pold_all) ,1);

prespiking_potential (prespiking_index) = pold_all(prespiking_index);

%% Plot potential and different
figure (' Position’, [10 10 21 7]); hold on;

pl = plot(time, potential, “color’, 0.8x%[1 1 1], ’LineWidth’ ,1);

p2 = plot(time, pold_ex, color’,[0, 0.4470, 0.7410], ’LineWidth’ ,1);

p3 = plot(time, pold_in, color’,[0.8500, 0.3250, 0.0980], ’LineWidth’ ,1);

p4 = plot(time, prespiking_potential, ’color’, [0 0.7 0], ’LineWidth’ ,1);

yline (thresh ,’—’,’ Resting _potential ’);

legend ([pl (1), p2(1), p3(l), p4(l)], ’spikes’, ’excitatory’, ’inhibitory’, ’pre—spiking
)

xlabel (’Time_(sec)’); ylabel(’Pold_(mV)’);
xlim ([0 4]); ylim([-90 0]);

box on;

%% Calculate pnew and standard deviation

intervals = 1:5:200;

std_all=NaN=ones (length(intervals) ,1);

std_ex=NaN=xones (length(intervals) ,1);

std_in=NaN=ones (length (intervals) ,1);
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64 | std_prespiking=NaN=ones (length(intervals), 1);

65

66 | figure();

67 | ax=NaN=ones (length (intervals) ,1);

68 |rows = 5;

69

70 |for j = l:numel(intervals)

71 pnew_all = NaN=ones(length(pold_all) , 1);

72 pnew_ex = NaN=xones(length(pold_all) , 1);

73 pnew_in = NaNxones(length(pold_all) , 1);

74 pnew_prespiking = NaN=xones(length (pold_all) ,1);

75

76 for i = intervals(j)+1l:numel(pold_all)—intervals(j)

77 pnew_all(i) = pold_all(i) — 0.5«(pold_all(i—intervals(j))+pold_all(i+intervals(
i)

78 end

79

80 % pnew excitatory indexes

81 pnew_ex_index = pnewlntervallndexes (intervals(j), find(pold_all>thresh));

82 pnew_ex (pnew_ex_index) = pnew_all(pnew_ex_index);

83

84 % pnew inhibitory indexes

85 pnew_in_index = pnewlntervallndexes(intervals(j), find(pold_all<=thresh));

86 pnew_in(pnew_in_index) = pnew_all(pnew_in_index);

87

88 % pnew pre-spiking indexes

89 pnew_prespiking_index = pnewlntervallndexes(intervals(j), prespiking_index);

90 pnew_prespiking (pnew_prespiking_index) = pnew_all(pnew_prespiking_index);

91

92 std_all(j) = std(pnew_all(~isnan(pnew_all))); 7 exclude nan values

93

94 if numel(pnew_ex(~isnan(pnew_ex))) > 100

95 std_ex(j) = std(pnew_ex(~isnan(pnew_ex)));

96 end

97

98 if numel(pnew_in(~isnan(pnew_in))) > 100

99 std_in(j) = std(pnew_in(~isnan(pnew_in)));

100 end

101

102 if numel(pnew_prespiking(~isnan(pnew_prespiking))) > 100

103 std_prespiking (j) = std(pnew_prespiking(~isnan(pnew_prespiking)));

104 end

105

106 ax(j) = subplot(rows, ceil (length(intervals)/rows),j); hold on;

107 plot(time, pold_all — Vrest, ’color’, 0.7«[1 1 1], ’LineWidth’ ,1);

108 yline (0, ’color’, 0.8«[1 1 1]);

109 plot (time ,pnew_all, ’k’, ’LineWidth’ ,2);

110 plot(time, pnew_ex,’ color’ ,[0, 0.4470, 0.7410], ’LineWidth’ ,2);
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plot(time, pnew_in, color’,[0.8500, 0.3250, 0.0980], ’LineWidth’ ,2);

plot(time, pnew_prespiking,’color’,[0 0.7 0], ’LineWidth’ ,2);

xlabel ("Time_(sec)’); ylabel(’Pnew_(mV)’, ’LineWidth’ ,2);

box on;

set(gca,’ fontsize’ ,13);

title (strcat({ interval_’}, num2str(intervals(j)=(1/samplerate)=1000), {’_msec’}));

end

set(ax, ’xlim’,[0 4.0], ylim’,[—-10 20]);

%% Plot standard deviation

figure () ;

hold on;

pl = plot(intervals «(1/samplerate), std_ex);

p2 = plot(intervals *(1/samplerate), std_in);

p3 = plot(intervals =(1/samplerate), std_prespiking,’color’,[0 0.7 0]);

p4 = plot(intervals =(1/samplerate), std_all, 'k—");

legend ([p4 (1), pl(l), p2(l), p3(l)], *all’, ’excited’, ’inhibited’, ’pre—spiking’);
xlabel (’Time_interval_(sec)’); ylabel(’ Standard_deviation’);

set(geca,’ fontsize’ ,13);

box on;

%% Write std to csv file
T = array2table ([ std_all std_ex std_in std_prespiking]);
T.Properties . VariableNames (1:4) = {’std_all’, ’“std_ex’, ’std_in’, ’std_prespiking’}

writetable (T, ~/Undergraduate—Thesis [ Git]/Data/Simulation/std.csv’);

Listing A.7: pnewIntervallndexes.m - Utility function that returns the indices of Pnew to

be used in the standard deviation.

function [interval_indexes] = pnewlIntervallndexes(interval , indexes)
% Returns the given indexes, after removing <interval> elements from the

% beginning and ending of each sequence of consecutive numbers.
index_bounds = indexBounds(indexes);
interval_indexes = [];
for i = 1:2:numel(index_bounds)
if index_bounds(i)+interval >= index_bounds(i+1)
continue
end
interval_indexes = [interval_indexes , index_bounds(i)+interval:index_bounds(i+1)—
interval ];

end

end
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function index_bounds = indexBounds(indexes)

% Returns the bounds (first and last element) of consecutive numbers.
%

% Example:

% (1L, 3, 4, 5, 7, 8, 9, 10] -> [1, 3, 5, 7, 10]

index_bounds = (indexes(1));

for i = l:numel(indexes)
if i==numel(indexes)
index_bounds = [index_bounds, indexes(i)];
break

end

if indexes(i)+Il==indexes(i+1)

continue

else
index_bounds = [index_bounds, indexes(i)];
index_bounds = [index_bounds, indexes(i+1)];

end

end

end

Listing A.8: remove_spikes.m - Utility function that removes the spikes from the mem-

brane potential.

function [potential_spikes_rem] = remove_spikes(potential , spikes, nsamples, samplerate
, dt0, dtl)

% Remove spikes from membrane potential.

% dt0: relative time before/beginning of spike

% dtl: relative time after/end of spike

potential_spikes_rem = potential;

if ~isempty(spikes)
for spike = spikes(:)’
t0 = max(spike+dt0, 1);

tl = min(spike+dtl , nsamples);

pO
pl = potential (tl);

potential (t0);

potential_spikes_rem (tO:tl) = pO+(pl—p0)/(tl1—t0)*=([tO:t1]"—t0);

end

end

end
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A.3 Simulation

A.3.1 Neuron model

Listing A.9: simulation.py - Simulation of the V1 neuron.

import utils as local_utils
import firing_rate
import kernel

import plots

import numpy as np

from tqdm import tqdm # progress bar
from brian2 import =

# Suppress resolution conflict warnings

BrianLogger.suppress_name( resolution_conflict”)

def execute(Vth, Vreset, Vrest, theta,
refract , dur, tau, tau_syn_ex, tau_syn_in,
Xs_on_ex , ys_on_ex, xs_off_ex, ys_off_ex,
xs_on_inh, ys_on_inh, xs_off_inh, ys_off_inh,
X, Y, Ix, dx, ly, dy, sigma_center, sigma_surround
stimulus , t, we, wi, num_rfc, r0=0.0, L0=0.0, G_ex=100.0, G_inh=None,
plot_results=True, ax_pot=None, ax_rf=None, ax_firing_rate=None):

"""Execute the simulation based on the given parameters.

Args:

Vth (float): firing threshold.

Vreset (float): reset potential.

Vrest (float): resting potential.

theta (float): stimulus orientation.

refract (float): duration of refractory period.

dur (float): duration of the simulation.

tau (float): membrane potential’s time constant.

tau_syn_ex (float): presynaptic excitatory time constant.

tau_syn_in (float): presynaptic inhibitory time constant.

xs_on_ex (list of float): x coordinates of excitatory ON receptive
fields.

ys_on_ex (list of float): x coordinates of excitatory ON receptive
fields.

xs_off_ex (list of float): x coordinates of excitatory OFF receptive

fields.

ys_off_ex (list of float): x coordinates of excitatory OFF receptive

A-32




39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

fields.

xs_on_inh (list of float): x coordinates of inhibitory ON receptive
fields.

ys_on_inh (list of float): x coordinates of inhibitory ON receptive
fields.

xs_off_inh (list of float): x coordinates of inhibitory OFF receptive
fields.

ys_off_inh (list of float): x coordinates of inhibitory OFF receptive
fields.

X (ndarray of floats): x coordinates of the mesh grid.

Y (ndarray of floats): y coordinates of the mesh grid.

1x (float): size of the grid (x axis)

dx (float): resolution of the grid (x axis).

ly (float): size of the grid (y axis)

dy (float): resolution of the grid (y axis).

sigma_center (float): size of the central region (should be less than
sigma_surround).

sigma_surround (float): size of the surround region (should be greater
than sigma_center).

stimulus (list of float ndarray): the stimulus at each time step.

t (list of float): time.

we (float): weight of excitatory presynaptic input.

wi (float): weight of inhibitory presynaptic input.

num_rfc (int): number of receptive fields.

r0 (float, optional): any background firing that may occur when stimulus
is zero. Defaults to 0.0.

LO (float, optional): the threshold value that must be attained before
firing begins. Defaults to 0.0.

G_ex (float, optional): constant of proportionality for the excitation.
Defaults to 100.

G_inh (float, optional): constant of proportionality for the inhibition.
Defaults to None.

plot_results (bool, optional): if True makes the related plots. Defaults
to True.

ax_pot (axes object, optional): specified target axes for the membrane
potential. Defaults to None.

ax_rf (axes object, optional): specified target axes for the receptive
fields. Defaults to Nome.

ax_firing_rate (axes object, optional): specified target axes for the

firing rate. Defaults to None.

Returns:
(brian object, brian object, brian object, brian object): state monitors
for: (1) LIF neuron, (2) LIF spike monitor, (3) excitatory and (4)

inhibitory presynaptic spikes monitors.

# default value for G_inh is the same as G_ex
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87 if G_inh is None:

88 G_inh = G_ex

89

90 # Definition of neuron model

91 eqs = 777

92 dv/dt = (Vrest-v+x+w)/tau : volt

93

94 dx/dt = (y-x)/tau_syn_ex : volt

95 dy/dt = -y/tau_syn_ex : volt

96

97 dw/dt = (z-w)/tau_syn_in : volt

98 dz/dt = -z/tau_syn_in : volt

99 7o

100

101 lif = NeuronGroup(l, eqs, threshold=’v>Vth’, reset="v=Vreset’,
102 method="exact’, refractory=refract, dt=defaultclock.dt)
103 lif .v = Vrest

104

105 xs_on_ex_rot, ys_on_ex_rot = local_utils.rotate_point_arr (

106 Xs_on_ex, ys_on_ex, theta)

107 xs_off_ex_rot, ys_off_ex_rot = local_utils.rotate_point_arr(
108 xs_off_ex , ys_off_ex, theta)

109 xs_on_inh_rot, ys_on_inh_rot = local_utils.rotate_point_arr(
110 xs_on_inh, ys_on_inh, theta)

111 xs_off_inh_rot, ys_off_inh_rot = local_utils.rotate_point_arr (
112 xs_off_inh, ys_off_inh, theta)

113

114 kernels_on_ex = []

115 for i, (x, y) in enumerate(zip(xs_on_ex_rot, ys_on_eXx_rot)):
116 kernels_on_ex .append(kernel.spatial_kernel (

117 X, Y, x, y, sigma_center, sigma_surround, inverse=1))
118

119 kernels_on_inh = []

120 for i, (x, y) in enumerate(zip(xs_on_inh_rot, ys_on_inh_rot)):
121 kernels_on_inh.append(kernel.spatial_kernel (

122 X, Y, x, y, sigma_center, sigma_surround, inverse=1))
123

124 kernels_off_ex = []

125 for i, (x, y) in enumerate(zip(xs_off_ex_rot, ys_off_ex_rot)):
126 kernels_off_ex .append(kernel.spatial_kernel(

127 X, Y, x, y, sigma_center, sigma_surround, inverse=—1))
128

129 kernels_off_inh = []

130 for i, (x, y) in enumerate(zip(xs_off_inh_rot, ys_off_inh_rot)):
131 kernels_off_inh.append(kernel.spatial_kernel (

132 X, Y, x, y, sigma_center, sigma_surround, inverse=—1))
133

134 kernels_ex = kernels_on_ex + kernels_off_ex
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kernels_inh = kernels_off_inh + kernels_on_inh

firing_rate_ex = firing_rate.calculate_firing_rate (
kernels_ex , stimulus, t, r0, LO, G_ex)
firing_rate_inh = firing_rate.calculate_firing_rate (

kernels_inh , stimulus, t, rO, LO, G_inh)

firing_rate_ex_arr = TimedArray(firing_rate_ex+Hz, dt=defaultclock.dt)

firing_rate_inh_arr = TimedArray(firing_rate_inh=xHz, dt=defaultclock.dt)

poisson_gr_ex = PoissonGroup (

2snum_rfc, rates="firing_rate_ex_arr(t,i)’, dt=defaultclock.dt)
poisson_gr_inh = PoissonGroup (

2#num_rfc, rates="firing_rate_inh_arr(t,i)’, dt=defaultclock.dt)

# The on_pre keyword defines what happens when a presynaptic spike
# arrives at a synapse.

# excitatory synapses & inhibitory synapses

synapses_ex = Synapses(poisson_gr_ex, lif , on_pre="y_+=_wesexp(l)’)

synapses_inh = Synapses(poisson_gr_inh, lif , on_pre="z_+=_wixexp(l)’)

synapses_ex.connect ()

synapses_inh.connect ()

lif _state_monitor = StateMonitor(lif , [’v’], record=True)
lif_spike_monitor = SpikeMonitor(lif)

# excitatory presynaptic action potentials

epsp_monitor = SpikeMonitor(poisson_gr_ex)

# inhibitory presynaptic action potentials

ipsp_monitor = SpikeMonitor(poisson_gr_inh)

# Create a Network object in order to prevent "Magic Error" from Brian
# Reference: Brian2 MagicNetwork documentation
net = Network(1lif)
net.add(synapses_ex , synapses_inh,
poisson_gr_inh , poisson_gr_ex,
lif_state_monitor , lif_spike_monitor ,

epsp_monitor , ipsp_monitor)

# Run simulation

net.run(dur)

if plot_results:
plots.plot_mem(lif_state_monitor , epsp_monitor,
ipsp_monitor, show_pre_spikes=True,
ax=ax_pot,

’ .

kwargs={"title (str (round (math.degrees (theta))) + "degrees")})
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if

__name__ == "__main__

plots.plot_receptive_field (kernels_on_ex, kernels_off_ex,
kernels_on_inh , kernels_off_inh , stimulus, Ix, ly, t=0, ax=ax_rf,

> .

kwargs={"title (str (round (math.degrees (theta))) + "degrees")})
plots.plot_firing_rate_per_rfc(firing_rate_ex ,
np.concatenate ((xs_on_ex_rot, xs_off_ex_rot), axis=0),
np.concatenate ((ys_on_ex_rot, ys_off_ex_rot), axis=0), t,
ax=ax_firing_rate)
plots.plot_firing_rate_per_rfc (firing_rate_inh ,
np.concatenate ((xs_on_inh_rot, xs_off_inh_rot), axis=0),
np.concatenate ((ys_on_inh_rot, ys_off_inh_rot), axis=0), t,

ax=ax_firing_rate)

return lif_state_monitor , lif_spike_monitor , epsp_monitor, ipsp_monitor

import params as pms

# Declare plots
# Number of subplots per axis
axes_x = 4

axes_y = 2

# Membrane potential plots
fig_pot, axs_pot = plt.subplots(axes_y, axes_x, sharex=True, sharey=True)
fig_pot.suptitle (’Membrane_Potential *)

axs_pot[axes_y —1, axes_x —1].set_visible (False) # remove last subplot

# Receptive field plots
fig_rf, axs_rf = plt.subplots(axes_y, axes_x, sharex=True, sharey=True)
fig_rf.suptitle ('LGN_Receptive _Fields’)

axs_rf[axes_y —1, axes_x —1].set_visible (False) # remove last subplot

# Firing rate plots

fig_fire_rate , axs_fire_rate = plt.subplots(
axes_y, axes_x, sharex=True, sharey=True)

fig_fire_rate.suptitle (’Firing_Rate’)

axs_fire_rate[axes_y —1, axes_x —1].set_visible (False) # remove last subplot

for index, theta_i in enumerate(tqdm(pms. Theta)):
lif_state_monitor , lif_spike_monitor, epsp_monitor, ipsp_monitor = execute (
pms.Vth, pms. Vreset, pms.Vrest, theta_i,
pms.refract , pms.dur, pms.tau, pms.tau_syn_ex , pms.tau_syn_in,
pms.xs_on_ex, pms.ys_on_ex, pms.xs_off_ex, pms.ys_off_ex,
pms.xs_on_inh, pms.ys_on_inh, pms.xs_off_inh, pms.ys_off_inh,
pms.X, pms.Y, pms.Ilx, pms.dx, pms.ly, pms.dy,

pms.sigma_center , pms.sigma_surround ,
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231 pms. stimulus , pms.t, pms.we, pms.wi, pms.num_rfc,

232 pms.rO0, pms.LO, pms.G_ex, pms.G_inh, plot_results=True,

233 ax_pot=axs_pot[index//axes_x, index % axes_x],

234 ax_rf=axs_rf[index //axes_x, index % axes_x],

235 ax_firing_rate=axs_fire_rate[index //axes_x, index % axes_x])
236

237 plt.show ()

Listing A.10: params.py - All the parameters used in the simulation.

1 |import numpy as np

2 |from brian2 import =

3

4 |import stimuli

5

6 |# Grid parameters

7 |dx = dy = 0.05 # resolution - step size (degrees)

8 |Ix =1y = 8.0 # size (degrees)

9 |x = np.arange(—1x/2, Ix/2, dx)

10 |y = np.arange(—ly/2, ly/2, dy)

11 |X, Y = np.meshgrid(x, y) # grid

12

13 |# Center-Surround parameters (values from Archie and Mel, 2000)

14 |# Convert from minutes(’) to degrees x 1/60

15 | sigma_center = 10.6 * (1/60) # size of the central region (degrees)
16 | sigma_surround = 31.8 * (1/60) # size of the surround region (degrees)
17 |# number of RF-centers per type(ON/OFF and ex/inh)

18 | num_rfc = 10

19

20 |# Time parameters

21 |# set dt for all objects (check Brian2 doc)

22 | defaultclock.dt = 0.000244 = second

23 | dt = defaultclock.dt/second # time-step

24 |# default value for defaultclock.dt = 0.0001 sec

25 |# in experimental data time-step was 0.000244sec

26 | dur = 4=xsecond # duration of the simulation

27 |t = np.arange (0., dur/second, dt) # array of time instances

28

29 |# Sine grating - spatial parameters

30 |# so that an ON-center part is on the light and OFF-surround part on dark spot
31 |[K = 0.25/(0.39) = (2 * np.pi) # spatial frequency (cycle per degree)
32 |Phi = 0 % np.pi # spatial phase (radians)

33 |# maximum degree of difference between light and dark areas

34 |A=1 # amplitude of sine grating

35 |omega = 4 # temporal frequency (Hz)

36 | Theta = [0, pi/6, pi/3, pi/2, 2«pi/3, Sxpi/6, pi] # orientation (radians)
37 | stimulus = stimuli.sine_grating (A, K, Phi, omega, X, Y, t)

38

A-37




39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

—_

N > Y, e VS I S )

# Simple cell parameters

# In experimental data the first spike of each burst has lower threshold (-55*mV)
# than the rest. (firing threshold for all the spikes -49.2197xmV).
#

Lower the threshold for all spikes to that of the first spike

Vth = —55%mV # threshold potential equal to the Vth for first spike in experimental
Vreset = —55smV

Vrest = —76.3369+mV # resting potential

tau = 7.5+ms # time constant for LIF

tau_syn_ex = 1.0xms # time constant for ex. synapses

tau_syn_in = 1.0%ms # time contant for inh. synapses

# Remember to set refractory period shorter than the time for burst detection

refract = 6xms # refractory period
we = 4.6xmV # weight of excitatory synapses
wi = —1.4smV # weight of inhibitory synapses

# Positions of RF centers

# ratio of a subfield of the RF (see Jones and Palmer 1987)
ratio = 1.7

rf_w = (2 % np.pi)/K # width of RF

rf_1 = ratio = rf_w # length of RF

# At each point there is an excitatory ON/OFF-center and an inhibitory OFF/ON-center
xs_on_ex = xs_off_inh = np. full (num_rfc, 0)

xs_off_ex = xs_on_inh = np.full (num_rfc, (0.5 % (2 % np.pi))/K)

ys_on_ex = ys_off_inh = np.arange(—rf_1/2, rf_1/2, rf_1/num_rfc)

ys_off_ex = ys_on_inh = np.arange(—rf_1/2, rf_1/2, rf_1/num_rfc)

# Firing rate params

0 =0 # any background firing that may occur when s = 0

LO =0 # the threshold value that L must attain before firing begins
G_ex = 135 # constant of proportionality (upper limit) - excitatory

G_inh = 100 # constant of proportionality (upper limit) - inhibitory

A.3.2 Stimulus and Receptive fields

Listing A.11: kernel.py - Definition of the kernel of the receptive fields.

import numpy as np

def spatial_kernel (X, Y, x, y, sigma_center, sigma_surround, inverse=1):

"""Creates a spatial kernel for the LGN cells’ receptive field.

The kernel is defined as the difference of Gaussians.

Reference: Eq 2.45, Theoretical Neuroscience Dayan & Abbot (2011).
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Args:

X (ndarray of floats): x coordinates of the mesh grid.

Y (ndarray of floats): y coordinates of the mesh grid.

x (float): x coordinate of the position of the kernel on the grid.

y (float): y coordinate of the position of the kernel on the grid.

sigma_center (float): size of the central region (should be less than
sigma_surround).

sigma_surround (float): size of the surround region (should be greater
than sigma_center).

inverse (int, optional): determines if the type of the kernel (ON/OFF).
Takes values -1 or 1 only. If the given value is 1 the kernel is of

type ON, otherwise OFF. Defaults to 1.

Returns:
ndarray of float: the spatial kernel, normalized so that for the perfect
stimulus (for the case of type ON:1 in the center and -1 in the

surround region) the firing rate is equal to 1.

Z = ((X—x)*%2 + (Y — y)=*%2) # move center

center = (17.0 / (2+«np.pi * (sigma_center=*=2))) = \

np.exp(—Z / (2=(sigma_center=%2)))

surround = (16.0 / (2xnp.pi * (sigma_surround=*2))) = \
np.exp(—Z / (2=(sigma_surround x%2)))

Z = center — surround
# points outside circle/receptive field center are set to zero
pts = (X—x)##2+(Y—y)*%2 >= (2xsigma_surround ) %2

Zipts] =0

# normalize by multiplying with scale factor(dividing number of points/area)

return (Z = inverse) / np.sum(np.absolute(Z))

Listing A.12: stimuli.py - Definition of the stimulus.

import numpy as np

def sine_grating (A, K, phi, omega, X, Y, t, theta=0.0, solid=True):

"""Generates a sinusoidal grating for every time step.

Slightly modified Eq. 2.18, Theoretical Neuroscience Dayan & Abbot (2011).

Note: The rotation of the stimulus can be set to 0 degrees, and instead
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rotate the position of the receptive field centers.

Args:
A (float): amplitude.
K (float): spatial frequency.
phi (float): phase.
omega (float): temporal frequency.
X (ndarray of float): x coordinates of the mesh grid.
Y (ndarray of float): y coordinates of the mesh grid.
t (list of float): time.
theta (float, optional): rotation angle. Defaults to 0.0.
solid (bool, optional): if true the stimulus will have only 1 or -1
values, otherwise it will contain intermediate values. Defaults to

True.

Returns:

ndarray of floats: stimulus; a sinusoidal grating for every time step.

stimulus = np.zeros ((t.size, X[0].size, Y[O0].size))

for i, ti in enumerate(t): # for each time-step
stimulus[i, ...] = A % np.cos((K * X % np.cos(theta) —
K % Y % np.sin(theta) — phi) +

omega # 2 * np.pi * ti)

if solid:

1]
|
—_

stimulus [stimulus < 0]

Il
—_

stimulus [ stimulus > 0]

return stimulus

Listing A.13: firing_rate.py - Definition of the presynaptic firing rate.

import numpy as np

def calculate_firing_rate (kernels, stimulus, t, r0=0.0, L0=0.0, G=1.0):
"""Calculation of the firing rate of LGN cells based on the given kernels

and stimulus.

Reference: Eq. 2.8 & 2.9, Theoretical Neuroscience Dayan and Abott (2011).

Args:
kernels (list of float ndarray): list of kermels.
stimulus (list of float ndarray): the stimulus at each time step.
t (list of float): list of time instaces.

r0 (float, optional): any background firing that may occur when stimulus
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is zero. Defaults to 0.0.
LO (float, optional): the threshold value that must be attained before
firing begins. Defaults to 0.0.

G (float, optional): constant of proportionality. Defaults to 1.0.

Returns:

ndarray of float: the firing rate for each time step.

rate = np.zeros ([t.size, len(kernels)])

# Multiply spatial-kernel with sinusoidal stimulus at each time step
for i, t in enumerate(t):
rate[i, ...] = [np.sum(kernel % stimulus[i, ...])

for kernel in kernels]

# Add background firing

rate += r0

# Rectify firing rates

rate[rate < LO] = 0

# Multiply with the constant of proportionality G

return Gsxrate

A.3.3 Utilities

Listing A.14: plots.py - Utility functions for plotting results.

import numpy as np

from brian2 import second, mV, plt

from matplotlib import colors

from mpl_toolkits.mplot3d import Axes3D

from matplotlib import cm

def plot_kernels(kernels, 1x, ly, kwargs={}, ax=None)

"""Plots the given kernels.

Args:
kernels (list of ndarray of float): list of kernels.
1x (float): dimensions (x axes).
ly (float): dimensions (y axes).
kwargs (dict, optional): pyplot arguments. Defaults to {}.

ax (axes object, optional): specified target axes. Defaults to Nome.

if not kernels:

return
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if ax is None:

fig , ax = plt.subplots ()

kernels_sum = np.sum(kernels, axis=0)
masked_data = np.ma.masked_where(kernels_sum == 0.0, kernels_sum)
ax .imshow (masked_data, extent=[—1x/2, 1x/2, ly/2, —1y/2],

interpolation="none’, =#xkwargs)

plot_kernel_3D (kernel , X, Y, kwargs={}, ax=None):
"""Plots single given kernel in 3D plot.
Args:
kernel (ndarray of float): spatial kernel of the receptive field.
X (ndarray of floats): x coordinates of the mesh grid.
Y (ndarray of floats): y coordinates of the mesh grid.
kwargs (dict, optional): pyplot arguments. Defaults to {}.
ax (axes object, optional): specified target axes. Defaults to None.
if ax is None:
fig = plt.figure ()
ax = fig.gca(projection="3d")
kernel [ kernel == 0] = np.nan
ax.plot_surface (X, Y, kernel, rstride=1, cstride=1, alpha=0, linewidth=0.5,
edgecolors="k")
cmap = colors.ListedColormap ([ "blue’, ’'red’])
bounds = [—1, 0, 1]
norm = colors.BoundaryNorm (bounds, 2)
ax.contourf (X, Y, kernel, 10, offset=—0.002, cmap=cmap,
norm=norm, alpha=0.4)
ax.set_xlim(—1.2, 1.2)
ax.set_ylim(—1.2, 1.2)
ax.set_zlim(—0.002, 0.01)
ax.view_init (10, 45)
ax.set_xlabel (’x_(degrees)’)
ax.set_ylabel (’y_(degrees)’)
ax.set_zlabel (’Ds’)
# ax.set_zticks ([0])
plot_stimulus (stimulus, t, 1x, ly, ax=None):

"""Plots the given stimulus at the specified index/time.
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69 Args:

70 stimulus (ndarray of float): stimulus for every time step.
71 t (int): time index.

72 1x (float): dimensions (x axes).

73 ly (float): dimensions (y axes).

74 ax (axes object, optional): specified target axes. Defaults to None.
75 nn

76

77 if ax is None:

78 fig , ax = plt.subplots ()

79

80 ax .imshow (stimulus[t, :], extent=[—1x/2, 1x/2, ly/2, —1y/2],

81 cmap="binary_r’)

82

83

84 | def plot_firing_rate_per_rfc(rates, xs, ys, t, ax=None, kwargs={}):
85 """Plots the given firing rates in time.

86

87 Args:

88 rates (ndarray of float): the firing rate for every time step of each
89 LGN cell.

90 xs (list of float): x coordinates of the receptive fields.
91 ys (list of float): y coordinates of the receptive fields.
92 t (list of float): time.

93 ax (axes object, optional): specified target axes. Defaults to None.
94 kwargs (dict, optional): pyplot arguments. Defaults to {}.
95 nn

96

97 if ax is None:

98 fig , ax = plt.subplots ()

99

100 for index, (x, y) in enumerate(zip(xs, ys)):

101 ax.plot(t, rates[:, index], label="x={}_y={}".format(x, y))
102

103 ax.set_xlabel (’Time_(sec)’)

104 ax.set_ylabel (’Firing_rate_(Hz)’)

105

106 ax.set(xxkwargs)

107

108

109 | def plot_stimulus_per_rfc(stimulus, xs, ys, t, ax=None):

110 """Plots stimulus value per receptive field based on the position.
111

112 Args:

113 stimulus (ndarray of float): stimulus for every time step.
114 xs (list of float): x coordinates of the receptive fields.
115 ys (list of float): y coordinates of the receptive fields.
116 t (list of float): time.
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ax (axes object, optional): specified target axes. Defaults to Nome.

if ax is None:

fig, ax = plt.subplots ()

for x, y in zip(xs, ys):
sine_xy = stimulus[:, int((y+ly/2)/dy), int((x+1x/2)/dx)]
ax.plot(t, sine_xy, label="x={}_y={} .format(x, y))

plot_postition_per_rfc(xs, ys, ax=None):
"""Plots a scatter plot of the positions of the centers of each receptive

field.

Args:
xs (list of float): x coordinates of the receptive fields.
ys (list of float): y coordinates of the receptive fields.

ax (axes object, optional): specified target axes. Defaults to None.

# plot position per RF
if ax is None:

fig, ax = plt.subplots ()

for x, y in zip(xs, ys):

ax.scatter(x, y, label="x={}_y={}".format(x, y))

plot_receptive_field (kernels_on_ex , kernels_off_ex ,
kernels_on_inh , kernels_off_inh ,
stimulus , 1x, ly, t=0, ax=None, kwargs={}):

"""Plots receptive fields and the stimulus on 2D plot.

Args:

kernels_on_ex (ndarray of float): kernels for excitatory center ON
receptive field.

kernels_off_ex (ndarray of float): kernels for excitatory center OFF
receptive field.

kernels_on_inh (ndarray of float): kernels for inhibitory center ON
receptive field.

kernels_off_inh (ndarray of float): kermnels for inhibitory center OFF
receptive field.

stimulus (ndarray of float): stimulus for every time step.

1x (float): dimensions (x axes).

ly (float): dimensions (y axes).

t (int, optional): time index. Defaults to O.

ax (axes object, optional): specified target axes. Defaults to Nome.
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165 kwargs (dict, optional): pyplot arguments. Defaults to {}.
166 unn

167

168 if ax is None:

169 fig, ax = plt.subplots ()

170

171 cmap = colors.ListedColormap ([ *blue’, ’red’])

172 bounds = [—-1, 0, 1]

173 norm = colors.BoundaryNorm(bounds, 2)

174 kernel_kwargs = {’alpha’: 0.3, ’cmap’: cmap, ’'norm’: norm}

175

176 plot_stimulus (stimulus, t, 1x, ly, ax)

177 plot_kernels (kernels_on_ex, Ix, ly, kernel_kwargs, ax)

178 plot_kernels (kernels_off_ex , Ix, ly, kernel_kwargs, ax)

179 #plot_kernels(kernels_on_inh, 1lx, ly, kernel_kwargs, ax)

180 #plot_kernels(kernels_off_inh, 1x, ly, kernel_kwargs, ax)

181 ax.set(xxkwargs)

182

183 ax.set_xticks ([])

184 ax.set_yticks ([])

185

186

187 | def plot_mem(lif_state_monitor , ex_presyn_spike_monitor, in_presyn_spike_monitor ,
188 show_pre_spikes=True, ax=None, kwargs={}):

189 """Plots the membrane potential (black) and the time of presynaptic

190 excitatory (blue) and inhibitory (red) input.

191

192 Args:

193 lif_state_monitor (brian object): state monitor of the LIF neuron.
194 ex_presyn_spike_monitor (brian object): excitatory presynaptic spike
195 monitor.

196 in_presyn_spike_monitor (brian object): inhibitory presynaptic spike
197 monitor.

198 show_pre_spikes (bool, optional): if true plots the presynaptic spikes,
199 below the membrane potential, otherwise not. Defaults to True.
200 ax (axes object, optional): specified target axes. Defaults to None.
201 kwargs (dict, optional): pyplot arguments. Defaults to {}.

202 o

203

204 if ax is None:

205 fig, ax = plt.subplots ()

206

207 # Plot membrane potential

208 ax.plot(lif_state_monitor.t/second, lif_state_monitor[0].v/mV, color="k")
209 ax.set(xsxkwargs)

210

211 if not show_pre_spikes:

212 return

A-45




213

214 # Plot time of pre-synaptic spikes

215 offset = —80

216 for spike_ex, spike_inh in zip(ex_presyn_spike_monitor.spike_trains ().values(),
217 in_presyn_spike_monitor.spike_trains ().values()):
218

219 ax.plot(spike_ex/second, np.zeros_like (spike_ex/second) +

220 offset, ’I’, color="b’, alpha=0.4)

221 ax.plot(spike_inh/second, np.zeros_like (spike_inh/second) +

222 offset, ’1’, color="r’, alpha=0.4)

223

224 offset —= 1

225

226 ax.set_xlabel (’Time_(sec)’)

227 ax.set_ylabel (’Membrane_Potential _(mV)’)

228

229

230 | def plot_bursts(lif_state_monitor , bursts_all, burst_groups, dt, ax=None,

231 kwargs={}):

232 """Plots the membrane potential indicating the bursts (red line) and
233 burst-groups (green line).

234

235 Args:

236 lif_state_monitor (brian object): state monitor of the LIF neuron.
237 bursts_all (list of int): indices of all bursts.

238 burst_groups (list of int): indices of burst-groups.

239 dt (float): time step.

240 ax (axes object, optional): specified target axes. Defaults to None.
241 kwargs (dict, optional): pyplot arguments. Defaults to {}.

242 o

243

244 if ax is None:

245 fig, ax = plt.subplots ()

246

247 for b in bursts_all:

248 plt.axvline (x=bxdt, color="r")

249

250 for bg in burst_groups:

251 plt.axvline (x=bgxdt, color="g’)

252

253 ax.plot(lif_state_monitor.t/second, lif_state_monitor [0].v/mV, color="k’")
254 ax.set(xxkwargs)

255

256

257 | def plot_pold(pold_ex, pold_in, prespiking_potential , time,

258 thresh , ax=None, kwargs={}):

259 """Plots the membrane potential with different color each period i.e.
260 excitatory(blue), inhibitory(orange) and pre-spiking(green).
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261

262 Args:

263 pold_ex (list of float): membrane potential of excitatory

264 period.

265 pold_in (list of float): membrane potential of inhibitory

266 period.

267 prespiking_potential (list of float): membrane potential of pre-spiking
268 period.

269 time (list of float): time.

270 thresh (float): firing threshold potential.

271 ax (axes object, optional): specified target axes. Defaults to None.
272 kwargs (dict, optional): pyplot arguments. Defaults to {}.

273 o

274

275 if ax is None:

276 fig , ax = plt.subplots ()

277

278 ax.plot(time, pold_ex, label="excited’, linewidth=1)

279 ax.plot(time, pold_in, label="inhibited’, linewidth=1)

280 ax.plot(time, prespiking_potential , label="pre—spiking’, linewidth=1)
281 ax.axhline (y=thresh, color="r’, linestyle="—", label="Resting_potential’)
282

283 ax.set_xlabel (’Time_(sec)’)

284 ax.set_ylabel (’Pold_(mV)’)

285

286 ax.legend ()

287 ax.set(xxkwargs)

288

289

290 | def plot_pnew (pnew_ex, pnew_in, pnew_prespiking, pold_all, time, interval ,

291 ax=None, kwargs={}):

292 """Plots Pnew with different color each period i.e. excitatory(blue),
293 inhibitory(orange) and pre-spiking(green).

294

295 Args:

296 pnew_ex (list of float): Pnew values for excitatory period.

297 pnew_in (list of float): Pnew values for inhibitory period.

298 pnew_prespiking (list of float): Pnew values for pre-spiking period.
299 pold_all (list of float): membrane potential (Pold).

300 time (list of float): time.

301 interval (float): duration of interval used for Pnew calculation.
302 ax (axes object, optional): specified target axes. Defaults to None.
303 kwargs (dict, optional): pyplot arguments. Defaults to {}.

304 nn

305

306 if ax is None:

307 fig, ax = plt.subplots ()

308
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309 ax.plot(time, pold_all, ’k—’, alpha=0.2)

310 #ax.plot(time, pold_all, ’ko’, markersize=1, alpha=0.3)

311

312 ax.axhline (y=0, color="k’, alpha=0.2)

313

314 ax.plot(time, pnew_ex, linewidth=1)

315 ax.plot(time, pnew_in, linewidth=1)

316 ax.plot(time, pnew_prespiking, linewidth=1)

317

318 ax.set_xlabel (’Time_(sec)’)

319 ax.set_ylabel (’Pnew_(mV)’)

320

321 ax.set_title (’interval_{:.3f}_msec’.format(interval))

322 ax.set_xlim (0, 4)

323

324 ax.set(xxkwargs)

325

326

327 | def plot_std(std_ex, std_in, std_prespiking, std_all, intervals ,

328 std_exp_df=None, ax=None, kwargs={}):

329 """Plots the standard deviation of Pnew with different color each period
330 i.e. excitatory(blue), inhibitory(orange) and pre-spiking(green).
331

332 Args:

333 std_ex (list of float): standard deviation of Pnew, during the
334 excitatory period for all the given intervals.

335 std_in (list of float): standard deviation of Pnew, during the
336 inhibitory period for all the given intervals.

337 std_prespiking (list of float): standard deviation of Pnew, during the
338 pre-spiking period for all the given intervals.

339 std_all (list of float): standard deviation of Pnew, during the
340 total duration for all the given intervals.

341 intervals (list of floats): duration of intervals used for Pnew
342 calculation.

343 std_exp_df (pandas dataframe, optional): The corresponding results of
344 the experimental data. Defaults to None.

345 ax (axes object, optional): specified target axes. Defaults to None.
346 kwargs (dict, optional): pyplot arguments. Defaults to {}.

347 o

348

349 if ax is None:

350 fig , ax = plt.subplots ()

351

352 if not (std_exp_df is None):

353 ax.plot(intervals , std_exp_df[’std_ex’],

354 color="C0’, linestyle="—", alpha=0.4)

355 ax.plot(intervals , std_exp_df[’std_in’],

356 color="Cl’, linestyle="—", alpha=0.4)
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357 ax.plot(intervals , std_exp_df[’std_prespiking’],

358 color="C2’, linestyle="—", alpha=0.4)
359 ax.plot(intervals , std_exp_df[’std_all’],
360 color="k’, linestyle="—", alpha=0.4)
361
362 ax.plot(intervals , std_ex, color="CO0’, label="excited’)
363 ax.plot(intervals , std_in, color="Cl’, label="inhibited’)
364 ax.plot(intervals , std_prespiking , color="C2’, label="pre—spiking’)
365 ax.plot(intervals , std_all, label="all’, color="k")
366
367 ax.set_xlabel (’Time_interval_(msec)’)
368 ax.set_ylabel (’Standard_deviation’)
369
370 ax.legend ()
371 ax.set(xsxkwargs)
Listing A.15: utils.py - Misc. utilities.
1 [import numpy as np
2
3
4 |def rotate_point(x, y, theta):
5 """Rotate the given point (x, y) at an angle theta.
6
7 Args:
8 x (float): x coordinate.
9 y (float): y coordinate.
10 theta (float): orientation angle.
11
12 Returns:
13 (float, float): rotated x and y coordinates.
14 o
15
16 xx = xxnp.cos(theta) — y#np.sin(theta)
17 yy = x*np.sin(theta) + y=np.cos(theta)
18 return xx, yy
19
20
21 |def rotate_point_arr(xs, ys, theta):
22 """Rotates multiple points at an angle theta.
23
24 Args:
25 xs (list of floats): x coordinates.
26 ys (list of floats): y coordinates.
27 theta (float): orientation angle.
28
29 Returns:
30 (lists of floats, lists of floats): two lists containing the
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31
32
33
34
35
36
37
38
39
40
41
)
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
7
73
74
75
76
77
78

def

def

rotated x and y coordinates.

Xs_rot = np.zeros(xs.size)

ys_rot np.zeros(ys.size)

for i, (x, y) in enumerate(zip(xs, ys)):
xs_rot[i], ys_rot[i] = rotate_point(x, y, theta)

return xs_rot, ys_rot

concat_arr(a, b, ¢, d):

"""Concatenates four lists into one.

Args:
a (list of float): a list to be concatenated.
b (list of float): a list to be concatenated.
¢ (list of float): a list to be concatenated.

d (list of float): a list to be concatenated.

Returns:

list of float: the concatenation of the given lists.

e = np.concatenate ((a, b), axis=0)
f = np.concatenate ((¢c, d), axis=0)

return np.concatenate ((e, f), axis=0)

get_index_bounds (indexes):

"""Returns the bounds (first and last element) of consecutive numbers.

Example:

(1,3, 4, 5, 7, 8, 9, 10] -> [1, 3, 5, 7, 10]

Args:

indexes (list of int): integers in an ascending order.

Returns:

list of int: the bounds (first and last element) of consecutive numbers.

index_bounds = [indexes[0]]

for i, v in enumerate(indexes):
if i == len(indexes)—1:
index_bounds . append(v)
break
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79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

def

if v+l == indexes[i+1]:
continue

else:
index_bounds.append(v)

index_bounds.append(indexes[i+1])

return index_bounds

get_interval_indexes (interval , indexes):
"""Returns the given indexes, after removing <interval> elements from the

beginning and ending of each sequence of consecutive numbers.

Args:
interval (int): number of elements to be removed from beginning and
ending of each sequence of consecutive numbers.

indexes (list of int): integers in an ascending order.

Returns:

list of int: the given indexes, after removing <interval> elements from

the beginning and ending of each sequence of consecutive numbers.

if len(indexes) ==

return 0
index_bounds = get_index_bounds (indexes)
interval_indexes = []

for i in range(0, len(index_bounds)—1, 2):
if index_bounds[i]+interval >= index_bounds[i+1]:

continue

interval_indexes .extend (range(index_bounds[i]+interval ,

index_bounds[i+]l]—interval+1))

return interval_indexes
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