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Abstract 

 

The creation of viruses targeting a processors architectural characteristics is very important 

and beneficial for the device’s evaluation and improvement of efficiency and stability. The 

task I’m focusing on is the discovery of the unknown and undocumented architectural 

characteristics of the Arm Mali T-624 GPU, for the efficient creation of such viruses for the 

device.  

I do this by writing and running parallel code in the GPU with the OpenCL parallel 

programming framework. I analyze sometimes the power consumption of my experiments 

but mostly the time performance, and reveal from the results the performance parameters. 

Then I link each of these parameters with the architecture that causes it. After the extraction 

of the performance parameters I attempt to fit them into a performance model that mimics the 

actual device’s architecture as closely as possible. I validate my model by comparing the 

estimated execution time of my model with the actual execution time for the code.  

The goal is to automatically predict the execution time of a code in the GPU accurately and 

understand all the parameters that affect the performance. This deep understanding of the 

processors structural blocks can be used for the creation of frameworks that generate 

processor viruses, of which the construction requires good knowledge of the device’s 

architecture. 
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1.1 Problem 

 

There are various types of viruses that are used in terms of stress testing, to improve the 

efficiency and the stability of the system and at the same time detect any architectural 

vulnerabilities and performance bottlenecks. A couple of examples of such viruses are power 

and voltage noise or dI/dt viruses. These viruses target processor components like CPUs, 

GPUs and RAMs. In order to create such programs, manually or automatically with a 

framework [1], is important and very beneficial to have a deep understanding of the target’s 

architecture first. By knowing all architectural parameters and constrains of a device you 

would be able to tune the virus for the specific target on the best way possible. Especially in 

the case of voltage noise viruses [2] where in order to succeed, the program must tune to the 

device’s resonance frequency, in order to create high levels of impedance in the power supply 

network.  Something that requires insides on the parameters that determine the programs 

performance. 

 

1.2 Contributions 

The contribution that I’m attempting to make in this problem is focused on the extraction of 

performance characteristics from a certain GPU model, ARM’s Mali T-624, which could 

later be used as tools for the manual or automatic creation of processor viruses for this model. 

More specifically I created a parametric performance model based on observations that I have 

also validated through experimentation and defined some guidelines on how to predict the 

instruction scheduling for a given code. The goal was to locate the primitive parameters of 
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the GPU’s performance, and verify my findings by using them to predict the performance of 

various benchmarks and get as close as possible to their actual performance.   

 

1.3 Outline 

 

First of all we are going to take a look on the architectural characteristics of a GPU, its 

various levels of parallelism and the ways it implements them on chapter 2. After that we are 

going to briefly explain the basics of the OpenCL framework for parallel programming on 

chapter 3, which is the framework I’m using. Then we are going to summarize all the known 

characteristics of the GPU model I am working with and export all the unknown performance 

parameters that I have to locate to create the performance model I want on chapter 4. I will 

give an abstract of the performance model I want to make on chapter 5. On chapter 6 I will 

cite the methodology for my experiments and from chapter 7 to chapter 12 I will present my 

findings. After that, on chapter 13 I will summarize my work by presenting you my 

parametric performance model. On chapter 14 I’ m going to compare my work with related 

work. 
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Chapter 2 

 

GPU Architecture 

 

A Graphic processing unit (GPU) is a processor specifically designed for parallel processing 

of data. They support the creation and execution of multiple threads. Threads are sequences 

of instructions that can be processed in parallel. In order for the GPU to support the parallel 

execution of threads it has various architectural characteristics that compose multiple levels 

of parallelism.  

 

 

2.1 Core Level Parallelism          3 

2.2 Pipeline Level Parallelism        3 

2.3 Instruction level parallelism        4 

2.4 Data Level Parallelism          5 

2.5 Cache memory          5 

 

 

2.1 Core Level Parallelism 

 

Core Level parallelism is achieved with the usage of multiple cores in one GPU. These cores 

share and run the work-load. The work-load is the total amount of threads that get issued to 

be executed in one run and is divided in smaller groups of threads often known as thread 

blocks. This is to make the sharing of the work-load among the cores easier. The benefit of a 

multicore system is that multiple independent threads can run in the GPU simultaneously in 

the different cores.  

 

2.2 Pipeline Level Parallelism 

 

Pipeline level parallelism allows the parallel execution of multiple instructions. Pipelines are 

a construction of a certain number of processing stages, where in each stage a different 

instruction can be processed. For example if we fetch an instruction in this cycle then in the 
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next cycle we can go on and fetch the next instruction while the previous instruction 

continues to the next processing stage. The number of these stages in a pipeline is called the 

pipeline depth which is the number of clock cycles that it takes for an instruction to be fully 

executed, considering the fact that there were no stalls. Stalls are clock cycles when the 

pipeline is not able to move forward, often due to data dependencies among instructions or 

other hazards. Pipeline depth also describes the number of different instructions that the 

pipeline is able to process in parallel in one cycle. It’s also important to note that each core 

can often have multiple pipelines, providing an extra level of parallelism, with instructions 

not only processed in parallel inside the pipeline but also simultaneously in the multiple 

pipelines.  

Now according to the policy that a pipeline follows in terms of the order in which it fetches 

new instructions, we can say that it implements a certain multithreading execution. Some 

types of multithreading executions are the coarse-grained multithreading and the fine-grained 

multithreading. In coarse-grained multithreading at each cycle we fetch instructions from the 

same thread until the thread is finished or blocked when we continue to the next one. In fine-

grained multithreading at each cycle we fetch an instruction from a different thread often 

following a round-robin type of scheduling (figure 2.1). 

 

Threads/ 

cycles 
1 2 3 4 5 6 7 8 9 10 11 12 13 

1 Instruction 1 Instruction 2    

2  Instruction 1 Instruction 2   

3   Instruction 1 Instruction 2  

4    Instruction 1 Instruction 2 

Figure 2.1 Fine-grained multithreading execution example 

 

2.3 Instruction level parallelism 

 

Instruction level parallelism we have when we are able to execute multiple instructions 

simultaneously. Each core, or even each pipeline can contain a number of different functional 

units. This allows the simultaneous execution of a number of different arithmetic operations. 

There is a technique that utilizes this ability called instruction fusion, where a small group of 

sequential instructions, usually a pair, can be fused in one only instruction [3]. This 

instructions can even have dependencies.  
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Another form of instruction level parallelism is the Very Long Instruction Word (VLIW) 

architecture.  As the name suggests, in this architecture Instruction words are unusually long, 

often fitting 4 “normal size” instruction words. Therefore it gives the ability to execute 

simultaneously a set of dependent instructions instead of one, as long as available resources 

exist. The basic idea is that each operation in one VLIW is mapped to a different functional 

unit (figure 2.2). The process of grouping these independent operations is usually 

implemented at the compilation stage.  

 

 

Figure 2.2 Very Long Instruction Word simple scheme 

 

2.4 Data level parallelism 

 

A partitioning register file architecture, is when the register file is partitioned into smaller RF. 

This technique can be beneficial for both VLIW and SIMD architectures, depending on the 

level that the file is partitioned and organized [4]. A Single Instruction Multiple Data (SIMD) 

architecture provides a data level parallelism. With SIMD we can group multiple data to 

which we want to apply the same operation and execute them all at once. This is something 

that usually would require from the programmer to explicitly group these data into vectors 

and use certain functions to apply the operations, but some processors offer the ability of auto 

vectorization where they are able to locate opportunities to merge multiple similar 

instructions into a single one that contains multiple data, at the compilation state. 

 

2.5 Cache memory 

 

GPUs of course have multiple levels of cache, with each level having a different size, 

inversely proportional to the distance of the cache from the functional units. What is 

interesting to note here is that the level 1 cache size for a GPU is typically smaller than a 

CPU’s but with a much higher bandwidth. Each cache can either be accessible only to a 

certain core or commonly shared across the whole GPU. Some architectures use the multiple 

level caching system to implicitly define the memory that is accessible by a thread or a group 
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of threads and the memory that is shared between all threads. With this technique we can 

ensure that the memory that a thread needs is physically closer and ready for access. Also 

caches can physically partition texture memory, which is used for graphics rendering, from 

general memory. These concepts of memory division are very common in parallel 

programming and I’m going to discuss more about this from a programming aspect later on.  

Caches are made of blocks, also known as cache lines, and these blocks are the smaller 

transferable cache units. These blocks are grouped in block sets, also known as cache rows, 

and within those rows each block has a different tag to identify it. The number of blocks 

within a block set defines what we call the associativity of the cache. Addresses in cache 

contain the tag of the block the data belongs, the index of the cache row we can find the block 

if it would be in the cache and the offset within the block of the data we want (figure 2.3). 

When requesting a data block the cache looks in the cache row with the corresponding index 

and checks for the tag and the valid bit, that determines if the data in the block are valid and 

up to date to make a cache hit. If it fails we have a cache miss and we have to look in the next 

level of the cache hierarchy.  

 

Tag Set index Offset 

Figure 2.3 typical cache address example  

  

 

Figure 2.4 2 way association cache example from [5] 
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In GPUs there are some common cache issues that could arise from having multiple threads 

having access to the same data. One issue is cache coherence, where we would want multiple 

instances of the same data in different caches to be consistent. Some architectures attempt to 

ensure coherency and others don’t, leaving it completely up to the programmer to protect the 

data coherency. Another problem is the race condition issue, where two or more threads 

attempt to access the same data in memory at the same time, which could cause delays. In 

extend to the race conditions, there is also the false sharing issue where threads try to access, 

not the same data but instead data within the same block, but delays still arise. 
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3.1 OpenCL Models  

 

Arm Mali GPUs support the use of OpenCL and OpenGL frameworks for parallel 

programming. For the purposes of my research I Used the OpenCL framework, as OpenGL is 

actually more of a 3D graphics API. I’m using the 1.2 version of OpenCL and all my 

information is based on the official specification of OpenCL [6]. The Platform Model of 

OpenCL (figure 3.1) contains the host, where the main application runs, multiple devices 

where the host sends commands, compute units within the devises and processing elements 

within the compute units that execute the commands. In the Execution Model we have the 

host program that runs in the host and kernels that can run in one or multiple devices. When 

the host submits a kernel for execution in one or more devises, multiple instances of the 

kernel are created. These instances are called work-items, commonly known as threads, and 

each one is identified by its unique global ID. The work-items are grouped into work-groups 

each one having its own work-group ID and assigned in a specific compute unit. Also the 

work-items within a work-group have a local ID, unique to every work-item within the group. 

The work-group size of the groups, which is the number of work items within a work-group 

can be explicitly defined from the programmer or the OpenCL will make an automatic 

partition according to the total work-load.  
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Figure 3.1 OpenCL Platform Model 

 

The Index Space in OpenCL can be multidimensional, but I am not going to elaborate on this 

as for my experiments I only used one dimensional index spaces.  

The OpenCL Memory Model contains the global memory which is memory accessible to all 

work-items, the constant memory which is global memory that remains constant throughout 

the execution, the local memory accessible to the work-items of a certain work-group and 

private memory accessible to a certain work-item. OpenCL uses memory objects that can be 

buffers or images, to pass data from the host to the kernel. 

 

3.2 Data Types and Instructions 

  

OpenCL supports a variety of both scalar and vector data types. Some basic scalar types are 

Booleans (bool), signed and unsigned characters (char/uchar), signed and unsigned arithmetic 

types like short integers (short/ushort), integers (int/uint), long integers (long/ulong), and also 

floats and doubles. For the corresponding vector types we simply add to the end of the type 

names the number n of the values we would like for this vector to have, where n takes the 

values of 2, 3, 4, 8 and 16.  OpenCL also supports other data types that I’m not going to 

include as we are not going to need them. More information about OpenCL’s documentation 

is available at the Khronos Group OpenCL Specification [6] 

. 
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Chapter 4 

 

ARM Mali T-624  

 

In this chapter I will summarize all architectural characteristics that I managed to find from 

references of the model I’m working with. Then according to chapter 2 I will define all the 

unknown architectural parameters that I have to discover through experimentation, in order to 

compose my parametric performance model.  

 

 

4.1 Known ARM Mali GPU Characteristics       10 

4.2 Unknown parameters to discover        11 

 

 

 

4.1 Known ARM Mali GPU Characteristics 

  

The GPU model that we work with is Arm Mali T-624. The model belongs to the family of 

Midgard core GPUs. This Midgard family can have 1 to 4 active shader cores that from now 

on will be mentioned simply as cores. Each core contains a system of two arithmetic 

pipelines, one load/store pipeline and one texture pipeline. All pipelines use fine-grained 

multithreading execution. Each arithmetic pipeline has multiple functional units like 

multiplication unit and addition unit for both scalar and vector operations and a vector look 

up table unit. The Job Manager is a Unit that is responsible for the scheduling of the work-

load in the GPU. There are two Levels of caching, with two caches in level one (L1) and one 

cache on level two (L2). The first L1 cache is used for general memory access and the second 

one for texture access, with each of size 16 KB. The L2 cache is shared through all the cores 

and its size varies from 32KB for each core to 64 KB (128 KB – 256 KB in total). Both cache 

levels are made of 64 byte cache lines. The midgrade family also has a very long instruction 

word (VLIW) architecture that allows the simultaneous execution of 4 different operations in 

different processing units.  
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Figure 4.1 Mali midgard family Micro-Architecture 

 

4.2 Unknown parameters to discover 

 

In order to make complete a performance model we would have to examine and try to 

approach more characteristics of the Mali GPU. At the same time it would be wise to also try 

to verify the already knowing characteristics. One of the most important things to do is to 

verify the fact that it uses fine-grained multithreading and find he pipeline depth, but also 

verify the number of arithmetic pipelines and if both pipelines are active in all cases. Also I 

would have to discover the way the Job Manager schedules the work-load on the GPU. I have 

to determine the level of instruction parallelism that is available, more specifically find out 

whether there is instruction fusion and in which cases and identify the VLIW instruction level 

of parallelism constrains, in order to approach as closely as possible the number of VLIW 

instructions that result given a certain code. Also I need to find out the size of the register file 

to be able to predict when we are going to have a register spill. A register spill is the 

phenomenon where the number of registers in a program exceed the number of registers that 

are available and is forced to turn to the cache. Moreover I have to discover the delay of a 

cache load and store and check if the GPU attempts to reserve coherency and how, as well as 

approach the cost of race conditions and false sharing if there is any and find the delay of a 

cache miss in L1 and L2. With all these characteristics clarified I would be able to form an 

accurate performance model with parameters only defined by the programmer that doesn’t 

require from the user any insides on the processors characteristics besides the GPU’s 

frequency.   
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Chapter 5 

 

Abstract performance model 

 

 

5.1 Abstract performance model        12 

 

 

5.1 Abstract performance model 

 

My Goal as I have explained, is to create a performance model of the Arm Mali T-624 GPU. 

To achieve this I have to brake the model into 3 basic components. The first component will 

be responsible of the VLIW scheduling prediction. This is important, because to predict the 

execution time for a given kernel we have to know the number of very long instructions in 

which the compiler translates the code. The second component is the job manager. Given the 

total work-load and the size of the work-groups, which both can be set by the programmer we 

have to predict the partitioning of the work-items among the cores. Lastly the final and main 

component is the parametric performance model that based on the architectural parameters of 

our model, the VLIW scheduling and the job manager scheduling will estimate the execution 

time for the given Kernel.   

 

 

Figure 5.1 Abstract performance model 
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Methodology 

 

 

6.1 Methodology           13 

 

 

6.1 Methodology 

 

The Basic idea around the methodology that I followed is that I’m starting with a simple 

performance model and as I’m moving on I add to the model the various architectural 

parameters that I managed to locate. This basic model is as follows , where I is the 

total number of instructions, CPI is the clock cycles per Instruction and F is the frequency. 

The way I extract all the additional parameters is through experimentation and observation of 

a kernel’s performance and power consumption. For my experiments, as I have already said, 

I’m using the OpenCL Framework. I’m running my experiments on the Arm’s Juno board 

which contains a model of Arm Mali T-624 GPU. The OpenCL Host is the CPU of the Juno 

board, device which I’m using only one is the GPU and the computing units are the 4 cores. 

I’m using a one dimensional index space. I have written a few host programs, each one with a 

few different parameters like for example the number of memory objects I pass to the kernels. 

The memory objects I use are buffers and always allocated in global memory. The reason I 

am doing this is that in the ARM® Mali™ GPU OpenCL Developer Guide [7] it states that 

local and private memory are allocated in global memory, therefore the allocation of data in 

different memories won’t affect the performance.  

Each experiment contains one or multiple kernels that I execute for different number work-

groups and work-group sizes. Each experiment is designed to provide me with certain 

information and aims on specific parameters that I want to determine. Also when I’m 

building my kernels I’m using the “-cl-opt-disable” option which disables compiler 

optimization in order to get more predictable results and be able to analyze them easier. For 

every kernel I make VLIW scheduling prediction for every iteration of the kernel to estimate 

the number of instructions per loop.  
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Then I’m analyzing the experiment results of the power consumption or the performance, 

which is the execution time. Usually from the performance results I calculate the actual 

number of clock cycles that it took to the kernel to be executed with the 

formula , where T is the actual execution time, F is the GPU’s frequency and 

CCY are the total clock cycles for the execution. Note here that the GPU’s frequency is 

always locked at a certain value, as the DVFS (dynamic voltage and frequency scaling) is 

inactivated. After that I make assumptions about the architectural characteristics of the GPU 

and define extra parameters that I add in my performance model, or use them to provide 

guidelines on how to accurately predict the instruction scheduling for a code. To validate 

these parameters I’m comparing the estimation time that results from my new performance 

model with the actual execution time of the experiment I conducted.  

 

To summarize, the steps that I follow for each experiment are the following: 

1. Composition of kernel  

2. Execute Kernel for a different number and sizes of work-groups and take 

measurements for the power consumption or the performance.  

3. Calculate the number of clock cycles for each execution.  

4. Observe results and extract information about the underlying architecture and update 

the parametric performance model, VLIW scheduling and Job Manager Scheduling 

methods when and if possible.  

5. Check the estimation time of the new updated model with the actual performance of 

the kernel.  
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7.1 Number of Arithmetic Pipelines 

 

I have observed that the second of the two arithmetic pipelines can be used only when there 

are work-groups with two or more work-items. When executing a kernel of a simple 

increment loop (figure 7.1) for different work-group sizes, and measuring the power 

consumption, we get the results shown in figure 7.2. There is a clear difference in the power 

consumption of work-groups with size one and all the rest of the work-group sizes, which 

seem to consume similar amounts of power. This could mean that the instructions of each 

work-group can only be executed in the same pipeline.  

 

Figure 7.1 Increment loop Kernel  
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Figure 7.2 Power consumption  

 

If we compare the execution time of work groups with size 2 and 1 we can see that in the case 

of group size 2 it executes the double amount of work in almost the same time. In some cases 

is less due to the fine-grained multithreading that we are going to examine next. 

 

 

Figure 7.3 Performance comparison between size 1 and size 2 

 

7.2 Fine Grained multithreading and pipeline depth 

 

Our goal is to verify if our machine uses Fine Grained multithreading and what the pipeline 

depth is. For this purpose I used again the simple increment loop is a simple increment loop 

with two instructions in each iteration. One instruction incrementing the variable and another 

comparing it with the termination value. When running the same code for different number of 

work-groups of size 1 and measuring the execution time we get the following results  
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Figure 7.4 Performance of 1 work-item per work-group 

 

We observe that the execution time remains stable when the work group number is 1 to 38. 

This indicates that it uses a Fine Grained multithreading execution and that the pipeline depth 

is 38. More specifically the pipeline in every cycle fetches instructions from different threads. 

But in order to fetch the next instruction of the same thread the previous instruction must 

fully finished. Meaning that by the time that the first instruction of the first thread finishes we 

can issue 38 instructions more, each of a different thread. In the following figure we can see 

an example of how these instructions are scheduled for 3 and 38 work-items 

 

Threads/clock cycles 1 2 3 4 5 6 . . .  38 39 40 41 42 43 44 . . .  76 77 78 79 80 81 82 . . . 84 85 86
1
2
3

Threads/clock cycles 1 2 3 4 5 6 . . .  38 39 40 41 42 43 44 . . .  76 77 78 79 80 81 82 . . . 114 115 116 117 118 119 . . . 151
1 1.1 1.2 1.3
2 2.1
3 3.1
4 4.1
5 5.1

6 6.1
. . . . . .
38 38.1

. . . . . .
38.2 38.3

4.2 4.3
5.2 5.3

6.1 6.3

2.2 2.3
3.2 3.3

1.1
2.1

3.1

1.2 1.3
2.32.2

3.2 3.3

 

Figure 7.5 Instruction scheduling for a kernel with 3 instructions for 3 and 38 threads (work-

items), where instruction 1.2 is the second instruction of the first thread etc. 

 

When the number of threads exceeds 38 then the pipeline depth, can no longer “hold” the 

number of threads running in parallel. Therefore there will be a 1 cycle stall in the thread 

execution for each instruction with every extra work-item, like the following examples.  
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Threads/clock cycles 1 2 3 4 5 6 . . .  38 39 40 41 42 43 44 45 . . . 77 78 79 80 81 82 83 84 . . . 116 117 118 119 120 121 122 . . . 154
1 1.1
2 2.1
3 3.1
4 4.1
5 5.1
6 6.1

. . . . . .
38
39

Threads/clock cycles 1 2 3 4 5 6 . . .  38 39 40 41 42 43 44 45 77 . . . 78 79 80 81 82 83 84 85 86 . . . 118 119 120 121 122 123 124 125 . . . 157
1 1.1
2 2.1
3 3.1
4 4.1
5 5.1
6 6.1

. . . . . .
38
39
40

38.1
39.1

39.3
40.3

. . .
38.3

39.2
40.2

38.1
39.1

40.1

1.2
2.2

3.2
4.2

6.2

1.3
2.3

3.3
4.3

5.3
6.3

39.2

1.3
2.3

3.3
4.3

5.3
6.3

. . . 
38.3

39.3

1.2
2.2

3.2
4.2

5.2

5.2

38.2

6.2
. . . 

38.2

. . .

 

Figure 7.6 Instruction scheduling for the first 3 instructions with 39 threads and 40 threads/ 

work-items.  

 

To validate my assumption, I compare the expected execution time with pipeline depth 38 

and the actual time for all the observed scenarios we see that the assumption is valid. On my 

performance model I replace the CPI with the pipeline depth (pd) plus the number of stalls. 

Some examples are the following.  

 

For 1 to 38 work-groups:  

For 39 work-groups:  

For 50 work-groups:  

 



19 

 

 

 

Chapter 8 

 

Job Manager 
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8.2 Scheduling batches Over GPU        20 

 

 

8.1 Work scheduling between cores 

 

As I have mentioned before for every 64 work-items running in parallel a core gets activated. 

To be more specific the way that the Job manager schedules the work-load of each core is by 

dividing it into batches of 64, regardless of the work-group number or size. Looking back to 

the experiment power consumption experiment in chapter 7 (figure 7.2), for every work-item 

that we add to the work-load the power consumption increases linearly and for every 64 

work-items there is an even bigger increment indicating the activation of a core. This happens 

4 times, for each of the 4 cores and then the power consumption stabilizes. 

 

 

Figure 8.1 Performance for 1 work-item per work-group 

 

This can also be seen at the time performance (figure 8.1). After the addition of the 64th 

work-item the execution time remains the same, as it is bound to the time that the core with 



20 

 

the larger amount of work needs to finish. This phenomenon can also be noticed in the 

execution of much more complex benchmarks, but for simplicity I cite the same simple 

example as we have already seen. Bellow there is a graphic representation of how the work-

items get issued in the cores and how that affects the execution time, for a number of 

different work-group sizes  

 

 
Figure 8.2 Execution along with number of threads (work-items) per core 

 

 

8.2 Scheduling batches Over GPU 

 

The GPU runs a limited amount of threads in parallel. It divides the work-load into batches, 

and issues the next batch only when the execution of the previous one is completely finished. 

These batches are consisted of 256 work-groups, unless the total number of work-items in the 
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256 work-groups is over 1024. Let’s say that the number of work-groups in a batch is n. The 

time performance of the simple increment loop shows that the execution time for n+1 work-

groups is equal to the execution time of n work-groups plus the execution time of 1 work-

group. This is true for all the possible power of 2 work-group sizes (figure 8.3). Therefore is 

clear that the GPU has to complete the execution of one batch in order to continue to the next 

batch issued by the job manager. 

 

 

Figure 8.3 Compare Performance for different number of work-group sizes  
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Chapter 9 

 

Fusion of depended operations  

 

In most cases the processor is able to make various optimizations on the operations to 

improve performance. In this chapter we test the ability to fuse certain instructions that 

normally would have dependencies. 
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9.1 Logic Operation Fusion 

 

When executing the following code (figure 9.1), we would expect the number of VLIW 

instructions for each iteration to be 3 as you can see in the scheduling figure that follows 

(figure 9.2). Yet when executing the code the execution time that we get is 126.668ms, which 

translates to 38 clock cycles (1 pipeline cycle) less than we would expect.  

Figure 9.1 Kernel with two comparisons 

 

i = 0   x++   

i<1000000 x!=0   

&&    

Figure 9.2 VLIW scheduling for kernel 
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The only logical explanation is that the processor can fuse a couple of operations into one. If 

we suppose that the operations that get fused in this example are the “AND” and the “CMP” 

operations and run a series of examples with this two used at the same way we get the same 

consisted results. Therefore we can come to the conclusion that the logical processing unit 

has the ability to fuse small sequential operations with dependencies, in one instruction.  

 

9.2 Multiply and Add Operation Fusion  

 

In a similar way with the logical operations fusion we also have a fusion between operations 

of the multiplication and addition unit. In the following example (figure 9.3), we have a 

couple of depended multiply and add operations. The VLIW instruction scheduling of one 

iteration for this benchmark is as shown on figure 9.4. 

Figure 9.3 kernel with multiply and add operations 

 

i = 0   y = x * y_ x = x + y   

i<1000000 y = x * y_ x = x + y   

&&_ x!=0    

Figure 9.4 VLIW scheduling for kernel 

 

The actual execution time is 190.002ms, for frequency set to 600MHz and running one work-

group with one work-item. The estimation time from my performance model is 190ms as 

well,  
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Chapter 10 

 

Instruction Level Parallelism  

 

On this chapter we will explore and verify the opportunities of instruction level parallelism 

the specific model allows with the VLIW architecture. 
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10.1 Scalar units 

 

With the exceptions of the operation fusions that we have already covered, instructions with 

dependencies cannot coexist in the same VLIW instruction. For this experiment we are going 

to use the kernel of the previous chapter (figure 9.3) and we will constantly add multiply-add 

operations and measure the performance. For every couple of multiply and add operations we 

add the performance for 1 work-item gets charged with an additional 38 clock cycles, with 

exception the kernel with 6 multiply add couples, where we have a register spill. More about 

the register spill is on the next chapter 

 

Number of 

multiply-adds 
Execution time 

Cycles per 

iteration 

2 190.002 114 

3 253.338 152 

4 316.670 190 

5 380.001 228 

6 536.670 322 

Figure 10.1 Execution time graph for 1 work-item of size 1 
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If now we examine a similar scenario, but this time with couples of instructions independent 

from one another (figure 10.2), the instructions can feet to the same VLIW word (figure 

10.3). This causes the phenomenon of auto vectorization, where scalar instructions can be 

executed as vectors. The estimation of execution time is  and the actual 

time is 190.002ms. 

 

Figure 10.2 Kernel with independent couples of multiply add instructions 

 

i = 0   y = x * y_ x = x + y z = k * z_ k = k + z  

i<1000000 y = x * y_ x = x + y z = k * z_ k = k + z  

&&_ y!=0    

&&_ k!=0    

Figure 10.3 VLIW instruction Scheduling 

 

But the VLIW word has a size constrain. It is large enough to fit 4 different instructions. 

There for in the following example (figure 10.5), although the processor has enough 

resources to execute the increment and the comparison of variable i at the same time with the 

4 multiply and add operations, it won’t execute them all as they don’t fit in the VLIW word 

(figure 10.4). The estimation of execution time is  and the actual time 

is 316.67ms. 
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i = 0   y = x * y_ x = x + y z = k * z_ k = k + z f = g * f_ g = g + f 

i<1000000 h = j * h_ j = j + h y = x * y_ x = x + y z = k * z_ k = k + z 

f = g * f_ g = g + f h = j * h_ j = j + h   

&&_ y!=0    

&&_ k!=0    

&&_ g!=0    

&&_ j!=0    

Figure 10.4 VLIW instruction scheduling 

Figure 10.5 Kernel with 4 multiply-add instruction couples 

 

10.2 Vector Units 

 

In contrast to the scalar data, each core cannot process more than one SIMD instruction at the 

same time. The following examples show the execution of multiple multiply-add operations 

independent to one another (figure 10.7). The VLIW word is as follows (figure 10.6). The 

estimated execution time of this scheduling is the same with the actual execution time.  
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i = 0   y = x * y_ x = x + y   

i<1000000 z = k * z_ k = k + z   

f = g * f_ g = g + f    

&&_ y!=0    

&&_ k!=0    

&&_ g!=0    

Figure 10.6 VLIW scheduling 

 

 

Figure 10.7 Kernel with independent SIMD multiply-adds 
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Chapter 11 

 

Register Files  

 

On this chapter I would like to explore and identify the register file size, and how scalar and 

vector variables get registered 
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11.1 Register File Size 

 

To check the size of the Register file I need to create a kernel that could causes a register 

spill. To be more specific I’m writing kernels with multiple independent operations, each 

utilizing a different register. At each kernel I’m increasing the number of instructions and as a 

result the number of Registers the kernel requires and try to find out when a register spill will 

occur. We have the same kernel as in chapter 9 (figure 9.3) as a base and to that I’m adding a 

multiply-add operation for each run, which as we said is a fused operation. For each multiply-

add operation the kernel requires two extra registers, therefore according to the analysis of 

the registers for the base code iterations(figure 11.1), a kernel with n multiply-add operations 

would require 5+2n registers.  

 

Figure 11.1 Register Analysis  

 



29 

 

From the performance results in comparison with the expected time from my performance 

model (figure 11.2) we find that the register spill is happening for the first time at the 6th 

multiply-add operation where the kernel requires 17 registers. So in conclusion the register 

file has 16 registers for each work-item and 64x16=1024 registers per core. To verify we 

conduct the same experiment for deferent data types and the results (figure 11.2) show that in 

all cases the register spilling happens when we reach the 17th register.  

 

Number of 

multiply-adds 
integer float double 

estimated 

time 

2 190.002 190.002 190.002 190.000 

3 253.338 253.337 253.336 253.333 

4 316.670 316.670 316.670 316.667 

5 380.001 380.001 380.001 380.000 

6 536.670 536.670 536.670 443.333 

7 631.670 631.670 631.670 506.667 

8 711.670 711.670 711.670 570.000 

9 790.001 790.001 790.001 633.333 

10 855.001 855.001 853.339 696.667 

Figure 11.2 Performance results for different data types 

 

11.2 Scalar and vector variables in register file 

 

To understand how vectors are stored in the register file in comparison to scalar variables and 

if they there is a separate register file for vectors or not we are going to make the following 

experiments. Similarly to the previous chapter we have a base code to which we add a 

multiply-add operation at every run. But this time I’m using vector type variables instead 

(figure 11.3). The results show that the register spill is happening at the exact same point as 

for the scalar types (figure 11.4). Therefore the vector and scalar data share the same file, and 

the registers are big enough to fit 128bit vectors. So in conclusion the register file for each 

core has a size of 1024x128bit. 
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Figure 11.3 Kernel with multiply-add operations on vector type data 

 

Number of 

multiply-adds 
integer float expected time 

2 190.001 190.001 190.000 

3 253.337 253.338 253.333 

4 316.670 316.670 316.667 

5 380.001 380.001 380.000 

6 536.670 536.670 443.333 

7 631.670 631.670 506.667 

8 711.670 711.670 570.000 

9 790.002 790.001 633.333 

10 855.001 855.001 696.667 

Figure 11.4 Performance results for different data types 
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Chapter 12 

 

Cache Analysis  

 

On this chapter I’m going to analyze some characteristics of the two caching levels, like 

caching delay, coherence, race conditions and false sharing. 
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12.1 Cache Store delay 

 

In order to figure out the load and store delay, I implemented an experiment that examines 

each one separately. For the store delay I used a kernel where each thread stores a variable in 

a global table, given from the Host, at the position that their global id indicates (figure 12.1). 

The data flow graph below (figure 12.2), shows that the critical instruction path is 2   

 

 

 Figure 12.1 Kernel that stores variable in a global object 

Figure 12.2 Dataflow graph 
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When measuring the performance of this kernel and calculating the clock cycles that one 

work-group of one work-item needs we find that it takes 154 cycles, which is close to assume 

that it needs around 4 pipeline cycles (4x38=152). But the clock cycles that 64 work-groups 

need are 192 which is exactly 3 pipeline cycles per iteration.  

instructions x pipeline_depth + stalls = 3 x 38 + (64-38)*3 = 192 

Therefore I come to the conclusion that there is a form of cache parallelism that is bigger than 

the pipeline’s parallelism and when the pipeline begins to have stalls the cache delay (figure 

12.3), which is equal around to 40 cycles for one store instruction (154-(3*38)=40), starts to 

decrease and eventually hides completely behind the pipeline stalls.  

 

 

Figure 12.3 Performance analysis for a simple store kernel 

 

So assuming that the kernel needs 3 pipeline cycles per iteration without any cache delays 

and knowing that the first instruction takes 1 pipeline cycle (simple addition instruction), we 

come to the conclusion that a Store instruction takes 2 pipeline cycles  

 

12.2 Cache Load delay 

 

To examine the load delay we would have to use a slightly more complex kernel, in order to 

avoid any compiler optimizations that could skip the load or alter the performance in any 

way. The code that I’m using is the following (figure 12.4). The data flow graph (figure 

12.5), shows that the critical instruction path has length of 6 instructions. The performance 
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for one work-group with one work-item is 466.671ms, which is 280 cycles. The performance 

for 64 work-groups is 640ms (384 clock cycles), which is exactly 6 instructions per iteration. 

Therefore a Load instruction takes one pipeline cycle. This time the cache delay for one load 

instruction that eventually hides behind the pipeline stalls, is 52 clock cycles (280-

(6*38)=52)(figure 12.8).  

instructions x pipeline_depth + stalls = 6 x 38 + (64-38)*6 = 384 

 

 

 

Figure 12.4 Kernel for Load data from global object Figure 12.5 Dataflow graph\ 

 

 

Figure 12.6 Performance analysis for Load Kernel 
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12.3 Cache coherence  

 

A very important factor that effects the performance in cases of cache access, is the potential 

effort of the GPU to keep some cache coherence implementation of some coherence.  

The Mali GPU has, no coherence between work items in core. We are going to compare two 

kernels that attempt to increase a value in a global memory address. Al the work items of the 

first kernel try to access the same address while the work-items of the second kernel access 

different addresses. 

Figure 12.7 Kernel with race conditions (above) and without (bellow) 

 

When measuring the performance of these two kernels for number of work-groups from 1 to 

64 and work-group size 1, we ensure that only one core is utilized as I explained earlier. By 

comparing the performances, it is clear that they are identical. This indicates that in the 

second kernel there was no attempt to keep any form of coherency. The luck of coherence is 

also visible to the results of these kernels. The first one increases all the values successfully 

to and the second one increases the value only to instead of the work-items number 

times that it supposed to. 

 

12.4 Race conditions and False sharing through cores 

 

There might be no coherence on the inside of one core and as result no race condition delays, 

but the same does not apply when we have race conditions between 2 different cores. When 

measuring the performance of the previous two kernels for work-group numbers larger than 

64 there is a big delay in the second kernel where race conditions occur  
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Figure 12.8 Kernel with race conditions and kernel with false sharing 

 

The results of the second kernel are still incorrect, but this time the value number is not 

consistently , it varies. There might be no coherence but there are definitely race 

condition delays when work-items from different cores attempt to access the same address in 

cache. Also this delay increases in proportion to the number of cores that try to access the 

same memory address, as for every core that gets activated, every 64 additional work-items 

the delay increases accordingly (figure 12.9). 

What is interesting to note is that not only race conditions exist but also false sharing. The 

following two kernels have work-items that attempt to increase 64 values in global memory, 

in a loop. The values for each work-item in the first kernel are interleaved with a 64 step 

which results to groups of work-items hitting the same address values, and the values in the 

second kernel are divided among the work-items in a way that each of the 64 work-items of a 

core hits the same cache block as the corresponding work-items of the rest 3 cores, but not 

the same address. Note that this is possible only for a total number of work-groups smaller 

than 4096. When comparing the performance of each kernel for numbers of work-groups 

from 1 to 256 with work-group size 1, their performances are identical (figure 12.9).  This 

validates that false sharing also causes delays.  
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Figure 12.9 Performance of kernels that access memory on a different offset 
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Chapter 13 

 

Performance model 

 

On this chapter I’m going to analyze some characteristics of the two caching levels, like 

caching delay, coherence, race conditions and false sharing. 
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13.1 My Performance model 

 

To summarize, based on the architectural characteristic that I discovered I created a 

performance model that takes as parameters the work-group size (gs), the total work-load 

(wl) and the number of VLIW instruction words for a kernel instance or work-item (I) and 

returns an estimation for the kernels performance. It has one constant parameter for the 

pipeline depth (pd) that equals 38, and many other variables that can be derived from the 

three parameters in the input of the function. Those variables the normal batch-size (maxB), 

the number of batches over the GPU (n), the size of each batch (bi), the maximum number of 

threads in a core for a certain batch (maxCi), the number of utilized or “active” pipelines (ap) 

and the stalls that will be expected in the execution of a thread for the given code (stalls).  

The function f is the main function of the model and it calculates the execution time. The 

exact formula is shown in figure 13.1  
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Figure 13.1 Parametric performance model formula 

 

The VLIW scheduling of the kernel has to be made manually in order to find out the 

Instruction number parameter (I) of the performance model. To make the scheduling you 

would have to consider the parameters of instruction fusion, the available resources of 

functional units that allow you to operate multiplication, addition, and vector look up table 

operations to a maximum of 128bit data per cycle, and finally the length of the instruction 

word which equals to 4 conventional instruction words. Note that the work scheduling of the 

job manager is included in the formula in figure 13.1 

 

13.2 Cases that the model applies and potential of expansion 

 

This model so far covers and is able to predict the performance under some circumstances. 

The cases in which is not able yet to estimate the execution time correctly is when the 

program’s number of registers exceeds the number of 16, for work group sizes from 1-

64(powers of two) and where the last executed batch has only 1 to 64 work-items, where we 

have the phenomenon of register spill, when we have code that accesses cache again when 

the last executed batch has 1 to 64 work-items and finally when we have cache issues like 

race conditions, false sharing and misses. Also another part of the performance model that 

requires more exploration is the part of the VLIW scheduling, as more cases need to be 

checked.  
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13.3 Application Example  

 

We are going to see step by step an example on how to apply the performance model on a 

Kernel. For the example we are going to use the kernel of section 10.1, in figure 10.2. 

According to the VLIW scheduling on figure 10.3 the number of instructions per iteration for 

the kernel is 5 and the number of iterations is , so the total number of instructions for a 

work-item is 5 x  (I). We are going to estimate the execution of a work-load of 257 work-

items (wl) and work-group size 2 (gs). When passing these parameters to the performance 

model we get the following results 

 

•  

•  

•  1 

•  

•   

•  

 

 

 

So the estimated execution time is 533ms and the actual execution time when running the 

kernel is 533.33ms.  
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14.1 Related Work 

 

Some related work that I was able to find is the papers “Power and Performance 

Characterization and Modeling of GPU-Accelerated Systems” [8] and “Demystifying GPU 

Microarchitecture through Microbenchmarking” [9]. The most basic difference from my 

work and those two papers is the fact that they are both focusing on NVIDIA GPU 

architectures, when my model is an ARM Mali GPU. Also in the first paper [8] they create 

the performance models for both performance and power, by running benchmarks and 

statistically analyzing some performance counters. They are not aiming on the discovery and 

better understanding of the architectural parameters of their model, which is our main goal in 

order to create a framework to create viruses. On the second paper [9], where they were a 

little bit closer to what I was trying to achieve, except of the fact that they were working on a 

different model to which they had more background information about its architecture they 

also didn’t try to apply their findings to create a parametric performance model like I did.  
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15.1 Future Work 

 

As I have mentioned before, there are certain improvements and additions that need to be 

made to the performance model in order to have a more complete model that covers all 

possible cases of kernels. The most important issues that need to be examined at this point are 

the cache misses latency, and the VLIW scheduling constrains.  

I ‘m not focusing on the cache delay that we observe when the pipeline is not busy enough, 

because for the creation of processor viruses we usually want a full and busy pipeline. On the 

other hand, to be able to predict the cache miss latency would be very important, as we 

typically search for scenarios that utilize as many units as possible at the same time and a 

cache miss can definitely help us to achieve that.  

And lastly a better understanding of the VLIW scheduling is crucial in order to come up with 

kernels that can cause the simultaneous execution of the maximum amount of operations. We 

need such kernels to use them for stress tests and as parts of other viruses that target the 

processors power or aim to cause voltage drops.    
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15.1 Conclusion 

 

To summarize the main goal of my work was to locate and reveal the architectural 

characteristics of Arm Mali T-624 GPU, and use them as parameters to create a parametric 

performance model. The purpose of this characterization and modeling is to be used in 

frameworks that create processor viruses.  

My work in comparison to other related work, aims to the performance characterization and 

modeling of an Arm Mali GPU. Something that as far as it comes to my knowledge was not 

attempt before with real hardware and a specific model to this extend. The related work I 

found was mostly on NVIDIA GPU architectures. Also the focus of my work was different 

from other similar work on other platforms, as my focus was to use my findings as tools for 

the creation of processor viruses.  

The performance model that I managed to create applies under some circumstances and 

further additions to the model would be necessary to cover all possible cases and kernel 

scenarios. I cited some cases that I found needing farther experimentation and analysis, but 

I’m certain that as you explore even more such cases will come to the surface. Nevertheless, 

for the cases that my model covers it can estimate the execution time successfully and 

accurately.  
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