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Abstract

This dissertation attempts to solve the protein secondary structure prediction problem, a

topic that has been concerning both Computer Science and Biology fields for decades.

Proteins are highly complex substances which are included in all living organisms. Pro-

teins are not only of great nutritional value but are also involved in the chemical processes

essential for life. The study of protein structures and functions can contribute to improved

food supplements, drugs and antibiotics. In addition, the study of existing proteins could

possibly help treat diseases and solve numerous biological problems, like covid-19 which,

at the moment of writing, threats human life on earth.

Even though there is a lot of information about the primary structure of millions of pro-

teins, for most of them there is no information about their secondary or tertiary structure.

The reason behind that is the extremely high cost, in both money and time, of the current

state-of-the-art methods and instruments that are used for protein structure determination.

As a result, computational algorithms and techniques, which are cheaper and faster, are

essential for predicting the secondary and tertiary structures of proteins.

In the past, there were several attempts to solve the PSSP problem with Convolutional

Neural Network (CNNs) and some of them managed to achieve very good results, 81%

per residue Q3 accuracy [1]. Furthermore, an attempt with a simple Feed Forward Neural

Network (FFNN), trained with the Hessian Free Optimisation (HFO) algorithm, managed

to reach 80.4% Q3 accuracy [2]. These results are very close to the best results reported

so far for the PSSP problem (84-85%), and the combination of these techniques was the

motivation behind this dissertation project.

For the purpose of this dissertation, a CNN was trained with a variation of the HFO

algorithm to predict the secondary structure of proteins (PSSP), which has never been

attempted before. The original HFO algorithm could not be used, because of the complex

structure of CNNs, instead a variation, known as the Subsampled Hessian Newton (SHN)

method [3], was used. The results of this combination, for the CB513 dataset, were

an overall per residue Q3 accuracy of 78.20% for a single fold and 81.80% for 10-fold

cross-validation with ensembles, random forest and external rules filtering, while the SOV

score was 75.67 and 78.98, respectively. Moreover, the SHN method did not require much

tuning of the hyper parameters, which made the training process much faster compared

to other state-of-the-art methods. As regards the PISCES dataset, the Q3 accuracy was

79.88% for a single fold and 83.02% for 5-fold cross-validation with ensembles, random

forest and external rules filtering, while the SOV score was 76.67 and 82.64, respectively.
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1.1 Protein Secondary Structure Prediction problem

Proteins are highly complex substances which are present in all living organisms. There

are over 30,000 unique proteins in the human body, which are responsible for performing

specific functions that are essential for life. The word protein is derived from the Greek

word ‘πρώτειος’, which means ‘of the first quality’, ‘in the lead’ or ‘holding first place’,

and their significance was recognised in the early 19th century by chemists.

These substances consist of smaller units, called amino-acids, which are organic com-

pounds connected to each other, forming long chains. The differences between two pro-

teins are based on their sequence of amino acids, which determines their structure and

function. The interactions between the amino acids of a protein are responsible for the

fold of the protein into a specific three-dimensional structure, which, under specific con-

ditions, remains the same. This structure determines the function of each protein.

The study of protein structures and functions can contribute to improved food supple-

ments, drugs and antibiotics. In addition, the study of existing proteins can help treat

diseases and solve numerous biological problems with the help of modern technology,

which is significantly cheaper and more efficient than a few years ago.

A hierarchical approach has been established for analysing the structure of proteins more

effectively and observe their different forms. These forms are separated into four distinct

categories, the primary, the secondary, the tertiary and the quaternary structure. The pri-

mary structure is just a linear sequence of amino acids, that are ordered based on where

they appear in the unfolded protein. The secondary structure illustrates how the local

parts of a protein are organised in a two-dimensional space. The tertiary structure, which

determines the specific function of a protein, has a three-dimensional shape, formed when

the amino acid chain is folded. Finally, the quaternary structure is formed when multiple

tertiary structures are folded together and also has three-dimensional shape.

Even though the primary structure for millions of proteins is well documented, for most of

them the secondary and tertiary structures are unknown, only for a small fraction of these

proteins the secondary and tertiary structures are currently available. The research and the

experimental determination of the secondary and tertiary structures of a protein are not

only time consuming but also an extravagant process. More specifically, in order to deter-

mine the tertiary structure of proteins, expensive and tedious methods must be used, such

as X-ray crystallography and nuclear magnetic resonance (NMR). The shape of a protein

is completely determined by its primary structure, about 70% of the secondary structure

is affected by the interactions of the nearby amino acids of the backbone, while the other
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30% is affected by more distant interactions [4]. This made prediction techniques and

implementations more appealing over the experimental methods, since they have high

success rates on the prediction of secondary and tertiary structure of proteins, they cost

significantly less and require considerably less time than the experimental methods.

One such prediction method is ab inition prediction, which tries to predict any of the three

structures based only on the primary structure and without taking into consideration any

patterns. This method is divided into two distinct cases. In the first case, the folding

process is simulated or minimisation of the free energy of the polypeptide is attempted,

and only the primary structure of the protein is used (no other known structures). On the

other hand the second case attempts to predict the structure of a protein using already

known and existing protein structures [4]. This thesis is concentrated entirely on the

second prediction method, and more specifically on the use of Neural Networks (NN)

to predict the secondary structure of proteins. These algorithms are designed based on

computational statistics and mathematical optimization techniques. These optimisation

techniques help computer systems learn hidden patterns and idiosyncrasies of data, which

then gives them the ability to predict and classify new data.

To sum up, because of the extreme costs in both money and time of experimental methods,

it is not possible to experimentally determine the structure of all proteins. In this thesis

Convolutional Neural Networks (CNN) will be used in combination with the Hessian Free

Optimisation (HFO) algorithm in order to predict the secondary structure of proteins.

1.2 The Importance of PSSP

The solution of the PSSP problem is very important because the secondary structure is

essential in order to determine the tertiary structure, which gives information about the

functions of a protein. The experimental methods used for determining the tertiary struc-

ture of proteins are extremely expensive in both time and money, which led to the study

of just a small portion of known proteins. As a result, the scientific community has infor-

mation about the functions of just a small subset (a few thousands) of proteins, compared

to the millions of proteins that exist.

Furthermore, this means that the PSSP can help identify the tertiary structure of a protein

with higher accuracy and less effort. It is very important to note that the functions of a

protein are based on the 20 amino acids that compose a protein, which is the main reason

why the research in this field is very important. Understanding how these molecules fold

around space, assemble and function can help to understand why people are getting older,
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why they suffer from dangerous diseases and viruses (such as cancer), how can a cure for

a disease be found (like the cure for covid-19), and other ‘difficult to answer’ questions.

The proteins’ functions are related with their structure, which depends on both the phys-

ical and chemical parameters of these molecules. Bioinformatics is an interdisciplinary

field that develops methods and software tools for understanding biological data. It com-

bines knowledge from biology, computer science, information engineering, mathematics

and statistics to analyse and interpret biological data.

1.3 Previous Research on PSSP

Researchers from different fields have been working on this problem for more than six

decades. A wide variety of machine learning algorithms have been designed specifically

for this problem and have achieved accuracy >90% [5], based on the Q3 score (Equation

1.1.). Additional structural templates from databases, which are called sequence-based

structural similarity of proteins, were used in order to achieve accuracy higher than 88%.

The additional information boosts significantly the learning process as well as the per-

formance of these algorithms. The three-state accuracy for machine learning algorithms,

that are not relying on the structural templates, is currently around 82-85%, which is good

for such a complex problem. However, considering the theoretical limit of the three-state

prediction which is around 88-90%, there is still room for improvement.

Figure 1.1 shows the number of publications per year for the PSSP problem as well as the

cumulative number of publications, between 1973 and 2015. According to the graph the

cumulative number of publications for the PSSP problem increased significantly between

1973 and 2015. More specifically, between 1973 and 1989 there were less than 5 publica-

tions for the PSSP problem per year. In 1990, the PSSP problem started to become more

popular and the number of publications increased considerably to 8, while the cumulative

number of publications was around 50. During the next two decades, the PSSP problem

gained much popularity, probably because in that period there were some major break-

throughs, which helped to increase the three-state accuracy considerably. The popularity

of PSSP dropped substantially in 2010 and for the following 5 years the interest for this

problem was relatively moderate. A small selection of PSSP publications are mentioned

below.

Feedforward Fully Connected Neural Network (FFNN) [7]: A fully connected Neural

Network with local input window (usually of 13 amino acids with orthogonal encoding)

and just one hidden layer. The output of the network was one of the three categories
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Figure 1.1: Number of publications for PSSP per year [6].

of the secondary structure of proteins (helix, pleated or other) based on the amino acid

located in the centre of the input window. A secondary network was also used in this

implementation to improve the output of the previous network. This method had issues

with overfitting.

PHD: predicting 1D protein structure by profile based neural networks [8]: The structure

of the network was the same with the Feed Forward Fully Connected Neural Network

of Qian and Sejnowski [7], with the addition of techniques that deal with the overfit-

ting problem. Two methods were used to counter overfitting, early stopping (terminating

the training process before it starts to overfit) and ensemble average (training different

networks at the same time with different data and learning methods). Furthermore, the

multiple alignment technique was used in the input data, to take advantage of evolutionary

information.

Gene-finding Programs (NNSSP) [9]: This Neural Network uses the ‘nearest neighbour’

method to group the sequences of amino acids based on their similarities and compare

them with other sequences, that their secondary structure is known. Following that, the

network tries to predict the secondary structure of other proteins that their secondary

structure is not known.
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Discrimination of Secondary structure Class (DSC) [10]: This algorithm groups the out-

put data of the network and by using simple linear static methods attempts to predict the

secondary structure of proteins.

PREDATOR [11]: It was implemented in a Neural Network which takes as input a se-

quence of amino acids and tries to predict the secondary structure based on possible hy-

drogen bonds that may exist in the output sequence.

Consensus [12]: In this method a Neural Network was used that took as input the mul-

tiple alignment with additional information about the protein (rather than just a simple

sequence of amino acids). This Network attempts to locate similarities between the in-

put sequence with other amino-acid sequences (similarities in genetic code, evolutionary

history and common biological functions) in order to predict the secondary structure.

Bidirectional Recurrent Neural Network (BRNN) - Backpropagation ([13], [14]): This

algorithm uses a Neural Network that takes as input a window with a sequence of amino

acids and attempts to predict the secondary structure of the amino acid located in the

centre of the input window, based on the amino-acids that precede and follow it in the

input chain using bidirectional recursion. It it important to note that this algorithm had

some of the best results in the PSSP problem at the time it was conceived, with 76%

success rate.

Logical Analysis of Data (LAD) [15]: This method, which uses a machine learning algo-

rithm, was implemented to identify properties of amino acids, and therefore, additional

information about the homogeneity of proteins, which could help the prediction of the

secondary structure of proteins. According to this method, the most important property

that affects the helix class is molecular weights, for the pleated class is the mean ambient

hydrophobicity, while for the other forms is the polarity.

Multiagent Secondary Structure Predictor with Postprocessing (MASSP3) [16]: This im-

plementation attempts to solve this problem by using two distinct sections. The first sec-

tion is based on a hybrid structure, which combines genetic and neural techniques, while

the second section consists of a Multilayer Perceptron (MLP), which takes as input the

output of the first section. The results of this method were fairly good.

Two-Stage method [17]: This approach uses two stages, the first identifies instabilities in

how the protein folds into space and attempts to classify the different parts of the protein,

while the second splits the proteins into sequences (3 to 7 residues) and tries to predict

the secondary structure of these sequences.
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Evolutionary method for learning HMM structure [18]: In this research genetic algorithms

were used, which can dynamically change the parameters of a Hidden Markov Model

(HMM) (since the construction of a HMM is very complicated) and build it dynamically,

so that it can predict the secondary structure of the input sequences.

Cascade Bidirectional Recurrent Neural Network (BRNN) [19]: This implementation fo-

cused on the long range dependencies between the input data, which plays a major role in

the folding of a protein and the correlation between adjacent secondary structures. In this

article, the authors refer to the correlation of the secondary structure of an amino acid as

regards to secondary structure of the adjacent amino acids. Two BRNNs are used, with

the second taking its input from the output of the first BRNN. This method, although, it

had relatively good results, could not outperform previous approaches.

Protein Secondary Structure Prediction Using Deep Convolutional Neural Fields [20]:

This approach used a Deep Convolutional Neural Fields (DeepCNF), which is an exten-

sion of Deep Learning to Conditional Neural Field (CNF) (a combination of Conditional

Random Fields (CRF) and shallow neural networks). The DeepCNF is much more pow-

erful than the CNF, since it can model both the complex sequence-structure relationship

(from a deep hierarchical architecture) and the interdependence between adjacent sec-

ondary structure tags. Based on the experimental results, the DeepCNF can reach predic-

tion accuracy of about 84%, using the protein datasets CASP and CAMEO, surpassing

existing methods of predicting the secondary structure of proteins. The DeepCNF net-

works can also be used to predict other properties of proteins, such as contact number,

solvent accessibility and disorder regions.

Protein Secondary Structure Prediction with the use of Convolutional Neural Networks

for Image Object Recognition [21]: The purpose of this research was to identify how

Convolutional Neural Networks (CNN) can help in solving the PSSP problem. These type

of networks take advantage of the spatial structure of the input data, which seems very

promising. Furthermore, they manage input data of problems with sequences or problems

that use the parameter of space, better, like image processing. This method could only

reach an accuracy of about 40%, because there were problems in the representation of

input data in the CNN, which prevented the network from learning effectively.

Capturing non-local interactions by long short-term memory bidirectional recurrent neu-

ral networks for improving prediction of protein secondary structure, backbone angles,

contact numbers and solvent accessibility [22]: Unlike other methods that try to capture

short to intermediate interactions between amino acid residues, this approach used Long

Short-Term Memory (LSTM) Bidirectional Recurrent Neural Networks (BRNNs) to cap-
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ture long range interactions. This method reported some of the best results so far with

approximately 84% Q3 accuracy.

Protein Secondary Structure Prediction Using Bidirectional Recurrent Neural Networks

(BRNN) and Hessian Free Optimisation (HFO) ([23], [2]): This dissertation was under-

taken by a past Computer Science student of University of Cyprus in the context of his

diplomatic research. This dissertation showed that simple Feed Forward Neural Networks

(FFNNs) can be trained with the powerful second-order learning algorithm, Hessian Free

Optimisation (HFO), to predict the secondary structure of proteins. This approach (FFNN

with HFO) had very good results as regards the training time of the network and (Q3) ac-

curacy, which was about 80.4% (using the PISCES dataset). The HFO does not require

much tuning of the hyper parameters, which makes training much faster than other state

of the art methods. The use of HFO seems very promising since it reduces the training

time of the network and at the same time offers very good results.

Prediction of Secondary Structure of Proteins using Gabor filters and Support Vector Ma-

chines ([24], [1]): This dissertation was conducted by a past Computer Science student of

University of Cyprus during his diplomatic research. This thesis project, was focused on

the use of Convolutional Neural Network (CNN) with Gabor Filters and Support Vector

Machines (SVMs) for filtering. The combination of a CNN with SVMs had very good re-

sults with about 81% (Q3) accuracy for the PSSP problem (using the PISCES dataset). A

technique was also used to convert the primary structure of proteins from one dimension

into two dimensions, since the CNN needs two dimensional input data to be trained.

Sixty-five years of the long march in protein secondary structure prediction: the final

stretch? [6]: This paper focused on some of the state-of-the-art methods that are used to

predict the secondary structure of proteins and compared them, using the same indepen-

dent test sets. The reported results ranged from 77.1% to 82.3%. The best results (82.3%

Q3 accuracy) were achieved by the DeepCNF [20]. In addition, this paper mentioned

alternatives to discrete three-state secondary structure prediction (with eight-state predic-

tion) and noted that the theoretical limit of secondary structure prediction is around 88%.

This limit is very close to the best results reported so far (84%), which means that it is

a matter of time for the PSSP problem to reach a plateau (where there will be no further

improvements in Q3 accuracy).

MUFold-SS [25]: In this research a new deep learning architecture was suggested for the

PSSP problem, the Deep inception-inside-inception (Deep3I) network. This network was

implemented as a software tool, named MUFOLD-SS, which takes as input a specifically

designed array of data, based on the primary structure of the proteins. This array includes
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information for each amino acid and general information about the protein. The struc-

ture of MUFOLD-SS allows the extraction of information related to local and general

interactions, between the amino acids, which made the predictions more accurate. This

tool has outperformed other techniques used on the PSSP problem, with an accuracy of

approximately 86.49%.

Table 1.1 shows the Q3 accuracy of the aforementioned methods, used on the PSSP prob-

lem, in chronological order.

Table 1.1: Methods used for PSSP in chronological order.
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2.1 Biology Background

2.1.1 The Biological Role of Proteins

Proteins are large macromolecules or biomolecules, that perform a variety of functions

within organisms. Some of these functions are deoxyribonucleic acid (DNA) replication,

responding to stimuli, providing structure to cells and organisms, catalysing metabolic

reactions, and transporting molecules from one location to another. Proteins consist of

hundreds or even thousands of smaller units, called amino acids, which are organic com-

pounds that contain amine (NH2) and carboxyl (COOH) functional groups.

The consumption of food, which contains proteins, is one of the main sources of proteins

for the human body. The digestive system breaks down the consumed food into amino

acids, which enter the blood stream. In order to perform a variety of functions, the cells

of the human body gather amino acids from the blood stream to create all the essential

proteins. If there is a shortage of amino acids in the blood stream, probably because of

a poor diet with less proteins, the immune system will become weak, causing dizziness,

exhaustion or even serious diseases. That happens because in order to create the necessary

proteins for the human body, the cells need enough amino acids, otherwise they will not

be able to support the needs of the entire human body.

In order to aid in the development of food supplements, drugs and antibiotics, it is manda-

tory to first understand the base structure and function of each protein. Research or stud-

ies on existing proteins could help solve numerous biological problems and treat diseases.

This is considerably easier nowadays, with the help of the current technology, which is

faster and computationally stronger than ten years ago.

The most important functions of proteins are displayed in table 2.1 and these reveal the

significance of proteins, for all living organisms.

2.1.2 Amino Acids

Amino acids are organic compounds which contain amine (NH2) and carboxyl (COOH)

functional groups. Each amino acid has its specific side chain (R group), which is an

atom or group of atoms that replace one or more hydrogen atoms on the parent chain of

a hydrocarbon, which turns into a moiety of the resultant new molecule (Figure 2.1). The

main elements of an amino acid are carbon (C), hydrogen (H), oxygen (O) and nitrogen

(N), however, other elements can also be found in the side chains of some amino acids.
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Table 2.1: Types of proteins and their function [26].

Figure 2.1: The structure of amino acids [27].
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Even though there are about 500 known amino acids, only 20 of them appear in genetic

code and are considered as the standard amino acids (Figure 2.2). Amino acids can be

classified in many different ways, according to the core structural functional groups’ lo-

cations (alpha (α), beta (β ), gamma (γ), delta (δ )), based on the polarity, pH level or on

the side chain group type. Amino acids also participate in a number of other processes,

such as neurotransmitter transport and biosynthesis. Short chains of amino acids (30 or

less) linked by peptide bonds form peptides, and long, continuous, and unbranched pep-

tide chains form polypeptides. Proteins consist of one or more polypeptides arranged in a

biologically functional way.

Figure 2.2: The 20 standard amino acids [28].

The process in which chains of amino acids are linked together is called condensation

reaction (Figure 2.3). During this reaction, as the amino group of one amino acid joins

the carboxyl group of a neighbouring amino acid, a water molecule is extracted, what is

left of each amino acid is called amino acid residue.

Each amino acid can be represented by one or three characters from the English alphabet,

so it is possible to represent a sequence of amino acids using a sequence of characters.

Any change in this sequence, no matter how small it is, can lead to a completely different

protein, which will have its own properties and functionalities.

The proteins in an organism are assembled based on its genes, also know as the DNA.
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Figure 2.3: An example for condensation reaction [29].

In particular, the nucleotide sequence of a gene, which encodes a protein, specifies the

unique amino acid sequence of that protein. For instance, there are around 30,000 genes in

the human genome, and each one encodes one unique protein. According to The Central

Dogma of Molecular Biology, the ‘DNA makes RNA and RNA makes protein’ (Figure

2.4). The first stage, ‘DNA makes RNA’, is called transcription, while the second stage,

‘RNA makes protein’, is called translation.

Figure 2.4: The Central Dogma of Molecular Biology: DNA makes RNA makes protein

[30].

A sequence of three adjacent nucleotides composing the genetic code is called codon and

designates an amino acid. There are four (4) unique nucleotides (adenine - A, uracil - U,

guanine - G, and cytosine - C), which means that the maximum number of triplets that

can be formed is sixty four (43 = 64). However, only twenty (20) amino acids can be

encoded naturally. This means that some codons do not encode any amino acids or that
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some amino acids can be described by multiple codons. Codons that do not encode any

amino acids are called stop codons, because they are used as a termination signal in the

translation process, signalling the release of the translated polypeptide or protein. Figure

2.5 shows an example of the translation stage, from DNA to protein, while figure 2.6

presents the table of codons, with the amino acid or the stop signal they encode.

Figure 2.5: Example of the central dogma, which illustrates the first few amino acids for

the alpha subunit of hemoglobin [23].

Figure 2.6: The amino acids specified by each codon [31].
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2.1.3 Protein Structures

Protein structures range in size, from tens to several thousands of amino acids, and are

categorised hierarchically into four distinct tiers, the primary, the secondary, the tertiary

and the quaternary structure (Figure 2.7). This hierarchical approach was established to

facilitate the observations of the various phases of protein formation. The number and

type of amino acids of a protein are not enough, since the order and layout of their amino

acids plays a major role because they determine the three-dimensional structure and hence

the function of the protein.

2.1.3.1 Primary Structure

The primary structure of proteins is the sequence of amino acids in the polypeptide chain.

This structure is determined by the gene, which is a sequence of nucleotides in deoxyri-

bonucleic acid (DNA) or ribonucleic acid (RNA), corresponding to the protein. The se-

quence of a protein defines the structure and function of the protein and is unique to that

protein. For example, the pancreatic hormone insulin is composed of 51 amino acids in 2

peptide chains, A chain has 21 amino acids while B chain has 30 amino acids, as shown

in figure 2.8. The amino-acid sequences, in both chains, are unique to insulin and have

a specific order. In each chain there are three-letter abbreviations, which represent the

names of the amino acids. These are displayed in the order that are present and illustrate

the primary structure of insulin.

The unique sequence for every protein is determined by the gene encoding of the protein.

If the nucleotide sequence of the gene’s coding region is changed, a different amino acid

might be added to the growing polypeptide chain, which would change the protein struc-

ture and function. For instance, in sickle cell anemia (a hereditary disease that affects

the red blood cells), a single amino acid substitution (valine in the β chain substitutes

the amino acid glutamic) in the hemoglobin β chain, changes the protein structure and

function (Figure 2.9). A hemoglobin molecule is comprised of two alpha and two beta

chains, each consisting of about 150 amino acids. Therefore, the molecule has about 600

amino acids. The structural difference between the sickle cell molecule (which dramati-

cally decreases life expectancy) and a normal hemoglobin molecule is just one of the 600

amino acids. As a result of this small change in the chain, hemoglobin molecules form

long fibres that distort the biconcave, or disc-shaped, red blood cells and causes them to

assume a crescent or ‘sickle’ shape, which clogs blood vessels and leads to myriad serious

health issues such as breathlessness, dizziness, headaches, and abdominal pain, for those

affected by this disease.
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Figure 2.7: All four protein structures.
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Figure 2.8: The first amino acid of the A chain is glycine (Gly), whereas, the last is

asparagine (Asn) [32].

Figure 2.9: The diagram shows the substitution in a small part of the hemoglobin β

chain, where the amino acid at position seven, glutamate, is replaced by valine, in the

sickle cell hemoglobin [32].
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2.1.3.2 Secondary Structure

The secondary structure of the protein refers to the local folding of the polypeptide in

some regions and are defined by patterns of hydrogen bonds between the main-chain

peptide groups. There are two main distinct categories of the secondary structure, the

α-helix and the β -strand or β -sheets. Both of these are held in shape by hydrogen bonds,

which form between carbonyl and amino groups in the peptide backbone. Certain amino

acids have a propensity to form an α-helix, while others have a propensity to form a β -

pleated sheet. The α-helix and β -pleated sheet structures are in most globular and fibrous

proteins and play an important structural role.

Figure 2.10: The diagram illustrates the shapes of the two main types of the secondary

structure of proteins, the α-helix and the β -strand [32].

2.1.3.3 Tertiary Structure

The tertiary structure of proteins refers to a three-dimensional structure of monomeric

and multimeric protein molecules. This structure is determined by a variety of chemical

interactions on the polypeptide chain, such as ionic bonding, hydrophobic interactions,

hydrogen bonding, and disulfide linkages (Figure 2.11). The protein’s complex three-

dimensional tertiary structure is created by the interactions among R groups. For instance,
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R groups with like charges repel each other and those with unlike charges are attracted

to each other (ionic bonds). The only covalent bond that forms during protein folding

is the disulfide linkages, which are formed by interactions between cysteine side chains,

in the presence of oxygen. As regards hydrophobic interactions, during the protein fold-

ing stage, the non-polar amino acids’ hydrophobic R groups lie in the protein’s interior,

whereas, the hydrophilic R groups lie on the outside. Once a protein loses its three-

dimensional shape, it may no longer be functional. The tertiary structure of a protein

highly depends on the characteristics of its secondary structure, which is formed based on

the order and layout of the amino acids (primary structure) of the protein.

Figure 2.11: The diagram indicates some of the chemical interactions that determine the

proteins’ tertiary structure [32].

2.1.3.4 Quaternary Structure

The quaternary structure of a protein is the three-dimensional structure consisting of the

aggregation of two or more individual polypeptide chains (subunits) that operate as a

single functional unit (multimer). For example, insulin (which is a globular protein) has a

combination of hydrogen and disulfide bonds, which cause it to mostly clump into a ball

shape. Insulin starts out as a single polypeptide and after forming the disulfide linkages

that hold the remaining chains together, it loses some internal sequences in the presence

of post-translational modification. Silk (which is a fibrous protein), on the other hand,

has a β -pleated sheet structure, which is the result of hydrogen bonding between different

chains. A representation of the quaternary structure can be found in figure 2.7.
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2.2 Artificial Neural Networks Background

2.2.1 Origins of Artificial Neural Networks

Artificial neural networks (ANNs) are computing systems which are inspired by the bio-

logical neural network that exists in the brains of humans and animals. The term ‘neural’

comes from the basic functional units of the human nervous system, called ‘neurons’ or

‘nerve cells’. These are located in various parts of the human body, like the brain which

contains about 1011 neurons that are connected to 104 other neurons.

Figure 2.12: Structure of a Biological Neuron [33].

A biological neural network is a collection of neurons that receive, process and transmit

information between each other, through electrical and chemical signals via specialized

connections called synapses. It consists of three main components, the cell body, the

axons and the dendrites. Figure 2.12 shows the direction of the impulses when a signal is

carried towards or away from a neuron. The neuron receives signals from other neurons

through dendrites. The body of the neuron adds all the incoming signals and calculates

the input of the neuron. If the sum exceeds a certain threshold value the neuron triggers

and the signal is transmitted through the axon to the other neighbouring neurons. Axon

terminals are the connection point between brain neurons. The signal’s strength, which

is transmitted from one neuron to another, depends on the interconnection force of the

neurons. The human nervous system is like an extremely high-connectivity network,

which has trillions of neurons and billions of connections between them.

An Artificial Neural Network (ANN) has the same architecture with the biological neural

network. An ANN has nodes that represent artificial neurons, a simplified version of bi-

ological neurons in terms of functionalities, and connections (edges) instead of synapses.
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These connections are responsible for transmitting signals between the connected artifi-

cial neurons. ANNs have a similar behaviour with the biological neural network, but as

they became more and more popular, the idea of replicating the human brain faded away.

The increasing demand for solving specific tasks, led to the development of various im-

plementations of ANN, and some of them were based on the initial concept of biological

neural networks. For instance, an ANN called Recurrent Neural Network (RNN) was

based on the concept of short term memory and is used to recognise patterns, where the

previous features can help predict the next ones. Another variation of ANNs is the Con-

volutional Neural Network (CNN) [34], which is used in this dissertation. The CNN is

able to recognise patterns in two-dimensional (or three-dimensional) data, like images

and videos, and feed the extracted features to a fully connected feed-forward Multi-Layer

Perceptron (MLP) to classify the initial input data. There are many other variations of

ANNs that were designed for specific tasks like speech translation or recognition, natural

language processing, clustering or even playing video games. Some of these variations

will be discussed in the following section.

2.2.2 Variations of Artificial Neural Networks and Optimizers

2.2.2.1 McCulloch and Pitts (McP)

The first ANN model was suggested by Warren McCulloch and Walter Pitts in 1943 [35]

(Figure 2.13). The design of this artificial neuron was very simple and was based on a

single biological neuron of the human brain. An input vector performs multiplications

with the weight values and provides the signals to the artificial neuron. Then, the artificial

neuron sums those signals and transfers the result to a threshold function, also known

as step or heaviside function (Figure 2.14), which does not provide enough information

about how close or how far the target output is. The output signal of the model was 1,

if the value exceeded the a specific threshold value, otherwise the output signal was 0,

which means this model can be used only for binary classification.

The inputs are classified based on the weights of the connections and the threshold value

(Equation 2.1, where y is the output of the network, x the input vector, w the weight

vector, w · x the dot product and s the threshold). For instance, for a two-dimensional

input vector, in a simple two-dimensional scenario, the decision line can be calculated

with equation 2.2.

y =

{
1 if w · x > s

0 otherwise
(2.1)
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Figure 2.13: McCulloch and Pitts artificial neuron [35].

Figure 2.14: The step or heaviside function.
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x2 =−(w1
w2

)x1+(
s

w2
) (2.2)

If the goal is to classify the OR gate (Table 2.2) with a McP model, the model could use

infinite different ways to solve the problem. For instance, the model could have weights

of W = [2, 2] and a threshold value S = 1. In figure 2.15, (b) illustrates the decision line

for the OR gate, where inputs above the line are classified as Class 1 while inputs below

the line are classified as Class 0. The equation for this decision line is x2 =−x1+0.5.

Table 2.2: Truth table for OR gate.

Figure 2.15: Decision lines for AND gate (a) and OR gate (b).

The training phase of McP neurons requires the input and target output to be presented to

the network, which calculates the actual output for the given input and adjusts the weights

accordingly. For example, if the output is 1 but the target output is 0 the weights are

modified, while in the case where both the output and target output are 0 the weights

remain the same. This process is also known as the Perceptron Learning algorithm [36]

(Algorithm 1).
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Algorithm 1: Perceptron Learning Algorithm.

This algorithm was thought to be very promising, but after a while it was proven that the

perceptron algorithm could only solve problems with linearly separable patterns. In these

problems, a straight line or hyperplane, which separates the patterns, can be found in

space, like the OR gate problem which was mentioned earlier (Table 2.2). However, this

algorithm cannot solve problems that require more than one straight lines or hyperplanes

to separate the different classes, not even simple ones like the XOR gate problem (Figure

2.16). Except from that, there was no indication on how close to the target output was

the predicted output because of the binary (either 1 or 0) output of the heaviside function.

This problem was the main motivation for developing more sophisticated networks and

algorithms, some of which will be discussed subsequently.

Figure 2.16: The OR gate is linearly separable while the XOR gate is not.
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2.2.2.2 Multi-Layer Perceptron (MLP)

Multi-Layer Perceptron (MLP) neural networks are currently the most popular and well-

known variants of ANNs. They consist of multiple, slightly modified, McCulloch and

Pitts neurons, which form layered feed forward networks (Figure 2.17). McP neurons use

a specific threshold activation function (step function) while MLP neurons can use any

arbitrary activation function (Table 2.3). This is the reason why McP can only perform

binary classification, while MLP can perform regression or classification, depending on

the selected activation function. Furthermore, activation functions provide an indication

to the network whether the outputs are closer or further of the expected outputs, which

helps the network adjust the weights accordingly, to improve predictions.

Figure 2.17: Multi-Layer Perceptron Neural Network with one hidden layer.

An MLP neural network consists of an input layer, one or more hidden layers and an

output layer. The hidden and output layers are active, while the input layer is not active

(only forwards the input data to the network). Each layer has one or more neurons and an

independent neuron unit, also known as ‘bias’, which has a constant input value of one

(1). The role of the bias unit is to help the network adapt more effectively to the provided

data. The number of hidden layers is very important as it specifies the possibilities of the

network and processes the biggest amount of information during the training (learning)
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Table 2.3: List of the most popular activation functions.

phase (Figure 2.18). The neurons of the first hidden layer determine the number of deci-

sion lines that can separate the patterns into classes. The second hidden layer gives the

ability to form arbitrary complex decision shapes, which are able to separate any classes,

so there is no need for more than two hidden layers in a neural network [37].

Figure 2.18: Decision regions based on the number of hidden layers.
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The calculation process of the networks’ output is very similar with the one used in McP.

The input layer forwards the input values to the first hidden layer, which calculates the

sum of the bias and the dot product of the weights and the input vector, and then passes

that value to the activation function (Equation 2.3, where y is the output of a single neuron,

x the input vector for that neuron, w the weight vector, wT · x the dot product, b the

threshold and f the arbitrary activation function). The output signals of the activation

function are then fed as inputs of the next hidden or output layer, which then repeats this

process until there are no more layers to pass the signals.

y = f
(
wT x+b

)
(2.3)

Gradient Descent

Gradient descent is one of the most popular optimisation algorithms for training ANNs.

It is considered a mathematical optimization algorithm that is able to minimize a function

by iteratively moving in the direction of steepest descent, which is defined as the negative

of the gradient. An error function is used to calculate how successful the network pre-

dicting the classes of the input patterns was, like the mean squared error (MSE) function

(Equation 2.4, where t is the target output, o the actual output, p denotes the pattern and j

the neuron). The objective is to minimise the error value, which is the difference between

the target and actual outputs. By adjusting the weight vectors according to the negative

of the derivative of the error value, of the current pattern, with respect to each weight

(Equation 2.5), where n is the learning rate), at some point the correct classifications will

be maximized.

E =
1
2 ∑

j

(
tp j−op j

)2 (2.4)

∆wi j =−n
∂Ep

∂wi j
(2.5)

Backpropagation Algorithm (BP)

In order to calculate the error and use gradient descent to minimize it, both target and

predicted outputs must be known. In the output layer this is fine as both values are avail-

able, however, in the hidden layers the target values are unknown, which means that only

the weights between the last hidden layer and the output can be adjusted. To solve this

issue, the backpropagation algorithm was suggested, which propagates the error from the

output layer back to the last hidden layer, which then does the same until all the weights

are updated (Algorithm 2, where δi j is the error signal, yi j is the actual output and di j is
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the target output of neuron i of layer j. The δik is the same as δi j but for the previous

iteration of the algorithm).

Algorithm 2: The Backpropagation algorithm.

More specifically, to update all the weights two passes are required, a forward pass to

calculate the error based on the given input pattern, and a backward pass, where the error

is back propagated to the previous layers and all the weights are updated respectively.

The entire process is repeated for every pattern, until all patterns have been passed into

the network (one epoch), which is also known as the online update mode. There are two

alternatives, the batch and mini-batch modes. The first feeds the network with all the

patterns at once and gets cumulative updates for the weights, which usually helps the

network learn more effectively. However, if the input datasets are too big and cannot

fit into memory, this method cannot be used. The second method is a combination of

the online and batch mode and can be used for big datasets. This method takes the input

patterns and splits them into smaller chunks, called mini-batches, then it feeds the network

with one mini-batch at a time. The size of the mini-batch can be adjusted to ensure that

there are no ‘out of memory’ issues, which makes this more flexible compared to the other

two methods. The goal is to feed the network all the input patterns several times until the

error reaches a specified value or until a number of epochs (when all the patterns have

been fed into the network) has passed.
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2.2.2.3 Recurrent Neural Network (RNN)

The Recurrent Neural Network (RNN) is a variation of MLP, which instead of feeding the

input forward to the next layers, it uses recurrent inputs. Recurrent inputs are the output

signals from the hidden layer or the output layer, which are fed into a previous layer or

even to the same layer. This technique creates a form of ‘memory’ for the network, since

the output depends on both the current input and the input from the previous iterations.

This makes RNNs great for dynamic problems, like timeseries or sequence predictions.

There are two main versions of RNNs, the Jordan RNN [38] and the Elman RNN [39]

(Figure 2.19). The main difference between the two versions is that the first transfers its

output to a context layer, also known as state units, which then feeds the network along

with the new input patterns. The second variation, on the other hand, feeds the hidden

layer output to a context layer, also known as context units, which is fed back to the

hidden layer.

Figure 2.19: RNN variations, Jordan network (left), Elman network (right).

2.2.2.4 Convolutional Neural Network (CNN)

Description of Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a class of deep artificial neural networks,

which is most commonly applied to analysing visual imagery. Its application ranges from

image and video recognition, recommender systems, image classification to medical im-

age analysis, and natural language processing (NLP). CNNs are simply neural networks

that use convolution in place of general matrix multiplication in at least one of their lay-

ers. Multilayer perceptrons (MLPs), which are usually fully connected networks (each
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neuron in a layer is connected with all the neurons in the next layer), are prone to overfit-

ting data. CNNs on the other hand take advantage of the hierarchical pattern in data and

assemble more complex patterns using smaller and simpler patterns. Therefore, on the

scale of connectedness and complexity, CNNs are on the lower extreme. The architecture

of a CNN is designed so that it can take advantage of the two-dimensional (2D) structure

of an input image (or any other 2D input, such as speech signals).

Architecture of Convolutional Neural Networks

A Convolutional Neural Network (CNN) consists of an input and an output layer, as well

as multiple hidden layers. The hidden layers of a CNN typically consist of a series of

convolutional layers. The activation function used is commonly a Rectifier Linear Unit

(RELU) layer, and is subsequently followed by additional convolutions, pooling layers

and a fully connected layer. The final fully connected layer, which is usually a multilayer

perceptron (MLP) network, uses the backpropagation learning algorithm for training. The

input of a convolutional layer is an image of size d×d×c, where d is the height and width

of an image and c is the number of channels of the input image (e.g. an RGB image has

c = 3). A convolutional layer has k filters (or kernels) of size m×m× n, where m is

smaller than the dimensions of the image and n can be either the same as the number

of channels c or smaller (may vary for each kernel). Convolutional layers convolve the

input, which leads to the creation of k feature maps of size d −m+ 1, and pass their

output to the next layer. Subsequently, each feature map is sampled, typically averaging

or maximizing above the same areas in feature maps of size p× p (where p is between 2,

for small images, and usually does not exceed 5, for larger images). A bias and a sigmoid

nonlinearity is applied to each feature map, prior or after the pooling layer.

Figure 2.20 illustrates an example of a CNN which is used to classify images of handwrit-

ten digits. The diagram shows the different layers of a CNN (convolution, max pooling,

multilayer perceptron) and the feature maps that are extracted from each image (small

squares). At the end of the CNN (right hand side), there is a fully connected network

(MLP) which is used to classify the input image [40].

A pooling layer between the hidden convolutional layers is a common tactic for classic

CNN architectures. The pooling layers are mainly used to reduce the dimensions of the

output of each layer, the number of parameters and the complexity of the network, which

consequently reduces the total computation time of the network. This practice also pre-

vents the network from overfitting (adapting to the training data, making it less effective

at predicting new data patterns), which can be determined by observing the training and

test error values. The pooling layers are independent from the other layers and they pro-
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Figure 2.20: A CNN example for digit image classification.

cess the output of each kernel (filter) separately. Even though, there are different types

of pooling layers, max pooling, min pooling (which is the opposite of max pooling), av-

erage pooling and L2-normalization pooling, the max pooling technique seems to work

better than the rest [41]. This technique, as its name suggests, takes the max value from

each filtered result and returns it. Figure 2.21 illustrates an example of max and average

pooling, where the kernel size (filter size) is 2×2 and the stride (how many slots to skip)

is two (2). The applied filters can be distinguished by their colors.

Figure 2.21: Example of max and average pooling.
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The input of a CNN is a 3D array, also called 3D tensor. For instance, if the purpose of

a CNN is to identify objects in a 50× 50 pixels picture, the input would be a 3D tensor

with shape 50×50×3. That is because each pixel is represented by three values, one for

red, one for green and one for blue (RGB). In the PSSP problem, a 2D tensor is enough,

as a 2D tensor is the same with a 3D tensor where the third dimensions has size one. The

shape of this tensor will be L×20, where L is the number of lines of the input file and 20

represents the 20 known amino acids. An example with visualizations and more details

on how CNNs work can be found here [42].

One of the main advantages of CNNs, is the fact that they can extract features from com-

plex sequences, due to the small number of synaptic weights. For example, if the input

array size is 28×28×3 (RGB) and the kernel size is 5×5, then each neuron of the con-

volution layer will be connected with an area of the input array with shape 5×5×3. This

means that each neuron has 76 (5× 5× 3 = 75+ 1 = 76) synaptic weights, which can

extract features and adapt to complex input data.

In some cases, it is necessary to add zero padding (append zero values) around the input

data (like a frame for the input array). The number of rows and columns of zeroes is

variable, which makes it possible to control the dimensions of the output of a hidden

convolution layer, using zero padding. Figure 2.22 illustrates an example of zero padding,

where two borders of zeros are placed around the 32×32×3 input.

Figure 2.22: Example of zero padding.

2.2.2.5 Line Search

Line search is one of the basic iterative approaches, used to find a minimum x* of an ob-

jective function. For an ANN, x represents the weights of the network, while the objective

function represents the error function. Equation 2.6 illustrates the essential components
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to calculate the next iteration of x. The step size determines the size of the step of x in

that direction. Line search, in each iteration, attempts to find the best step size, which can

minimise the objective function in a specific search direction. On the other hand, gradient

descent requires a learning rate which determines how small or how big is each step. If

the step is too small the learning process will take significantly more time and can lead

the network to a local minimum (instead of the global minimum, which is the desired

outcome). If the step is too big then it is very likely that the objective function will jump

far away from the desired minimum.

xn+1 = xn +andn (2.6)

Therefore, applying the optimal step size is very important, as it can prevent the network

from moving further away from the minimum. In order to find the step size, a naive

approach was to move along a search direction in small steps and after each step calculate

the error, if the error starts increasing then stop and change direction [43]. However,

this approach is not very efficient, robust or accurate compared to other variations of line

search [44].

2.2.2.6 Conjugate Gradient (CG)

The Conjugate gradient algorithm (Algorithm 3), unlike gradient descent, in each iteration

changes the direction to prevent the network from becoming counterproductive (revers-

ing the progress). In addition to that, in an N-dimensional problem, the CG algorithm is

guaranteed to find a solution in N steps, since in every CG step the network obtains the

minimum of that direction. Figure 2.23 compares the CG and the gradient descent algo-

rithm on the same two-dimensional problem. Conjugate gradient managed to converge in

just two steps, while gradient descent required several steps.

Figure 2.23: Gradient Descent (left) vs Conjugate Gradient (right) on a 2D problem.
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Algorithm 3: Conjugate Gradient Algorithm [45].

2.2.2.7 Newton’s Method

An iterative method, originally used to find approximations of the roots of real-valued

functions, is currently used in optimisation problems to find the maximum or minimum

of a function and is known as the Newton’s Method. The derivative of a function at a

maximum or a minimum point is zero, which makes it possible to find local maxima and

minima by using the Newton’s Method on the derivative of the optimisation function.

Newton’s Method is considered a second-order optimisation algorithm, since it requires

information about the second derivative of the optimisation function. Compared to first-

order optimisation algorithms (like gradient descent), second-order optimisation methods

can achieve faster and more accurate convergence to the minimum of a function.

In a simple first-degree polynomial (Figure 2.24), 1D problem, of a function f (x) and a

sub-optimal initial solution x0, Newton’s method suggests the following:

1. Set xi = x0

2. Find the equation of the tangent at xi

3. Find the point xi+1 at which the tangent line intersects with the x-axis

4. Find the projection of xi+1 on f (x)

5. Set xi = xi+1 and repeat from 2 until f (xi) < threshold
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Figure 2.24: Newton’s method in a first degree polynomial problem [23].

The equation of a point-slope line is:

y− y1 = m(x− x1) (2.7)

In 2.7 the derivative can be used instead of the slope m and this can be rewritten as:

f (x)− f (x1) = f ′(x)(x− x1) (2.8)

Since x1 is the point of interaction on x-axis, f (x1) = 0 which gives the update rule for x

for optimizing the function as:

xi+1 = xi−
f (xi)

f ′ (xi)
(2.9)

The previous simple example was used just to provide the intuition behind the method of

finding the roots of a function. In optimisation theory, this method actually approximates

the function f (x) with a local quadratic function around x and moves towards the mini-

mum of that approximated function with iterative steps. This process is repeated until a

specified error threshold is reached or after a certain number of iterations has passed. The

quadratic approximations around the weights at each iteration are shown in figure 2.25.

For the approximation of the function f (x), the second-order Taylor expansion (second

series Taylor approximation) is being utilized.

f(x0 +x)≈ f(x0)+ f′ (x0)x+ f′′ (x0)
x2

2
(2.10)
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Figure 2.25: Local Quadratic approximations [23].

In order for f (x0 + x) to be a minimum, an optimal x value must be specified. Newton’s

method takes the derivative of the Taylor series and sets it equal to zero (Equation 2.11).

d
(

f(x0)+ f′ (x0)x+ f′′ (x0)
x2

2

)
dx

= f ′ (x0)+ f ′′ (x0)x = 0⇒ x =− f ′ (x0)

f ′′ (x0)
(2.11)

This x is just the absolute minimum of the local approximation of f (x) around the initial

solution of x0 and not the absolute minimum of f (x). For the minimum of the objective

function this process must be repeated multiple times, until it eventually converges to a

minimum. The final update rule for optimizing the function f (x) for a 1D problem is

given by the equation 2.12 .

xn+1 =−
f ′ (xn)

f ′′ (xn)
(2.12)

This algorithm, however, can work only for objective functions with a single dimension

( f : R→ R).

If the objective function, has multiple dimensions ( f : Rn→ R), the algorithm must be

modified by replacing derivatives with gradients and second derivatives with Hessians

(the matrix of second partial derivatives, figure 2.26)

xn+1 =−
∇f(xn)

H( f )(xn)
(2.13)

Equation 2.13 is the final update rule, which is the one cited as the Newton’s method.
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Figure 2.26: The Hessian matrix of the error function with respect to the weights.

The Newton’s Method seems very efficient computationally because it calculates the

quadratic approximation around the solution and immediately finds the minimum of that

curvature, instead of fitting a plane to the solution, like the Gradient Descent algorithm.

The problem is that it can become computationally impossible to calculate and store the

entire hessian matrix of the function, as the parameters increase. Because of that, the stan-

dard Newton’s method cannot be applied and used in Artificial Neural Networks, which

have thousands or even millions of parameters. There are some variations of this algo-

rithm, however, which can be used with ANNs. One such variation is the Hessian Free

Optimization algorithm [46] which, instead of calculating and storing the entire Hessian

matrix, calculates an approximation that requires less computational resources and does

not have to be stored. This algorithm will be discussed in more detail in section 2.3 below.

2.3 Hessian Free Optimisation (HFO)

2.3.1 Intro to HFO

As mentioned in the previous section, the Newtons’s method, as a second order optimiza-

tion algorithm, can achieve faster and more accurate convergence to the minimum of a

function, compared to first order algorithms, like the gradient descent. In high dimen-

sional problems, first order optimization algorithms can be extremely slow or ineffective

due to a problematic phenomenon, called Vanishing Gradient. This phenomenon can be

described as a state where the updates for the first layers of a network are very close to

zero, because of the backpropagation of the error and the decreasing gradient. As a result,

the front layers have almost no information to adjust their weights, which means that the

training process becomes slower or even ineffective.

On the other hand, second order optimization algorithms, like Newton’s method, calculate

the curvature of the error surface (Hessian Matrix) which significantly improves each step
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of the optimisation process. What makes these algorithms so efficient is the fact that they

attempt to find a quadratic curve that tightly fits at each point, which helps them find the

minimum of that curvature immediately, unlike first order algorithms which select a fitting

plane and then calculate the next step. However, these second order algorithms have some

limits. For instance, in case of a big ANN (with thousands to millions of parameters)

sometimes it may not be possible to calculate the Hessian Matrix, due to the extremely

high memory requirements. Because of that, several variations of Newton’s method were

suggested, like Newton-CG, CG-Steihaug, Newton-Lanczos [47], and Truncated Newton

[48], but their applications on machine learning and neural networks have been either

extremely limited or not effective at all [49].

The Hessian Free Optimization (HFO) algorithm [46] is a variation of Newton’s method,

which uses the local quadratic approximations to generate the suggested updates. Unlike

other Newton’s variations, HFO managed to lift the memory constraints, which made it

an effective optimisation algorithm for ANNs. This algorithm, instead of calculating and

storing the entire Hessian Matrix (H), calculates the dot product of H with an arbitrary

vector u (Hu). It takes advantage of mathematical techniques, like finite differences,

which computationally costs the same as a single gradient calculation. This means that

HFO can calculate the dot products of the Hessian with arbitrary vectors, instead of using

the Hessian, and it can optimize the local quadratic objective approximations by using the

conjugate gradient (CG) algorithm, to compensate for not having the Hessian Matrix. As

mentioned in section 2.2.2.6, the CG method requires N iterations to converge (where N is

the number of the network’s parameters), but there are various stopping criteria that allow

early termination (after significant progress is made), which reduce the total training time.

Even though, the Hessian Matrix is not calculated in HFO, there are no approximations,

as the Hu product is computed accurately. In the standard Newton’s method the approx-

imated quadratic is fully optimized, while the HFO does not perform complete optimiza-

tion with the un-converged CG algorithm [46] and this is the only difference between

the two approaches. The difference between the accuracy of Newton’s method and the

HFO with the not fully converged CG is that small that makes it insignificant, where the

benefits in terms of efficiency of the HFO (by not calculating the full Hessian Matrix) are

obvious.

It is important to note that instead of the Hu product, the Gu product is used, where G

is the Gauss-Newton Matrix (an approximation of the Hessian Matrix) [50]. It might

look pointless to use an approximation instead of the actual matrix, however, the Gauss-

Newton matrix bypasses possible problems that can occur with the use of the Hessian,
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which could make it completely ineffective during the training process. Even for the

cases where these problems do not appear, the G matrix provides better results, in terms

of search directions, which lead to lower memory consumption (about half) and higher

running speeds compared to the H matrix.

2.3.2 Analysis of HFO

A detailed analysis of how HFO works was described by Charalambous [23] for anyone

interested into diving deeper into this variation of Newton’s method. As it was mentioned

before, when the H matrix is used, some issues can occur. One of the most important

problems is the lack of the utilization of the CG algorithm, on a quadratic model with

a non-positive definite curvature matrix, since the Hessian matrix in some cases is non-

positive definite. To deal with this issue, the Gauss-Newton matrix is used, which is

guaranteed to always be positive semi-definite and is an approximation of the Hessian

matrix. Except from that, the Gauss-Newton matrix usually outperforms the Hessian

matrix in terms of efficiency.

2.3.3 Hessian-Vector Multiplication evaluation

As mentioned in previous sections, instead of an explicit evaluation of the Hessian ma-

trix, dot products with the Hessian and arbitrary vectors are performed in HFO, which

computationally cost the same with a gradient calculation. If the Hessian is considered

as the Jacobian matrix of the gradient, based on the definition of directional derivatives,

the H(w)v product is the directional derivative of the gradient ∇ f (w) in the direction v

(Equation 2.14).

H(w)v = lim
ε→0

∇ f (w+ εv)−∇ f (w)
ε

(2.14)

In practice, finite-differences suffer from numerical errors, which are troublesome for

training ANNs. To counter this issue, a method called ‘Forward Differentiation’ was

proposed [51] and was adapted for ANN training [52]. The main idea was to repeat the

chain rule for the value of each node of the gradient, and in order to do that an Rv(x)

operator was defined to denote the directional derivative of x in the direction v.

RvX = lim
ε→0

X(w+ εv)−X(θ)

ε
=

∂X
∂w

v (2.15)
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The R operator is a derivative operator, so it obeys the usual rules of differentiation (2.16):

(2.16)

If these rules are repeated recursively in the gradient calculation algorithm the Hv prod-

uct will be computed. The algorithm for a simple gradient evaluation is illustrated in

algorithm 4 (where L(yl; tl) is one of the loss functions of table 2.4), while the algorithm

5 (where L(yl; tl) is one of the loss functions of table 2.4) shows the modified version,

where the differentiation rules are used to calculate the H(w)v product. The algorithm 6,

illustrates how the G(w)v product is calculated and obviously it is simpler than algorithm

5 [49].

Algorithm 4: Algorithm for computing the gradient of a FFNN [49].

Algorithm 5: Algorithm for computing the H(w)v product in a FFNN [49].
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Algorithm 6: Algorithm for computing the G(w)v product in a FFNN [49].

Table 2.4: Derivatives and Hessians of typical loss function.
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3.1 PSSP Metrics

The Protein Secondary Structure Prediction (PSSP) problem concentrates on predicting,

as accurately as possible, the secondary structure of proteins based on their primary struc-

ture. In this thesis project supervised learning methods are utilised, which require both the

input data (primary structure) and output data (secondary structure) to train an Artificial

Neural Network (ANN) to make predictions. Supervised learning is like learning with a

teacher. The input is presented to the ANN which attempts to predict the output and then

receives feedback on whether its predictions were correct or not. This way the network

can adjust the weights accordingly to improve the prediction results. Both primary and

secondary structure data must be encoded in a way that can be fed into the network.

To get an indication of how good are the predictions of the trained models two metrics

were used, the per residue Q3 accuracy and the Segment Overlap (SOV), which are com-

monly used for the PSSP problem. The Q3 accuracy measures the number of correctly

classified amino acids divided by the number of total amino acids (Equation 3.1, where

n is the number of amino acid residues and mi takes the value of 1 if the predicted value

of the ith amino acid residue is correct and 0 otherwise). The Segment Overlap (SOV)

[53] score is used to measure how good are the predicted results for each class and the

general structure of the entire protein. More specifically, unlike Q3, SOV considers the

size of continuous overlapping segments and assigns extra allowance to longer continuous

overlapping segments (instead of just checking the individual positions, like Q3).

Q = 100
1
n

n

∑
i=1

mi (3.1)

For instance, if the target secondary structure of a protein consists of four (4) helices

followed by two (2) coils and then another four (4) helices and the prediction has only

ten (10) helices, Q3 and SOV will produce different accuracy values. The Q3 accuracy

will be 80%, as eight of the ten amino acids were predicted correctly, while the SOV

score would be just 48. Even though the original SOV score was not a percentage, a

modified definition of SOV [54] was suggested, which fixed this issue with normalization

techniques.

SOVα =
1

Nα
∑
Sα

minOV (s1,s2)+δ (s1,s2)

maxOV (s1,s2)
(3.2)

The SOV score for the α-helix can be calculated with equation 3.2, where s1 and s2 are the

actual and predicted segments of the secondary structure of the α-helices, respectively.
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The sa is the number of segment pairs (s1,s2), where s1 and s2 have at least one common

residue α-helix. The minOV(s1,s2) is the length of the overlap between s1 and s2, and the

maxOV(s1,s2) is the length of the total area for which one of the s1 and s2 has one residue

of type α-helix. The Nα is the total number of residues of type α-helix. The calculation

of δ (s1,s2) is based on equation 3.3.

δ (s1,s2) = min


maxOV(s1,s2)−minOV (s1,s2)

minOV (s1,s2)

int (0.5× len(s1))

int (0.5× len(s2))

 (3.3)

3.2 Protein Databases and DSSP

There are several protein databases, like the iProClass (Protein Information Resource),

PDBe (Protein Data Bank in Europe), PDBj (Protein Data Bank in Japan) and RCSB

(RCSB Protein Data Bank), which include various information about millions of pro-

teins. This information includes protein names, length, structures (primary, secondary,

tertiary and quaternary) and other biological information related to proteins. The pro-

tein information included in the datasets of the PSSP problem was extracted from these

databases.

Table 3.1: Table with the secondary structure abbreviations, grouped in 8 and 3 classes

The Dictionary of Secondary Structure of Proteins (DSSP) [55] defined a standardized

format for categorising the secondary structures of proteins. According to this format,

there are eight (8) distinct classes of secondary structures, based their shape, which are

represented by a capital letter of the English alphabet. These are the α−helix (H), 3-helix
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(G), π-helix (I), β -strand (E), β -bridge (B), β -turn (T), bend (S), and random coil (C) for

residues which are not in any of the other conformations (Table 3.1). Usually these eight

(8) categories are grouped into three (3) more general categories, which describe the shape

of a specific local segment of the protein. For the purpose of this dissertation, the 3-class

classification is used, which includes the helix (H) conformations, containing the first

three categories (H, G, I), the sheet (E) conformations, containing the next two categories

(E, B), and the Coil (C) conformations, containing the rest categories (T, S, C).

3.3 Dataset Format

The protein datasets, that were used for training, had records of a 3-line format per protein.

An example is shown in figure 3.1, where the first line contains the protein name, the

second line the primary structure and the third line the secondary structure of the protein.

The protein name can be used to combine the primary and secondary structures with the

Multiple Sequence Alignment (MSA) [8] profiles. The primary structure corresponds to

the sequence of amino acids of each protein and each letter represents one amino acid. The

secondary structure, located in the third line, is the target output which must be predicted

by the network, and each letter represents the class of each amino acid (based on table

3.1).

Figure 3.1: Protein representation example for protein 1bdsA_1-43.

To prepare training and validation datasets, a python program was developed, which cre-

ates files with comma-separated values (CSV files) based on the input datasets (in the

form of figure 3.1) and MSA profiles, which will be discussed in the following sections.

This program gives the ability to process multiple datasets at once by including the names

of the datasets in the ‘datasets’ variable, located at the top section of the program. More-

over, if the MSA profiles for some proteins are missing, the program will ignore these

proteins and print their names on the screen. This program for CB513 can be found in

appendix D and for PISCES can be found in appendix E.
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3.4 Data Encoding and MSA profiles

It is suggested the input and output data, that is used to train ANNs and most machine

learning algorithms, to be normalised before they are used in training. The new encoded

data should consist of real values between zero and one (0,1), or between minus one and

one (-1,1), according to the selected activation function. The reason behind this sugges-

tion is to speed up the learning process and help the network reach convergence faster.

For the PSSP problem a suggested encoding method is to use the Multiple Sequence

Alignment (MSA) profiles along with the protein datasets (that include protein names,

primary and secondary structures). These MSA profiles, in general, include information

about about DNA and RNA protein sequences, and are very popular in the field of Bioin-

formatics. In many cases, the proteins that are selected to create the MSA profile have

an evolutionary relationship with each other and are descended from a common ances-

tor. Because of that, these proteins are presumed to have the same secondary and tertiary

structure [8]. The amino acids of these proteins are aligned together and are encoded in a

way such that each position of their sequence represents the probability of the appearance

of each amino acid, to form an MSA profile. An example of this alignment process is

illustrated in figure 3.2.

Figure 3.2: Process of MSA profiling

However, the alignment of three or more biological sequences is extremely hard and time

consuming when done manually. Because of that, computational algorithms have been de-

veloped to analyse and align these amino acid sequences. These algorithms use heuristics

to find an approximation of the alignment, as the optimal alignment is computationally

expensive. Furthermore, the MSA files that are created for each protein contain N rows

(where N is the number of amino acids of the protein) and 20 columns, where each col-

umn represents the probability of each amino acid (from the 20 known types) appearing
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in that specific position in the protein sequence.

In the example of figure 3.2, the highlighted column would have 89% (8/9) for the V

amino acid and 11% (1/9) for the E amino acid, while all other amino acids would have

zero (0) values. The values of amino acids for each line must add up to 100 and before

they are used for training an ANN they must be normalised in the range (0,1), which can

be easily done by dividing them with 100. Therefore, the ANN would be able to adapt to

the structure of the data more easily.

3.5 CB513 and PISCES Datasets

In general, in order to successfully train a prediction model the datasets, which will be

used for the training phase, must be preprocessed. In this phase data selections and data

cleaning techniques are performed. There are various datasets for the PSSP problem, that

have been created and preprocessed over the years. For the purpose of this dissertation,

two widely used datasets were selected, the CB513 dataset [12] and the PISCES dataset

[56]. These two datasets were chosen because they have been used for the PSSP problem

by many researchers, which makes the comparison of the results possible and gives an

indication of how well trained is the neural network. To prevent the network from mem-

orising the order of the input patterns, a good practice is to shuffle the input patterns on

each epoch, and therefore get better prediction results.

Initially, the smaller dataset was used, CB513, which has 513 unique proteins, from which

eight (8) were excluded (these can be found in Appendix A), due to the fact that their MSA

files included only zeros. This dataset required less time to train and helped to identify

whether the neural network was able to learn how to predict the secondary structure of

proteins or not. In the next phase, the bigger dataset was used, PISCES, which consists

of about 8500 sequences, from which 341 were excluded because their MSA files were

either corrupted or zeroed and another 16 were excluded due to missing MSA profiles (all

of them are shown in Appendix B). The bigger dataset (PISCES) was utilized because in

many machine learning problems, by feeding the model with more data, the predictions

become more accurate.

Finally, the PISCES dataset was not in the expected form, that was mentioned before

(protein name, primary structure, secondary structure) but fortunately a team of University

of Cyprus implemented a Java program, which was able to convert the PISCES data into

the expected format. These new modified PISCES datasets were provided by Dionysiou

([1], [24]), who also worked on the PSSP problem in the past.
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3.6 Dataset preprocessing with MSA profiles

Convolutional Neural Networks (CNNs) expect their input as a two-dimension (2D) or

three-dimension (3D) array, so in order to train a CNN to predict the secondary structure

of proteins, the training and test data must be presented in the form of 2D or 3D arrays.

The input representation method, which will be used, is the same with the one used by

[24].

Over recent years, the Multiple Sequence Alignment (MSA) profiles approach was used

by many researchers. In the Bioinformatics sector, the sequence alignment is a well

known approach, that refers to sequences of DNA, RNA or proteins. In general, this

method attempts to find similarities between these types of sequences, which can usu-

ally define some biological association, leading to a better understanding of the biological

mechanisms. An example of an MSA file is illustrated in figure 3.3.

Figure 3.3: Example of the encoded form of an MSA file [24].

Since the input data of a CNN must consist of 2D (or 3D) arrays, these MSA files must

be visualised in a way so that they can be used to successfully train a CNN. In order to

achieve that, all the MSA files were combined in a single file and the desired output label

was added at the end of each record.

For instance, the information included in two MSA files, named ‘1bdoa_77-156’ and

‘1bfga_19-144’, before the two files were combined together, is shown in figure 3.4. Fig-

ure 3.5 shows the new encoded file (where all spaces were replaced with commas ‘,’),

after combining the two MSA files, where the red line separates the data of the first file

from the data of the second file. Each line now has twenty one (21) numbers (columns)

instead of twenty (20), as the predicted class was added (C:0, E:1, H:2) at the end of each
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line, according to the dataset files (with the protein name, primary and secondary struc-

tures), described in section 3.3. This means that both PSSP datasets and MSA profiles

were utilized to create the new dataset files.

Figure 3.4: The image shows the MSA file (before collapsing into a single file) [24].

By using the above technique, a new file was created, which included all the data from

the MSA profiles and the desired labels of the secondary structure for each record (Figure

3.5). The same method was used for both training and test datasets. This new representa-

tion with the MSA profiles can be used to successfully train a CNN, since these files can

be presented in a 2D table format. The CNN will receive as input one record (one line)

of the new dataset at a time and will attempt to predict the secondary structure, using the

output class representation mentioned earlier (C:0, E:1, H:2).

Figure 3.5: The encoding of the new file, after combining the MSA files into a single file

[24].
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3.7 Significant neighboring amino acids

The sequence of amino acids plays a major role, as it determines the interactions that take

place and the folds that are formed in the secondary structure of a protein. The secondary

structure of an amino acid is significantly affected by the adjacent amino acids (previous

and next amino acids), according to the distance between them (short distance usually

means bigger impact, while longer distance means less impact) [20].

The training and test datasets were modified to take advantage of this interaction be-

tween the neighboring amino acids. For each record, except from the information about

each amino acid (from the MSA profiles) and the expected output class, described in the

previous section, the information of k-neighboring amino acids was added (where k is

an integer variable). For example, if k is equal to one, each record will consist of the

MSA records of the left amino acid, the MSA records of the current amino acid, the MSA

records of the right amino acid and the target label (class) of the current amino acid (which

is located in the middle). If an amino acid is not preceded (first amino acid in a sequence)

or followed (last amino acid in a sequence) by another amino acid, zero values are added

instead (zero padding) to ensure that all records have the same length. An example where

k is one (1) is illustrated in figure 3.6, for a sequence of six (6) amino acids.

Figure 3.6: MSA record for a sequence of 6 amino acids.

The new modified dataset has 61 (20×3+1) numbers for each record, as shown in figure

3.7.

Figure 3.7: Modified MSA record for a sequence of 6 amino acids.
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As soon as this new representation is fed into the CNN it is rearranged into a 2D array,

where each line includes the MSA profile vector for each amino acid and the last value

will be the target label (class). Figure 3.8 illustrates an example for the data representation

method after it was rearranged into a 2D array, for a window size of 15 amino acids (or

‘plus7’), where each row represents the vector of the MSA profile for the specific amino

acid and the SS label represents the class (H, E, C) of the middle amino acid.

Figure 3.8: An example of input data representation for a window size of 15 (or k = 7)

amino acids [57].

In order to create these modified datasets two Python programs were developed, that use

the CB513 (Appendix D) and PISCES (Appendix E) datasets along with the MSA profiles

to prepare the modified datasets, according to the provided ‘plus’ value, which can take

any positive integer value (>0). In the previous example the plus value was one (1), as the

neighboring amino acids were one for each side (one left and one right) of each amino

acid. These programs prepare multiple datasets (or folds) at once and print on the screen

the names of proteins for which the MSA files were not found.

This technique can improve the accuracy of a CNN [24], as the CNN can identify the

neighboring amino acids, which can affect the secondary structure of an amino acid.

3.8 Training/ Testing Set and Cross Validation

To train an ANN a specific set of data is required, called training dataset, which is used

for training the model so that it can extract features from the input patterns and classify

these patterns into a number of classes. However, it is very important to ensure that the

model was able to generalize the extracted knowledge so that it can predict patterns that

has not ‘seen’ before. For this reason, another set of data is used, called test dataset,
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which is completely different from the training dataset, and its purpose is to measure the

effectiveness of the network to classify new data, that has never seen before. In general, a

good rule of thumb is to split the entire dataset into 80% for the training dataset and 20%

for the test dataset (80-20 rule). However, in different problems, other splitting criteria

can be used, which may lead to better results.

Sometimes this method is not enough to test the ability of a network to predict new data,

since the accuracy depends on a specific test dataset. A method that can be used to address

this issue is to evenly split the data into N folds and train N different models. Each model

will have a unique fold selected as the test dataset and the rest N-1 folds will be used as

the training dataset. This method is called N-fold cross validation (Figure 3.9) and the

cross validation accuracy is equal to the average test accuracy of all models.

Figure 3.9: 10-fold cross validation

3.9 Ensembles

Ensemble learning is a method which can be used to improve the performance of a ma-

chine learning model. According to this method, instead of training just a single model,

multiple models can be trained and then their results can be combined somehow, to im-

prove the final results.

Even though, there are various ensemble methods, ranging from simple to advanced and

more sophisticated methods, for the purpose of this dissertation a relatively basic approach

was used, also known as averaging ensemble method. This method basically calculates

the average of the outputs of its models. In the PSSP problem, for instance, if there are
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five different trained models the following steps are applied. First, for each of the input-

output pairs, the output of each of the five models is calculated and classified in one of

the three classes (H, E, C). Then, the results of each of the five models are compared with

the method ‘winner takes all’ and the class that had the most appearances is chosen as the

final class for that input. If there is a tie between some of the classes, an arbitrary class

(from those) is selected as the final class.

This ensemble method, even if it is very simple, it can remove random errors from the

models, which can lead to improved results. More advanced ensemble methods might

have a bigger impact on the predicted results, but at the cost of computation resources, as

these are usually more complex.

3.10 Filtering

3.10.1 External Rules

Post-processing filtering is an additional method that is used to improve the accuracy of

a model. The applied filtering method can be problem specific or more generic, with

the use of different learning algorithms. Both methods were used in this dissertation,

which affected, by a small amount, the final accuracy (Q3 Score) and the quality of the

predictions (SOV score).

The first filtering method was based on a set of external rules, that are specific for the

PSSP problem. These rules are based on empirical observations and were used to ‘fix’ the

quality of the results (SOV), rather than improving the overall accuracy (Q3).

The external rules applied are (where H, E and C are the three possible classes):

1. Single ‘H’ or ‘E’ are replaced with ‘C’

2. Sequence ‘HEEH’ is replaced with ‘HHHH’

3. Sequence ‘HEH’ is replaced with ‘HHH’

4. Sequence ‘!HH!’ is replaced with ‘!CC!’

These simple rules can be applied extremely fast and can increase the SOV score, while

sometimes can slightly drop the Q3 accuracy.
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3.10.2 Support Vector Machines

In 1995, Cortes and Vapnik suggested the use of Support Vector Machines (SVMs), in

Machine Learning. Initially SVMs were used for binary classification problems and their

purpose was to find hyperplanes that best divide a dataset into classes [58]. If the data

cannot be separate linearly, SVMs attempt to map the data into a higher dimension using a

non-linear kernel function. These kernel functions are very effective and efficient as they

just compute inner products. This transformation to a higher dimension is more likely

to make the data linearly separable. Figure 3.10 illustrates four popular SVMs that are

currently used, along with their kernels.

Figure 3.10: Results of different kernels for a 3-class classification problem.

In order to best separate two linearly separable classes by finding the optimal hyperplane,

SVMs attempt to maximize the distance between the points, that are closer to the hyper-

plane, for each different class. The points that are located near the limits of this separation

are called support vectors and the points that are located in the area of multiple classes

(overlapping classes) are not taken into consideration, in order to create a more general-

ized model. Figure 3.11 shows three possible separation lines (A, B and C), where the

blue star and red circle that are connected with them are considered the support vectors

and line C is considered the optimal hyperplane. In figure 3.12, even though the separa-

tion of the initial data (left plot) is hard, if they are projected in a higher dimension they
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can be easily separated by a hyperplane (right plot).

Figure 3.11: SVM example of a linearly separable problem.

Figure 3.12: SVM projecting a problem in a higher dimension.

In particular, SVMs had very good filtering results for the PSSP problem [59]. More

specifically, they were used by Dionysiou [24] and Dionysiou et al. [57] and their good

final results makes them very promising.
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3.10.3 Decision Trees

Decision trees are most commonly know for their use in operations research, and more

specifically in decision analysis, but are also a popular tool for machine learning. They

can be used to identify a strategy that is most likely to reach a target goal. A decision tree

is defined as a support tool, with a tree-like shape, which models decisions and possible

consequences, including resource costs, chance events outcomes and utility.

The best way to explain how a decision tree operates is through a simple example. A

scenario, where a dataset contains numbers with different features, is illustrate in figure

3.13. There are two 1s and five 0s, which represent the two classes. The goal is to separate

the data using their features, which are color (red or blue) and whether the number is

underlined or not.

Figure 3.13: Example of simple decision tree [60].

Obviously, the color feature can be used to split the data, as only one of the 0s is red,

while the rest are blue. The question ‘Is it red?’ can be used to split the first node. A node

in a tree is like a point where the path splits into two branches, where the data that meet

the criteria go under the ‘Yes’ branch and ones that do not go under the ‘No’ branch, as

shown in figure 3.13. The ‘No’ branch contains only blue 0s that are not underlined, which

means no further splits should be made. On the other hand, the ‘Yes’ branch contains data

that have different features, so the question ‘Is it underlined?’ can be used to split the red

data. The two underlined 1s go under the ‘Yes’ subbranch, while the not-underlined 0

goes under the ‘No’ subbranch. At this point no further splits of the data are required.

Even though, in real life examples the data will not be as clean as the one used in this

example, the applied logic of a decision tree remains the same. A decision tree will

decide at each node which feature can split the observations into two groups in a way that
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the differences are maximised, while maximising the similarities between the members

of each subgroup.

3.10.4 Random Forests

A random forest is a classification algorithm that consists of a large number of individual

decision trees that function as an ensemble. Each individual tree, outputs a class predic-

tion and the class with the most votes is selected as the prediction of the random forest

(Figure 3.14).

Figure 3.14: Example of random forest prediction [60].

The reason, a random forest model works so well, in data science, is because a large num-

ber of unrelated models, that operate as a group, can outperform any of the individual

models. One of the most important things in a random forest is the low correlation be-

tween the individual models (trees), since the trees ‘correct’ each others’ errors, as long

as they do not make the same mistakes in the same direction. In order for a random forest

to have good predictive results, there must be an actual signal that helps the models adapt

to the features of the data and the correlation, between the predictions of the individual

trees, must be as low as possible.

In order to illustrate why uncorrelated predictions are so important, a simple example will

be used. In a gambling game a uniformly distributed random generator is used to produce

a number between 1 and 100. If the number is above 40 the player wins and earns money
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based on the bet amount, which means the player has 60% chance to win. The player has

three options, play 100 games betting $1 per game (choice1), play 10 games betting $10

per game (choice2) or play 1 game and bet $100 (choice3). Below are the expected values

for all three options:

ExpectedValue(choice1) = (0.60∗1+0.40∗ (−1))∗100 = 20

ExpectedValue(choice2) = (0.60∗10+0.40∗ (−10))∗10 = 20

ExpectedValue(choice3) = 0.60∗100+0.40∗ (−100) = 20

It is obvious that all options have the same expected value, which makes it difficult to

choose. A visualization of a Monte Carlo simulation could reveal the distributions of

the available options. Figure 3.15 illustrates the distribution of the outcome of 10000

simulations for each of the three options. The three options, even though they share the

same expected value, they have completely different outcome distributions. With the first

option (choice1) there is 97% chance to make money, while for the other two options

(choice2 and choice3) the chance to make money is 63% and 60%, respectively. It seems

that the more the $100 bet is split up, the higher the chance for the player to make money,

as each game does not dependent on the other games.

Figure 3.15: Distribution of the outcomes of 10000 simulations for each option [60].

A random forest works in the same way, with the game mentioned above. The higher

the number of uncorrelated trees, the higher the chance of making correct predictions.
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To ensure that each individual tree is uncorrelated with the other trees, a random forest

uses two methods, bagging and feature randomness. The first one (bagging), randomly

selects a sample from the dataset for each individual decision tree, instead of using the

entire dataset. The second method (feature randomness), restricts the number of features

that can be used to split a node in each decision tree, by selecting a random subset of the

available features. This increases the variation between the individual trees of the model,

which results in lower correlation.

Figure 3.16: Node splitting in a decision tree and a random forest model [60].

In order to make things easier to understand, an example will be illustrated. Figure 3.16

shows a decision tree (blue) and two trees from a random forest (green), where both

models can separate the data based on four features. The decision tree chose the Feature

1 to best separate the data into groups. The first tree of the random forest (Tree 1) could

only choose between Features 2 and 3, which were selected randomly, to split the data,

while the second tree (Tree 2) could only choose between Features 1 and 3. Even though

Feature 1 was the best splitting option, only Tree 2 could use it, since it was not included

in the available features of Tree 1.

To sum up, bagging helps to create trees that are trained on different sets of data, while

feature randomness forces them to use different features to make decisions.
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4.1 A new approach for the PSSP problem

The PSSP problem can be considered a classification problem, which means that an ANN

can be used to predict the secondary structure of proteins. For this dissertation, a Con-

volutional Neural Network (CNN) was selected because, according to previous attempts

[1], it managed to produce very good results (>80%), which makes it very promising.

A thesis dissertation should explore new methods or combinations, in order to provide

some value to the world of research. Because of that, the use of just a CNN for the

PSSP problem would be a poor choice as it has already been used before and it would not

help the research community or the researchers that are involved with the PSSP problem.

The main idea was to combine a CNN with the Hessian Free Optimisation (HFO) algo-

rithm (a second order optimiser) to predict the secondary structure of proteins, which has

never been attempted before, mainly because of the complexity of second order optimisa-

tion algorithms. This optimiser, combined with a simple Feed Forward Neural Network

(FFNN), managed to achieve great results for the PSSP problem [2], with more than 80%

Q3 accuracy.

Usually CNNs, because of their complexity, contain thousands of parameters and that

makes the training process very time consuming on a Central Processing Unit (CPU). For

small datasets, like CB513, a few hours (around 4-12 hours depending on the selected

settings) would be enough. However, for bigger datasets, like PISCES, the training pro-

cess could take days to complete. To speed up the training process a Graphics Processing

Unit (GPU) was utilized, from the Google’s Colab cloud service. Colab is a free Jupyter

notebook environment that runs entirely in the cloud, does not require any setup and

supports many popular machine learning libraries (paid services are also available). A

Jupyter Notebook, also known as the IPython Notebook, is an interactive computational

environment based on the web (usually ending with the extension ‘.ipynb’) [61]. This

allows users to combine code, comments, graphical visualizations and multimedia, in an

interactive document, which can be run via a web browser, hosted on a local machine or

even a remote server.

The classification model of this dissertation was implemented on a notebook to ensure

portability, remove machine constraints (requirements), as this can be run entirely in Co-

lab even with an ‘old’ machine using just a web browser. In addition to that, a notebook

makes it easier to interact with the program and it comes with some of the most popu-

lar machine learning libraries and frameworks, like TensorFlow [62], PyTorch [63] and

Scikit-learn [64], which are pre-installed and ready to use.
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4.2 CNN and HFO combination

The purpose of this dissertation was to combine a CNN with HFO and train it to predict

the secondary structure of proteins. The PyTorch machine learning framework [63] was

initially used, along with the fastai library, to implement a CNN and train it for the PSSP

problem. This part was successful and the results were around 70% Q3 accuracy, without

tuning the hyper parameters. The next step was to implement the HFO algorithm in

PyTorch, since the available implementation was written in pure Python and could not

interact with the CNN. An alternative option was to implement the CNN from scratch (in

pure Python), which would significantly drop the efficiency as the PyTorch framework

(and most machine learning frameworks) has its functions written in C++, which is much

more efficient.

The implementation of HFO was probably the most difficult task of this dissertation. The

HFO implementation which was already available was very complex, which made this

task even harder. After many failed attempts, the HFO algorithm managed to train a Feed

Forward Neural Network (FFNN) to predict the XOR gate (a toy problem used check if

a network is learning effectively). The next step was to try the new implementation on

the PSSP, and fortunately the FFNN with HFO managed to extract some patterns from

the proteins which resulted in around 72% Q3 accuracy (without any tuning of the hyper

parameters). The final step of the implementation was to combine the two sections, the

CNN and the FFNN with the HFO optimiser.

Unfortunately, this was not as simple as it seemed at the beginning of this dissertation.

The HFO algorithm was specifically designed for a FFNN and not a CNN, which made

the updates totally ineffective. An alternative approach could be to use a different optimi-

sation algorithm, like gradient descent, to train the CNN layers and then train the FFNN at

the end with the HFO. However, this practice seems pointless, since the purpose of HFO

is to replace a different optimizer, not depend on it. Another approach could be to ignore

the CNN layers and train only the FFNN with HFO, which would be a waste of resources,

since the effectiveness of the CNN layers would not be utilized.

At this point, an ordinary dissertation project would possibly come to an end, as the main

purpose was to attempt to combine the HFO algorithm with a CNN. The conclusion was

that this was not possible because the HFO was designed explicitly for a FFNN and not

a CNN. However, this is not an ordinary dissertation, so despite the tight margins of

available time, an alternative approach was pursued with the help of additional research.

This seemed to be a great decision as a recent article [3], published in January 2020,
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explained why the HFO algorithm is not compatible with CNNs and suggested a variation

of HFO, specifically designed for CNNs. This new method, called Subsampled Hessian

Newton (SHN) method [3], is discussed in the following section.

4.3 Subsampled Hessian Newton (SHN) Method

There are several studies on Newton methods for training deep ANNs ([65], [66], [67],

[46], [68], [69], [70]), but almost all of them used fully connected FFNNs. The Newton

methods are very complicated and that is possibly the main reason why CNNs have not

been utilized in those studies. Apart from this article [3], there is no evidence, or pub-

lished documents, that describe how the Newton methods can be applied in deep learning

(CNNs) effectively. This made Gradient Descent, and its variations, the most popular op-

timisation algorithms for CNNs, although the Newton’s methods are more robust, more

efficient and require less tuning of the hyper parameters (for FFNNs at least).

A new variation of HFO was suggested by Wang et al. (2020) for CNNs which is ex-

plained in high detail [3] (mathematical proof included). This new method was labeled

as the Subsampled Hessian Newton (SHN) method (Algorithm 7, where (35) is Equation

4.1, (36) is Equation 4.2 and (37) is Equation 4.3). Due to the high complexity of the

proof and extensive explanation of this algorithm, it is better to refer to the original paper

for a better understanding of the transition from the HFO to the SHN algorithm.

Algorithm 7: A subsampled Hessian Newton method for CNNs [3].

f (θ +αd)≤ f (θ)+ηα∇ f (θ)T d (4.1)
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(G+λ I)d =−∇ f (θ) (4.2)

λnext =


λ × drop ρ > ρupper

λ ρlower ≤ ρ ≤ ρupper

λ × boost otherwise

(4.3)

The memory consumption of the Newton method depends on the size of data, which

makes it difficult to handle large datasets. To counter this issue, the SHN method uses

a subset S of the training data to obtain the subsampled Gauss-Newton matrix, which is

used to approximate the Hessian matrix. This technique not only reduces the execution

time per iteration (with a slightly less accurate direction) but also decreases the memory

usage considerably.

For instance, at the mth convolutional layer for the Gauss-Newton matrix-vector products

only the following matrices must be stored:

∂ zL+1,i

∂ vec(Sm,i)T ,∀i ∈ S (4.4)

For the gradient evaluations and the activation function the whole training data is required,

so the independent results over all instances for each mini-batch must be summed. If the

index set {1, ..., N} of data is split to R equal-sized subsets S1, ...,SR and the result for each

subset is calculated, then to find the final output all the subset results must be accumulated.

The utilization of subsets can effectively decrease the memory consumption (Wang et al.,

2020, section 3.5 and section 5) [3].

Table 4.1: Previous studies on Newton methods [3].

Table 4.1 illustrates some of the previous studies on Newton methods, performed on dif-

ferent types of ANNs. Other studies investigated the use of second-order optimization
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methods for training CNNs, however, those are different from the Newton method con-

sidered in this dissertation.

4.4 Network Implementation

For the purpose of this dissertation, the implementation of a Convolutional Neural Net-

work (CNN) with the Subsampled Hessian Newton (SHN) method was used, which was

implemented in Python by Wang et al. [3] and can be found here [https://github.com/

cjlin1/simpleNN]. Many optimisation tricks were applied to reduce memory consumption

and to improve efficiency, which are discussed in that paper. The Python implementation

used the Tensorflow [62] machine learning framework and is slightly different from the

one used in [3], which was implemented in Matlab.

The initial implementation, which the paper [3] used for the experiments, used Matlab.

Consequently, the input datasets used a matlab format (.mat), which was transferred to the

Python version. The input files must contain a ‘y’ variable (of size N×1), which includes

all the labels of the target class, and a ‘Z’ variable (of size N×M), which includes all the

features. Since the datasets were already preprocessed with a specific format which could

be easily adapted to the matlab format, a script was implemented which was responsible

to convert the text files (.txt) to matlab files (.mat) (Appendix C). This script can be found

at [https://gitlab.com/perf.ai/pssp_project/-/blob/master/datasets2mat.sh].

In addition to the above, the implementation was modified so that it could be executed

in a Jupyter notebook [61] and the datasets were uploaded to a public Gitlab repository,

to be easily accessible. All the necessary scripts, programs, data files and instructions

were uploaded in that repository, which can be found here [https://gitlab.com/perf.ai/

pssp_project/-/tree/master].

Further modifications were made to the Python implementation to adapt it to the PSSP

problem and improve the results, as the initial version was not very effective for this par-

ticular problem. For all experiments of this dissertation a free Colab machine was utilized

(to use one visit [https://colab.research.google.com/notebooks/welcome.ipynb]). For in-

formation according TensorFlow visit [https://www.tensorflow.org/] and for PyTorch visit

[https://pytorch.org/]. As regards the fastai library, which can be found here [https:

//www.fast.ai/], a very informative course is available at [https://course.fast.ai/part2], that

describes how to create more advanced neural networks.
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5.1 Experiments for Implementation Evaluation

Many experiments have been performed, in order to find the optimal hyper parameters for

the Convolutional Neural Network (CNN) and the Subsampled Hessian Newton (SHM)

optimiser. The initial implementation [3] was already tested on some well-known bench-

marks, like MNIST and CIFAR10 problems, which proved that the network was able to

learn effectively. Because of that, the experiments of this dissertation were focused more

on the PSSP problem. Initially, the model was trained with the CB513 dataset, which

is relatively small, to identify the best hyper parameters and then additional experiments

were performed on the bigger dataset, PISCES.

To ensure that each trained model has the best possible accuracy, during the training

process after each iteration the model (all the weights) with the highest test accuracy was

saved to an output file. This file can be then loaded to predict the test data and display the

Q3 accuracy. This practice ensures that the model does not overfit to the training data and

is able to predict new, never seen before data samples.

Figure 5.1 shows the test loss after each iteration for a CNN model trained with fold

5 of CB513. The red line illustrates the test loss after each iteration, while the green

line illustrates the test loss of the saved model. The test loss after iteration 5, fluctuated

within a narrow margin of about 0.05, while the test loss of the saved model followed a

downward trend until it reached a plateau. Figure 5.2 displays the test accuracy for the

same model for the first 35 iterations. The red line represents the test accuracy after each

iteration, while the green line represents the test accuracy of the saved model. According

to the line graph (Figure 5.2), the test accuracy dropped slightly in iteration 20, while the

test accuracy of the saved model remained the same. This proves that at any iteration the

saved model has the best possible test accuracy, which does not drop throughout the entire

training process. In addition to that, the two line graphs (Figure 5.1 and 5.2) confirm that

the model is able to train effectively and manages to converge in about twenty iterations.

For each experiment the following steps were performed. First the global parameters for

the datasets were set (plus_var: the number of neighboring amino acids added, ds_num:

the fold number of the dataset, dataset: ‘CB513’ or ‘PISCES’ to choose between the two

PSSP datasets). Then, the appropriate dataset was retrieved from the Gitlab repository

and all necessary functions were loaded. In the next phase, the hyper parameters were

selected to prepare the model for the training phase. As soon as the training process was

finished, a new file was created, which had all weights of the model with the best test

accuracy. This file was used in the final step, in which the saved model was loaded and
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Figure 5.1: The test loss for each iteration compared to the test loss of the saved model.

Figure 5.2: The test Q3 accuracy after each iteration compared to the test Q3 accuracy of

the saved model.
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was used to create two files with the predicted secondary structures of the proteins for the

test and train datasets, respectively.

In order to check the efficiency of the Subsampled Hessian Newton (SHN) method, the

Gradient Descent algorithm could be used to train CNN models, with the same structure

as the one used for the SHN method. This would make it possible to compare the two

optimisation algorithms, both in terms of accuracy (for the PSSP problem) and fine tuning

of their hyper parameters. The Stochastic Gradient Descent (SGD) algorithm is already

implemented and can be selected, as an alternative optimisation method.

5.2 Experiments with CB513 dataset

5.2.1 Fine Tuning of Hyper Parameters

In order to find the best hyper parameters for the network, experiments must be performed

were each time only one hyper parameter is altered (the rest remain the same). Table 5.1

illustrates the hyper parameters used for the CNN, where the last layer has only three

(3) neurons (one for each possible class). For each combination of hyper parameters five

different models were trained and the average Q3 accuracy was saved in an excel file.

For hyper parameter tuning, fold 5 was selected (for all the experiments), because it was

observed that models trained with this fold performed very poorly, compared to the other

folds. The motivation behind this was to maximize the performance of the hardest-to-

learn fold with the hope that this would increase the overall Q3 accuracy and SOV score

of the cross-validation.

Table 5.1: Hyper parameters for CNN for all experiments.

First of all, the CB513 datasets were prepared with ‘plus7’ amino acids (seven left and

seven right neighbouring amino acids were added, for each amino acid). This selection

was based on [24], as this number (7) of neighbouring amino acids seemed very promis-

ing. The next step was to choose the number of samples used in the subsampled Gauss-

Newton matrix (GNsize). Six different values were tested, as shown in table 5.2, while all
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other parameters were selected randomly or based on the default values of the implemen-

tation. According to table 5.2, the best value for the GNsize was 2048 with approximately

75.54% Q3 accuracy.

Table 5.2: Q3 accuracy results for GNsize for fold 5 of CB513.

For the following experiments GNsize was selected to be equal to 2048 (GNsize = 2048).

After that, the C value had to be determined so the same process was repeated but this

time the C values were examined. Table 5.3 illustrates the Q3 accuracy results of the

models in relation to the C value. It is obvious that the best option was 0.01 with 75.54%

accuracy, so C was set to this value for the following experiments (C = 0.01).

Table 5.3: Tuning the C hyper parameter for fold 5 of CB513.

This process was replicated for the batch size (bsize), which usually is set based on the

memory constraints. It is very important to note that if the model cannot begin the training

process, it is probably because this value was set too high. In this case, lowering the bsize

value can fix the issue. Table 5.4 shows the results for bsize, however, it is not clear

which one is the best, as most of them are very close to each other. For the purpose of this

dissertation, the value 12288 was selected as the batch size (bsize = 12288) to reduce the

training time of the model.
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Table 5.4: Tuning the batch size (bsize) hyper parameter for fold 5 of CB513.

5.2.2 10-fold Cross-Validation and Ensembles Results

In order to check whether the results of a model are good just for a specific test dataset

or whether the trained network is a good prediction model, additional techniques must

be utilized. One such technique is cross-validation, which was described in section 3.8.

More specifically, a 10-fold cross-validation was used for the CB513 dataset to validate

the model’s ability to generalize.

Table 5.5 shows the hyper parameters for all the trained models, which were used for the

cross-validation of CB513.

Table 5.5: Hyper parameters for trained models.

The cross-validation results for the CB513 dataset are shown in table 5.6. This table

displays the overall Q3 accuracy and overall SOV score for the best trained model for

each fold. In addition, the Q3 accuracy and SOV scores for each of the three classes (H,

E, C) are shown separately, as well as the average results for all folds (cross-validation

values).

According to table 5.6, the best trained model achieved 78.20% overall Q3 accuracy and

75.67 overall SOV score, while the cross-validation results were 77.25% and 72.91, re-

spectively. Even though the optimisation for the hyper parameters was based on fold 5,

which had the lowest Q3 accuracy as expected, the results for all the other folds were

considerably better. It is obvious that most of the models had trouble identifying the class

‘E’ and that is why the QE accuracy for all folds are substantially lower than the QH and

the QC accuracy. Most models were able to predict, to some extend, the class ‘C’, as the

QC accuracy for the 10-fold cross-validation was approximately 82.13%.
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Table 5.6: Q3 and SOV results for 10-fold cross validation for the CB513 dataset.

Table 5.7 shows the results for the cross validation of the ensembles method, where five

(5) CNNs were trained with the SHN method, using the CB513 dataset. For the exper-

iments of this dissertation, multiple models were trained for each fold (about 7-10) and

the five (5) models, which formed the best ensembles model, were selected for the final

ensembles model of each fold.

Table 5.7: Q3 and SOV results for ensembles (with 5 experiments per fold) cross

validation for the CB513 dataset.

Usually, the ensembles method is more effective when there is high variance between the

trained models, because each trained model explores a different space of the dataset and

it learns how to predict based on different features. That is why, it is better to combine

results from different machine learning models. The combination of these models can

create a new model with more accurate predictions than any of the separate models, at the

cost of time and processing power, but this is not guaranteed.

In this case (Table 5.7), the new ensemble model managed to outperform every single

CNN model for all folds (the best CNN model for each fold is shown in table 5.6). The

increase in Q3 accuracy was relatively small, probably because all models were trained

with the same hyper parameters, which resulted in less variance. The boost in accuracy
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could be better if models with different hyper parameters or different types of models were

used for creating the ensembles model. For instance, a Convolutional Neural Network,

a Recurrent Neural Network, a Bidirectional Recurrent Neural Network, a Feed Forward

Neural Network and a Long Short-Term Memory model could be trained and then com-

bined with the ensembles method. This combination could have a greater impact on the

accuracy of the new ensembles model.

5.2.3 CNN and SVM Combination

As mentioned in section 3.10.2, the final attempt to improve the results was to use Support

Vector Machines (SVMs), which managed to improve the results of past PSSP studies

[59]. More specifically, an SVM will be used to filter the output data from the CNN, with

the ambition that the Q3 accuracy and SOV score could be improved.

In order to train the SVM, a window (of odd size) will be used to extract information

from the prediction file created by the CNN, which will be used as the input features

of SVM, while the expected output will be the secondary structure of the middle amino

acid. A python program (prepare_SVM_files.py) was used to prepare the datasets for the

SVM based on the given window size (Appendix K). The SVM was also implemented as a

python program (train_SVM.py) (using Scikit-learn machine learning library [64]), which

exploits the output datasets from ‘prepare_SVM_files.py’ to train an SVM and create a

new output file with the new filtered predictions (Appendix L). Both programs can be

found in this Gitlab repository [https://gitlab.com/perf.ai/pssp_project/-/tree/master].

For the experiments of this dissertation both networks will be utilized and the final results

will be compared with the results of a standalone CNN. The CNN will use as input the

data described in section 3.6, while the SVM will take as input the output of the CNN,

in order to filter the results. The table 5.8 shows the hyper parameters used for all the

experiments.

Table 5.8: Hyper parameters for SVM filtering.

The same technique could be used with almost any other classification model. In this

dissertation, except from SVM filtering, Decision Trees and Random Forests [71] (which

are basically ensembles of decision trees) were used, as alternative filtering methods, in

combination with external rules, which were explained in section 3.10.1. The parameters

74

https://gitlab.com/perf.ai/pssp_project/-/tree/master


used for the random forest filter are shown in table 5.9. For the decision tree filter, the

only non-default parameter used was the maximum depth (max_depth) parameter which

was set to twenty (20).

Table 5.9: Hyper parameters for Random Forest filtering.

5.2.4 Filtering Results for CB513

The chosen window size for the filtering methods, for the CB513 experiments, was thir-

teen (13), because it produced relatively good filtering results without a major impact on

the total filtering time.

Table 5.10 shows the results for the Q3 accuracy and SOV score after applying the external

rules to the ensembles model. It seems that the Q3 accuracy increased only by a tiny

amount, while the SOV score rose by 1.33, which is relatively good.

Table 5.10: Q3 accuracy and SOV score for ensembles (with 5 executions per fold) and

external rules filtering for CB513 dataset.

Table 5.11 illustrates the Q3 accuracy and SOV score for the ensembles model after ap-

plying external rules and SVM filtering. The external rules filtering usually offers a sig-

nificant boost in the overall SOV score and sometimes a slight drop in the Q3 accuracy.

The order in which the filters are applied can produce different results, so the same filters

could be applied in various ways (different orders). For this purpose, a bash script was

created, which applies the filtering methods in various orders and creates an output file

with all the results (Appendix M). The results for the ensembles model with SVM filtering

are shown in table 5.12.
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Table 5.11: Q3 accuracy and SOV score for ensembles (with 5 executions per fold),

external rules and SVM filtering for CB513 dataset.

Table 5.12: Q3 accuracy and SOV score for ensembles and SVM filtering for CB513

dataset.

Table 5.13 illustrates the Q3 accuracy and SOV score for the ensembles model with SVM

and external rules filtering. According to tables 5.10 and 5.11, the SVM filtering improved

the overall Q3 accuracy by a small amount, but decreased the overall SOV score slightly.

The impact of SVM filtering was significant, for both overall Q3 accuracy and overall

SOV score (Tables 5.7 - before, and 5.12 - after), with 79.27% and 75.79, respectively.

It seems that if SVM filtering is applied before the external rules, the cross validation

results are substantially better, with approximately 1.75% increase in overall Q3 accuracy

and about 1.65 growth in overall SOV score.

Table 5.13: Q3 accuracy and SOV score for ensembles, SVM and external rules filtering

for CB513 dataset.
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The results for the ensembles model with the external rules and decision tree filtering

are shown in table 5.14. Table 5.15 illustrates the Q3 accuracy and SOV score for the

ensembles model with decision tree filtering, while table 5.16 displays the results for the

ensembles model with decision tree and external rules filtering. The decision tree filtering

improved the results significantly (Tables 5.7 - before, and 5.15 - after), reaching 81.69%

overall Q3 accuracy and 75.93 overall SOV score. According to tables 5.14 and 5.16,

when the decision tree filtering is applied before the external rules, the prediction results

of the model are considerably better. More specifically, there is an increase of about

2.27% in the overall Q3 accuracy and approximately 5.11 in the overall SOV score.

Table 5.14: Q3 accuracy and SOV score for ensembles, external rules and decision tree

filtering for CB513 dataset.

Table 5.15: Q3 accuracy and SOV score for ensembles and decision tree filtering for

CB513 dataset.

Table 5.17 shows the results for the ensembles model with external rules and random

forest filtering. The Q3 accuracy and SOV score for the ensembles model with random

forest filtering are displayed in table 5.18, while the results for the ensembles model

with random forest and external rules filtering are presented in table 5.19. The boost of

random forest filtering was great (Tables 5.7 - before, and 5.18 - after), since it increased

the overall Q3 accuracy to 81.75% and the overall SOV score to 76.33. It is obvious that

the results are better when the random forest filtering is applied before the external rules

filtering (Tables 5.17 and 5.19).
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Table 5.16: Q3 accuracy and SOV score for ensembles, decision tree and external rules

filtering for CB513 dataset.

Table 5.17: Q3 accuracy and SOV score for ensembles, external rules and random forest

filtering for CB513 dataset.

Table 5.18: Q3 accuracy and SOV score for ensembles and random forest filtering for

CB513 dataset.

Table 5.19: Q3 accuracy and SOV score for ensembles, random forest and external rules

filtering for CB513 dataset.
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5.2.5 Additional experiments with CB513

Since the order of the filtering methods matters, the order of the ensembles method could

also lead to different results. A few experiments were performed with fold 0 of CB513,

where the ensembles method was applied after the various filtering methods. According

to table 5.20, applying the ensembles after the filtering methods, leads to better results.

Apart from that, it is possible to combine all the filtering methods into one ensembles

model, which was not possible in the scenario where the ensembles method was applied

first. The new ensembles model, which combined 15 models (5 models with external

rules and SVM filtering, 5 models with external rules and decision tree filtering, and

5 models with external rules and random forest filtering), had the highest SOV score.

Further experiments have not been performed because of the shortage of time.

Table 5.20: Results for fold 0 of CB513 with the ensembles method applied before and

after the filtering methods.

5.2.6 Final results for CB513

After collecting all the results for all filtering methods, the 10-fold cross validation method

(average) was used to combine the results for all folds. These results are presented in table

5.21, which makes it easier to compare the different filtering methods. According to table

5.21, the best results for CB513, in terms of overall Q3 accuracy and overall SOV score,

came from the ensembles model with the random forest and external rules filtering. This

model managed to reach 81.80% Q3 (per residue) accuracy and 78.98 SOV score, which

is very close with the current state-of-the-art results (84-85% Q3 accuracy).

Table 5.21: 10-fold Cross validation, Q3 accuracy and SOV score for all methods for

CB513 dataset.
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5.3 Experiments with PISCES dataset

The PISCES dataset is much bigger than the CB513 dataset and the experiments for this

dataset required a lot more time. Because of that, most hyper parameters used in PISCES

experiments were derived from the CB513 experiments. This will probably have an im-

pact on the prediction capabilities of the final model, but further experiments could not be

made due to the shortage of time. The hyper parameters used for the CNN in the PISCES

experiments are shown in table 5.1. The max epochs (max iterations) were increased from

50 to 100 because the model required more epochs to learn the bigger dataset. Table 5.22

shows the hyper parameters that were used to train all PISCES models.

Table 5.22: Hyper parameters for SHN method, used for all PISCES experiments.

5.3.1 5-fold Cross-Validation and Ensembles Results

For the PISCES dataset a 5-fold cross validation was used, where seven (7) models were

trained per fold and the best one was selected. The main reason a 5-fold cross validation

was chosen, instead of a 10-fold, was to make the results comparable with past studies on

PSSP, that used the PISCES dataset. Table 5.23 displays the Q3 accuracy and SOV score

of the best model for each fold.

Table 5.23: Q3 accuracy and SOV score for 5-fold cross validation for PISCES dataset.

To create the ensembles model five (5) from the seven (7) trained models were selected,

so that the Q3 accuracy of the new model was maximized. Table 5.24 presents the results

for Q3 accuracy and SOV score of the new ensembles model, for each fold of PISCES.

The comparison between table 5.23 and 5.24 reveals that there is a similar issue with the

CB513 dataset. There is not enough variance between the trained models, which results

in only a small improvement in overall Q3 accuracy (0.30%) and SOV score (0.63).

80



Table 5.24: Q3 accuracy and SOV score for ensembles method (with 5 trained models

per fold) for PISCES dataset.

5.3.2 Filtering Results for PISCES

A bigger dataset, like PISCES, can help the model to learn more effectively the patterns

of the data, and that is why the cross validation results (Table 5.23) are better compared to

the CB513 results (Table 5.6), but at the same makes it very difficult to use SVM filtering.

SVMs are usually very effective for small datasets, however, on big datasets the memory

scales quadratically with the number of data points, which makes them very difficult to

train and impractical. Several attempts were made to train an SVM with samples from

the PISCES dataset, but the results were worse than the results without the SVM filtering.

Because of that, the SVM filtering was not applied in any of the PISCES experiments.

If a good sample is extracted from the PISCES dataset, it might be possible to train an

SVM for filtering the results of models trained with the PISCES dataset. However, for

this dissertation such technique could not be found.

Table 5.25 shows the results for each of the five folds after applying the external rules to

the ensembles model. It seems there was a slight increase (0.06) to the overall Q3 accuracy

and a considerable increase in the overall SOV score (1.18), which was expected, since

external rules are used mainly to improve the overall SOV score.

Table 5.25: Q3 accuracy and SOV score for ensembles with external rules filtering for

PISCES dataset.

The results for the ensembles model with external rules and decision tree filtering are

displayed in table 5.26. The decision tree filtering improved the Q3 accuracy by 0.80%

and affected slightly the SOV score.
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Table 5.26: Q3 accuracy and SOV score for ensembles with external rules and decision

tree filtering for PISCES dataset.

Table 5.27: Q3 accuracy and SOV score for ensembles with decision tree filtering for

PISCES dataset.

Table 5.27 shows the results, for each fold of PISCES, for the ensembles model after

applying the decision tree filtering, while table 5.28 illustrates the results for the ensem-

bles model with decision tree and external rules filtering. It is obvious that applying the

decision tree filtering before the external rules produces significantly better results. More-

over, the decision tree filtering improved the results of the ensembles model considerably

(81.93% overall Q3 accuracy and 79.25 overall SOV score).

Table 5.28: Q3 accuracy and SOV score for ensembles with decision tree and external

rules filtering for PISCES dataset.

The Q3 accuracy and SOV score for the ensembles model with external rules and random

forest filtering are presented in table 5.29. A comparison between table 5.26 and table

5.29 shows that random forest filtering is clearly more effective than the decision tree

filtering, for the PISCES dataset.

Table 5.30 illustrates the results for the ensembles model with the random forest filtering,

while table 5.31 illustrates the results for the ensembles model with random forest and

external rules filtering. According to tables 5.29 and 5.31, when random forest filtering
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Table 5.29: Q3 accuracy and SOV score for ensembles with external rules and random

forest filtering for PISCES dataset.

is applied before external rules, the final results are much better (2.12% for Q3 accuracy

and 4.14 for SOV score). Furthermore, if the external rules are applied after the random

forest filtering, the overall Q3 accuracy drops slightly, while the overall SOV score grows

by a small amount (Tables 5.30 and 5.31).

Table 5.30: Q3 accuracy and SOV score for ensembles with random forest filtering for

PISCES dataset.

Table 5.31: Q3 accuracy and SOV score for ensembles with random forest and external

rules filtering for PISCES dataset.

5.3.3 Final Results for PISCES

The 5-fold cross validation (average) was applied for all filtering methods and the results

are shown in table 5.32. The best results according to this table, came from the ensembles

model after applying the random forest and external rules filtering. This method managed

to reach 83.02% overall Q3 (per residue) accuracy and 82.64 overall SOV score, which is

very good, considering that the state-of-the-art results were around 84-85% Q3 accuracy.
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Table 5.32: 5-fold cross-validation, Q3 accuracy and SOV score for all methods for the

PISCES dataset.

5.4 Best Results for CB513 and PISCES

In this section the hyper parameters for the best models will be displayed, along with the

filtering methods used. For both CB513 and PISCES datasets the hyper parameters used

to train the CNN models are shown in table 5.1. Figure 5.3 shows the hyper parameters for

the trained models (CNN with SHN), the hyper parameters for the random forest filtering

and the order of the applied techniques that produced the best final results for the CB513

dataset. These techniques resulted in an overall 81.80% Q3 (per residue) accuracy and

an overall 78.98 SOV score. The confusion matrix for fold 0 of CB513 of a single CNN

model trained with SHN method is shown in figure 5.4. The confusion matrix for the

same fold for the ensembles model (combination of 5 trained models) with random forest

filtering is shown in figure 5.5. It seems that the miss-predictions for classes ‘E’ and ‘H’

are less in the ensembles model, while the miss-predictions for class ‘C’ are slightly more,

compared to the single CNN model.

Figure 5.3: Hyper parameters and methods used that resulted in the best overall Q3

accuracy and best overall SOV score for CB513 dataset.
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Figure 5.4: CM for CB513 fold 0 of single

CNN model.
Figure 5.5: CM for CB513 fold 0 of

ensembles model with random forest.

Figure 5.6 shows the hyper parameters for the trained models (CNN with SHN), the hyper

parameters for the random forest filtering and the order of the applied methods, which

produced the best final results for the PISCES dataset. These methods resulted in an

overall 83.02% Q3 (per residue) accuracy and an overall 82.64 SOV score, which is very

close with the current state-of-the-art results (84-85%).

Figure 5.6: Hyper parameters and methods used that resulted in the best overall Q3

accuracy and best overall SOV score for PISCES dataset.

The confusion matrix for a single CNN model trained with SHN method, using fold 4

of PISCES, is displayed in figure 5.7. Figure 5.8 illustrates the confusion matrix for

the ensembles model (combination of 5 CNN models) with random forest filtering, for
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Figure 5.7: CM for PISCES fold 4 of single

CNN model.
Figure 5.8: CM for PISCES fold 4 of

ensembles model with random forest.

the same fold (fold 4). It is obvious that the correct predictions for classes ‘E’ and ‘H’

were increased, after applying the ensembles and filtering methods, while the correct

predictions for class ‘C’ decreased by a small amount, compared to the single CNN model.

There are some hyper parameters that could still be modified and potentially improve the

accuracy of the single CNN model with SHN. However, due to the shortage of avail-

able time, additional experiments could not be performed. In the next chapter, there will

be some suggestions for further research regarding Convolutional Neural Networks with

the Subsampled Hessian Newton method and the Protein Secondary Structure Prediction

(PSSP) problem.
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6.1 Conclusions

The initial purpose of this dissertation was to combine a Convolutional Neural Network

(CNN) with the Hessian Free Optimisation (HFO) algorithm in order to train a model

that predicts the Secondary Structure of Proteins (PSSP), given its primary structure, by

exploiting the MSA profiles. The attempt to solve the PSSP problem was very impor-

tant, since the experimental methods that are currently available are extremely expensive

in both money and time. The ability to infer (predict) the secondary structure of proteins

based on the primary structure could be very beneficial for the manufacture of pharmaceu-

tical drugs, food complements and antibiotics. Except from that, the secondary structure

of proteins could be used to determine the tertiary and quaternary structures, which could

help scientists define the exact functionality of the studied proteins, and possibly provide

an indication on how dangerous diseases, like cancer or covid-19, can be cured.

The attempt to combine the CNN with HFO was not fruitful because of the nature of HFO,

which was specifically designed for Feed Forward Neural Networks (FFNNs). However,

a new variation of HFO, called Subsampled Hessian Newton (SHN) method, was utilized

to train a CNN for the PSSP problem. The results for the CB513 dataset were extremely

promising with about 78.20% Q3 accuracy for a single fold (fold 0), 77.25% using 10-fold

cross validation and approximately 77.46% using the ensembles method with 5 trained

CNN models. The highest overall Q3 accuracy was 81.80% (Table 5.19) and was achieved

by combining the ensembles model with random forest filtering and external rules. For

the CB513 dataset, the overall SOV score for the 10-fold cross validation was 72.91, while

the same figure increased to 73.55, after applying the ensembles method (with 5 trained

models). The highest overall SOV score was achieved by combining the ensembles model

with random forest and external rules filtering (Table 5.19), which was approximately

78.98.

Even though some studies reported results of 84-85% Q3 accuracy, the datasets used

for training, were much larger than CB513, which means that they cannot be compared

directly with the results of this dissertation. The results for CB513, however, can be com-

pared with the results of [24] and [23], who also used the CB513 dataset (with the same

10-fold cross validation). The comparison between their results and the best results of this

dissertation, for CB513 dataset, shows that the single CNN with SHN (78.20% Q3 accu-

racy) outperformed both the CNN with SGD (76.47% Q3 accuracy) [24], and the BRNN

with HFO (77.01% Q3 accuracy) [23]. The same applies for the 10-fold cross validation,

where the CNN with SHN achieved 77.25% (Table 5.6), the CNN with SGD achieved

75.16% and the BRNN with HFO achieved 75.80% overall Q3 accuracy. Moreover, the
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ensembles model with random forest and external rules filtering (81.80% Q3 accuracy)

managed to outperform the best results reported by [24] (80.40% overall Q3 accuracy)

and [23] (78.15% overall Q3 accuracy).

For the PISCES dataset, the best overall Q3 accuracy of a single CNN with SHN was

79.88% (Table 5.23), while the overall Q3 accuracy for the 5-fold cross validation was

79.50%. The highest Q3 accuracy for the 5-fold cross validation was 83.12% and was

achieved with the ensembles model with the random forest filtering (Table 5.30). The

best overall SOV score for a single model was 76.67 and for the 5-fold cross validation

was 76.44. The highest overall SOV score achieved was 82.64, with the combination of

the ensembles model (with 5 trained CNNs), random forest and external rules filtering

(Table 5.31).

The PISCES results can be compared with [1] and [2], where the same 5-fold cross vali-

dation was used. The overall Q3 accuracy for the 5-fold cross validation was 79.50% in

this dissertation (for PISCES), which was slightly lower than [2] (79.57%) and consider-

ably lower than [1] (80.65%). This means that there is still room for improvement for the

models trained with the PISCES dataset. However, the final results for PISCES dataset

were better (83.02% overall Q3 accuracy and 82.64 overall SOV score) compared to [1]

(80.98% overall Q3 accuracy and 77.26 overall SOV score) and [2] (80.37% overall Q3

accuracy and 76.71 overall SOV score).

Based on the results from the various filtering methods, it seems that the order in which

the filtering is applied plays a major role on the final outcome. That was expected, as the

filtering of each method applies its own ‘corrections’ to the results, which could ‘reveal’

or ‘hide’ the errors for the next filtering method. For instance, in a sequence of seven

(7) amino acids, where the predicted secondary structure is ‘HHHHEHE’, two (hypothet-

ical) filtering methods could be applied. The first filtering method replaces sequences

of ‘HHEH’ with ‘HHHH’, while the second method replaces ‘EHE’ with ‘EEE’. If the

first method is applied, the sequence would become ‘HHHHHHE’ and after the second

method it would remain the same, as there are no corrections that can be made. On a dif-

ferent scenario, the second filtering method could be applied first, which would result in a

new sequence ‘HHHHEEE’, that would remain the same after applying the first method.

If the desired output was ‘HHHHHHH’ the two approaches would result in completely

different results. In the first scenario (1st method + 2nd method), the correct results would

be 6 out of 7 (85.7%), while in the second scenario (2nd method + 1st method), the cor-

rect results would be 4 out of 7 (57.1%). This simple example shows that the order of

the filtering methods applied can produce different final results, so various combinations
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should be tested.

In addition to the above, the best filtering technique depends on the dataset and the output

of the initial machine learning model. Even if two models are trained with the same ma-

chine learning architecture (e.g. CNN, FFNN, MLP, etc.) but with different optimisation

algorithms (e.g. SGD, HFO, SHN, etc.), there is no guarantee that the boost from any

of filtering methods will be the same for both models. The filtering results can vary be-

tween datasets and that can be observed from the filtering results of CB513 and PISCES

datasets. It seems that there is no clear approach or a ‘best filtering’ method that will guar-

antee better results for all the machine learning models. Consequently, different filtering

methods should be applied and the ones that produce the best results should be selected.

As mentioned earlier, some of the hyper parameters have not been exploited in this disser-

tation, not to a higher extend at least. This means there is still room for improvement for

the prediction results. Some of these hyper parameters are the ‘plus’ parameter (window

for CNN), the number of convolution layers, the number of filters and the kernel size of

the CNN, as well as the number of trained models used in ensembles method. In addition

to that, for the PISCES dataset, the hyper parameters used, to train the models, could be

tuned in the same way that were tuned for the CB513 dataset.

6.2 Suggestions for Future Work on PSSP

Over the past years, multiple machine learning algorithms were utilized to predict the

secondary structure of proteins, given their primary structure. However, none of these

techniques managed to reach the maximum theoretical limit for the 3-class prediction

of the PSSP problem, which is around 88-90% Q3 accuracy. That leaves the question

whether a single machine learning model can even manage to reach such high accuracy,

for such a complex problem (PSSP).

Maybe it is time to look for other alternative methods, like training multiple models and

then combining their predicted results. One such method is called stacking ensemble

method. This technique is similar to the ensembles method used in this dissertation, with

the only difference that, instead of training the same type of model multiple times, it sug-

gests to train different types of machine learning models, like K-means, Decision Trees,

Support Vector Machines, Naive Bayes, Logistic Regression, and variations of Neural

Networks. After the selected models are trained, they must be used to predict the test (or

validation) dataset, and the predictions must be stored in an output file. Then a logistic

regression model could be utilized, to learn how to best combine the predictions from
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each of the separate models. This method does not guarantee that the stacked ensemble

results will be better than the results of all separate models, however, even in that case,

the model with the highest accuracy could be used instead of the stacked ensemble.

As many data scientists claim, ‘the answers are in the data’. Given this it is possible that

the reason behind the accuracy limitations of the prediction models are related with the

input data. Therefore, another suggestion would be to use different datasets to train the

models or perform some modifications to the datasets in order to help the network extract

the most important features. In addition to that, a separate dataset could be used only for

tuning the hyper parameters and another one just for testing the model. According to the

final results, it was obvious that the models were able to predict the classes ‘H’ and ‘C’

with higher success rate than the ‘E’ class. This means that the network could not extract

all necessary features to be able to predict the ‘E’ class accurately. This phenomenon was

observed because the datasets were not balanced.

It was observed that the accuracy of the predictions for various proteins with different

lengths was not the same. A statistical analysis, on the final results, could help identify

for which proteins the model had higher or lower accuracy. This could give an indication

on which types of proteins the accuracy should be improved, in order to increase the

overall accuracy of the model.

Different filtering methods can produce different results for different algorithms used for

the PSSP and for different protein datasets, which means that experimentation, with var-

ious filtering methods, is essential in order to find the optimal filtering method. In this

dissertation, only a few filtering methods were used, which leaves the door open for fur-

ther experimentation with other filtering methods. The order, in which the filtering meth-

ods were applied, can affect the final results. Because of that, it is highly suggested to

apply the filtering methods in different orders and choose the one that produces the best

results. Moreover, the filtering methods could be applied before the ensembles method,

which could lead to better results. Another approach could be to apply the external rules

or other filtering methods multiple times (e.g. apply external rules, SVM filtering, ensem-

bles method and then apply external rules for a second time).

In this dissertation, one of the goals was to train a CNN with the stochastic gradient de-

scent (SGD) algorithm and compare the results with the SHN method. However, due to

the lack of time these experiments have not been performed. These experiments could

illustrate whether the SHN method could outperform the SGD algorithm for the PSSP

problem. Theoretically, the CNN with SHN should require less time and iterations to

train, compared to the CNN with SGD. The comparison between the CNN with SHN
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and the CNN with SGD from [1] could not be made, because the implementations were

different, the machines used for the experiments had different specifications and in [1] a

CPU was used, instead of a GPU. According to some benchmark results from other prob-

lems [3], even though SHN performed almost the same with SGD in terms of accuracy, it

was more robust than SGD in terms of hyper parameter tuning. This can still make SHN

a better optimisation option, since the trained models that are required, in order to find

the best hyper parameters, are significantly less than SGD. In addition, the total training

iterations of SHN, for each model, are considerably less which means less training time.

92



References

[1] A. Dionysiou, M. Agathocleous, C. Christodoulou, and V. Promponas, Input repre-

sentation of sequence to structure prediction problems for deep learning, (in prepa-

ration), 2020.

[2] K. Charalambous, M. Agathocleous, C. Christodoulou, and V. Promponas, “Solv-

ing the protein secondary structure prediction problem with the hessian free opti-

mization algorithm”, IEEE Access, 2020, Under review.

[3] C.-C. Wang, K. Tan, and C.-J. Lin, “Newton methods for convolutional neural net-

works”, ACM Transactions on Intelligent Systems and Technology, vol. 11, pp. 1–

30, 2020.

[4] J. M. Berg, J. L. Tymoczko, and L. Stryer, Biochemistry, 5th. New York: NY: WH.

Freeman, 2002.

[5] C. Magnan and P. Baldi, “Sspro/accpro 5: Almost perfect prediction of protein sec-

ondary structure and relative solvent accessibility using profiles, machine learning

and structural similarity.”, Bioinformatics, vol. 30, no. 18, pp. 2592–2597, 2014.

[6] Y. Yang, J. Gao, J. Wang, R. Heffernan, J. Hanson, K. Paliwal, and Y. Zhou, “Sixty-

five years of the long march in protein secondary structure prediction: The final

stretch?”, Briefings in Bioinformatics, vol. 19, no. 3, pp. 482–494, 2018.

[7] N. Qian and T. J. Sejnowski, “Predicting the secondary structure of globular pro-

teins using neural network models”, Journal of Molecular Biology, vol. 202, no. 4,

pp. 865–884, 1988.

[8] B. Rost and C. Sander, “Improved prediction of protein secondary structure by use

of sequence profiles and neural networks”, Proceedings of the National Academy

of Sciences, USA, vol. 90, pp. 7558–7562, 1993.

[9] A. Salamov and V. Soloveyev, “Ab initio gene finding in drosophila genomic dna”,

Genome Research, vol. 10, no. 4, pp. 516–522, 2000.

[10] R. D. King and M. J. Sternberg, “Identification and application of the concepts

important for accurate and reliable protein secondary structure prediction”, Protein

Science, vol. 5, no. 11, pp. 2298–2310, 1996.

93



[11] D. Frishman and P. Argos, “Knowledge-based protein secondary structure assign-

ment”, Proteins: Structure, Function, and Bioinformatics, vol. 23, no. 4, pp. 566–

579, 1995.

[12] J. A. Cuff and G. J. Barton, “Evaluation and improvement of multiple sequence

methods for protein secondary structure prediction”, Proteins: Structure, Function,

and Bioinformatics, vol. 34, no. 4, pp. 508–519, 1999.

[13] P. Baldi, S. Brunak, P. Frasconi, G. Soda, and G. Pollastri, “Exploiting the past

and the future in protein secondary structure prediction”, Bioinformatics, vol. 15,

no. 11, pp. 937–946, 1999.

[14] P. Baldi, S. Brunak, P. Frasconi, G. Pollastri, and G. Soda, Bidirectional Dynamics

for Protein Secondary Structure Prediction. In: Sun R., Giles C.L. (eds) Sequence

Learning, ser. Lecture Notes in Computer Science. Springer, Berlin, Heidelberg,

2000, vol. 1828, pp. 80–104.

[15] J. Blazewicz, P. Hammer, and P. Lukasiak, “Predicting secondary structures of pro-

teins”, IEEE engineering in medicine and biology magazine, vol. 24, no. 3, pp. 88–

94, 2005.

[16] G. Armano, A. Orro, and E. Vargiu, “Massp3: A system for predicting protein sec-

ondary structure”, EURASIP Journal on Advances in Signal Processing, vol. 2006,

no. 17195, pp. 1–9, 2006.

[17] F. U. Yüksektepe, O. Yılmaz, and M. Türkay, “Prediction of secondary struc-

tures of proteins using a two-stage method”, Computers & Chemical Engineering,

vol. 32, no. 1–2, pp. 78–88, 2008.

[18] K. J. Won, T. Hamelryck, A. Prugel-Bennett, and A. Krogh, “An evolutionary

method for learning hmm structure: Prediction of protein secondary structure”,

BMC bioinformatics, vol. 8, p. 357, Feb. 2007.

[19] J. Chen and N. S. Chaudhari, “Cascaded bidirectional recurrent neural networks

for protein secondary structure prediction”, IEEE/ACM Transactions on Computa-

tional Biology and Bioinformatics, vol. 4, no. 4, pp. 572–582, 2007.

[20] S. Wang, J. Peng, J. Ma, and J. Xu, “Protein secondary structure prediction using

deep convolutional neural fields”, Scientific reports, vol. 6, 2016.

[21] P. Pavlidis, Πρόβλεψη δευτεροταγούς δομής των πρωτεϊνών με τη χρήση των con-

volutional neural networks για οπτική αναγνώρηση αντικειμένων, University of

Cyprus, Computer Science Department, Thesis Project, 2016.

94



[22] R. Heffernan, Y. Yang, K. Paliwal, and Y. Zhou, “Capturing non-local interactions

by long short-term memory bidirectional recurrent neural networks for improving

prediction of protein secondary structure, backbone angles, contact numbers and

solvent accessibility”, Bioinformatics, vol. 33, pp. 2842–2849, 2017.

[23] K. Charalambous, Protein secondary structure prediction using bidirectional re-

current neural networks and hessian free optimisation, BSc Thesis, Department of

Computer Science, University of Cyprus, 2018.

[24] A. Dionysiou,Πρόβλεψη δευτεροταγούς δομής πρωτεϊνών με χρήση συνελικτικών

νευρωνικών δικτύων σε συνδιασμό με φίλτρα gabor και support vector machines,

BSc Thesis, Department of Computer Science, University of Cyprus, 2018.

[25] C. Fang, Y. Shang, and D. Xu, “Mufold-ss: New deep inception–inside–inception

networks for protein secondary structure prediction”, Proteins: Structure, Func-

tion, and Bioinformatics, 2018.

[26] Learn.Genetics, Genetic science learning center, https://learn.genetics.utah.edu/,

[Online; accessed April 21, 2020], 2018.

[27] C. Simons, Food science toolbox, https : / / cwsimons .com/wp- content /uploads /

2017/12/AA.jpg, [Online; accessed April 23, 2020].

[28] A. Brunning, A guide to the 20 common amino acids, http://www.compoundchem.

com/wp-content/uploads/2014/09/20-Common-Amino-Acids-v3.png, [Online;

accessed April 23, 2020].

[29] BioTopics, Amino acid condensation, http://www.biotopics.co.uk/as/aminocon.

html, [Online; accessed April 27, 2020].

[30] T. Brown and T. Brown Jr, Nucleic acids book, https://www.atdbio.com/, [Online;

accessed April 25, 2020].

[31] S. Clancy and W. Brown, “Translation: Dna to mrna to protein”, Nature Education,

vol. 1, no. 1, p. 101, 2008.

[32] M. A. Clark, M. Douglas, and J. Choi, Biology 2e, https: / /openstax.org/books/

biology-2e/pages/3-4-proteins, [Online; accessed December 15, 2019], 2018.

[33] A. Byun, Convolutional neural networks for visual recognition, https : / / cs231n .

github.io/neural-networks-1/, [Online; accessed April 23, 2020].

[34] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning”, Nature, vol. 521, no. 7553,

pp. 436–444, 2015.

[35] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous

activity”, The bulletin of mathematical biophysics, vol. 5, no. 4, pp. 115–133, 1943.

95

https://learn.genetics.utah.edu/
https://cwsimons.com/wp-content/uploads/2017/12/AA.jpg
https://cwsimons.com/wp-content/uploads/2017/12/AA.jpg
http://www.compoundchem.com/wp-content/uploads/2014/09/20-Common-Amino-Acids-v3.png
http://www.compoundchem.com/wp-content/uploads/2014/09/20-Common-Amino-Acids-v3.png
http://www.biotopics.co.uk/as/aminocon.html
http://www.biotopics.co.uk/as/aminocon.html
https://www.atdbio.com/
https://openstax.org/books/ biology-2e/pages/3-4-proteins
https://openstax.org/books/ biology-2e/pages/3-4-proteins
https://cs231n.github.io/neural-networks-1/
https://cs231n.github.io/neural-networks-1/


[36] F. Rosenblatt, “The perceptron: A probabilistic model for information storage and

organization in the brain”, Psychological Review, pp. 65–386, 1958.

[37] V. Kurková, “Kolmogorov’s theorem and multilayer neural networks”, Neural Net-

works, vol. 5, no. 3, pp. 501–506, 1991.

[38] M. I. Jordan, Serial order: A parallel distributed processing approach, San Diego:

University of California, Institute for Cognitive Science, Technical Report number

AD-A-173989/5/XAB; ICS-8604, 1986.

[39] J. L. Elman, “Finding structure in time”, Cognitive Science, vol. 14, no. 2, pp. 179–

211, 1990.

[40] K. Patel, Mnist handwritten digits classification using a convolutional neural net-

work (cnn), [Web; accessed December 16, 2019], 2019.

[41] Y. L. Boureau, J. Ponce, and Y. LeCun, “A theoretical analysis of feature pooling

in visual recognition”, in In Proceedings of the 27th international conference on

machine learning, 2010, pp. 111–118.

[42] T. Ganegedara, Intuitive guide to cnns, https : / / towardsdatascience . com / light -

on - math - machine - learning - intuitive - guide - to - convolution - neural - networks -

e3f054dd5daa, [Online; accessed April 27, 2020], 2018.

[43] D. R. Hush and J. M. Salas, “Improving the learning rate of back propagation

with the gradient reuse algorithm”, in Proceedings of the IEEE 1988 International

Conference on Neural Networks, vol. 1, San Diego, CA, USA, 1988, pp. 441–447.

[44] C. Charalambous, “Conjugate gradient algorithm for efficient training of artificial

neural networks”, Circuits, Devices and Systems, IEE Proceedings G, vol. 139,

no. 3, pp. 301–310, 1992.

[45] C. M. Bishop, Neural networks for pattern recognition, Oxford University Press,

Oxford, UK., 1995.

[46] J. Martens, “Deep learning via hessian-free optimization”, in Proceedings of the

27th International Conference on Machine Learning (ICML’10), Bottou, L. and

Littman, M., (eds.), 2010, pp. 735–742.

[47] S. G. Nash, “Newton-type minimization via the lanczos method”, SIAM Journal

on Numerical Analysis, vol. 21, no. 4, pp. 770–788, 1984.

[48] ——, “A survey of truncated-newton methods”, Journal of Computational and Ap-

plied Mathematics, vol. 124, no. 1, pp. 45–59, 2000.

96

https://towardsdatascience.com/light-on-math-machine-learning-intuitive-guide-to-convolution-neural-networks-e3f054dd5daa
https://towardsdatascience.com/light-on-math-machine-learning-intuitive-guide-to-convolution-neural-networks-e3f054dd5daa
https://towardsdatascience.com/light-on-math-machine-learning-intuitive-guide-to-convolution-neural-networks-e3f054dd5daa


[49] J. Martens and I. Sutskever, Training Deep and Recurrent Networks with Hessian-

Free Optimization. In: Montavon G., Orr G.B., Müller KR. (eds) Neural Networks:

Tricks of the Trade, ser. Lecture Notes in Computer Science. Springer, Berlin, Hei-

delberg, 2012, vol. 7700.

[50] N. Schraudolph, “Fast curvature matrix-vector products for second-order gradient

descent”, Neural Computation, vol. 14, no. 7, pp. 1723–1738, 2002.

[51] R. E. Wengert, “A simple automatic derivative evaluation program”, Communica-

tions of the ACM, vol. 7, no. 8, pp. 463–464, 1964.

[52] B. A. Pearlmutter, “Fast exact multiplication by the hessian”, Neural Computation,

vol. 6, no. 1, pp. 147–160, 1994.

[53] B. Rost, C. Sander, and R. Schneider, “Phd–an automatic mail server for protein

secondary structure prediction”, Bioinformatics, vol. 10, no. 1, pp. 53–60, 1994.
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Appendix A

Excluded proteins from CB513

Table A.1 shows the names of the eight (8) proteins that were excluded from the CB513

dataset, because of zeroed MSA profiles.

Table A.1: Excluded CB513 proteins due to zeroed MSA profiles.
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Appendix B

Excluded proteins from PISCES

Table B.1 displays the identities of the sixteen (16) proteins that were excluded from the

PISCES dataset, because their MSA profiles were missing.

Table B.1: Excluded PISCES proteins due to missing MSA profiles.
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Tables B.2, B.3 and B.4 illustrate the names of the PISCES proteins that were excluded

from the PISCES dataset because their MSA profiles were corrupted or zeroed (according

to [24]). In total those proteins were three hundred forty one (341).

Table B.2: Excluded PISCES proteins due to corrupted or zeroed MSA profiles (1-120).
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Table B.3: Excluded PISCES proteins due to corrupted or zeroed MSA profiles

(121-240).
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Table B.4: Excluded PISCES proteins due to corrupted or zeroed MSA profiles

(241-341).
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Appendix C

Convert datasets to Matlab files

The following bash script was created and used to convert the ‘.txt’ datasets (text files) to

‘.mat’ datasets (Matlab files).

1 #!/bin/bash
2 # This script finds all the testSet and trainSet files in the current directory,
3 # converts them to matlab datasets and saves them in the folder mat_datasets.
4 folderName="mat_datasets"
5 mkdir "$folderName"
6
7 runAll=""
8 datasets=$(ls | grep −e ’testSet’ −e ’trainSet’ | grep −v ’\.mat’)
9

10 for ds in $datasets
11 do
12 # echo "$ds"
13 loaded=$(echo "$ds" | sed "s:.txt::")
14 # echo "$loaded"
15 outFile=$(echo "./$folderName/$loaded.mat")
16 # echo "$outFile"
17 runMat="load $ds; y = $loaded(1:end, end); Z = $loaded(1:end, 1:end−1); save $outFile y Z −v7.3; clear;"
18 # echo "$runMat"
19 runAll="$runAll$runMat "
20 done
21 runAll="$runAll exit;"
22 # echo "$runAll"
23 /Applications/MATLAB_R2019a.app/bin/matlab −nodisplay −r "$runAll" > "./$folderName/log.txt"
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Appendix D

CB513 dataset pre-processing

This Python program prepares the CB513 datasets for training the Convolutional Neural

Network. It was implemented for the purposes of this dissertation.

1 """
2 Uses the DATASETS files to create new datasets for CB513 based
3 on the specified number of amino acids (ADD_AMINO_ACIDS).
4 """
5
6 import os, sys
7
8 ADD_AMINO_ACIDS = 7 # 7 + 1 + 7 = 15 amino acids per row
9 DATASETS = [’trainSet0.txt’, ’testSet0.txt’,

10 ’trainSet1.txt’, ’testSet1.txt’,
11 ’trainSet2.txt’, ’testSet2.txt’,
12 ’trainSet3.txt’, ’testSet3.txt’,
13 ’trainSet4.txt’, ’testSet4.txt’,
14 ’trainSet5.txt’, ’testSet5.txt’,
15 ’trainSet6.txt’, ’testSet6.txt’,
16 ’trainSet7.txt’, ’testSet7.txt’,
17 ’trainSet8.txt’, ’testSet8.txt’,
18 ’trainSet9.txt’, ’testSet9.txt’]
19
20 FOLDER_NAME = ’plus{0}_CB513’.format(ADD_AMINO_ACIDS)
21
22 if not os.path.exists(FOLDER_NAME):
23 os.makedirs(FOLDER_NAME)
24
25 protein_name = None
26 hssp_file = None
27 CATEGORIES = [’C’, ’E’, ’H’]
28
29 def enumerate_cat(labels):
30 for i, cat in enumerate(CATEGORIES):
31 labels = labels.replace(cat, str(i))
32 return labels
33
34 def get_zero_lines(num_of_lines):
35 if (num_of_lines < 1):
36 return ""
37 zeros = (("0," ∗ 20) + ’\n’) ∗ num_of_lines
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38 return zeros
39
40 for dataset_name in DATASETS:
41 # dataset_name = DATASETS[0]
42 print(’Preparing {0}... Missing hssp files:’.format(dataset_name))
43 output_file = ’./{0}/plus{1}_{2}’.format(FOLDER_NAME, ADD_AMINO_ACIDS, dataset_name)
44
45 with open(dataset_name, ’r’) as ds_f:
46 with open(output_file, ’w’) as out_f:
47 line_num = 0
48 for line in ds_f:
49 if line_num == 0:
50 protein_name = line.split()[0]
51 hssp_file = ’./msaFiles/{0}.hssp’.format(protein_name)
52 # print(hssp_file)
53 line_num += 1
54 elif (line_num == 1):
55 # print(line)
56 line_num += 1
57 continue
58 else:
59 labels = (line[:−1]).replace(’!’, ’’)
60 label_nums = enumerate_cat(labels)
61 label_index = 0
62 # print(labels)
63 try:
64 with open(hssp_file, ’r’) as hssp_f:
65 buf = get_zero_lines(ADD_AMINO_ACIDS)
66 buf_len = ADD_AMINO_ACIDS
67 amino_count = 0
68 for msa_line in hssp_f:
69 if (buf_len > 2 ∗ ADD_AMINO_ACIDS):
70 temp = buf.replace(’\n’, ’’) + label_nums[amino_count]
71 out_f.write(temp)
72 out_f.write(’\n’)
73 buf = buf.split("\n", 1)[−1]
74 buf_len −= 1
75 amino_count += 1
76
77 modif_line = (msa_line[:−1]).replace(’ ’, ’,’)
78 buf = ’{0}{1}\n’.format(buf, modif_line)
79 buf_len += 1
80
81
82 for i in range(0, ADD_AMINO_ACIDS+1):
83 temp = buf.replace(’\n’, ’’) + label_nums[amino_count]
84 out_f.write(temp)
85 out_f.write(’\n’)
86 buf = buf.split("\n", 1)[−1]
87 buf = buf + get_zero_lines(1)
88 amino_count += 1
89 assert amino_count == len(label_nums)
90 except Exception:
91 print(protein_name)
92 line_num = 0
93 print(’Done with {0} file!’.format(dataset_name))
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Appendix E

PISCES dataset pre-processing

This Python program prepares the PISCES datasets for training the Convolutional Neural

Network. It was implemented for the purposes of this dissertation.

1 """
2 Uses the DATASETS files to create new datasets for PISCES with
3 the specified number of neighboring amino acids (ADD_AMINO_ACIDS).
4 """
5
6 import os, sys
7
8 ADD_AMINO_ACIDS = 7 # 7 + 1 + 7 = 15 amino acids per row
9 DATASETS = [’trainSet1.txt’, ’testSet1.txt’,

10 ’trainSet2.txt’, ’testSet2.txt’,
11 ’trainSet3.txt’, ’testSet3.txt’,
12 ’trainSet4.txt’, ’testSet4.txt’,
13 ’trainSet5.txt’, ’testSet5.txt’]
14
15 FOLDER_NAME = ’plus{0}_PISCES’.format(ADD_AMINO_ACIDS)
16 MSA_FOLDER = ’msaFiles’
17
18 if not os.path.exists(FOLDER_NAME):
19 os.makedirs(FOLDER_NAME)
20
21 protein_name = None
22 hssp_file = None
23 CATEGORIES = [’C’, ’E’, ’H’]
24
25 def enumerate_cat(labels):
26 for i, cat in enumerate(CATEGORIES):
27 labels = labels.replace(cat, str(i))
28 return labels
29
30 def get_zero_lines(num_of_lines):
31 zeros = (("0," ∗ 20) + ’\n’) ∗ num_of_lines
32 return zeros
33
34 for dataset_name in DATASETS:
35 # dataset_name = DATASETS[0]
36 print(’Preparing {0}... Missing hssp files:’.format(dataset_name))
37 output_file = ’./{0}/plus{1}_{2}’.format(FOLDER_NAME, ADD_AMINO_ACIDS, dataset_name)
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38
39 with open(dataset_name, ’r’) as ds_f:
40 with open(output_file, ’w’) as out_f:
41 line_num = 0
42 for line in ds_f:
43 if line_num == 0:
44 protein_name = line.split()[0]
45 hssp_file = ’./{0}/{1}.hssp’.format(MSA_FOLDER, protein_name)
46 # print(hssp_file)
47 line_num += 1
48 elif (line_num == 1):
49 # print(line)
50 line_num += 1
51 continue
52 else:
53 labels = line[:−1]
54 label_nums = enumerate_cat(labels)
55 label_index = 0
56 # print(labels)
57 try:
58 with open(hssp_file, ’r’) as hssp_f:
59 buf = get_zero_lines(ADD_AMINO_ACIDS)
60 buf_len = ADD_AMINO_ACIDS
61 amino_count = 0
62 for msa_line in hssp_f:
63 if (buf_len > 2 ∗ ADD_AMINO_ACIDS):
64 temp = buf.replace(’\n’, ’’) + label_nums[amino_count]
65 out_f.write(temp)
66 out_f.write(’\n’)
67 buf = buf.split("\n", 1)[−1]
68 buf_len −= 1
69 amino_count += 1
70
71 modif_line = (msa_line[:−1]).replace(’ ’, ’,’)
72 buf = ’{0}{1}\n’.format(buf, modif_line)
73 buf_len += 1
74
75
76 for i in range(0, ADD_AMINO_ACIDS+1):
77 temp = buf.replace(’\n’, ’’) + label_nums[amino_count]
78 out_f.write(temp)
79 out_f.write(’\n’)
80 buf = buf.split("\n", 1)[−1]
81 buf = buf + get_zero_lines(1)
82 amino_count += 1
83 assert amino_count == len(label_nums)
84 except Exception:
85 print(protein_name)
86 line_num = 0
87 print(’Done with {0} file!’.format(dataset_name))
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Appendix F

Python Implementation

The following code includes the implementation of the Convolutional Neural Network

with the Subsampled Hessian Newton method. This program was used to perform all the

experiments of this dissertation. Note that commands that begin with ‘!’ should be exe-

cuted as bash commands. It is highly advised to use the notebook version of the imple-

mentation which can be found at [https://gitlab.com/perf.ai/pssp_project/-/blob/master/

Notebooks/CNN_HFO.ipynb]. This implementation was based on the Python implemen-

tation from [3], however, several modifications have been made to improve the results of

the CNN for the PSSP problem.

1 # -*- coding: utf-8 -*-
2 """shn_cnn_May22.ipynb
3
4 Automatically generated by Colaboratory.
5
6 Original file is located at
7 https://colab.research.google.com/drive/1KZtk3v3joX5pAUQJIbpGV9I-kmnddRjV
8 """
9

10 # plus_var=7
11 # ds_num=1
12 # dataset="PISCES"
13 plus_var=7
14 ds_num=5
15 dataset="CB513"
16
17 """## Imports ##"""
18
19 # Commented out IPython magic to ensure Python compatibility.
20 # %load_ext autoreload
21 # %autoreload 2
22
23 # %matplotlib inline
24
25 !pip install hdf5storage
26
27 import pdb
28 import numpy as np
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29 import tensorflow as tf
30 tf.compat.v1.disable_eager_execution()
31 import time
32 import math
33 import argparse
34 import os
35 import scipy.io as sio
36 import tensorflow.compat.v1 as tf
37 tf.disable_v2_behavior()
38 from tensorflow.python.client import device_lib
39 import pandas as pd
40 import hdf5storage
41
42 """## Get data ##"""
43
44 test_url="https://gitlab.com/perf.ai/pssp_project/−/raw/master/plus{0}_{1}/mat_datasets/plus{2}_testSet{3}.mat".format(str(

↪→ plus_var), dataset, str(plus_var), str(ds_num))
45 train_url="https://gitlab.com/perf.ai/pssp_project/−/raw/master/plus{0}_{1}/mat_datasets/plus{2}_trainSet{3}.mat".format(str(

↪→ plus_var), dataset, str(plus_var), str(ds_num))
46 TEST_FILE="plus" + str(plus_var) + "_testSet" + str(ds_num) + ".mat"
47 TRAIN_FILE="plus" + str(plus_var) + "_trainSet" + str(ds_num) + ".mat"
48
49 !echo "$test_url"
50 !echo "$train_url"
51
52 ![ −f "$TEST_FILE" ] && echo "$TEST_FILE exist" || wget "$test_url"
53 ![ −f "$TRAIN_FILE" ] && echo "$TRAIN_FILE exist" || wget "$train_url"
54
55 !ls
56
57 NEIGHBOURS = plus_var # number of amino-acids to add left and right
58 AMINO_ACID_LEN = 20
59 WINDOW = 2 ∗ NEIGHBOURS + 1
60 TOTAL_AMINO_ACIDS = WINDOW ∗ AMINO_ACID_LEN
61 TOTAL_COLS = TOTAL_AMINO_ACIDS + 1 # plus the secondary structure category
62 CATEGORIES = 3 # number of different classification categories
63 TOTAL_COLS
64
65 """## VGG ##"""
66
67 """
68 Codes are modifeid from PyTorch and Tensorflow Versions of VGG:
69 https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py, and
70 https://github.com/keras-team/keras-applications/blob/master/keras_applications/vgg16.py
71 """
72
73 # import tensorflow.compat.v1 as tf
74 # tf.disable_v2_behavior()
75 # import numpy as np
76 # import pdb
77 from tensorflow.keras.applications.vgg16 import VGG16 as vgg16
78 from tensorflow.keras.applications.vgg19 import VGG19 as vgg19
79
80 __all__ = [’VGG11’, ’VGG13’, ’VGG16’,’VGG19’]
81
82 def VGG(feature, num_cls):
83
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84 with tf.variable_scope(’fully_connected’) as scope:
85 dim =np.prod(feature.shape[1:])
86 x = tf.reshape(feature, [−1, dim])
87
88 x = tf.keras.layers.Dense(units=4096, activation=’relu’, name=scope.name)(x)
89 x = tf.keras.layers.Dense(units=4096, activation=’relu’, name=scope.name)(x)
90 x = tf.keras.layers.Dense(units=num_cls, name=scope.name)(x)
91
92 return x
93
94 def make_layers(x, cfg):
95 for v in cfg:
96 if v == ’M’:
97 x = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2, padding=’valid’)(x)
98 else:
99 x = tf.keras.layers.Conv2D(

100 filters=v,
101 kernel_size=[3, 3],
102 padding=’SAME’,
103 activation=tf.nn.relu
104 )(x)
105 return x
106
107 cfg = {
108 ’A’: [64, ’M’, 128, ’M’, 256, 256, ’M’, 512, 512, ’M’, 512, 512, ’M’],
109 ’B’: [64, 64, ’M’, 128, 128, ’M’, 256, 256, ’M’, 512, 512, ’M’, 512, 512, ’M’],
110 ’D’: [64, 64, ’M’, 128, 128, ’M’, 256, 256, 256, ’M’, 512, 512, 512, ’M’, 512, 512, 512, ’M’],
111 ’E’: [64, 64, ’M’, 128, 128, ’M’, 256, 256, 256, 256, ’M’, 512, 512, 512, 512, ’M’,
112 512, 512, 512, 512, ’M’],
113 }
114
115 def VGG11(x_images, num_cls):
116 feature = make_layers(x_images, cfg[’A’])
117 return VGG(feature, num_cls)
118
119 def VGG13(x_images, num_cls):
120 feature = make_layers(x_images, cfg[’B’])
121 return VGG(feature, num_cls)
122
123 def VGG16(x_images, num_cls):
124 feature = make_layers(x_images, cfg[’D’])
125 return VGG(feature, num_cls)
126
127 def VGG19(x_images, num_cls):
128 feature = make_layers(x_images, cfg[’E’])
129 return VGG(feature, num_cls)
130
131 """## Net ##"""
132
133 # import tensorflow.compat.v1 as tf
134 # tf.disable_v2_behavior()
135 # import math
136 # import pdb
137 # from tensorflow.python.client import device_lib
138 # import numpy as np
139 # from net.vgg import *
140
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141 def CNN_4layers(x_image, num_cls, reuse=False):
142 _NUM_CLASSES = num_cls
143 with tf.variable_scope(’conv1’, reuse=reuse) as scope:
144 conv = tf.keras.layers.Conv2D(
145 filters=64,
146 kernel_size=[3, 3],
147 padding=’SAME’,
148 activation=tf.nn.relu
149 )(x_image)
150
151 with tf.variable_scope(’conv2’, reuse=reuse) as scope:
152 conv = tf.keras.layers.Conv2D(
153 filters=64,
154 kernel_size=[3, 3],
155 padding=’SAME’,
156 activation=tf.nn.relu
157 )(conv)
158
159 with tf.variable_scope(’conv3’, reuse=reuse) as scope:
160 conv = tf.keras.layers.Conv2D(
161 filters=64,
162 kernel_size=[3, 3],
163 padding=’SAME’,
164 activation=tf.nn.relu
165 )(conv)
166
167 with tf.variable_scope(’fully_connected’, reuse=reuse) as scope:
168 dim =np.prod(conv.shape[1:])
169 flat = tf.reshape(conv, [−1, dim])
170 outputs = tf.keras.layers.Dense(units=_NUM_CLASSES, name=scope.name)(flat)
171
172 return outputs
173
174
175 # with tf.variable_scope(’conv1’, reuse=reuse) as scope:
176 # conv = tf.keras.layers.Conv2D(
177 # filters=32,
178 # kernel_size=[5, 5],
179 # padding=’SAME’,
180 # activation=tf.nn.relu
181 # )(x_image)
182 # pool = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2, padding=’valid’)(conv)
183 # # N x 16 x 16 x 32
184
185 # with tf.variable_scope(’conv2’, reuse=reuse) as scope:
186 # conv = tf.keras.layers.Conv2D(
187 # filters=64,
188 # kernel_size=[3, 3],
189 # padding=’SAME’,
190 # activation=tf.nn.relu
191 # )(pool)
192 # pool = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2, padding=’valid’)(conv)
193 # # N x 8 x 8 x 64
194
195 # with tf.variable_scope(’conv3’, reuse=reuse) as scope:
196 # conv = tf.keras.layers.Conv2D(
197 # filters=64,
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198 # kernel_size=[3, 3],
199 # padding=’SAME’,
200 # activation=tf.nn.relu
201 # )(pool)
202 # pool = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2, padding=’valid’)(conv)
203 # # N x 4 x 4 x 64
204
205 # with tf.variable_scope(’fully_connected’, reuse=reuse) as scope:
206 # dim =np.prod(pool.shape[1:])
207 # flat = tf.reshape(pool, [-1, dim])
208 # outputs = tf.keras.layers.Dense(units=_NUM_CLASSES, name=scope.name)(flat)
209
210 # return outputs
211
212 def CNN_7layers(x_image, num_cls, reuse=False):
213 _NUM_CLASSES = num_cls
214 with tf.variable_scope(’conv1’, reuse=reuse) as scope:
215 conv = tf.keras.layers.Conv2D(
216 filters=64,
217 kernel_size=[3, 3],
218 padding=’SAME’,
219 activation=tf.nn.relu
220 )(x_image)
221 conv = tf.keras.layers.Conv2D(
222 filters=64,
223 kernel_size=[3, 3],
224 padding=’SAME’,
225 activation=tf.nn.relu
226 )(conv)
227
228 with tf.variable_scope(’conv2’, reuse=reuse) as scope:
229 conv = tf.keras.layers.Conv2D(
230 filters=64,
231 kernel_size=[3, 3],
232 padding=’SAME’,
233 activation=tf.nn.relu
234 )(conv)
235 conv = tf.keras.layers.Conv2D(
236 filters=64,
237 kernel_size=[3, 3],
238 padding=’SAME’,
239 activation=tf.nn.relu
240 )(conv)
241
242 with tf.variable_scope(’conv3’, reuse=reuse) as scope:
243 conv = tf.keras.layers.Conv2D(
244 filters=64,
245 kernel_size=[3, 3],
246 padding=’SAME’,
247 activation=tf.nn.relu
248 )(conv)
249 conv = tf.keras.layers.Conv2D(
250 filters=64,
251 kernel_size=[3, 3],
252 padding=’SAME’,
253 activation=tf.nn.relu
254 )(conv)
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255
256 with tf.variable_scope(’fully_connected’, reuse=reuse) as scope:
257 dim = np.prod(conv.shape[1:])
258 flat = tf.reshape(conv, [−1, dim])
259 outputs = tf.keras.layers.Dense(units=_NUM_CLASSES, name=scope.name)(flat)
260
261 return outputs
262
263 # with tf.variable_scope(’conv1’, reuse=reuse) as scope:
264 # conv = tf.keras.layers.Conv2D(
265 # filters=32,
266 # kernel_size=[5, 5],
267 # padding=’SAME’,
268 # activation=tf.nn.relu
269 # )(x_image)
270 # conv = tf.keras.layers.Conv2D(
271 # filters=32,
272 # kernel_size=[3, 3],
273 # padding=’SAME’,
274 # activation=tf.nn.relu
275 # )(conv)
276 # pool = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2, padding=’valid’)(conv)
277 # # N x 16 x 16 x 32
278
279 # with tf.variable_scope(’conv2’, reuse=reuse) as scope:
280 # conv = tf.keras.layers.Conv2D(
281 # filters=64,
282 # kernel_size=[3, 3],
283 # padding=’SAME’,
284 # activation=tf.nn.relu
285 # )(pool)
286 # conv = tf.keras.layers.Conv2D(
287 # filters=64,
288 # kernel_size=[3, 3],
289 # padding=’SAME’,
290 # activation=tf.nn.relu
291 # )(conv)
292 # pool = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2, padding=’valid’)(conv)
293 # # N x 8 x 8 x 64
294
295 # with tf.variable_scope(’conv3’, reuse=reuse) as scope:
296 # conv = tf.keras.layers.Conv2D(
297 # filters=64,
298 # kernel_size=[3, 3],
299 # padding=’SAME’,
300 # activation=tf.nn.relu
301 # )(pool)
302 # conv = tf.keras.layers.Conv2D(
303 # filters=128,
304 # kernel_size=[3, 3],
305 # padding=’SAME’,
306 # activation=tf.nn.relu
307 # )(conv)
308 # pool = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2, padding=’valid’)(conv)
309 # # pool = tf.layers.dropout(pool, rate=0.25, name=scope.name)
310 # # N x 4 x 4 x 128
311
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312 # with tf.variable_scope(’fully_connected’, reuse=reuse) as scope:
313 # dim = np.prod(pool.shape[1:])
314 # flat = tf.reshape(pool, [-1, dim])
315 # outputs = tf.keras.layers.Dense(units=_NUM_CLASSES, name=scope.name)(flat)
316
317 # return outputs
318
319 def CNN(net, num_cls, dim):
320
321 _NUM_CLASSES = num_cls
322 _IMAGE_HEIGHT, _IMAGE_WIDTH, _IMAGE_CHANNELS = dim
323
324 with tf.name_scope(’main_params’):
325 x = tf.placeholder(tf.float32, shape=[None, _IMAGE_HEIGHT, _IMAGE_WIDTH, _IMAGE_CHANNELS], name=’

↪→ input_of_net’)
326 y = tf.placeholder(tf.float32, shape=[None, _NUM_CLASSES], name=’labels’)
327
328 # call CNN structure according to string net
329 outputs = globals()[net](x, _NUM_CLASSES)
330 outputs = tf.identity(outputs, name=’output_of_net’)
331
332 return (x, y, outputs)
333
334 """## Utilities ##"""
335
336 # import numpy as np
337 # import math
338 # import scipy.io as sio
339 # import os
340 # import math
341 # import pdb
342
343 class ConfigClass(object):
344 def __init__(self, args, num_data, num_cls):
345 super(ConfigClass, self).__init__()
346 self.args = args
347 self.iter_max = args.iter_max
348
349 # Different notations of regularization term:
350 # In SGD, weight decay:
351 # weight_decay <- lr/(C*num_of_training_samples)
352 # In Newton method:
353 # C <- C * num_of_training_samples
354
355 self.seed = args.seed
356
357 if self.seed is None:
358 print(’You choose not to specify a random seed.’+\
359 ’A different result is produced after each run.’)
360 elif isinstance(self.seed, int) and self.seed >= 0:
361 print(’You specify random seed {}.’.format(self.seed))
362 else:
363 raise ValueError(’Only accept None type or nonnegative integers for’+\
364 ’ random seed argument!’)
365
366 self.train_set = args.train_set
367 self.val_set = args.val_set
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368 self.num_cls = num_cls
369 self.dim = args.dim
370
371 self.num_data = num_data
372 self.GNsize = min(args.GNsize, self.num_data)
373 self.C = args.C ∗ self.num_data
374 self.net = args.net
375
376 self.xi = 0.1
377 self.CGmax = args.CGmax
378 self._lambda = args._lambda
379 self.drop = args.drop
380 self.boost = args.boost
381 self.eta = args.eta
382 self.lr = args.lr
383 self.lr_decay = args.lr_decay
384
385 self.bsize = args.bsize
386 if args.momentum < 0:
387 raise ValueError(’Momentum needs to be larger than 0!’)
388 self.momentum = args.momentum
389
390 self.loss = args.loss
391 if self.loss not in (’MSELoss’, ’CrossEntropy’):
392 raise ValueError(’Unrecognized loss type!’)
393 self.optim = args.optim
394 if self.optim not in (’SGD’, ’NewtonCG’, ’Adam’):
395 raise ValueError(’Only support SGD, Adam & NewtonCG optimizer!’)
396
397 self.log_file = args.log_file
398 self.model_file = args.model_file
399 self.screen_log_only = args.screen_log_only
400
401 if self.screen_log_only:
402 print(’You choose not to store running log. Only store model to {}’.format(self.log_file))
403 else:
404 print(’Saving log to: {}’.format(self.log_file))
405 dir_name, _ = os.path.split(self.log_file)
406 if not os.path.isdir(dir_name):
407 os.makedirs(dir_name, exist_ok=True)
408
409 dir_name, _ = os.path.split(self.model_file)
410 if not os.path.isdir(dir_name):
411 os.makedirs(dir_name, exist_ok=True)
412
413 self.elapsed_time = 0.0
414
415 def read_data(filename, dim, label_enum=None):
416 """
417 args:
418 filename: the path where .mat files are stored
419 label_enum (default None): the list that stores the original labels.
420 If label_enum is None, the function will generate a new list which stores the
421 original labels in a sequence, and map original labels to [0, 1, ... number_of_classes-1].
422 If label_enum is a list, the function will use it to convert
423 original labels to [0, 1,..., number_of_classes-1].
424 """

F-8



425
426 # mat_contents = sio.loadmat(filename)
427 mat_contents = hdf5storage.loadmat(filename)
428 images, labels = mat_contents[’Z’], mat_contents[’y’]
429
430 labels = labels.reshape(−1)
431 images = images.reshape(images.shape[0], −1)
432
433 _IMAGE_HEIGHT, _IMAGE_WIDTH, _IMAGE_CHANNELS = dim
434 zero_to_append = np.zeros((images.shape[0],
435 _IMAGE_CHANNELS∗_IMAGE_HEIGHT∗_IMAGE_WIDTH−np.prod(images.shape[1:])))
436 images = np.append(images, zero_to_append, axis=1)
437
438 # check data validity
439 if label_enum is None:
440 label_enum, labels = np.unique(labels, return_inverse=True)
441 num_cls = labels.max() + 1
442
443 if len(label_enum) != num_cls:
444 raise ValueError(’The number of classes is not equal to the number of\
445 labels in dataset. Please verify them.’)
446 else:
447 num_cls = len(label_enum)
448 forward_map = dict(zip(label_enum, np.arange(num_cls)))
449 labels = np.expand_dims(labels, axis=1)
450 labels = np.apply_along_axis(lambda x:forward_map[x[0]], axis=1, arr=labels)
451
452
453 # convert groundtruth to one-hot encoding
454 labels = np.eye(num_cls)[labels]
455 labels = labels.astype(’float32’)
456
457 return [images, labels], num_cls, label_enum
458
459 def normalize_and_reshape(images, dim, mean_tr=None):
460 _IMAGE_HEIGHT, _IMAGE_WIDTH, _IMAGE_CHANNELS = dim
461 images_shape = [images.shape[0], _IMAGE_CHANNELS, _IMAGE_HEIGHT, _IMAGE_WIDTH]
462
463 # images normalization and zero centering
464 images = images.reshape(images_shape[0], −1)
465
466 images = images/255.0
467
468 if mean_tr is None:
469 print(’No mean of data provided! Normalize images by their own mean.’)
470 # if no mean_tr is provided, we calculate it according to the current data
471 mean_tr = images.mean(axis=0)
472 else:
473 print(’Normalize images according to the provided mean.’)
474 if np.prod(mean_tr.shape) != np.prod(dim):
475 raise ValueError(’Dimension of provided mean does not agree with the data! Please verify them!’)
476
477 images = images − mean_tr
478
479 images = images.reshape(images_shape)
480 # Tensorflow accepts data shape: B x H x W x C
481 images = np.transpose(images, (0, 2, 3, 1))
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482 return images, mean_tr
483
484
485 def predict(sess, network, test_batch, bsize):
486 x, y, loss, outputs = network
487
488 test_inputs, test_labels = test_batch
489 batch_size = bsize
490
491 num_data = test_labels.shape[0]
492 num_batches = math.ceil(num_data/batch_size)
493
494 results = np.zeros(shape=num_data, dtype=np.int)
495 infer_loss = 0.0
496
497 for i in range(num_batches):
498 batch_idx = np.arange(i∗batch_size, min((i+1)∗batch_size, num_data))
499
500 batch_input = test_inputs[batch_idx]
501 batch_labels = test_labels[batch_idx]
502
503 net_outputs, _loss = sess.run(
504 [outputs, loss], feed_dict={x: batch_input, y: batch_labels}
505 )
506
507 results[batch_idx] = np.argmax(net_outputs, axis=1)
508 # note that _loss was summed over batches
509 infer_loss = infer_loss + _loss
510
511 avg_acc = (np.argmax(test_labels, axis=1) == results).mean()
512 avg_loss = infer_loss/num_data
513
514 return avg_loss, avg_acc, results
515
516 """## Newton - CG ##"""
517
518 # import pdb
519 # import tensorflow as tf
520 # import time
521 # import numpy as np
522 # import os
523 # import math
524 # from utilities import predict
525
526 def Rop(f, weights, v):
527 """Implementation of R operator
528 Args:
529 f: any function of weights
530 weights: list of tensors.
531 v: vector for right multiplication
532 Returns:
533 Jv: Jaccobian vector product, length same as
534 the number of output of f
535 """
536 if type(f) == list:
537 u = [tf.zeros_like(ff) for ff in f]
538 else:
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539 u = tf.zeros_like(f) # dummy variable
540 g = tf.gradients(ys=f, xs=weights, grad_ys=u)
541 return tf.gradients(ys=g, xs=u, grad_ys=v)
542
543 def Gauss_Newton_vec(outputs, loss, weights, v):
544 """Implements Gauss-Newton vector product.
545 Args:
546 loss: Loss function.
547 outputs: outputs of the last layer (pre-softmax).
548 weights: Weights, list of tensors.
549 v: vector to be multiplied with Gauss Newton matrix
550 Returns:
551 J’BJv: Guass-Newton vector product.
552 """
553 # Validate the input
554 if type(weights) == list:
555 if len(v) != len(weights):
556 raise ValueError("weights and v must have the same length.")
557
558 grads_outputs = tf.gradients(ys=loss, xs=outputs)
559 BJv = Rop(grads_outputs, weights, v)
560 JBJv = tf.gradients(ys=outputs, xs=weights, grad_ys=BJv)
561 return JBJv
562
563
564 class newton_cg(object):
565 def __init__(self, config, sess, outputs, loss):
566 """
567 initialize operations and vairables that will be used in newton
568 args:
569 sess: tensorflow session
570 outputs: output of the neural network (pre-softmax layer)
571 loss: function to calculate loss
572 """
573 super(newton_cg, self).__init__()
574 self.sess = sess
575 self.config = config
576 self.outputs = outputs
577 self.loss = loss
578 self.param = tf.compat.v1.trainable_variables()
579
580 self.CGiter = 0
581 FLOAT = tf.float32
582 model_weight = self.vectorize(self.param)
583
584 # initial variable used in CG
585 zeros = tf.zeros(model_weight.get_shape(), dtype=FLOAT)
586 self.r = tf.Variable(zeros, dtype=FLOAT, trainable=False)
587 self.v = tf.Variable(zeros, dtype=FLOAT, trainable=False)
588 self.s = tf.Variable(zeros, dtype=FLOAT, trainable=False)
589 self.g = tf.Variable(zeros, dtype=FLOAT, trainable=False)
590 # initial Gv, f for method minibatch
591 self.Gv = tf.Variable(zeros, dtype=FLOAT, trainable=False)
592 self.f = tf.Variable(0., dtype=FLOAT, trainable=False)
593
594 # rTr, cgtol and beta to be used in CG
595 self.rTr = tf.Variable(0., dtype=FLOAT, trainable=False)
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596 self.cgtol = tf.Variable(0., dtype=FLOAT, trainable=False)
597 self.beta = tf.Variable(0., dtype=FLOAT, trainable=False)
598
599 # placeholder alpha, old_alpha and lambda
600 self.alpha = tf.compat.v1.placeholder(FLOAT, shape=[])
601 self.old_alpha = tf.compat.v1.placeholder(FLOAT, shape=[])
602 self._lambda = tf.compat.v1.placeholder(FLOAT, shape=[])
603
604 self.num_grad_segment = math.ceil(self.config.num_data/self.config.bsize)
605 self.num_Gv_segment = math.ceil(self.config.GNsize/self.config.bsize)
606
607 cal_loss, cal_lossgrad, cal_lossGv, \
608 add_reg_avg_loss, add_reg_avg_grad, add_reg_avg_Gv, \
609 zero_loss, zero_grad, zero_Gv = self._ops_in_minibatch()
610
611 # initial operations that will be used in minibatch and newton
612 self.cal_loss = cal_loss
613 self.cal_lossgrad = cal_lossgrad
614 self.cal_lossGv = cal_lossGv
615 self.add_reg_avg_loss = add_reg_avg_loss
616 self.add_reg_avg_grad = add_reg_avg_grad
617 self.add_reg_avg_Gv = add_reg_avg_Gv
618 self.zero_loss = zero_loss
619 self.zero_grad = zero_grad
620 self.zero_Gv = zero_Gv
621
622 self.CG, self.update_v = self._CG()
623 self.init_cg_vars = self._init_cg_vars()
624 self.update_gs = tf.tensordot(self.s, self.g, axes=1)
625 self.update_sGs = 0.5∗tf.tensordot(self.s, −self.g−self.r−self._lambda∗self.s, axes=1)
626 self.update_model = self._update_model()
627 self.gnorm = self.calc_norm(self.g)
628
629
630 def vectorize(self, tensors):
631 if isinstance(tensors, list) or isinstance(tensors, tuple):
632 vector = [tf.reshape(tensor, [−1]) for tensor in tensors]
633 return tf.concat(vector, 0)
634 else:
635 return tensors
636
637 def inverse_vectorize(self, vector, param):
638 if isinstance(vector, list):
639 return vector
640 else:
641 tensors = []
642 offset = 0
643 num_total_param = np.sum([np.prod(p.shape.as_list()) for p in param])
644 for p in param:
645 numel = np.prod(p.shape.as_list())
646 tensors.append(tf.reshape(vector[offset: offset+numel], p.shape))
647 offset += numel
648
649 assert offset == num_total_param
650 return tensors
651
652 def calc_norm(self, v):
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653 # default: frobenius norm
654 if isinstance(v, list):
655 norm = 0.
656 for p in v:
657 norm = norm + tf.norm(tensor=p)∗∗2
658 return norm∗∗0.5
659 else:
660 return tf.norm(tensor=v)
661
662 def _ops_in_minibatch(self):
663 """
664 Define operations that will be used in method minibatch
665 Vectorization is already a deep copy operation.
666 Before using newton method, loss needs to be summed over training samples
667 to make results consistent.
668 """
669
670 def cal_loss():
671 return tf.compat.v1.assign(self.f, self.f + self.loss)
672
673 def cal_lossgrad():
674 update_f = tf.compat.v1.assign(self.f, self.f + self.loss)
675
676 grad = tf.gradients(ys=self.loss, xs=self.param)
677 grad = self.vectorize(grad)
678 update_grad = tf.compat.v1.assign(self.g, self.g + grad)
679
680 return tf.group(∗[update_f, update_grad])
681
682 def cal_lossGv():
683 v = self.inverse_vectorize(self.v, self.param)
684 Gv = Gauss_Newton_vec(self.outputs, self.loss, self.param, v)
685 Gv = self.vectorize(Gv)
686 return tf.compat.v1.assign(self.Gv, self.Gv + Gv)
687
688 # add regularization term to loss, gradient and Gv and further average over batches
689 def add_reg_avg_loss():
690 model_weight = self.vectorize(self.param)
691 reg = (self.calc_norm(model_weight))∗∗2
692 reg = 1.0/(2∗self.config.C) ∗ reg
693 return tf.compat.v1.assign(self.f, reg + self.f/self.config.num_data)
694
695 def add_reg_avg_lossgrad():
696 model_weight = self.vectorize(self.param)
697 reg_grad = model_weight/self.config.C
698 return tf.compat.v1.assign(self.g, reg_grad + self.g/self.config.num_data)
699
700 def add_reg_avg_lossGv():
701 return tf.compat.v1.assign(self.Gv, (self._lambda + 1/self.config.C)∗self.v
702 + self.Gv/self.config.GNsize)
703
704 # zero out loss, grad and Gv
705 def zero_loss():
706 return tf.compat.v1.assign(self.f, tf.zeros_like(self.f))
707 def zero_grad():
708 return tf.compat.v1.assign(self.g, tf.zeros_like(self.g))
709 def zero_Gv():
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710 return tf.compat.v1.assign(self.Gv, tf.zeros_like(self.Gv))
711
712 return (cal_loss(), cal_lossgrad(), cal_lossGv(),
713 add_reg_avg_loss(), add_reg_avg_lossgrad(), add_reg_avg_lossGv(),
714 zero_loss(), zero_grad(), zero_Gv())
715
716 def minibatch(self, data_batch, place_holder_x, place_holder_y, mode):
717 """
718 A function to evaluate either function value, global gradient or sub-sampled Gv
719 """
720 if mode not in (’funonly’, ’fungrad’, ’Gv’):
721 raise ValueError(’Unknown mode other than funonly & fungrad & Gv!’)
722
723 inputs, labels = data_batch
724 num_data = labels.shape[0]
725 num_segment = math.ceil(num_data/self.config.bsize)
726 x, y = place_holder_x, place_holder_y
727
728 # before estimation starts, need to zero out f, grad and Gv according to the mode
729
730 if mode == ’funonly’:
731 assert num_data == self.config.num_data
732 assert num_segment == self.num_grad_segment
733 self.sess.run(self.zero_loss)
734 elif mode == ’fungrad’:
735 assert num_data == self.config.num_data
736 assert num_segment == self.num_grad_segment
737 self.sess.run([self.zero_loss, self.zero_grad])
738 else:
739 assert num_data == self.config.GNsize
740 assert num_segment == self.num_Gv_segment
741 self.sess.run(self.zero_Gv)
742
743 for i in range(num_segment):
744
745 load_time = time.time()
746 idx = np.arange(i ∗ self.config.bsize, min((i+1) ∗ self.config.bsize, num_data))
747 batch_input = inputs[idx]
748 batch_labels = labels[idx]
749 batch_input = np.ascontiguousarray(batch_input)
750 batch_labels = np.ascontiguousarray(batch_labels)
751 self.config.elapsed_time += time.time() − load_time
752
753 if mode == ’funonly’:
754
755 self.sess.run(self.cal_loss, feed_dict={
756 x: batch_input,
757 y: batch_labels,})
758
759 elif mode == ’fungrad’:
760
761 self.sess.run(self.cal_lossgrad, feed_dict={
762 x: batch_input,
763 y: batch_labels,})
764
765 else:
766
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767 self.sess.run(self.cal_lossGv, feed_dict={
768 x: batch_input,
769 y: batch_labels})
770
771 # average over batches
772 if mode == ’funonly’:
773 self.sess.run(self.add_reg_avg_loss)
774 elif mode == ’fungrad’:
775 self.sess.run([self.add_reg_avg_loss, self.add_reg_avg_grad])
776 else:
777 self.sess.run(self.add_reg_avg_Gv,
778 feed_dict={self._lambda: self.config._lambda})
779
780
781 def _update_model(self):
782 update_model_ops = []
783 x = self.inverse_vectorize(self.s, self.param)
784 for i, p in enumerate(self.param):
785 op = tf.compat.v1.assign(p, p + (self.alpha−self.old_alpha) ∗ x[i])
786 update_model_ops.append(op)
787 return tf.group(∗update_model_ops)
788
789 def _init_cg_vars(self):
790 init_ops = []
791
792 init_r = tf.compat.v1.assign(self.r, −self.g)
793 init_v = tf.compat.v1.assign(self.v, −self.g)
794 init_s = tf.compat.v1.assign(self.s, tf.zeros_like(self.g))
795 gnorm = self.calc_norm(self.g)
796 init_rTr = tf.compat.v1.assign(self.rTr, gnorm∗∗2)
797 init_cgtol = tf.compat.v1.assign(self.cgtol, self.config.xi∗gnorm)
798
799 init_ops = [init_r, init_v, init_s, init_rTr, init_cgtol]
800
801 return tf.group(∗init_ops)
802
803 def _CG(self):
804 """
805 CG:
806 define operations that will be used in method newton
807 Same as the previous loss calculation,
808 Gv has been summed over batches when samples were fed into Neural Network.
809 """
810
811 def CG_ops():
812
813 vGv = tf.tensordot(self.v, self.Gv, axes=1)
814
815 alpha = self.rTr / vGv
816 with tf.control_dependencies([alpha]):
817 update_s = tf.compat.v1.assign(self.s, self.s + alpha ∗ self.v, name=’update_s_ops’)
818 update_r = tf.compat.v1.assign(self.r, self.r − alpha ∗ self.Gv, name=’update_r_ops’)
819
820 with tf.control_dependencies([update_s, update_r]):
821 rnewTrnew = self.calc_norm(update_r)∗∗2
822 update_beta = tf.compat.v1.assign(self.beta, rnewTrnew / self.rTr)
823 with tf.control_dependencies([update_beta]):

F-15



824 update_rTr = tf.compat.v1.assign(self.rTr, rnewTrnew, name=’update_rTr_ops’)
825
826 return tf.group(∗[update_s, update_beta, update_rTr])
827
828 def update_v():
829 return tf.compat.v1.assign(self.v, self.r + self.beta∗self.v, name=’update_v’)
830
831 return (CG_ops(), update_v())
832
833
834 def newton(self, full_batch, val_batch, saver, network, test_network=None):
835 """
836 Conduct newton steps for training
837 args:
838 full_batch & val_batch: provide training set and validation set. The function will
839 save the best model evaluted on validation set for future prediction.
840 network: a tuple contains (x, y, loss, outputs).
841 test_network: a tuple similar to argument network. If you use layers which behave differently
842 in test phase such as batchnorm, a separate test_network is needed.
843 return:
844 None
845 """
846 # check whether data is valid
847 full_inputs, full_labels = full_batch
848 assert full_inputs.shape[0] == full_labels.shape[0]
849
850 if full_inputs.shape[0] != self.config.num_data:
851 raise ValueError(’The number of full batch inputs does not agree with the config argument.\
852 This is important because global loss is averaged over those inputs’)
853
854 x, y, _, outputs = network
855
856 tf.compat.v1.summary.scalar(’loss’, self.f)
857 merged = tf.compat.v1.summary.merge_all()
858 train_writer = tf.compat.v1.summary.FileWriter(’./summary/train’, self.sess.graph)
859
860 print(self.config.args)
861 if not self.config.screen_log_only:
862 log_file = open(self.config.log_file, ’w’)
863 print(self.config.args, file=log_file)
864
865 self.minibatch(full_batch, x, y, mode=’fungrad’)
866 f = self.sess.run(self.f)
867 output_str = ’initial f: {:.3f}’.format(f)
868 print(output_str)
869 if not self.config.screen_log_only:
870 print(output_str, file=log_file)
871
872 best_acc = 0.0
873
874 total_running_time = 0.0
875 self.config.elapsed_time = 0.0
876 total_CG = 0
877
878 for k in range(self.config.iter_max):
879
880 # randomly select the batch for Gv estimation
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881 idx = np.random.choice(np.arange(0, full_labels.shape[0]),
882 size=self.config.GNsize, replace=False)
883
884 mini_inputs = full_inputs[idx]
885 mini_labels = full_labels[idx]
886
887 start = time.time()
888
889 self.sess.run(self.init_cg_vars)
890 cgtol = self.sess.run(self.cgtol)
891
892 avg_cg_time = 0.0
893 for CGiter in range(1, self.config.CGmax+1):
894
895 cg_time = time.time()
896 self.minibatch((mini_inputs, mini_labels), x, y, mode=’Gv’)
897 avg_cg_time += time.time() − cg_time
898
899 self.sess.run(self.CG)
900
901 rnewTrnew = self.sess.run(self.rTr)
902
903 if rnewTrnew∗∗0.5 <= cgtol or CGiter == self.config.CGmax:
904 break
905
906 self.sess.run(self.update_v)
907
908 print(’Avg time per Gv iteration: {:.5f} s\r\n’.format(avg_cg_time/CGiter))
909
910 gs, sGs = self.sess.run([self.update_gs, self.update_sGs], feed_dict={
911 self._lambda: self.config._lambda
912 })
913
914 # line_search
915 f_old = f
916 alpha = 1
917 while True:
918
919 old_alpha = 0 if alpha == 1 else alpha/0.5
920
921 self.sess.run(self.update_model, feed_dict={
922 self.alpha:alpha, self.old_alpha:old_alpha
923 })
924
925 prered = alpha∗gs + (alpha∗∗2)∗sGs
926
927 self.minibatch(full_batch, x, y, mode=’funonly’)
928 f = self.sess.run(self.f)
929
930 actred = f − f_old
931
932 if actred <= self.config.eta∗alpha∗gs:
933 break
934
935 alpha ∗= 0.5
936
937 # update lambda
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938 ratio = actred / prered
939 if ratio < 0.25:
940 self.config._lambda ∗= self.config.boost
941 elif ratio >= 0.75:
942 self.config._lambda ∗= self.config.drop
943
944 self.minibatch(full_batch, x, y, mode=’fungrad’)
945 f = self.sess.run(self.f)
946
947 gnorm = self.sess.run(self.gnorm)
948
949 summary = self.sess.run(merged)
950 train_writer.add_summary(summary, k)
951
952 # exclude data loading time for fair comparison
953 end = time.time()
954
955 end = end − self.config.elapsed_time
956 total_running_time += end−start
957
958 self.config.elapsed_time = 0.0
959
960 total_CG += CGiter
961
962 output_str = ’{}−iter f: {:.3f} |g|: {:.5f} alpha: {:.3e} ratio: {:.3f} lambda: {:.5f} #CG: {} actred: {:.5f} prered:

↪→ {:.5f} time: {:.3f}’.\
963 format(k, f, gnorm, alpha, actred/prered, self.config._lambda, CGiter, actred, prered, end−start)
964 print(output_str)
965 if not self.config.screen_log_only:
966 print(output_str, file=log_file)
967
968 if val_batch is not None:
969 # Evaluate the performance after every Newton Step
970 if test_network == None:
971 val_loss, val_acc, _ = predict(
972 self.sess,
973 network=(x, y, self.loss, outputs),
974 test_batch=val_batch,
975 bsize=self.config.bsize,
976 )
977 else:
978 # A separat test network part has not been done...
979 val_loss, val_acc, _ = predict(
980 self.sess,
981 network=test_network,
982 test_batch=val_batch,
983 bsize=self.config.bsize
984 )
985
986 output_str = ’\r\n {}−iter val_acc: {:.3f}% val_loss {:.3f}\r\n’.\
987 format(k, val_acc∗100, val_loss)
988 print(output_str)
989 if not self.config.screen_log_only:
990 print(output_str, file=log_file)
991
992 if val_acc > best_acc:
993 best_acc = val_acc

F-18



994 checkpoint_path = self.config.model_file
995 save_path = saver.save(self.sess, checkpoint_path)
996 print(’Best model saved in {}\r\n’.format(save_path))
997
998 if val_batch is None:
999 checkpoint_path = self.config.model_file

1000 save_path = saver.save(self.sess, checkpoint_path)
1001 print(’Model at the last iteration saved in {}\r\n’.format(save_path))
1002 output_str = ’total_#CG {} | total running time {:.3f}s’.format(total_CG, total_running_time)
1003 else:
1004 output_str = ’Final acc: {:.3f}% | best acc {:.3f}% | total_#CG {} | total running time {:.3f}s’.\
1005 format(val_acc∗100, best_acc∗100, total_CG, total_running_time)
1006 print(output_str)
1007 if not self.config.screen_log_only:
1008 print(output_str, file=log_file)
1009 log_file.close()
1010
1011 """##Set Train Arguments##"""
1012
1013 # Arguments for HFO - PSSP dataset
1014 train_args = ("−−optim NewtonCG −−GNsize 2048 −−C 0.01 −−net CNN_4layers −−bsize 12288 −−iter_max 50

↪→ " +
1015 "−−train_set ./" + TRAIN_FILE + " −−val_set ./" + TEST_FILE + " −−dim " +
1016 str(WINDOW) + " " + str(AMINO_ACID_LEN) + " 1").split()
1017
1018 # Arguments for SGD - PSSP dataset
1019 # train_args = ("--optim SGD --lr 0.01 --C 0.01 --net CNN_4layers --bsize 256 " +
1020 # "--train_set ./" + TRAIN_FILE + " --val_set ./" + TEST_FILE + " --dim " +
1021 # str(WINDOW) + " " + str(AMINO_ACID_LEN) + " 1").split()
1022
1023 """##Declare Train Function##"""
1024
1025 # import pdb
1026 # import numpy as np
1027 # import tensorflow as tf
1028 # tf.compat.v1.disable_eager_execution()
1029 # import time
1030 # import math
1031 # import argparse
1032
1033 # from net.net import CNN
1034 # from newton_cg import newton_cg
1035 # from utilities import read_data, predict, ConfigClass, normalize_and_reshape
1036
1037 def parse_args():
1038 parser = argparse.ArgumentParser(description=’Newton method on DNN’)
1039 parser.add_argument(’−−C’, dest=’C’,
1040 help=’regularization term, or so−called weight decay where’+\
1041 ’weight_decay = lr/(C∗num_of_samples) in this implementation’ ,
1042 default=0.01, type=float)
1043
1044 # Newton method arguments
1045 parser.add_argument(’−−GNsize’, dest=’GNsize’,
1046 help=’number of samples for estimating Gauss−Newton matrix’,
1047 default=4096, type=int)
1048 parser.add_argument(’−−iter_max’, dest=’iter_max’,
1049 help=’the maximal number of Newton iterations’,
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1050 default=100, type=int)
1051 parser.add_argument(’−−xi’, dest=’xi’,
1052 help=’the tolerance in the relative stopping condition for CG’,
1053 default=0.1, type=float)
1054 parser.add_argument(’−−drop’, dest=’drop’,
1055 help=’the drop constants for the LM method’,
1056 default=2/3, type=float)
1057 parser.add_argument(’−−boost’, dest=’boost’,
1058 help=’the boost constants for the LM method’,
1059 default=3/2, type=float)
1060 parser.add_argument(’−−eta’, dest=’eta’,
1061 help=’the parameter for the line search stopping condition’,
1062 default=0.0001, type=float)
1063 parser.add_argument(’−−CGmax’, dest=’CGmax’,
1064 help=’the maximal number of CG iterations’,
1065 default=250, type=int)
1066 parser.add_argument(’−−lambda’, dest=’_lambda’,
1067 help=’the initial lambda for the LM method’,
1068 default=1, type=float)
1069
1070 # SGD arguments
1071 parser.add_argument(’−−epoch_max’, dest=’epoch’,
1072 help=’number of training epoch’,
1073 default=500, type=int)
1074 parser.add_argument(’−−lr’, dest=’lr’,
1075 help=’learning rate’,
1076 default=0.01, type=float)
1077 parser.add_argument(’−−decay’, dest=’lr_decay’,
1078 help=’learning rate decay over each mini−batch update’,
1079 default=0, type=float)
1080 parser.add_argument(’−−momentum’, dest=’momentum’,
1081 help=’momentum of learning’,
1082 default=0, type=float)
1083
1084 # Model training arguments
1085 parser.add_argument(’−−bsize’, dest=’bsize’,
1086 help=’batch size to evaluate stochastic gradient, Gv, etc. Since the sampled data \
1087 for computing Gauss−Newton matrix and etc. might not fit into memeory \
1088 for one time, we will split the data into several segements and average\
1089 over them.’,
1090 default=1024, type=int)
1091 parser.add_argument(’−−net’, dest=’net’,
1092 help=’classifier type’,
1093 default=’CNN_4layers’, type=str)
1094 parser.add_argument(’−−train_set’, dest=’train_set’,
1095 help=’provide the directory of .mat file for training’,
1096 default=None, type=str)
1097 parser.add_argument(’−−val_set’, dest=’val_set’,
1098 help=’provide the directory of .mat file for validation’,
1099 default=None, type=str)
1100 parser.add_argument(’−−model’, dest=’model_file’,
1101 help=’model saving address’,
1102 default=’./saved_model/model.ckpt’, type=str)
1103 parser.add_argument(’−−log’, dest=’log_file’,
1104 help=’log saving directory’,
1105 default=’./running_log/logger.log’, type=str)
1106 parser.add_argument(’−−screen_log_only’, dest=’screen_log_only’,
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1107 help=’screen printing running log instead of storing it’,
1108 action=’store_true’)
1109 parser.add_argument(’−−optim’, ’−optim’,
1110 help=’which optimizer to use: SGD, Adam or NewtonCG’,
1111 default=’NewtonCG’, type=str)
1112 parser.add_argument(’−−loss’, dest=’loss’,
1113 help=’which loss function to use: MSELoss or CrossEntropy’,
1114 default=’MSELoss’, type=str)
1115 parser.add_argument(’−−dim’, dest=’dim’, nargs=’+’, help=’input dimension of data,’+\
1116 ’shape must be: height width num_channels’,
1117 default=[32, 32, 3], type=int)
1118 parser.add_argument(’−−seed’, dest=’seed’, help=’a nonnegative integer for \
1119 reproducibility’, type=int)
1120
1121 args = parser.parse_args(args=train_args)
1122 return args
1123
1124
1125 args = parse_args()
1126
1127 def init_model(param):
1128 init_ops = []
1129 for p in param:
1130 if ’kernel’ in p.name:
1131 weight = np.random.standard_normal(p.shape)∗ np.sqrt(2.0 / ((np.prod(p.get_shape().as_list()[:−1]))))
1132 opt = tf.compat.v1.assign(p, weight)
1133 elif ’bias’ in p.name:
1134 zeros = np.zeros(p.shape)
1135 opt = tf.compat.v1.assign(p, zeros)
1136 init_ops.append(opt)
1137 return tf.group(∗init_ops)
1138
1139 def gradient_trainer(config, sess, network, full_batch, val_batch, saver, test_network):
1140 x, y, loss, outputs, = network
1141
1142 global_step = tf.Variable(initial_value=0, trainable=False, name=’global_step’)
1143 learning_rate = tf.compat.v1.placeholder(tf.float32, shape=[], name=’learning_rate’)
1144
1145 # Probably not a good way to add regularization.
1146 # Just to confirm the implementation is the same as MATLAB.
1147 reg = 0.0
1148 param = tf.compat.v1.trainable_variables()
1149 for p in param:
1150 reg = reg + tf.reduce_sum(input_tensor=tf.pow(p,2))
1151 reg_const = 1/(2∗config.C)
1152 batch_size = tf.compat.v1.cast(tf.shape(x)[0], tf.float32)
1153 loss_with_reg = reg_const∗reg + loss/batch_size
1154
1155 if config.optim == ’SGD’:
1156 optimizer = tf.compat.v1.train.MomentumOptimizer(
1157 learning_rate=learning_rate,
1158 momentum=config.momentum).minimize(
1159 loss_with_reg,
1160 global_step=global_step)
1161 elif config.optim == ’Adam’:
1162 optimizer = tf.compat.v1.train.AdamOptimizer(learning_rate=learning_rate,
1163 beta1=0.9,
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1164 beta2=0.999,
1165 epsilon=1e−08).minimize(
1166 loss_with_reg,
1167 global_step=global_step)
1168
1169 train_inputs, train_labels = full_batch
1170 num_data = train_labels.shape[0]
1171 num_iters = math.ceil(num_data/config.bsize)
1172
1173 print(config.args)
1174 if not config.screen_log_only:
1175 log_file = open(config.log_file, ’w’)
1176 print(config.args, file=log_file)
1177 sess.run(tf.compat.v1.global_variables_initializer())
1178
1179
1180 print(’−−−−−−−−−−−−−− initializing network by methods in He et al. (2015) −−−−−−−−−−−−−−’)
1181 param = tf.compat.v1.trainable_variables()
1182 sess.run(init_model(param))
1183
1184 total_running_time = 0.0
1185 best_acc = 0.0
1186 lr = config.lr
1187
1188 for epoch in range(0, args.epoch):
1189
1190 loss_avg = 0.0
1191 start = time.time()
1192
1193 for i in range(num_iters):
1194
1195 load_time = time.time()
1196 # randomly select the batch
1197 idx = np.random.choice(np.arange(0, num_data),
1198 size=config.bsize, replace=False)
1199
1200 batch_input = train_inputs[idx]
1201 batch_labels = train_labels[idx]
1202 batch_input = np.ascontiguousarray(batch_input)
1203 batch_labels = np.ascontiguousarray(batch_labels)
1204 config.elapsed_time += time.time() − load_time
1205
1206 step, _, batch_loss= sess.run(
1207 [global_step, optimizer, loss_with_reg],
1208 feed_dict = {x: batch_input, y: batch_labels, learning_rate: lr}
1209 )
1210
1211 # print initial loss
1212 if epoch == 0 and i == 0:
1213 output_str = ’initial f (reg + avg. loss of 1st batch): {:.3f}’.format(batch_loss)
1214 print(output_str)
1215 if not config.screen_log_only:
1216 print(output_str, file=log_file)
1217
1218 loss_avg = loss_avg + batch_loss
1219 # print log every 10% of the iterations
1220 if i % math.ceil(num_iters/10) == 0:
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1221 end = time.time()
1222 output_str = ’Epoch {}: {}/{} | loss {:.4f} | lr {:.6} | elapsed time {:.3f}’\
1223 .format(epoch, i, num_iters, batch_loss , lr, end−start)
1224 print(output_str)
1225 if not config.screen_log_only:
1226 print(output_str, file=log_file)
1227
1228 # adjust learning rate for SGD by inverse time decay
1229 if args.optim != ’Adam’:
1230 lr = config.lr/(1 + args.lr_decay∗step)
1231
1232 # exclude data loading time for fair comparison
1233 epoch_end = time.time() − config.elapsed_time
1234 total_running_time += epoch_end − start
1235 config.elapsed_time = 0.0
1236
1237 if val_batch is None:
1238 output_str = ’In epoch {} train loss: {:.3f} | epoch time {:.3f}’\
1239 .format(epoch, loss_avg/(i+1), epoch_end−start)
1240 else:
1241 if test_network == None:
1242 val_loss, val_acc, _ = predict(
1243 sess,
1244 network=(x, y, loss, outputs),
1245 test_batch=val_batch,
1246 bsize=config.bsize
1247 )
1248 else:
1249 # A separat test network part have been done...
1250 val_loss, val_acc, _ = predict(
1251 sess,
1252 network=test_network,
1253 test_batch=val_batch,
1254 bsize=config.bsize
1255 )
1256
1257 output_str = ’In epoch {} train loss: {:.3f} | val loss: {:.3f} | val accuracy: {:.3f}% | epoch time {:.3f}’\
1258 .format(epoch, loss_avg/(i+1), val_loss, val_acc∗100, epoch_end−start)
1259
1260 if val_acc > best_acc:
1261 best_acc = val_acc
1262 checkpoint_path = config.model_file
1263 save_path = saver.save(sess, checkpoint_path)
1264 print(’Saved best model in {}’.format(save_path))
1265
1266 print(output_str)
1267 if not config.screen_log_only:
1268 print(output_str, file=log_file)
1269
1270 if val_batch is None:
1271 checkpoint_path = config.model_file
1272 save_path = saver.save(sess, checkpoint_path)
1273 print(’Model at the last iteration saved in {}\r\n’.format(save_path))
1274 output_str = ’total running time {:.3f}s’.format(total_running_time)
1275 else:
1276 output_str = ’Final acc: {:.3f}% | best acc {:.3f}% | total running time {:.3f}s’\
1277 .format(val_acc∗100, best_acc∗100, total_running_time)
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1278
1279 print(output_str)
1280 if not config.screen_log_only:
1281 print(output_str, file=log_file)
1282 log_file.close()
1283
1284 def newton_trainer(config, sess, network, full_batch, val_batch, saver, test_network):
1285
1286 _, _, loss, outputs = network
1287 newton_solver = newton_cg(config, sess, outputs, loss)
1288 sess.run(tf.compat.v1.global_variables_initializer())
1289
1290 print(’−−−−−−−−−−−−−− initializing network by methods in He et al. (2015) −−−−−−−−−−−−−−’)
1291 param = tf.compat.v1.trainable_variables()
1292 sess.run(init_model(param))
1293 newton_solver.newton(full_batch, val_batch, saver, network, test_network)
1294
1295
1296 def train_model():
1297 full_batch, num_cls, label_enum = read_data(filename=args.train_set, dim=args.dim)
1298
1299 if args.val_set is None:
1300 print(’No validation set is provided. Will output model at the last iteration.’)
1301 val_batch = None
1302 else:
1303 val_batch, _, _ = read_data(filename=args.val_set, dim=args.dim, label_enum=label_enum)
1304
1305 num_data = full_batch[0].shape[0]
1306
1307 config = ConfigClass(args, num_data, num_cls)
1308
1309 if isinstance(config.seed, int):
1310 tf.compat.v1.random.set_random_seed(config.seed)
1311 np.random.seed(config.seed)
1312
1313 if config.net in (’CNN_4layers’, ’CNN_7layers’, ’VGG11’, ’VGG13’, ’VGG16’,’VGG19’):
1314 x, y, outputs = CNN(config.net, num_cls, config.dim)
1315 test_network = None
1316 else:
1317 raise ValueError(’Unrecognized training model’)
1318
1319 if config.loss == ’MSELoss’:
1320 loss = tf.reduce_sum(input_tensor=tf.pow(outputs−y, 2))
1321 else:
1322 loss = tf.reduce_sum(input_tensor=tf.nn.softmax_cross_entropy_with_logits(logits=outputs, labels=y))
1323
1324 network = (x, y, loss, outputs)
1325
1326 sess_config = tf.compat.v1.ConfigProto()
1327 sess_config.gpu_options.allow_growth = True
1328
1329 with tf.compat.v1.Session(config=sess_config) as sess:
1330
1331 full_batch[0], mean_tr = normalize_and_reshape(full_batch[0], dim=config.dim, mean_tr=None)
1332 if val_batch is not None:
1333 val_batch[0], _ = normalize_and_reshape(val_batch[0], dim=config.dim, mean_tr=mean_tr)
1334
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1335 param = tf.compat.v1.trainable_variables()
1336
1337 mean_param = tf.compat.v1.get_variable(name=’mean_tr’, initializer=mean_tr, trainable=False,
1338 validate_shape=True, use_resource=False)
1339 label_enum_var=tf.compat.v1.get_variable(name=’label_enum’, initializer=label_enum, trainable=False,
1340 validate_shape=True, use_resource=False)
1341 saver = tf.compat.v1.train.Saver(var_list=param+[mean_param])
1342
1343 if config.optim in (’SGD’, ’Adam’):
1344 gradient_trainer(
1345 config, sess, network, full_batch, val_batch, saver, test_network)
1346 elif config.optim == ’NewtonCG’:
1347 newton_trainer(
1348 config, sess, network, full_batch, val_batch, saver, test_network=test_network)
1349
1350 """## Train ##"""
1351
1352 train_model()
1353
1354 """## Predict ##"""
1355
1356 # Arguments for prediction PSSP dataset
1357 pred_args = ("−−bsize 1024 −−test_set ./" + TEST_FILE + " −−train_set ./" + TRAIN_FILE +
1358 " −−model ./saved_model/model.ckpt −−dim " +
1359 str(WINDOW) + " " + str(AMINO_ACID_LEN) + " 1").split()
1360
1361 test_origin = "https://gitlab.com/perf.ai/pssp_project/−/raw/master/originalData_" + dataset + "/testSet" + str(ds_num) + ".txt"
1362 train_origin = "https://gitlab.com/perf.ai/pssp_project/−/raw/master/originalData_" + dataset + "/trainSet" + str(ds_num) + ".txt"
1363 excluded_proteins = "https://gitlab.com/perf.ai/pssp_project/−/raw/master/originalData_" + dataset + "/excluded_" + dataset + ".

↪→ txt"
1364 train_origin, test_origin, excluded_proteins
1365
1366 import requests
1367 test_f = requests.get(test_origin)
1368 test_f = test_f.text.split(’\n’)[0:−1]
1369 train_f = requests.get(train_origin)
1370 train_f = train_f.text.split(’\n’)[0:−1]
1371 excluded_f = requests.get(excluded_proteins)
1372 excluded_f = excluded_f.text.split(’\n’)[0:−1]
1373
1374 excluded_f
1375
1376 TEST_PRED_FILE="pred_testSet{0}.txt".format(ds_num)
1377 TRAIN_PRED_FILE="pred_trainSet{0}.txt".format(ds_num)
1378 TEST_PRED_FILE
1379
1380 """##Declare Predict Methods##"""
1381
1382 def create_output_pred(pred_test, pred_train):
1383 pred = pred_test.astype(int)
1384 labels = [’C’, ’E’, ’H’]
1385 counter = 0
1386 outFileName = TEST_PRED_FILE
1387 with open(outFileName, ’w’) as out_file:
1388 for line in range(0, len(test_f)//3):
1389 protein_name = test_f[line∗3]
1390 if (protein_name in excluded_f):
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1391 # print(protein_name)
1392 continue
1393 primary_structure = test_f[line∗3+1].replace(’!’, ’’)
1394 secondary_structure = test_f[line∗3+2].replace(’!’, ’’)
1395 prediction = ""
1396 for c in secondary_structure:
1397 if (c != ’!’):
1398 prediction = prediction + labels[pred[counter]]
1399 counter += 1
1400 # else:
1401 # prediction = prediction + c
1402 # print("Protein name: " + protein_name)
1403 # print("Actual: " + secondary_structure)
1404 # print("Prediction: " + prediction)
1405 out_file.write(protein_name + "\n")
1406 out_file.write(primary_structure + "\n")
1407 out_file.write(secondary_structure + "\n")
1408 out_file.write(prediction + "\n")
1409 pred = pred_train.astype(int)
1410 counter = 0
1411 outFileName = TRAIN_PRED_FILE
1412 with open(outFileName, ’w’) as out_file:
1413 for line in range(0, len(train_f)//3):
1414 protein_name = train_f[line∗3]
1415 if (protein_name in excluded_f):
1416 # print(protein_name)
1417 continue
1418 primary_structure = train_f[line∗3+1].replace(’!’, ’’)
1419 secondary_structure = train_f[line∗3+2].replace(’!’, ’’)
1420 prediction = ""
1421 for c in secondary_structure:
1422 if (c != ’!’):
1423 prediction = prediction + labels[pred[counter]]
1424 counter += 1
1425 # else:
1426 # prediction = prediction + c
1427 # print("Protein name: " + protein_name)
1428 # print("Actual: " + secondary_structure)
1429 # print("Prediction: " + prediction)
1430 out_file.write(protein_name + "\n")
1431 out_file.write(primary_structure + "\n")
1432 out_file.write(secondary_structure + "\n")
1433 out_file.write(prediction + "\n")
1434
1435 # import tensorflow as tf
1436 # tf.compat.v1.disable_eager_execution()
1437 # from utilities import predict, read_data, normalize_and_reshape
1438 # from net.net import CNN
1439 # import numpy as np
1440 # import argparse
1441 # import pdb
1442
1443 def parse_args():
1444 parser = argparse.ArgumentParser(description=’prediction’)
1445 parser.add_argument(’−−test_set’, dest=’test_set’,
1446 help=’provide the directory of .mat file for testing’,
1447 default=None, type=str)
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1448 parser.add_argument(’−−train_set’, dest=’train_set’,
1449 help=’provide the directory of .mat file for training’,
1450 default=None, type=str)
1451 parser.add_argument(’−−model’, dest=’model_file’,
1452 help=’provide file storing network parameters, i.e. ./dir/model.ckpt’,
1453 default=’./saved_model/model.ckpt’, type=str)
1454 parser.add_argument(’−−bsize’, dest=’bsize’,
1455 help=’batch size’,
1456 default=1024, type=int)
1457 parser.add_argument(’−−loss’, dest=’loss’,
1458 help=’which loss function to use: MSELoss or CrossEntropy’,
1459 default=’MSELoss’, type=str)
1460 parser.add_argument(’−−dim’, dest=’dim’, nargs=’+’, help=’input dimension of data,’+\
1461 ’shape must be: height width num_channels’,
1462 default=[32, 32, 3], type=int)
1463
1464 args = parser.parse_args(args=pred_args)
1465 return args
1466
1467 def predict_model():
1468 args = parse_args()
1469
1470 sess_config = tf.compat.v1.ConfigProto()
1471 sess_config.gpu_options.allow_growth = True
1472
1473 with tf.compat.v1.Session(config=sess_config) as sess:
1474 graph_address = args.model_file + ’.meta’
1475 imported_graph = tf.compat.v1.train.import_meta_graph(graph_address)
1476 imported_graph.restore(sess, args.model_file)
1477 mean_param = [v for v in tf.compat.v1.global_variables() if ’mean_tr:0’ in v.name][0]
1478 label_enum_var = [v for v in tf.compat.v1.global_variables() if ’label_enum:0’ in v.name][0]
1479
1480 sess.run(tf.compat.v1.variables_initializer([mean_param, label_enum_var]))
1481 mean_tr = sess.run(mean_param)
1482 label_enum = sess.run(label_enum_var)
1483
1484 test_batch, num_cls, _ = read_data(args.test_set, dim=args.dim, label_enum=label_enum)
1485 test_batch[0], _ = normalize_and_reshape(test_batch[0], dim=args.dim, mean_tr=mean_tr)
1486
1487 x = tf.compat.v1.get_default_graph().get_tensor_by_name(’main_params/input_of_net:0’)
1488 y = tf.compat.v1.get_default_graph().get_tensor_by_name(’main_params/labels:0’)
1489 outputs = tf.compat.v1.get_default_graph().get_tensor_by_name(’output_of_net:0’)
1490
1491 if args.loss == ’MSELoss’:
1492 loss = tf.reduce_sum(input_tensor=tf.pow(outputs−y, 2))
1493 else:
1494 loss = tf.reduce_sum(input_tensor=tf.nn.softmax_cross_entropy_with_logits(logits=outputs, labels=tf.stop_gradient(y)))
1495
1496 network = (x, y, loss, outputs)
1497
1498 avg_loss, avg_acc, results = predict(sess, network, test_batch, args.bsize)
1499
1500 # convert results back to the original labels
1501 inverse_map = dict(zip(np.arange(num_cls), label_enum))
1502 results = np.expand_dims(results, axis=1)
1503 results = np.apply_along_axis(lambda x: inverse_map[x[0]], axis=1, arr=results)
1504
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1505 train_batch, num_cls, _ = read_data(args.train_set, dim=args.dim, label_enum=label_enum)
1506 train_batch[0], _ = normalize_and_reshape(train_batch[0], dim=args.dim, mean_tr=mean_tr)
1507
1508 avg_loss_train, avg_acc_train, results_train = predict(sess, network, train_batch, args.bsize)
1509 # convert results back to the original labels
1510 inverse_map = dict(zip(np.arange(num_cls), label_enum))
1511 results_train = np.expand_dims(results_train, axis=1)
1512 results_train = np.apply_along_axis(lambda x: inverse_map[x[0]], axis=1, arr=results_train)
1513
1514 create_output_pred(results, results_train)
1515
1516 print(’In test phase, average loss: {:.3f} | average accuracy: {:.3f}%’.\
1517 format(avg_loss, avg_acc∗100))
1518
1519 print(’In train phase, average loss: {:.3f} | average accuracy: {:.3f}%’.\
1520 format(avg_loss_train, avg_acc_train∗100))
1521
1522 """##Run Predict and Display output##"""
1523
1524 predict_model()
1525
1526 # !cat "$TEST_PRED_FILE"
1527
1528 # !cat "$TRAIN_PRED_FILE"

F-28



Appendix G

Ensembles Program

This Python program was used to combine the results from multiple trained models using

the ensembles method. It was provided by Dionysiou [24].

1 from numpy import ∗
2 import string as string
3 import sys
4
5
6 class Ensembles:
7 def run(filenames, windowSize, ensemble, outPred, outSOV, outWeka):
8 f = open(outPred, "w")
9 files = open(filenames, "r").readlines()

10 files = [w.replace(’\n’, ’’) for w in files]
11 files = [open(i, "r") for i in files]
12 i = 0
13 LABELS = [’C’, ’E’, ’H’, ’!’]
14 if ensemble == 1:
15 for rows in zip(∗files):
16 if i == 3:
17 for j in range(0, len(rows[0].translate(str.maketrans(’’, ’’, string.whitespace))), 1):
18 count = [0, 0, 0, 0]
19 for k in range(0, len(rows), 1):
20 if rows[k][j] == ’C’:
21 count[0] += 1
22 elif rows[k][j] == ’E’:
23 count[1] += 1
24 elif rows[k][j] == ’H’:
25 count[2] += 1
26 else:
27 count[3] += 1
28 f.write(LABELS[argmax(count)])
29 f.write(’\n’)
30 i = 0
31 else:
32 f.write(rows[0])
33 i += 1
34 f.close()
35 else:
36 print(’ERROR!!! Invalid ensemble option.’)
37
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38 # count accuracy
39 f = open(outPred, "r")
40 lines = f.readlines()
41 f.close()
42 count = 0
43 countall = 0
44 for i in range(0, len(lines), 4):
45 for j in range(0, len(lines[i + 2].translate(str.maketrans(’’, ’’, string.whitespace))), 1):
46 if lines[i + 2][j] == lines[i + 3][j]:
47 count += 1
48 countall += 1
49
50 print(’Accuracy: ’ + str(float(count) / float(countall) ∗ 100) + ’%’)
51
52 # Confusion Matrix
53 countHH = 0
54 countHE = 0
55 countHC = 0
56 countEH = 0
57 countEE = 0
58 countEC = 0
59 countCH = 0
60 countCE = 0
61 countCC = 0
62 countH = 0
63 countE = 0
64 countC = 0
65 countHp = 0
66 countEp = 0
67 countCp = 0
68 for i in range(0, len(lines), 4):
69 for j in range(0, len(lines[i + 2].translate(str.maketrans(’’, ’’, string.whitespace))), 1):
70 if lines[i + 2][j] == ’H’ and lines[i + 3][j] == ’H’:
71 countHH += 1
72 elif lines[i + 2][j] == ’H’ and lines[i + 3][j] == ’E’:
73 countHE += 1
74 elif lines[i + 2][j] == ’H’ and lines[i + 3][j] == ’C’:
75 countHC += 1
76 elif lines[i + 2][j] == ’E’ and lines[i + 3][j] == ’H’:
77 countEH += 1
78 elif lines[i + 2][j] == ’E’ and lines[i + 3][j] == ’E’:
79 countEE += 1
80 elif lines[i + 2][j] == ’E’ and lines[i + 3][j] == ’C’:
81 countEC += 1
82 elif lines[i + 2][j] == ’C’ and lines[i + 3][j] == ’H’:
83 countCH += 1
84 elif lines[i + 2][j] == ’C’ and lines[i + 3][j] == ’E’:
85 countCE += 1
86 elif lines[i + 2][j] == ’C’ and lines[i + 3][j] == ’C’:
87 countCC += 1
88
89 ’’’if lines[i + 2][j] == ’H’:
90 countH += 1
91 elif lines[i + 2][j] == ’E’:
92 countE += 1
93 elif lines[i + 2][j] == ’C’:
94 countC += 1
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95
96 if lines[i + 3][j] == ’H’:
97 countHp += 1
98 elif lines[i + 3][j] == ’E’:
99 countEp += 1

100 elif lines[i + 3][j] == ’C’:
101 countCp += 1’’’
102
103 print(’\n\t\tCONFUSION MATRIX\n’)
104 print(’{0:10}{1:10}{2:10}{3:10}’.format(’ ’, ’H’, ’E’, ’C’))
105 print(’{0:1}{1:10d}{2:10d}{3:10d}’.format(’H’, countHH, countHE, countHC))
106 print(’{0:1}{1:10d}{2:10d}{3:10d}’.format(’E’, countEH, countEE, countEC))
107 print(’{0:1}{1:10d}{2:10d}{3:10d}’.format(’C’, countCH, countCE, countCC))
108
109 # SOV input file
110 # f = open(outPred, "r")
111 f1 = open(outSOV, "w")
112 # lines = f.readlines()
113 # f.close()
114
115 for i in range(0, len(lines), 4):
116 f1.write(’>OSEQ\n’)
117 f1.write(lines[i + 2])
118 f1.write(’>PSEQ\n’)
119 f1.write(lines[i + 3])
120 f1.write(’>AA\n’)
121 f1.write(lines[i + 1])
122 f1.close()
123
124 # weka input file
125 f1 = open(outWeka, "w")
126 f1.write(’@RELATION secondary_structure\n\n’)
127 for i in range(0, windowSize ∗ 2 − 1, 1):
128 f1.write(’@ATTRIBUTE aminoacid’ + str(i) + ’ {C,E,H,0.0}\n’)
129 f1.write(’@ATTRIBUTE output {C,E,H}\n’)
130 f1.write(’\n@DATA\n’)
131
132 leadingzeros = zeros((1, (windowSize − 1)))
133 for i in range(3, len(lines), 4):
134 line = leadingzeros
135 line = append(line, list(lines[i].rstrip()))
136 line = append(line, leadingzeros)
137 for j in range(0, len(lines[i].rstrip()), 1):
138 for k in range(0, windowSize ∗ 2 − 1, 1):
139 f1.write(str(line[j + k]) + ’,’)
140 f1.write(lines[i − 1].rstrip()[j] + ’\n’)
141
142 f1.close()
143
144 files = sys.argv[1].replace(’,’, ’’)
145 run(files, int(sys.argv[2].replace(’,’, ’’)), int(sys.argv[3].replace(’,’, ’’)), sys.argv[4].replace(’,’, ’’),
146 sys.argv[5].replace(’,’, ’’), sys.argv[6])
147 # print(’\nEnd of ensembles script\n’)
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Appendix H

External Rules Program

This Python program was used to apply the external rules filtering. It was provided by

Dionysiou [24].

1 import sys
2
3 class externalRules:
4 def applyRules(filename, outSOV, outPred):
5 f = open(filename, "r")
6 lines = f.readlines()
7 f.close()
8 f = open(outSOV, "w")
9 f1 = open(outPred, "w")

10
11 for i in range(0, len(lines), 4):
12 f1.write(lines[i])
13 f1.write(lines[i + 1])
14 f1.write(lines[i + 2])
15 f.write(">OSEQ\n")
16 f.write(lines[i + 2])
17 f.write(">PSEQ\n")
18 j = 0
19 lines[i + 3] = list(lines[i + 3].translate({ord(c):’’ for c in ’ \n\t\r’}))
20 # print(len(lines[i + 3]))
21 while j < len(lines[i + 3]):
22 if len(lines[i + 3]) − j >= 4:
23 if lines[i + 3][j] == ’H’ and lines[i + 3][j + 1] == ’E’ and lines[i + 3][j + 2] == ’E’ and \
24 lines[i + 3][j + 3] == ’H’:
25 lines[i + 3][j] = ’H’
26 lines[i + 3][j + 1] = ’H’
27 lines[i + 3][j + 2] = ’H’
28 lines[i + 3][j + 3] = ’H’
29 j += 4
30 continue
31 if lines[i + 3][j] != ’H’ and lines[i + 3][j + 1] == ’H’ and lines[i + 3][j + 2] == ’H’ and \
32 lines[i + 3][j + 3] != ’H’:
33 lines[i + 3][j + 1] = ’C’
34 lines[i + 3][j + 2] = ’C’
35 j += 4
36 continue
37 if len(lines[i + 3]) − j >= 3:
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38 if lines[i + 3][j] == ’H’ and lines[i + 3][j + 1] == ’E’ and lines[i + 3][j + 2] == ’H’:
39 lines[i + 3][j + 1] = ’H’
40 j += 3
41 continue
42 j += 1
43
44 if lines[i + 3][0] == ’E’ and lines[i + 3][1] != ’E’:
45 f.write("C")
46 f1.write("C")
47 elif lines[i + 3][0] == ’H’ and lines[i + 3][1] != ’H’:
48 f.write("C")
49 f1.write("C")
50 else:
51 f.write(lines[i + 3][0])
52 f1.write(lines[i + 3][0])
53
54 for j in range(1, len(lines[i + 3]) − 1):
55 if lines[i + 3][j − 1] != ’E’ and lines[i + 3][j] == ’E’ and lines[i + 3][j + 1] != ’E’:
56 f.write("C")
57 f1.write("C")
58 continue
59 elif lines[i + 3][j − 1] != ’H’ and lines[i + 3][j] == ’H’ and lines[i + 3][j + 1] != ’H’:
60 f.write("C")
61 f1.write("C")
62 continue
63 f.write(lines[i + 3][j])
64 f1.write(lines[i + 3][j])
65
66 if lines[i + 3][len(lines[i + 3]) − 1] == ’E’ and lines[i + 3][len(lines[i + 3]) − 2] != ’E’:
67 f.write("C")
68 f1.write("C")
69 elif lines[i + 3][len(lines[i + 3]) − 1] == ’H’ and lines[i + 3][len(lines[i + 3]) − 2] != ’H’:
70 f.write("C")
71 f1.write("C")
72 else:
73 f.write(lines[i + 3][len(lines[i + 3]) − 1])
74 f1.write(lines[i + 3][len(lines[i + 3]) − 1])
75
76 f.write(’\n’)
77 f1.write(’\n’)
78 f.write(">AA\n")
79 f.write(lines[i + 1])
80
81 applyRules(sys.argv[1].replace(’,’, ’’), sys.argv[2].replace(’,’, ’’), sys.argv[3])
82 # print(’End of external rules script\n’)
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Appendix I

SOV calculation

To calculate the SOV score the two following C programs were used. Both were provided

by Dionysiou [24].

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 int main (int argc, char∗ argv[]){
5 FILE ∗fp=fopen(argv[1], "r");
6 FILE ∗out;
7 char ∗line = NULL;
8 size_t len = 0;
9 ssize_t read;

10 fclose(fopen("resultSOV.txt","w"));
11
12 if (fp == NULL)
13 exit(0);
14 system("cc ./q3_sov_scripts/sov.c −o ./q3_sov_scripts/sov −lm");
15 while ((read = getline(&line, &len, fp)) != −1) {
16 out=fopen("SOVinput.txt", "w");
17 if (out == NULL)
18 exit(0);
19 fprintf(out,"%s", line);
20 getline(&line, &len, fp);
21 fprintf(out,"%s", line);
22 getline(&line, &len, fp);
23 fprintf(out,"%s", line);
24 getline(&line, &len, fp);
25 fprintf(out,"%s", line);
26 getline(&line, &len, fp);
27 fprintf(out,"%s", line);
28 getline(&line, &len, fp);
29 fprintf(out,"%s", line);
30 fclose(out);
31
32 system("./q3_sov_scripts/sov SOVinput.txt >>resultSOV.txt");
33 }
34
35 free(line);
36 fclose(fp);
37 return 0;
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38 }
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1 /*-----------------------------------------------------------
2 /
3 / Program: sov.c
4 /
5 / Secondary structure prediction accuracy evaluation
6 /
7 / SOV (Segment OVerlap) measure
8 /
9 / Copyright by Adam Zemla (11/16/1996)

10 / Email: adamz@llnl.gov
11 /
12 /------------------------------------------------------------
13 /
14 / Compile: cc sov.c -o sov -lm
15 /
16 /------------------------------------------------------------*/
17 #include <stdio.h>
18 #include <stdlib.h>
19 #include <string.h>
20 #include <math.h>
21
22 #define MAXRES 5000
23
24 typedef struct {
25 int input;
26 int order;
27 int q3_what;
28 int sov_what;
29 int sov_method;
30 float sov_delta;
31 float sov_delta_s;
32 int sov_out;
33 char fname[100];
34 } parameters;
35
36 char ∗letter_AA="ARNDCQEGHILKMFPSTWYV−?X"; /* 23 chars */
37
38 void default_parameters(parameters ∗);
39 int read_aa_osec_psec(char[MAXRES], char[MAXRES], char[MAXRES],
40 parameters ∗, char∗);
41 float sov(int, char[MAXRES], char[MAXRES], parameters ∗);
42 float q3(int, char[MAXRES], char[MAXRES], parameters ∗);
43 int check_aa(char, char∗, int);
44
45 int main(int argc, char ∗argv[])
46 {
47 int i, n_aa, sov_method;
48 char c, aa[MAXRES], osec[MAXRES], psec[MAXRES];
49 parameters pdata;
50 float out0, out1, out2, out3;
51
52 if(argc<2){
53 printf(" Usage: sov <input_data>\n");
54 printf(" HELP: sov −h\n");
55 exit(0);
56 }
57 if(!strncmp(argv[1],"−h\0",2) ||
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58 !strncmp(argv[1],"help\0",5) ||
59 !strncmp(argv[1],"−help\0",6)) {
60 system("more ./README.sov");
61 printf("\n");
62 exit(0);
63 }
64
65 default_parameters(&pdata);
66
67 strcpy(pdata.fname,argv[1]);
68
69 n_aa=read_aa_osec_psec(aa,osec,psec,&pdata,letter_AA);
70
71 if(pdata.input==1) {
72 n_aa=read_aa_osec_psec(aa,osec,psec,&pdata,letter_AA);
73 }
74
75 if(pdata.order==1) {
76 for(i=0;i<n_aa;i++) {
77 c=osec[i];
78 osec[i]=psec[i];
79 psec[i]=c;
80 }
81 }
82
83 if(n_aa<=0) {
84 printf("\n ERROR! There is no ’AA OSEC PSEC’ data in submited prediction.");
85 printf("\n The submission should contain an observed and predicted");
86 printf("\n secondary structure in COLUMN format.\n");
87 exit(0);
88 }
89
90 printf("\n\n SECONDARY STRUCTURE PREDICTION");
91 printf("\n NUMBER OF RESIDUES PREDICTED: LENGTH = %d",n_aa);
92 printf("\n AA OSEC PSEC NUM");
93 for(i=0;i<n_aa;i++) {
94 printf("\n %1c %1c %1c %4d",aa[i],osec[i],psec[i],i+1);
95 }
96 printf("\n −−−−−−−−−−−−−−−−−−−−−−−\n");
97 printf("\n SECONDARY STRUCTURE PREDICTION ACCURACY EVALUATION. N_AA = %4d\n",n_aa);
98 if(pdata.sov_out>=1) {
99 printf("\n SOV parameters: DELTA = %5.2f DELTA−S = %5.2f\n",

100 pdata.sov_delta,
101 pdata.sov_delta_s);
102 }
103
104 printf("\n ALL HELIX STRAND COIL\n");
105
106 pdata.q3_what=0;
107 out0=q3(n_aa,osec,psec,&pdata);
108 pdata.q3_what=1;
109 out1=q3(n_aa,osec,psec,&pdata);
110 pdata.q3_what=2;
111 out2=q3(n_aa,osec,psec,&pdata);
112 pdata.q3_what=3;
113 out3=q3(n_aa,osec,psec,&pdata);
114 printf("\n Q3 : %6.1f %6.1f %6.1f %6.1f",
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115 out0∗100.0,out1∗100.0,out2∗100.0,out3∗100.0);
116 printf("\n");
117
118 sov_method=pdata.sov_method;
119
120 if(sov_method!=0) pdata.sov_method=1;
121
122 if(pdata.sov_method==1) {
123 pdata.sov_what=0;
124 out0=sov(n_aa,osec,psec,&pdata);
125 pdata.sov_what=1;
126 out1=sov(n_aa,osec,psec,&pdata);
127 pdata.sov_what=2;
128 out2=sov(n_aa,osec,psec,&pdata);
129 pdata.sov_what=3;
130 out3=sov(n_aa,osec,psec,&pdata);
131 printf("\n SOV : %6.1f %6.1f %6.1f %6.1f",
132 out0∗100.0,out1∗100.0,out2∗100.0,out3∗100.0);
133 printf("\n");
134 }
135
136 if(sov_method!=1) pdata.sov_method=0;
137
138 if(pdata.sov_method==0) {
139 pdata.sov_delta=1.0;
140
141 pdata.sov_what=0;
142 out0=sov(n_aa,osec,psec,&pdata);
143 pdata.sov_what=1;
144 out1=sov(n_aa,osec,psec,&pdata);
145 pdata.sov_what=2;
146 out2=sov(n_aa,osec,psec,&pdata);
147 pdata.sov_what=3;
148 out3=sov(n_aa,osec,psec,&pdata);
149 printf("\n SOV (1994 JMB. [delta=50]) : %6.1f %6.1f %6.1f %6.1f",
150 out0∗100.0,out1∗100.0,out2∗100.0,out3∗100.0);
151
152 pdata.sov_delta=0.0;
153
154 pdata.sov_what=0;
155 out0=sov(n_aa,osec,psec,&pdata);
156 pdata.sov_what=1;
157 out1=sov(n_aa,osec,psec,&pdata);
158 pdata.sov_what=2;
159 out2=sov(n_aa,osec,psec,&pdata);
160 pdata.sov_what=3;
161 out3=sov(n_aa,osec,psec,&pdata);
162 printf("\n SOV (1994 JMB. [delta=0]) : %6.1f %6.1f %6.1f %6.1f",
163 out0∗100.0,out1∗100.0,out2∗100.0,out3∗100.0);
164
165 printf("\n");
166 }
167
168 printf("\n −−−−−−−−−−−−−−−−−−−−−−−\n");
169
170 exit(0);
171 }
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172
173 /*-----------------------------------------------------------
174 /
175 / check_aa - checks an amino acid
176 /
177 /------------------------------------------------------------*/
178 int check_aa(char token, char∗ letter, int n)
179 {
180 int i;
181
182 for(i=0;i<n;i++) {
183 if(letter[i]==token)
184 return i;
185 }
186 return n;
187 }
188
189 /*-----------------------------------------------------------
190 /
191 / read_aa_osec_psec - read secondary structure segments file
192 /
193 /------------------------------------------------------------*/
194 int read_aa_osec_psec(char aa[MAXRES], char sss1[MAXRES],
195 char sss2[MAXRES], parameters ∗pdata, char∗ letter)
196 {
197 int i, j, n_aa, n_aa_1, n_aa_2, n_aa_3, f_seq, alt_c, alt_e, alt_h;
198 float x;
199 char line[MAXRES],keyword[MAXRES],first[MAXRES],second[MAXRES],third[MAXRES],junk[MAXRES];
200 FILE ∗fp;
201
202 alt_c=0;
203 alt_e=0;
204 alt_h=0;
205
206 if((fp = fopen(pdata−>fname,"r"))==NULL) {
207 printf("\n# error opening file %s for read\n\n",pdata−>fname);
208 exit(0);
209 }
210
211 f_seq=0;
212 pdata−>input=0;
213 n_aa=0;
214 n_aa_1=0;
215 n_aa_2=0;
216 n_aa_3=0;
217
218 while (fgets(line, MAXRES, fp) != NULL) {
219 strcpy(keyword," ");
220 strcpy(first," ");
221 strcpy(second," ");
222 strcpy(third," ");
223 strcpy(junk," ");
224 i=0;
225 j=0;
226 while(line[i] == ’ ’ && line[i] != ’\n’ && line[i] != ’\0’ && i<MAXRES) i++;
227 if(i<MAXRES) {
228 j=i;
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229 while(line[i] != ’ ’ && line[i] != ’\n’ && line[i] != ’\0’ && i<MAXRES) i++;
230 }
231 j=i−j;
232 if(j<MAXRES && j>0) {
233 sscanf(line,"%s",keyword);
234 }
235 if(!strncmp(keyword,"#",1)) {}
236 else if(!strncmp(keyword,"−−−−−",5)) {}
237 else if(!strncmp(keyword,"NUMBER\0",7)) {}
238 else if(!strncmp(keyword,"SECONDARY\0",10)) {}
239 else if(!strncmp(keyword,"END\0",4) && f_seq==0) {
240 fclose(fp);
241 return n_aa;
242 }
243 else if(!strncmp(keyword,"AA−OSEC−PSEC\0",13)) {
244 printf("%s", line);
245 sscanf(line,"%s %s",keyword,first);
246 strcpy(pdata−>fname,first);
247 pdata−>input=1;
248 }
249 else if(line[0] == ’\n’ || !strncmp(keyword," \0",4)) {}
250 else if(!strncmp(keyword,"AA\0",3) && f_seq==0) {
251 sscanf(line,"%s %s %s",keyword,first,second);
252 if(!strncmp(keyword,"AA\0",3) &&
253 !strncmp(first,"PSEC\0",5) && !strncmp(second,"OSEC\0",5)) {
254 pdata−>order=1;
255 }
256 }
257 else if(!strncmp(keyword,"SOV−DELTA\0",10)) {
258 printf("%s", line);
259 sscanf(line,"%s %f",keyword,&x);
260 pdata−>sov_delta=x;
261 }
262 else if(!strncmp(keyword,"SOV−DELTA−S\0",12)) {
263 printf("%s", line);
264 sscanf(line,"%s %f",keyword,&x);
265 pdata−>sov_delta_s=x;
266 }
267 else if(!strncmp(keyword,"SOV−METHOD\0",9)) {
268 printf("%s", line);
269 sscanf(line,"%s %d",keyword,&i);
270 pdata−>sov_method=i;
271 }
272 else if(!strncmp(keyword,"SOV−OUTPUT\0",9)) {
273 printf("%s", line);
274 sscanf(line,"%s %d",keyword,&i);
275 pdata−>sov_out=i;
276 }
277 else if(line[0]==’>’) {
278 printf("%s", line);
279 if(f_seq<2) n_aa=0;
280 f_seq++;
281 }
282 else if(f_seq==0) {
283 if(j>1) {
284 if(!strncmp(keyword,"SSP\0",4)) {
285 sscanf(line,"%s %s %s %s %s",keyword,junk,first,second,third);
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286 }
287 else {
288 printf("\n ERROR! (line: %d) Check COLUMN format of your prediction!\n",n_aa+1);
289 fclose(fp);
290 exit(0);
291 }
292 }
293 else {
294 sscanf(line,"%s %s %s",first,second,third);
295 }
296 aa[n_aa]=first[0];
297 sss1[n_aa]=second[0];
298 sss2[n_aa]=third[0];
299 if(check_aa(aa[n_aa],letter,23)==23) {
300 printf("\n# ERROR!\n%s",line);
301 printf("\n# ERROR! (line: %d) Check amino acid code %c\n",n_aa+1,aa[n_aa]);
302 fclose(fp);
303 exit(0);
304 }
305 if(sss1[n_aa]==’ ’ || sss2[n_aa]==’ ’) {
306 printf("\n# ERROR!\n%s",line);
307 printf("\n# ERROR! (line: %d) Check secondary structure code\n",n_aa+1);
308 fclose(fp);
309 exit(0);
310 }
311 if(sss1[n_aa]==’L’ || sss1[n_aa]==’T’ || sss1[n_aa]==’S’) {
312 if(alt_c==0) {
313 printf("# WARNING! (line: %d) The ’%c’ characters are interpreted as ’C’ (coil)\n",n_aa+1,sss1[n_aa]);
314 alt_c=1;
315 }
316 sss1[n_aa]=’C’;
317 }
318 if(sss1[n_aa]==’B’) {
319 if(alt_e==0) {
320 printf("# WARNING! (line: %d) The ’%c’ characters are interpreted as ’E’ (strand)\n",n_aa+1,sss1[n_aa]);
321 alt_e=1;
322 }
323 sss1[n_aa]=’E’;
324 }
325 if(sss1[n_aa]==’G’ || sss1[n_aa]==’I’) {
326 if(alt_h==0) {
327 printf("# WARNING! (line: %d) The ’%c’ characters are interpreted as ’H’ (helix)\n",n_aa+1,sss1[n_aa]);
328 alt_h=1;
329 }
330 sss1[n_aa]=’H’;
331 }
332 if(sss2[n_aa]==’L’ || sss2[n_aa]==’T’ || sss2[n_aa]==’S’) {
333 if(alt_c==0) {
334 printf("# WARNING! (line: %d) The ’%c’ characters are interpreted as ’C’ (coil)\n",n_aa+1,sss2[n_aa]);
335 alt_c=1;
336 }
337 sss2[n_aa]=’C’;
338 }
339 if(sss2[n_aa]==’B’) {
340 if(alt_e==0) {
341 printf("# WARNING! (line: %d) The ’%c’ characters are interpreted as ’E’ (strand)\n",n_aa+1,sss2[n_aa]);
342 alt_e=1;
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343 }
344 sss2[n_aa]=’E’;
345 }
346 if(sss2[n_aa]==’G’ || sss2[n_aa]==’I’) {
347 if(alt_h==0) {
348 printf("# WARNING! (line: %d) The ’%c’ characters are interpreted as ’H’ (helix)\n",n_aa+1,sss2[n_aa]);
349 alt_h=1;
350 }
351 sss2[n_aa]=’H’;
352 }
353 if(sss1[n_aa]!=’C’ && sss1[n_aa]!=’E’ && sss1[n_aa]!=’H’) {
354 printf("\n# ERROR!\n%s",line);
355 printf("\n# ERROR! (line: %d) Check secondary structure code %c\n",n_aa+1,sss1[n_aa]);
356 fclose(fp);
357 exit(0);
358 }
359 if(sss2[n_aa]!=’C’ && sss2[n_aa]!=’E’ && sss2[n_aa]!=’H’) {
360 printf("\n# ERROR!\n%s",line);
361 printf("\n# ERROR! (line: %d) Check secondary structure code %c\n",n_aa+1,sss2[n_aa]);
362 fclose(fp);
363 exit(0);
364 }
365 n_aa++;
366 if(n_aa>=MAXRES) {
367 printf("\n# ERROR! Check number of amino acid lines. (MAX = %d)\n\n",MAXRES);
368 fclose(fp);
369 exit(0);
370 }
371 }
372 else if(f_seq==1) {
373 i=0;
374 while(line[i] != ’\n’) {
375 if(line[i] != ’ ’ && line[i] != ’\t’ && line[i] != ’\0’ &&
376 line[i] != ’\a’ && line[i] != ’\b’ && line[i] != ’\f’ &&
377 line[i] != ’\r’ && line[i] != ’\v’ && i<MAXRES) {
378 aa[n_aa]=’X’;
379 sss1[n_aa]=line[i];
380 if(sss1[n_aa]==’L’ || sss1[n_aa]==’T’ || sss1[n_aa]==’S’) {
381 if(alt_c==0) {
382 printf("# WARNING! The ’%c’ characters are interpreted as ’C’ (coil)\n",sss1[n_aa]);
383 alt_c=1;
384 }
385 sss1[n_aa]=’C’;
386 }
387 if(sss1[n_aa]==’B’) {
388 if(alt_e==0) {
389 printf("# WARNING! The ’%c’ characters are interpreted as ’E’ (strand)\n",sss1[n_aa]);
390 alt_e=1;
391 }
392 sss1[n_aa]=’E’;
393 }
394 if(sss1[n_aa]==’G’ || sss1[n_aa]==’I’) {
395 if(alt_h==0) {
396 printf("# WARNING! The ’%c’ characters are interpreted as ’H’ (helix)\n",sss1[n_aa]);
397 alt_h=1;
398 }
399 sss1[n_aa]=’H’;
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400 }
401 if(sss1[n_aa]!=’C’ && sss1[n_aa]!=’E’ && sss1[n_aa]!=’H’) {
402 printf("\n# ERROR!\n%s",line);
403 printf("\n# ERROR! Check secondary structure code: %c\n",sss1[n_aa]);
404 fclose(fp);
405 exit(0);
406 }
407 n_aa++;
408 if(n_aa>=MAXRES) {
409 printf("\n# ERROR! Check number of residues. (MAX = %d)\n\n",MAXRES);
410 fclose(fp);
411 exit(0);
412 }
413 }
414 i++;
415 }
416 n_aa_1=n_aa;
417 }
418 else if(f_seq==2) {
419 i=0;
420 while(line[i] != ’\n’) {
421 if(line[i] != ’ ’ && line[i] != ’\t’ && line[i] != ’\0’ &&
422 line[i] != ’\a’ && line[i] != ’\b’ && line[i] != ’\f’ &&
423 line[i] != ’\r’ && line[i] != ’\v’ && i<MAXRES) {
424 aa[n_aa]=’X’;
425 sss2[n_aa]=line[i];
426 if(sss2[n_aa]==’L’ || sss2[n_aa]==’T’ || sss2[n_aa]==’S’) {
427 if(alt_c==0) {
428 printf("# WARNING! The ’%c’ characters are interpreted as ’C’ (coil)\n",sss2[n_aa]);
429 alt_c=1;
430 }
431 sss2[n_aa]=’C’;
432 }
433 if(sss2[n_aa]==’B’) {
434 if(alt_e==0) {
435 printf("# WARNING! The ’%c’ characters are interpreted as ’E’ (strand)\n",sss2[n_aa]);
436 alt_e=1;
437 }
438 sss2[n_aa]=’E’;
439 }
440 if(sss2[n_aa]==’G’ || sss2[n_aa]==’I’) {
441 if(alt_h==0) {
442 printf("# WARNING! The ’%c’ characters are interpreted as ’H’ (helix)\n",sss2[n_aa]);
443 alt_h=1;
444 }
445 sss2[n_aa]=’H’;
446 }
447 if(sss2[n_aa]!=’C’ && sss2[n_aa]!=’E’ && sss2[n_aa]!=’H’) {
448 printf("\n# ERROR!\n%s",line);
449 printf("\n# ERROR! Check secondary structure code: %c\n",sss2[n_aa]);
450 fclose(fp);
451 exit(0);
452 }
453 n_aa++;
454 if(n_aa>=MAXRES) {
455 printf("\n# ERROR! Check number of residues. (MAX = %d)\n\n",MAXRES);
456 fclose(fp);
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457 exit(0);
458 }
459 }
460 i++;
461 }
462 n_aa_2=n_aa;
463 }
464 else if(f_seq==3) {
465 i=0;
466 while(line[i] != ’\n’) {
467 if(line[i] != ’ ’ && line[i] != ’\t’ && line[i] != ’\0’ &&
468 line[i] != ’\a’ && line[i] != ’\b’ && line[i] != ’\f’ &&
469 line[i] != ’\r’ && line[i] != ’\v’ && i<MAXRES) {
470 aa[n_aa_3]=line[i];
471 if(check_aa(aa[n_aa_3],letter,23)==23) {
472 printf("\n# ERROR!\n%s",line);
473 printf("\n# ERROR! (N_res: %d) Check amino acid code %c\n",n_aa_3+1,aa[n_aa_3]);
474 fclose(fp);
475 exit(0);
476 }
477 n_aa_3++;
478 if(n_aa_3>=MAXRES) {
479 printf("\n# ERROR! Check number of residues. (MAX = %d)\n\n",MAXRES);
480 fclose(fp);
481 exit(0);
482 }
483 }
484 i++;
485 }
486 }
487 }
488 if(n_aa_1!=n_aa_2) {
489 printf("\n# ERROR! Check format of your submission.");
490 printf("\n# Different length of observed and predicted structures.\n");
491 fclose(fp);
492 exit(0);
493 }
494 return n_aa;
495 }
496
497 /*-------------------------------------------------------------
498 /
499 / default_parameters - default parameters for SOV program
500 /
501 /------------------------------------------------------------*/
502 void default_parameters(parameters ∗pdata)
503 {
504 pdata−>input=0;
505 pdata−>order=0;
506 pdata−>sov_method=1; // 0 - SOV definition (1994 JMB.) , 1 - SOV definition (1999 Proteins)
507 pdata−>sov_delta=1.0;
508 pdata−>sov_delta_s=0.5;
509 pdata−>sov_out=0;
510
511 return;
512 }
513
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514 /*-----------------------------------------------------------
515 /
516 / sov - evaluate SSp by the Segment OVerlap quantity (SOV)
517 / Input: secondary structure segments
518 /
519 /------------------------------------------------------------*/
520 float sov(int n_aa, char sss1[MAXRES], char sss2[MAXRES], parameters ∗pdata)
521 {
522 int i, k, length1, length2, beg_s1, end_s1, beg_s2, end_s2;
523 int j1, j2, k1, k2, minov, maxov, d, d1, d2, n, multiple;
524 char s1, s2, sse[3];
525 float out;
526 double s, x;
527
528 sse[0]=’#’;
529 sse[1]=’#’;
530 sse[2]=’#’;
531
532 if(pdata−>sov_what==0) {
533 sse[0]=’H’;
534 sse[1]=’E’;
535 sse[2]=’C’;
536 }
537 if(pdata−>sov_what==1) {
538 sse[0]=’H’;
539 sse[1]=’H’;
540 sse[2]=’H’;
541 }
542 if(pdata−>sov_what==2) {
543 sse[0]=’E’;
544 sse[1]=’E’;
545 sse[2]=’E’;
546 }
547 if(pdata−>sov_what==3) {
548 sse[0]=’C’;
549 sse[1]=’C’;
550 sse[2]=’C’;
551 }
552 n=0;
553 for(i=0;i<n_aa;i++) {
554 s1=sss1[i];
555 if(s1==sse[0] || s1==sse[1] || s1==sse[2]) {
556 n++;
557 }
558 }
559 out=0.0;
560 s=0.0;
561 length1=0;
562 length2=0;
563 i=0;
564 while(i<n_aa) {
565 beg_s1=i;
566 s1=sss1[i];
567 while(sss1[i]==s1 && i<n_aa) {
568 i++;
569 }
570 end_s1=i−1;
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571 length1=end_s1−beg_s1+1;
572 multiple=0;
573 k=0;
574 while(k<n_aa) {
575 beg_s2=k;
576 s2=sss2[k];
577 while(sss2[k]==s2 && k<n_aa) {
578 k++;
579 }
580 end_s2=k−1;
581 length2=end_s2−beg_s2+1;
582 if(s1==sse[0] || s1==sse[1] || s1==sse[2]) {
583 if(s1==s2 && end_s2>=beg_s1 && beg_s2<=end_s1) {
584 if(multiple>0 && pdata−>sov_method==1) {
585 n=n+length1;
586 }
587 multiple++;
588 if(beg_s1>beg_s2) {
589 j1=beg_s1;
590 j2=beg_s2;
591 }
592 else {
593 j1=beg_s2;
594 j2=beg_s1;
595 }
596 if(end_s1<end_s2) {
597 k1=end_s1;
598 k2=end_s2;
599 }
600 else {
601 k1=end_s2;
602 k2=end_s1;
603 }
604 minov=k1−j1+1;
605 maxov=k2−j2+1;
606 d1=floor(length1∗pdata−>sov_delta_s);
607 d2=floor(length2∗pdata−>sov_delta_s);
608 if(d1>d2) d=d2;
609 if(d1<=d2 || pdata−>sov_method==0) d=d1;
610 if(d>minov) {
611 d=minov;
612 }
613 if(d>maxov−minov) {
614 d=maxov−minov;
615 }
616 x=pdata−>sov_delta∗d;
617 x=(minov+x)∗length1;
618 if(maxov>0) {
619 s=s+x/maxov;
620 }
621 else {
622 printf("\n ERROR! minov = %−4d maxov = %−4d length = %−4d d = %−4d %4d %4d %4d %4

↪→ d",
623 minov,maxov,length1,d,beg_s1+1,end_s1+1,beg_s2+1,end_s2+1);
624 }
625 if(pdata−>sov_out==2) {
626 printf("\n TEST: minov = %−4d maxov = %−4d length = %−4d d = %−4d %4d %4d %4d %4d"
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↪→ ,
627 minov,maxov,length1,d,beg_s1+1,end_s1+1,beg_s2+1,end_s2+1);
628 }
629 }
630 }
631 }
632 }
633 if(pdata−>sov_out==2) {
634 printf("\n TEST: Number of considered residues = %d",n);
635 }
636 if(n>0) {
637 out=s/n;
638 }
639 else {
640 out=1.0;
641 }
642 return out;
643 }
644
645 /*-----------------------------------------------------------
646 /
647 / Q3 - evaluate SSp by the residues predicted correctly (Q3)
648 / Input: secondary structure segments
649 /
650 /------------------------------------------------------------*/
651 float q3(int n_aa, char sss1[MAXRES], char sss2[MAXRES], parameters ∗pdata)
652 {
653 int i, n;
654 float out;
655 char s, sse[3];
656
657 sse[0]=’#’;
658 sse[1]=’#’;
659 sse[2]=’#’;
660
661 if(pdata−>q3_what==0) {
662 sse[0]=’H’;
663 sse[1]=’E’;
664 sse[2]=’C’;
665 }
666 if(pdata−>q3_what==1) {
667 sse[0]=’H’;
668 sse[1]=’H’;
669 sse[2]=’H’;
670 }
671 if(pdata−>q3_what==2) {
672 sse[0]=’E’;
673 sse[1]=’E’;
674 sse[2]=’E’;
675 }
676 if(pdata−>q3_what==3) {
677 sse[0]=’C’;
678 sse[1]=’C’;
679 sse[2]=’C’;
680 }
681
682 n=0;
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683 out=0.0;
684 for(i=0;i<n_aa;i++) {
685 s=sss1[i];
686 if(s==sse[0] || s==sse[1] || s==sse[2]) {
687 n++;
688 if(sss1[i]==sss2[i]) {
689 out=out + 1.0;
690 }
691 }
692 }
693 if(n>0) {
694 out=out/n;
695 }
696 else {
697 out=1.0;
698 }
699
700 return out;
701 }
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Appendix J

Calculation of Q3 accuracy

The following Python program was implemented to calculate the Q3 accuracy for each

class and the overall Q3 accuracy.

1 import sys
2 # Execute: python calc_Q3.py <pred_file>
3 import string
4 lines = None
5 labels = [’H’, ’E’, ’C’]
6 with open(sys.argv[1]) as file:
7 lines = file.readlines()
8 if lines is None: exit(0)
9 countCor = [0, 0, 0]

10 countAll = [0, 0, 0]
11 for l in range(0, len(lines)//4):
12 protein_name = lines[4∗l]
13 primary = lines[4∗l + 1]
14 secondary = lines[4∗l + 2]
15 prediction = lines[4∗l + 3]
16 for s, p in zip(secondary, prediction):
17 if s == ’\n’: continue
18 if s == p:
19 countCor[labels.index(s)] += 1
20 countAll[labels.index(s)] += 1
21 total = countAll[0] + countAll[1] + countAll[2]
22 correct = countCor[0] + countCor[1] + countCor[2]
23 headers = [’Q3_All’, ’Q3_C’, ’Q3_E’, ’Q3_H’]
24 q3 = [(100∗correct/total),
25 (100∗countCor[0]/countAll[0]),
26 (100∗countCor[1]/countAll[1]),
27 (100∗countCor[2]/countAll[2])]
28 print("\n {0:11}{1:11}{2:11}{3:11}".format(’ Q3_ALL’, ’ Q3_H’, ’ Q3_E’, ’ Q3_C’))
29 print(’{0:11.4f}{1:11.4f}{2:11.4f}{3:11.4f}\n’.format(q3[0], q3[1], q3[2], q3[3]))
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Appendix K

Data pre-processing for filtering

This python program was used to prepare the datasets for the SVM filtering method. The

same datasets were used to train the decision trees and random forests. It was provided

by Dionysiou [24].

1 # Execute: python prepare_SVM_files.py <test_filename> <train_filename> <WINDOW> <out_test> <
↪→ out_train>

2 import sys
3 #open TEST file to read data
4 with open(sys.argv[1],"r") as testfile:
5 lines_test = testfile.readlines()
6 #open TRAIN file to read dat
7 with open(sys.argv[2],"r") as trainfile:
8 lines_train = trainfile.readlines()
9 linenum = 1

10 window = int(sys.argv[3])
11 leftwindow = int(window/2)
12 #create train file
13 with open(sys.argv[5], "w") as svmtrain:
14 for line in lines_train:
15 if linenum == 5: linenum = 1
16 if linenum == 3:
17 target_out = line
18 # if linenum == 4:
19 for i in range(leftwindow):
20 zeros = leftwindow − i
21 for zer in range(zeros):
22 svmtrain.write("0,")
23 for rem in range(i):
24 if line[rem] == "C": svmtrain.write("0,")
25 if line[rem] == "E": svmtrain.write("1,")
26 if line[rem] == "H": svmtrain.write("2,")
27 #place right aminos
28 for j in range(leftwindow+1):
29 if line[i+j] == "C": svmtrain.write("0,")
30 if line[i+j] == "E": svmtrain.write("1,")
31 if line[i+j] == "H": svmtrain.write("2,")
32 #place label at the end
33 if target_out[i] == "C": svmtrain.write("0")
34 if target_out[i] == "E": svmtrain.write("1")
35 if target_out[i] == "H": svmtrain.write("2")
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36 svmtrain.write("\n")
37 #place aminos with no boundary constraints
38 for amino in range(leftwindow,len(line)−leftwindow−1):
39 for curr in range(−leftwindow,leftwindow+1):
40 if line[amino+curr] == "C": svmtrain.write("0,")
41 if line[amino+curr] == "E": svmtrain.write("1,")
42 if line[amino+curr] == "H": svmtrain.write("2,")
43 #place label
44 if target_out[amino] == "C": svmtrain.write("0")
45 if target_out[amino] == "E": svmtrain.write("1")
46 if target_out[amino] == "H": svmtrain.write("2")
47 svmtrain.write("\n")
48 #place last aminos with padding
49 for i in range(len(line)−leftwindow−1,len(line)−1):
50 printed=0
51 for left in range(i−leftwindow−1,i):
52 if line[left] == "C": svmtrain.write("0,")
53 if line[left] == "E": svmtrain.write("1,")
54 if line[left] == "H": svmtrain.write("2,")
55 for j in range(i,len(line)−1):
56 if line[j] == "C": svmtrain.write("0,")
57 if line[j] == "E": svmtrain.write("1,")
58 if line[j] == "H": svmtrain.write("2,")
59 printed=printed+1
60 zeros = leftwindow−printed
61 for z in range(zeros):
62 svmtrain.write("0,")
63 # place label
64 if target_out[i] == "C": svmtrain.write("0")
65 if target_out[i] == "E": svmtrain.write("1")
66 if target_out[i] == "H": svmtrain.write("2")
67 svmtrain.write("\n")
68 linenum += 1
69 svmtrain.flush()
70 linenum=1
71 #create TEST file
72 with open(sys.argv[4], "w") as svmtest:
73 for line in lines_test:
74 if linenum == 5: linenum = 1
75 if linenum == 3: target_out = line
76 if linenum == 4:
77 for i in range(leftwindow):
78 zeros = leftwindow − i
79 for zer in range(zeros):
80 svmtest.write("0,")
81 for rem in range(i):
82 if line[rem] == "C": svmtest.write("0,")
83 if line[rem] == "E": svmtest.write("1,")
84 if line[rem] == "H": svmtest.write("2,")
85 #place right aminos
86 for j in range(leftwindow+1):
87 if line[i+j] == "C": svmtest.write("0,")
88 if line[i+j] == "E": svmtest.write("1,")
89 if line[i+j] == "H": svmtest.write("2,")
90 #place label at the end
91 if target_out[i] == "C": svmtest.write("0")
92 if target_out[i] == "E": svmtest.write("1")
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93 if target_out[i] == "H": svmtest.write("2")
94 svmtest.write("\n")
95 #place aminos with no boundary constraints
96 for amino in range(leftwindow,len(line)−leftwindow−1):
97 for curr in range(−leftwindow,leftwindow+1):
98 if line[amino+curr] == "C": svmtest.write("0,")
99 if line[amino+curr] == "E": svmtest.write("1,")

100 if line[amino+curr] == "H": svmtest.write("2,")
101 #place label
102 if target_out[amino] == "C": svmtest.write("0")
103 if target_out[amino] == "E": svmtest.write("1")
104 if target_out[amino] == "H": svmtest.write("2")
105 svmtest.write("\n")
106 #place last aminos with padding
107 for i in range(len(line)−leftwindow−1,len(line)−1):
108 printed=0
109 for left in range(i−leftwindow−1,i):
110 if line[left] == "C": svmtest.write("0,")
111 if line[left] == "E": svmtest.write("1,")
112 if line[left] == "H": svmtest.write("2,")
113 for j in range(i,len(line)−1):
114 if line[j] == "C": svmtest.write("0,")
115 if line[j] == "E": svmtest.write("1,")
116 if line[j] == "H": svmtest.write("2,")
117 printed+=1
118 zeros = leftwindow−printed
119 for z in range(zeros):
120 svmtest.write("0,")
121 # place label
122 if target_out[i] == "C": svmtest.write("0")
123 if target_out[i] == "E": svmtest.write("1")
124 if target_out[i] == "H": svmtest.write("2")
125 svmtest.write("\n")
126 linenum += 1
127 svmtest.flush()
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Appendix L

Training Filtering Methods

The following program was implemented to train the filtering models and apply the filter-

ing techniques on the output data of the Convolutional Neural Network.

1 # Execute: python train_SVM.py <test_filename> <train_filename> <WINDOW> <pred_file> <
↪→ out_prediction> <out_sov> <filter_opt>

2 from __future__ import print_function
3 import sys
4 import string
5 import numpy as np
6 import numpy as np
7 from sklearn.metrics import classification_report
8 from sklearn.svm import SVC
9 from sklearn import svm, pipeline

10 from sklearn import linear_model
11 from sklearn.metrics import confusion_matrix
12 from sklearn.tree import DecisionTreeClassifier
13 from sklearn.ensemble import RandomForestClassifier
14
15 def get_balanced_data(X_train, y_train):
16 classH = []
17 classE = []
18 classC = []
19 for i,label in enumerate(y_train):
20 if label == 0:
21 classH.append(i)
22 elif label == 1:
23 classE.append(i)
24 else:
25 classC.append(i)
26 rows = min(len(classH), len(classE), len(classC))
27
28 # Create a balanced data set
29 X_balanced = np.concatenate((X_train[classH][0:rows], X_train[classE][0:rows], X_train[classC][0:rows]), axis=0)
30
31 y_balanced = np.concatenate((y_train[classH][0:rows], y_train[classE][0:rows], y_train[classC][0:rows]), axis=0)
32
33 balanced = np.zeros((X_balanced.shape[0], X_balanced.shape[1]+1), dtype=int)
34
35 balanced[:,−1] = y_balanced
36 balanced[:,:−1] = X_balanced
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37 np.random.shuffle(balanced)
38 return balanced[:,:−1], balanced[:,−1]
39
40
41 def create_output_pred(pred, input_f, out_f, outSOV):
42 with open(input_f, "r") as pred_file:
43 pred_lines = pred_file.readlines()
44 pred = pred.astype(int)
45 labels = [’C’, ’E’, ’H’]
46 counter = 0
47 with open(out_f, ’w’) as out_file:
48 for line in range(0, len(pred_lines)//4):
49 protein_name = pred_lines[line∗4][0:−1]
50 primary_structure = pred_lines[line∗4+1][0:−1]
51 secondary_structure = pred_lines[line∗4+2][0:−1]
52 prediction = ""
53 for c in secondary_structure:
54 prediction = prediction + labels[pred[counter]]
55 counter += 1
56 out_file.write(protein_name + "\n")
57 out_file.write(primary_structure + "\n")
58 out_file.write(secondary_structure + "\n")
59 out_file.write(prediction + "\n")
60
61 with open(out_f, "r") as out_file:
62 lines = out_file.readlines()
63 with open(outSOV, "w") as f1:
64 for i in range(0, len(lines), 4):
65 f1.write(’>OSEQ\n’)
66 f1.write(lines[i + 2])
67 f1.write(’>PSEQ\n’)
68 f1.write(lines[i + 3])
69 f1.write(’>AA\n’)
70 f1.write(lines[i + 1])
71
72 train_dataset = np.loadtxt(sys.argv[2], delimiter=",")
73 win=int(sys.argv[3])
74 X_train = train_dataset[:, 0:win]
75 y_train = train_dataset[:, [win]]
76 test_dataset = np.loadtxt(sys.argv[1], delimiter=",")
77 X_test = test_dataset[:, 0:win]
78 y_test = test_dataset[:, [win]]
79 y_train = np.reshape(y_train,len(y_train))
80 y_test = np.reshape(y_test,len(y_test))
81 X_train, y_train = get_balanced_data(X_train, y_train)
82
83 print("Training ...")
84
85 if (sys.argv[7] == ’1’):
86 clf = SVC(C=10, break_ties=False, cache_size=200, class_weight=None, coef0=0.0,
87 decision_function_shape=’ovr’, degree=3, gamma=0.1, kernel=’rbf’,
88 max_iter=−1, probability=False, random_state=None, shrinking=True,
89 tol=0.001, verbose=False)
90 elif (sys.argv[7] == ’2’):
91 clf = DecisionTreeClassifier(max_depth=20)
92 elif (sys.argv[7] == ’3’):
93 clf = RandomForestClassifier(max_depth=25, random_state=42)
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94 elif (sys.argv[7] == ’0’):
95 kernels = [’Polynomial’, ’RBF’, ’Sigmoid’,’Linear’]
96 #A function which returns the corresponding SVC model
97 def getClassifier(ktype):
98 if ktype == 0:
99 # Polynomial kernal

100 return SVC(kernel=’poly’, degree=8, gamma="auto")
101 elif ktype == 1:
102 # Radial Basis Function kernel
103 return SVC(kernel=’rbf’, gamma="auto")
104 elif ktype == 2:
105 # Sigmoid kernel
106 return SVC(kernel=’sigmoid’, gamma="auto")
107 elif ktype == 3:
108 # Linear kernel
109 return SVC(kernel=’linear’, gamma="auto")
110
111 for i in range(1, 4):
112 # Train a SVC model using different kernels
113 svclassifier = getClassifier(i)
114 svclassifier.fit(X_train, y_train)
115 # Make prediction
116 y_pred = svclassifier.predict(X_test)
117 # Evaluate model
118 print("Evaluation:", kernels[i], "kernel")
119 print(classification_report(y_test, y_pred))
120
121 from sklearn.model_selection import GridSearchCV
122 param_grid = {’C’: [0.1, 1, 10], ’gamma’: [1, 0.1, 0.01, 0.001],’kernel’: [’rbf’]}
123 grid = GridSearchCV(SVC(), param_grid, refit=True, verbose=2)
124 grid.fit(X_train, y_train)
125 print(grid.best_estimator_)
126
127 y_pred = grid.predict(X_test)
128 print(confusion_matrix(y_test, y_pred))
129 print(classification_report(y_test, y_pred))
130 exit(0)
131 else:
132 print(’Error! train_SVM.py currently has no such filtering option.’)
133 print(’Please try again (availiable options: 0−3)’)
134 exit(0)
135
136 # Predict the response for test dataset
137 clf.fit(X_train, y_train)
138 y_pred = clf.predict(X_test)
139
140 print("THE SCORE: ", clf.score(X_test, y_test))
141 print("")
142
143 # creating a confusion matrix
144 cm = confusion_matrix(y_test, y_pred)
145 print(’Confusion Matrix’)
146 print(cm)
147 print("")
148
149 create_output_pred(y_pred, sys.argv[4], sys.argv[5], sys.argv[6])
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Appendix M

All filtering methods on CB513

This bash script was implemented and used to apply the ensembles and the filtering meth-

ods in various orders and display the results for each fold of the CB513 dataset.

1 #!/bin/bash
2 # Author : Panayiotis Leontiou
3 # Since : April 2020
4 # Version: 1.0
5 # Bugs : No known bugs
6
7 TEST_FOLDER="./CB513_test_pred"
8 TRAIN_FOLDER="./CB513_train_pred"
9 WINDOW="15"

10 SVM_WIN="13"
11 filterOpt=( "1" "2" "3" )
12
13 echo "
14
15
16 PPPPPPPPPPPPPPPPP SSSSSSSSSSSSSSS SSSSSSSSSSSSSSS PPPPPPPPPPPPPPPPP
17 P::::::::::::::::P SS:::::::::::::::S SS:::::::::::::::SP::::::::::::::::P
18 P::::::PPPPPP:::::P S:::::SSSSSS::::::SS:::::SSSSSS::::::SP::::::PPPPPP:::::P
19 PP:::::P P:::::PS:::::S SSSSSSSS:::::S SSSSSSSPP:::::P P:::::P
20 P::::P P:::::PS:::::S S:::::S P::::P P:::::P
21 P::::P P:::::PS:::::S S:::::S P::::P P:::::P
22 P::::PPPPPP:::::P S::::SSSS S::::SSSS P::::PPPPPP:::::P
23 P:::::::::::::PP SS::::::SSSSS SS::::::SSSSS P:::::::::::::PP
24 P::::PPPPPPPPP SSS::::::::SS SSS::::::::SS P::::PPPPPPPPP
25 P::::P SSSSSS::::S SSSSSS::::S P::::P
26 P::::P S:::::S S:::::S P::::P
27 P::::P S:::::S S:::::S P::::P
28 PP::::::PP SSSSSSS S:::::SSSSSSSS S:::::SPP::::::PP
29 P::::::::P S::::::SSSSSS:::::SS::::::SSSSSS:::::SP::::::::P
30 P::::::::P S:::::::::::::::SS S:::::::::::::::SS P::::::::P
31 PPPPPPPPPP SSSSSSSSSSSSSSS SSSSSSSSSSSSSSS PPPPPPPPPP
32
33
34 "
35 print_fold () {
36 case $1 in
37 fold0)
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38 cat << ’EOF’
39 ___ ___ _ ___ __
40 o O O | __| / _ \ | | | \ / \
41 o | _| | (_) | | |__ | |) | ___ | () |
42 TS__[O] _|_|_ \___/ |____| |___/ |___| _\__/
43 {======| _| """ | _|"""""| _|"""""| _|"""""| _|"""""| _|"""""|
44 ./o−−000’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’
45 EOF
46 ;;
47 fold1)
48 cat << "EOF"
49 ___ ___ _ ___ _
50 o O O | __| / _ \ | | | \ / |
51 o | _| | (_) | | |__ | |) | ___ | |
52 TS__[O] _|_|_ \___/ |____| |___/ |___| _|_|_
53 {======| _| """ | _|"""""| _|"""""| _|"""""| _|"""""| _|"""""|
54 ./o−−000’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’
55 EOF
56 ;;
57 fold2)
58 cat << "EOF"
59 ___ ___ _ ___ ___
60 o O O | __| / _ \ | | | \ |_ )
61 o | _| | (_) | | |__ | |) | ___ / /
62 TS__[O] _|_|_ \___/ |____| |___/ |___| /___|
63 {======| _| """ | _|"""""| _|"""""| _|"""""| _|"""""| _|"""""|
64 ./o−−000’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’
65 EOF
66 ;;
67 fold3)
68 cat << "EOF"
69 ___ ___ _ ___ ____
70 o O O | __| / _ \ | | | \ |__ /
71 o | _| | (_) | | |__ | |) | ___ |_ \
72 TS__[O] _|_|_ \___/ |____| |___/ |___| |___/
73 {======| _| """ | _|"""""| _|"""""| _|"""""| _|"""""| _|"""""|
74 ./o−−000’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’
75 EOF
76 ;;
77 fold4)
78 cat << "EOF"
79 ___ ___ _ ___ _ _
80 o O O | __| / _ \ | | | \ | | |
81 o | _| | (_) | | |__ | |) | ___ |_ _|
82 TS__[O] _|_|_ \___/ |____| |___/ |___| _|_|_
83 {======| _| """ | _|"""""| _|"""""| _|"""""| _|"""""| _|"""""|
84 ./o−−000’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’
85 EOF
86 ;;
87 fold5)
88 cat << "EOF"
89 ___ ___ _ ___ ___
90 o O O | __| / _ \ | | | \ | __|
91 o | _| | (_) | | |__ | |) | ___ |__ \
92 TS__[O] _|_|_ \___/ |____| |___/ |___| |___/
93 {======| _| """ | _|"""""| _|"""""| _|"""""| _|"""""| _|"""""|
94 ./o−−000’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’
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95 EOF
96 ;;
97 fold6)
98 cat << "EOF"
99 ___ ___ _ ___ __

100 o O O | __| / _ \ | | | \ / /
101 o | _| | (_) | | |__ | |) | ___ / _ \
102 TS__[O] _|_|_ \___/ |____| |___/ |___| \___/
103 {======| _| """ | _|"""""| _|"""""| _|"""""| _|"""""| _|"""""|
104 ./o−−000’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’
105 EOF
106 ;;
107 fold7)
108 cat << "EOF"
109 ___ ___ _ ___ ____
110 o O O | __| / _ \ | | | \ |__ |
111 o | _| | (_) | | |__ | |) | ___ / /
112 TS__[O] _|_|_ \___/ |____| |___/ |___| _/_/_
113 {======| _| """ | _|"""""| _|"""""| _|"""""| _|"""""| _|"""""|
114 ./o−−000’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’
115 EOF
116 ;;
117 fold8)
118 cat << "EOF"
119 ___ ___ _ ___ ___
120 o O O | __| / _ \ | | | \ ( _ )
121 o | _| | (_) | | |__ | |) | ___ / _ \
122 TS__[O] _|_|_ \___/ |____| |___/ |___| \___/
123 {======| _| """ | _|"""""| _|"""""| _|"""""| _|"""""| _|"""""|
124 ./o−−000’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’
125 EOF
126 ;;
127 fold9)
128 cat << "EOF"
129 ___ ___ _ ___ ___
130 o O O | __| / _ \ | | | \ / _ \
131 o | _| | (_) | | |__ | |) | ___ \_, /
132 TS__[O] _|_|_ \___/ |____| |___/ |___| _/_/_
133 {======| _| """ | _|"""""| _|"""""| _|"""""| _|"""""| _|"""""|
134 ./o−−000’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’
135 EOF
136 ;;
137 ∗)
138 ;;
139 esac
140
141 }
142
143 print_SOV_score(){
144 cat ./resultSOV.txt | grep −e ’SOV’ | awk −F’ ’ ’{sovAll += $3; sovH += $4; sovE += $5; sovC += $6} END {

↪→ printf "\n SOV_ALL SOV_H SOV_E SOV_C\n %.4f %.4f %.4f %.4
↪→ f\n", sovAll/NR, sovH/NR, sovE/NR, sovC/NR}’

145 }
146
147 get_filter_name(){
148 case $1 in
149 "1")
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150 filter_name="SVM"
151 ;;
152 "2")
153 filter_name="Decision Tree"
154 ;;
155 "3")
156 filter_name="Random Forest"
157 ;;
158 ∗)
159 filter_name="Unknown Filter"
160 ;;
161 esac
162 }
163
164 get_filter_abr(){
165 case $1 in
166 "1")
167 filter_abr="svm"
168 ;;
169 "2")
170 filter_abr="dtree"
171 ;;
172 "3")
173 filter_abr="rforest"
174 ;;
175 ∗)
176 filter_abr="unknown"
177 ;;
178 esac
179 }
180
181 SCRIPTS="./q3_sov_scripts"
182 TEMP_FOLDER="./temp_runAll_CB513"
183 RUN_ALL_FOLDER="./CB513_runAll_out_files"
184 CROSS_VAL_FOLDER="./CB513_cross_validation"
185 [ −d "$TEMP_FOLDER" ] || mkdir "$TEMP_FOLDER"
186 [ −d "$RUN_ALL_FOLDER" ] || mkdir "$RUN_ALL_FOLDER"
187
188 echo "===================================================================="
189 echo " >Cross Validation Results"
190 echo "

↪→ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
↪→ "

191 for i in ‘ls "$CROSS_VAL_FOLDER"‘
192 do
193 echo "$i"
194 new_folder="$RUN_ALL_FOLDER/cross_val_res"
195 [ −d "$new_folder" ] || mkdir "$new_folder"
196 out_file=("$TEMP_FOLDER/$i""_cross_val.txt")
197 for j in ‘ls "$CROSS_VAL_FOLDER/$i"‘
198 do
199 echo "$CROSS_VAL_FOLDER/$i/$j"
200 done > "$out_file"
201 python "$SCRIPTS/ensembles.py" "$out_file" "$WINDOW" 1 "$new_folder/ens_pred.txt" "$new_folder/ens_sov.txt" "

↪→ $new_folder/ens_weka.txt"
202 "$SCRIPTS/runSOV" "$new_folder/ens_sov.txt"
203 print_SOV_score
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204 python "$SCRIPTS/calc_Q3.py" "$new_folder/ens_pred.txt"
205 echo "

↪→ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
↪→ "

206 done
207 echo "===================================================================="
208 echo ""
209 for i in ‘ls "$TEST_FOLDER"‘
210 do
211 print_fold $i
212 new_folder="$RUN_ALL_FOLDER/$i""_results"
213 [ −d "$new_folder" ] || mkdir "$new_folder"
214 out_file=("$TEMP_FOLDER/$i""_files.txt")
215
216 for j in ‘ls "$TEST_FOLDER/$i"‘
217 do
218 echo "$TEST_FOLDER/$i/$j"
219 done > "$out_file"
220 echo "===================================================================="
221 echo " >Ensembles Results"
222 echo "

↪→ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
↪→ "

223 python "$SCRIPTS/ensembles.py" "$out_file" "$WINDOW" 1 "$new_folder/ensembles_pred.txt" "$new_folder/ensembles_sov.
↪→ txt" "$new_folder/ensembles_weka.txt" > "$new_folder/ensembles_out.txt"

224 "$SCRIPTS/runSOV" "$new_folder/ensembles_sov.txt"
225 print_SOV_score
226 python "$SCRIPTS/calc_Q3.py" "$new_folder/ensembles_pred.txt"
227 echo "===================================================================="
228 echo " >Ensembles + External Rules Results"
229 echo "

↪→ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
↪→ "

230 python "$SCRIPTS/externalRules.py" "$new_folder/ensembles_pred.txt" "$new_folder/ens_rules_sov.txt" "$new_folder/
↪→ ens_rules_pred.txt"

231 "$SCRIPTS/runSOV" "$new_folder/ens_rules_sov.txt"
232 print_SOV_score
233 python "$SCRIPTS/calc_Q3.py" "$new_folder/ens_rules_pred.txt"
234
235 for filter in "${filterOpt[@]}"
236 do
237 get_filter_name $filter
238 get_filter_abr $filter
239 echo "===================================================================="
240 echo " >Ensembles + External Rules + $filter_name Results"
241 echo "

↪→ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
↪→ "

242 python "$SCRIPTS/prepare_SVM_files.py" "$new_folder/ens_rules_pred.txt" "$TRAIN_FOLDER/$i""_train_pred.txt" "
↪→ $SVM_WIN" "$new_folder/temp_svm_test.txt" "$new_folder/temp_svm_train.txt"

243 python "$SCRIPTS/train_SVM.py" "$new_folder/temp_svm_test.txt" "$new_folder/temp_svm_train.txt" "$SVM_WIN" "
↪→ $new_folder/ens_rules_pred.txt" "$new_folder/ens_rules_$filter_abr""_pred.txt" "$new_folder/ens_rules_$filter_abr
↪→ ""_sov.txt" "$filter" > "$new_folder/ens_rules_$filter_abr""_out.txt"

244 "$SCRIPTS/runSOV" "$new_folder/ens_rules_$filter_abr""_sov.txt"
245 print_SOV_score
246 python "$SCRIPTS/calc_Q3.py" "$new_folder/ens_rules_$filter_abr""_pred.txt"
247 echo "===================================================================="
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248 echo " >Ensembles + $filter_name Results"
249 echo "

↪→ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
↪→ "

250 python "$SCRIPTS/prepare_SVM_files.py" "$new_folder/ensembles_pred.txt" "$TRAIN_FOLDER/$i""_train_pred.txt" "
↪→ $SVM_WIN" "$new_folder/temp_svm_test.txt" "$new_folder/temp_svm_train.txt"

251 python "$SCRIPTS/train_SVM.py" "$new_folder/temp_svm_test.txt" "$new_folder/temp_svm_train.txt" "$SVM_WIN" "
↪→ $new_folder/ensembles_pred.txt" "$new_folder/ens_$filter_abr""_pred.txt" "$new_folder/ens_$filter_abr""_sov.txt"
↪→ "$filter" > "$new_folder/ens_$filter_abr""_out.txt"

252 "$SCRIPTS/runSOV" "$new_folder/ens_$filter_abr""_sov.txt"
253 print_SOV_score
254 python "$SCRIPTS/calc_Q3.py" "$new_folder/ens_$filter_abr""_pred.txt"
255 echo "===================================================================="
256 echo " >Ensembles + $filter_name + External Rules Results"
257 echo "

↪→ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
↪→ "

258 python "$SCRIPTS/externalRules.py" "$new_folder/ens_$filter_abr""_pred.txt" "$new_folder/ens_$filter_abr""_rules_sov.txt
↪→ " "$new_folder/ens_$filter_abr""_rules_pred.txt"

259 "$SCRIPTS/runSOV" "$new_folder/ens_$filter_abr""_rules_sov.txt"
260 print_SOV_score
261 python "$SCRIPTS/calc_Q3.py" "$new_folder/ens_$filter_abr""_rules_pred.txt"
262 done
263 echo "===================================================================="
264 echo ""
265 # exit 0
266 done
267
268 # Remove temp files
269 rm −rf "$TEMP_FOLDER"
270 rm resultSOV.txt
271 rm SOVinput.txt
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Appendix N

View filtering results of CB513

The following bash script was implemented and used to view all the ensembles and filter-

ing results in a table format, for the CB513 dataset.

1 #!/bin/bash
2
3 file="./final_results_CB513.txt"
4
5 echo "Ensembles Results"
6 echo −e "Q3_ALL\tQ3_H\tQ3_E\tQ3_C\tSOV_ALL\tSOV_H\tSOV_E\tSOV_C"
7 echo "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−"
8 sed −n ’/Ensembles Results/,/=====/p’ "$file" | grep −E ’[0−9]+’| grep −v ’[a−zA−Z]’ | tr −s " " | sed −e ’s/^[ \t]∗//’ | awk

↪→ −F’ ’ ’BEGIN{switch=1}{if (switch == 1) {v1=$1; v2=$2; v3=$3; v4=$4; switch=2;} else {printf "%.2f\t%.2
↪→ f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\n", $1, $2, $3, $4, v1, v2, v3, v4; switch=1}}’

9 echo ""
10
11 echo "Ensembles + External Rules Results"
12 echo −e "Q3_ALL\tQ3_H\tQ3_E\tQ3_C\tSOV_ALL\tSOV_H\tSOV_E\tSOV_C"
13 echo "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−"
14 sed −n ’/Ensembles + External Rules Results/,/=====/p’ "$file" | grep −E ’[0−9]+’| grep −v ’[a−zA−Z]’ | tr −s " " | sed −e

↪→ ’s/^[ \t]∗//’ | awk −F’ ’ ’BEGIN{switch=1}{if (switch == 1) {v1=$1; v2=$2; v3=$3; v4=$4; switch=2;} else
↪→ {printf "%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\n", $1, $2, $3, $4, v1, v2, v3, v4; switch=1}}’

15 echo ""
16
17 echo "Ensembles + External Rules + SVM Results"
18 echo −e "Q3_ALL\tQ3_H\tQ3_E\tQ3_C\tSOV_ALL\tSOV_H\tSOV_E\tSOV_C"
19 echo "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−"
20 sed −n ’/Ensembles + External Rules + SVM Results/,/=====/p’ "$file" | grep −E ’[0−9]+’| grep −v ’[a−zA−Z]’ | tr −s "

↪→ " | sed −e ’s/^[ \t]∗//’ | awk −F’ ’ ’BEGIN{switch=1}{if (switch == 1) {v1=$1; v2=$2; v3=$3; v4=$4; switch
↪→ =2;} else {printf "%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\n", $1, $2, $3, $4, v1, v2, v3, v4; switch
↪→ =1}}’

21 echo ""
22
23 echo "Ensembles + SVM Results"
24 echo −e "Q3_ALL\tQ3_H\tQ3_E\tQ3_C\tSOV_ALL\tSOV_H\tSOV_E\tSOV_C"
25 echo "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−"
26 sed −n ’/Ensembles + SVM Results/,/=====/p’ "$file" | grep −E ’[0−9]+’| grep −v ’[a−zA−Z]’ | tr −s " " | sed −e ’s/^[ \t

↪→ ]∗//’ | awk −F’ ’ ’BEGIN{switch=1}{if (switch == 1) {v1=$1; v2=$2; v3=$3; v4=$4; switch=2;} else {printf
↪→ "%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\n", $1, $2, $3, $4, v1, v2, v3, v4; switch=1}}’

27 echo ""
28
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29 echo "Ensembles + SVM + External Rules Results"
30 echo −e "Q3_ALL\tQ3_H\tQ3_E\tQ3_C\tSOV_ALL\tSOV_H\tSOV_E\tSOV_C"
31 echo "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−"
32 sed −n ’/Ensembles + SVM + External Rules Results/,/=====/p’ "$file" | grep −E ’[0−9]+’| grep −v ’[a−zA−Z]’ | tr −s "

↪→ " | sed −e ’s/^[ \t]∗//’ | awk −F’ ’ ’BEGIN{switch=1}{if (switch == 1) {v1=$1; v2=$2; v3=$3; v4=$4; switch
↪→ =2;} else {printf "%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\n", $1, $2, $3, $4, v1, v2, v3, v4; switch
↪→ =1}}’

33 echo ""
34
35 echo "Ensembles + External Rules + Decision Tree Results"
36 echo −e "Q3_ALL\tQ3_H\tQ3_E\tQ3_C\tSOV_ALL\tSOV_H\tSOV_E\tSOV_C"
37 echo "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−"
38 sed −n ’/Ensembles + External Rules + Decision Tree Results/,/=====/p’ "$file" | grep −E ’[0−9]+’| grep −v ’[a−zA−Z]’ |

↪→ tr −s " " | sed −e ’s/^[ \t]∗//’ | awk −F’ ’ ’BEGIN{switch=1}{if (switch == 1) {v1=$1; v2=$2; v3=$3; v4=$4;
↪→ switch=2;} else {printf "%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\n", $1, $2, $3, $4, v1, v2, v3, v4;
↪→ switch=1}}’

39 echo ""
40
41 echo "Ensembles + Decision Tree Results"
42 echo −e "Q3_ALL\tQ3_H\tQ3_E\tQ3_C\tSOV_ALL\tSOV_H\tSOV_E\tSOV_C"
43 echo "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−"
44 sed −n ’/Ensembles + Decision Tree Results/,/=====/p’ "$file" | grep −E ’[0−9]+’| grep −v ’[a−zA−Z]’ | tr −s " " | sed −e

↪→ ’s/^[ \t]∗//’ | awk −F’ ’ ’BEGIN{switch=1}{if (switch == 1) {v1=$1; v2=$2; v3=$3; v4=$4; switch=2;} else
↪→ {printf "%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\n", $1, $2, $3, $4, v1, v2, v3, v4; switch=1}}’

45 echo ""
46
47 echo "Ensembles + Decision Tree + External Rules Results"
48 echo −e "Q3_ALL\tQ3_H\tQ3_E\tQ3_C\tSOV_ALL\tSOV_H\tSOV_E\tSOV_C"
49 echo "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−"
50 sed −n ’/Ensembles + Decision Tree + External Rules Results/,/=====/p’ "$file" | grep −E ’[0−9]+’| grep −v ’[a−zA−Z]’ |

↪→ tr −s " " | sed −e ’s/^[ \t]∗//’ | awk −F’ ’ ’BEGIN{switch=1}{if (switch == 1) {v1=$1; v2=$2; v3=$3; v4=$4;
↪→ switch=2;} else {printf "%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\n", $1, $2, $3, $4, v1, v2, v3, v4;
↪→ switch=1}}’

51 echo ""
52
53 echo "Ensembles + External Rules + Random Forest Results"
54 echo −e "Q3_ALL\tQ3_H\tQ3_E\tQ3_C\tSOV_ALL\tSOV_H\tSOV_E\tSOV_C"
55 echo "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−"
56 sed −n ’/Ensembles + External Rules + Random Forest Results/,/=====/p’ "$file" | grep −E ’[0−9]+’| grep −v ’[a−zA−Z]

↪→ ’ | tr −s " " | sed −e ’s/^[ \t]∗//’ | awk −F’ ’ ’BEGIN{switch=1}{if (switch == 1) {v1=$1; v2=$2; v3=$3; v4=
↪→ $4; switch=2;} else {printf "%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\n", $1, $2, $3, $4, v1, v2, v3, v4;
↪→ switch=1}}’

57 echo ""
58
59 echo "Ensembles + Random Forest Results"
60 echo −e "Q3_ALL\tQ3_H\tQ3_E\tQ3_C\tSOV_ALL\tSOV_H\tSOV_E\tSOV_C"
61 echo "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−"
62 sed −n ’/Ensembles + Random Forest Results/,/=====/p’ "$file" | grep −E ’[0−9]+’| grep −v ’[a−zA−Z]’ | tr −s " " | sed −e

↪→ ’s/^[ \t]∗//’ | awk −F’ ’ ’BEGIN{switch=1}{if (switch == 1) {v1=$1; v2=$2; v3=$3; v4=$4; switch=2;} else
↪→ {printf "%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\n", $1, $2, $3, $4, v1, v2, v3, v4; switch=1}}’

63 echo ""
64
65 echo "Ensembles + Random Forest + External Rules Results"
66 echo −e "Q3_ALL\tQ3_H\tQ3_E\tQ3_C\tSOV_ALL\tSOV_H\tSOV_E\tSOV_C"
67 echo "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−"
68 sed −n ’/Ensembles + Random Forest + External Rules Results/,/=====/p’ "$file" | grep −E ’[0−9]+’| grep −v ’[a−zA−Z]

↪→ ’ | tr −s " " | sed −e ’s/^[ \t]∗//’ | awk −F’ ’ ’BEGIN{switch=1}{if (switch == 1) {v1=$1; v2=$2; v3=$3; v4=
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↪→ $4; switch=2;} else {printf "%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\n", $1, $2, $3, $4, v1, v2, v3, v4;
↪→ switch=1}}’
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Appendix O

All filtering methods on PISCES

This bash script was implemented and used to apply the ensembles and the filtering meth-

ods in various orders and display the results for each fold of the PISCES dataset.

1 #!/bin/bash
2 # Author : Panayiotis Leontiou
3 # Since : May 2020
4 # Version: 1.0
5 # Bugs : No known bugs
6
7 TEST_FOLDER="./PISCES_test_pred"
8 TRAIN_FOLDER="./PISCES_train_pred"
9 WINDOW="15"

10 SVM_WIN="19"
11 filterOpt=( "2" "3" )
12
13 echo "
14
15
16
17 PPPPPPPPPPPPPPPPP SSSSSSSSSSSSSSS SSSSSSSSSSSSSSS PPPPPPPPPPPPPPPPP
18 P::::::::::::::::P SS:::::::::::::::S SS:::::::::::::::SP::::::::::::::::P
19 P::::::PPPPPP:::::P S:::::SSSSSS::::::SS:::::SSSSSS::::::SP::::::PPPPPP:::::P
20 PP:::::P P:::::PS:::::S SSSSSSSS:::::S SSSSSSSPP:::::P P:::::P
21 P::::P P:::::PS:::::S S:::::S P::::P P:::::P
22 P::::P P:::::PS:::::S S:::::S P::::P P:::::P
23 P::::PPPPPP:::::P S::::SSSS S::::SSSS P::::PPPPPP:::::P
24 P:::::::::::::PP SS::::::SSSSS SS::::::SSSSS P:::::::::::::PP
25 P::::PPPPPPPPP SSS::::::::SS SSS::::::::SS P::::PPPPPPPPP
26 P::::P SSSSSS::::S SSSSSS::::S P::::P
27 P::::P S:::::S S:::::S P::::P
28 P::::P S:::::S S:::::S P::::P
29 PP::::::PP SSSSSSS S:::::SSSSSSSS S:::::SPP::::::PP
30 P::::::::P S::::::SSSSSS:::::SS::::::SSSSSS:::::SP::::::::P
31 P::::::::P S:::::::::::::::SS S:::::::::::::::SS P::::::::P
32 PPPPPPPPPP SSSSSSSSSSSSSSS SSSSSSSSSSSSSSS PPPPPPPPPP
33
34
35
36 "
37 print_fold () {

O-1



38 case $1 in
39 fold0)
40 cat << ’EOF’
41 ___ ___ _ ___ __
42 o O O | __| / _ \ | | | \ / \
43 o | _| | (_) | | |__ | |) | ___ | () |
44 TS__[O] _|_|_ \___/ |____| |___/ |___| _\__/
45 {======| _| """ | _|"""""| _|"""""| _|"""""| _|"""""| _|"""""|
46 ./o−−000’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’
47 EOF
48 ;;
49 fold1)
50 cat << "EOF"
51 ___ ___ _ ___ _
52 o O O | __| / _ \ | | | \ / |
53 o | _| | (_) | | |__ | |) | ___ | |
54 TS__[O] _|_|_ \___/ |____| |___/ |___| _|_|_
55 {======| _| """ | _|"""""| _|"""""| _|"""""| _|"""""| _|"""""|
56 ./o−−000’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’
57 EOF
58 ;;
59 fold2)
60 cat << "EOF"
61 ___ ___ _ ___ ___
62 o O O | __| / _ \ | | | \ |_ )
63 o | _| | (_) | | |__ | |) | ___ / /
64 TS__[O] _|_|_ \___/ |____| |___/ |___| /___|
65 {======| _| """ | _|"""""| _|"""""| _|"""""| _|"""""| _|"""""|
66 ./o−−000’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’
67 EOF
68 ;;
69 fold3)
70 cat << "EOF"
71 ___ ___ _ ___ ____
72 o O O | __| / _ \ | | | \ |__ /
73 o | _| | (_) | | |__ | |) | ___ |_ \
74 TS__[O] _|_|_ \___/ |____| |___/ |___| |___/
75 {======| _| """ | _|"""""| _|"""""| _|"""""| _|"""""| _|"""""|
76 ./o−−000’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’
77 EOF
78 ;;
79 fold4)
80 cat << "EOF"
81 ___ ___ _ ___ _ _
82 o O O | __| / _ \ | | | \ | | |
83 o | _| | (_) | | |__ | |) | ___ |_ _|
84 TS__[O] _|_|_ \___/ |____| |___/ |___| _|_|_
85 {======| _| """ | _|"""""| _|"""""| _|"""""| _|"""""| _|"""""|
86 ./o−−000’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’
87 EOF
88 ;;
89 fold5)
90 cat << "EOF"
91 ___ ___ _ ___ ___
92 o O O | __| / _ \ | | | \ | __|
93 o | _| | (_) | | |__ | |) | ___ |__ \
94 TS__[O] _|_|_ \___/ |____| |___/ |___| |___/
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95 {======| _| """ | _|"""""| _|"""""| _|"""""| _|"""""| _|"""""|
96 ./o−−000’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’
97 EOF
98 ;;
99 fold6)

100 cat << "EOF"
101 ___ ___ _ ___ __
102 o O O | __| / _ \ | | | \ / /
103 o | _| | (_) | | |__ | |) | ___ / _ \
104 TS__[O] _|_|_ \___/ |____| |___/ |___| \___/
105 {======| _| """ | _|"""""| _|"""""| _|"""""| _|"""""| _|"""""|
106 ./o−−000’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’
107 EOF
108 ;;
109 fold7)
110 cat << "EOF"
111 ___ ___ _ ___ ____
112 o O O | __| / _ \ | | | \ |__ |
113 o | _| | (_) | | |__ | |) | ___ / /
114 TS__[O] _|_|_ \___/ |____| |___/ |___| _/_/_
115 {======| _| """ | _|"""""| _|"""""| _|"""""| _|"""""| _|"""""|
116 ./o−−000’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’
117 EOF
118 ;;
119 fold8)
120 cat << "EOF"
121 ___ ___ _ ___ ___
122 o O O | __| / _ \ | | | \ ( _ )
123 o | _| | (_) | | |__ | |) | ___ / _ \
124 TS__[O] _|_|_ \___/ |____| |___/ |___| \___/
125 {======| _| """ | _|"""""| _|"""""| _|"""""| _|"""""| _|"""""|
126 ./o−−000’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’
127 EOF
128 ;;
129 fold9)
130 cat << "EOF"
131 ___ ___ _ ___ ___
132 o O O | __| / _ \ | | | \ / _ \
133 o | _| | (_) | | |__ | |) | ___ \_, /
134 TS__[O] _|_|_ \___/ |____| |___/ |___| _/_/_
135 {======| _| """ | _|"""""| _|"""""| _|"""""| _|"""""| _|"""""|
136 ./o−−000’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’ "‘−0−0−’
137 EOF
138 ;;
139 ∗)
140 ;;
141 esac
142
143 }
144
145 print_SOV_score(){
146 cat ./resultSOV.txt | grep −e ’SOV’ | awk −F’ ’ ’{sovAll += $3; sovH += $4; sovE += $5; sovC += $6} END {

↪→ printf "\n SOV_ALL SOV_H SOV_E SOV_C\n %.4f %.4f %.4f %.4
↪→ f\n", sovAll/NR, sovH/NR, sovE/NR, sovC/NR}’

147 }
148
149 get_filter_name(){
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150 case $1 in
151 "1")
152 filter_name="SVM"
153 ;;
154 "2")
155 filter_name="Decision Tree"
156 ;;
157 "3")
158 filter_name="Random Forest"
159 ;;
160 ∗)
161 filter_name="Unknown Filter"
162 ;;
163 esac
164 }
165
166 get_filter_abr(){
167 case $1 in
168 "1")
169 filter_abr="svm"
170 ;;
171 "2")
172 filter_abr="dtree"
173 ;;
174 "3")
175 filter_abr="rforest"
176 ;;
177 ∗)
178 filter_abr="unknown"
179 ;;
180 esac
181 }
182
183 SCRIPTS="./q3_sov_scripts"
184 TEMP_FOLDER="./temp_runAll_PISCES"
185 RUN_ALL_FOLDER="./PISCES_runAll_out_files"
186 CROSS_VAL_FOLDER="./PISCES_cross_validation"
187 [ −d "$TEMP_FOLDER" ] || mkdir "$TEMP_FOLDER"
188 [ −d "$RUN_ALL_FOLDER" ] || mkdir "$RUN_ALL_FOLDER"
189
190 echo "===================================================================="
191 echo " >Cross Validation Results"
192 echo "

↪→ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
↪→ "

193 for i in ‘ls "$CROSS_VAL_FOLDER"‘
194 do
195 echo "$i"
196 new_folder="$RUN_ALL_FOLDER/cross_val_res"
197 [ −d "$new_folder" ] || mkdir "$new_folder"
198 out_file=("$TEMP_FOLDER/$i""_cross_val.txt")
199 for j in ‘ls "$CROSS_VAL_FOLDER/$i"‘
200 do
201 echo "$CROSS_VAL_FOLDER/$i/$j"
202 done > "$out_file"
203 python "$SCRIPTS/ensembles.py" "$out_file" "$WINDOW" 1 "$new_folder/ens_pred.txt" "$new_folder/ens_sov.txt" "

↪→ $new_folder/ens_weka.txt"
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204 "$SCRIPTS/runSOV" "$new_folder/ens_sov.txt"
205 print_SOV_score
206 python "$SCRIPTS/calc_Q3.py" "$new_folder/ens_pred.txt"
207 echo "

↪→ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
↪→ "

208 done
209 echo "===================================================================="
210 echo ""
211 for i in ‘ls "$TEST_FOLDER"‘
212 do
213 print_fold $i
214 new_folder="$RUN_ALL_FOLDER/$i""_results"
215 [ −d "$new_folder" ] || mkdir "$new_folder"
216 out_file=("$TEMP_FOLDER/$i""_files.txt")
217
218 for j in ‘ls "$TEST_FOLDER/$i"‘
219 do
220 echo "$TEST_FOLDER/$i/$j"
221 done > "$out_file"
222 echo "===================================================================="
223 echo " >Ensembles Results"
224 echo "

↪→ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
↪→ "

225 python "$SCRIPTS/ensembles.py" "$out_file" "$WINDOW" 1 "$new_folder/ensembles_pred.txt" "$new_folder/ensembles_sov.
↪→ txt" "$new_folder/ensembles_weka.txt" > "$new_folder/ensembles_out.txt"

226 "$SCRIPTS/runSOV" "$new_folder/ensembles_sov.txt"
227 print_SOV_score
228 python "$SCRIPTS/calc_Q3.py" "$new_folder/ensembles_pred.txt"
229 echo "===================================================================="
230 echo " >Ensembles + External Rules Results"
231 echo "

↪→ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
↪→ "

232 python "$SCRIPTS/externalRules.py" "$new_folder/ensembles_pred.txt" "$new_folder/ens_rules_sov.txt" "$new_folder/
↪→ ens_rules_pred.txt"

233 "$SCRIPTS/runSOV" "$new_folder/ens_rules_sov.txt"
234 print_SOV_score
235 python "$SCRIPTS/calc_Q3.py" "$new_folder/ens_rules_pred.txt"
236 for filter in "${filterOpt[@]}"
237 do
238 get_filter_name $filter
239 get_filter_abr $filter
240 # echo "$filter $filter_name"
241 echo "===================================================================="
242 echo " >Ensembles + External Rules + $filter_name Results"
243 echo "

↪→ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
↪→ "

244 python "$SCRIPTS/prepare_SVM_files.py" "$new_folder/ens_rules_pred.txt" "$TRAIN_FOLDER/$i""_train_pred.txt" "
↪→ $SVM_WIN" "$new_folder/temp_svm_test.txt" "$new_folder/temp_svm_train.txt"

245 python "$SCRIPTS/train_SVM.py" "$new_folder/temp_svm_test.txt" "$new_folder/temp_svm_train.txt" "$SVM_WIN" "
↪→ $new_folder/ens_rules_pred.txt" "$new_folder/ens_rules_$filter_abr""_pred.txt" "$new_folder/ens_rules_$filter_abr
↪→ ""_sov.txt" "$filter" > "$new_folder/ens_rules_$filter_abr""_out.txt"

246 "$SCRIPTS/runSOV" "$new_folder/ens_rules_$filter_abr""_sov.txt"
247 print_SOV_score
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248 python "$SCRIPTS/calc_Q3.py" "$new_folder/ens_rules_$filter_abr""_pred.txt"
249 echo "===================================================================="
250 echo " >Ensembles + $filter_name Results"
251 echo "

↪→ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
↪→ "

252 python "$SCRIPTS/prepare_SVM_files.py" "$new_folder/ensembles_pred.txt" "$TRAIN_FOLDER/$i""_train_pred.txt" "
↪→ $SVM_WIN" "$new_folder/temp_svm_test.txt" "$new_folder/temp_svm_train.txt"

253 python "$SCRIPTS/train_SVM.py" "$new_folder/temp_svm_test.txt" "$new_folder/temp_svm_train.txt" "$SVM_WIN" "
↪→ $new_folder/ensembles_pred.txt" "$new_folder/ens_$filter_abr""_pred.txt" "$new_folder/ens_$filter_abr""_sov.txt"
↪→ "$filter" > "$new_folder/ens_$filter_abr""_out.txt"

254 "$SCRIPTS/runSOV" "$new_folder/ens_$filter_abr""_sov.txt"
255 print_SOV_score
256 python "$SCRIPTS/calc_Q3.py" "$new_folder/ens_$filter_abr""_pred.txt"
257 echo "===================================================================="
258 echo " >Ensembles + $filter_name + External Rules Results"
259 echo "

↪→ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
↪→ "

260 python "$SCRIPTS/externalRules.py" "$new_folder/ens_$filter_abr""_pred.txt" "$new_folder/ens_$filter_abr""_rules_sov.txt
↪→ " "$new_folder/ens_$filter_abr""_rules_pred.txt"

261 "$SCRIPTS/runSOV" "$new_folder/ens_$filter_abr""_rules_sov.txt"
262 print_SOV_score
263 python "$SCRIPTS/calc_Q3.py" "$new_folder/ens_$filter_abr""_rules_pred.txt"
264 done
265 echo "===================================================================="
266 echo ""
267 # exit 0
268 done
269
270 # Remove temp files
271 rm −rf "$TEMP_FOLDER"
272 rm resultSOV.txt
273 rm SOVinput.txt
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Appendix P

View filtering results of PISCES

The following bash script was implemented and used to view all the ensembles and filter-

ing results in a table format, for the PISCES dataset.

1 #!/bin/bash
2
3 file="./final_results_PISCES.txt"
4
5 echo "Ensembles Results"
6 echo −e "Q3_ALL\tQ3_H\tQ3_E\tQ3_C\tSOV_ALL\tSOV_H\tSOV_E\tSOV_C"
7 echo "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−"
8 sed −n ’/Ensembles Results/,/=====/p’ "$file" | grep −E ’[0−9]+’| grep −v ’[a−zA−Z]’ | tr −s " " | sed −e ’s/^[ \t]∗//’ | awk

↪→ −F’ ’ ’BEGIN{switch=1}{if (switch == 1) {v1=$1; v2=$2; v3=$3; v4=$4; switch=2;} else {printf "%.2f\t%.2
↪→ f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\n", $1, $2, $3, $4, v1, v2, v3, v4; switch=1}}’

9 echo ""
10
11 echo "Ensembles + External Rules Results"
12 echo −e "Q3_ALL\tQ3_H\tQ3_E\tQ3_C\tSOV_ALL\tSOV_H\tSOV_E\tSOV_C"
13 echo "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−"
14 sed −n ’/Ensembles + External Rules Results/,/=====/p’ "$file" | grep −E ’[0−9]+’| grep −v ’[a−zA−Z]’ | tr −s " " | sed −e

↪→ ’s/^[ \t]∗//’ | awk −F’ ’ ’BEGIN{switch=1}{if (switch == 1) {v1=$1; v2=$2; v3=$3; v4=$4; switch=2;} else
↪→ {printf "%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\n", $1, $2, $3, $4, v1, v2, v3, v4; switch=1}}’

15 echo ""
16
17 echo "Ensembles + External Rules + Decision Tree Results"
18 echo −e "Q3_ALL\tQ3_H\tQ3_E\tQ3_C\tSOV_ALL\tSOV_H\tSOV_E\tSOV_C"
19 echo "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−"
20 sed −n ’/Ensembles + External Rules + Decision Tree Results/,/=====/p’ "$file" | grep −E ’[0−9]+’| grep −v ’[a−zA−Z]’ |

↪→ tr −s " " | sed −e ’s/^[ \t]∗//’ | awk −F’ ’ ’BEGIN{switch=1}{if (switch == 1) {v1=$1; v2=$2; v3=$3; v4=$4;
↪→ switch=2;} else {printf "%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\n", $1, $2, $3, $4, v1, v2, v3, v4;
↪→ switch=1}}’

21 echo ""
22
23 echo "Ensembles + Decision Tree Results"
24 echo −e "Q3_ALL\tQ3_H\tQ3_E\tQ3_C\tSOV_ALL\tSOV_H\tSOV_E\tSOV_C"
25 echo "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−"
26 sed −n ’/Ensembles + Decision Tree Results/,/=====/p’ "$file" | grep −E ’[0−9]+’| grep −v ’[a−zA−Z]’ | tr −s " " | sed −e

↪→ ’s/^[ \t]∗//’ | awk −F’ ’ ’BEGIN{switch=1}{if (switch == 1) {v1=$1; v2=$2; v3=$3; v4=$4; switch=2;} else
↪→ {printf "%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\n", $1, $2, $3, $4, v1, v2, v3, v4; switch=1}}’

27 echo ""
28
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29 echo "Ensembles + Decision Tree + External Rules Results"
30 echo −e "Q3_ALL\tQ3_H\tQ3_E\tQ3_C\tSOV_ALL\tSOV_H\tSOV_E\tSOV_C"
31 echo "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−"
32 sed −n ’/Ensembles + Decision Tree + External Rules Results/,/=====/p’ "$file" | grep −E ’[0−9]+’| grep −v ’[a−zA−Z]’ |

↪→ tr −s " " | sed −e ’s/^[ \t]∗//’ | awk −F’ ’ ’BEGIN{switch=1}{if (switch == 1) {v1=$1; v2=$2; v3=$3; v4=$4;
↪→ switch=2;} else {printf "%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\n", $1, $2, $3, $4, v1, v2, v3, v4;
↪→ switch=1}}’

33 echo ""
34
35 echo "Ensembles + External Rules + Random Forest Results"
36 echo −e "Q3_ALL\tQ3_H\tQ3_E\tQ3_C\tSOV_ALL\tSOV_H\tSOV_E\tSOV_C"
37 echo "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−"
38 sed −n ’/Ensembles + External Rules + Random Forest Results/,/=====/p’ "$file" | grep −E ’[0−9]+’| grep −v ’[a−zA−Z]

↪→ ’ | tr −s " " | sed −e ’s/^[ \t]∗//’ | awk −F’ ’ ’BEGIN{switch=1}{if (switch == 1) {v1=$1; v2=$2; v3=$3; v4=
↪→ $4; switch=2;} else {printf "%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\n", $1, $2, $3, $4, v1, v2, v3, v4;
↪→ switch=1}}’

39 echo ""
40
41 echo "Ensembles + Random Forest Results"
42 echo −e "Q3_ALL\tQ3_H\tQ3_E\tQ3_C\tSOV_ALL\tSOV_H\tSOV_E\tSOV_C"
43 echo "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−"
44 sed −n ’/Ensembles + Random Forest Results/,/=====/p’ "$file" | grep −E ’[0−9]+’| grep −v ’[a−zA−Z]’ | tr −s " " | sed −e

↪→ ’s/^[ \t]∗//’ | awk −F’ ’ ’BEGIN{switch=1}{if (switch == 1) {v1=$1; v2=$2; v3=$3; v4=$4; switch=2;} else
↪→ {printf "%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\n", $1, $2, $3, $4, v1, v2, v3, v4; switch=1}}’

45 echo ""
46
47 echo "Ensembles + Random Forest + External Rules Results"
48 echo −e "Q3_ALL\tQ3_H\tQ3_E\tQ3_C\tSOV_ALL\tSOV_H\tSOV_E\tSOV_C"
49 echo "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−"
50 sed −n ’/Ensembles + Random Forest + External Rules Results/,/=====/p’ "$file" | grep −E ’[0−9]+’| grep −v ’[a−zA−Z]

↪→ ’ | tr −s " " | sed −e ’s/^[ \t]∗//’ | awk −F’ ’ ’BEGIN{switch=1}{if (switch == 1) {v1=$1; v2=$2; v3=$3; v4=
↪→ $4; switch=2;} else {printf "%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\n", $1, $2, $3, $4, v1, v2, v3, v4;
↪→ switch=1}}’
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