Bachelor’s Thesis

Benchmarking Microservice Applications
in Cloud Computing

Pavlos Evgeniou

University of Cyprus

Department of Computer Science

December 2020

UNIVERSITY OF CYPRUS
DEPARTMENT OF COMPUTER SCIENCE

Benchmarking Microservice Applications in Cloud
Computing

Pavlos Evgeniou

Emprénov Kadnynmg
George Pallis

H Atopucn Aummlopatikny Epyoacio viofAnOnke mpog Lepikn EKTANp®oN TV
ATOLTNOEWV OmOKTNONG TOV Ttrvyiov [TAnpopopiknc tov Tunpoatog ITAnpogopikng tov

[Tavemompiov Kdmpov

December 2020

ACKNOWLEDGEMENTS

| would like to thank and express my appreciation to my supervisor, Professor George
Pallis, who gave me the opportunity to work on a topic that is very important and useful.
| also got to learn about a topic that is trending in Computer Science, but it is not in our
curriculum. He supported me in everything | needed, and he was always available for
questions.

My special thanks also go to Mr.Moysi Symeonidi and Mr.Zacharias Georgiou, who are
part of LINC in the department of computer science at University of Cyprus. They
supported me and helped me with a lot of problems | encountered. Their instructions and
suggestions were important in the completion of the research. On top of that, their
knowledge and experience helped in solving and avoiding problems making the work a
lot easier. Finally, I would like to thank my family and friends for being supportive during
my studies and especially during these hard times we have found ourselves into this past

year.

Abstract

The microservice architecture is one of the biggest trends in Computer Science the last
few years. A lot of massive corporations are moving away from the monolithic design of
their applications and moving into the more modular microservice design, so the need for
benchmarking the microservice applications has increased. In the most recent years, a lot

of research articles have been released on different ways to benchmark them.

In our research we thought and created realistic scenarios to test microservice applications
and through analyzing and monitoring them to be able to find some of their bottlenecks.
Even though the method we used is simple, it helps you understand the behavior of the
application and fix any problems that may occur. Through this research even someone
with little experience with the microservice architecture, will be able to understand the
basics on how to monitor a microservice application and recreate the same or different

scenarios for a different application.

Table of Context

Chapter 1

Chapter 2

Chapter 3

Chapter 4

INtrodUCHION . ..o

1.1 Motivation

1.2 Challenges

1.3 Contribution

1.4 Qutline Contents

Literature and related work.........ccoovvvnnnn..

2.1 Literature
2.2 Related work

Methodology..........eiiiie e

3.1 Methodology Overview

3.2 Building Phase

3.3 Testing

3.4 Data Processing and Data Collection

EXPeriments.......coooiiiiii i

4.1 Description of experiments
4.2 Experiment |

4.3 Experiment Il

4.4 Experiment 111

4.5 Experiment IV

4.6 Experiment V

4.7 Experiment VI

4.8 Experiment VII

4.9 Experiment VIII

4.10 Conclusions from Experiments

A~ B~ W

11
12

13
13
16
19
24
27
31
33
36
40
43

Chapter 5

Bibliography

(0] o] 11153 (o] PO

5.1 Conclusion
5.2 Future Work

Vi

List of Figures

11
3.1
3.2
3.3
3.4
3.5
41
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
411
412
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.29
4.30
431
4.32

Microservices Architecture market Forecast by primetsr, an IT consultant

Overview of the methodology categoriesooveeiiiiiiiiiiiiiiii.

An example of a Prometheus graphcoooiiiiiiiiiii
A design to showcase the microservice.J10]cooviiiiiiiiiiiiiiniennn,
Example of a Jmeter Testovviniieiiiiii e
Example of a request displayed by Jaeger ...
CPU usage when the microservice application isidleoo.e.
Memory Usage when the application isidleccoooeviiiiiiiiiiiinnnnn

Latency for Experiment I ..o

CPU usage for Experiment Icoooiiiiiiiiiiii e
Memory Usage for Experiment Ioooiiiiiiiiiiiiii i
Screenshot from Jaeger showing a request at the Frontend
CPU usage for the 100%-0% scenario for Experiment IT
CPU usage for the 50%-50% scenario for Experiment IT
CPU usage for the 25%-75% scenario for Experiment I
Memory usage for the 100%-0% scenario for Experiment IT
Memory usage for the 50%-50% scenario for Experiment II......................
Memory usage for the 25%-75% scenario for Experiment II.....................
Jaeger Graph for the 100%-0% SCENAIIOcevviiriniiiiiiiiieeienaaan,
Jaeger Graph for the 50%-50% SCENAriooceueuirinineieenananenennnnnn
Jaeger Graph for the 25%-75% SCENArioccoveveririiineiriniiinennnn
CPU usage for the requests at one productoceveviiiiiiiiiiiinninneninn
CPU usage for the requests at multiple productcoeiviiinnn.n
Memory usage for the requests at one productcooooiiiiiiiiiin.
Memory usage for the requests at multiple product
Request on a product inthe Jaegeroooeviiiiiiiiiiiii
CPU usage for the requests at one product (IV)ocoviiiiininn...
CPU usage for the requests at multiple product (IV)ccoceveiiiiininn...
Memory usage for the requests at one product (IV)ccoeviiiiiinnn.n.
Memory usage for the requests at multiple product (IV)oeeeee.
Request after the CPU Mtcoevuieiiiiiiiiii i
CPU usage for Experiment V............oooiiiiiiiiiiiiiiiiiiii e,
Memory usage for EXperiment V.........ooooiiiiiiiiiiii e
Jaeger Graph for the cart reqUestS........ovvitiiiiit i eieieeens
Jaeger Graph for the product requests............coooiviiririiiiiiiiiiieeeenen,
Jaeger Graph for the main page requestS........oovvviieiriiiieiiini e
Latency Graph for Experiment VI.............c.cooiiiiiiiiiiiii
CPU usage for Experiment VI.. ...,

vii

4.33
4.34
4.35
4.36
4.37
4.38
4.39
4.40
4.41
4.42
4.43
4.44

Memory usage for Experiment V1. 35
Jaeger Graph for the product request from Experiment VI......................... 36
Jaeger Graph for the product requests (VII).........coovviiiiiiiiiiiiiiiinn, 37
CPU usage for Experiment VIL...........ooooii i, 37
Memory usage without Frontend for Experiment VIL.............................. 38
Memory usage of Frontend for Experiment VIL.......................ol 38
Jaeger Graph for the product request from Experiment VII........................ 39
Latency Graph for Experiment VIIL..............coooiiiiiiiiiiiiiiieeenes 40
CPU usage for Experiment VIIL............ooiiiiiiiiceee e, 41
Memory usage without the Frontend for Experiment VIIIL......................... 42
Memory usage of the Frontend for Experiment VIIL......................coo 42
Services that the Cart page uses taken from Jaeger..................ccooeeiin.n. 43

viii

Chapter 1

Introduction

1.1 Motivation

1.2 Challenges

1.3 Contribution

1.4 Qutline Contents

A B~ WO -

1.1 Motivation

In this day and age, thousands of programs, applications, services and websites are created
daily. At the beginning, almost everything was built using the monolithic architecture,
which meant that all the companies were building their applications as single units. After
awhile, it became apparent that this design was very hard and time consuming to maintain
and update. The industry needed a way to switch away from the monolithic design. They
needed a design which would be easier to develop, maintain and update since the cost of
creating and maintaining a monolithic application was expensive and difficult. This led
to the architecture known as microservices. Their modularity, ease to develop, and
maintain, changed the market as we know it. During the last decade, a lot of massive
corporations switched from a monolithic design to a modular design using microservices.
Figure 1.1 shows the market growth of microservices the last few years and the forecast

for the future which looks very positive.

Microservices Architecture
2023 Market Forecast £33 BILLION

MARKET SHARE IN USD BILLION

2016 2017 2018 2019 2020 2021 2022 2023

Microservices Architecture Market Research Report. i t
Global Forecast 2023, Market Research Future, 2020 ‘ prlme Sr

Figure 1.1: Microservices Architecture market Forecast by primetsr[12], an IT consultant,

Along with the microservices a lot of new services and products have appeared, that
complement the microservices architecture. A few of those include Docker, Kubernetes,
rkt and many more. Programs like Docker[7] allow you to set up containers where you
launch your services. It makes the development, launch, and update of a microservice a
lot easier. One of the biggest benefits of using one of the above programs is that through
the containers, it allows you to build your website/application/program in minutes at any
server you want, since the containers have everything your service requires. They also
allow you to scale certain services in your build according to your traffic, which is one of

the most important benefits of using microservices in containers.

Therefore, a way to monitor your containers was also needed. Building your programs on
the cloud infrastructure without a way to find the problems that occur would make things
harder instead of fixing them. For that reason, services like cadvisor[9], Prometheus|[8],

and Jaeger[6] were created.

In conclusion, microservices architecture is a big part of the present and a bigger part of
the future. Through understanding the theoretical background of microservices’ design
patterns, this study will showcase monitoring, testing, and evaluating the microservices

performance and try to reveal any bottlenecks the microservice applications may have.

1.2 Challenges

The main goal of the research is to be able to analyze the results and identify bottlenecks
in microservice applications, through the implementation, the monitoring, and testing of
microservice applications in cloud computing. First and foremost, the understanding of
the theoretical background of microservice’s design patterns was very important. The
knowledge of how the microservices work and communicate between them is a very
essential step in our research, since it allows us to create a real example, find the proper

application to monitor it, and stress test it.

Consequently, finding or creating a proper microservice application that is complicated
enough to resemble a real-life workload was one of the hardest obstacles. For the results
to be accurate an application was needed where a lot of services where communicating
between them and proper measurements could be taken during testing and benchmarking.
Additionally, being able to monitor, stress test, and run the application on one machine
was a difficult thing so a server where the application was running along with the
monitoring programs was needed. After having a proper structure where a device was
acting like a server and another creating the requests, different scenarios needed to be
created. Using the scenarios, our goal was to test realistic situations that might occur and
through the testing, understand the microservice we are benchmarking and its

weaknesses.

Lastly, the internet connection is a very important part of the stress testing since it limits
the amount of the requests we can create to the server, causing the request to fail
sometime. The testing happened in a closed network helping to limit the fails but there

were also limitations to the max capacity of requests you can make.

1.3 Contribution

The research's aim is through the testing of a microservice application to be able to
analyze the results and reveal possible bottlenecks in the microservice applications that
are running in the cloud. Through the results of the research, we hope that people
interested in this architecture will be able to understand better what it has to offer and

what are its drawbacks.

At the same time, this research will showcase superficially how to have a fast and
complete microservice application with a lot of the important monitor tools. Our hope is
that through the research, the importance of monitoring your applications, the knowledge

of its drawbacks and possible bottlenecks, will help with avoiding equivalent problems.

1.4 Outlined Content

Chapter 1: Introduction

The first chapter introduces the reasoning behind the need of the microservice
architectures and the positive impact it had on the field of Computer Science. It also
showcases the fast growth of the architecture in the market until today, and the predictions
that it will continue to grow through the following years. We briefly go through the
challenges we encounter while contacting the research and we explain their importance.

Lastly, we mention the area we want to contribute to and how we hope to help.

Chapter 2: Literature and related work
Chapter two is about the literature on microservice architecture and on similar work. It
explains summarily a few of the research on microservices and a few of the other papers

on the topic of benchmarking microservices.

Chapter 3: Methodology

The third chapter analytically explains the applications and services used to contact the
experiments. It explains how we use Docker[7], and what applications are used for
monitoring the microservice application. Finally, we describe in detail the way the data

is extracted and analyzed for the experiments.

Chapter 4: Experiments

The fourth chapter is about the experiments we conducted to benchmark the microservice
application. Through analyzing the results of the experiments, we are able to understand
some of the problems and bottlenecks of the microservice, like the absence of a load
balancer.

Chapter 5: Conclusion
In the last chapter, is the conclusion about the research and some examples on how it can
be extended in the future.

Chapter 2

Literature and related work

2.1 Literature 6
2.2 Related work 7

2.1 Literature

In the recent years with the transition to cloud services, microservice architecture has
become a lot more popular due to its scalability, modularity, ease of maintenance and fast
deployment. For this reason, a lot of researchers are investing their time trying to analyze
the microservice architecture and determining through their research some of the benefits
and negatives of the aforementioned architecture. Another massive target of a lot of the

literature, is to help the reader to become accustomed to the newer architecture.

A research was published in 2018 [2] by Soldani J., Tamburri D. A. and Van Den Heuvel
W.-J that focused on the benefits and drawbacks of microservices. They aimed to analyze
the microservice architecture and through the research explained in detail the pains and
the gains as they named them of a microservice architecture. In their research they analyze
in detail the positives and the negatives in the different stages that take place during the
creation of a microservice application. More specifically they used 3 stages, the design
stage, the development stage, and the operation stage. In the operation stage, they
illustrated the weights of the resources needed, and in their illustration, you can see that
the network is a big drawback in cloud microservices, something that I noticed and

mentioned in the challenges.

Another research was published in 2017 [4] in which the authors, Vural H., Koyuncu M.,
and Guney S., wanted to help people understand the new architecture that is

microservices. It is a more general research focused on being a steppingstone into the

modular creative world that is being created through the microservices. The questions
that they answer through their research is the type of research that is currently being
contacted on the microservices architecture, what are the reasons behind the
microservice’s research and what are the standards and existing tools on the forenamed

architecture.

The above are some examples of the research on the microservices architecture. The
amount of research material is increasing by the years due to the popularity and
importance of the architecture. The knowledge on microservices and their possibilities
are increasing by the years, with more and more researchers discovering new benefits and
negatives of the architecture, helping it progress and fix the drawbacks. This will

hopefully lead us to a modular design that is close to perfection.

2.2 Related work

A lot of research on benchmarking microservices are helping you understand the new
architecture that has surfaced in the last few years. Different researchers, professors in
universities, and some developers, are trying through their experiments to understand and
find ways to make the architecture better. There is a lot of research about benchmarking
already and there is more coming which makes it easier for the developers to study more
specific scenarios according to their needs. Some of those are the “Benchmarking the
Performance of Microservice Applications” [1] by Grambow M., Wittern E., and
Bermbach D. where they test their approach on benchmarking microservices and they
evaluated it with their prototype. Another research is the “Benchmarking Microservice
Systems for Software Engineering Research” [5] from Zhou X., Peng X., Xie T., Sun J.,
Xu C., Ji C., and Zhao, W. where they conduct research on an open-source system, and
review literature to help them determine the chasm between the current benchmark
system and the microservice systems. This is just a small percentage on the research that
exists on benchmarking microservices. The architecture is one of the most popular ones,

so new articles and new research are being released every year about it.

Chapter 3

Methodology

3.1 Methodology Overview 8
3.2 Building Phase 9
3.3 Testing 11
3.4 Data Processing and Data Collection 12

3.1 Methodology Overview

The research methodology can be divided into four categories, Building phase, Testing,
Data Collection, and the Data processing. We can see the overview of the methodology

in the Figure 3.1.

hd

Building Phase

Testing

A

Data Processing Data Collection

Fesults

Figure 3.1: Overview of the methodology categories

At first, we set up the monitoring programs and the microservice application that we want
to stress test. After we make sure that everything works correctly, we begin to stress test
the application depending on the scenario we want to emulate. Immediately upon the end
of the stress test we collect the data and then we process it. Lastly, when we have the

processed data, we can see the results of the scenario that we emulated.

3.2 Building Phase

We chose to use Docker[7] as the environment where we were going to build the
microservice application and perform our experiments, due to the plethora of features it
has and the support it has from the community. It is also one of the most popular
environments for microservices.

Before stress testing our microservice application we need to have a good monitoring
system that we will let us extract all the data we need from the tests. There are a few
applications that you can use to monitor your microservices and for each scenario some
of them may work better than others. For our use case we decided to use Prometheus|[8]
with cadvisor[9]. Prometheus is a monitor application that you can run as a container and
you can get metrics in detail for your server. It allows you to analyze and create detailed
graphs with the metrics since it permits calculations. We used cadvisor because if you
connect it with Prometheus, it allows you to monitor each container specifically, allowing
us to analyze and understand the microservice application we chose better. Lastly, we
used Jaeger[6], a monitoring software that allows you to track the requests that target the
server it is installed on. It is a very useful monitoring program since it allows you to

understand which services communicate between them.

Figure 3.2: An example of a Prometheus graph

After setting up the monitoring software we needed to find or create a microservice that
was complicated enough to represent a real-world example. We discovered a demo that a
senior developer at Google created [10]. In the Figure 3.3 which was provided by the

creator of the application, we can see the services that form the microservice application.

EmailService Load Generator
AdService
CartService
PaymentService |- CheckoutService * ‘/
Frontend

\j
Cache
(redis)

RecomendationService
CurrencyService ProductCatalogService 4/_

ShippingService

Figure 3.3: A design to showcase the microservice.[10]

In the aforementioned Figure, we can see all the microservices and how they
communicate between them. It is a very helpful layout, since it allows us to understand
and confirm a few of our experiments later. The application was built for Kubernetes, but
they shared all the files along with the dockerfiles making it easier to create a docker

compose to start the application on Docker[7]. It represents a shop with nine products, a

10

cart, advertisements, recommendation list, and a few other features helping us create a

realistic environment for the experiments.

3.3 Testing

At the testing phase we wanted to stress test the microservice application using scenarios
that are common in real-life. For example, a scenario where a lot of users visit a product
that is popular, and then move to the checkout page after deciding that they want to
purchase it. Creating realistic scenarios is important, as it will show the weaknesses of
the application and the problems that may occur if it was going to launch for the public.
There are a lot of ways to stress test your application and for our case we chose Jmeter.

It offers a variety of ways to create a load and for different use cases.

Figure 3.4: Example of a Jmeter Test

For our case, the choice of load for the application that we were testing was http requests,
where we simulated a number of users that were requesting some pages depending on the
scenario we were simulating. While the simulation was running, Jmeter was displaying

data like the success of the request, the latency and was extracting them in the end.

11

3.4 Data Processing and Data Collection

Even though Prometheus[8] can display detailed graphs as the Figure 3.2 shows, we
needed a way to extract the data to be able to create our graphs and analyze them. There
are a lot of ways to extract the data from Prometheus and in different formats. The
preferred choice was csv because it is a very easy format to work with using Excel. For
the extraction we used an open-source code from GitHub [11] which allows you to extract
all the data for a certain container. We use it to extract the data every 10 seconds for the

duration of each experiment.

After the experiments were finished, we had a csv for every container from the
Prometheus data and a csv that was extracted from Jmeter. From the data that was
extracted we took the time that each container was using the CPU and the memory usage
for the containers that were related to each experiment, and we used them to create graphs.

The latency from the Jmeter was also used to create a graph and find the average latency

of each experiment.

Figure 3.5: Example of a request displayed by Jaeger

In our experiments Jaeger[6] was one of the most important tools since it allows us to
search the requests that happened for each service of the application. The Figure 3.5 is an
example of a request taken from Jaeger. The main use of Jaeger in our experiments was
to find out which containers were used during each request, which ones were the slowest
and how they were affected by each experiment. It also let us analyze each request
independently and think about new experiments or different things to try to help the

performance of our microservice application.

12

Chapter 4

Experiments

4.1 Description of experiments 13
4.2 Experiment | 16
4.3 Experiment Il 19
4.4 Experiment 111 24
4.5 Experiment 1V 27
4.6 Experiment V 31
4.7 Experiment VI 33
4.8 Experiment VII 36
4.9 Experiment VIII 40
4.10 Conclusions from Experiments 43

4.1 Description of experiments

We contacted eight experiments which are simulating real life scenarios or testing
different settings to see how they affect the performance of the microservice application.
For each scenario, we gathered the data as mentioned in Chapter 3 and created the graphs.
Even though we only used one microservice the scenarios an easily be replicated for every

microservice application.

Before testing the applications, we needed some base statistics to be able to compare the
results of the experiments, so for that reason we let the microservice run without creating
any load. Through this we want to observe the CPU time and the memory usage when the
application has no requests or any kind of load. The graphs when the system is idle will
give us something to compare the results from the experiments and see how they affected

the application.

13

CPU Usage Seconds Total

0.18
0.16
0.14
0.12
0.1
0.08
0.06
0.04
0.02
0 M AAZN N MLarSA T AMTY W N S\l M ‘-“J'-.-‘\'w [W ANAYAN e ."A 'l- !
Mmoo N MmN N om0 0 M M0 N M e 0N M 0 N M e 0N 0 0 N N 0 MmN MM e N M e N N M) Mmoo Mmoo Mmoo
= < N W WM~ 00000 O A N M S N OO0 N0 0 dnN AN Mg SN W W00 00 A M
L T B B B R o o A B B o B B B B o B B T I A I I
L T T T T B T T T T T T T T O e T T T T T T T e T T T T T T T B T O e T T T T T O T T O |
Ll B B T I O I T I B I I e T I I I I I I I B I I I I I I I I I I = I I I
= [rontend A Service w— Cart Service Checkout Service
e CUITENCY Service e Product/Catalog Service e Recommendation Service s Shipping Service

Figure 4.1: CPU usage when the microservice application is idle

In the Figure 4.1 we can see the CPU usage in seconds when the application is idle. As
we can see from the graph the application does not require a lot of CPU time since it is in
an idle state. The container with the highest usage is the Ad Service container with only
0.14 to 0.15 seconds and the other containers have the same CPU usage from 0 to 0.02.
All the containers have moments that have a higher usage, but it is not stable, we can

notice spikes every few seconds and then the usage drops.

14

Memory Usage Bytes

250000000

200000000

150000000

100000000

50000000

11:24:13
11:25:03
11:25:53
11:26:43
11:27:33
11:28:23
11:29:13
11:30:03
11:30:53
11:31:43
11:32:33
11:33:23
11:34:13
11:35:03
11:35:53
11:36:43
11:37:33
11:38:23
11:39:13
11:40:03
11:40:53
11:41:43
11:42:33
11:43:23
11:44:13
11:45:03
11:45:53
11:46:43
11:47:33
11:48:23
11:49:13
11:50:03
11:50:53
11:51:43
11:52:33
11:53:23

e Frontend m— Ad Service Cart Service Checkout Service

— CLrTENCY SEIViCE = Product/Catalog Service === Recommendation Service Shipping Service

Figure 4.2: Memory Usage when the application is idle

The Figure 4.2 shows the memory usage of the system when it was idle. All the containers
seem to have stable memory usage that is consistent. The service with the highest memory
usage is the Ad Service with 223MB of usage, with a big difference from the other
services. The rest of the services have less than 100MB of memory.

From the aforementioned figures, we can observe that the microservice application does
not need a lot of resources when it is idle and one of the containers that will need a lot of
resources will be the Ad Service. From the Figure 3.3 and from the knowledge about the
microservice applications we can expect the Frontend container to need a lot more
resources when the application is stressed due to the fact that it is the main service, that
connects and helps the others communicate. The Frontend is also the one that handles the

requests from the users.

15

11:54:13

4.2 Experiment |

In the first experiment, we emulated a simple scenario where the users that create requests
to the application were increasing by one hundred every four minutes. This experiment is
meant to emulate a real-life scenario, where a website receives a different number of users
each hour and to see how our application handles it. At the beginning, one hundred users
were requesting the main website (localhost:8080/) and at the sixteenth minute it reached
the five hundred users that were constantly requesting the site. The experiment ended in

fourteen minutes after the last hundred users started the requests.

Latency

450000
400000
350000
300000

250000

ms

200000

150000

100000

50000

3193
6385
9577
12769
15961
19153
22345
25537
28729
31921
35113
38305
41497
44689
47881
51073
54265
57457
60649
63841
67033
70225
73417
76609
79801
82993
86185
89377
92569
95761
98953
102145
105337
108529
111721
114913
118105
121297
124489
127681
130873
134065
137257

Number O

=

Requests

Figure 4.3: Latency for Experiment |

The average latency for the experiment was 2.3 seconds and as we can see from the Figure
4.3 there are a few requests that have a massive latency which was probably caused due
to a network problem. Although, the latency of those requests is bigger, it did not change
the average latency by much due to the number of requests that happened. From the figure
we can also notice the latency started increasing after a certain amount requests because

the number of users had increased.

16

Cpu Usage Seconds Total

2.5

r |

- f

e —
b,

‘ \ N l \UA [\ MAAY
' -] ! [\ i
v 1 \AW W v (A \A'A)
0 -~ ale aa Vo - aa o o PPN - -~ P

[e s o T o 0 o o s o o O O T e IO SO o s T B o = O B =0 5 O A= o T o TN =0 ™o T "o O o 0 N T TN =0 0 O ™ T 0 O e = T s O™ o IO = T 5 B |
~ o0 M Q@ AN NS S N W WS~ 00N 00 oo oM S bW o000 Q@ Ao o m s S N oW
O L W YW L WY YW WY YWY YO YO WYL OwDLo O OuDo YYD wowowwe ow o o wLe oY www o we oo
Ll I B I T I I I B B I B I I I I I I I = I I I B I = I T T I B I B I B B IO I I B

e Frontend e Al Service Cart Service Checkout Service

e CIITENCY SETViCE s Product/Catalog Service == Recommendation Service ss===Shipping Service

Figure 4.4: CPU usage for Experiment |

The Figure 4.4 helps us observe that the CPU usage for Ad and Product/Catalog services
has slightly increased and for the Frontend, Currency, and Cart Service has increased
dramatically from the idle numbers. The Checkout, Shipping and Recommendation
services’ usage seems to have stayed the same. From the Figure 4.4 we can also see that
the CPU usage has increased in some services when the experiment started, it did not
increase further when the new users started their requests. The usage of those services
kept fluctuating the same way as the beginning. At 16:33:35 which is around the time
where the last users join the network, we can see that the Frontend reached its highest
CPU usage at almost 2.8 seconds. Apart from that spike it is very hard to understand from

the Figure where the rest of users started their requests.

17

Memory Usage Bytes

250000000

200000000

150000000

100000000

50000000 ‘ q H '-‘ '—‘

6:25:55

16:17:35
16:18:25
16:19:15
16:20:05
16:20:55
16:21:45
16:22:35
16:23:25
16:24:15
16:25:05
1

16:26:45
16:27:35
16:28:25
16:29:15
16:30:05
16:30:55
16:31:45
16:32:35
16:33:25
16:34:15
16:35:05
16:35:55
16:36:45
16:37:35
16:38:25
16:39:15
16:40:05
16:40:55
16:41:45
16:42:35
16:43:25
16:44:15
16:45:05

e Fronte nd — Ad Service Cart Service Checkout Service

o CLIrTENCY SETViCE s Product/Catalog Service e Recommendation Service s Shipping Service

Figure 4.5: Memory Usage for Experiment |

The memory usage of the Frontend is increasing every few minutes, at the times where
the new users were starting their requests, but as we can see in Figure 4.5, it slightly
increased even after we had reached 500 users in Jmeter. The memory usage by the Ad
service slightly increased at the beginning but then it returned to the previous value
slowly. Also, the memory usage for the Currency service was fluctuating and its values
were marginally higher than its idle state.

At the Figure 4.6 we can see the request that happened at the Frontend and the services
that needed to be used for each request. All the services that had a noticeable change in
the CPU and memory usage area were all part of the main website and were all used in
each request on the Frontend. The biggest changes were in the Frontend and Currency
service which makes sense since every request goes through the Frontend and was using

the currency service multiple times.

18

16:45:55

16:46:45
16:47:35

December 8 2020, 16:52 24.86ms 2 3 15

Service & Operation 0ms 621ms 12.43ms 18.54ms

"l frontend Rece L]

| frontend sent bistershop Cu

v | frontend senthipstersn

productcatalogservice
| frontend sentbisterh
| frontend sen
| frontend sen
| frontend sen
| frontend sen
| frontend sen
| frontend sen
| frontend s
| frontend
| frontend se
| frontend sert istershop adservice Getads

Figure 4.6: Screenshot from Jaeger showing a request at the Frontend

4.3 Experiment 11

The next experiment was also about the Frontend service. Since through it pass all the
requests even if someone is looking at a product or the cart, we scaled it and split the load
of 3000 users into 100% at the Frontend 1 and 0% at Frontend 2, 25% at the Frontend 1
and 75% at Frontend 2 and 50% at the Frontend 1 and 50% at Frontend 2. Through this
we wanted to see if the application will benefit by having the Frontend scaled and for this

reason, we used 3000 users to make the results more noticeable.

The average latency of the request for the 100-0 test was 4.9 seconds from the request at
Frontend 1, for the 50-50 test was 4 seconds at Frontend 1 and 3.9 at the Frontend 2 and
for the 25-75 test 4.2 seconds and 5.5 seconds, respectively. The difference in latency

between each test is small but it seems the 50-50 scenario was the best as expected.

19

CPU Usage Seconds Total

2.5

ST8TET
SELTET
SY9zEl
SG:STET
S0:SZ:ET
ST¥ZET
STETET
LA
Sv1zEl
SS0CET
S0-0Z:€T
ST6l:€l
ST 8TET
SELTET
ST OT:€ET
SSSTET
SO:STET
STPTET
STETET
SECTEL
SYITET
SSOT:ET
SO0:0T:€T
ST1:60:€T
§Z:80-€T
SELOET
S¥90:€T
SSS0ET
S0:S0:ET
ST90:€T
SZE0ET
GET0ET
SYT10:€T
SS00:€T
S0:00:€T
ST:6S:CT
S2:85:¢T

e Frontend 2 e Ad Service

e Frontend 1

== Currency Service === Product/Catalog Service

e Cart Service

Figure 4.7: CPU usage for the 100%-0% scenario for Experiment |1

CPU Usage Seconds Total

CE6TST
r8¢iST
CSLTST
C0-L2:9T
19 St
(AASTA)
cEVTST
CreTst
¢SSt
0-2Z: ST
AR YA)S
¢e0ST
cE6I:ST
r81:ST
CSLTST
CO:LT:ST
C19T:ST
¢TSTiST
CEFIST
[AZAT)!
(ATyARE]
C0:Z1:ST
CL:TT:ST
¢Z0T:9T
€60:ST
r:80:ST
¢S:L0:ST
C0:L0:ST
Z¢1:90:ST
¢Z:S0:6T
ceF0:ST
CrE0:ST
¢SC0:ST
20:20:ST
¢1-10:9T
20081
E6S T

e Ad Service

e Frontend 2

e Frontend 1

=== Currency Service === Product/Catalog Service

e Cart Service

Figure 4.8: CPU usage for the 50%-50% scenario for Experiment 11

20

CPU Usage Seconds Total

2.5
2
1.5 ‘
|
1 \ ’.
| | " N
0.5 r\, \) '
W ’)‘) y ‘
|)) R
/“"!’/'y’ A/ /\"(3‘1‘ A “ ‘ o 0 ":
. AL i v/ WA NN i\
O© O OV OV OV OV VWOV OVWOVWYWOWOVOVWOOVWOOVWOOVOVWOYOOVYOVWO VOO OVOVO OO O O
foadeudaoaddeunoaddeunIoddenIaoNden ol
AN FHBIOIONBAISATANNRFTBIO ORI S A ANNDIFINION B AS o
T A g 3NN NNNNNQNdNmmonaoaonmoanaand TS
[T S I T S T T S N T T e T T S o o T S N S ST S S N N S T S N N S S S SN D Y
R T B B TR o T o B T I B o SR e B e B R IR I B e B T I A e TR e B T A B e T B o B e R I I T o B e R e O |
e Frontend 1 e Frontend 2 e Ad Service
=== Cart Service == Currency Service === Product/Catalog Service

Figure 4.9: CPU usage for the 25%-75% scenario for Experiment |1

In the above Figures we can see the CPU usage of each scenario. In all the scenarios the
Frontend fluctuates between different values, but the rest of the services are fluctuating
between similar values. In both 100%-0% and 25%-75% scenarios the CPU usage is less
stable than 50%-50% where the difference in values that the services are fluctuating is
smaller. Also, in all the scenarios where the load between the two Frontend services is

not equal, we can see that there is a big difference between the usage of the two services.

21

17:42:46

Memory Usage Bytes

250000000
200000000—'—\
150000000
100000000
50000000
-
0
nwmwmwLwwmwmLwLwmLwmLwmLwmLwmmmLmwLwmmmemwLemwmLmmLmwmLmmLmwmLwmLwmLwmLwm
B A S A ANDRFTWIEIRIBSTS AANNRFNIORNDBDAS ANGF DR D
T eeeeeeeeeee o o Tl ey N
N N M M Mm M o mh nMm nm on oMmomnon Mmon Mm on onon on oononomnon mnon onon
Ran B e B o B B B e B e R DR e R e R o TR e TR o O e B e TR o B o B o B e IR e R e R e B o R B o S B o R |
== Frontend 1 e Frontend 2 e Ad Service
e Cart Service === CUrrency Service === Product/Catalog Service
Figure 4.10: Memory usage for the 100%-0% scenario for Experiment 11
Memory Usage Bytes
250000000
200000000 "
150000000
100000000 ~—
50000000
-
2 -
0
AN AN A A AN AN A AN AN AN A A AN AN A AN AN NN NN
DO =4 NN F N OISO A NN IFNODN0IITOO A NM T N O N 0D
neeeeeeeeeed o o T T g aaad
A ol T IR Fo T Vo T Vo R Vo I Fo I F o R Ko I Ko B Ko R Ko B Ko R Ko R Fo R Fo R Fo R Fo RN Fo R Fo R Fo RN Fo R Fo RN Wo R Fo NN No B Fo R Fo I Fo I Fo I N
R o B e B B B B B A A o R B TR e TR R e B O e T o B e T o T e R DR T e B R e B B R e IR
e Frontend 1 e FTontend 2 e Ad Service
=== Cart Service == Currency Service === Product/Catalog Service

Figure 4.11: Memory usage for the 50%-50% scenario for Experiment |1

22

Memory Usage Bytes
250000000

200000000

150000000

100000000

50000000 Jj»—l—‘. —

0

17:12:46
17:13:46
17:14:46
17:15:46
17:16:46
17:17:46
17:18:46
17:19:46
17:20:46
17:21:46
17:22:46
17:23:46
17:24:46
17:25:46
17:26:46
17:27:46
17:28:46
17:29:46
17:30:46
17:31:46
17:32:46
17:33:46
17:34:46
17:35:46
17:36:46
17:37:46
17:38:46
17:39:46
17:40:46
17:41:46

e Frontend 1 e Frontend 2 e Ad Service

Cart Service e Currency Service Product/Catalog Service

Figure 4.12: Memory usage for the 25%-75% scenario for Experiment 11

In the Figure 4.10, Figure 4.11, and Figure 4.12 we can observe the memory usage of
each scenario. All the services except the two Frontends are almost equivalent in all three
graphs. In the Figure 4.10 the Frontend 1 uses more memory than Frontend 2 and at the
Figure 4.12 the Frontend 2 has the higher usage, which is logical since in each scenario
those are the ones that receive the higher number of requests. However, in the Figure 4.11
Frontend 1 uses almost double the amount of ram even though they receive the same

number of requests.

From the aforementioned figures, we can see a benefit of scaling the Frontend service
that receives the request if the load is distributed equally since it used less CPU resources,
with the time of each service in the CPU being more stable with small fluctuations. Also,
the latency had a small decrease compare to the two scenarios where the load was not
equally distributed. Finally, as we can see in the following Figures in the 50%-50%
scenario in Jaeger[6] showed that the maximum time a request needed in the system from

the last 1000 requests was lower than the other two scenarios.

23

L

17:42:46

7 @)
el]
b
E.

01:33:20 pm 01:33:25 pm 01:33:30 pm 01:33:35 pm

Figure 4.13: Jaeger Graph for the 100%-0% scenario

03:34:15 pm 03:34:20 pm 03:34:25 pm 03:34:30 pm 03:34:35 pm

Figure 4.14: Jaeger Graph for the 50%-50% scenario

100ms 2 ‘
3
3

05:47:42 pm 05:47:44 pm 05:47:46 pm 05:47:48 pm 05:47:50 pm

Figure 4.15: Jaeger Graph for the 25%-75% scenario
4.4 Experiment 111

In this experiment we tried to determine if having a certain number of users requesting
the page of one product or multiple ones affects the microservice in a different way. In
scenarios like ours where the microservice applications are shops or websites, usually the
users will be spread in different pages but in case a product or a page is trending, it might

see a large number of users requesting it.

The average latency between the 2 scenarios was significantly different. At the first
scenario, where the users were requesting only a product, the average latency was 3
seconds and on the second scenario where the users were split in different products it was
only 1.7 seconds.

24

Timeg

2.5

1.5

0.

(@51

0

CPU Usage Seconds Total

e Frontend e Ad Service e Cart Service
e Checkout Service e Currency Service === Product/Catalog Service

e Recommendation Service === Shipping Service
Figure 4.16: CPU usage for the requests at one product

CPU Usage Seconds Total

’ 'M HI'
AT

il

\‘\ \mw t'ﬂp«

o PO P o Py o o P P PO

DS A A DA A, A DS A A DA A A D A A DA A A D RS A D A A~ D~ RS A D RS A D~ RS A D RS A
_—!OL_F)ﬁ‘:C’) mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

Rttt C R Rt R e e R e e B e e e e B B B B B B B B S S SN BN BN BN
ooooooooooooooooooooooooooooooooooooo
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
e Frontend e Ad Service e Cart Service
e Checkout Service e Currency Service === Product/Catalog Service

e Recommendation Service === Shipping Service

Figure 4.17: CPU usage for the requests at multiple product

25

Memory Usage Bytes
400000000

350000000

300000000

250000000

200000000

150000000

100000000 =

50000000 —F T, - S TR S S

—
0
Mm oMm m on m on m onomnmnmnmonmnon mnmonmoenoomoenoMnmomnon Mmon Mnm on onomnon omnon
NSRS B s S B B B S B B e B s B B e B S L R e B S B S B B
N 0O OO O =" AN N TN ODNO0OOOODO T AN M IFLNH OO H N M F N O DI
T g NN NgmoanoaoaoaoanoaoagEETETYESE
NS IRV-TV- TV BV V- SV BV V- BNV BV V- JNC. B IRVo BNV BV BV BNV Bt BV TRV BV BV V- Bt It IV IV VO I
R I o R o R o T o TR o R o R T o AR o R o T o B o R o O B e R o R o B o TR o A o R o T o SR o TR o B o TR o R o I B o R |
e Frontend e Ad Service e Cart Service
== Checkout Service e Currency Service === Product/Catalog Service
e Recommendation Service == Shipping Service
Figure 4.18: Memory usage for the requests at one product
Memory Usage Bytes
400000000
350000000/
300000000
250000000
200000000
150000000
100000000 /
e —
50000000
e —
0
R T R T T T T T T T R T T T T T T T T T T T
R I o R o T e T o TR o T o O o T o T o R o R o TR o T o T o B o S o T o T o B o A o R o T o B o T o T o T o T o B B o O |
M F N ONOSS dANMFNWONBDDS A N®MFINONDBNS N ™
mHmoHMLmOBL e T T DD A
OO OO OO O O O O O O O O O O O O O o O o o o o o o o o
oA A " = AN NN NN
e Frontend e Ad Service === Cart Service
e Checkout Service e Currency Service === Product/Catalog Service

e Recommendation Service === Shipping Service

Figure 4.19: Memory usage for the requests at multiple product

26

From the Figure 4.16 and 4.17 where we can observe the graphs for the CPU usage, we
can see that both graphs are almost identical and there are not big differences to notice a
change of behavior in the microservice application. In the Figures 4.18 and 4.19 all the
services have identical memory usage except Currency service. When the requests were
only for one product, the memory usage for the Currency service was fluctuating between
the same values throughout the duration of the experiment, but on the scenario where

users were requesting multiple products it increased two times and then became stable.

The results show that it does not affect the microservice application what product the
users request, since the CPU usage graphs, and the memory usage graphs are almost
similar. The only big difference that could be noted was the way the Currency service
behaved in the memory usage graphs and the better latency in the scenario where the

users were split in multiple products.

4.5 Experiment 1V

During the previous experiment as we can see in Figure 4.20, we noticed through Jaeger
that one of the services was taking a lot of time in the completion of the request, it was
the Recommendation service. For testing purposes, we limited the CPU usage of that
service at 30% of the available processing time to see how it affects the processing times

and the rest of the services. After that we repeated the previous experiment.

¢« v frontend: Recv./product/OLJCESPC7Z

December 15 2020, 16:52 27.95ms 2 3 18

Service & Operation

« | frontend
v | frontend —
productcatalogservice
| frentend " [ra—

| frontend

| frontend —
| frontend

« | frontend —
producicalalogservice
v | frontend —
producicatalogservice
« | frontend] —-—
productcatalogservice
v | frontend —
productcatalogservice
| frontend
producicalalogservice
| frontend

Figure 4.20: Request on a product in the Jaeger

27

The latency for the scenario where the users are requesting one product was 2.3 seconds

and for the multiple products 1.2 seconds. The big difference between the two scenarios

remains even with a CPU limit in one of the services.

[y
[y

[u=y
o

S = N W A U1 OO

Cpu Usage Seconds Total

N A A\

n wmwmLwmwwmmwmwmwmwmLwWmLwWmLwmLwmLwmwmwmwmwmLwmLwmLwmwmwmwmwmwmwmwmwm
N T ¥ 1NN O O NN 0O 000 OO0 A H AN NN ¥ TN N O O N DN
R B e B s B s B B S BSOS SIS S SRS SO SO BN O B BN S B BRSO T IO B
coaoooocooocoocoosoosoooooooooooocooooooooC OO O O
R I o B o IR e B A o TR o B o R o B o B s A R o B o R o TR o B e R A o T o R o TR o B o T e B o R R o B o I R]
e ['rontend e Ad Service e Cart Service
e Checkout Service e Currency Service e Product/Catalog Service
e Recommendation Service === Shipping Service

Figure 4.21: CPU usage for the requests at one product (1V)

Cpu Usage Seconds Total

st/

— —— T
AN A AN A AN AN AN AN A A AN AN AN A A A AN AN AN AN AN AN NN NN
B B R B I S T S S R s S e I S T A A s B S B R T S
— 4 NN MmN F F NN O O NN 0 0O 0000 A H NN E N
bl s s s S s e s A s B s B s A RS B T B T T T TS T TS B B
AN AN AN A AN AN AN NN AN AN NN NN NN
AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN NN NN NN

e Frontend e Ad Service = Cart Service

e Checkout Service
e Recommendation Service

e Currency Service

e Shipping Service

=== Product/Catalog Service

Figure 4.22: CPU usage for the requests at multiple product (1V)

28

As we can see from the above Figures the seconds that the Frontend is using the CPU
have increased drastically. In the previous experiment, the CPU usage from the Frontend
was around 2 seconds and now is well above that, reaching the 10 seconds in the scenario
with the one product. Additionally, we can observe that in the scenario with the one
product all the other services, except Frontend, start from almost 0 seconds and only the
Recommendation service has more usage than 1 second. The same things happen in the
scenario with multiple products with the main differences being that the fluctuations are

smaller and the highest number the Frontend reaches are the 7 seconds.

Memory Usage Bytes
4000
3500

Millions

3000
2500
2000
1500
1000

500

o

n mwLwmwLwmLwLwmLwmLwmLwmLwmwmLwmwmwmwmewmwmewmwwwmwmwmwmwmwmwm
N F F 1NN O O INDNXOWOOOO O d 4 N AN M N ¢ F 1N 1N O O DN DN
R I B B B B S S S S B B BN B B B SO O N BN SO SO SRS SO S
ocoooocoocoocoocoooooocoocoooocoooooooocoocoocoooboOO OOy O O
R T e T T B o R o R e B B I e R o B R o T e TS o B e TR o T o T o B o B R o R e I A e B o B e R |
e Frontend e Ad Service Cart Service
== Checkout Service e Currency Service Product/Catalog Service

e Recommendation Service === Shipping Service

Figure 4.23: Memory usage for the requests at one product (1V)

29

19:28:25

Memory Usage Bytes

10000
9000
8000
7000
6000
5000
4000
3000
2000
1000

Millions

22:11:12
22:11:42
22:12:12
22:12:42
22:13:12
22:13:42
22:14:12
22:14:42
22:15:12
22:15:42
22:16:12
22:16:42
22:17:12
22:17:42
22:18:12
22:18:42
22:19:12
22:19:42
22:20:12
22:20:42
22:21:12
22:21:42
22:22:12
22:22:42
22:23:12
22:23:42
22:24:12
22:24:42
22:25:12
22:25:42

e Frontend e Ad Service Cart Service
e Checkout Service e CUrrency Service Product/Catalog Service

e Recommendation Service === Shipping Service

Figure 4.24: Memory usage for the requests at multiple product (IV)
In the Figures 4.23 and 4.24 we can see that the memory usage of the Frontend has

reached the thousands of millions of bytes and at the scenario with the multiple products
it scales up to 9GB. The numbers that the Frontend service reaches, make the memory
usage of the other services seem very small. In both scenarios, the memory usage by the

Frontend grows fast and it does not fluctuate, as we have seen happen to other services in

other experiments.

€ v frontend: Recv./product/LS4PSXUNUM 85 Atemat
Trace Start December 24 2020, 22:11 Duration 1.09s Services2 Depih 3 Total Spans 18
5443
Service & Operation > ¥ » Oms 27217ms 544 34ms 816 51ms 1.08s
« | frontend se=

~ | trontend s
productcatalogservice

| frontend s

| frontend s

| frontend s

| frontend s
v | frontend s
producicatalogsenvice

v | trontend sentnipsersn
productcatalogsenvice

v | frontend sentbipsiersth
producteatalogservice

~ | frontend sent
produ

| frontend s
produ

| frontend sent psters

Figure 4.25: Request after the CPU limit

30

As we can observe from the CPU and memory graphs limiting the CPU time of a service
affects all the other services but mainly the Frontend. From Figure 4.25 we can see that
the requests took more than 1 second when it usually takes less than 100 milliseconds.
By limiting the resources of a service that is used in the requests we caused the application
to need even more resources.

4.6 Experiment V

In the next experiment we added limits to the resources of the Frontend to see how it
affects the application. We limited the CPU usage to 100% of one single core and 7GB
maximum memory usage since in the previous experiment it almost reached 9GB. We
created a small number of users that were requesting the cart page, a product page, and
the main page for 5 minutes each.

The average latency of all the requests was 0.64 seconds which is probably due to the
lower number of users since only 300 were active.

CPU Usage Seconds Total

4.5
3.5

2.5

g

—

——
=~
12550

05 ‘ M A \ M \ " M
VY VW - *
0 — s A - e —
S O O O O O O O O O © © O O O O O O O O © © O o o o o oo o o
N N < N N O O NN 0000 O O = - AN AN NN T T NnO O DN
Moo oo oo oI EIIITIIIIITITILSSTEISSSS
AN AN A AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN NN NN NN NN
R B e B e B T e B R o e B o B o R o B e R o R B R e T e B R B o B B e B I I e B e R
e Frontend e Ad Service Cart Service
e Checkout Service e Currency Service Product/Catalog Service

e Recommendation Service === Shipping Service

Figure 4.26: CPU usage for Experiment V

31

Memory Usage Bytes

450000000

400000000 —

350000000

300000000

250000000

200000000

150000000

100000000 4 _J—H___‘

50000000 S — - =
0
O O O O O O © O O O O O O O O O O O O O o O o o o o o o o o
NN NN NN AN AN AN AN AN AN NN AN AN NN AN, AN LW
NN FFWBHIIOIRRNILIERES S A ANANGHGF F 81833 N N
MMM MMM MMM NN NN NN IFIEFEILIELISISSTTSSST ST
Ran I B o B e B I T e R e R o T o T o TR o TR o T o B e B o B e B e B - B - R B TR B e R o R o R o R o R o |
e F'rontend e Ad Service Cart Service
e Checkout Service e Currency Service Product/Catalog Service

e Recommendation Service === Shipping Service

Figure 4.27: Memory usage for Experiment V

In the first 5 minutes of the graphs at Figures 4.26 and 4.27 we can observe the CPU and
memory usage when the users were requesting the cart page. The following 5 minutes the
requests were targeting a product and the last 5 the main page. From the aforementioned
graphs, we can understand that the Ad service is not needed for the cart page and when it
is part of the request the CPU and memory usage increase. Every service has increased
CPU usage compared to the Figure 4.1, which shows the idle usage. The memory usage
of most services is close to the idle except the Ad service that has a massive increase, the
Frontend that increased slightly and the Currency service that fluctuates.

400ms s
i
300ms | &
100ms.

Time

12:38:44 pm 12:38:44 pm 12:38:45 pm

Figure 4.28: Jaeger Graph for the cart requests

Figure 4.29: Jaeger Graph for the product requests

1pm

32

, , '\-\.\
B X * m’ \’%Ak‘\.p} -

Figure 4.30: Jaeger Graph for the main page requests

From the above Figures we can see the time needed for a request to be completed, is a lot
higher for the Cart requests since it reaches 400ms and it seems to be the one affected the
most from the limits set to the Frontend. The requests on the product and the main page
go above 100ms but they are mostly under 100ms. The affect from the limits on the
Frontend was not as bad as the Experiment where the limit was on the Recommendation
service.

4.7 Experiment VI

In the following Experiment we wanted to see how the application responds when the
users increase and decrease after a certain period. We created a constant load of 100 users
requesting the main page for all the duration of the experiment and every two minutes
until the sixth minute, we were adding 100 users who were requesting a product. After
six minutes from the time the 100 users began their requests for the product, we stopped
them. We created the stress test this way, so we can have a smooth increase and decrease
in usage.

Latency
300000
250000
200000
%]

£ 150000
100000
50000

0 b

NN MmMooMm-E~NMN OO AN OO AN OO EH NN OO A NMOoOWN AN O

O =T N MM IFIFTFINOONNDIITOTOODOAANNMMIFLOLND O ODNDODOMSDO O

OO OO OO OO0 OO OO OO0 ™™ rd v+ v+ v v+ v+ v v v+ v~ v~ + —~ N

NMOoOMNMoONMOoOMNMOoOLONONONMNONONONOINONOLNOLWNOLWN OO

A H AN NN N IFIFININOONNDN0O0OTTOODOO A AN ANMNMMNMIET IO O

A B B o B TR B o B e IR A B TR TR B o B e B |

Number Of Requests
Figure 4.31: Latency Graph for Experiment VI
The average latency of the requests was 0.6 seconds and as we can see from Figure 4.31,
after a certain number of requests, we can see an increase in the latency which is due to

the new users starting to request the product. We can observe that the same thing happens
at the end of the graph, where only the 100 users that request the main page are still

33

creating requests. There are a few requests that have a very high latency which can be due
to the network.

CPU Usage Seconds Total

’ I
. /. Ik
1 ‘ ‘ A/ ‘ M\
' \ '
/ W/ N/
A »)~ '_\‘ S \ 4 e
0 —
S R T T T v T T . T 1 1 s T T S T T T S T I
el e B L B R B RS B R NS S N IS A S T e I e B A S s e L N
A OO O ©O +H =# N N 0NN T F N N O O NN 00 0 00 O O = +H NN nom
I B B B B B A B B B B B B B B B B A M A A M M
Mm M M M MmO Hm N N N N N N M N M g M M O M M M M M M M M N o o
A T e T e R e R e R o N e I A e I o B o T s B T B e B e B B D e I B I R I R e R B B B |
e Frontend e Ad Service Cart Service
e Checkout Service e Currency Service Product/Catalog Service

e Recommendation Service === Shipping Service

Figure 4.32: CPU usage for Experiment VI

In the Figure 4.32 we can see the CPU usage during this experiment. The most noticeable
thing in the Figure is the spike the Frontend has, which is at the time the first 100 users
started requesting the product. Through the CPU usage of the Recommendation service
and Product/Catalog service, we can observe the time the users started the requests on the
product and the time they stopped. Even though we can get the time that the requests for
the product start and stop, we cannot find out when the number of users is increased or
decreased since the usage of the services keeps fluctuating between the same values. The
rest of the services keep fluctuating between the same values from the beginning of the
experiment and the increase and decrease of users does not seem to affect them a lot.

34

Memory Usage Bytes

300000000
250000000
e

200000000

150000000

100000000

50000000
0
S A T T T T T T T s s A L T T T T T T i T T o
A I M B s B S I R S S S S S S e T SR B S S A N
OO O A 4 N AN N M F F N WM O OIDNNDNDOKROON O O +F = NN ”m M
N B R R B I B B B B B B B B B B B Bt B B B B R M M R M M
M M n M n M M M M N N N M M M M M N N N M M M M N N N n M M
A B B e B B e B e B B B B B B B B B B B I e T B o R o R o R o R o R |
e Frontend e Ad Service Cart Service
e Checkout Service e Currency Service Product/Catalog Service

e Recommendation Service === Shipping Service

Figure 4.33: Memory usage for Experiment VI

From Figure 4.33 we can observe the memory usage of the services. The memory usage
by the Currency service is fluctuating for all the duration of the experiment and the
memory usage for the Ad service seems to be slowly decreasing. The behavior of the
Frontend and Recommendation service was a bit unexpected. The memory usage of the
Frontend was once increased at around 2 minutes after the experiment starts, which is the
time the first 100 users start their requests for the product, and after that, it is stable for
the rest of the duration of the experiment. The Recommendation service’s memory usage
is increased a while after the first 100 users when the number of users was increased by
100 more. There was a small increase in the Cart service’s memory usage after all 400
users were sending requests. None of the aforementioned services that had an increase in
memory usage, had a decrease, after the 300 users that were requesting the product
stopped.

35

4.8 Experiment VII

In the previous Experiment as well as in the Experiment Il we observed that the
Recommendation service was one of the most time-consuming services. In some cases,
as we can see in the Figure 4.34, which shows a request at a product from Experiment VI,
it needs as much time as all the other services combined. For this reason, in this
experiment, we decided to try and scale the Recommendation in 2 containers and see if
that affects the performance of the application. After scaling the service, we used the same
stress test as the Experiment V1.

Jaeger Ul _ search Compare System Architecture
¢ w frontend: Recv./product/OLJCESPCTZ

December 26 2020, 13:41 139.59ms] 3 18

Service & Operation Oms 34.9ms

v | frontend RscusrauctowicesPCz
v | frontand Suntigatershop ProsuciCatsingSardos GetProdu -
producicatalogsenics feox
| frontand sent nges - ——
| frontend sent e . —
| frontend serine=s —

| frontend seni o=t
v | frontend seatsigstmsiep =
producteatalogssnice =
v | frontend =.
productcatalogsenvice =
v | frontend =
productcatalogservice feonsstersnos ProductcsmiogSanice GetProduct

« | frontand senthsa

productcatalogss

« | frontand sennestecs
producicatalogsarvice secunostrsnos Prosutccasenise GerFroaut

| frontend sert et

Figure 4.34: Jaeger Graph for the product request from Experiment VI

The average latency was 0.4 seconds and as we can see from the Figure 4.35 the latency
of the requests does not increase a lot after a certain number of requests. We can observe
small spikes and a very small increase in the latency in the requests 93556 to 280666. The
big difference in the latency from this experiment to Experiment V1 could be due to a
more stable network, since there were less massive spikes in the latency.

36

Latency

140000

120000

100000

80000

S

60000

40000

20000

9TLS9E
TTZLSE
90L8WE
TOZovE
969TEE
I6TEZE
989¥TE
T8T90E
9L9L6T
TL168T
99908t
9reLe
999£9Z
TSTSST
9r99vT
IVIBET
9E96TT
TETICE
929¢1e
Loz
919561
TTTL8T
9098LT
TOTOLT
965191
Te0EST
98SYYT
T809€ET
9LSLTT
TL06TT
9950TT
T30zoT
955€6
TS0S8
9rS9L
Tro89
9ES6S
TE0TS
e rAYay
TZove
9155¢
T10LT
9058
T

Mumber Of Requests

Figure 4.35: Jaeger Graph for the product requests (VII)

CPU Usage Seconds Total

20:62:22C
€8T
20:8¢-¢¢
CELTTT
¢0:L222C
€97
20:9¢-¢¢C
(A YAYA4
¢0:9¢:2¢C
cETiee
c0:veee
CEETTL
A\RXAYA4
Ay ARYA4
c0:zceiee
ce1eee
¢0:Tzee
2€:0C:ee
20:0¢2:2e
ceelee
c0:61:22
e8I
20:81:2¢
[AXVARYA4
C0:LT:22
cE9TTe
20:91:2¢
ceqlee
¢0:S1:2¢2
cEYTTe

e Ad Service e Cart Service

e Frontend

=== Product/Catalog Service

e Currency Service

e Checkout Service

e Recommendation Service 2

e Recommendation Service e Shipping Service

Figure 4.36: CPU usage for Experiment VII

37

In the Figure 4.36 we can observe the CPU usage of the services during the experiment.
The Recommendation service and the Product/Catalog service have the exact same
behavior as the preceding experiment, the memory usage was increased when the users
that were requesting the product started and decreased when they stopped. Additionally,
all the other services except Frontend are fluctuating at around the same values and under
the 2 seconds. On the other hand, the Frontend at the beginning when the requests target
only the main page has a similar behavior but when the requests for the product started it
increased drastically. The Frontend’s memory usage is fluctuating between 4 and 6
seconds when in Experiment VI was under 2 seconds. Lastly, the application only utilizes
1 of the 2 Recommendation containers.

Memory Usage Bytes
300000000
250000000
200000000
150000000
100000000
50000000 7 E
0
AN AN A AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN NN NN N
m o nmn o Mmo Mmoo Mmoo Mmoo Mmoo Mmoo momomomomomomo
FIN N OB ONNDBBANS S AANNN®NFFINMINDO ONIN DB D N
A B o S o B R o B o R o B o R o B o R o B N I o N B o BN I o\ I o N B o I\ o N IO IO N 9 A o o\ B o\ I BN
AN NN NN N
== Ad Service Cart Service === Checkout Service
e Currency Service Product/Catalog Service === Recommendation Service
e Recommendation Service 2 === Shipping Service
Figure 4.37: Memory usage without Frontend for Experiment VII
Memory Usage Bytes
8000
w
o
.2 7000
= 6000
5000
4000
3000
2000
1000
0
AN AN AN AN AN AN AN AN AN AN AN AN
N O M O M O M O M O M O ”H O N O MmN o Mmoo Mmoo Mmo Mmoo Mmoo mo
F M OO RNN®BOANSOS O AANNNM®ONIFFININDOG ONINDBO O
o A B s B B o T o B o S o B o R o B o BN B N BN B N BN o N BN o N BN o BN o\ B o\ BENeN BENeN BENeN BN o N NN BENoN BN\ BN BN I
AN AN AN AN AN AN AN AN AN AN AN AN A A A AN AN AN AN AN AN AN AN AN AN AN AN AN NN
e FTontend

Figure 4.38: Memory usage of Frontend for Experiment VII

38

In the Figure 4.37 we can see the memory usage of all the services except the Frontend.
As we can see from Figure 4.38 Frontend’s memory usage kept getting bigger and in the
end of the experiment, it almost reached 7GB. Other than the Frontend, the other services
behaved normally. From the Figure 4.37 we can see that the memory usage by the
Currency service was increased once at the beginning and the Ad service’s usage
increased by almost 100MB. Both Recommendation services start from the same memory
usage but the Recommendation service 2 is increasing slightly until the end. The other
services have a stable memory usage from the beginning of the experiment to the end.

¢ v frontend: Recv./product/OLJCESPCTZ £ | Altemate Views

December 26 2020, 22:17 159,34ms. ? 3 18

Service & Operation Oms 39.84ms 79.67ms 119.51ms

| frontend meccismaoioc scasecrz

+ | frontend =

productcatalogservice
| frontend n t —
| frontend 2 i -
| frontand —

| frontend
v | frontend senttipsteesher 7 stslogSarvics Gel?
producteatslogservice
v | frontend = — 2
productcatalogservi
v | frontend =

[tcatalo;
| trontend =

producicatalo
« | fontend <
productcatal

| frontend

Figure 4.39: Jaeger Graph for the product request from Experiment VII

The results from the CPU and memory usage graphs as well as the request in the Figure
4.39, show that the scaling of the Recommendation service did not benefit the
performance of the application. The performance of the application became worse since
Frontend requires more time in CPU and higher memory usage. The reason that this is

happening is due to the absence of a load balancer from the application.

39

4.9 Experiment VIII

In this experiment we wanted to simulate a real-life scenario, where a large number of
users are requesting a product and after their request they move to the cart. We started
with 600 users that were requesting a product and every two minutes we decreased them
by 150 and increased the users that were requesting the cart page by 150. Through this
experiment we want to see how the application will handle the users moving from one

service to another.

The average latency was 1 second and as we can see in Figure 4.40 it had a lot of spikes
at the beginning and at the end the last thousands of requests had less and very small

spikes.

Latency

350000
300000
250000

200000

ms

150000

100000

50000

8184
16367
24550
32733
40916
49099
57282
65465
73648
81831
90014
98197

106380
114563

=
=t
2]
=
I~
-

122746
130929
139112
147295
155478
163661
220942
229125
237308
245491
253674
261857
270040
278223
286406
294589
302772
310955
319138
327321

P
ol
=]
Q
[+]
-

Number Of Requests

Figure 4.40: Latency Graph for Experiment Vi1

40

335504
343687

351870

CPU Usage Seconds Total

N

[u=y

‘%
ti
15
:
i
|

AN AN AN AN AN AN AN AN A AN A A A A A AN NN NN NN NN NN NN
M2 NN Me NN NN MNM NN QM N M M
<t 1N N O OV NN 0O OO0 0O O +dF 94NN MMM ¥ FEF N N0 O NN 0
bl ol B s T A s S o s B TS TS TS T T T B T BN S TN T S B S B
F ¥ FF FF FFFFFFFIFFF YT Y Y YFFF
L e e I S e T e B B e B o B e B o B e B I S e T e B o R o RS o R o S o S o S o R o B o B I

e Frontend e Ad Service Cart Service

e Checkout Service e Currency Service Product/Catalog Service

e Recommendation Service === Shipping Service

Figure 4.41: CPU usage for Experiment V111

As we can see from the above Figure most of the services are not affected by the users
moving from the product page to the cart page. We can notice small changes that show
us the decrease of the users who were requesting a product and the increase of the users
requesting the page. The CPU usage of the Shipping service sees a small increase after 2
minutes and the CPU usage of the Ad service is decreasing until it becomes almost O
seconds. There is a small increase in Frontend’s time in the CPU by more than 2 seconds
the last few minutes but there is not a clear indication on what affected the change, since
the users requesting the product were reduced to 0 at 14:22:32 and there were not any

changes in the requests for a few minutes.

41

14:29:02

Memory Usage Bytes

250000000

200000000

150000000

100000000

50000000

0:6C 71
ceBLYT
c0:8Z:¥1
CELTYT
CO:LTHT
CE9TTL
0:9¢ %1
CESTTL
C0:STHT
CEVTYL
AR 444"
CEETYT
C0:ETTT
ceTTYL
02l
CETTTT
COTTHT
cE0TYT
c0:02:%1
ceE6lPl
06171
e8I IL
08T ¥1
CELTHL
COLTHT
CEITHT
C09T¥1
CESTHT
CO:ST#T
CEFTTL

e Cart Service e Checkout Service

= Ad Service

=== Product/Catalog Service e===Recommendation Service

e Currency Service

e Shipping Service

Figure 4.42: Memory usage without the Frontend for Experiment V111

Memory Usage Bytes

2500

2000

SUOIA

1500

1000

500

06291
e8Il
08291
CELTTT
C0-LTHT
ce9Tl
0:9¢ %1
[ARTA 4!
C0:STHT
CEVTYL
A\B 244"
CEETYT
COETHT
CETTYT
A\ aa 4"
CETTHT
0T HT
CE0THT
0:0C¥1
ceE6lPl
06171
ceEBILYI
08T %1
CELTHT
COLT T
CEITHT
C09T¥1
CESTHT
CO:ST#T
CEVLHT

Frontend

Figure 4.43: Memory usage of the Frontend for Experiment V1II

42

From the above Figures we can see that the memory usage from the Frontend had an
abrupt change at the same minute as the CPU usage. The Currency service’s memory
usage fluctuates and at the end it sees a small increase and becomes stable. The Shipping,
Recommendation, Product/Catalog and Checkout service’s memory usage is slowly
increasing, and the memory of the Ad service is increasing. Most of the services that are
seeing an increase of memory usage during the experiment are part of the cart page as the
Figure 4.44 shows.

Service & Operation
v | frontend =
| frontend
| frontend
| frontend =
v | frontend
productcatalogservice
- | frontend
productcatalogservice
v | frontend
productcatalogservice =e
v | frontend
productcatalogservice ==
v | frontend
productcatalogservice Recvhipstershop ProduciCatsiogService GetF
v | frontend
| shippingservice #=c

| frontend

Figure 4.44: Services that the Cart page uses taken from Jaeger

4.10 Conclusions from Experiments

There are a lot of things to take away from the experiments. Through Experiment Il and
Experiment VI, we can see that a load balancer in a microservice application can benefit
the performance and that through scaling a service in an application, without a load

balancer, yields no benefit and it can require more system resources.

43

Creating realistic scenarios helps us understand the behavior of the application and find
problems that may occur. Knowing which service needs the most resources in different
scenarios will help with balancing the system and setting the right limits on the services.
As we can see from the Experiments IV and V limiting the CPU and memory usage on
some services can cause opposite results than expected. In Experiment IV the limits in
the Recommendation service affected mostly the Frontend, as the application needed
more resources in the end and increased the time needed for a request to be completed.
Through the realistic scenarios, we can gain the knowledge needed to avoid a lot of
problems and fix a lot of issues that would have occurred after the application was
launched.

Lastly, a big part of the Experiments are the latency tests. Launching the microservice in
an environment with stable and fast internet is important. Even if you have a perfectly
balanced application, having a bad network connection can affect the performance and

the user experience depending on the purpose of the microservice application.

44

Chapter 5

Conclusion
5.1 Conclusion 45
5.2 Future Work 45

5.1 Conclusion

Currently, there are not any standard ways and guidelines to benchmark the microservice
applications. There are a lot of articles and research papers that suggest different ways to
benchmark them, but there is not one of them that stands out the best. One of the simplest
ways to benchmark your application is through stress testing it, with different scenarios
that might occur. The purpose of this research was to benchmark a microservice
application by analyzing and monitoring it, during different experiments and understand
the way it works and discover possible problems and bottlenecks.

The way mentioned above of benchmarking a microservice application can be easily
recreated for any microservice application and by anyone. Benchmarking a microservice
application is important and we hope through this research that it will be more
understandable and easier for someone to understand the behavior of this microservice

and fix any problems.
5.2 Future Work
Benchmarking the microservice applications is a topic with a lot of possibilities. There

are a lot of different ways to extend this research. One of the ways to extend the research,

is to create an environment with higher tier hardware and a network connection between

45

the server and the machine creating the requests that will be fast, direct and without
another network load. This will help create an experiment where the latency cannot be
affected by external factors and having higher tier hardware will create a lot more
possibilities for different and more complicated experiments. Another way to extend the
research is to recreate the experiments in two different environments, one in a server in a
home, and another in a server facility creating the possibility to see if the microservice
application will be massively affected and find the limit in which someone can have a

microservice application running at home.

Lastly, one of the most important ways to extend the experiment is to recreate it in a fog
environment instead of a cloud one. There are a lot of different ways to do this and one
of those is with Fogify[3], a framework that lets you emulate a fog computing
environment. Comparing the results of the cloud and the fog can lead to unexpected

outcomes.

46

Bibliography

[1] M. Grambow, E. Wittern, and D. Bermbach, “Benchmarking the performance of
microservice applications,” ACM SIGAPP Appl. Comput. Rev., vol. 20, no. 3, pp. 20—
34, Sep. 2020, doi: 10.1145/3429204.3429206.

[2] J. Soldani, D. A. Tamburri, and W.-J. Van Den Heuvel, “The pains and gains of
microservices: A Systematic grey literature review,” J. Syst. Softw., vol. 146, pp. 215—
232, Dec. 2018, doi: 10.1016/j.jss.2018.09.082.

[3] M. Symeonides, Z. Georgiou, D. Trihinas, G. Pallis, and M. D. Dikaiakos,
“Fogify : A Fog Computing Emulation Framework,” pp. 1-13, 2020. https://ucy-linc-
lab.github.io/fogify/

[4] H. Vural, M. Koyuncu, and S. Guney, “A systematic literature review on
microservices,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell.
Lect. Notes Bioinformatics), vol. 10409 LNCS, no. February 2020, pp. 203-217, 2017,
doi: 10.1007/978-3-319-62407-5_14.

[5] X. Zhou et al., “Benchmarking microservice systems for software engineering
research,” in Proceedings of the 40th International Conference on Software
Engineering: Companion Proceeedings, May 2018, pp. 323-324, doi:
10.1145/3183440.3194991.

[6] “Jaeger: open source, end-to-end distributed tracing.”
https://www.jaegertracing.io/ (accessed Jan. 02, 2021).

[7] “Empowering App Development for Developers | Docker.”
https://www.docker.com/ (accessed Jan. 02, 2021).

[8] “Prometheus - Monitoring system & time series database.”
https://prometheus.io/ (accessed Jan. 02, 2021).

[9] “google/cadvisor: Analyzes resource usage and performance characteristics of
running containers.” https://github.com/google/cadvisor (accessed Jan. 02, 2021).
[10] “GoogleCloudPlatform/microservices-demo: Sample cloud-native application
with 10 microservices showcasing Kubernetes, Istio, gRPC and OpenCensus.”
https://github.com/GoogleCloudPlatform/microservices-demo (accessed Jan. 02, 2021).

[11] “gluckzhang/prometheus2csv: Tool to query multiple metrics from a prometheus
database through the REST API, and save them into a csv file.”
https://github.com/gluckzhang/prometheus2csv (accessed Jan. 02, 2021).

[12] “Advantages (and Disadvantages) of Microservices — Prime TSR.”
https://primetsr.com/insights/advantages-of-microservices/ (accessed Jan. 02, 2021).

47

