Thesis Dissertation

PROTEIN SECONDARY STRUCTURE PREDICTION
USING CONVOLUTIONAL NEURAL NETWORKS
AND HESSIAN FREE OPTIMISATION

Panayiotis Leontiou

UNIVERSITY OF CYPRUS

COMPUTER SCIENCE DEPARTMENT

May 2020

UNIVERSITY OF CYPRUS
COMPUTER SCIENCE DEPARTMENT

Protein Secondary Structure Prediction Using Convolutional Neural

Networks And Hessian Free Optimisation

Panayiotis Leontiou

Supervisor
Dr. Chris Christodoulou

Thesis submitted in partial fulfilment of the requirements for the award of

Bachelor degree in Computer Science at University of Cyprus

May 2020

Acknowledgments

First of all, I would like to express my opinion on academic research. Academic research
is of major importance, especially thesis dissertation projects like this one, because stu-
dents are given the opportunity to attempt something they have not tried before, discover
something new. Even if their attempt is not successful it does not really matter, what
matters is to learn how to research and analyse information. The research and analytical
skills could be very valuable, not only for those who are aiming for an academic career,

but also for those who are pursuing an industry career.

So far we had our teachers or professors to guide us through this world full of knowl-
edge. Now, we have to guide ourselves through this maze of information and decide what
to learn, in order to improve ourselves. As Albert Einstein once said, "Once you stop
learning, you start dying", and one of the best ways to keep learning is through research.
Research forces you to look for information from different sources and combine them
with your way of thinking to reach some conclusions. Usually some experiments are re-
quired, and whether those are for a new evolutionary algorithm or a new pancake recipe is
based on our own priorities. The first one could change the entire world, while the second
could change the way your friends and family see your cooking skills. What both have in

common is the continuous effort for personal improvement.

At this point, I would like to thank my advisor Dr. Chris Christodoulou, not only for his
support on my related research, his kindness and motivation, but also for giving me the
opportunity to work on a very interesting problem, using machine learning techniques.
His guidance played a major role for the completion of this thesis dissertation project. If
I could go back in time and choose a different topic or advisor I would choose the same,

as they both helped me learn a lot of new things, that I would have not learned otherwise.

I would also like to thank Dr. Michalis Agathokleous and the master student Andreas
Dionysiou for providing me with all the necessary data files and additional implemen-
tation advice for my project, based on their own experience on this machine learning

problem.

Finally, I would like to thank my family for the continuous support, no matter what de-
cisions I take. Even if they could not help me directly with this project, they helped me

indirectly with their love and exceptional cooking skills.

Abstract

This dissertation attempts to solve the protein secondary structure prediction problem, a

topic that has been concerning both Computer Science and Biology fields for decades.

Proteins are highly complex substances which are included in all living organisms. Pro-
teins are not only of great nutritional value but are also involved in the chemical processes
essential for life. The study of protein structures and functions can contribute to improved
food supplements, drugs and antibiotics. In addition, the study of existing proteins could
possibly help treat diseases and solve numerous biological problems, like covid-19 which,

at the moment of writing, threats human life on earth.

Even though there is a lot of information about the primary structure of millions of pro-
teins, for most of them there is no information about their secondary or tertiary structure.
The reason behind that is the extremely high cost, in both money and time, of the current
state-of-the-art methods and instruments that are used for protein structure determination.
As a result, computational algorithms and techniques, which are cheaper and faster, are

essential for predicting the secondary and tertiary structures of proteins.

In the past, there were several attempts to solve the PSSP problem with Convolutional
Neural Network (CNNs) and some of them managed to achieve very good results, 81%
per residue Q3 accuracy [1]. Furthermore, an attempt with a simple Feed Forward Neural
Network (FFNN), trained with the Hessian Free Optimisation (HFO) algorithm, managed
to reach 80.4% Q3 accuracy [2]. These results are very close to the best results reported
so far for the PSSP problem (84-85%), and the combination of these techniques was the

motivation behind this dissertation project.

For the purpose of this dissertation, a CNN was trained with a variation of the HFO
algorithm to predict the secondary structure of proteins (PSSP), which has never been
attempted before. The original HFO algorithm could not be used, because of the complex
structure of CNNgs, instead a variation, known as the Subsampled Hessian Newton (SHN)
method [3], was used. The results of this combination, for the CB513 dataset, were
an overall per residue Q3 accuracy of 78.20% for a single fold and 81.80% for 10-fold
cross-validation with ensembles, random forest and external rules filtering, while the SOV
score was 75.67 and 78.98, respectively. Moreover, the SHN method did not require much
tuning of the hyper parameters, which made the training process much faster compared
to other state-of-the-art methods. As regards the PISCES dataset, the Q3 accuracy was
79.88% for a single fold and 83.02% for 5-fold cross-validation with ensembles, random
forest and external rules filtering, while the SOV score was 76.67 and 82.64, respectively.

II

Contents

1 Introduction 1
1.1 Protein Secondary Structure Prediction problem 2
1.2 The Importance of PSSP 3
1.3 Previous Researchon PSSP 4

2 Background 10
2.1 Biology Background, 11

2.1.1 The Biological Role of Proteins 11
212 Amino Acids 11
2.1.3 Protein Structures 16
2.1.3.1 Primary Structure 16

2.1.3.2 Secondary Structure 19

2.1.3.3 Tertiary Structure 19

2.1.3.4 Quaternary Structure 20

2.2 Artificial Neural Networks Background 21
2.2.1 Origins of Artificial Neural Networks 21
2.2.2 Variations of Artificial Neural Networks and Optimizers 22
2.2.2.1 McCulloch and Pitts McP) 22

2.2.2.2 Multi-Layer Perceptron MLP) 26

2.2.2.3 Recurrent Neural Network (RNN) 30

2.2.2.4 Convolutional Neural Network (CNN) 30

2225 LineSearch 33

2.2.2.6 Conjugate Gradient (CG) 34

22.27 Newton’sMethod 35

2.3 Hessian Free Optimisation (HFO) 38
23.1 IntrotoHFO 38
232 Analysisof HFO, 40
2.3.3 Hessian-Vector Multiplication evaluation 40

III

3 Data Manipulation

3.1
32
33
34
3.5
3.6
3.7
3.8
39
3.10

PSSP Metrics
Protein Databasesand DSSP L.
Dataset Format
Data Encoding and MSA profiles
CB513 and PISCES Datasets
Dataset preprocessing with MSA profiles
Significant neighboring aminoacids
Training/ Testing Set and Cross Validation
Ensembles
Filtering e
3.10.1 ExternalRules
3.10.2 Support Vector Machines
3.10.3 DecisionTrees
3.10.4 Random Forests

4 Implementation

4.1
4.2
43
4.4

A new approach for the PSSP problem
CNN and HFO combination
Subsampled Hessian Newton (SHN) Method

Network Implementation

5 Experiments and Results

5.1
5.2

5.3

54

Experiments for Implementation Evaluation
Experiments with CB513 dataset
5.2.1 Fine Tuning of Hyper Parameters
5.2.2 10-fold Cross-Validation and Ensembles Results
5.23 CNNand SVM Combination
5.2.4 Filtering Results forCB513
5.2.5 Additional experiments with CB513
5.2.6 Finalresultsfor CB513
Experiments with PISCES dataset
5.3.1 5-fold Cross-Validation and Ensembles Results
5.3.2 Filtering Results for PISCES
5.3.3 FinalResults for PISCES
Best Results for CB513and PISCES

vV

43
44
45
46
47
48
49
51
52
53
54
54
55
57
58

61
62
63
64
66

6 Conclusion and Future Work

6.1

Conclusions

6.2 Suggestions for Future Work on PSSP

References
Appendices
Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Appendix G
Appendix H
Appendix I
Appendix J
Appendix K
Appendix L
Appendix M
Appendix N
Appendix O

Appendix P

Excluded proteins from CB513
Excluded proteins from PISCES
Convert datasets to Matlab files
CB513 dataset pre-processing
PISCES dataset pre-processing
Python Implementation
Ensembles Program

External Rules Program

SOV calculation

Calculation of Q3 accuracy
Data pre-processing for filtering
Training Filtering Methods

All filtering methods on CB513
View filtering results of CB513
All filtering methods on PISCES

View filtering results of PISCES

A-1

A-1

B-1

C-1

D-1

E-1

F-1

I-1

J-1

K-1

L-1

M-1

O-1

P-1

List of Figures

1.1

2.1
22
2.3
24

2.5

2.6
2.7
2.8

29

2.10

2.11

2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21

Number of publications for PSSP peryear [6]. 5
The structure of amino acids [27]. 12
The 20 standard amino acids [28]. 13
An example for condensation reaction [29]. 14
The Central Dogma of Molecular Biology: DNA makes RNA makes pro-

tein [30]. e 14
Example of the central dogma, which illustrates the first few amino acids

for the alpha subunit of hemoglobin [23]. 15
The amino acids specified by each codon [31]. 15
All four protein structures.l 17

The first amino acid of the A chain is glycine (Gly), whereas, the last is
asparagine (Asn) [32]. 18
The diagram shows the substitution in a small part of the hemoglobin 3

chain, where the amino acid at position seven, glutamate, is replaced by

valine, in the sickle cell hemoglobin [32]. 18
The diagram illustrates the shapes of the two main types of the secondary

structure of proteins, the @-helix and the B-strand [32]. 19
The diagram indicates some of the chemical interactions that determine

the proteins’ tertiary structure [32]. 20
Structure of a Biological Neuron [33]. 21
McCulloch and Pitts artificial neuron [35]. 23
The step or heaviside function. 23
Decision lines for AND gate (a) and OR gate (b). 24
The OR gate is linearly separable while the XOR gate isnot. 25
Multi-Layer Perceptron Neural Network with one hidden layer. 26
Decision regions based on the number of hidden layers. 27
RNN variations, Jordan network (left), Elman network (right). 30
A CNN example for digit image classification. 32
Example of max and average pooling. 32

VI

2.22 Example of zeropadding.o
2.23 Gradient Descent (left) vs Conjugate Gradient (right) on a 2D problem.

2.24 Newton’s method in a first degree polynomial problem [23].
2.25 Local Quadratic approximations [23].

2.26 The Hessian matrix of the error function with respect to the weights. . . .

3.1 Protein representation example for protein 1bdsA_1-43.
3.2 Processof MSAprofiling L.
3.3 Example of the encoded form of an MSA file [24].
3.4 The image shows the MSA file (before collapsing into a single file) [24]. .
3.5 The encoding of the new file, after combining the MSA files into a single
file [24]. o
3.6 MSA record for a sequence of 6 amino acids.
3.7 Modified MSA record for a sequence of 6 amino acids.
3.8 An example of input data representation for a window size of 15 (or k =
7)yamino acids [57]. e
3.9 10-fold cross validation
3.10 Results of different kernels for a 3-class classification problem.
3.11 SVM example of a linearly separable problem.
3.12 SVM projecting a problem in a higher dimension.
3.13 Example of simple decision tree [60].
3.14 Example of random forest prediction [60].
3.15 Distribution of the outcomes of 10000 simulations for each option [60].

3.16 Node splitting in a decision tree and a random forest model [60].

5.1 The test loss for each iteration compared to the test loss of the saved model.
5.2 The test Q3 accuracy after each iteration compared to the test Q3 accuracy
ofthesavedmodel. oo
5.3 Hyper parameters and methods used that resulted in the best overall Q3
accuracy and best overall SOV score for CB513 dataset.
54 CMfor CB513 fold O of single CNNmodel.
5.5 CM for CB513 fold O of ensembles model with random forest.
5.6 Hyper parameters and methods used that resulted in the best overall Q3
accuracy and best overall SOV score for PISCES dataset.
5.7 CM for PISCES fold 4 of single CNNmodel.
5.8 CM for PISCES fold 4 of ensembles model with random forest.

VII

34
36
37
38

50
51
51

52
53
55
56
56
57
58

60

69

List of Tables

1.1

2.1
22
2.3
24

3.1

4.1

5.1
5.2
53
54
5.5
5.6
5.7

5.8

59

5.10

5.11

5.12

5.13

5.14

Methods used for PSSP in chronological order. 9
Types of proteins and their function [26]. 12
Truth table forOR gate. 24
List of the most popular activation functions. 27
Derivatives and Hessians of typical loss function. 42

Table with the secondary structure abbreviations, grouped in 8 and 3 classes 45

Previous studies on Newton methods [3].. 65
Hyper parameters for CNN for all experiments. 70
Q3 accuracy results for GNsize for fold 5 of CB513. 71
Tuning the C hyper parameter for fold 5of CB513. 71
Tuning the batch size (bsize) hyper parameter for fold 5 of CB513. 72
Hyper parameters for trained models. 72

Q3 and SOV results for 10-fold cross validation for the CB513 dataset. . . 73

Q3 and SOV results for ensembles (with 5 experiments per fold) cross

validation for the CB513 dataset. 73
Hyper parameters for SVM filtering. 74
Hyper parameters for Random Forest filtering. 75
Q3 accuracy and SOV score for ensembles (with 5 executions per fold)
and external rules filtering for CB513 dataset. 75
Q3 accuracy and SOV score for ensembles (with 5 executions per fold),
external rules and SVM filtering for CBS13 dataset. 76
Q3 accuracy and SOV score for ensembles and SVM filtering for CB513
dataset.o 76
Q3 accuracy and SOV score for ensembles, SVM and external rules fil-
tering for CBS13 dataset. 76
Q3 accuracy and SOV score for ensembles, external rules and decision
tree filtering for CBS13 dataset. 77

5.15 Q3 accuracy and SOV score for ensembles and decision tree filtering for
CB513 dataset. e
5.16 Q3 accuracy and SOV score for ensembles, decision tree and external
rules filtering for CB513 dataset.
5.17 Q3 accuracy and SOV score for ensembles, external rules and random
forest filtering for CB513 dataset.
5.18 Q3 accuracy and SOV score for ensembles and random forest filtering for
CBS513 dataset.
5.19 Q3 accuracy and SOV score for ensembles, random forest and external
rules filtering for CB513 dataset.
5.20 Results for fold 0 of CB513 with the ensembles method applied before
and after the filtering methods. oo
5.21 10-fold Cross validation, Q3 accuracy and SOV score for all methods for
CBS513 dataset.
5.22 Hyper parameters for SHN method, used for all PISCES experiments.

78

79

79
80

5.23 Q3 accuracy and SOV score for 5-fold cross validation for PISCES dataset. 80

5.24 Q3 accuracy and SOV score for ensembles method (with 5 trained models
per fold) for PISCES dataset.
5.25 Q3 accuracy and SOV score for ensembles with external rules filtering for
PISCES dataset.
5.26 Q3 accuracy and SOV score for ensembles with external rules and deci-
sion tree filtering for PISCES dataset.
5.27 Q3 accuracy and SOV score for ensembles with decision tree filtering for
PISCES dataset.
5.28 Q3 accuracy and SOV score for ensembles with decision tree and external
rules filtering for PISCES dataset.
5.29 Q3 accuracy and SOV score for ensembles with external rules and random
forest filtering for PISCES dataset.
5.30 Q3 accuracy and SOV score for ensembles with random forest filtering
for PISCES dataset.
5.31 Q3 accuracy and SOV score for ensembles with random forest and exter-
nal rules filtering for PISCES dataset.
5.32 5-fold cross-validation, Q3 accuracy and SOV score for all methods for
the PISCES dataset.

A.1 Excluded CB513 proteins due to zeroed MSA profiles.

B.1 Excluded PISCES proteins due to missing MSA profiles.

B-1

B.2 Excluded PISCES proteins due to corrupted or zeroed MSA profiles (1-120).B-2

IX

B.3

B.4

Excluded PISCES proteins due to corrupted or zeroed MSA profiles (121-

Chapter 1

Introduction

1.1 Protein Secondary Structure Prediction problem
1.2 TheImportanceof PSSP
1.3 Previous ResearchonPSSP

1.1 Protein Secondary Structure Prediction problem

Proteins are highly complex substances which are present in all living organisms. There
are over 30,000 unique proteins in the human body, which are responsible for performing
specific functions that are essential for life. The word protein is derived from the Greek
word ‘mpoteloc’, which means ‘of the first quality’, ‘in the lead’ or ‘holding first place’,

and their significance was recognised in the early 19th century by chemists.

These substances consist of smaller units, called amino-acids, which are organic com-
pounds connected to each other, forming long chains. The differences between two pro-
teins are based on their sequence of amino acids, which determines their structure and
function. The interactions between the amino acids of a protein are responsible for the
fold of the protein into a specific three-dimensional structure, which, under specific con-

ditions, remains the same. This structure determines the function of each protein.

The study of protein structures and functions can contribute to improved food supple-
ments, drugs and antibiotics. In addition, the study of existing proteins can help treat
diseases and solve numerous biological problems with the help of modern technology,

which is significantly cheaper and more efficient than a few years ago.

A hierarchical approach has been established for analysing the structure of proteins more
effectively and observe their different forms. These forms are separated into four distinct
categories, the primary, the secondary, the tertiary and the quaternary structure. The pri-
mary structure is just a linear sequence of amino acids, that are ordered based on where
they appear in the unfolded protein. The secondary structure illustrates how the local
parts of a protein are organised in a two-dimensional space. The tertiary structure, which
determines the specific function of a protein, has a three-dimensional shape, formed when
the amino acid chain is folded. Finally, the quaternary structure is formed when multiple

tertiary structures are folded together and also has three-dimensional shape.

Even though the primary structure for millions of proteins is well documented, for most of
them the secondary and tertiary structures are unknown, only for a small fraction of these
proteins the secondary and tertiary structures are currently available. The research and the
experimental determination of the secondary and tertiary structures of a protein are not
only time consuming but also an extravagant process. More specifically, in order to deter-
mine the tertiary structure of proteins, expensive and tedious methods must be used, such
as X-ray crystallography and nuclear magnetic resonance (NMR). The shape of a protein
is completely determined by its primary structure, about 70% of the secondary structure

is affected by the interactions of the nearby amino acids of the backbone, while the other

30% is affected by more distant interactions [4]. This made prediction techniques and
implementations more appealing over the experimental methods, since they have high
success rates on the prediction of secondary and tertiary structure of proteins, they cost

significantly less and require considerably less time than the experimental methods.

One such prediction method is ab inition prediction, which tries to predict any of the three
structures based only on the primary structure and without taking into consideration any
patterns. This method is divided into two distinct cases. In the first case, the folding
process is simulated or minimisation of the free energy of the polypeptide is attempted,
and only the primary structure of the protein is used (no other known structures). On the
other hand the second case attempts to predict the structure of a protein using already
known and existing protein structures [4]. This thesis is concentrated entirely on the
second prediction method, and more specifically on the use of Neural Networks (NN)
to predict the secondary structure of proteins. These algorithms are designed based on
computational statistics and mathematical optimization techniques. These optimisation
techniques help computer systems learn hidden patterns and idiosyncrasies of data, which

then gives them the ability to predict and classify new data.

To sum up, because of the extreme costs in both money and time of experimental methods,
it is not possible to experimentally determine the structure of all proteins. In this thesis
Convolutional Neural Networks (CNN) will be used in combination with the Hessian Free

Optimisation (HFO) algorithm in order to predict the secondary structure of proteins.

1.2 The Importance of PSSP

The solution of the PSSP problem is very important because the secondary structure is
essential in order to determine the tertiary structure, which gives information about the
functions of a protein. The experimental methods used for determining the tertiary struc-
ture of proteins are extremely expensive in both time and money, which led to the study
of just a small portion of known proteins. As a result, the scientific community has infor-
mation about the functions of just a small subset (a few thousands) of proteins, compared

to the millions of proteins that exist.

Furthermore, this means that the PSSP can help identify the tertiary structure of a protein
with higher accuracy and less effort. It is very important to note that the functions of a
protein are based on the 20 amino acids that compose a protein, which is the main reason
why the research in this field is very important. Understanding how these molecules fold

around space, assemble and function can help to understand why people are getting older,

why they suffer from dangerous diseases and viruses (such as cancer), how can a cure for

a disease be found (like the cure for covid-19), and other ‘difficult to answer’ questions.

The proteins’ functions are related with their structure, which depends on both the phys-
ical and chemical parameters of these molecules. Bioinformatics is an interdisciplinary
field that develops methods and software tools for understanding biological data. It com-
bines knowledge from biology, computer science, information engineering, mathematics

and statistics to analyse and interpret biological data.

1.3 Previous Research on PSSP

Researchers from different fields have been working on this problem for more than six
decades. A wide variety of machine learning algorithms have been designed specifically
for this problem and have achieved accuracy >90% [5], based on the Q3 score (Equation
1.1.). Additional structural templates from databases, which are called sequence-based
structural similarity of proteins, were used in order to achieve accuracy higher than 88%.
The additional information boosts significantly the learning process as well as the per-
formance of these algorithms. The three-state accuracy for machine learning algorithms,
that are not relying on the structural templates, is currently around 82-85%, which is good
for such a complex problem. However, considering the theoretical limit of the three-state

prediction which is around 88-90%, there is still room for improvement.

Figure 1.1 shows the number of publications per year for the PSSP problem as well as the
cumulative number of publications, between 1973 and 2015. According to the graph the
cumulative number of publications for the PSSP problem increased significantly between
1973 and 2015. More specifically, between 1973 and 1989 there were less than 5 publica-
tions for the PSSP problem per year. In 1990, the PSSP problem started to become more
popular and the number of publications increased considerably to 8, while the cumulative
number of publications was around 50. During the next two decades, the PSSP problem
gained much popularity, probably because in that period there were some major break-
throughs, which helped to increase the three-state accuracy considerably. The popularity
of PSSP dropped substantially in 2010 and for the following 5 years the interest for this
problem was relatively moderate. A small selection of PSSP publications are mentioned

below.

Feedforward Fully Connected Neural Network (FFNN) [7]: A fully connected Neural
Network with local input window (usually of 13 amino acids with orthogonal encoding)

and just one hidden layer. The output of the network was one of the three categories

IIIilllIllIl\lli\lllIllllllllllllll'llll

250

200

150

100

Cumulative Number

50

Number of Publications Per Year

Figure 1.1: Number of publications for PSSP per year [6].

of the secondary structure of proteins (helix, pleated or other) based on the amino acid
located in the centre of the input window. A secondary network was also used in this
implementation to improve the output of the previous network. This method had issues

with overfitting.

PHD: predicting 1D protein structure by profile based neural networks [8]: The structure
of the network was the same with the Feed Forward Fully Connected Neural Network
of Qian and Sejnowski [7], with the addition of techniques that deal with the overfit-
ting problem. Two methods were used to counter overfitting, early stopping (terminating
the training process before it starts to overfit) and ensemble average (training different
networks at the same time with different data and learning methods). Furthermore, the
multiple alignment technique was used in the input data, to take advantage of evolutionary

information.

Gene-finding Programs (NNSSP) [9]: This Neural Network uses the ‘nearest neighbour’
method to group the sequences of amino acids based on their similarities and compare
them with other sequences, that their secondary structure is known. Following that, the
network tries to predict the secondary structure of other proteins that their secondary

structure is not known.

Discrimination of Secondary structure Class (DSC) [10]: This algorithm groups the out-
put data of the network and by using simple linear static methods attempts to predict the

secondary structure of proteins.

PREDATOR [11]: It was implemented in a Neural Network which takes as input a se-
quence of amino acids and tries to predict the secondary structure based on possible hy-

drogen bonds that may exist in the output sequence.

Consensus [12]: In this method a Neural Network was used that took as input the mul-
tiple alignment with additional information about the protein (rather than just a simple
sequence of amino acids). This Network attempts to locate similarities between the in-
put sequence with other amino-acid sequences (similarities in genetic code, evolutionary

history and common biological functions) in order to predict the secondary structure.

Bidirectional Recurrent Neural Network (BRNN) - Backpropagation ([13], [14]): This
algorithm uses a Neural Network that takes as input a window with a sequence of amino
acids and attempts to predict the secondary structure of the amino acid located in the
centre of the input window, based on the amino-acids that precede and follow it in the
input chain using bidirectional recursion. It it important to note that this algorithm had
some of the best results in the PSSP problem at the time it was conceived, with 76%

success rate.

Logical Analysis of Data (LAD) [15]: This method, which uses a machine learning algo-
rithm, was implemented to identify properties of amino acids, and therefore, additional
information about the homogeneity of proteins, which could help the prediction of the
secondary structure of proteins. According to this method, the most important property
that affects the helix class is molecular weights, for the pleated class is the mean ambient

hydrophobicity, while for the other forms is the polarity.

Multiagent Secondary Structure Predictor with Postprocessing (MASSP3) [16]: This im-
plementation attempts to solve this problem by using two distinct sections. The first sec-
tion is based on a hybrid structure, which combines genetic and neural techniques, while
the second section consists of a Multilayer Perceptron (MLP), which takes as input the

output of the first section. The results of this method were fairly good.

Two-Stage method [17]: This approach uses two stages, the first identifies instabilities in
how the protein folds into space and attempts to classify the different parts of the protein,
while the second splits the proteins into sequences (3 to 7 residues) and tries to predict

the secondary structure of these sequences.

Evolutionary method for learning HMM structure [18]: In this research genetic algorithms
were used, which can dynamically change the parameters of a Hidden Markov Model
(HMM) (since the construction of a HMM is very complicated) and build it dynamically,

so that it can predict the secondary structure of the input sequences.

Cascade Bidirectional Recurrent Neural Network (BRNN) [19]: This implementation fo-
cused on the long range dependencies between the input data, which plays a major role in
the folding of a protein and the correlation between adjacent secondary structures. In this
article, the authors refer to the correlation of the secondary structure of an amino acid as
regards to secondary structure of the adjacent amino acids. Two BRNNs are used, with
the second taking its input from the output of the first BRNN. This method, although, it

had relatively good results, could not outperform previous approaches.

Protein Secondary Structure Prediction Using Deep Convolutional Neural Fields [20]:
This approach used a Deep Convolutional Neural Fields (DeepCNF), which is an exten-
sion of Deep Learning to Conditional Neural Field (CNF) (a combination of Conditional
Random Fields (CRF) and shallow neural networks). The DeepCNF is much more pow-
erful than the CNF, since it can model both the complex sequence-structure relationship
(from a deep hierarchical architecture) and the interdependence between adjacent sec-
ondary structure tags. Based on the experimental results, the DeepCNF can reach predic-
tion accuracy of about 84%, using the protein datasets CASP and CAMEOQ, surpassing
existing methods of predicting the secondary structure of proteins. The DeepCNF net-
works can also be used to predict other properties of proteins, such as contact number,

solvent accessibility and disorder regions.

Protein Secondary Structure Prediction with the use of Convolutional Neural Networks
for Image Object Recognition [21]: The purpose of this research was to identify how
Convolutional Neural Networks (CNN) can help in solving the PSSP problem. These type
of networks take advantage of the spatial structure of the input data, which seems very
promising. Furthermore, they manage input data of problems with sequences or problems
that use the parameter of space, better, like image processing. This method could only
reach an accuracy of about 40%, because there were problems in the representation of

input data in the CNN, which prevented the network from learning effectively.

Capturing non-local interactions by long short-term memory bidirectional recurrent neu-
ral networks for improving prediction of protein secondary structure, backbone angles,
contact numbers and solvent accessibility [22]: Unlike other methods that try to capture
short to intermediate interactions between amino acid residues, this approach used Long
Short-Term Memory (LSTM) Bidirectional Recurrent Neural Networks (BRNNs) to cap-

ture long range interactions. This method reported some of the best results so far with

approximately 84% Q3 accuracy.

Protein Secondary Structure Prediction Using Bidirectional Recurrent Neural Networks
(BRNN) and Hessian Free Optimisation (HFO) ([23], [2]): This dissertation was under-
taken by a past Computer Science student of University of Cyprus in the context of his
diplomatic research. This dissertation showed that simple Feed Forward Neural Networks
(FFNNSs) can be trained with the powerful second-order learning algorithm, Hessian Free
Optimisation (HFO), to predict the secondary structure of proteins. This approach (FFNN
with HFO) had very good results as regards the training time of the network and (Q3) ac-
curacy, which was about 80.4% (using the PISCES dataset). The HFO does not require
much tuning of the hyper parameters, which makes training much faster than other state
of the art methods. The use of HFO seems very promising since it reduces the training

time of the network and at the same time offers very good results.

Prediction of Secondary Structure of Proteins using Gabor filters and Support Vector Ma-
chines ([24], [1]): This dissertation was conducted by a past Computer Science student of
University of Cyprus during his diplomatic research. This thesis project, was focused on
the use of Convolutional Neural Network (CNN) with Gabor Filters and Support Vector
Machines (SVMs) for filtering. The combination of a CNN with SVMs had very good re-
sults with about 81% (Q3) accuracy for the PSSP problem (using the PISCES dataset). A
technique was also used to convert the primary structure of proteins from one dimension

into two dimensions, since the CNN needs two dimensional input data to be trained.

Sixty-five years of the long march in protein secondary structure prediction: the final
stretch? [6]: This paper focused on some of the state-of-the-art methods that are used to
predict the secondary structure of proteins and compared them, using the same indepen-
dent test sets. The reported results ranged from 77.1% to 82.3%. The best results (82.3%
Q3 accuracy) were achieved by the DeepCNF [20]. In addition, this paper mentioned
alternatives to discrete three-state secondary structure prediction (with eight-state predic-
tion) and noted that the theoretical limit of secondary structure prediction is around 88%.
This limit is very close to the best results reported so far (84%), which means that it is
a matter of time for the PSSP problem to reach a plateau (where there will be no further

improvements in Q3 accuracy).

MUFold-SS [25]: In this research a new deep learning architecture was suggested for the
PSSP problem, the Deep inception-inside-inception (Deep3I) network. This network was
implemented as a software tool, named MUFOLD-SS, which takes as input a specifically

designed array of data, based on the primary structure of the proteins. This array includes

information for each amino acid and general information about the protein. The struc-
ture of MUFOLD-SS allows the extraction of information related to local and general
interactions, between the amino acids, which made the predictions more accurate. This
tool has outperformed other techniques used on the PSSP problem, with an accuracy of

approximately 86.49%.

Table 1.1 shows the Q3 accuracy of the aforementioned methods, used on the PSSP prob-

lem, in chronological order.

NO. METHOD Q3 ACCURACY (%)
1 Feedforward Fully Connected NN (Qian ka1 Sejnowski, 1988) 63.30
2 PHD (Rost, 2001; Rost kai Sander, 1993) 71.40
3 NNSSP (Salamov kai Soloveyev, 1997) 68.41
4 DSC (King kai Sternberg, 1996) 71.95
5 PREDATOR (Frishman ka1 Argos, 1997) 68.60
6 Consensus (Cuff kai Barton, 1999) 72.70
7 BRNN - Backpropagation (Baldi etal., 1999) 76.00
8 LAD (Jacek et al., 2005) 70.60
9 MASSP3 (Giuliano etal., 2005) 76.10
10 Evolutionary method for learning HMM structure (Won et al., 2007) 65.00
1 Two-Stage method (Fadime etal., 2007) 74.10
12 Cascade BRNN (Jinmiao kai Narendra, 2007) 74.38
13 Deep Convolutional Neural Fields (Wang et al., 2016) 83.00
14 Convolutional Neural Networks (Pavlidis, 2016) 40.00
15 LSTM-BRNN (Heffernan et al., 2017) 84.00
16 MUFold-SS (Fang et al., 2018) 86.49
17 Feed Forward NN with HFO (Charalambous et al., 2020) 80.40
18 Convolutional Neural Network with SVM filtering (Dionysiou et al., 2020) 81.00

Table 1.1: Methods used for PSSP in chronological order.

Chapter 2

Background

2.1

2.2

2.3

BiologyBackground 0ttt e 11
2.1.1 The Biological Role of Proteins 11
2.1.2 AminoAcids 11
2.1.3 Protein Structures 16
2.1.3.1 Primary Structure 16
2.1.3.2 Secondary Structure 19
2.1.3.3 Tertiary Structure 19
2.1.3.4 Quaternary Structure 20
Artificial Neural Networks Background 21
2.2.1 Origins of Artificial Neural Networks 21
2.2.2 Variations of Artificial Neural Networks and Optimizers 22
2.2.2.1 McCulloch and Pitts McP) 22
2.2.2.2 Multi-Layer Perceptron MLP) 26
2.2.2.3 Recurrent Neural Network (RNN) 30
2.2.2.4 Convolutional Neural Network (CNN) 30
2225 LineSearch 33
2.2.2.6 Conjugate Gradient (CG) 34
22.27 Newton’sMethod 35
Hessian Free Optimisation (HFO) 38
23.1 ImtrotoHFO 38
2.3.2 Analysisof HFO 40
2.3.3 Hessian-Vector Multiplication evaluation 40

10

2.1 Biology Background

2.1.1 The Biological Role of Proteins

Proteins are large macromolecules or biomolecules, that perform a variety of functions
within organisms. Some of these functions are deoxyribonucleic acid (DNA) replication,
responding to stimuli, providing structure to cells and organisms, catalysing metabolic
reactions, and transporting molecules from one location to another. Proteins consist of
hundreds or even thousands of smaller units, called amino acids, which are organic com-

pounds that contain amine (NH2) and carboxyl (COOH) functional groups.

The consumption of food, which contains proteins, is one of the main sources of proteins
for the human body. The digestive system breaks down the consumed food into amino
acids, which enter the blood stream. In order to perform a variety of functions, the cells
of the human body gather amino acids from the blood stream to create all the essential
proteins. If there is a shortage of amino acids in the blood stream, probably because of
a poor diet with less proteins, the immune system will become weak, causing dizziness,
exhaustion or even serious diseases. That happens because in order to create the necessary
proteins for the human body, the cells need enough amino acids, otherwise they will not

be able to support the needs of the entire human body.

In order to aid in the development of food supplements, drugs and antibiotics, it is manda-
tory to first understand the base structure and function of each protein. Research or stud-
ies on existing proteins could help solve numerous biological problems and treat diseases.
This is considerably easier nowadays, with the help of the current technology, which is

faster and computationally stronger than ten years ago.

The most important functions of proteins are displayed in table 2.1 and these reveal the

significance of proteins, for all living organisms.

2.1.2 Amino Acids

Amino acids are organic compounds which contain amine (NH2) and carboxyl (COOH)
functional groups. Each amino acid has its specific side chain (R group), which is an
atom or group of atoms that replace one or more hydrogen atoms on the parent chain of
a hydrocarbon, which turns into a moiety of the resultant new molecule (Figure 2.1). The
main elements of an amino acid are carbon (C), hydrogen (H), oxygen (O) and nitrogen

(N), however, other elements can also be found in the side chains of some amino acids.

11

Type Function Description Example
Defense proteins help organisms fight infection, heal damaged tissue, and

evade predators. Antibodies

Defense

Enzymes build and break down molecules. They are critical for growth,
Enzyme digestion, and many other processes in the cell. Without enzymes, chemical Lactase
reactions would happen too slowly to sustain life.

Messenger proteins transmit signals to coordinate biological processes

Messenger between different cells, tissues, and organs. Growt.Hometg
Motor :\:floc::::;o;:]r:rt:;n:rlo(j:g, c::!lsd ;n;):lilr:.; and changing shape. They also transport Dynein, Kinesin
Regulatory Regulatory proteins bind DNA to tum genes on and off. Androgen, Estrogen

Sensory SensorY proteins help humans learn about.their environment. They help them Opsin
detect light, sound, touch, smell, taste, pain, and heat.
Signaling Signaling proteins allow cells to communicate with each other. Insulin
Storage Storage proteins store nutrients and energy-rich molecules for later use. Gluten
Structural Structural proteins strengthen cells, tissues, organs, and more. Collagen
Transport Transport proteins move molecules and nutrients around the body, in and out Hemoglobin

of cells.

Table 2.1: Types of proteins and their function [26].

R group

i 1 0 Carboxylat
arboxylate
H—+1l1—(|:—C/ /T ow
| | S
H H O

Ammonium

group «a Carbon

Figure 2.1: The structure of amino acids [27].

12

Even though there are about 500 known amino acids, only 20 of them appear in genetic
code and are considered as the standard amino acids (Figure 2.2). Amino acids can be
classified in many different ways, according to the core structural functional groups’ lo-
cations (alpha (o), beta (), gamma (), delta (0)), based on the polarity, pH level or on
the side chain group type. Amino acids also participate in a number of other processes,
such as neurotransmitter transport and biosynthesis. Short chains of amino acids (30 or
less) linked by peptide bonds form peptides, and long, continuous, and unbranched pep-

tide chains form polypeptides. Proteins consist of one or more polypeptides arranged in a
biologically functional way.

A GUIDE TO THE TWENTY COMMON AMINQ ACIDS

AMINO ACIDS ARE THE BUILDING BLOCKS OF PROTEINS IN LIVING ORGANISMS. THERE ARE OVER 500 AMINO ACIDS FOUND IN NATURE - HOWEVER, THE HUMAN GENETIC CODE
ONLY DIRECTLY ENCODES 20. ‘ESSENTIAL' AMINO ACIDS MUST BE OBTAINED FROM THE DIET, WHILST NON-ESSENTIAL AMINO ACIDS CAN BE SYNTHESISED IN THE BODY.

Chart‘l{ey: . ALIPHATIC AROMATIC . ACIDIC . BASIC HYDROXYLIC SULFUR-CONTAINING . AMIDIC O NON-ESSENTIAL I:-:l ESSENTIAL
E i -~ -~
4 N 4 Y 4 A Y
Chemical s o0 ’ o\ ’ Y
Structure Aot Y\‘)%H 1 1 on 1
single letter \ NH, 7 \ NH, I \ NH, '
N 4 Y 4 \ 4
S - N
NAME ALANINE @) BLYCINE @ ISOLEUCINE @) LEuCINE @ PROLINE @ vaLne @
three letter code Ala Gly e Leu Pro Val
-
M 4 A
o »; o o OJOK/\A)CL 14 2\
on on ° on o on | /N]A‘)Lm‘ 1
M o "OM omj\ NH, \H<N J NH, 7
° AN ’
~
PHENYLALANINE TRYPTOPHAN TYROSINE ASPARTICACID) GLUTAMIC ACID @ ARGININE € HISTIDINE)
Phe T yr Asp Glu Arg His
-
4 \
Y o \ o OH O o o
o
1 ”‘”\/\/\‘)kou 1 HO/\HI\OH OH HS/\)]\OH /S\/\Hl\cu
\ Mg NH, NH, NH, NH,
\ d
-~
LYSINE @ SERINE THREONINE CYSTEINE METHIONINE ASPARAGINE) GLUTAMINE @
Lys Ser Thr s Met Asn Gln

ACT, ACC, ACA, ACG 16T, TGC ATG AT, AAC CAA CAG

Note: This chart only shows those amino acids for which the human genetic code directly codes for. Selenocysteine is often referred to as the 21st amino acid, but is encoded in a special manner.
In some cases, distinguishing between asparagine/aspartic acid and glutamine/glutamic acid is difficult. In these cases, the codes asx (B) and glx (Z) are respectively used.

Figure 2.2: The 20 standard amino acids [28].

The process in which chains of amino acids are linked together is called condensation
reaction (Figure 2.3). During this reaction, as the amino group of one amino acid joins

the carboxyl group of a neighbouring amino acid, a water molecule is extracted, what is
left of each amino acid is called amino acid residue.

Each amino acid can be represented by one or three characters from the English alphabet,
so it is possible to represent a sequence of amino acids using a sequence of characters.
Any change in this sequence, no matter how small it is, can lead to a completely different

protein, which will have its own properties and functionalities.

The proteins in an organism are assembled based on its genes, also know as the DNA.

13

Amino acid (1) H Amino acid (2)

H
H H
= I - I
H
R R
A
Peptide bond H H

Dipeptide

Figure 2.3: An example for condensation reaction [29].

In particular, the nucleotide sequence of a gene, which encodes a protein, specifies the
unique amino acid sequence of that protein. For instance, there are around 30,000 genes in
the human genome, and each one encodes one unique protein. According to The Central
Dogma of Molecular Biology, the ‘DNA makes RNA and RNA makes protein’ (Figure
2.4). The first stage, ‘DNA makes RNA’, is called transcription, while the second stage,
‘RNA makes protein’, is called translation.

transcription translation
NN ~ A
A A A AN ~ o .
DNA mRNA

protein

Figure 2.4: The Central Dogma of Molecular Biology: DNA makes RNA makes protein
[30].

A sequence of three adjacent nucleotides composing the genetic code is called codon and
designates an amino acid. There are four (4) unique nucleotides (adenine - A, uracil - U,
guanine - G, and cytosine - C), which means that the maximum number of triplets that
can be formed is sixty four (43 = 64). However, only twenty (20) amino acids can be

encoded naturally. This means that some codons do not encode any amino acids or that

14

some amino acids can be described by multiple codons. Codons that do not encode any
amino acids are called stop codons, because they are used as a termination signal in the
translation process, signalling the release of the translated polypeptide or protein. Figure
2.5 shows an example of the translation stage, from DNA to protein, while figure 2.6

presents the table of codons, with the amino acid or the stop signal they encode.

GTGCATCTGACTCCTGAGGAGAAG *** DNA
CACGTAGACTGAGGACTCCTCTTC e«-

\l/ (transcription)

GUGCAUCUGACUCCUGAGGAGAAG »-» RNA

TTTTTTTT oo

eV H LT P E E K - protein

Figure 2.5: Example of the central dogma, which illustrates the first few amino acids for

the alpha subunit of hemoglobin [23].

Second nucleotide

U & A G
Uy Ucu UAU o UGU 4o U
pre e o

y | buc ucc UAC - uGec C

UUA g UCA f’ﬁ UAA STOP | UGA STOP | A

UG @ UcCG UAG STOP | UGG G

cuu cCcu CAU = ceu U

[}
- & cuc 9 cce CAC CGC G: g
% CUA CCA CAA a CGA A §
g cuG CCG CAG & CGG G 2
[X]

=
2 AU ACU AAU o AGU s |U E
® lie @ Ser T
£ A AUC ACC AAC AGC - c g
AUA | aca @ ARA AGA A

AUG pat ACG AAG 1z AGG G

Guu GCU GAL 0 GGU u

GUC GCC GAC GGC G

@ | SQ | K|
GUA GCA GAA o GGA A
GUG GCG CAGC B GGG G

Figure 2.6: The amino acids specified by each codon [31].

15

2.1.3 Protein Structures

Protein structures range in size, from tens to several thousands of amino acids, and are
categorised hierarchically into four distinct tiers, the primary, the secondary, the tertiary
and the quaternary structure (Figure 2.7). This hierarchical approach was established to
facilitate the observations of the various phases of protein formation. The number and
type of amino acids of a protein are not enough, since the order and layout of their amino
acids plays a major role because they determine the three-dimensional structure and hence

the function of the protein.

2.1.3.1 Primary Structure

The primary structure of proteins is the sequence of amino acids in the polypeptide chain.
This structure is determined by the gene, which is a sequence of nucleotides in deoxyri-
bonucleic acid (DNA) or ribonucleic acid (RNA), corresponding to the protein. The se-
quence of a protein defines the structure and function of the protein and is unique to that
protein. For example, the pancreatic hormone insulin is composed of 51 amino acids in 2
peptide chains, A chain has 21 amino acids while B chain has 30 amino acids, as shown
in figure 2.8. The amino-acid sequences, in both chains, are unique to insulin and have
a specific order. In each chain there are three-letter abbreviations, which represent the
names of the amino acids. These are displayed in the order that are present and illustrate

the primary structure of insulin.

The unique sequence for every protein is determined by the gene encoding of the protein.
If the nucleotide sequence of the gene’s coding region is changed, a different amino acid
might be added to the growing polypeptide chain, which would change the protein struc-
ture and function. For instance, in sickle cell anemia (a hereditary disease that affects
the red blood cells), a single amino acid substitution (valine in the chain substitutes
the amino acid glutamic) in the hemoglobin 8 chain, changes the protein structure and
function (Figure 2.9). A hemoglobin molecule is comprised of two alpha and two beta
chains, each consisting of about 150 amino acids. Therefore, the molecule has about 600
amino acids. The structural difference between the sickle cell molecule (which dramati-
cally decreases life expectancy) and a normal hemoglobin molecule is just one of the 600
amino acids. As a result of this small change in the chain, hemoglobin molecules form
long fibres that distort the biconcave, or disc-shaped, red blood cells and causes them to
assume a crescent or ‘sickle’ shape, which clogs blood vessels and leads to myriad serious
health issues such as breathlessness, dizziness, headaches, and abdominal pain, for those

affected by this disease.

16

Amino acids

Primary Protein structure
sequence of a chain of
animo acids

N

g

Pleated sheet Alpha helix —— Secondary Protein structure

\ hydrogen bonding of the peptide

Je

backbone causes the amino

acids to fold into a repeating
pattern
Pleated sheet Tertiary protein structure
three-dimensional folding
pattern of a protein due to side
chain interactions

Alpha helix

Quaternary protein structure
protein consisting of more
than one amino acid chain

Figure 2.7: All four protein structures.

5 S
A Chain |
GI IIe Glu Gln Cs Cs Ala Ser Val Cys | Ser Leu Tyr Gln Leu Glu Asn Tyr s | Asn)
YOOO9OLO0OT0ITOTC0)0 o o

- W N W, W, N,
!

S 5
5 S
PR g S J
(Phe\‘/\lalx‘{ksn"l'/eln Hls e Leu Cysf Gly)| Ser I/I-hs Leu Val ﬂ?lu Ala I Leu f Tyr) Leu VaJ X Cys -
{ | /
AR /r — N/ NN /\ :) | _/Glu.
(. \
B Chain ﬁ\rg)
h - /
/ ly)
Ny N’/
P = /’j e NPhe)
Ala | Lys | Pro Thr: TrlPhe
I__/_y /I\ o y A " .

Figure 2.8: The first amino acid of the A chain is glycine (Gly), whereas, the last is
asparagine (Asn) [32].

H H O
I [l
threonine — proline —N —C — O — lys
|
CH, O
I [l
CH, —C — OH
) . Normal
glutamic acid hemoglobin
Amino acid
T T (I)I substitution
threonine — proline — N —C — O —lys
| Y
H;C = CH — CHj,
hemoglobin

Figure 2.9: The diagram shows the substitution in a small part of the hemoglobin 3
chain, where the amino acid at position seven, glutamate, is replaced by valine, in the
sickle cell hemoglobin [32].

18

2.1.3.2 Secondary Structure

The secondary structure of the protein refers to the local folding of the polypeptide in
some regions and are defined by patterns of hydrogen bonds between the main-chain
peptide groups. There are two main distinct categories of the secondary structure, the
o-helix and the -strand or 3-sheets. Both of these are held in shape by hydrogen bonds,
which form between carbonyl and amino groups in the peptide backbone. Certain amino
acids have a propensity to form an «-helix, while others have a propensity to form a 3-
pleated sheet. The a-helix and -pleated sheet structures are in most globular and fibrous

proteins and play an important structural role.

Secondary Protein Structure

B-pleated
sheet

Oy H R .
g] 1 Ll 1 I ,:':' 11 1 ,:':' 11 Han ne
C=-N* \C—N\C/C—N“ \C—N\CJC—N’ \C—N\C;C—N’ \C—N-\C;C I’,C"l
1 1 11 1 11 1 11 1 C
H R S HH R & HH R & HH R 4 - H
' i : R ’
‘I:I’ R H H ‘I:I’ R H H ﬁ R H H 'I:I’ R H ';' g/
I 1 I 1 I o1 I I -
CsCAN-C\c N-C#CSN-C\ N-C#CNN-C\c N-C#CSN-C\c,N-C /N’(f
1 (] I o1 1 o1
HH G R HHG R HH R HH G b L

Figure 2.10: The diagram illustrates the shapes of the two main types of the secondary

structure of proteins, the a-helix and the -strand [32].

2.1.3.3 Tertiary Structure

The tertiary structure of proteins refers to a three-dimensional structure of monomeric
and multimeric protein molecules. This structure is determined by a variety of chemical
interactions on the polypeptide chain, such as ionic bonding, hydrophobic interactions,
hydrogen bonding, and disulfide linkages (Figure 2.11). The protein’s complex three-

dimensional tertiary structure is created by the interactions among R groups. For instance,

19

R groups with like charges repel each other and those with unlike charges are attracted
to each other (ionic bonds). The only covalent bond that forms during protein folding
is the disulfide linkages, which are formed by interactions between cysteine side chains,
in the presence of oxygen. As regards hydrophobic interactions, during the protein fold-
ing stage, the non-polar amino acids’ hydrophobic R groups lie in the protein’s interior,
whereas, the hydrophilic R groups lie on the outside. Once a protein loses its three-
dimensional shape, it may no longer be functional. The tertiary structure of a protein
highly depends on the characteristics of its secondary structure, which is formed based on

the order and layout of the amino acids (primary structure) of the protein.

Polypeptide backbone

o}

CH, — CHy — CHy — CHy; — NHy® TO— C— CH, CH,
lonic bond @]

Hydrogen H
bond

Dissulfide
linkage

\‘S

Hydrophobic
interactions

Figure 2.11: The diagram indicates some of the chemical interactions that determine the

proteins’ tertiary structure [32].

2.1.3.4 Quaternary Structure

The quaternary structure of a protein is the three-dimensional structure consisting of the
aggregation of two or more individual polypeptide chains (subunits) that operate as a
single functional unit (multimer). For example, insulin (which is a globular protein) has a
combination of hydrogen and disulfide bonds, which cause it to mostly clump into a ball
shape. Insulin starts out as a single polypeptide and after forming the disulfide linkages
that hold the remaining chains together, it loses some internal sequences in the presence
of post-translational modification. Silk (which is a fibrous protein), on the other hand,
has a 3-pleated sheet structure, which is the result of hydrogen bonding between different

chains. A representation of the quaternary structure can be found in figure 2.7.

20

2.2 Artificial Neural Networks Background

2.2.1 Origins of Artificial Neural Networks

Artificial neural networks (ANNs) are computing systems which are inspired by the bio-
logical neural network that exists in the brains of humans and animals. The term ‘neural’
comes from the basic functional units of the human nervous system, called ‘neurons’ or
‘nerve cells’. These are located in various parts of the human body, like the brain which

contains about 10!! neurons that are connected to 10* other neurons.

impulses carried
toward cell body
branches
of axon

dendrites

axon

nucleus terminals

impulses carried

away from cell body
cell body

Figure 2.12: Structure of a Biological Neuron [33].

A biological neural network is a collection of neurons that receive, process and transmit
information between each other, through electrical and chemical signals via specialized
connections called synapses. It consists of three main components, the cell body, the
axons and the dendrites. Figure 2.12 shows the direction of the impulses when a signal is
carried towards or away from a neuron. The neuron receives signals from other neurons
through dendrites. The body of the neuron adds all the incoming signals and calculates
the input of the neuron. If the sum exceeds a certain threshold value the neuron triggers
and the signal is transmitted through the axon to the other neighbouring neurons. Axon
terminals are the connection point between brain neurons. The signal’s strength, which
is transmitted from one neuron to another, depends on the interconnection force of the
neurons. The human nervous system is like an extremely high-connectivity network,

which has trillions of neurons and billions of connections between them.

An Artificial Neural Network (ANN) has the same architecture with the biological neural
network. An ANN has nodes that represent artificial neurons, a simplified version of bi-

ological neurons in terms of functionalities, and connections (edges) instead of synapses.

21

These connections are responsible for transmitting signals between the connected artifi-
cial neurons. ANNs have a similar behaviour with the biological neural network, but as

they became more and more popular, the idea of replicating the human brain faded away.

The increasing demand for solving specific tasks, led to the development of various im-
plementations of ANN, and some of them were based on the initial concept of biological
neural networks. For instance, an ANN called Recurrent Neural Network (RNN) was
based on the concept of short term memory and is used to recognise patterns, where the
previous features can help predict the next ones. Another variation of ANNSs is the Con-
volutional Neural Network (CNN) [34], which is used in this dissertation. The CNN is
able to recognise patterns in two-dimensional (or three-dimensional) data, like images
and videos, and feed the extracted features to a fully connected feed-forward Multi-Layer
Perceptron (MLP) to classify the initial input data. There are many other variations of
ANNSs that were designed for specific tasks like speech translation or recognition, natural
language processing, clustering or even playing video games. Some of these variations

will be discussed in the following section.

2.2.2 Variations of Artificial Neural Networks and Optimizers

2.2.2.1 McCulloch and Pitts (McP)

The first ANN model was suggested by Warren McCulloch and Walter Pitts in 1943 [35]
(Figure 2.13). The design of this artificial neuron was very simple and was based on a
single biological neuron of the human brain. An input vector performs multiplications
with the weight values and provides the signals to the artificial neuron. Then, the artificial
neuron sums those signals and transfers the result to a threshold function, also known
as step or heaviside function (Figure 2.14), which does not provide enough information
about how close or how far the target output is. The output signal of the model was 1,
if the value exceeded the a specific threshold value, otherwise the output signal was 0,

which means this model can be used only for binary classification.

The inputs are classified based on the weights of the connections and the threshold value
(Equation 2.1, where y is the output of the network, x the input vector, w the weight
vector, w - x the dot product and s the threshold). For instance, for a two-dimensional
input vector, in a simple two-dimensional scenario, the decision line can be calculated

with equation 2.2.

B 1 ifw-x>s 2.1
Y= 0 otherwise '

22

Inputs Weights

sum | — E)utput
| Y

Figure 2.13: McCulloch and Pitts artificial neuron [35].

f(m):{l fw-z+b>0

0 otherwise 08

06

04

0:2

Figure 2.14: The step or heaviside function.

23

2=—(—)xl+(—=) (2.2)

If the goal is to classify the OR gate (Table 2.2) with a McP model, the model could use
infinite different ways to solve the problem. For instance, the model could have weights
of W =[2, 2] and a threshold value S = 1. In figure 2.15, (b) illustrates the decision line
for the OR gate, where inputs above the line are classified as Class 1 while inputs below

the line are classified as Class 0. The equation for this decision line is x2 = —x1 +0.5.

x1 (input) x2 (input) y (output)

0 0 0
0 1 1
1 0 1
1 1 1

Table 2.2: Truth table for OR gate.

(1.1) (0.1) (1.1)

(0.1) -
\)ulpul
=]
Input Output N Input Output
5 =0 2N 1
\
D
N
Output™
0.0) 2 \\ [
(0,0) ¢ 4(1,0) (O (1,0)
; Input x, (Input x,

(a) (b)

Figure 2.15: Decision lines for AND gate (a) and OR gate (b).

The training phase of McP neurons requires the input and target output to be presented to
the network, which calculates the actual output for the given input and adjusts the weights
accordingly. For example, if the output is 1 but the target output is O the weights are
modified, while in the case where both the output and target output are O the weights
remain the same. This process is also known as the Perceptron Learning algorithm [36]
(Algorithm 1).

24

Perceptron Learning Algorithm

1

. Initialize weights and threshold randomly.

. Present input and desired output.

2
3. Calculate actual output
4. Adapt weights:

if output @, should be 1:
if output 1, should be 0:
if output is correct

(Equation 2.1).

wi(t +1) = wi(t) + n - x;(¢)
wi(t +1) = wi(t) — 1 -x;(t)
Wi(t + 1) = Wi(t)

where 0 <7 <1 the learning rate, controlling the
adaptation rate.

Algorithm 1: Perceptron Learning Algorithm.

This algorithm was thought to be very promising, but after a while it was proven that the
perceptron algorithm could only solve problems with linearly separable patterns. In these
problems, a straight line or hyperplane, which separates the patterns, can be found in
space, like the OR gate problem which was mentioned earlier (Table 2.2). However, this
algorithm cannot solve problems that require more than one straight lines or hyperplanes
to separate the different classes, not even simple ones like the XOR gate problem (Figure
2.16). Except from that, there was no indication on how close to the target output was
the predicted output because of the binary (either 1 or 0) output of the heaviside function.
This problem was the main motivation for developing more sophisticated networks and

algorithms, some of which will be discussed subsequently.

OR Function XOR Function
e ° e @
\\\
N
\ \ ‘\\\
N \
b ™ h
Input 1 \\ Input 1 \\ \\
\\ \-\. \\
- » b
\ _‘
e - ° e N
Input 2 1 Input 2 ~ 1

Figure 2.16: The OR gate is linearly separable while the XOR gate is not.

25

2.2.2.2 Multi-Layer Perceptron (MLP)

Multi-Layer Perceptron (MLP) neural networks are currently the most popular and well-
known variants of ANNs. They consist of multiple, slightly modified, McCulloch and
Pitts neurons, which form layered feed forward networks (Figure 2.17). McP neurons use
a specific threshold activation function (step function) while MLP neurons can use any
arbitrary activation function (Table 2.3). This is the reason why McP can only perform
binary classification, while MLP can perform regression or classification, depending on
the selected activation function. Furthermore, activation functions provide an indication
to the network whether the outputs are closer or further of the expected outputs, which

helps the network adjust the weights accordingly, to improve predictions.

output

input layer hidden layer output layer

Figure 2.17: Multi-Layer Perceptron Neural Network with one hidden layer.

An MLP neural network consists of an input layer, one or more hidden layers and an
output layer. The hidden and output layers are active, while the input layer is not active
(only forwards the input data to the network). Each layer has one or more neurons and an
independent neuron unit, also known as ‘bias’, which has a constant input value of one
(1). The role of the bias unit is to help the network adapt more effectively to the provided
data. The number of hidden layers is very important as it specifies the possibilities of the

network and processes the biggest amount of information during the training (learning)

26

Name Plot Equation Derivative Range
e [| 1ifx>0 : Oifx+#0
Heaviside] flx) = {0 ;};izcerwise fl(x) = {? ifx=0 {0,1}
Logistic / PR | B e B
Sigmoid | — f=1,= ') = f)(A = f(x)) (0,1)
TanH ;_/ flx) = Zx;—e:x £(x) = e -1,1)
Rectified
. . _(0ifx<0 vn _[0ifx<0 "
linearunk / HE)= {x otherwise fe) = {1 otherwise [0.)
(ReLU) |
SoftPlus / f(x) =In(1 +e%) flix) = e (0,)
Gaussian | /\ f=e™ f'(x) = —2xe™™* (0,1)

Table 2.3: List of the most popular activation functions.

phase (Figure 2.18). The neurons of the first hidden layer determine the number of deci-
sion lines that can separate the patterns into classes. The second hidden layer gives the
ability to form arbitrary complex decision shapes, which are able to separate any classes,
so there is no need for more than two hidden layers in a neural network [37].

output layer: arbitrary shapes

Classes with
mashed regions

General region

XDR shapes

Figure 2.18: Decision regions based on the number of hidden layers.

27

The calculation process of the networks’ output is very similar with the one used in McP.
The input layer forwards the input values to the first hidden layer, which calculates the
sum of the bias and the dot product of the weights and the input vector, and then passes
that value to the activation function (Equation 2.3, where y is the output of a single neuron,
x the input vector for that neuron, w the weight vector, w! . x the dot product, b the
threshold and f the arbitrary activation function). The output signals of the activation
function are then fed as inputs of the next hidden or output layer, which then repeats this

process until there are no more layers to pass the signals.
y=f(wlx+b) (2.3)

Gradient Descent

Gradient descent is one of the most popular optimisation algorithms for training ANNSs.
It is considered a mathematical optimization algorithm that is able to minimize a function
by iteratively moving in the direction of steepest descent, which is defined as the negative
of the gradient. An error function is used to calculate how successful the network pre-
dicting the classes of the input patterns was, like the mean squared error (MSE) function
(Equation 2.4, where ¢ is the target output, o the actual output, p denotes the pattern and j
the neuron). The objective is to minimise the error value, which is the difference between
the target and actual outputs. By adjusting the weight vectors according to the negative
of the derivative of the error value, of the current pattern, with respect to each weight
(Equation 2.5), where n is the learning rate), at some point the correct classifications will

be maximized.

1

2
E=3 Z (tp) = 0p) (2.4)
J
E
Awyj = —n jwl; 2.5)

Backpropagation Algorithm (BP)

In order to calculate the error and use gradient descent to minimize it, both target and
predicted outputs must be known. In the output layer this is fine as both values are avail-
able, however, in the hidden layers the target values are unknown, which means that only
the weights between the last hidden layer and the output can be adjusted. To solve this
issue, the backpropagation algorithm was suggested, which propagates the error from the
output layer back to the last hidden layer, which then does the same until all the weights

are updated (Algorithm 2, where J;; is the error signal, y;; is the actual output and d;; is

28

the target output of neuron i of layer j. The &y is the same as §;; but for the previous
iteration of the algorithm).

Backpropagation

Repeat:
For each pattern :
// Forward Pass
Calculate the output
// Backward Pass
For each layer j, starting at the output:
For each unit i:
// Compute the error
If output neuron: &; = y;(1— yi)(dij — yij)
If hidden neuron: &; = y;;(1— yi;) T 8k * Wi
For each weight to this unit:
Compute and apply Aw
Compute total error
Increment epoch counter
Until small enough error or epoch counter exceeded

Algorithm 2: The Backpropagation algorithm.

More specifically, to update all the weights two passes are required, a forward pass to
calculate the error based on the given input pattern, and a backward pass, where the error
is back propagated to the previous layers and all the weights are updated respectively.
The entire process is repeated for every pattern, until all patterns have been passed into
the network (one epoch), which is also known as the online update mode. There are two
alternatives, the batch and mini-batch modes. The first feeds the network with all the
patterns at once and gets cumulative updates for the weights, which usually helps the
network learn more effectively. However, if the input datasets are too big and cannot
fit into memory, this method cannot be used. The second method is a combination of
the online and batch mode and can be used for big datasets. This method takes the input
patterns and splits them into smaller chunks, called mini-batches, then it feeds the network
with one mini-batch at a time. The size of the mini-batch can be adjusted to ensure that
there are no ‘out of memory’ issues, which makes this more flexible compared to the other
two methods. The goal is to feed the network all the input patterns several times until the
error reaches a specified value or until a number of epochs (when all the patterns have

been fed into the network) has passed.

29

2.2.2.3 Recurrent Neural Network (RNN)

The Recurrent Neural Network (RNN) is a variation of MLP, which instead of feeding the
input forward to the next layers, it uses recurrent inputs. Recurrent inputs are the output
signals from the hidden layer or the output layer, which are fed into a previous layer or
even to the same layer. This technique creates a form of ‘memory’ for the network, since
the output depends on both the current input and the input from the previous iterations.

This makes RNNs great for dynamic problems, like timeseries or sequence predictions.

There are two main versions of RNNs, the Jordan RNN [38] and the Elman RNN [39]
(Figure 2.19). The main difference between the two versions is that the first transfers its
output to a context layer, also known as state units, which then feeds the network along
with the new input patterns. The second variation, on the other hand, feeds the hidden

layer output to a context layer, also known as context units, which is fed back to the

hidden layer.
(1] : (2] output units
'l
L] ;
. - o i
. v 1‘ . “ ‘1
it Units . . r
vy I
. N . '
. /N 5 h o 0 1
A A & g | 1 hidden umits
[THENT ¥
] e 5
w] ~
-] Y,
- ” ¥ . .
Stte | o .
jnts A “a
, |] [)
input units context units

Figure 2.19: RNN variations, Jordan network (left), Elman network (right).

2.2.2.4 Convolutional Neural Network (CNN)
Description of Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a class of deep artificial neural networks,
which is most commonly applied to analysing visual imagery. Its application ranges from
image and video recognition, recommender systems, image classification to medical im-
age analysis, and natural language processing (NLP). CNNs are simply neural networks
that use convolution in place of general matrix multiplication in at least one of their lay-

ers. Multilayer perceptrons (MLPs), which are usually fully connected networks (each

30

neuron in a layer is connected with all the neurons in the next layer), are prone to overfit-
ting data. CNNs on the other hand take advantage of the hierarchical pattern in data and
assemble more complex patterns using smaller and simpler patterns. Therefore, on the
scale of connectedness and complexity, CNNs are on the lower extreme. The architecture
of a CNN is designed so that it can take advantage of the two-dimensional (2D) structure

of an input image (or any other 2D input, such as speech signals).

Architecture of Convolutional Neural Networks

A Convolutional Neural Network (CNN) consists of an input and an output layer, as well
as multiple hidden layers. The hidden layers of a CNN typically consist of a series of
convolutional layers. The activation function used is commonly a Rectifier Linear Unit
(RELU) layer, and is subsequently followed by additional convolutions, pooling layers
and a fully connected layer. The final fully connected layer, which is usually a multilayer
perceptron (MLP) network, uses the backpropagation learning algorithm for training. The
input of a convolutional layer is an image of size d X d X ¢, where d is the height and width
of an image and c is the number of channels of the input image (e.g. an RGB image has
¢ = 3). A convolutional layer has k filters (or kernels) of size m x m x n, where m is
smaller than the dimensions of the image and n can be either the same as the number
of channels ¢ or smaller (may vary for each kernel). Convolutional layers convolve the
input, which leads to the creation of k feature maps of size d —m + 1, and pass their
output to the next layer. Subsequently, each feature map is sampled, typically averaging
or maximizing above the same areas in feature maps of size p x p (where p is between 2,
for small images, and usually does not exceed 5, for larger images). A bias and a sigmoid

nonlinearity is applied to each feature map, prior or after the pooling layer.

Figure 2.20 illustrates an example of a CNN which is used to classify images of handwrit-
ten digits. The diagram shows the different layers of a CNN (convolution, max pooling,
multilayer perceptron) and the feature maps that are extracted from each image (small
squares). At the end of the CNN (right hand side), there is a fully connected network
(MLP) which is used to classify the input image [40].

A pooling layer between the hidden convolutional layers is a common tactic for classic
CNN architectures. The pooling layers are mainly used to reduce the dimensions of the
output of each layer, the number of parameters and the complexity of the network, which
consequently reduces the total computation time of the network. This practice also pre-
vents the network from overfitting (adapting to the training data, making it less effective
at predicting new data patterns), which can be determined by observing the training and

test error values. The pooling layers are independent from the other layers and they pro-

31

Image

=
—] 64x7x7
28 x 28 L_| 32x14x14 64 x 14 x 14
32x28x28) 128x10

Convolution Convolution

o adding = 1 . 3136 x 128
padding = 1, p g=1, Max pooling
kernel = 3x3, Max pooling kernel = 3x3, Kemel =2x2, Ejatten

stride = 1 Kernel = 2x2, s‘”df =1 Stride = 2
+ Stride =2
RelU RelU

Figure 2.20: A CNN example for digit image classification.

cess the output of each kernel (filter) separately. Even though, there are different types
of pooling layers, max pooling, min pooling (which is the opposite of max pooling), av-
erage pooling and L2-normalization pooling, the max pooling technique seems to work
better than the rest [41]. This technique, as its name suggests, takes the max value from
each filtered result and returns it. Figure 2.21 illustrates an example of max and average
pooling, where the kernel size (filter size) is 2 x 2 and the stride (how many slots to skip)

is two (2). The applied filters can be distinguished by their colors.

max pooling
20 30
112| 37

12120130| O

34701 37| 4 average pooling

112100} 25 | 12

Figure 2.21: Example of max and average pooling.

32

The input of a CNN is a 3D array, also called 3D tensor. For instance, if the purpose of
a CNN is to identify objects in a 50 x 50 pixels picture, the input would be a 3D tensor
with shape 50 x 50 x 3. That is because each pixel is represented by three values, one for
red, one for green and one for blue (RGB). In the PSSP problem, a 2D tensor is enough,
as a 2D tensor is the same with a 3D tensor where the third dimensions has size one. The
shape of this tensor will be L x 20, where L is the number of lines of the input file and 20
represents the 20 known amino acids. An example with visualizations and more details
on how CNNs work can be found here [42].

One of the main advantages of CNNss, is the fact that they can extract features from com-
plex sequences, due to the small number of synaptic weights. For example, if the input
array size is 28 x 28 x 3 (RGB) and the kernel size is 5 x 5, then each neuron of the con-
volution layer will be connected with an area of the input array with shape 5 x 5 x 3. This
means that each neuron has 76 (5 x5 x 3 =754 1 = 76) synaptic weights, which can

extract features and adapt to complex input data.

In some cases, it is necessary to add zero padding (append zero values) around the input
data (like a frame for the input array). The number of rows and columns of zeroes is
variable, which makes it possible to control the dimensions of the output of a hidden
convolution layer, using zero padding. Figure 2.22 illustrates an example of zero padding,

where two borders of zeros are placed around the 32 x 32 x 3 input.

The input volume is 32 x 32 x 3. ¥ we imagine two borders of zeros
around the volume, this gives us a 36 x 36 x 3 volume. Then, when we
apply our conv layer with our three 5 x 5 x 3 filters and a stride of 1, then
we will also get a 32 x 32 x3 output volume.

32x32x3
36

ol|lo|lo|lo|(oo(o|o|o|a|lo|o
ol|lo|lo|lo|(oo(o|o|o|a|lo|o
ololo|lo|o|lo|lo|lo|lo|ao|la|o
o|lo|lo|lo|olo(lo|lo|o|la|la| o

r
L

36

Figure 2.22: Example of zero padding.

2.2.2.5 Line Search

Line search is one of the basic iterative approaches, used to find a minimum x* of an ob-
jective function. For an ANN, x represents the weights of the network, while the objective

function represents the error function. Equation 2.6 illustrates the essential components

33

to calculate the next iteration of x. The step size determines the size of the step of x in
that direction. Line search, in each iteration, attempts to find the best step size, which can
minimise the objective function in a specific search direction. On the other hand, gradient
descent requires a learning rate which determines how small or how big is each step. If
the step is too small the learning process will take significantly more time and can lead
the network to a local minimum (instead of the global minimum, which is the desired
outcome). If the step is too big then it is very likely that the objective function will jump

far away from the desired minimum.

Xpt1 = Xp + andy (2.6)

Therefore, applying the optimal step size is very important, as it can prevent the network
from moving further away from the minimum. In order to find the step size, a naive
approach was to move along a search direction in small steps and after each step calculate
the error, if the error starts increasing then stop and change direction [43]. However,
this approach is not very efficient, robust or accurate compared to other variations of line
search [44].

2.2.2.6 Conjugate Gradient (CG)

The Conjugate gradient algorithm (Algorithm 3), unlike gradient descent, in each iteration
changes the direction to prevent the network from becoming counterproductive (revers-
ing the progress). In addition to that, in an N-dimensional problem, the CG algorithm is
guaranteed to find a solution in N steps, since in every CG step the network obtains the
minimum of that direction. Figure 2.23 compares the CG and the gradient descent algo-
rithm on the same two-dimensional problem. Conjugate gradient managed to converge in

just two steps, while gradient descent required several steps.

Iy A
w, w;)
start . start
| Error Error
|\ K contours \ contours
L W

Figure 2.23: Gradient Descent (left) vs Conjugate Gradient (right) on a 2D problem.

34

Conjugate Gradient

1. Initialize weight vector we randomly, set i=0
2. Evaluate the gradient vector gi, and set the initial
search direction d;i =-g;

3. Use Line Search to find best step size a, which
minimizes the function f(wit+adi)

. Update weights wis = wi + adi

. Test stopping conditions

. Evaluate new gradient vector giu

. Evaluate new search direction diii= -giqa + Pidi,
where Bi is given by one of:

N oA

T — 4
Bi = w (Polar and Ribiere)
9i i
T a
Bi = M (Fletcher and Reeves)
9 i

8. Set i=i+1 and go to step 3

Algorithm 3: Conjugate Gradient Algorithm [45].

2.2.2.7 Newton’s Method

An iterative method, originally used to find approximations of the roots of real-valued
functions, is currently used in optimisation problems to find the maximum or minimum
of a function and is known as the Newton’s Method. The derivative of a function at a
maximum or a minimum point is zero, which makes it possible to find local maxima and

minima by using the Newton’s Method on the derivative of the optimisation function.

Newton’s Method is considered a second-order optimisation algorithm, since it requires
information about the second derivative of the optimisation function. Compared to first-
order optimisation algorithms (like gradient descent), second-order optimisation methods

can achieve faster and more accurate convergence to the minimum of a function.

In a simple first-degree polynomial (Figure 2.24), 1D problem, of a function f(x) and a

sub-optimal initial solution xo, Newton’s method suggests the following:
1. Set x; = xg
2. Find the equation of the tangent at x;
3. Find the point x; 41 at which the tangent line intersects with the x-axis
4. Find the projection of x;;; on f(x)

5. Set x; = x;11 and repeat from 2 until f(x;) < threshold

35

y y=r(x)
.~ Tangent at x;

/4

/ | Tangent at x;

Figure 2.24: Newton’s method in a first degree polynomial problem [23].

The equation of a point-slope line is:

y—y1 =m(x—xp) (2.7)

In 2.7 the derivative can be used instead of the slope m and this can be rewritten as:

fx) = f () =f(x) (x—x1) (2.8)

Since x; is the point of interaction on x-axis, f(x;) = 0 which gives the update rule for x

for optimizing the function as:

S (xi)

—r 29
I (xi) &2

Xit] = Xj —
The previous simple example was used just to provide the intuition behind the method of
finding the roots of a function. In optimisation theory, this method actually approximates
the function f(x) with a local quadratic function around x and moves towards the mini-
mum of that approximated function with iterative steps. This process is repeated until a
specified error threshold is reached or after a certain number of iterations has passed. The

quadratic approximations around the weights at each iteration are shown in figure 2.25.

For the approximation of the function f(x), the second-order Taylor expansion (second

series Taylor approximation) is being utilized.

x2

f(xp+x) ~f(xg) +1f (x0)x+ " (x0) 5 (2.10)

36

objective

Figure 2.25: Local Quadratic approximations [23].

In order for f(xp+x) to be a minimum, an optimal x value must be specified. Newton’s

method takes the derivative of the Taylor series and sets it equal to zero (Equation 2.11).

2

d (f(xo) +1 (x0) x+1" (x0) %
dx

) =f (x0)+ " (x0)x=0=x= —J]:,,((i((’)) (2.11)

~—

This x is just the absolute minimum of the local approximation of f(x) around the initial
solution of xp and not the absolute minimum of f(x). For the minimum of the objective
function this process must be repeated multiple times, until it eventually converges to a
minimum. The final update rule for optimizing the function f(x) for a 1D problem is

given by the equation 2.12 .

I (xn)

Xn+1 = _f,/ (Xn)

(2.12)

This algorithm, however, can work only for objective functions with a single dimension
(f:R—=R).

If the objective function, has multiple dimensions (f : R” — R), the algorithm must be
modified by replacing derivatives with gradients and second derivatives with Hessians

(the matrix of second partial derivatives, figure 2.26)

Vi (x,)

Xn+1 = _W (2.13)

Equation 2.13 is the final update rule, which is the one cited as the Newton’s method.

37

*f *f Ff
?12 dxy 0xp T ax; Ox,
*f Pf *f
H — sz — ?12 axla)Q e axlax,,
*f &*f &*f
\ ?12 0x10x3 T 0x1 0%, }

Figure 2.26: The Hessian matrix of the error function with respect to the weights.

The Newton’s Method seems very efficient computationally because it calculates the
quadratic approximation around the solution and immediately finds the minimum of that
curvature, instead of fitting a plane to the solution, like the Gradient Descent algorithm.
The problem is that it can become computationally impossible to calculate and store the
entire hessian matrix of the function, as the parameters increase. Because of that, the stan-
dard Newton’s method cannot be applied and used in Artificial Neural Networks, which
have thousands or even millions of parameters. There are some variations of this algo-
rithm, however, which can be used with ANNs. One such variation is the Hessian Free
Optimization algorithm [46] which, instead of calculating and storing the entire Hessian
matrix, calculates an approximation that requires less computational resources and does

not have to be stored. This algorithm will be discussed in more detail in section 2.3 below.

2.3 Hessian Free Optimisation (HFO)

2.3.1 Intro to HFO

As mentioned in the previous section, the Newtons’s method, as a second order optimiza-
tion algorithm, can achieve faster and more accurate convergence to the minimum of a
function, compared to first order algorithms, like the gradient descent. In high dimen-
sional problems, first order optimization algorithms can be extremely slow or ineffective
due to a problematic phenomenon, called Vanishing Gradient. This phenomenon can be
described as a state where the updates for the first layers of a network are very close to
zero, because of the backpropagation of the error and the decreasing gradient. As a result,
the front layers have almost no information to adjust their weights, which means that the

training process becomes slower or even ineffective.

On the other hand, second order optimization algorithms, like Newton’s method, calculate

the curvature of the error surface (Hessian Matrix) which significantly improves each step

38

of the optimisation process. What makes these algorithms so efficient is the fact that they
attempt to find a quadratic curve that tightly fits at each point, which helps them find the
minimum of that curvature immediately, unlike first order algorithms which select a fitting
plane and then calculate the next step. However, these second order algorithms have some
limits. For instance, in case of a big ANN (with thousands to millions of parameters)
sometimes it may not be possible to calculate the Hessian Matrix, due to the extremely
high memory requirements. Because of that, several variations of Newton’s method were
suggested, like Newton-CG, CG-Steihaug, Newton-Lanczos [47], and Truncated Newton
[48], but their applications on machine learning and neural networks have been either

extremely limited or not effective at all [49].

The Hessian Free Optimization (HFO) algorithm [46] is a variation of Newton’s method,
which uses the local quadratic approximations to generate the suggested updates. Unlike
other Newton’s variations, HFO managed to lift the memory constraints, which made it
an effective optimisation algorithm for ANNSs. This algorithm, instead of calculating and
storing the entire Hessian Matrix (H), calculates the dot product of H with an arbitrary
vector u (Hu). It takes advantage of mathematical techniques, like finite differences,
which computationally costs the same as a single gradient calculation. This means that
HFO can calculate the dot products of the Hessian with arbitrary vectors, instead of using
the Hessian, and it can optimize the local quadratic objective approximations by using the
conjugate gradient (CG) algorithm, to compensate for not having the Hessian Matrix. As
mentioned in section 2.2.2.6, the CG method requires N iterations to converge (where N is
the number of the network’s parameters), but there are various stopping criteria that allow

early termination (after significant progress is made), which reduce the total training time.

Even though, the Hessian Matrix is not calculated in HFO, there are no approximations,
as the Hu product is computed accurately. In the standard Newton’s method the approx-
imated quadratic is fully optimized, while the HFO does not perform complete optimiza-
tion with the un-converged CG algorithm [46] and this is the only difference between
the two approaches. The difference between the accuracy of Newton’s method and the
HFO with the not fully converged CG is that small that makes it insignificant, where the
benefits in terms of efficiency of the HFO (by not calculating the full Hessian Matrix) are

obvious.

It is important to note that instead of the Hu product, the Gu product is used, where G
is the Gauss-Newton Matrix (an approximation of the Hessian Matrix) [50]. It might
look pointless to use an approximation instead of the actual matrix, however, the Gauss-

Newton matrix bypasses possible problems that can occur with the use of the Hessian,

39

which could make it completely ineffective during the training process. Even for the
cases where these problems do not appear, the G matrix provides better results, in terms
of search directions, which lead to lower memory consumption (about half) and higher

running speeds compared to the H matrix.

2.3.2 Analysis of HFO

A detailed analysis of how HFO works was described by Charalambous [23] for anyone
interested into diving deeper into this variation of Newton’s method. As it was mentioned
before, when the H matrix is used, some issues can occur. One of the most important
problems is the lack of the utilization of the CG algorithm, on a quadratic model with
a non-positive definite curvature matrix, since the Hessian matrix in some cases is non-
positive definite. To deal with this issue, the Gauss-Newton matrix is used, which is
guaranteed to always be positive semi-definite and is an approximation of the Hessian
matrix. Except from that, the Gauss-Newton matrix usually outperforms the Hessian

matrix in terms of efficiency.

2.3.3 Hessian-Vector Multiplication evaluation

As mentioned in previous sections, instead of an explicit evaluation of the Hessian ma-
trix, dot products with the Hessian and arbitrary vectors are performed in HFO, which
computationally cost the same with a gradient calculation. If the Hessian is considered
as the Jacobian matrix of the gradient, based on the definition of directional derivatives,
the H(w)v product is the directional derivative of the gradient Vf(w) in the direction v
(Equation 2.14).

H(w)y = lim YL W€ = V(W) 2.14)

£e—0 £

In practice, finite-differences suffer from numerical errors, which are troublesome for
training ANNs. To counter this issue, a method called ‘Forward Differentiation’ was
proposed [51] and was adapted for ANN training [52]. The main idea was to repeat the
chain rule for the value of each node of the gradient, and in order to do that an R, (x)

operator was defined to denote the directional derivative of x in the direction v.

X —X X
R, X = lim (w+ev) (6) = a—v
£—0) ow

(2.15)

40

The R operator is a derivative operator, so it obeys the usual rules of differentiation (2.16):

Ry(X+Y)=R,X+R)Y linearity
R, (XY) = (R, X)Y + XR,Y product rule
Ry (R(X)) = (Ru XA (X) chain rule

(2.16)

If these rules are repeated recursively in the gradient calculation algorithm the Hv prod-
uct will be computed. The algorithm for a simple gradient evaluation is illustrated in
algorithm 4 (where L(y;;1;) is one of the loss functions of table 2.4), while the algorithm
5 (where L(y;;1;) is one of the loss functions of table 2.4) shows the modified version,
where the differentiation rules are used to calculate the H(w)v product. The algorithm 6,
illustrates how the G(w)v product is calculated and obviously it is simpler than algorithm
5[49].

input: y,: # mapped to (W,,.... We-1,b1,..., be_1).
for all i from 0 to f — 1 do
Tisy — Wiy + b
Yi+1 & Siz1(Tis1)
end for
dyy + OL(ye:te) /Dy (t¢ is the target)
for all i from / — 1 downto () do
drisy — dyis15i1(xis1)
dW; « dx;s1y
db; «— dr, 4,
dy, — W, dx, 4,
end for
output: Vf(#) as mapped from (dW,,....dW;_,.db,....,. dbs_y).

Algorithm 4: Algorithm for computing the gradient of a FFNN [49].

input: v mapped to (RW,.... RWy_1,Rby, ..., Rbe—_q)

Ryg + 0 (since yp is not a function of the parameters)
for all i from 0 to £ — 1 do
Rz « RW,y; + W;Ry; + Rb; (product rule)
Ryi+1 + Rxit1si i (zis1) (chain rule)
end for ‘ o _ 5
Reye « R (()L(.y(.f;)) _ (){()L(y‘(.t()/()y;}R“ _ 0 L.(y;. r{)ﬁy(
Ayy Ay dy;
for all i from / — 1 downto 0 do
Rdz;y1 < Rdyi118,(zis1) +dyia R {S:+1(.rl+1)} (product rule)
= dyi4+18}; 1(Zi+1)RTipa (chain rule)
RdW; « Rdr,Hy’T - d.r,+1Ry,T (product rule)
Rdb; + Rdy;
Rdy; + RW dz;4, + W,TRdz, 4+, (product rule)
end for

output: H(W)v as mapped from (RdWj,..., RdW;_y.Rdby, ..., Rdbs_y).

Algorithm 5: Algorithm for computing the H(w)v product in a FENN [49].

41

input: RWy,.... RW;_1,Rby,...,Rbs_;.
Ryo < 0 (o is not a function of the parameters)
for all 7 from 1 to /— 1 do
Rziy1 + RWiy: + WiRy: + Rb; (product rule)
Ryi+1 ¢ Rzit18),q(Tisr)

end for o
9 L'(y;‘ t’)Ry;
Ay;
for all i from / — 1 downto 1 do
Rdziy; < Rdyii18]4,(Tis1)
RdW; « Rdzxis1y;
Rdb; + Rdzi+
Rdy; «— RW, dz;,
end for
output: (RdWWy,..., RdW,;_,,Rb,,..., Rby_q).

Rdy,« —

Algorithm 6: Algorithm for computing the G(w)v product in a FFNN [49].

Name L(Z;l) VL(:;-'.} L"(:;l)
Squared error zllp = tfF —(p-1) I
Cross-entropy error —tlogp = (1 =t)log(l =p) | =(p—1) | diag(p(l - p))
Cross-entropy error (multi-dim) = 3, [t]e log[p]. ~(p=t) | diag(p) = pp"

Table 2.4: Derivatives and Hessians of typical loss function.

42

Chapter 3

Data Manipulation

3.1
3.2
3.3
34
3.5
3.6
3.7
3.8
3.9
3.10

PSSPMetrics v v v v v i it e e e e e e e e e e e 44
Protein Databasesand DSSP 45
DatasetFormat. i, 46
Data Encoding and MSA profiles 47
CB513and PISCES Datasets 48
Dataset preprocessing with MSA profiles 49
Significant neighboring aminoacids 51
Training/ Testing Set and Cross Validation 52
Ensembles0.0 it 53
Filtering i i i i i i it i it i ittt et e eea 54
3.10.1 ExternalRules 54
3.10.2 Support Vector Machines 55
3.103 DecisionTrees 57
3.104 Random Forests 58

43

3.1 PSSP Metrics

The Protein Secondary Structure Prediction (PSSP) problem concentrates on predicting,
as accurately as possible, the secondary structure of proteins based on their primary struc-
ture. In this thesis project supervised learning methods are utilised, which require both the
input data (primary structure) and output data (secondary structure) to train an Artificial
Neural Network (ANN) to make predictions. Supervised learning is like learning with a
teacher. The input is presented to the ANN which attempts to predict the output and then
receives feedback on whether its predictions were correct or not. This way the network
can adjust the weights accordingly to improve the prediction results. Both primary and

secondary structure data must be encoded in a way that can be fed into the network.

To get an indication of how good are the predictions of the trained models two metrics
were used, the per residue Q3 accuracy and the Segment Overlap (SOV), which are com-
monly used for the PSSP problem. The Q3 accuracy measures the number of correctly
classified amino acids divided by the number of total amino acids (Equation 3.1, where
n is the number of amino acid residues and m; takes the value of 1 if the predicted value
of the /" amino acid residue is correct and 0 otherwise). The Segment Overlap (SOV)
[53] score is used to measure how good are the predicted results for each class and the
general structure of the entire protein. More specifically, unlike Q3, SOV considers the
size of continuous overlapping segments and assigns extra allowance to longer continuous

overlapping segments (instead of just checking the individual positions, like Q3).
1 n
0 =100-Y m; (3.1)
ni=

For instance, if the target secondary structure of a protein consists of four (4) helices
followed by two (2) coils and then another four (4) helices and the prediction has only
ten (10) helices, Q3 and SOV will produce different accuracy values. The Q3 accuracy
will be 80%, as eight of the ten amino acids were predicted correctly, while the SOV
score would be just 48. Even though the original SOV score was not a percentage, a
modified definition of SOV [54] was suggested, which fixed this issue with normalization
techniques.

1 « minOV (s1,52)+ 8 (s1,52)

SOVy = —
¢ NOCSXO:’ max OV (s1,s2)

(3.2)

The SOV score for the o-helix can be calculated with equation 3.2, where s; and s, are the

actual and predicted segments of the secondary structure of the o-helices, respectively.

44

The s, is the number of segment pairs (s1,s2), where s; and s, have at least one common
residue a-helix. The minOV (sy,s7) is the length of the overlap between s; and s,, and the
maxOV (s, s7) is the length of the total area for which one of the s; and s has one residue
of type o-helix. The Ny is the total number of residues of type o-helix. The calculation

of 8(s1,s2) is based on equation 3.3.

maxOV (s1,s2) —min OV (s1,57)
min OV (s1,s2)
int (0.5 x len (s1))
int (0.5 x len(s7))

0 (S],Sz) = min (3.3)

3.2 Protein Databases and DSSP

There are several protein databases, like the iProClass (Protein Information Resource),
PDBe (Protein Data Bank in Europe), PDBj (Protein Data Bank in Japan) and RCSB
(RCSB Protein Data Bank), which include various information about millions of pro-
teins. This information includes protein names, length, structures (primary, secondary,
tertiary and quaternary) and other biological information related to proteins. The pro-
tein information included in the datasets of the PSSP problem was extracted from these

databases.

a-helix H
3-helix

®
aE

m-helix I
B-strand
B-bridge

B-turn
bend

O »w 4 W m

Random coil

Table 3.1: Table with the secondary structure abbreviations, grouped in 8 and 3 classes

The Dictionary of Secondary Structure of Proteins (DSSP) [55] defined a standardized
format for categorising the secondary structures of proteins. According to this format,
there are eight (8) distinct classes of secondary structures, based their shape, which are

represented by a capital letter of the English alphabet. These are the o — helix (H), 3-helix

45

(G), m-helix (I), B-strand (E), B-bridge (B), B-turn (T), bend (S), and random coil (C) for
residues which are not in any of the other conformations (Table 3.1). Usually these eight
(8) categories are grouped into three (3) more general categories, which describe the shape
of a specific local segment of the protein. For the purpose of this dissertation, the 3-class
classification is used, which includes the helix (H) conformations, containing the first
three categories (H, G, 1), the sheet (E) conformations, containing the next two categories

(E, B), and the Coil (C) conformations, containing the rest categories (T, S, C).

3.3 Dataset Format

The protein datasets, that were used for training, had records of a 3-line format per protein.
An example is shown in figure 3.1, where the first line contains the protein name, the
second line the primary structure and the third line the secondary structure of the protein.
The protein name can be used to combine the primary and secondary structures with the
Multiple Sequence Alignment (MSA) [8] profiles. The primary structure corresponds to
the sequence of amino acids of each protein and each letter represents one amino acid. The
secondary structure, located in the third line, is the target output which must be predicted
by the network, and each letter represents the class of each amino acid (based on table
3.1).

Protein Name Primary Structure Secondary Structure

1bdsA_1-43

AAPCFCSGKPGRGDLWILRGTCPGGYGYTSNCYKWPNIGLYPH
CCCCCCCCCCCCCEEECCCCCCCCCCCCCCEEEECCEEEECCC

Figure 3.1: Protein representation example for protein 1bdsA_1-43.

To prepare training and validation datasets, a python program was developed, which cre-
ates files with comma-separated values (CSV files) based on the input datasets (in the
form of figure 3.1) and MSA profiles, which will be discussed in the following sections.
This program gives the ability to process multiple datasets at once by including the names
of the datasets in the ‘datasets’ variable, located at the top section of the program. More-
over, if the MSA profiles for some proteins are missing, the program will ignore these
proteins and print their names on the screen. This program for CB513 can be found in

appendix D and for PISCES can be found in appendix E.

46

3.4 Data Encoding and MSA profiles

It is suggested the input and output data, that is used to train ANNs and most machine
learning algorithms, to be normalised before they are used in training. The new encoded
data should consist of real values between zero and one (0,1), or between minus one and
one (-1,1), according to the selected activation function. The reason behind this sugges-

tion is to speed up the learning process and help the network reach convergence faster.

For the PSSP problem a suggested encoding method is to use the Multiple Sequence
Alignment (MSA) profiles along with the protein datasets (that include protein names,
primary and secondary structures). These MSA profiles, in general, include information
about about DNA and RNA protein sequences, and are very popular in the field of Bioin-
formatics. In many cases, the proteins that are selected to create the MSA profile have
an evolutionary relationship with each other and are descended from a common ances-
tor. Because of that, these proteins are presumed to have the same secondary and tertiary
structure [8]. The amino acids of these proteins are aligned together and are encoded in a
way such that each position of their sequence represents the probability of the appearance
of each amino acid, to form an MSA profile. An example of this alignment process is
illustrated in figure 3.2.

HPV86REF
HPV87REF
HPV114REF
HPVB84REF
HPVBSREF
HPV102REF
HPVB83REF
HPV61REF
HPV72REF

A
|
{

E=1/9
» V=8/9

4
™

0 mmmEmmeE e

Figure 3.2: Process of MSA profiling

However, the alignment of three or more biological sequences is extremely hard and time
consuming when done manually. Because of that, computational algorithms have been de-
veloped to analyse and align these amino acid sequences. These algorithms use heuristics
to find an approximation of the alignment, as the optimal alignment is computationally
expensive. Furthermore, the MSA files that are created for each protein contain N rows
(where N is the number of amino acids of the protein) and 20 columns, where each col-

umn represents the probability of each amino acid (from the 20 known types) appearing

47

in that specific position in the protein sequence.

In the example of figure 3.2, the highlighted column would have 89% (8/9) for the V
amino acid and 11% (1/9) for the E amino acid, while all other amino acids would have
zero (0) values. The values of amino acids for each line must add up to 100 and before
they are used for training an ANN they must be normalised in the range (0,1), which can
be easily done by dividing them with 100. Therefore, the ANN would be able to adapt to

the structure of the data more easily.

3.5 CB513 and PISCES Datasets

In general, in order to successfully train a prediction model the datasets, which will be
used for the training phase, must be preprocessed. In this phase data selections and data
cleaning techniques are performed. There are various datasets for the PSSP problem, that
have been created and preprocessed over the years. For the purpose of this dissertation,
two widely used datasets were selected, the CB513 dataset [12] and the PISCES dataset
[56]. These two datasets were chosen because they have been used for the PSSP problem
by many researchers, which makes the comparison of the results possible and gives an
indication of how well trained is the neural network. To prevent the network from mem-
orising the order of the input patterns, a good practice is to shuffle the input patterns on

each epoch, and therefore get better prediction results.

Initially, the smaller dataset was used, CB513, which has 513 unique proteins, from which
eight (8) were excluded (these can be found in Appendix A), due to the fact that their MSA
files included only zeros. This dataset required less time to train and helped to identify
whether the neural network was able to learn how to predict the secondary structure of
proteins or not. In the next phase, the bigger dataset was used, PISCES, which consists
of about 8500 sequences, from which 341 were excluded because their MSA files were
either corrupted or zeroed and another 16 were excluded due to missing MSA profiles (all
of them are shown in Appendix B). The bigger dataset (PISCES) was utilized because in
many machine learning problems, by feeding the model with more data, the predictions

become more accurate.

Finally, the PISCES dataset was not in the expected form, that was mentioned before
(protein name, primary structure, secondary structure) but fortunately a team of University
of Cyprus implemented a Java program, which was able to convert the PISCES data into
the expected format. These new modified PISCES datasets were provided by Dionysiou
([1], [24]), who also worked on the PSSP problem in the past.

48

3.6 Dataset preprocessing with MSA profiles

Convolutional Neural Networks (CNNs) expect their input as a two-dimension (2D) or
three-dimension (3D) array, so in order to train a CNN to predict the secondary structure
of proteins, the training and test data must be presented in the form of 2D or 3D arrays.
The input representation method, which will be used, is the same with the one used by
[24].

Over recent years, the Multiple Sequence Alignment (MSA) profiles approach was used
by many researchers. In the Bioinformatics sector, the sequence alignment is a well
known approach, that refers to sequences of DNA, RNA or proteins. In general, this
method attempts to find similarities between these types of sequences, which can usu-
ally define some biological association, leading to a better understanding of the biological

mechanisms. An example of an MSA file is illustrated in figure 3.3.

0001000 00000OO0OO0OD0ODO0ODODO0DO0ODO0ODODQO

&7 3 43 B30 RN ES I3 L1900 LTada3D
B89 i0a0314232003 3303433 =
37 5581 0000000000000000

12 4 4 08045 000014003 20700

3 331 1l 9903V eI dTOo000%9
2011 71013 47 0000100821000
30 1 220 00111y 23 17 19233310 11
1. 124 9809 14 1313320031 31540 3242
2543 11A 1L B810I1ls01la33 226 13

Figure 3.3: Example of the encoded form of an MSA file [24].

Since the input data of a CNN must consist of 2D (or 3D) arrays, these MSA files must
be visualised in a way so that they can be used to successfully train a CNN. In order to
achieve that, all the MSA files were combined in a single file and the desired output label

was added at the end of each record.

For instance, the information included in two MSA files, named ‘1bdoa_77-156" and
‘Ibfga_19-144’, before the two files were combined together, is shown in figure 3.4. Fig-
ure 3.5 shows the new encoded file (where all spaces were replaced with commas °,),
after combining the two MSA files, where the red line separates the data of the first file
from the data of the second file. Each line now has twenty one (21) numbers (columns)
instead of twenty (20), as the predicted class was added (C:0, E:1, H:2) at the end of each

49

line, according to the dataset files (with the protein name, primary and secondary struc-
tures), described in section 3.3. This means that both PSSP datasets and MSA profiles

were utilized to create the new dataset files.

874161 1000000000000000

23 14 18 1117 00014 00030000000

20 4 130 1 00903 1000 0 11 w6 2725 2

173039 210010000000000000
Ej1bd01j7456 000000000000O0O0OO0 185 650 11

=l 1bfga_19-144

000000000000 0O0O0O021 26 0 53
00000000092 0000800000
S0000005000200€e515030020
04320000000008371136000
088 425000000000000000
0300270700000000000000

Figure 3.4: The image shows the MSA file (before collapsing into a single file) [24].

By using the above technique, a new file was created, which included all the data from
the MSA profiles and the desired labels of the secondary structure for each record (Figure
3.5). The same method was used for both training and test datasets. This new representa-
tion with the MSA profiles can be used to successfully train a CNN, since these files can
be presented in a 2D table format. The CNN will receive as input one record (one line)
of the new dataset at a time and will attempt to predict the secondary structure, using the

output class representation mentioned earlier (C:0, E:1, H:2).

W 7R o I O YT T TR0 T Doy A (O DO O TR B T |
23 14 18- 11.17.0.0.0.18 0.0.0.5.0.0_ 0.0, 0.0. 0.2
247111 i a5 0t AN ez 1.1
17,30, 39,2,10,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1
0,0.,0.00.0.0.0.0.0.0.0.0.0.0.185650.11.0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,21,26,0,53,0
,0,0,0,0,0,0,0,0,92,0,0,0,0,8,0,0,0,0,0,0
0,0,0,0,0,5,0
3,2,0,0,0,0,0

Figure 3.5: The encoding of the new file, after combining the MSA files into a single file
[24].

50

3.7 Significant neighboring amino acids

The sequence of amino acids plays a major role, as it determines the interactions that take
place and the folds that are formed in the secondary structure of a protein. The secondary
structure of an amino acid is significantly affected by the adjacent amino acids (previous
and next amino acids), according to the distance between them (short distance usually

means bigger impact, while longer distance means less impact) [20].

The training and test datasets were modified to take advantage of this interaction be-
tween the neighboring amino acids. For each record, except from the information about
each amino acid (from the MSA profiles) and the expected output class, described in the
previous section, the information of k-neighboring amino acids was added (where k is
an integer variable). For example, if k is equal to one, each record will consist of the
MSA records of the left amino acid, the MSA records of the current amino acid, the MSA
records of the right amino acid and the target label (class) of the current amino acid (which
is located in the middle). If an amino acid is not preceded (first amino acid in a sequence)
or followed (last amino acid in a sequence) by another amino acid, zero values are added
instead (zero padding) to ensure that all records have the same length. An example where

k is one (1) is illustrated in figure 3.6, for a sequence of six (6) amino acids.

No. MSA record Class
0,0,0,0,0,0,0,0,100,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,21,49,0,0,31,0,0,0,0,0,0,0,0, 1
42,0,0,0,28,0,0,0,31,0,0,0,0,0,0,0,0,0,0,0, 1
0,0,0,0,0,0,0,0,0,100,0,0,0,0,0,0,0,0,0,0, O
1
1

0,0,0,0,0,0,0,0,0,0,49,51,0,0,0,0,0,0,0,0,
100,

DR WN =

Figure 3.6: MSA record for a sequence of 6 amino acids.

The new modified dataset has 61 (20 x 3+ 1) numbers for each record, as shown in figure
3.7.

P4
o

O WN -

New MSA record Class
0, UKo Ao Ne RO NN O [JORONO NNV Ve HoNe KON OO 8 0,0,0,0,0,0,0,21,49,0,0,31,0,0,0,0,0,0,0,0,“
[OXON RN RN R R 0D o e Mo RORO RO RVRORIN9R 0,0,0,0,0,0,0,21,49,0,0,31,0,0,0,0,0,0,0,0, 42,0,0,0,28,0,0,0,31,0,0,0,0,0,0,0,0,0,0,0, 1
0,0,0,0,0,0,0,21,49,0,0,31,0,0,0,0,0,0,0,0, 42,0,0,0,28,0,0,0,31,0,0,0,0,0,0,0,0,0,0,0, LeA0 R0 R0 K0 Ko Ko Ko Ko Ko [0 Ao Mo RO RO RO RO RO R0 R0 1
o oN o2 oo ok O N oMo Mo NoXoN0N0N0K0N 0,0,0,0,0,0,0,0,0,100,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,49,51,0,0,0,0,0,0,0,0, (0]
1

1

0,0,0,0,0,0,0,0,0,100,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,49,51,0,0,0,0,0,0,0,0, 100,
0,0,0,0,0,0,0,0,0,0,49,51,0,0,0,0,0,0,0,0, 100, (KKK KN XVEeN/Re X ReX NI A RV RO RN N0

Figure 3.7: Modified MSA record for a sequence of 6 amino acids.

51

As soon as this new representation is fed into the CNN it is rearranged into a 2D array,
where each line includes the MSA profile vector for each amino acid and the last value
will be the target label (class). Figure 3.8 illustrates an example for the data representation
method after it was rearranged into a 2D array, for a window size of 15 amino acids (or
‘plus7’), where each row represents the vector of the MSA profile for the specific amino
acid and the SS label represents the class (H, E, C) of the middle amino acid.

Input Sample Size (W=15): 15x20

00000 009 00O0O00O0O0O0GOGOO 3
43300 010513211242 3101 7 left

92205 48 0001022000000 (— Neghboring S label of middle amino acid
92100 2027235002194 26 amino acids in position floor(W/2)+1
%6 8493 2 020400202001000

50010 02759 0451112360 0

35400 1016011 317312 21 2 2] Middleaminoacid>

325113 5 016 2 4 0 2 51 3 0 9 1 2 4 1

31004 03714 63002506 216

52242 04289151109 304 217 1

46 118 32481016 403 8 31844 L 7right

6 2 3037 17 7837500122260 neighboring

110 00 0 0114014005 32142 1 5 amino acids

17509 0014235002125 57 31

Figure 3.8: An example of input data representation for a window size of 15 (or k =7)

amino acids [57].

In order to create these modified datasets two Python programs were developed, that use
the CB513 (Appendix D) and PISCES (Appendix E) datasets along with the MSA profiles
to prepare the modified datasets, according to the provided ‘plus’ value, which can take
any positive integer value (>0). In the previous example the plus value was one (1), as the
neighboring amino acids were one for each side (one left and one right) of each amino
acid. These programs prepare multiple datasets (or folds) at once and print on the screen

the names of proteins for which the MSA files were not found.

This technique can improve the accuracy of a CNN [24], as the CNN can identify the

neighboring amino acids, which can affect the secondary structure of an amino acid.

3.8 Training/ Testing Set and Cross Validation

To train an ANN a specific set of data is required, called training dataset, which is used
for training the model so that it can extract features from the input patterns and classify
these patterns into a number of classes. However, it is very important to ensure that the
model was able to generalize the extracted knowledge so that it can predict patterns that

has not ‘seen’ before. For this reason, another set of data is used, called test dataset,

52

which is completely different from the training dataset, and its purpose is to measure the
effectiveness of the network to classify new data, that has never seen before. In general, a
good rule of thumb is to split the entire dataset into 80% for the training dataset and 20%
for the test dataset (80-20 rule). However, in different problems, other splitting criteria

can be used, which may lead to better results.

Sometimes this method is not enough to test the ability of a network to predict new data,
since the accuracy depends on a specific test dataset. A method that can be used to address
this issue is to evenly split the data into N folds and train N different models. Each model
will have a unique fold selected as the test dataset and the rest N-1 folds will be used as
the training dataset. This method is called N-fold cross validation (Figure 3.9) and the

cross validation accuracy is equal to the average test accuracy of all models.

e CCTTTTTTT M =
v (T T T T T T T W =8|

e (LT T T T T T] =6 °F

v LT T T T T TTT] = &

Figure 3.9: 10-fold cross validation

3.9 Ensembles

Ensemble learning is a method which can be used to improve the performance of a ma-
chine learning model. According to this method, instead of training just a single model,
multiple models can be trained and then their results can be combined somehow, to im-

prove the final results.

Even though, there are various ensemble methods, ranging from simple to advanced and
more sophisticated methods, for the purpose of this dissertation a relatively basic approach
was used, also known as averaging ensemble method. This method basically calculates

the average of the outputs of its models. In the PSSP problem, for instance, if there are

53

five different trained models the following steps are applied. First, for each of the input-
output pairs, the output of each of the five models is calculated and classified in one of
the three classes (H, E, C). Then, the results of each of the five models are compared with
the method ‘winner takes all’ and the class that had the most appearances is chosen as the
final class for that input. If there is a tie between some of the classes, an arbitrary class

(from those) is selected as the final class.

This ensemble method, even if it is very simple, it can remove random errors from the
models, which can lead to improved results. More advanced ensemble methods might
have a bigger impact on the predicted results, but at the cost of computation resources, as

these are usually more complex.

3.10 Filtering

3.10.1 External Rules

Post-processing filtering is an additional method that is used to improve the accuracy of
a model. The applied filtering method can be problem specific or more generic, with
the use of different learning algorithms. Both methods were used in this dissertation,
which affected, by a small amount, the final accuracy (Q3 Score) and the quality of the
predictions (SOV score).

The first filtering method was based on a set of external rules, that are specific for the
PSSP problem. These rules are based on empirical observations and were used to ‘fix’ the

quality of the results (SOV), rather than improving the overall accuracy (Q3).

The external rules applied are (where H, E and C are the three possible classes):
1. Single ‘H’ or ‘E’ are replaced with ‘C’
2. Sequence ‘HEEH’ is replaced with ‘HHHH’
3. Sequence ‘HEH’ is replaced with ‘HHH’

4. Sequence ‘'HH!’ is replaced with ‘!CC!’

These simple rules can be applied extremely fast and can increase the SOV score, while

sometimes can slightly drop the Q3 accuracy.

54

3.10.2 Support Vector Machines

In 1995, Cortes and Vapnik suggested the use of Support Vector Machines (SVMs), in
Machine Learning. Initially SVMs were used for binary classification problems and their
purpose was to find hyperplanes that best divide a dataset into classes [58]. If the data
cannot be separate linearly, SVMs attempt to map the data into a higher dimension using a
non-linear kernel function. These kernel functions are very effective and efficient as they
just compute inner products. This transformation to a higher dimension is more likely
to make the data linearly separable. Figure 3.10 illustrates four popular SVMs that are

currently used, along with their kernels.

SVC with linear kernel SVC with RBF kernel

SVC with polynomial (degree 3) kernel LinearSVC (linear kernel)

Figure 3.10: Results of different kernels for a 3-class classification problem.

In order to best separate two linearly separable classes by finding the optimal hyperplane,
SVMs attempt to maximize the distance between the points, that are closer to the hyper-
plane, for each different class. The points that are located near the limits of this separation
are called support vectors and the points that are located in the area of multiple classes
(overlapping classes) are not taken into consideration, in order to create a more general-
ized model. Figure 3.11 shows three possible separation lines (A, B and C), where the
blue star and red circle that are connected with them are considered the support vectors
and line C is considered the optimal hyperplane. In figure 3.12, even though the separa-

tion of the initial data (left plot) is hard, if they are projected in a higher dimension they

55

can be easily separated by a hyperplane (right plot).

X
Figure 3.11: SVM example of a linearly separable problem.
° o .
i 00 » o J _— Decision surface
- i
(] o
e o - .==:'
o E"E um kernel w e
@ % a® m'm © .l===..l
R
o ®"gmm" © \ Egul
o O gl g - B ©Ogh
o om o J ®sole Po-2a%0
® s el e ‘\Q,\OO 00 % 000000008
s @ 0Q, oo © Q0% —
OO o © \.\\ 8 000000 (*Hf__,___a-
Go o 0o “\\0. o

Y

Figure 3.12: SVM projecting a problem in a higher dimension.

In particular, SVMs had very good filtering results for the PSSP problem [59]. More
specifically, they were used by Dionysiou [24] and Dionysiou et al. [57] and their good

final results makes them very promising.

56

3.10.3 Decision Trees

Decision trees are most commonly know for their use in operations research, and more
specifically in decision analysis, but are also a popular tool for machine learning. They
can be used to identify a strategy that is most likely to reach a target goal. A decision tree
is defined as a support tool, with a tree-like shape, which models decisions and possible

consequences, including resource costs, chance events outcomes and utility.

The best way to explain how a decision tree operates is through a simple example. A
scenario, where a dataset contains numbers with different features, is illustrate in figure
3.13. There are two 1s and five Os, which represent the two classes. The goal is to separate
the data using their features, which are color (red or blue) and whether the number is

underlined or not.

Yes I Is red? lNo

. i O 0 00O
Yes l Is underlined? 1 No
2 3 0

Figure 3.13: Example of simple decision tree [60].

Obviously, the color feature can be used to split the data, as only one of the Os is red,
while the rest are blue. The question ‘Is itred?’ can be used to split the first node. A node
in a tree is like a point where the path splits into two branches, where the data that meet
the criteria go under the ‘Yes’ branch and ones that do not go under the ‘No’ branch, as
shown in figure 3.13. The ‘No’ branch contains only blue Os that are not underlined, which
means no further splits should be made. On the other hand, the ‘Yes’ branch contains data
that have different features, so the question ‘Is it underlined?’ can be used to split the red
data. The two underlined 1s go under the ‘Yes’ subbranch, while the not-underlined O

goes under the ‘No’ subbranch. At this point no further splits of the data are required.

Even though, in real life examples the data will not be as clean as the one used in this
example, the applied logic of a decision tree remains the same. A decision tree will

decide at each node which feature can split the observations into two groups in a way that

57

the differences are maximised, while maximising the similarities between the members

of each subgroup.

3.10.4 Random Forests

A random forest is a classification algorithm that consists of a large number of individual
decision trees that function as an ensemble. Each individual tree, outputs a class predic-
tion and the class with the most votes is selected as the prediction of the random forest
(Figure 3.14).

Predict 1 Predict 0 Predict 1
Predict 1 Predict 1 Predict 0
Predict 1 Predict 1 Predict 0

Tally: Six 1s and Three Os
Prediction: 1

Figure 3.14: Example of random forest prediction [60].

The reason, a random forest model works so well, in data science, is because a large num-
ber of unrelated models, that operate as a group, can outperform any of the individual
models. One of the most important things in a random forest is the low correlation be-
tween the individual models (trees), since the trees ‘correct’ each others’ errors, as long
as they do not make the same mistakes in the same direction. In order for a random forest
to have good predictive results, there must be an actual signal that helps the models adapt
to the features of the data and the correlation, between the predictions of the individual

trees, must be as low as possible.

In order to illustrate why uncorrelated predictions are so important, a simple example will
be used. In a gambling game a uniformly distributed random generator is used to produce

a number between 1 and 100. If the number is above 40 the player wins and earns money

58

based on the bet amount, which means the player has 60% chance to win. The player has
three options, play 100 games betting $1 per game (choicel), play 10 games betting $10
per game (choice2) or play 1 game and bet $100 (choice3). Below are the expected values

for all three options:

ExpectedValue(choicel) = (0.60%140.40% (—1)) % 100 = 20
ExpectedValue(choice2) = (0.60 % 104 0.40 % (—10)) * 10 = 20
ExpectedValue(choice3) = 0.60 x 100+ 0.40 % (—100) = 20

It is obvious that all options have the same expected value, which makes it difficult to
choose. A visualization of a Monte Carlo simulation could reveal the distributions of
the available options. Figure 3.15 illustrates the distribution of the outcome of 10000
simulations for each of the three options. The three options, even though they share the
same expected value, they have completely different outcome distributions. With the first
option (choicel) there is 97% chance to make money, while for the other two options
(choice2 and choice3) the chance to make money is 63% and 60%, respectively. It seems
that the more the $100 bet is split up, the higher the chance for the player to make money,

as each game does not dependent on the other games.

Play 100 Times
Play 10 Times
Play 1 Time

6000 A

5000 A

4000 -

Frequency
w
2
o

2000 A

1000 -

-100 =75 =50 =25 0 25 50 75 100

Money Won by You (The Player)

Figure 3.15: Distribution of the outcomes of 10000 simulations for each option [60].

A random forest works in the same way, with the game mentioned above. The higher

the number of uncorrelated trees, the higher the chance of making correct predictions.

59

To ensure that each individual tree is uncorrelated with the other trees, a random forest
uses two methods, bagging and feature randomness. The first one (bagging), randomly
selects a sample from the dataset for each individual decision tree, instead of using the
entire dataset. The second method (feature randomness), restricts the number of features
that can be used to split a node in each decision tree, by selecting a random subset of the
available features. This increases the variation between the individual trees of the model,

which results in lower correlation.

Random Forest Random Forest

Decision Tree Tree 1 Tree 2

Feature 2

Feature 3

Feature 4

l

Left Right Left Right Left Right
Node Node Node Node Node Node

Figure 3.16: Node splitting in a decision tree and a random forest model [60].

In order to make things easier to understand, an example will be illustrated. Figure 3.16
shows a decision tree (blue) and two trees from a random forest (green), where both
models can separate the data based on four features. The decision tree chose the Feature
1 to best separate the data into groups. The first tree of the random forest (Tree 1) could
only choose between Features 2 and 3, which were selected randomly, to split the data,
while the second tree (Tree 2) could only choose between Features 1 and 3. Even though
Feature 1 was the best splitting option, only Tree 2 could use it, since it was not included

in the available features of Tree 1.

To sum up, bagging helps to create trees that are trained on different sets of data, while

feature randomness forces them to use different features to make decisions.

60

Chapter 4

[d
Implementation
4.1 A new approach for the PSSP problem 62
4.2 CNNand HFO combination000... 63
4.3 Subsampled Hessian Newton (SHN) Method 64
4.4 Network Implementation 66

61

4.1 A new approach for the PSSP problem

The PSSP problem can be considered a classification problem, which means that an ANN
can be used to predict the secondary structure of proteins. For this dissertation, a Con-
volutional Neural Network (CNN) was selected because, according to previous attempts

[1], it managed to produce very good results (>80%), which makes it very promising.

A thesis dissertation should explore new methods or combinations, in order to provide
some value to the world of research. Because of that, the use of just a CNN for the
PSSP problem would be a poor choice as it has already been used before and it would not
help the research community or the researchers that are involved with the PSSP problem.
The main idea was to combine a CNN with the Hessian Free Optimisation (HFO) algo-
rithm (a second order optimiser) to predict the secondary structure of proteins, which has
never been attempted before, mainly because of the complexity of second order optimisa-
tion algorithms. This optimiser, combined with a simple Feed Forward Neural Network
(FFNN), managed to achieve great results for the PSSP problem [2], with more than 80%

Q3 accuracy.

Usually CNNs, because of their complexity, contain thousands of parameters and that
makes the training process very time consuming on a Central Processing Unit (CPU). For
small datasets, like CB513, a few hours (around 4-12 hours depending on the selected
settings) would be enough. However, for bigger datasets, like PISCES, the training pro-
cess could take days to complete. To speed up the training process a Graphics Processing
Unit (GPU) was utilized, from the Google’s Colab cloud service. Colab is a free Jupyter
notebook environment that runs entirely in the cloud, does not require any setup and
supports many popular machine learning libraries (paid services are also available). A
Jupyter Notebook, also known as the IPython Notebook, is an interactive computational
environment based on the web (usually ending with the extension ‘.ipynb’) [61]. This
allows users to combine code, comments, graphical visualizations and multimedia, in an
interactive document, which can be run via a web browser, hosted on a local machine or

even a remote server.

The classification model of this dissertation was implemented on a notebook to ensure
portability, remove machine constraints (requirements), as this can be run entirely in Co-
lab even with an ‘old’” machine using just a web browser. In addition to that, a notebook
makes it easier to interact with the program and it comes with some of the most popu-
lar machine learning libraries and frameworks, like TensorFlow [62], PyTorch [63] and

Scikit-learn [64], which are pre-installed and ready to use.

62

4.2 CNN and HFO combination

The purpose of this dissertation was to combine a CNN with HFO and train it to predict
the secondary structure of proteins. The PyTorch machine learning framework [63] was
initially used, along with the fastai library, to implement a CNN and train it for the PSSP
problem. This part was successful and the results were around 70% Q3 accuracy, without
tuning the hyper parameters. The next step was to implement the HFO algorithm in
PyTorch, since the available implementation was written in pure Python and could not
interact with the CNN. An alternative option was to implement the CNN from scratch (in
pure Python), which would significantly drop the efficiency as the PyTorch framework
(and most machine learning frameworks) has its functions written in C++, which is much

more efficient.

The implementation of HFO was probably the most difficult task of this dissertation. The
HFO implementation which was already available was very complex, which made this
task even harder. After many failed attempts, the HFO algorithm managed to train a Feed
Forward Neural Network (FFNN) to predict the XOR gate (a toy problem used check if
a network is learning effectively). The next step was to try the new implementation on
the PSSP, and fortunately the FFNN with HFO managed to extract some patterns from
the proteins which resulted in around 72% Q3 accuracy (without any tuning of the hyper
parameters). The final step of the implementation was to combine the two sections, the
CNN and the FFNN with the HFO optimiser.

Unfortunately, this was not as simple as it seemed at the beginning of this dissertation.
The HFO algorithm was specifically designed for a FFNN and not a CNN, which made
the updates totally ineffective. An alternative approach could be to use a different optimi-
sation algorithm, like gradient descent, to train the CNN layers and then train the FFNN at
the end with the HFO. However, this practice seems pointless, since the purpose of HFO
is to replace a different optimizer, not depend on it. Another approach could be to ignore
the CNN layers and train only the FENN with HFO, which would be a waste of resources,

since the effectiveness of the CNN layers would not be utilized.

At this point, an ordinary dissertation project would possibly come to an end, as the main
purpose was to attempt to combine the HFO algorithm with a CNN. The conclusion was
that this was not possible because the HFO was designed explicitly for a FFNN and not
a CNN. However, this is not an ordinary dissertation, so despite the tight margins of
available time, an alternative approach was pursued with the help of additional research.

This seemed to be a great decision as a recent article [3], published in January 2020,

63

explained why the HFO algorithm is not compatible with CNNs and suggested a variation
of HFO, specifically designed for CNNs. This new method, called Subsampled Hessian
Newton (SHN) method [3], is discussed in the following section.

4.3 Subsampled Hessian Newton (SHN) Method

There are several studies on Newton methods for training deep ANNs ([65], [66], [67],
[46], [68], [69], [70]), but almost all of them used fully connected FFNNs. The Newton
methods are very complicated and that is possibly the main reason why CNNs have not
been utilized in those studies. Apart from this article [3], there is no evidence, or pub-
lished documents, that describe how the Newton methods can be applied in deep learning
(CNNss) effectively. This made Gradient Descent, and its variations, the most popular op-
timisation algorithms for CNNs, although the Newton’s methods are more robust, more

efficient and require less tuning of the hyper parameters (for FFNNs at least).

A new variation of HFO was suggested by Wang et al. (2020) for CNNs which is ex-
plained in high detail [3] (mathematical proof included). This new method was labeled
as the Subsampled Hessian Newton (SHN) method (Algorithm 7, where (35) is Equation
4.1, (36) is Equation 4.2 and (37) is Equation 4.3). Due to the high complexity of the
proof and extensive explanation of this algorithm, it is better to refer to the original paper

for a better understanding of the transition from the HFO to the SHN algorithm.

Given initial 6. Calculate f(0);
while Vf(0) # 0 do
Choose aset S C {1,..., 1}
Compute V f(6) and the needed information for Gauss Newton matrix-vector products;
Approximately solve the linear system in (36) by CG to obtain a direction d;
a=1;
while true do
Compute f(6 + ad);
if (35) is satisfied then
break;
end
a—al2;
end
Update A based on (37);
0 — 0+ ad,;
end

Algorithm 7: A subsampled Hessian Newton method for CNNs [3].

f(6+ad) < f(6)+navs(6)d (4.1)

64

(G+Al)d = —Vf(6) (4.2)

A X drop p > Pupper
)vnext = A Plower < p < Pupper (43)
A x boost otherwise

The memory consumption of the Newton method depends on the size of data, which
makes it difficult to handle large datasets. To counter this issue, the SHN method uses
a subset S of the training data to obtain the subsampled Gauss-Newton matrix, which is
used to approximate the Hessian matrix. This technique not only reduces the execution
time per iteration (with a slightly less accurate direction) but also decreases the memory

usage considerably.

For instance, at the mth convolutional layer for the Gauss-Newton matrix-vector products

only the following matrices must be stored:

aZL+17i

Fvec (smT (Sm,i)T ViesS 4.4)
For the gradient evaluations and the activation function the whole training data is required,
so the independent results over all instances for each mini-batch must be summed. If the
index set {1, ..., N} of data is split to R equal-sized subsets S, ..., Sg and the result for each
subset is calculated, then to find the final output all the subset results must be accumulated.
The utilization of subsets can effectively decrease the memory consumption (Wang et al.,
2020, section 3.5 and section 5) [3].

Types of Neural Networks

LeCun et al. [15] Fully-connected
Martens [20] Autoencoder
Martens and Sutskever [21] Fully-connected, Recurrent
Kiros [9] Fully-connected, Autoencoder
Wang et al. [29, 30] Fully-connected

Botev et al. [1] Autoencoder

Table 4.1: Previous studies on Newton methods [3].

Table 4.1 illustrates some of the previous studies on Newton methods, performed on dif-

ferent types of ANNs. Other studies investigated the use of second-order optimization

65

methods for training CNNs, however, those are different from the Newton method con-

sidered in this dissertation.

4.4 Network Implementation

For the purpose of this dissertation, the implementation of a Convolutional Neural Net-
work (CNN) with the Subsampled Hessian Newton (SHN) method was used, which was
implemented in Python by Wang et al. [3] and can be found here [https://github.com/
cjlinl/simpleNN]. Many optimisation tricks were applied to reduce memory consumption
and to improve efficiency, which are discussed in that paper. The Python implementation
used the Tensorflow [62] machine learning framework and is slightly different from the

one used in [3], which was implemented in Matlab.

The initial implementation, which the paper [3] used for the experiments, used Matlab.
Consequently, the input datasets used a matlab format (.mat), which was transferred to the
Python version. The input files must contain a ‘y’ variable (of size N x 1), which includes
all the labels of the target class, and a ‘Z’ variable (of size N x M), which includes all the
features. Since the datasets were already preprocessed with a specific format which could
be easily adapted to the matlab format, a script was implemented which was responsible
to convert the text files (.txt) to matlab files (.mat) (Appendix C). This script can be found
at [https://gitlab.com/perf.ai/pssp_project/-/blob/master/datasets2mat.sh].

In addition to the above, the implementation was modified so that it could be executed
in a Jupyter notebook [61] and the datasets were uploaded to a public Gitlab repository,
to be easily accessible. All the necessary scripts, programs, data files and instructions
were uploaded in that repository, which can be found here [https://gitlab.com/perf.ai/

pssp_project/-/tree/master].

Further modifications were made to the Python implementation to adapt it to the PSSP
problem and improve the results, as the initial version was not very effective for this par-
ticular problem. For all experiments of this dissertation a free Colab machine was utilized
(to use one visit [https://colab.research.google.com/notebooks/welcome.ipynb]). For in-
formation according TensorFlow visit [https://www.tensorflow.org/] and for PyTorch visit
[https://pytorch.org/]. As regards the fastai library, which can be found here [https:
/Iwww .fast.ai/], a very informative course is available at [https://course.fast.ai/part2], that

describes how to create more advanced neural networks.

66

https://github.com/cjlin1/simpleNN
https://github.com/cjlin1/simpleNN
https://gitlab.com/perf.ai/pssp_project/-/blob/master/datasets2mat.sh
https://gitlab.com/perf.ai/pssp_project/-/tree/master
https://gitlab.com/perf.ai/pssp_project/-/tree/master
https://colab.research.google.com/notebooks/welcome.ipynb
https://www.tensorflow.org/
https://pytorch.org/
https://www.fast.ai/
https://www.fast.ai/
https://course.fast.ai/part2

Chapter 5

Experiments and Results

51
5.2

5.3

54

Experiments for Implementation Evaluation 68
Experiments with CB513 dataset 70
5.2.1 Fine Tuning of Hyper Parameters 70
5.2.2 10-fold Cross-Validation and Ensembles Results 72
5.23 CNNand SVM Combination 74
5.2.4 Filtering Results for CB513 75
5.2.5 Additional experiments with CB513 79
5.2.6 Finalresultsfor CBS13 79
Experiments with PISCES dataset 80
5.3.1 5-fold Cross-Validation and Ensembles Results 80
5.3.2 Filtering Results for PISCES 81
5.3.3 FinalResultsfor PISCES 83
Best Results for CBS13and PISCES 84

67

5.1 Experiments for Implementation Evaluation

Many experiments have been performed, in order to find the optimal hyper parameters for
the Convolutional Neural Network (CNN) and the Subsampled Hessian Newton (SHM)
optimiser. The initial implementation [3] was already tested on some well-known bench-
marks, like MNIST and CIFAR10 problems, which proved that the network was able to
learn effectively. Because of that, the experiments of this dissertation were focused more
on the PSSP problem. Initially, the model was trained with the CB513 dataset, which
is relatively small, to identify the best hyper parameters and then additional experiments
were performed on the bigger dataset, PISCES.

To ensure that each trained model has the best possible accuracy, during the training
process after each iteration the model (all the weights) with the highest test accuracy was
saved to an output file. This file can be then loaded to predict the test data and display the
Q3 accuracy. This practice ensures that the model does not overfit to the training data and

is able to predict new, never seen before data samples.

Figure 5.1 shows the test loss after each iteration for a CNN model trained with fold
5 of CB513. The red line illustrates the test loss after each iteration, while the green
line illustrates the test loss of the saved model. The test loss after iteration 5, fluctuated
within a narrow margin of about 0.05, while the test loss of the saved model followed a
downward trend until it reached a plateau. Figure 5.2 displays the test accuracy for the
same model for the first 35 iterations. The red line represents the test accuracy after each
iteration, while the green line represents the test accuracy of the saved model. According
to the line graph (Figure 5.2), the test accuracy dropped slightly in iteration 20, while the
test accuracy of the saved model remained the same. This proves that at any iteration the
saved model has the best possible test accuracy, which does not drop throughout the entire
training process. In addition to that, the two line graphs (Figure 5.1 and 5.2) confirm that

the model is able to train effectively and manages to converge in about twenty iterations.

For each experiment the following steps were performed. First the global parameters for
the datasets were set (plus_var: the number of neighboring amino acids added, ds_num:
the fold number of the dataset, dataset: ‘CB513’ or ‘PISCES’ to choose between the two
PSSP datasets). Then, the appropriate dataset was retrieved from the Gitlab repository
and all necessary functions were loaded. In the next phase, the hyper parameters were
selected to prepare the model for the training phase. As soon as the training process was
finished, a new file was created, which had all weights of the model with the best test

accuracy. This file was used in the final step, in which the saved model was loaded and

68

Test Loss vs Saved Loss

0.800
0.700
0.600
0.500
0.400 VNN
0.300
0.200
0.100
0.000

Test Loss

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35
Iteration

Loss Saved loss

Figure 5.1: The test loss for each iteration compared to the test loss of the saved model.

Test Accuracy vs Saved Accuracy

80.00
70.00 - N~
60.00
50.00
40.00
30.00
20.00
10.00
0.00

Test Accuracy (%)

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 23 35
Iteration

(3 accuracy Saved Q3 accuracy

Figure 5.2: The test Q3 accuracy after each iteration compared to the test Q3 accuracy of

the saved model.

69

was used to create two files with the predicted secondary structures of the proteins for the

test and train datasets, respectively.

In order to check the efficiency of the Subsampled Hessian Newton (SHN) method, the
Gradient Descent algorithm could be used to train CNN models, with the same structure
as the one used for the SHN method. This would make it possible to compare the two
optimisation algorithms, both in terms of accuracy (for the PSSP problem) and fine tuning
of their hyper parameters. The Stochastic Gradient Descent (SGD) algorithm is already

implemented and can be selected, as an alternative optimisation method.

5.2 Experiments with CB513 dataset

5.2.1 Fine Tuning of Hyper Parameters

In order to find the best hyper parameters for the network, experiments must be performed
were each time only one hyper parameter is altered (the rest remain the same). Table 5.1
illustrates the hyper parameters used for the CNN, where the last layer has only three
(3) neurons (one for each possible class). For each combination of hyper parameters five
different models were trained and the average Q3 accuracy was saved in an excel file.
For hyper parameter tuning, fold 5 was selected (for all the experiments), because it was
observed that models trained with this fold performed very poorly, compared to the other
folds. The motivation behind this was to maximize the performance of the hardest-to-
learn fold with the hope that this would increase the overall Q3 accuracy and SOV score

of the cross-validation.

Kernel size Number of Filters Activation Function

CNN Layer 0 Convolutional Hidden Layer 3x3 64 RelLU
CNN Layer 1 Convolutional Hidden Layer 3x3 64 RelLU
CNN Layer 2 Convolutional Hidden Layer 3x3 64 RelLU
CNN Layer 3 Fully Connected MLP - - SOFTMAX

Table 5.1: Hyper parameters for CNN for all experiments.

First of all, the CB513 datasets were prepared with ‘plus7’ amino acids (seven left and
seven right neighbouring amino acids were added, for each amino acid). This selection
was based on [24], as this number (7) of neighbouring amino acids seemed very promis-
ing. The next step was to choose the number of samples used in the subsampled Gauss-

Newton matrix (GNsize). Six different values were tested, as shown in table 5.2, while all

70

other parameters were selected randomly or based on the default values of the implemen-
tation. According to table 5.2, the best value for the GNsize was 2048 with approximately
75.54% Q3 accuracy.

GNsize C CNN layers bsize Max lterations Dimensions Q3 Accura
50 0.01 4 8192 50 15201 73.89%
100 0.01 4 8192 50 15201 75.20%
200 0.01 4 8192 50 15201 75.13%
512 0.01 4 8192 50 15201 75.25%

1024 0.01 4 8192 50 15201 75.40%

2048 0.01 4 8192 50 15201 75.54%

Table 5.2: Q3 accuracy results for GNsize for fold 5 of CB513.

For the following experiments GNsize was selected to be equal to 2048 (GNsize = 2048).
After that, the C value had to be determined so the same process was repeated but this
time the C values were examined. Table 5.3 illustrates the Q3 accuracy results of the
models in relation to the C value. It is obvious that the best option was 0.01 with 75.54%

accuracy, so C was set to this value for the following experiments (C = 0.01).

GNsize Cc CNN layers bsize Max Iterations Dimensions Q3 Accuracy
2048 0.01 4 8192 50 15201 75.54%
2048 0.05 4 8192 50 15201 75.36%
2048 0.10 4 8192 50 15201 75.02%
2048 0.50 4 8192 50 15201 75.32%
2048 1.00 4 8192 50 15201 75.29%

Table 5.3: Tuning the C hyper parameter for fold 5 of CB513.

This process was replicated for the batch size (bsize), which usually is set based on the
memory constraints. It is very important to note that if the model cannot begin the training
process, it is probably because this value was set too high. In this case, lowering the bsize
value can fix the issue. Table 5.4 shows the results for bsize, however, it is not clear
which one is the best, as most of them are very close to each other. For the purpose of this
dissertation, the value 12288 was selected as the batch size (bsize = 12288) to reduce the

training time of the model.

71

GNsize Cc CNN layers bsize Max lterations Dimensions Q3 Accuracy

2048 0.01 4 1024 50 15201 75.56%
2048 0.01 4 2048 50 15201 75.39%
2048 0.01 4 4096 50 15201 75.40%
2048 0.01 4 8192 50 15201 75.54%
2048 0.01 4 10240 50 15201 75.57%
2048 0.01 4 12288 50 15201 75.64%

Table 5.4: Tuning the batch size (bsize) hyper parameter for fold 5 of CB513.

5.2.2 10-fold Cross-Validation and Ensembles Results

In order to check whether the results of a model are good just for a specific test dataset
or whether the trained network is a good prediction model, additional techniques must
be utilized. One such technique is cross-validation, which was described in section 3.8.
More specifically, a 10-fold cross-validation was used for the CB513 dataset to validate

the model’s ability to generalize.

Table 5.5 shows the hyper parameters for all the trained models, which were used for the
cross-validation of CB513.

GNsize C CNN layers bsize Max lterations Dimensions
2048 0.01 4 12288 50 15201

Table 5.5: Hyper parameters for trained models.

The cross-validation results for the CB513 dataset are shown in table 5.6. This table
displays the overall Q3 accuracy and overall SOV score for the best trained model for
each fold. In addition, the Q3 accuracy and SOV scores for each of the three classes (H,
E, C) are shown separately, as well as the average results for all folds (cross-validation

values).

According to table 5.6, the best trained model achieved 78.20% overall Q3 accuracy and
75.67 overall SOV score, while the cross-validation results were 77.25% and 72.91, re-
spectively. Even though the optimisation for the hyper parameters was based on fold 5,
which had the lowest Q3 accuracy as expected, the results for all the other folds were
considerably better. It is obvious that most of the models had trouble identifying the class
‘E’ and that is why the QE accuracy for all folds are substantially lower than the QH and
the QC accuracy. Most models were able to predict, to some extend, the class ‘C’, as the

QC accuracy for the 10-fold cross-validation was approximately 82.13%.

72

Q3 QH QE Qc SOV SOVH SOVE SOVC

FoldO 78.20% 80.56% 68.94% 81.71% 75.67 81.18 72.21 72.32
Fold1 76.25% 78.82% 64.59% 81.38% 73.02 70.56 72.02 74.00
Fold2 77.85% 81.19% 65.77% 81.15% 73.26 75.80 69.85 70.43
Fold3 77.85% 80.75% 66.33% 81.70% 74.33 73.70 67.38 72.28
Fold4 77.97% 80.44% 65.36% 82.36% 73.38 74.11 68.25 70.52
Fold5 75.77% 79.45% 61.01% 81.05% 71.60 70.57 65.69 71.05
Fold6 77.91% 75.81% 65.82% 85.59% 74.42 74.04 70.42 74.58
Fold7 76.74% 75.78% 67.67% 82.37% 68.37 69.53 72.39 68.62
Fold8 76.82% 77.10% 69.57% 80.82% 72.61 67.49 73.48 72.57
Fold9 77.13% 79.63% 62.46% 83.15% 72.43 80.30 66.98 72.42
Average 77.25% 78.95% 65.75% 82.13% 72.91 73.73 69.87 71.88

Table 5.6: Q3 and SOV results for 10-fold cross validation for the CB513 dataset.

Table 5.7 shows the results for the cross validation of the ensembles method, where five
(5) CNNs were trained with the SHN method, using the CB513 dataset. For the exper-
iments of this dissertation, multiple models were trained for each fold (about 7-10) and
the five (5) models, which formed the best ensembles model, were selected for the final

ensembles model of each fold.

Q3 (%) QH (%) QE (%) QC (%) SOV SOVH SOVE SOVC

Fold0 78.46 80.86 68.99 82.07 75.19 79.61 7317 72.87
Fold1 76.49 79.05 64.36 81.90 72.76 71.39 7217 74.38
Fold2 78.19 81.23 66.77 81.41 75.03 76.87 70.88 71.48
Fold3 78.15 80.87 66.63 82.16 74.70 74.46 67.75 72.54
Fold4 78.15 80.92 65.60 82.26 74.95 77.38 66.96 71.64
Fold5 75.97 77.96 62.59 81.75 71.24 69.26 65.35 70.96
Fold6 7791 75.86 66.77 85.08 74.25 74.23 71.83 73.94
Fold7 76.94 76.11 68.00 82.40 69.53 69.98 73.40 68.12
Fold8 77.03 77.33 68.55 81.71 73.72 7017 72.32 72.77
Fold9 77.29 79.63 65.24 81.98 74.12 82.34 68.70 72.90
Average 77.46 78.98 66.35 82.27 73.55 74.57 70.25 72.16

Table 5.7: Q3 and SOV results for ensembles (with 5 experiments per fold) cross
validation for the CB513 dataset.

Usually, the ensembles method is more effective when there is high variance between the
trained models, because each trained model explores a different space of the dataset and
it learns how to predict based on different features. That is why, it is better to combine
results from different machine learning models. The combination of these models can
create a new model with more accurate predictions than any of the separate models, at the

cost of time and processing power, but this is not guaranteed.

In this case (Table 5.7), the new ensemble model managed to outperform every single
CNN model for all folds (the best CNN model for each fold is shown in table 5.6). The
increase in Q3 accuracy was relatively small, probably because all models were trained

with the same hyper parameters, which resulted in less variance. The boost in accuracy

73

could be better if models with different hyper parameters or different types of models were
used for creating the ensembles model. For instance, a Convolutional Neural Network,
a Recurrent Neural Network, a Bidirectional Recurrent Neural Network, a Feed Forward
Neural Network and a Long Short-Term Memory model could be trained and then com-
bined with the ensembles method. This combination could have a greater impact on the
accuracy of the new ensembles model.

5.2.3 CNN and SVM Combination

As mentioned in section 3.10.2, the final attempt to improve the results was to use Support
Vector Machines (SVMs), which managed to improve the results of past PSSP studies
[59]. More specifically, an SVM will be used to filter the output data from the CNN, with

the ambition that the Q3 accuracy and SOV score could be improved.

In order to train the SVM, a window (of odd size) will be used to extract information
from the prediction file created by the CNN, which will be used as the input features
of SVM, while the expected output will be the secondary structure of the middle amino
acid. A python program (prepare_SVM_files.py) was used to prepare the datasets for the
SVM based on the given window size (Appendix K). The SVM was also implemented as a
python program (train_SVM.py) (using Scikit-learn machine learning library [64]), which
exploits the output datasets from ‘prepare_SVM_files.py’ to train an SVM and create a
new output file with the new filtered predictions (Appendix L). Both programs can be
found in this Gitlab repository [https://gitlab.com/perf.ai/pssp_project/-/tree/master].

For the experiments of this dissertation both networks will be utilized and the final results
will be compared with the results of a standalone CNN. The CNN will use as input the
data described in section 3.6, while the SVM will take as input the output of the CNN,
in order to filter the results. The table 5.8 shows the hyper parameters used for all the

experiments.

C Decision Function Shape Degree Shrinking Tol Gamma
RBF (Radial Basis Function) 10 ovr 3 TRUE 0.001 0.1

Table 5.8: Hyper parameters for SVM filtering.

The same technique could be used with almost any other classification model. In this
dissertation, except from SVM filtering, Decision Trees and Random Forests [71] (which
are basically ensembles of decision trees) were used, as alternative filtering methods, in

combination with external rules, which were explained in section 3.10.1. The parameters

74

https://gitlab.com/perf.ai/pssp_project/-/tree/master

used for the random forest filter are shown in table 5.9. For the decision tree filter, the
only non-default parameter used was the maximum depth (max_depth) parameter which

was set to twenty (20).

n_estimators max_depth random_state min_samples_split min_samples_leaf
100 25 42 2 1

Table 5.9: Hyper parameters for Random Forest filtering.

5.2.4 Filtering Results for CB513

The chosen window size for the filtering methods, for the CB513 experiments, was thir-
teen (13), because it produced relatively good filtering results without a major impact on

the total filtering time.

Table 5.10 shows the results for the Q3 accuracy and SOV score after applying the external
rules to the ensembles model. It seems that the Q3 accuracy increased only by a tiny

amount, while the SOV score rose by 1.33, which is relatively good.

Q3 (%) QH (%) QE (%! Qc (%) Sov SOVH SOVE SOVC

Fold0 78.83 79.47 68.27 84.41 77.35 77.96 72.07 75.74
Fold1 76.22 77.30 62.99 83.41 72,57 70.78 71.79 7244
Fold2 78.17 79.83 65.77 83.18 76.68 76.98 71.88 72.92
Fold3 78.26 80.06 65.79 83.57 75.34 73.92 67.42 72.66
Fold4 78.07 80.04 63.89 83.73 7478 77.09 65.58 70.69
Fold5 75.89 76.64 61.06 83.38 7242 68.98 65.97 70.56
Fold6 78.07 74.93 65.52 86.74 76.35 76.02 71.33 75.46
Fold7 76.97 75.10 66.99 83.75 70.87 70.16 72.37 68.07
Folds 77.46 76.46 67.76 83.98 76.72 73.16 72,52 73.06
Fold9 77.30 78.88 63.79 83.47 75.69 84.14 68.71 73.19
Average 77.52 77.87 65.18 83.96 74.88 74.92 69.96 72.48

Table 5.10: Q3 accuracy and SOV score for ensembles (with 5 executions per fold) and
external rules filtering for CB513 dataset.

Table 5.11 illustrates the Q3 accuracy and SOV score for the ensembles model after ap-
plying external rules and SVM filtering. The external rules filtering usually offers a sig-

nificant boost in the overall SOV score and sometimes a slight drop in the Q3 accuracy.

The order in which the filters are applied can produce different results, so the same filters
could be applied in various ways (different orders). For this purpose, a bash script was
created, which applies the filtering methods in various orders and creates an output file
with all the results (Appendix M). The results for the ensembles model with SVM filtering

are shown in table 5.12.

75

Q3 (%) QH (%) QE (%) QC (%) SOV SOVH SOVE SOVC

Fold0 79.24 80.52 72.51 82.13 76.80 77.09 74.23 73.38
Fold1 76.75 79.00 73.33 7714 72.87 72.04 75.10 69.87
Fold2 78.43 81.84 77.56 75.79 77.24 7712 72.87 71.79
Fold3 78.56 82.40 7219 78.78 7417 72.84 70.41 69.30
Fold4 78.42 82.39 76.89 75.78 74.91 77.74 69.21 68.31
Fold5 76.38 77.75 71.02 78.26 72.31 70.23 68.51 68.56
Fold6 78.05 77.63 76.11 79.34 77.53 76.56 74.23 74.05
Fold7 77.44 77.07 78.18 77.31 69.65 69.72 73.08 67.02
Fold8 77.16 77.60 76.62 77.09 75.49 70.53 75.06 69.80
Fold9 7742 80.71 73.23 76.91 76.07 85.19 73.08 70.92
Average 77.79 79.69 74.76 77.85 74.70 74.91 72.58 70.30

Table 5.11: Q3 accuracy and SOV score for ensembles (with 5 executions per fold),
external rules and SVM filtering for CB513 dataset.

Q3 (%) QH (%) QE (%) QC (%) SOV SOVH SOVE SOVC
Fold0 80.44 84.00 7447 81.14 75.95 82.45 76.98 71.19
Fold1 79.00 83.48 75.44 77.79 75.55 77.70 78.09 72.51
Fold2 80.03 84.21 80.86 75.79 78.29 7747 74.29 73.83
Fold3 79.44 83.10 74.22 7917 75.61 74.67 73.21 71.32
Fold4 79.19 84.23 79.34 74.76 75.98 78.05 73.74 68.63
Fold5 77.84 80.86 74.82 77.25 73.15 69.51 70.32 70.94
Fold6 79.57 79.37 77.88 80.57 7743 75.99 76.77 73.39
Fold7 78.72 7917 80.67 77.35 71.46 72.70 75.24 68.51
Fold8 79.42 79.11 76.23 81.54 7719 7145 77.70 73.76
Fold9 79.01 82.50 76.59 77.33 77.31 85.96 75.42 72.35
Average 79.27 82.00 77.05 78.27 75.79 76.60 75.18 71.64

Table 5.12: Q3 accuracy and SOV score for ensembles and SVM filtering for CB513

dataset.

Table 5.13 illustrates the Q3 accuracy and SOV score for the ensembles model with SVM
and external rules filtering. According to tables 5.10 and 5.11, the SVM filtering improved
the overall Q3 accuracy by a small amount, but decreased the overall SOV score slightly.
The impact of SVM filtering was significant, for both overall Q3 accuracy and overall
SOV score (Tables 5.7 - before, and 5.12 - after), with 79.27% and 75.79, respectively.
It seems that if SVM filtering is applied before the external rules, the cross validation
results are substantially better, with approximately 1.75% increase in overall Q3 accuracy

and about 1.65 growth in overall SOV score.

Q3 (%) QH (%) QE (%) QC (%) SOV SOVH SOVE SOVC
Fold0 80.55 83.59 73.18 82.45 78.55 82.86 76.21 74.03
Fold1 78.89 82.56 74.36 78.90 75.88 76.96 76.14 71.84
Fold2 80.06 83.46 80.17 76.90 78.63 77.80 73.64 73.68
Fold3 79.36 82.37 7261 80.49 76.15 74.00 70.71 7227
Fold4 79.51 83.93 78.66 76.13 77.79 78.19 73.33 70.94
Fold5 77.75 80.24 73.46 78.23 74.11 71.05 69.18 70.31
Fold6 79.95 78.86 76.70 82.39 78.83 78.00 76.35 73.88
Fold7 78.60 78.33 80.10 77.99 7213 7223 74.79 68.43
Fold8 79.22 78.39 75.10 82.33 77.93 70.94 75.55 73.30
Fold9 79.09 82.23 75.84 78.17 78.01 86.06 74.59 73.46
Average 79.30 81.40 76.02 79.40 76.80 76.81 74.05 72.21

Table 5.13: Q3 accuracy and SOV score for ensembles, SVM and external rules filtering
for CB513 dataset.

76

The results for the ensembles model with the external rules and decision tree filtering
are shown in table 5.14. Table 5.15 illustrates the Q3 accuracy and SOV score for the
ensembles model with decision tree filtering, while table 5.16 displays the results for the
ensembles model with decision tree and external rules filtering. The decision tree filtering
improved the results significantly (Tables 5.7 - before, and 5.15 - after), reaching 81.69%
overall Q3 accuracy and 75.93 overall SOV score. According to tables 5.14 and 5.16,
when the decision tree filtering is applied before the external rules, the prediction results
of the model are considerably better. More specifically, there is an increase of about

2.27% in the overall Q3 accuracy and approximately 5.11 in the overall SOV score.

Q3 (%) QH (%) QE (%) Qc (%) SOV SOVH SOVE SoVC
Fold0 80.18 80.77 78.16 80.88 76.08 75.57 74.92 72.28
Fold1 78.50 79.88 7459 79.83 72.27 72.92 76.51 69.75
Fold2 78.90 81.09 82.54 75.00 75.95 74.95 75.64 71.06
Fold3 79.92 82.02 75.30 80.65 73.81 70.73 7327 70.12
Fold4 79.46 81.65 78.36 78.13 73.09 75.81 7217 67.85
Fold5 78.26 78.96 75.10 79.45 7323 69.87 72.26 69.85
Fold6 79.45 77.89 78.00 81.30 75.40 72,63 75.64 73.74
Fold7 79.14 78.00 78.69 80.23 68.38 7151 73.84 66.06
Folds 79.08 77.10 78.32 81.25 74.59 68.77 74.50 71.09
Fold9 78.58 80.82 76.77 77.66 74.43 80.86 74.58 70.19

Average 79.15 79.82 7758 79.44 73.72 73.36 74.33 70.20

Table 5.14: Q3 accuracy and SOV score for ensembles, external rules and decision tree
filtering for CB513 dataset.

Q3 (%,; QH (% QE (%] QC (% SOV SOVH SOVE SOVC

Fold0 82.47 84.72 81.56 81.26 76.30 80.35 79.15 72.91
Fold1 82.25 84.86 81.50 80.76 76.29 80.57 83.03 72.36
Fold2 82.01 84.68 84.54 78.24 77.79 79.46 79.07 72.41
Fold3 80.98 83.79 79.43 79.44 73.83 74.74 77.94 69.90
Fold4 81.33 84.34 83.69 77.50 76.02 76.71 78.33 70.07
Fold5 81.34 83.51 80.59 80.13 74.44 73.88 75.34 7047
Fold6 81.39 81.61 82.91 80.45 77.52 77.07 78.86 74.10
Fold7 81.60 81.31 83.27 80.90 73.31 78.21 79.10 70.13
Fold8 81.94 81.24 82.72 82.10 77.45 70.24 81.65 73.14
Fold9 81.55 82.79 82.50 79.95 76.33 81.65 80.33 7113
Average 81.69 83.29 82.27 80.07 75.93 77.29 79.28 71.66

Table 5.15: Q3 accuracy and SOV score for ensembles and decision tree filtering for
CB513 dataset.

Table 5.17 shows the results for the ensembles model with external rules and random
forest filtering. The Q3 accuracy and SOV score for the ensembles model with random
forest filtering are displayed in table 5.18, while the results for the ensembles model
with random forest and external rules filtering are presented in table 5.19. The boost of
random forest filtering was great (Tables 5.7 - before, and 5.18 - after), since it increased
the overall Q3 accuracy to 81.75% and the overall SOV score to 76.33. It is obvious that
the results are better when the random forest filtering is applied before the external rules
filtering (Tables 5.17 and 5.19).

71

Q3 (%) QH (%) QE (%) QC (%) SOV SOVH SOVE SOvVC

Fold0 82.67 84.00 79.33 83.57 80.17 81.83 78.42 76.82
Fold1 8243 83.62 79.61 83.24 78.58 81.72 77.98 74.73
Fold2 82.18 83.42 82.29 80.99 80.58 79.29 75.54 75.87
Fold3 81.12 82.48 77.03 82.19 77.39 76.58 74.07 73.36
Fold4 81.69 83.79 81.48 79.97 78.24 78.87 75.89 7163
Fold5 81.44 82.35 78.78 82.21 76.76 75.13 73.45 72.30
Foldé 81.84 80.93 81.19 82.81 80.92 79.78 79.62 76.50
Fold7 81.57 80.18 81.40 82.68 75.84 78.85 78.15 72.00
Fold8 81.92 79.68 81.31 84.21 80.85 73.83 79.49 76.04
Fold9 81.71 81.53 81.05 82.24 79.00 82.81 79.48 74.14
Average 81.86 82.20 80.35 82.41 78.83 78.87 77.21 74.34

Table 5.16: Q3 accuracy and SOV score for ensembles, decision tree and external rules
filtering for CB513 dataset.

Q3 (%); QH (% QE (%] QC (% SOV SOVH SOVE SOVC
Fold0 80.00 81.91 79.66 78.73 76.32 76.51 76.54 70.72
Fold1 78.29 81.31 75.39 77.79 72.81 76.14 75.82 69.33
Fold2 78.55 83.14 83.79 71.63 7411 75.06 74.38 67.22
Fold3 79.89 83.63 76.79 78.38 73.58 71.49 73.57 68.60
Fold4 79.35 83.60 80.32 75.17 72.80 77.21 72.32 65.82
Fold5 78.34 81.15 75.61 77.74 72.73 69.35 71.73 69.45
Fold6é 79.11 79.15 78.47 79.40 76.42 76.08 74.53 72.51
Fold7 78.91 80.89 79.48 77.16 68.24 72.67 73.65 64.55
Fold8 79.07 79.42 78.83 78.91 74.94 71.56 75.57 69.61
Fold9 78.78 82.68 7711 76.33 75.58 85.09 74.33 69.10
Average 79.03 81.69 78.55 77.12 73.75 75.12 74.24 68.69

Table 5.17: Q3 accuracy and SOV score for ensembles, external rules and random forest
filtering for CB513 dataset.

Q3 (%) QH (%) QE (%) QC (%) SOV SOVH SOVE SOVC

Fold0 82.27 85.81 83.74 78.73 76.39 82.40 79.65 71.18
Fold1 82.47 86.29 83.55 78.97 77.02 81.79 83.20 72.90
Fold2 82.18 87.41 86.47 75.16 77.99 80.07 78.40 71.31
Fold3 81.36 85.17 80.74 78.45 74.72 77.20 76.71 69.18
Fold4 81.61 86.51 84.86 75.68 74.66 77.52 77.64 68.22
Fold5 81.07 84.67 81.55 78.14 74.04 73.18 74.84 69.70
Fold6 81.12 82.20 83.68 79.03 77.96 78.38 78.53 73.18
Fold7 81.66 83.99 84.91 78.20 74.18 79.35 80.48 69.76
Fold8 82.17 82.68 83.85 80.75 79.30 74.91 82.88 74.00
Fold9 81.55 84.95 84.94 76.72 77.06 85.18 80.14 70.15
Average 81.75 84.97 83.83 77.98 76.33 79.00 79.25 70.96

Table 5.18: Q3 accuracy and SOV score for ensembles and random forest filtering for
CB513 dataset.

Q3 (%) QH (%) QE (%) Qc (%) SOV SOVH SOVE sove

Foldo 82.29 85.01 81.73 80.53 79.98 84.08 7858 73.99
Fold1 82.62 85.42 81.67 81.10 78.76 82.96 78.73 74.28
Fold2 82.38 86.26 84.41 77.78 81.07 81.60 7653 76.04
Fold3 81.42 84.02 78.29 80.91 77.83 7743 73.99 7354
Fold4 81.74 85.85 82.53 77.78 78.32 80.52 75.29 71.37
Fold5 81.07 84.09 79.63 79.61 76.72 76.00 72.81 71.34
Fold6 81.35 81.90 81.79 80.73 80.63 80.30 79.57 75.56
Fold7 81.42 82.94 83.04 79.43 75.96 79.43 78.51 71.51
Folds 81.93 81.12 8233 82.40 80.97 75.23 79.86 7537
Fold9 81.73 83.95 83.14 79.01 79.56 85.64 78.75 74.14
Average 81.80 84.06 81.86 79.93 78.98 80.32 77.26 73.71

Table 5.19: Q3 accuracy and SOV score for ensembles, random forest and external rules
filtering for CB513 dataset.

78

5.2.5 Additional experiments with CB513

Since the order of the filtering methods matters, the order of the ensembles method could
also lead to different results. A few experiments were performed with fold 0 of CB513,
where the ensembles method was applied after the various filtering methods. According
to table 5.20, applying the ensembles after the filtering methods, leads to better results.
Apart from that, it is possible to combine all the filtering methods into one ensembles
model, which was not possible in the scenario where the ensembles method was applied
first. The new ensembles model, which combined 15 models (5 models with external
rules and SVM filtering, 5 models with external rules and decision tree filtering, and
5 models with external rules and random forest filtering), had the highest SOV score.

Further experiments have not been performed because of the shortage of time.

Method Used (for fold 0 of CB513)

Ensembles + External Rules + SVM 79.24 80.52 7251 82.13 76.80 77.09 7423 73.38
Ensembles + External Rules + Decision Tree 80.18 80.77 78.16 80.88 76.08 75.57 74.92 7228
Ensembles + External Rules + Random Forest 80.00 81.91 79.66 78.73 76.32 76.51 76.54 70.72
External Rules + SVM + Ensembles 79.49 79.93 7257 83.13 76.56 77.30 74.36 73.41
External Rules + Decision Tree + Ensembles 81.55 80.48 78.49 84.12 77.05 75.55 7735 75.07
External Rules + Random Forest + Ensembles 81.52 81.70 81.01 81.68 76.59 76.91 76.67 74.01
Ensembles (SVM + Decision Tree + Random Forest) 81.21 80.98 77.26 83.64 7716 76.53 76.81 7517

Table 5.20: Results for fold 0 of CB513 with the ensembles method applied before and
after the filtering methods.

5.2.6 Final results for CB513

After collecting all the results for all filtering methods, the 10-fold cross validation method
(average) was used to combine the results for all folds. These results are presented in table
5.21, which makes it easier to compare the different filtering methods. According to table
5.21, the best results for CB513, in terms of overall Q3 accuracy and overall SOV score,
came from the ensembles model with the random forest and external rules filtering. This
model managed to reach 81.80% Q3 (per residue) accuracy and 78.98 SOV score, which

is very close with the current state-of-the-art results (84-85% Q3 accuracy).

METHOD Q3 (% QH (% QE (% QC (% SOV SOVH SOVE SOVC
CROSS-VALIDATION 77.25 78.95 65.75 82.13 72.91 73.73 69.87 71.88
ENSEMBLES (5 EXPERIMENTS / FOLD) 77.46 78.98 66.35 82.27 73.55 74.57 70.25 72.16
ENSEMBLES + EXTERNAL RULES 77.52 77.87 65.18 83.96 74.88 74.92 69.96 72.48
ENSEMBLES + EXTERNAL RULES + SVM 77.79 79.69 74.76 77.85 74.70 74.91 72.58 70.30
ENSEMBLES + SVM 79.27 82.00 77.05 78.27 75.79 76.60 75.18 71.64
ENSEMBLES + SVM + EXTERNAL RULES 79.30 81.40 76.02 79.40 76.80 76.81 74.05 72.21
ENSEMBLES + EXTERNAL RULES + DECISION TREE 79.15 79.82 77.58 79.44 73.72 73.36 74.33 70.20
ENSEMBLES + DECISION TREE 81.69 83.29 82.27 80.07 75.93 77.29 79.28 71.66
ENSEMBLES + DECISION TREE + EXTERNAL RULES 81.86 82.20 80.35 82.41 78.83 78.87 77.21 74.34
ENSEMBLES + EXTERNAL RULES + RANDOM FOREST 79.03 81.69 78.55 77.12 73.75 75.12 74.24 68.69
ENSEMBLES + RANDOM FOREST 81.75 84.97 83.83 77.98 76.33 79.00 79.25 70.96
ENSEMBLES + RANDOM FOREST + EXTERNAL RULES 81.80 84.06 81.86 79.93 78.98 80.32 77.26 73.71

Table 5.21: 10-fold Cross validation, Q3 accuracy and SOV score for all methods for
CB513 dataset.

79

5.3 Experiments with PISCES dataset

The PISCES dataset is much bigger than the CB513 dataset and the experiments for this
dataset required a lot more time. Because of that, most hyper parameters used in PISCES
experiments were derived from the CB513 experiments. This will probably have an im-
pact on the prediction capabilities of the final model, but further experiments could not be
made due to the shortage of time. The hyper parameters used for the CNN in the PISCES
experiments are shown in table 5.1. The max epochs (max iterations) were increased from
50 to 100 because the model required more epochs to learn the bigger dataset. Table 5.22

shows the hyper parameters that were used to train all PISCES models.

CNN layers bsize Max Iterations Dimensions
2048 0.01 4 12288 100 15201

Table 5.22: Hyper parameters for SHN method, used for all PISCES experiments.

5.3.1 5-fold Cross-Validation and Ensembles Results

For the PISCES dataset a 5-fold cross validation was used, where seven (7) models were
trained per fold and the best one was selected. The main reason a 5-fold cross validation
was chosen, instead of a 10-fold, was to make the results comparable with past studies on
PSSP, that used the PISCES dataset. Table 5.23 displays the Q3 accuracy and SOV score
of the best model for each fold.

Q3 (% QH (% QE (% QC (% SOV SOVH SOVE SOVC

Fold1 79.22 84.45 69.90 79.39 76.00 78.84 T7.47 71.60

Fold2 79.41 84.19 71.02 79.59 76.47 77.80 76.85 72.44

Fold3 79.60 84.33 70.47 79.87 76.48 78.23 76.09 72.16

Fold4 79.88 84.62 71.06 80.09 76.67 79.04 77.30 72.55

Fold5 79.41 84.38 70.04 79.96 76.59 80.37 76.65 72.26

Average 79.50 84.39 70.50 79.78 76.44 78.86 76.87 72.20

Table 5.23: Q3 accuracy and SOV score for 5-fold cross validation for PISCES dataset.

To create the ensembles model five (5) from the seven (7) trained models were selected,
so that the Q3 accuracy of the new model was maximized. Table 5.24 presents the results

for Q3 accuracy and SOV score of the new ensembles model, for each fold of PISCES.

The comparison between table 5.23 and 5.24 reveals that there is a similar issue with the
CB513 dataset. There is not enough variance between the trained models, which results

in only a small improvement in overall Q3 accuracy (0.30%) and SOV score (0.63).

80

Q3 (%) QH (%) QE (%) QC (%) sov SOVH SOVE sSovC

Fold1 79.55 84.62 70.19 79.88 76.80 79.44 77.84 72.12
Fold2 79.74 84.24 71.05 80.36 77.01 78.08 77.09 73.05
Fold3 79.83 84.47 70.43 80.36 76.92 78.49 76.42 72.50
Fold4 80.15 84.65 71.30 80.60 77.34 79.48 77.61 73.18
Fold5 79.72 84.46 70.28 80.52 77.29 80.75 77.16 72.95
Average 79.80 84.49 70.65 80.34 77.07 79.25 77.22 72.76

Table 5.24: Q3 accuracy and SOV score for ensembles method (with 5 trained models
per fold) for PISCES dataset.

5.3.2 Filtering Results for PISCES

A bigger dataset, like PISCES, can help the model to learn more effectively the patterns
of the data, and that is why the cross validation results (Table 5.23) are better compared to
the CB513 results (Table 5.6), but at the same makes it very difficult to use SVM filtering.
SVMs are usually very effective for small datasets, however, on big datasets the memory
scales quadratically with the number of data points, which makes them very difficult to
train and impractical. Several attempts were made to train an SVM with samples from
the PISCES dataset, but the results were worse than the results without the SVM filtering.
Because of that, the SVM filtering was not applied in any of the PISCES experiments.
If a good sample is extracted from the PISCES dataset, it might be possible to train an
SVM for filtering the results of models trained with the PISCES dataset. However, for

this dissertation such technique could not be found.

Table 5.25 shows the results for each of the five folds after applying the external rules to
the ensembles model. It seems there was a slight increase (0.06) to the overall Q3 accuracy
and a considerable increase in the overall SOV score (1.18), which was expected, since

external rules are used mainly to improve the overall SOV score.

Q3 (% QH (% QE (% QC (% SOV SOVH SOVE SOVC

Fold1 79.64 83.79 69.08 81.61 78.06 79.90 77.61 72.95
Fold2 79.79 83.40 70.07 81.93 78.04 78.36 76.89 73.57
Fold3 79.91 83.66 69.40 81.98 78.15 78.91 76.11 7317
Fold4 80.22 83.81 70.24 82.25 78.53 79.85 77.40 73.88
Fold5 79.75 83.54 69.23 82.14 78.47 80.75 76.93 73.63
Average 79.86 83.64 69.60 81.98 78.25 79.55 76.99 73.44

Table 5.25: Q3 accuracy and SOV score for ensembles with external rules filtering for
PISCES dataset.

The results for the ensembles model with external rules and decision tree filtering are
displayed in table 5.26. The decision tree filtering improved the Q3 accuracy by 0.80%
and affected slightly the SOV score.

81

Q3 (% QH (% QE (% QC (% SOV SOVH SOVE SOVC

Fold1 80.37 82.94 76.74 79.90 77.76 77.91 80.07 72.75
Fold2 80.78 83.01 77.19 80.68 78.39 77.28 79.61 73.97
Fold3 80.62 82.85 77.28 80.20 78.01 77.17 78.95 72.86
Fold4 80.92 83.16 77.71 80.46 78.46 78.52 80.16 73.35
Fold5 80.62 82.93 76.95 80.47 78.47 79.25 79.25 73.97
Average 80.66 82.98 77.17 80.34 78.22 78.03 79.61 73.38

Table 5.26: Q3 accuracy and SOV score for ensembles with external rules and decision
tree filtering for PISCES dataset.

Q3 (% QH (% QE (% QC (% SOV SOVH SOVE SOVC

Fold1 81.69 84.45 81.54 78.98 78.68 78.99 83.19 73.64
Fold2 82.10 84.55 81.06 80.24 79.59 78.85 82.70 75.32
Fold3 81.79 84.39 81.15 79.46 78.95 78.93 82.11 73.97
Fold4 82.13 84.57 81.93 79.75 79.52 79.58 82.93 74.97
Fold5 81.93 84.31 80.65 80.31 79.52 80.80 82.03 75.50
Average 81.93 84.45 81.27 79.75 79.25 79.43 82.59 74.68

Table 5.27: Q3 accuracy and SOV score for ensembles with decision tree filtering for
PISCES dataset.

Table 5.27 shows the results, for each fold of PISCES, for the ensembles model after
applying the decision tree filtering, while table 5.28 illustrates the results for the ensem-
bles model with decision tree and external rules filtering. It is obvious that applying the
decision tree filtering before the external rules produces significantly better results. More-

over, the decision tree filtering improved the results of the ensembles model considerably
(81.93% overall Q3 accuracy and 79.25 overall SOV score).

Q3 (% QH (% QE (% QC (% SOV SOVH SOVE SOVC

Fold1 81.75 83.12 80.08 81.32 81.28 80.67 82.87 75.91
Fold2 82.10 83.32 79.67 82.33 81.57 79.71 82.33 76.84
Fold3 81.86 83.26 79.52 81.75 81.11 80.18 81.32 75.86
Fold4 82.16 83.34 80.47 81.91 81.48 80.77 82.41 76.54
Fold5 81.91 83.06 79.20 82.37 81.55 82.02 81.58 76.98
Average 81.96 83.22 79.79 81.94 81.40 80.67 82.10 76.43

Table 5.28: Q3 accuracy and SOV score for ensembles with decision tree and external
rules filtering for PISCES dataset.

The Q3 accuracy and SOV score for the ensembles model with external rules and random
forest filtering are presented in table 5.29. A comparison between table 5.26 and table
5.29 shows that random forest filtering is clearly more effective than the decision tree
filtering, for the PISCES dataset.

Table 5.30 illustrates the results for the ensembles model with the random forest filtering,
while table 5.31 illustrates the results for the ensembles model with random forest and

external rules filtering. According to tables 5.29 and 5.31, when random forest filtering

82

Q3 (% QH (% QE (% QC (% SOV SOVH SOVE SOVC

Fold1 80.62 84.11 77.92 78.66 77.99 79.28 80.40 72.05
Fold2 80.98 84.01 78.49 79.40 78.43 78.26 80.05 72.99
Fold3 80.85 83.89 78.52 79.04 78.37 78.60 79.33 72.39
Fold4 81.15 84.19 78.99 79.26 78.83 79.74 80.48 72.93
Fold5 80.88 83.97 77.99 79.49 78.86 80.65 79.88 73.42
Average 80.90 84.03 78.38 79.17 78.50 79.31 80.03 72.76

Table 5.29: Q3 accuracy and SOV score for ensembles with external rules and random
forest filtering for PISCES dataset.

is applied before external rules, the final results are much better (2.12% for Q3 accuracy
and 4.14 for SOV score). Furthermore, if the external rules are applied after the random
forest filtering, the overall Q3 accuracy drops slightly, while the overall SOV score grows
by a small amount (Tables 5.30 and 5.31).

Q3 (% QH (% QE (% QC (% SOV SOVH SOVE SOVC

Fold1 82.86 85.98 83.74 79.19 80.97 82.15 84.83 75.21
Fold2 83.23 86.12 83.81 79.99 81.71 81.80 84.59 76.44
Fold3 83.00 85.78 83.87 79.63 81.08 81.62 84.29 75.63
Fold4 83.31 86.09 84.36 79.86 81.68 82.54 84.66 76.32
Fold5 83.19 86.02 83.51 80.19 81.89 83.91 84.39 76.83
Average 83.12 86.00 83.86 79.77 81.47 82.40 84.55 76.09

Table 5.30: Q3 accuracy and SOV score for ensembles with random forest filtering for
PISCES dataset.

Q3 (% QH (% QE (% QC (% SOV SOVH SOVE SOVC

Fold1 82.79 85.21 82.27 80.64 82.37 82.79 83.71 76.45
Fold2 83.13 85.36 82.42 81.31 82.74 82.09 83.57 77.41
Fold3 82.89 85.01 82.24 81.05 82.25 82.08 82.66 76.59
Fold4 83.18 85.27 82.90 81.21 82.82 82.77 83.58 77.28
Fold5 83.09 85.21 81.96 81.64 83.00 84.35 83.08 77.79
Average 83.02 85.21 82.36 81.17 82.64 82.82 83.32 77.10

Table 5.31: Q3 accuracy and SOV score for ensembles with random forest and external
rules filtering for PISCES dataset.

5.3.3 Final Results for PISCES

The 5-fold cross validation (average) was applied for all filtering methods and the results
are shown in table 5.32. The best results according to this table, came from the ensembles
model after applying the random forest and external rules filtering. This method managed
to reach 83.02% overall Q3 (per residue) accuracy and 82.64 overall SOV score, which is

very good, considering that the state-of-the-art results were around 84-85% Q3 accuracy.

83

METHOD

CROSS-VALIDATION 79.50 84.39 70.50 79.78 76.44 78.86 76.87 72.20
ENSEMBLES (5 EXPERIMENTS / FOLD) 79.80 84.49 70.65 80.34 77.07 79.25 77.22 72.76
ENSEMBLES + EXTERNAL RULES 79.86 83.64 69.60 81.98 78.25 79.55 76.99 73.44
ENSEMBLES + EXTERNAL RULES + DECISION TREE 80.66 82.98 77.17 80.34 78.22 78.03 79.61 73.38
ENSEMBLES + DECISION TREE 81.93 84.45 81.27 79.75 79.25 79.43 82.59 74.68
ENSEMBLES + DECISION TREE + EXTERNAL RULES 81.96 83.22 79.79 81.94 81.40 80.67 82.10 76.43
ENSEMBLES + EXTERNAL RULES + RANDOM FOREST 80.90 84.03 78.38 79.17 78.50 79.31 80.03 72.76
ENSEMBLES + RANDOM FOREST 83.12 86.00 83.86 79.77 81.47 82.40 84.55 76.09
ENSEMBLES + RANDOM FOREST + EXTERNAL RULES 83.02 85.21 82.36 81.17 82.64 82.82 83.32 77.10

Table 5.32: 5-fold cross-validation, Q3 accuracy and SOV score for all methods for the
PISCES dataset.

5.4 Best Results for CB513 and PISCES

In this section the hyper parameters for the best models will be displayed, along with the
filtering methods used. For both CB513 and PISCES datasets the hyper parameters used
to train the CNN models are shown in table 5.1. Figure 5.3 shows the hyper parameters for
the trained models (CNN with SHN), the hyper parameters for the random forest filtering
and the order of the applied techniques that produced the best final results for the CB513
dataset. These techniques resulted in an overall 81.80% Q3 (per residue) accuracy and
an overall 78.98 SOV score. The confusion matrix for fold O of CB513 of a single CNN
model trained with SHN method is shown in figure 5.4. The confusion matrix for the
same fold for the ensembles model (combination of 5 trained models) with random forest
filtering is shown in figure 5.5. It seems that the miss-predictions for classes ‘E’ and ‘H’
are less in the ensembles model, while the miss-predictions for class ‘C’ are slightly more,

compared to the single CNN model.

MODEL HYPER PARAMETERS
GNsize Cc CNN layers bsize Max Iterations Plus
2048 0.01 4 12288 50 7

FILTERING HYPER PARAMETERS

n_estimators max_depth random_state = min_samples_split min_samples_leaf Window
100 25 42 2 1 13

METHODS USED (IN ORDER)

ENSEMBLES (5 EXPERIMENTS / FOLD) -> RANDOM FOREST FILTERING -> EXTERNAL RULES FILTERING
I
Vv

10-FOLD CROSS-VALIDATION

Figure 5.3: Hyper parameters and methods used that resulted in the best overall Q3
accuracy and best overall SOV score for CB513 dataset.

84

Confusion matrix Confusion matrix
2500

2711 299

2000
2000

1500
1500

Tue label
Tue label

1000

1000

I 500
- 500

C E
Predicted label Predicted label
accuracy=0.7820; misclass=0.2180 accuracy=0.8227; misclass=0.1773

Figure 5.4: CM for CB513 fold O of single Figure 5.5: CM for CB513 fold O of

CNN model. ensembles model with random forest.

Figure 5.6 shows the hyper parameters for the trained models (CNN with SHN), the hyper
parameters for the random forest filtering and the order of the applied methods, which
produced the best final results for the PISCES dataset. These methods resulted in an
overall 83.02% Q3 (per residue) accuracy and an overall 82.64 SOV score, which is very
close with the current state-of-the-art results (84-85%).

MODEL HYPER PARAMETERS

CNN layers Max lterations
2048 0.01 4 12288 100 i

FILTERING HYPER PARAMETERS

n_estimators max_depth random_state min_samples_split min_samples_leaf Window
100 25 42 2 1 19
METHODS USED (IN ORDER)

ENSEMBLES (5 EXPERIMENTS / FOLD) -> RANDOM FOREST FILTERING -> EXTERNAL RULES FILTERING
I
\'

5-FOLD CROSS-VALIDATION

Figure 5.6: Hyper parameters and methods used that resulted in the best overall Q3
accuracy and best overall SOV score for PISCES dataset.

The confusion matrix for a single CNN model trained with SHN method, using fold 4
of PISCES, is displayed in figure 5.7. Figure 5.8 illustrates the confusion matrix for

the ensembles model (combination of 5 CNN models) with random forest filtering, for

85

Confusion matrix Confusion matrix

120000 120000
12,130 16,574

100000 100000

80000 80000

E 4413 58,764 19,523

Tue label
Tue label

60000 60000

40000 40000

H 19,882 2874

20000 [20000

Predicted label Predicted label
accuracy=0.7988; misclass=0.2012 accuracy=0.8331; misclass=0.1669

Figure 5.7: CM for PISCES fold 4 of single Figure 5.8: CM for PISCES fold 4 of

CNN model. ensembles model with random forest.

the same fold (fold 4). It is obvious that the correct predictions for classes ‘E’ and ‘H’
were increased, after applying the ensembles and filtering methods, while the correct

predictions for class ‘C’ decreased by a small amount, compared to the single CNN model.

There are some hyper parameters that could still be modified and potentially improve the
accuracy of the single CNN model with SHN. However, due to the shortage of avail-
able time, additional experiments could not be performed. In the next chapter, there will
be some suggestions for further research regarding Convolutional Neural Networks with
the Subsampled Hessian Newton method and the Protein Secondary Structure Prediction
(PSSP) problem.

86

Chapter 6

Conclusion and Future Work

6.1 Conclusions. v v i i i i i i it it e e e e e e e e e

6.2 Suggestions for Future Workon PSSP

87

6.1 Conclusions

The initial purpose of this dissertation was to combine a Convolutional Neural Network
(CNN) with the Hessian Free Optimisation (HFO) algorithm in order to train a model
that predicts the Secondary Structure of Proteins (PSSP), given its primary structure, by
exploiting the MSA profiles. The attempt to solve the PSSP problem was very impor-
tant, since the experimental methods that are currently available are extremely expensive
in both money and time. The ability to infer (predict) the secondary structure of proteins
based on the primary structure could be very beneficial for the manufacture of pharmaceu-
tical drugs, food complements and antibiotics. Except from that, the secondary structure
of proteins could be used to determine the tertiary and quaternary structures, which could
help scientists define the exact functionality of the studied proteins, and possibly provide

an indication on how dangerous diseases, like cancer or covid-19, can be cured.

The attempt to combine the CNN with HFO was not fruitful because of the nature of HFO,
which was specifically designed for Feed Forward Neural Networks (FFNNs). However,
a new variation of HFO, called Subsampled Hessian Newton (SHN) method, was utilized
to train a CNN for the PSSP problem. The results for the CB513 dataset were extremely
promising with about 78.20% Q3 accuracy for a single fold (fold 0), 77.25% using 10-fold
cross validation and approximately 77.46% using the ensembles method with 5 trained
CNN models. The highest overall Q3 accuracy was 81.80% (Table 5.19) and was achieved
by combining the ensembles model with random forest filtering and external rules. For
the CB513 dataset, the overall SOV score for the 10-fold cross validation was 72.91, while
the same figure increased to 73.55, after applying the ensembles method (with 5 trained
models). The highest overall SOV score was achieved by combining the ensembles model
with random forest and external rules filtering (Table 5.19), which was approximately
78.98.

Even though some studies reported results of 84-85% Q3 accuracy, the datasets used
for training, were much larger than CB513, which means that they cannot be compared
directly with the results of this dissertation. The results for CB513, however, can be com-
pared with the results of [24] and [23], who also used the CB513 dataset (with the same
10-fold cross validation). The comparison between their results and the best results of this
dissertation, for CB513 dataset, shows that the single CNN with SHN (78.20% Q3 accu-
racy) outperformed both the CNN with SGD (76.47% Q3 accuracy) [24], and the BRNN
with HFO (77.01% Q3 accuracy) [23]. The same applies for the 10-fold cross validation,
where the CNN with SHN achieved 77.25% (Table 5.6), the CNN with SGD achieved
75.16% and the BRNN with HFO achieved 75.80% overall Q3 accuracy. Moreover, the

88

ensembles model with random forest and external rules filtering (81.80% Q3 accuracy)
managed to outperform the best results reported by [24] (80.40% overall Q3 accuracy)
and [23] (78.15% overall Q3 accuracy).

For the PISCES dataset, the best overall Q3 accuracy of a single CNN with SHN was
79.88% (Table 5.23), while the overall Q3 accuracy for the 5-fold cross validation was
79.50%. The highest Q3 accuracy for the 5-fold cross validation was 83.12% and was
achieved with the ensembles model with the random forest filtering (Table 5.30). The
best overall SOV score for a single model was 76.67 and for the 5-fold cross validation
was 76.44. The highest overall SOV score achieved was 82.64, with the combination of
the ensembles model (with 5 trained CNNs), random forest and external rules filtering
(Table 5.31).

The PISCES results can be compared with [1] and [2], where the same 5-fold cross vali-
dation was used. The overall Q3 accuracy for the 5-fold cross validation was 79.50% in
this dissertation (for PISCES), which was slightly lower than [2] (79.57%) and consider-
ably lower than [1] (80.65%). This means that there is still room for improvement for the
models trained with the PISCES dataset. However, the final results for PISCES dataset
were better (83.02% overall Q3 accuracy and 82.64 overall SOV score) compared to [1]
(80.98% overall Q3 accuracy and 77.26 overall SOV score) and [2] (80.37% overall Q3

accuracy and 76.71 overall SOV score).

Based on the results from the various filtering methods, it seems that the order in which
the filtering is applied plays a major role on the final outcome. That was expected, as the
filtering of each method applies its own ‘corrections’ to the results, which could ‘reveal’
or ‘hide’ the errors for the next filtering method. For instance, in a sequence of seven
(7) amino acids, where the predicted secondary structure is ‘HHHHEHE’, two (hypothet-
ical) filtering methods could be applied. The first filtering method replaces sequences
of ‘HHEH’ with ‘HHHH’, while the second method replaces ‘EHE’ with ‘EEE’. If the
first method is applied, the sequence would become ‘HHHHHHE’ and after the second
method it would remain the same, as there are no corrections that can be made. On a dif-
ferent scenario, the second filtering method could be applied first, which would result in a
new sequence ‘HHHHEEE’, that would remain the same after applying the first method.
If the desired output was ‘HHHHHHH’ the two approaches would result in completely
different results. In the first scenario (1st method + 2nd method), the correct results would
be 6 out of 7 (85.7%), while in the second scenario (2nd method + 1st method), the cor-
rect results would be 4 out of 7 (57.1%). This simple example shows that the order of

the filtering methods applied can produce different final results, so various combinations

89

should be tested.

In addition to the above, the best filtering technique depends on the dataset and the output
of the initial machine learning model. Even if two models are trained with the same ma-
chine learning architecture (e.g. CNN, FFNN, MLP, etc.) but with different optimisation
algorithms (e.g. SGD, HFO, SHN, etc.), there is no guarantee that the boost from any
of filtering methods will be the same for both models. The filtering results can vary be-
tween datasets and that can be observed from the filtering results of CB513 and PISCES
datasets. It seems that there is no clear approach or a ‘best filtering’ method that will guar-
antee better results for all the machine learning models. Consequently, different filtering

methods should be applied and the ones that produce the best results should be selected.

As mentioned earlier, some of the hyper parameters have not been exploited in this disser-
tation, not to a higher extend at least. This means there is still room for improvement for
the prediction results. Some of these hyper parameters are the ‘plus’ parameter (window
for CNN), the number of convolution layers, the number of filters and the kernel size of
the CNN, as well as the number of trained models used in ensembles method. In addition
to that, for the PISCES dataset, the hyper parameters used, to train the models, could be

tuned in the same way that were tuned for the CB513 dataset.

6.2 Suggestions for Future Work on PSSP

Over the past years, multiple machine learning algorithms were utilized to predict the
secondary structure of proteins, given their primary structure. However, none of these
techniques managed to reach the maximum theoretical limit for the 3-class prediction
of the PSSP problem, which is around 88-90% Q3 accuracy. That leaves the question
whether a single machine learning model can even manage to reach such high accuracy,

for such a complex problem (PSSP).

Maybe it is time to look for other alternative methods, like training multiple models and
then combining their predicted results. One such method is called stacking ensemble
method. This technique is similar to the ensembles method used in this dissertation, with
the only difference that, instead of training the same type of model multiple times, it sug-
gests to train different types of machine learning models, like K-means, Decision Trees,
Support Vector Machines, Naive Bayes, Logistic Regression, and variations of Neural
Networks. After the selected models are trained, they must be used to predict the test (or
validation) dataset, and the predictions must be stored in an output file. Then a logistic

regression model could be utilized, to learn how to best combine the predictions from

90

each of the separate models. This method does not guarantee that the stacked ensemble
results will be better than the results of all separate models, however, even in that case,

the model with the highest accuracy could be used instead of the stacked ensemble.

As many data scientists claim, ‘the answers are in the data’. Given this it is possible that
the reason behind the accuracy limitations of the prediction models are related with the
input data. Therefore, another suggestion would be to use different datasets to train the
models or perform some modifications to the datasets in order to help the network extract
the most important features. In addition to that, a separate dataset could be used only for
tuning the hyper parameters and another one just for testing the model. According to the
final results, it was obvious that the models were able to predict the classes ‘H” and ‘C’
with higher success rate than the ‘E’ class. This means that the network could not extract
all necessary features to be able to predict the ‘E’ class accurately. This phenomenon was

observed because the datasets were not balanced.

It was observed that the accuracy of the predictions for various proteins with different
lengths was not the same. A statistical analysis, on the final results, could help identify
for which proteins the model had higher or lower accuracy. This could give an indication
on which types of proteins the accuracy should be improved, in order to increase the

overall accuracy of the model.

Different filtering methods can produce different results for different algorithms used for
the PSSP and for different protein datasets, which means that experimentation, with var-
ious filtering methods, is essential in order to find the optimal filtering method. In this
dissertation, only a few filtering methods were used, which leaves the door open for fur-
ther experimentation with other filtering methods. The order, in which the filtering meth-
ods were applied, can affect the final results. Because of that, it is highly suggested to
apply the filtering methods in different orders and choose the one that produces the best
results. Moreover, the filtering methods could be applied before the ensembles method,
which could lead to better results. Another approach could be to apply the external rules
or other filtering methods multiple times (e.g. apply external rules, SVM filtering, ensem-

bles method and then apply external rules for a second time).

In this dissertation, one of the goals was to train a CNN with the stochastic gradient de-
scent (SGD) algorithm and compare the results with the SHN method. However, due to
the lack of time these experiments have not been performed. These experiments could
illustrate whether the SHN method could outperform the SGD algorithm for the PSSP
problem. Theoretically, the CNN with SHN should require less time and iterations to
train, compared to the CNN with SGD. The comparison between the CNN with SHN

91

and the CNN with SGD from [1] could not be made, because the implementations were
different, the machines used for the experiments had different specifications and in [1] a
CPU was used, instead of a GPU. According to some benchmark results from other prob-
lems [3], even though SHN performed almost the same with SGD in terms of accuracy, it
was more robust than SGD in terms of hyper parameter tuning. This can still make SHN
a better optimisation option, since the trained models that are required, in order to find
the best hyper parameters, are significantly less than SGD. In addition, the total training

iterations of SHN, for each model, are considerably less which means less training time.

92

References

[1]

(2]

[7]

A. Dionysiou, M. Agathocleous, C. Christodoulou, and V. Promponas, Input repre-
sentation of sequence to structure prediction problems for deep learning, (in prepa-
ration), 2020.

K. Charalambous, M. Agathocleous, C. Christodoulou, and V. Promponas, “Solv-
ing the protein secondary structure prediction problem with the hessian free opti-

mization algorithm”, IEEE Access, 2020, Under review.

C.-C. Wang, K. Tan, and C.-J. Lin, “Newton methods for convolutional neural net-

works”, ACM Transactions on Intelligent Systems and Technology, vol. 11, pp. 1-
30, 2020.

J. M. Berg, J. L. Tymoczko, and L. Stryer, Biochemistry, Sth. New York: NY: WH.
Freeman, 2002.

C. Magnan and P. Baldi, “Sspro/accpro 5: Almost perfect prediction of protein sec-
ondary structure and relative solvent accessibility using profiles, machine learning
and structural similarity.”, Bioinformatics, vol. 30, no. 18, pp. 2592-2597, 2014.

Y. Yang, J. Gao, J. Wang, R. Heffernan, J. Hanson, K. Paliwal, and Y. Zhou, “Sixty-
five years of the long march in protein secondary structure prediction: The final
stretch?”, Briefings in Bioinformatics, vol. 19, no. 3, pp. 482-494, 2018.

N. Qian and T. J. Sejnowski, “Predicting the secondary structure of globular pro-
teins using neural network models”, Journal of Molecular Biology, vol. 202, no. 4,
pp. 865-884, 1988.

B. Rost and C. Sander, “Improved prediction of protein secondary structure by use
of sequence profiles and neural networks”, Proceedings of the National Academy
of Sciences, USA, vol. 90, pp. 7558-7562, 1993.

A. Salamov and V. Soloveyev, “Ab initio gene finding in drosophila genomic dna”,
Genome Research, vol. 10, no. 4, pp. 516-522, 2000.

R. D. King and M. J. Sternberg, “Identification and application of the concepts
important for accurate and reliable protein secondary structure prediction”, Protein
Science, vol. 5, no. 11, pp. 2298-2310, 1996.

93

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[20]

[21]

D. Frishman and P. Argos, “Knowledge-based protein secondary structure assign-
ment”, Proteins: Structure, Function, and Bioinformatics, vol. 23, no. 4, pp. 566—
579, 1995.

J. A. Cuff and G. J. Barton, “Evaluation and improvement of multiple sequence
methods for protein secondary structure prediction”, Proteins: Structure, Function,
and Bioinformatics, vol. 34, no. 4, pp. 508-519, 1999.

P. Baldi, S. Brunak, P. Frasconi, G. Soda, and G. Pollastri, “Exploiting the past
and the future in protein secondary structure prediction”, Bioinformatics, vol. 15,
no. 11, pp. 937-946, 1999.

P. Baldi, S. Brunak, P. Frasconi, G. Pollastri, and G. Soda, Bidirectional Dynamics
for Protein Secondary Structure Prediction. In: Sun R., Giles C.L. (eds) Sequence

Learning, ser. Lecture Notes in Computer Science. Springer, Berlin, Heidelberg,
2000, vol. 1828, pp. 80-104.

J. Blazewicz, P. Hammer, and P. Lukasiak, “Predicting secondary structures of pro-
teins”, IEEE engineering in medicine and biology magazine, vol. 24, no. 3, pp. 88—
94, 2005.

G. Armano, A. Orro, and E. Vargiu, “Massp3: A system for predicting protein sec-
ondary structure”, EURASIP Journal on Advances in Signal Processing, vol. 2006,
no. 17195, pp. 1-9, 2006.

F. U. Yiksektepe, O. Yilmaz, and M. Tiirkay, “Prediction of secondary struc-
tures of proteins using a two-stage method”, Computers & Chemical Engineering,
vol. 32, no. 1-2, pp. 78-88, 2008.

K. J. Won, T. Hamelryck, A. Prugel-Bennett, and A. Krogh, “An evolutionary
method for learning hmm structure: Prediction of protein secondary structure”,
BMC bioinformatics, vol. 8, p. 357, Feb. 2007.

J. Chen and N. S. Chaudhari, “Cascaded bidirectional recurrent neural networks
for protein secondary structure prediction”, IEEE/ACM Transactions on Computa-
tional Biology and Bioinformatics, vol. 4, no. 4, pp. 572-582, 2007.

S. Wang, J. Peng, J. Ma, and J. Xu, “Protein secondary structure prediction using
deep convolutional neural fields”, Scientific reports, vol. 6, 2016.

P. Pavlidis, IIo6PBAedn Beutepotoryolc Bounc Twy TemTEVGY YE TN YeY\on TV con-
volutional neural networks yw omTix avoryvaenor avixeévey, University of

Cyprus, Computer Science Department, Thesis Project, 2016.

94

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

R. Heffernan, Y. Yang, K. Paliwal, and Y. Zhou, “Capturing non-local interactions
by long short-term memory bidirectional recurrent neural networks for improving
prediction of protein secondary structure, backbone angles, contact numbers and
solvent accessibility”, Bioinformatics, vol. 33, pp. 2842-2849, 2017.

K. Charalambous, Protein secondary structure prediction using bidirectional re-
current neural networks and hessian free optimisation, BSc Thesis, Department of

Computer Science, University of Cyprus, 2018.

A. Dionysiou, IIp6fBredm deutepotary0ic Sounc TEWTEIVGY UE YPHOT CUVEALXTIXGDVY
VEUROVIXWY DIXTUMY GE GUVOLUOUO UE QlATE gabor xou support vector machines,

BSc Thesis, Department of Computer Science, University of Cyprus, 2018.

C. Fang, Y. Shang, and D. Xu, “Mufold-ss: New deep inception—inside—inception
networks for protein secondary structure prediction”, Proteins: Structure, Func-

tion, and Bioinformatics, 2018.

Learn.Genetics, Genetic science learning center, https://learn.genetics.utah.edu/,
[Online; accessed April 21, 2020], 2018.

C. Simons, Food science toolbox, https://cwsimons.com/wp - content/uploads/
2017/12/AA jpg, [Online; accessed April 23, 2020].

A. Brunning, A guide to the 20 common amino acids, http://www.compoundchem.
com/wp-content/uploads/2014/09/20- Common- Amino- Acids- v3.png, [Online;
accessed April 23, 2020].

BioTopics, Amino acid condensation, http://www.biotopics.co.uk/as/aminocon.
html, [Online; accessed April 27, 2020].

T. Brown and T. Brown Jr, Nucleic acids book, https://www.atdbio.com/, [Online;
accessed April 25, 2020].

S. Clancy and W. Brown, “Translation: Dna to mrna to protein”, Nature Education,
vol. 1, no. 1, p. 101, 2008.

M. A. Clark, M. Douglas, and J. Choi, Biology 2e, https://openstax.org/books/
biology-2e/pages/3-4-proteins, [Online; accessed December 15, 2019], 2018.

A. Byun, Convolutional neural networks for visual recognition, https://cs231n.

github.io/neural-networks- 1/, [Online; accessed April 23, 2020].

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning”, Nature, vol. 521, no. 7553,
pp. 436444, 2015.

W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous

activity”, The bulletin of mathematical biophysics, vol. 5, no. 4, pp. 115-133, 1943.

95

https://learn.genetics.utah.edu/
https://cwsimons.com/wp-content/uploads/2017/12/AA.jpg
https://cwsimons.com/wp-content/uploads/2017/12/AA.jpg
http://www.compoundchem.com/wp-content/uploads/2014/09/20-Common-Amino-Acids-v3.png
http://www.compoundchem.com/wp-content/uploads/2014/09/20-Common-Amino-Acids-v3.png
http://www.biotopics.co.uk/as/aminocon.html
http://www.biotopics.co.uk/as/aminocon.html
https://www.atdbio.com/
https://openstax.org/books/ biology-2e/pages/3-4-proteins
https://openstax.org/books/ biology-2e/pages/3-4-proteins
https://cs231n.github.io/neural-networks-1/
https://cs231n.github.io/neural-networks-1/

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

F. Rosenblatt, “The perceptron: A probabilistic model for information storage and

organization in the brain”, Psychological Review, pp. 65-386, 1958.

V. Kurkové, “Kolmogorov’s theorem and multilayer neural networks”, Neural Net-
works, vol. 5, no. 3, pp. 501-506, 1991.

M. L. Jordan, Serial order: A parallel distributed processing approach, San Diego:
University of California, Institute for Cognitive Science, Technical Report number
AD-A-173989/5/XAB; 1CS-8604, 1986.

J. L. Elman, “Finding structure in time”, Cognitive Science, vol. 14, no. 2, pp. 179—
211, 1990.

K. Patel, Mnist handwritten digits classification using a convolutional neural net-
work (cnn), [Web; accessed December 16, 2019], 2019.

Y. L. Boureau, J. Ponce, and Y. LeCun, “A theoretical analysis of feature pooling
in visual recognition”, in In Proceedings of the 27th international conference on

machine learning, 2010, pp. 111-118.

T. Ganegedara, Intuitive guide to cnns, https ://towardsdatascience . com/light -
on - math - machine - learning - intuitive - guide - to - convolution - neural - networks -
e3f054dd5Sdaa, [Online; accessed April 27, 2020], 2018.

D. R. Hush and J. M. Salas, “Improving the learning rate of back propagation
with the gradient reuse algorithm”, in Proceedings of the IEEE 1988 International
Conference on Neural Networks, vol. 1, San Diego, CA, USA, 1988, pp. 441-447.

C. Charalambous, “Conjugate gradient algorithm for efficient training of artificial
neural networks”, Circuits, Devices and Systems, IEE Proceedings G, vol. 139,
no. 3, pp. 301-310, 1992.

C. M. Bishop, Neural networks for pattern recognition, Oxford University Press,
Oxford, UK., 1995.

J. Martens, “Deep learning via hessian-free optimization”, in Proceedings of the
27th International Conference on Machine Learning (ICML’10), Bottou, L. and
Littman, M., (eds.), 2010, pp. 735-742.

S. G. Nash, “Newton-type minimization via the lanczos method”, SIAM Journal
on Numerical Analysis, vol. 21, no. 4, pp. 770-788, 1984.

——, “A survey of truncated-newton methods”, Journal of Computational and Ap-
plied Mathematics, vol. 124, no. 1, pp. 45-59, 2000.

96

https://towardsdatascience.com/light-on-math-machine-learning-intuitive-guide-to-convolution-neural-networks-e3f054dd5daa
https://towardsdatascience.com/light-on-math-machine-learning-intuitive-guide-to-convolution-neural-networks-e3f054dd5daa
https://towardsdatascience.com/light-on-math-machine-learning-intuitive-guide-to-convolution-neural-networks-e3f054dd5daa

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

J. Martens and 1. Sutskever, Training Deep and Recurrent Networks with Hessian-
Free Optimization. In: Montavon G., Orr G.B., Miiller KR. (eds) Neural Networks:
Tricks of the Trade, ser. Lecture Notes in Computer Science. Springer, Berlin, Hei-
delberg, 2012, vol. 7700.

N. Schraudolph, “Fast curvature matrix-vector products for second-order gradient
descent”, Neural Computation, vol. 14, no. 7, pp. 1723-1738, 2002.

R. E. Wengert, “A simple automatic derivative evaluation program”, Communica-
tions of the ACM, vol. 7, no. 8, pp. 463—464, 1964.

B. A. Pearlmutter, “Fast exact multiplication by the hessian”, Neural Computation,
vol. 6, no. 1, pp. 147-160, 1994.

B. Rost, C. Sander, and R. Schneider, “Phd—an automatic mail server for protein

secondary structure prediction”, Bioinformatics, vol. 10, no. 1, pp. 53-60, 1994.

A. Zemla, C. Venclovas, K. Fidelis, and B. Rost, “A modified definition of sov, a
segment—based measure for protein secondary structure prediction assessment”,
Proteins: Structure, Function, and Bioinformatics, vol. 34, no. 2, pp. 220-223,
1999.

W. Kabsch and C. Sander, “Dictionary of protein secondary structure: Pattern
recognition of hydrogen—bonded and geometrical features”, Biopolymers, vol. 22,
no. 12, pp. 2577-2637, 1983.

G. Wang and R. L. Dunbrack Jr, “Pisces: A protein sequence culling server”, Bioin-
formatics, vol. 19, no. 12, pp. 1589-1591, 2003.

A. Dionysiou, M. Agathocleous, C. Christodoulou, and V. Promponas, “Convolu-
tional neural networks in combination with support vector machines for complex
sequential data classification”, Artificial Neural Networks and Machine Learn-
ing - ICANN 2018, Lecture Notes in Computer Science, ed. by V. Kurkova, Y.
Manolopoulos, B. Hammer, L. lliadis, I. Maglogiannis, Cham: Springer, vol. 11140,
pp. 444-455, 2018.

C. Cortes and V. Vapnik, “Support-vector network™, Machine Learning, vol. 20,
pp- 1-25, 1995.

P. Kountouris, M. Agathocleous, V. J. Promponas, G. Christodoulou, S. Hadji-
costas, V. Vassiliades, and C. Christodoulou, “A comparative study on filtering pro-
tein secondary structure prediction”, IEEE/ACM Transactions on Computational
Biology and Bioinformatics, vol. 9, no. 3, pp. 731-739, 2012.

T. Yiu, Understanding random forest, Torward Data Science, 2019. [Online]. Avail-
able: https://towardsdatascience.com/understanding-random-forest-58381e0602d2.

97

https://towardsdatascience.com/understanding-random-forest-58381e0602d2

[61]

[62]

[63]

[64]

[66]

[67]

[68]

[69]

T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M. Bussonnier, J. Frederic, K.
Kelley, J. Hamrick, J. Grout, S. Corlay, P. Ivanov, D. Avila, S. Abdalla, and C.
Willing, “Jupyter notebooks - a publishing format for reproducible computational
workflows”, in Positioning and Power in Academic Publishing: Players, Agents
and Agendas, F. Loizides and B. Schmidt, Eds., IOS Press, 2016, pp. 87-90.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A.
Davis, J. Dean, M. Devin, S. Ghemawat, 1. Goodfellow, A. Harp, G. Irving, M. Is-
ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K.
Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, TensorFlow: Large-scale machine
learning on heterogeneous systems, Software available from tensorflow.org, 2015.

[Online]. Available: https://www.tensorflow.org/.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch:
An imperative style, high-performance deep learning library”, in Advances in Neu-
ral Information Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d’ Alché-Buc, E. Fox, and R. Garnett, Eds., Curran Associates, Inc., 2019,
pp- 8024—-8035. [Online]. Available: http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-library.pdf.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-

napeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning
in Python”, Journal of Machine Learning Research, vol. 12, pp. 2825-2830, 2011.

A. Botev, H. Ritter, and D. Barber, “Practical gauss-newton optimisation for deep
learning”, in In Proceedings of the 34th International Conference on Machine
Learning, 2017, pp. 557-565.

X. He, D. Mudigere, M. Smelyanskiy, and M. Taka, Large scale distributed hessian
free optimization for deep neural network, 2017.

R. Kiros, Training neural networks with stochastic hessian-free optimization, arXiv
preprint arXiv:1301.3641, 2013.

O. Vinyals and D. Povey, “Krylov subspace descent for deep learning”, in In Pro-
ceedings of Artificial Intelligence and Statistics, 2012, pp. 1261-1268.

C.-C. Wang, C.-H. Huang, and C.-J. Lin, “Subsampled hessian newton methods for
supervised learning”, Neural Computation, vol. 27, no. 8, pp. 1766—-1795, 2015.

98

https://www.tensorflow.org/
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

[70] C.-C. Wang, K.-L. Tan, C.-T. Chen, Y.-H. Lin, S. S. Keerthi, D. Mahajan, S. Sun-
dararajan, and C.-J. Lin, “Distributed newton methods for deep learning”, Neural
Computation, vol. 30, no. 6, pp. 1673-1724, 2018.

[71] L. Breiman, “Random forests”, Machine Learning, vol. 45, pp. 5-32, 2001.

99

Appendix A

Excluded proteins from CB513

Table A.1 shows the names of the eight (8) proteins that were excluded from the CB513
dataset, because of zeroed MSA profiles.

=
o

. Protein
1coiA_1-29
1mctl_1-28
1tiC_195-230
2erlA_1-40
1ceocA _202-254
1mrtA_31-61
1wfbB_1-37
6rixC_-2-20

o~~~ WN =

Table A.1: Excluded CB513 proteins due to zeroed MSA profiles.

A-1

Appendix B

Excluded proteins from PISCES

Table B.1 displays the identities of the sixteen (16) proteins that were excluded from the
PISCES dataset, because their MSA profiles were missing.

No. Protein No. Protein
1 1VPPX 9 4P6LA
3MLSP 10 3SORA
4P20P 11 1WFBA
1GOYI 12 1RPQW
4JQIV 13 4JO6Y
3UKWC 14 4H8LA
4H25C 15 1YODA
3SGRA 16 4KE2A

co~NOoO O WM

Table B.1: Excluded PISCES proteins due to missing MSA profiles.

B-1

Tables B.2, B.3 and B.4 illustrate the names of the PISCES proteins that were excluded
from the PISCES dataset because their MSA profiles were corrupted or zeroed (according

to [24]). In total those proteins were three hundred forty one (341).

No. Protein No.
1 3P51A 31 20U5BA 61 3USWA | 91 2R19A

2 1V96A 32 3L60A 62 306QA | 92 30P6A
3 3L7HA 33 3HODA 63 3UVOA 93 2PWOA
4 4DHXA 34 1Q2HA 64 3NS4A 94 4GOFA
5 4F2LA 35 4186A 65 2HQLA | 95 3N7XA
6 2D7EA 36 2G7SA 66 3TESA 96 2P9XA
7 AMTUA 37 2P63A 67 2038A 97 2VSOA
8 4BSXA 38 3Q18A 68 4PF3A 98 2WGS8A
9 4F87A 39 2FI1A 69 4H41A 99 4P49A
10 4MYVA 40 2Y5PA 70 3H16A | 100 3ZCOA
11 1QV9A 41 4Q53A 71 2D59A | 101 3BOFA
12 3FF5A 42 2Q3TA 72 1VR4A |102 20X7A
13 4P2VA 43 1VPRA 73 201QA | 103 4116A

14 1WWPA | 44 3DFUA 74 2HX5A | 104 4PSFA
15 2D68A 45 3DNXA 75 2NPTA | 105 4AP5A
16 2R85A 46 4GUCA | 76 3CRYA |106 3K8RA
17 4MOOA 47 3Q6CA 77 2ERWA | 107 3D30A
18 4L3UA 48 4LTBA 78 3C4RA | 108 3HLSA
19 4J5RA 49 3MDOA | 79 2IP6A 109 1WPNA
20 20L5A 50 3ESMA | 80 3GO9A |110 2099A
21 4KTWA 51 3HONA 81 1YPYA | 111 3I76A

22 3D33A 52 4HHVA 82 3EORA |[112 4LQBA
23 3PD7A 53 3M5QA | 83 4F27A 113 4JX0A

24 3KVPA 54 4ANT4A 84 3PLOA 114 4R7RA
25 3QH6A 55 4KQIA 85 3IBWA |[115 4GT9A
26 3VS8A 56 4I1HQA 86 3TS9A |116 4F4WA
27 3CPTA 57 4K92A 87 3D55A | 117 2UVPA
28 3GP6A 58 4Q70A | 88 3NOQA | 118 1Z4RA
29 3065A 59 4J1VA 89 4E6WA | 119 20U1A
30 1TU9A 60 4X33A 90 4AQO0A |120 3F67A

Table B.2: Excluded PISCES proteins due to corrupted or zeroed MSA profiles (1-120).

B-2

No.

Protein

No.

Protein

No.

Protein

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

1Q9UA
1WV3A
30ONQA
2YF2A
3QO0HA
3TUOA
2E1FA
3CODA
3IV4A
2CVIA
1SQWA
4BOQA
3WG6SA
3TVQA
3LQY9%A
3BPQA
2BDRA
3F43A
3G21A
4J91A
4K12A
2Q3SA
4QSGA
2V73A
2WVQA
4NUAA
4G97A
3BRVA
3012A
3KUPA

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

2R5SA
2FBOA
3L49A
204AA
2NSOA
2ZEXA
3UV1A
3l14UA

3RK6A
4P78A
1UV7A
2HL7A
4U90A
4BSVA
2CONA
3100A

3FH3A
3NR5A
4E6SA
4LKUA
3KTOA
4QRNA
2VIPA
3F95A
1TM1QA
3CSXA
4FX7A
3JQOA
4L 2WA
3U97A

181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210

3ESLA
1U9LA
3H35A
1BB1A
1BB1B
1BB1C
1C94A
1DPJB
1DTDB
1F8VD
1GWMA
1HX6A
1KD8A
1KPGA
1KVEA
1L2WI
1M3WA
1M458B
1M468B
1MCTI
1MQSB
1TMW5A
1006A
1P9IA
1PJMA
1PJNA
1SVFB
1TO01B
1TQEX
1TTWB

211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240

1U6HB
1UvQC
1ZVZB
1ZW2B
2BPA3
2BPTB
2C5IP
2C5KP
2DS2A
2ERLA
2GWWB
2HZSI
2MLTA
2P06A
2PBDV
2PLXB
2QUOA
2WAYA
2WBYC
2WFUA
2WFVA
2WWXB
2X5CA
2X5RA
2XF7A
2XZEQ
3AJBB
3C5TB
3DT5A
3E8YX

Table B.3: Excluded PISCES proteins due to corrupted or zeroed MSA profiles
(121-240).

B-3

No. Protein No. Protein No. Protein No. Protein
241 3FBLA 271 3UKXC |301 4H62V 331 4PNBA
242 3GP2B 272 3UL1A | 302 4H7RA | 332 4PNDA
243 3HOTC |273 3V62C |303 4H8MA |333 4PW1A
244 3HE4B | 274 3V86A |304 4H80A |334 4QMFA
245 3HESA 275 3VU5B | 305 4HB1A | 335 4RO0RA
246 3HES5B 276 3VU6B | 306 4HBEA | 336 4R80A
247 3L9AX 277 3WIA 307 4HLBA | 337 4R8TA
248 3LCNC |[278 3W8VA |308 4HR1A |338 4RIQC
249 3LJMA 279 3W92A | 309 4I7ZE 339 4TTLA
250 3M6ZA | 280 3WKNE | 310 4lIKA 340 4UEBB
251 3NK4C 281 3WOEB | 311 4J4AA 341 4W6YA
252 30WTC |282 3WX4A | 312 4JGLA
253 3P06A 283 3WY9C | 313 4JHKC
254 3PLVC 284 3ZTAA | 314 4KVTA
255 3QKSC |285 4A94C 315 4KYTB
256 3R46A 286 4BFHA |316 4LOOB
257 3R4AA 287 4BLQA | 317 4M1XA
258 3RA3B |[288 4BPLB |318 4M6BC
259 3RF3C [289 4C1AA | 319 4MGPA
260 3RKLA 290 4CAYC | 320 4MI8C
261 3S1BA [291 4CU4B | 321 4N3BB
262 3S6PE 292 4CXFB |322 4N3CB
263 3SHPA |[293 4DACA | 323 40GQE
264 3SJHB 294 4EHQG | 324 40Q9A
265 3TQ2A | 295 4F87A 325 40YDB
266 3TWEA |296 4FBWC | 326 40ZKA
267 3TZ1B | 297 4FTBD |327 4PCOC
268 3U4VA 298 4FZ0M | 328 4PN8A
269 3U4ZA 299 4G1AA | 329 4PN9A
270 3UC7A | 300 4GVBB | 330 4PNAA

Table B.4: Excluded PISCES proteins due to corrupted or zeroed MSA profiles
(241-341).

B-4

O 00 N N L AW N =

O
N o= O

13
14
15
16
17
18
19
20
21
22
23

Appendix C

Convert datasets to Matlab files

The following bash script was created and used to convert the ‘.txt’ datasets (text files) to
‘mat’ datasets (Matlab files).

#!/bin/bash

This script finds all the testSet and trainSet files in the current directory,
converts them to matlab datasets and saves them in the folder mat_datasets.
folderName="mat_datasets"

mkdir "$folderName"

runAll=""
datasets=$(Is | grep —e “testSet’ —e ’trainSet’ | grep —v "\.mat’)

for ds in $datasets

do
echo "$ds"
loaded=$(echo "$ds" | sed "s:.txt::")
echo "$loaded"
outFile=$(echo "./$folderName/$loaded.mat")
echo "$outFile"
runMat="load_$ds;_y =,
echo "$runMat"
runAll="$runAll$runMat_"

done

runAll="$runAll_exit;"

echo "$runAll"

/Applications/ MATLAB_R2019a.app/bin/matlab —nodisplay —r "$runAll" > "./$folderName/log.txt"

$loaded(1:end,_end);_Z_=_$loaded(1:end,_1l:end—1);_save_$outFile_y,_Z_ —v7.3;_clear;"

C-1

Appendix D

CB513 dataset pre-processing

This Python program prepares the CB513 datasets for training the Convolutional Neural

Network. It was implemented for the purposes of this dissertation.

nwun

Uses the DATASETS files to create new datasets for CB513 based
on the specified number of amino acids (ADD_AMINO_ACIDS) .

nwun

import os, sys

ADD_AMINO_ACIDS=7# 7 + 1 + 7 = 15 amino acids per row

DATASETS = [’trainSet0.txt’, "testSet0.txt’,
“trainSet].txt’, “testSet].txt’,
’trainSet2.txt’, testSet2.txt’,
“trainSet3.txt’, “testSet3.txt’,
’trainSet4.txt’, “testSet4.txt’,
’trainSet5.txt’, “testSet5.txt’,
“trainSet6.txt’, "testSet6.txt’,
’trainSet7.txt’, “testSet7.txt’,
“trainSet8.txt’, “testSet8.txt’,
“trainSet9.txt’, “testSet9.txt’]

FOLDER_NAME = "plus{0}_CB513’ format(ADD_AMINO_ACIDS)

if not os.path.exists(FOLDER_NAME):
os.makedirs(FOLDER_NAME)

protein_name = None
hssp_file = None
CATEGORIES = ['C’, ’E’, 'H’]

def enumerate_cat(labels):
for i, cat in enumerate(CATEGORIES):
labels = labels.replace(cat, str(i))
return labels

def get_zero_lines(num_of_lines):
if (num_of_lines < 1):

return
zeros = (("0," * 20) + "\n’) * num_of_lines

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

return zeros

for dataset_name in DATASETS:
dataset_name = DATASETS[O0]

print(’Preparing,_ {0}..._Missing_hssp_files:” .format(dataset_name))
output_file ="./{0}/plus{1}_{2} format(FOLDER_NAME, ADD_AMINO_ACIDS, dataset_name)

with open(dataset_name, ’r’) as ds_f:
with open(output_file, *w’) as out_f:
line_num = 0
for line in ds_f:
if line_num == 0:

protein_name = line.split()[0]

hssp_file = *./msaFiles/{0}.hssp’.format(protein_name)

print(hssp_file)
line_num +=1
elif (line_num == 1):
print(line)
line_num += 1
continue
else:
labels = (line[:—1]).replace(’!’, ")
label_nums = enumerate_cat(labels)
label_index = 0
print(labels)
try:
with open(hssp_file, ’r’) as hssp_f:
buf = get_zero_linestADD_AMINO_ACIDS)
buf_len = ADD_AMINO_ACIDS
amino_count =0
for msa_line in hssp_f:
if (buf_len > 2 * ADD_AMINO_ACIDS):

LI

temp = buf.replace(’\n’, *’) + label_nums[amino_count]

out_f.write(temp)

out_f.write(’\n’)

buf = buf split("\n", 1)[—1]

buf_len —=1

amino_count += 1
modif_line = (msa_line[:—1]).replace(’ ’,’
buf ="{0}{1}\n’.format(buf, modif_line)
buf_len += 1

for i in range(0, ADD_AMINO_ACIDS+1):

LR

temp = buf.replace(’\n’, °’) + label_nums[amino_count]

out_f.write(temp)
out_f.write("\n”)
buf = buf.split("\n", 1)[—1]
buf = buf + get_zero_lines(1)
amino_count += 1
assert amino_count == len(label_nums)
except Exception:
print(protein_name)
line_num =0

print(’Done_with_ {0} _file!’.format(dataset_name))

)

35
36
37

Appendix E

PISCES dataset pre-processing

This Python program prepares the PISCES datasets for training the Convolutional Neural

Network. It was implemented for the purposes of this dissertation.

nwun

Uses the DATASETS files to create new datasets for PISCES with
the specified number of neighboring amino acids (ADD_AMINO_ACIDS).

nwun

import os, sys

ADD_AMINO_ACIDS=7# 7 + 1 + 7 = 15 amino acids per row
DATASETS = [’trainSet].txt’, testSet]l.txt’,

“trainSet2.txt’, “testSet2.txt’,

’trainSet3.txt’, “testSet3.txt’,

*trainSet4.txt’, “testSet4.txt’,

“trainSet5.txt’, “testSet5.txt’]

FOLDER_NAME = ’plus{0}_PISCES’ format(ADD_AMINO_ACIDS)
MSA_FOLDER = 'msaFiles’

if not os.path.exists(FOLDER_NAME):
os.makedirs(FOLDER_NAME)

protein_name = None
hssp_file = None
CATEGORIES =['C’, ’E’, '"H’]

def enumerate_cat(labels):
for i, cat in enumerate(CATEGORIES):
labels = labels.replace(cat, str(i))
return labels

def get_zero_lines(num_of_lines):
zeros = (("0," * 20) + "\n”) * num_of_lines

return zeros

for dataset_name in DATASETS:
dataset_name = DATASETS[0]
print(’Preparing_ {0}..._Missing_hssp_files:”.format(dataset_name))
output_file ="./{0}/plus{1}_{2} format(FOLDER_NAME, ADD_AMINO_ACIDS, dataset_name)

E-1

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

with open(dataset_name, 'r’) as ds_f:
with open(output_file, *w’) as out_f:
line_num = 0
for line in ds_f:
if line_num == 0:

protein_name = line.split()[0]

hssp_file =./{0}/{1}.hssp’ .format(MSA_FOLDER, protein_name)

print(hssp_file)
line_num +=1
elif (line_num == 1):
print(line)
line_num +=1
continue
else:
labels = line[: —1]
label_nums = enumerate_cat(labels)
label_index = 0
print(labels)
try:
with open(hssp_file, ’r’) as hssp_f:
buf = get_zero_lines(ADD_AMINO_ACIDS)
buf_len = ADD_AMINO_ACIDS
amino_count =0
for msa_line in hssp_f:
if (buf_len > 2 * ADD_AMINO_ACIDS):

IR

temp = buf.replace(’\n’, *”) + label_nums[amino_count]

out_f.write(temp)
out_f.write("\n”)

buf = buf.split("\n", 1)[—1]
buf_len —=1

amino_count += 1

modif_line = (msa_line[:—1]).replace(’ ", ’,”)

buf = {0} {1 }\n’.format(buf, modif_line)
buf_len +=1

for i in range(0, ADD_AMINO_ACIDS+1):

temp = buf.replace(’\n’, °’) + label_nums[amino_count]

out_f.write(temp)
out_f.write(’\n)
buf = buf.split("\n", 1)[—1]
buf = buf + get_zero_lines(1)
amino_count += 1
assert amino_count == len(label_nums)
except Exception:
print(protein_name)
line_num =0

print(’Done_with_ {0} _file!’.format(dataset_name))

O 0 N AN R W N~

[\CIN SR SR S ST S I S R S R S e e e e e i e
0 AN R WD = O 0 0NN R WD~ O

Appendix F

Python Implementation

The following code includes the implementation of the Convolutional Neural Network
with the Subsampled Hessian Newton method. This program was used to perform all the
experiments of this dissertation. Note that commands that begin with ‘!” should be exe-
cuted as bash commands. It is highly advised to use the notebook version of the imple-
mentation which can be found at [https://gitlab.com/perf.ai/pssp_project/-/blob/master/
Notebooks/CNN_HFO.ipynb]. This implementation was based on the Python implemen-
tation from [3], however, several modifications have been made to improve the results of

the CNN for the PSSP problem.

-*- coding: utf-8 -*-

nwun

shn_cnn_May22.ipynb
Automatically generated by Colaboratory.

Original file is located at
https://colab.research.google.com/drive/1KZtk3v3joX5pAUQJIIbpGVII-kmnddRjV

nun

plus_var=7

ds_num=1

dataset="PISCES"
plus_var=7

ds_num=5
dataset="CB513"

mungs Imports ##"O
Commented out IPython magic to ensure Python compatibility.
%load_ext autoreload

%autoreload 2
Jmatplotlib inline
Ipip install hdfSstorage
import pdb

import numpy as np

F-1

https://gitlab.com/perf.ai/pssp_project/-/blob/master/Notebooks/CNN_HFO.ipynb
https://gitlab.com/perf.ai/pssp_project/-/blob/master/Notebooks/CNN_HFO.ipynb

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

45

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
71
78
79
80
81
82
83

import tensorflow as tf
tf.compat.v1.disable_eager_execution()
import time

import math

import argparse

import os

import scipy.io as sio

import tensorflow.compat.vl as tf
tf.disable_v2_behavior()

from tensorflow.python.client import device_lib
import pandas as pd

import hdfSstorage

nnigE Get data #H""M

test_url="https://gitlab.com/perf.ai/pssp_project/—/raw/master/plus{0}_{ 1 }/mat_datasets/plus{2}_testSet{3}.mat".format(str(
— plus_var), dataset, str(plus_var), str(ds_num))

train_url="https://gitlab.com/perf.ai/pssp_project/—/raw/master/plus{0}_{1}/mat_datasets/plus{2}_trainSet{3}.mat".format(str(
— plus_var), dataset, str(plus_var), str(ds_num))

TEST_FILE="plus" + str(plus_var) + "_testSet" + str(ds_num) + ".mat"

TRAIN_FILE="plus" + str(plus_var) + "_trainSet" + str(ds_num) + ".mat"

lecho "$test_url"

lecho "$train_url"

[—f "$TEST_FILE"] && echo "$TEST_FILE_exist" Il wget "$test_url"
I[—f "$TRAIN_FILE"] && echo "$TRAIN_FILE_exist" Il wget "$train_url"

s

NEIGHBOURS = plus_var # number of amino-acids to add left and right
AMINO_ACID_LEN =20

WINDOW =2 x NEIGHBOURS + 1

TOTAL_AMINO_ACIDS = WINDOW * AMINO_ACID_LEN

TOTAL_COLS = TOTAL_AMINO_ACIDS + 1 # plus the secondary structure category
CATEGORIES =3 # number of different classification categories

TOTAL_COLS

nNNHE VGG #HTUN

Codes are modifeid from PyTorch and Tensorflow Versions of VGG:
https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py, and
https://github.com/keras-team/keras-applications/blob/master/keras_applications/vggl6.py

nwun

import tensorflow.compat.vl as tf

tf.disable_v2_behavior()

import numpy as np

import pdb

from tensorflow.keras.applications.vgg16 import VGG16 as vggl6
from tensorflow keras.applications.vgg19 import VGG19 as vggl9

_all__=["VGG11I’,’VGG13’,’VGG16’,’'VGG19’]

def VGG(feature, num_cls):

F-2

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

with tf.variable_scope(’fully_connected’) as scope:
dim =np.prod(feature.shape[1:])
x = tf.reshape(feature, [—1, dim])

x = tf.keras.layers.Dense(units=4096, activation="relu’, name=scope.name)(x)
x = tf.keras.layers.Dense(units=4096, activation="relu’, name=scope.name)(x)

x = tf.keras.layers.Dense(units=num_cls, name=scope.name)(x)

return x

def make_layers(x, cfg):
for v in cfg:

ifv=="M"
x = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2, padding="valid’)(x)

else:
x = tf.keras.layers.Conv2D(
filters=v,
kernel_size=[3, 3],
padding="SAME’,
activation=tf.nn.relu
)(x)

return x

cfg = {
A’ [64,°M, 128, "M, 256, 256, 'M’, 512, 512, ’M’, 512, 512, °M’],
B’: [64, 64,°M’, 128, 128, "M, 256, 256, ’M’, 512, 512, M, 512,512, ’M’],
'D’: [64, 64, °M’, 128, 128, "M’ 256, 256, 256, 'M’, 512, 512, 512, ’M’, 512, 512,512, "M’],
E’: [64, 64, M, 128, 128, °M’, 256, 256, 256, 256, 'M’, 512, 512, 512, 512, °’M’,
512,512,512,512,°M’],

def VGG11(x_images, num_cls):
feature = make_layers(x_images, cfg[’A’])
return VGG(feature, num_cls)

def VGG13(x_images, num_cls):
feature = make_layers(x_images, cfg['B’])
return VGG(feature, num_cls)

def VGG16(x_images, num_cls):
feature = make_layers(x_images, cfg[’D’])

return VGG(feature, num_cls)

def VGG19(x_images, num_cls):
feature = make_layers(x_images, cfg['E’])

return VGG(feature, num_cls)

nnngs Net ##M"Y

import tensorflow.compat.vl as tf
tf.disable_v2_behavior()

import math

import pdb

from tensorflow.python.client import device_lib

import numpy as np

H OH OH OH OH O H O#®

from net.vgg import *

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

def CNN_4layers(x_image, num_cls, reuse=False):
_NUM_CLASSES = num_cls

with tf.variable_scope(’conv1’, reuse=reuse) as scope:
conv = tf.keras.layers.Conv2D(
filters=64,
kernel_size=[3, 3],
padding="SAME’,
activation=tf.nn.relu

)(x_image)

with tf.variable_scope(’conv2’, reuse=reuse) as scope:
conv = tf.keras.layers.Conv2D(
filters=64,
kernel_size=[3, 3],
padding="SAME’,
activation=tf.nn.relu
)(conv)

with tf.variable_scope(’conv3’, reuse=reuse) as scope:
conv = tf.keras.layers.Conv2D(
filters=64,
kernel_size=[3, 3],
padding="SAME’,
activation=tf.nn.relu
)(conv)

with tf.variable_scope(’fully_connected’, reuse=reuse) as scope:
dim =np.prod(conv.shape[1:])
flat = tf.reshape(conv, [—1, dim])
outputs = tf.keras.layers.Dense(units=_NUM_CLASSES, name=scope.name)(flat)

return outputs

with tf.variable_scope(’convl’, reuse=reuse) as scope:

conv = tf.keras.layers.Conv2D(

filters=32,

kernel_size=[5, 5],

padding=’>SAME’,

activation=tf.nn.relu

) (x_image)

pool = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2, padding=’valid’) (conv)
N x 16 x 16 x 32

H OH OH OH OH OH OB O H

with tf.variable_scope(’conv2’, reuse=reuse) as scope:
conv = tf.keras.layers.Conv2D(
filters=64,

kernel_size=[3, 3],
padding=’SAME’,
activation=tf.nn.relu

) (pool)

pool = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2, padding=’valid’) (conv)
N x 8 x 8 x 64

with tf.variable_scope(’conv3’, reuse=reuse) as scope:
conv = tf.keras.layers.Conv2D(

filters=64,

198 # kernel_size=[3, 3],

199 # padding=’>SAME’,

200 # activation=tf.nn.relu

201 #) (pool)

202 # pool = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2, padding=’valid’) (conv)
203 # # Nx4x4x64

204

205 # with tf.variable_scope(’fully_connected’, reuse=reuse) as scope:

206 # dim =np.prod(pool.shape[1:])

207 # flat = tf.reshape(pool, [-1, dim])

208 # outputs = tf.keras.layers.Dense(units=_NUM_CLASSES, name=scope.name) (flat)
209

210 # return outputs

211

212 def CNN_7layers(x_image, num_cls, reuse=False):
213 _NUM_CLASSES = num_cls

214 with tf.variable_scope(’conv1’, reuse=reuse) as scope:
215 conv = tf.keras.layers.Conv2D(
216 filters=64,

217 kernel_size=[3, 3],

218 padding="SAME’,

219 activation=tf.nn.relu

220)(x_image)

221 conv = tf.keras.layers.Conv2D(
222 filters=64,

223 kernel_size=[3, 3],

224 padding="SAME’,

225 activation=tf.nn.relu

226)(conv)

227

228 with tf.variable_scope(’conv2’, reuse=reuse) as scope:
229 conv = tf.keras.layers.Conv2D(
230 filters=64,

231 kernel_size=[3, 3],

232 padding="SAME’,

233 activation=tf.nn.relu

234)(conv)

235 conv = tf.keras.layers.Conv2D(
236 filters=64,

237 kernel_size=[3, 3],

238 padding="SAME’,

239 activation=tf.nn.relu

240)(conv)

241

242 with tf.variable_scope(’conv3’, reuse=reuse) as scope:
243 conv = tf.keras.layers.Conv2D(
244 filters=64,

245 kernel_size=[3, 3],

246 padding="SAME’,

247 activation=tf.nn.relu

248)(conv)

249 conv = tf.keras.layers.Conv2D(
250 filters=64,

251 kernel_size=[3, 3],

252 padding="SAME’,

253 activation=tf.nn.relu

254)(conv)

F-5

255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
271
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311

with tf.variable_scope(’fully_connected’, reuse=reuse) as scope:
dim = np.prod(conv.shape[1:])
flat = tf.reshape(conv, [—1, dim])
outputs = tf.keras.layers.Dense(units=_NUM_CLASSES, name=scope.name)(flat)

return outputs

with tf.variable_scope(’convl’, reuse=reuse) as scope:
conv = tf.keras.layers.Conv2D(

filters=32,

kernel_size=[5, 5],

padding=’SAME’,

activation=tf.nn.relu

) (x_image)

#

#

#

#

#

#

#

conv = tf.keras.layers.Conv2D(
filters=32,

kernel_size=[3, 3],

padding=’SAME’,

activation=tf.nn.relu

) (conv)

pool = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2, padding=’valid’) (conv)
#

N x 16 x 16 x 32

with tf.variable_scope(’conv2’, reuse=reuse) as scope:
conv = tf.keras.layers.Conv2D(

filters=64,

kernel_size=[3, 3],

padding=’>SAME’,

activation=tf.nn.relu

) (pool)

conv = tf.keras.layers.Conv2D(

filters=64,

kernel_size=[3, 3],

padding=’SAME’,

activation=tf.nn.relu

) (conv)

pool = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2, padding=’valid’) (conv)
N x 8 x 8 x 64

H OH OH OH OH O OH OH OH OH OH OH OH O H

with tf.variable_scope(’conv3’, reuse=reuse) as scope:
conv = tf.keras.layers.Conv2D(
filters=64,

kernel_size=[3, 3],

padding=’SAME’,

activation=tf.nn.relu

) (pool)

conv = tf.keras.layers.Conv2D(
filters=128,

kernel_size=[3, 3],

padding=’SAME’,

activation=tf.nn.relu

) (conv)

pool = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2, padding=’valid’) (conv)
pool = tf.layers.dropout(pool, rate=0.25, name=scope.name)

Nx 4 x 4 x 128

F-6

312
313
314
315
316
317
318
319
320
321
322
323
324
325

326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367

with tf.variable_scope(’fully_connected’, reuse=reuse) as scope:

#

dim = np.prod(pool.shape[1:])

flat = tf.reshape(pool, [-1, dim])
#

outputs = tf.keras.layers.Dense(units=_NUM_CLASSES, name=scope.name) (flat)
return outputs
def CNN(net, num_cls, dim):

_NUM_CLASSES = num_cls
_IMAGE_HEIGHT, _IMAGE_WIDTH, _IMAGE_CHANNELS = dim

with tf.name_scope(’main_params’):
x = tf.placeholder(tf.float32, shape=[None, _IMAGE_HEIGHT, _.IMAGE_WIDTH, _IMAGE_CHANNELS], name=’
— input_of net’)
y = tf.placeholder(tf.float32, shape=[None, _NUM_CLASSES], name="labels’)

call CNN structure according to string net
outputs = globals()[net](x, _NUM_CLASSES)
outputs = tf.identity(outputs, name="output_of_net’)

return (x, y, outputs)
"t Utilities ##"""

import numpy as np
import math

import scipy.io as sio
import os

import math

import pdb

class ConfigClass(object):
def __init__(self, args, num_data, num_cls):
super(ConfigClass, self).__init__ ()
self.args = args
self.iter_max = args.iter_max

Different notations of regularization term:
In SGD, weight decay:

#
#
weight_decay <- 1lr/(C*num_of_training_samples)
In Newton method:

#

C <- C * num_of_training_samples
self.seed = args.seed

if self.seed is None:
print(’ You_choose_not,_to_specify, a_random, seed.’+\
’A_different_result_is_produced_after_each_run.”)
elif isinstance(self.seed, int) and self.seed >= 0:
print(’ You_specify,random_seed_{}.’ format(self.seed))
else:
raise ValueError(’Only_accept_None,_type_or,_nonnegative_integers_for’+\
’_random_seed_argument!’)

self.train_set = args.train_set
self.val_set = args.val_set

368
369
370
371
372
373
374
375
376
371
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424

self.num_cls = num_cls

self.dim = args.dim

self.num_data = num_data

self.GNsize = min(args.GNsize, self.num_data)

self.C = args.C * self.num_data

self.net = args.net

self.xi = 0.1
self.CGmax = args.CGmax

self._lambda = args._lambda

self.drop = args.drop

self.boost = args.boost

self.eta = args.eta

self.Ir = args.Ir

self.Ir_decay = args.Ir_decay

self.bsize = args.bsize

if args.momentum < 0:

raise ValueError("Momentum,_needs_to_be,_larger,_than_0!")

self. momentum = args.momentum

self.loss = args.loss
if self.loss not in "MSELoss’, CrossEntropy’):
raise ValueError(’Unrecognized, loss_type!”)

self.optim = args.optim
if self.optim not in ("SGD’, "NewtonCG’, *Adam’):

raise ValueError(’Only,_support_SGD,_Adam_&,_ NewtonCG,_optimizer!’)

self.log_file = args.log_file

self.model_file = args.model_file

self.screen_log_only = args.screen_log_only

if self.screen_log_only:

print(’ You_choose_not,_to_store_running_log._Only_store_model_to_{} .format(self.log_file))

else:

print(’Saving,_log_to:_{}’.format(self.log_file))

dir_name, _ = os.path.split(self.log_file)

if not os.path.isdir(dir_name):

os.makedirs(dir_name, exist_ok=True)

dir_name, _ = os.path.split(self.model_file)

if not os.path.isdir(dir_name):

os.makedirs(dir_name, exist_ok=True)

self.elapsed_time = 0.0

def read_data(filename, dim, label_enum=None):

args:

filename: the path where .mat files are stored

label_enum (default None): the list that stores the original labels.

If label_enum is None, the function will generate a new list which stores the

original labels in a sequence, and map original labels to [0, 1,
If label_enum is a list, the function will use it to convert

original labels to [0, 1,...

, number_of_classes-1].

F-8

. number_of_classes-1].

425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481

mat_contents = sio.loadmat(filename)
mat_contents = hdf5storage.loadmat(filename)

images, labels = mat_contents[’Z’], mat_contents[’y’]

labels = labels.reshape(—1)

images = images.reshape(images.shape[0], —1)

_IMAGE_HEIGHT, _IMAGE_WIDTH, _IMAGE_CHANNELS = dim

zero_to_append = np.zeros((images.shape[0],
_IMAGE_CHANNELS+*_IMAGE_HEIGHT*_IMAGE_WIDTH—np.prod(images.shape[1:])))

images = np.append(images, zero_to_append, axis=1)

check data validity

if label_enum is None:
label_enum, labels = np.unique(labels, return_inverse=True)
num_cls = labels.max() + 1

if len(label_enum) != num_cls:
raise ValueError(’The_number_of_classes_is_not_equal_to_the_number,_of\

e ooooolabels_in, dataset., Please,verify, them.”)
else:

num_cls = len(label_enum)

forward_map = dict(zip(label_enum, np.arange(num_cls)))

labels = np.expand_dims(labels, axis=1)

labels = np.apply_along_axis(lambda x:forward_map[x[0]], axis=1, arr=labels)

convert groundtruth to one-hot encoding
labels = np.eye(num_cls)[labels]
labels = labels.astype(’float32’)

return [images, labels], num_cls, label_enum

def normalize_and_reshape(images, dim, mean_tr=None):
_IMAGE_HEIGHT, _IMAGE_WIDTH, _IMAGE_CHANNELS = dim
images_shape = [images.shape[0], _IMAGE_CHANNELS, _IMAGE_HEIGHT, _IMAGE_WIDTH]

images normalization and zero centering

images = images.reshape(images_shape[0], —1)
images = images/255.0

if mean_tr is None:
print('No_mean_of_data_provided! Normalize_images_by,_their_own_mean.”)
if no mean_tr is provided, we calculate it according to the current data
mean_tr = images.mean(axis=0)
else:
print(’Normalize_images_according,_to_the_provided_mean.”)
if np.prod(mean_tr.shape) != np.prod(dim):
raise ValueError(’Dimension,_of_provided_mean_does_not_agree_with_the_data!_Please_verify_them!”)

images = images — mean_tr
images = images.reshape(images_shape)

Tensorflow accepts data shape: B x Hx Wx C
images = np.transpose(images, (0, 2, 3, 1))

F-9

482 return images, mean_tr

483

484

485 def predict(sess, network, test_batch, bsize):
486 X, Y, loss, outputs = network

487

488 test_inputs, test_labels = test_batch

489 batch_size = bsize

490

491 num_data = test_labels.shape[0]

492 num_batches = math.ceil(num_data/batch_size)
493

494 results = np.zeros(shape=num_data, dtype=np.int)
495 infer_loss = 0.0

496

497 for i in range(num_batches):

498 batch_idx = np.arange(ixbatch_size, min((i+1)=*batch_size, num_data))
499

500 batch_input = test_inputs[batch_idx]

501 batch_labels = test_labels[batch_idx]

502

503 net_outputs, _loss = sess.run(

504 [outputs, loss], feed_dict={x: batch_input, y: batch_labels}
505)

506

507 results[batch_idx] = np.argmax(net_outputs, axis=1)
508 # note that _loss was summed over batches
509 infer_loss = infer_loss + _loss

510

511 avg_acc = (np.argmax(test_labels, axis=1) == results).mean()
512 avg_loss = infer_loss/num_data

513

514 return avg_loss, avg_acc, results

515

516 """## Newton - CG ##"""

517

518 # import pdb

519 # import tensorflow as tf

520 # import time

521 # import numpy as np

522 # import os

523 # import math

524 # from utilities import predict

525

526 def Rop(f, weights, v):

527 """Implementation of R operator

528 Args:

529 f: any function of weights

530 weights: list of tensors.

531 v: vector for right multiplication

532 Returns:

533 Jv: Jaccobian vector product, length same as
534 the number of output of f

535 e

536 if type(f) == list:

537 u = [tf.zeros_like(ff) for ff in f]

538 else:

F-10

539 u = tf.zeros_like(f) # dummy variable

540 g = tf.gradients(ys=f, xs=weights, grad_ys=u)
541 return tf.gradients(ys=g, xs=u, grad_ys=v)

542

543 def Gauss_Newton_vec(outputs, loss, weights, v):

544 """Implements Gauss-Newton vector product.

545 Args:

546 loss: Loss function.

547 outputs: outputs of the last layer (pre-softmax).
548 weights: Weights, list of tensors.

549 v: vector to be multiplied with Gauss Newton matrix
550 Returns:

551 J’BJv: Guass-Newton vector product.

552 e

553 # Validate the input
554 if type(weights) == list:

555 if len(v) !=len(weights):
556 raise ValueError("weights_and_v,_must_have_the_same_length.")
557

558 grads_outputs = tf.gradients(ys=loss, xs=outputs)

559 BJv = Rop(grads_outputs, weights, v)

560 JBJv = tf.gradients(ys=outputs, xs=weights, grad_ys=BJv)
561 return JBJv

562

563

564 class newton_cg(object):

565 def __init__(self, config, sess, outputs, loss):

566 e

567 initialize operations and vairables that will be used in newton
568 args:

569 sess: tensorflow session

570 outputs: output of the neural network (pre-softmax layer)
571 loss: function to calculate loss

572 e

573 super(newton_cg, self).__init__ ()

574 self.sess = sess

575 self.config = config

576 self.outputs = outputs

577 self.loss = loss

578 self.param = tf.compat.v1.trainable_variables()

579

580 self.CGiter = 0

581 FLOAT = tf.float32

582 model_weight = self.vectorize(self.param)

583

584 # initial variable used in CG

585 zeros = tf.zeros(model_weight.get_shape(), dtype=FLOAT)
586 self.r = tf. Variable(zeros, dtype=FLOAT, trainable=False)
587 self.v = tf. Variable(zeros, dtype=FLOAT, trainable=False)
588 self.s = tf.Variable(zeros, dtype=FLOAT, trainable=False)
589 self.g = tf. Variable(zeros, dtype=FLOAT, trainable=False)
590 # initial Gv, f for method minibatch

591 self.Gv = tf.Variable(zeros, dtype=FLOAT, trainable=False)
592 self.f = tf. Variable(0., dtype=FLOAT, trainable=False)

593

594 # rTr, cgtol and beta to be used in CG

595 self.rTr = tf.Variable(0., dtype=FLOAT, trainable=False)

F-11

596 self.cgtol = tf. Variable(0., dtype=FLOAT, trainable=False)

597 self.beta = tf. Variable(0., dtype=FLOAT, trainable=False)

598

599 # placeholder alpha, old_alpha and lambda

600 self.alpha = tf.compat.v1.placeholder(FLOAT, shape=[])

601 self.old_alpha = tf.compat.v1.placeholder(FLOAT, shape=[])

602 self._lambda = tf.compat.v1.placeholder(FLOAT, shape=[])

603

604 self.num_grad_segment = math.ceil(self.config.num_data/self.config.bsize)
605 self.num_Gv_segment = math.ceil(self.config. GNsize/self.config.bsize)
606

607 cal_loss, cal_lossgrad, cal_lossGv, \

608 add_reg_avg_loss, add_reg_avg_grad, add_reg_avg_Gv, \

609 zero_loss, zero_grad, zero_Gv = self._ops_in_minibatch()

610

611 # initial operations that will be used in minibatch and newton
612 self.cal_loss = cal_loss

613 self.cal_lossgrad = cal_lossgrad

614 self.cal_lossGv = cal_lossGv

615 self.add_reg_avg_loss = add_reg_avg_loss

616 self.add_reg_avg_grad = add_reg_avg_grad

617 self.add_reg_avg_Gv = add_reg_avg_Gv

618 self.zero_loss = zero_loss

619 self.zero_grad = zero_grad

620 self.zero_Gv = zero_Gv

621

622 self.CG, self.update_v = self._CG()

623 self.init_cg_vars = self._init_cg_vars()

624 self.update_gs = tf.tensordot(self.s, self.g, axes=1)

625 self.update_sGs = 0.5xtf.tensordot(self.s, —self.g—self.r—self._lambdaxself.s, axes=1)
626 self.update_model = self._update_model()

627 self.gnorm = self.calc_norm(self.g)

628

629

630 def vectorize(self, tensors):

631 if isinstance(tensors, list) or isinstance(tensors, tuple):

632 vector = [tf.reshape(tensor, [—1]) for tensor in tensors]

633 return tf.concat(vector, 0)

634 else:

635 return tensors

636

637 def inverse_vectorize(self, vector, param):

638 if isinstance(vector, list):

639 return vector

640 else:

641 tensors = []

642 offset =0

643 num_total_param = np.sum([np.prod(p.shape.as_list()) for p in param])
644 for p in param:

645 numel = np.prod(p.shape.as_list())

646 tensors.append(tf.reshape(vector[offset: offset+numel], p.shape))
647 offset += numel

648

649 assert offset == num_total_param

650 return tensors

651

652 def calc_norm(self, v):

653 # default: frobenius norm

654 if isinstance(v, list):

655 norm = 0.

656 for pin v:

657 norm = norm + tf.norm(tensor=p)xx*2

658 return norms=x*0.5

659 else:

660 return tf.norm(tensor=v)

661

662 def _ops_in_minibatch(self):

663 e

664 Define operations that will be used in method minibatch
665 Vectorization is already a deep copy operation.

666 Before using newton method, loss needs to be summed over training samples
667 to make results consistent.

668 e

669

670 def cal_loss():

671 return tf.compat.v1.assign(self.f, self.f + self.loss)

672

673 def cal_lossgrad():

674 update_f = tf.compat.v1.assign(self.f, self.f + self.loss)

675

676 grad = tf.gradients(ys=self.loss, xs=self.param)

677 grad = self.vectorize(grad)

678 update_grad = tf.compat.v1.assign(self.g, self.g + grad)

679

680 return tf.group(x[update_f, update_grad])

681

682 def cal_lossGv():

683 v = self.inverse_vectorize(self.v, self.param)

684 Gv = Gauss_Newton_vec(self.outputs, self.loss, self.param, v)

685 Gyv = self.vectorize(Gv)

686 return tf.compat.v1.assign(self.Gv, self.Gv + Gv)

687

688 # add regularization term to loss, gradient and Gv and further average over batches
689 def add_reg_avg_loss():

690 model_weight = self.vectorize(self.param)

691 reg = (self.calc_norm(model_weight))*x*2

692 reg = 1.0/(2xself.config.C) * reg

693 return tf.compat.v1l.assign(self.f, reg + self.t/self.config.num_data)
694

695 def add_reg_avg_lossgrad():

696 model_weight = self.vectorize(self.param)

697 reg_grad = model_weight/self.config.C

698 return tf.compat.v1.assign(self.g, reg_grad + self.g/self.config.num_data)
699

700 def add_reg_avg_lossGv():

701 return tf.compat.v1.assign(self.Gv, (self._lambda + 1/self.config.C)x*self.v
702 + self.Gv/self.config. GNsize)

703

704 # zero out loss, grad and Gv

705 def zero_loss():

706 return tf.compat.v1.assign(self.f, tf.zeros_like(self.f))

707 def zero_grad():

708 return tf.compat.v1.assign(self.g, tf.zeros_like(self.g))

709 def zero_Gv():

F-13

710 return tf.compat.v1.assign(self.Gv, tf.zeros_like(self.Gv))

711

712 return (cal_loss(), cal_lossgrad(), cal_lossGv(),

713 add_reg_avg_loss(), add_reg_avg_lossgrad(), add_reg_avg_lossGv(),
714 zero_loss(), zero_grad(), zero_Gv())

715

716 def minibatch(self, data_batch, place_holder_x, place_holder_y, mode):
717 e

718 A function to evaluate either function value, global gradient or sub-sampled Gv
719 e

720 if mode not in ("funonly’, *fungrad’, ’Gv’):

721 raise ValueError(’Unknown,_mode_other_than_funonly & _fungrad_& _Gv!’)
722

723 inputs, labels = data_batch

724 num_data = labels.shape[0]

725 num_segment = math.ceil(num_data/self.config.bsize)

726 X, y = place_holder_x, place_holder_y

727

728 # before estimation starts, need to zero out f, grad and Gv according to the mode
729

730 if mode == "funonly’:

731 assert num_data == self.config.num_data

732 assert num_segment == self.num_grad_segment

733 self.sess.run(self.zero_loss)

734 elif mode == "fungrad’:

735 assert num_data == self.config.num_data

736 assert num_segment == self.num_grad_segment

737 self.sess.run([self.zero_loss, self.zero_grad])

738 else:

739 assert num_data == self.config.GNsize

740 assert num_segment == self.num_Gv_segment

741 self.sess.run(self.zero_Gv)

742

743 for i in range(num_segment):

744

745 load_time = time.time()

746 idx = np.arange(i * self.config.bsize, min((i+1) * self.config.bsize, num_data))
747 batch_input = inputs[idx]

748 batch_labels = labels[idx]

749 batch_input = np.ascontiguousarray(batch_input)

750 batch_labels = np.ascontiguousarray(batch_labels)

751 self.config.elapsed_time += time.time() — load_time

752

753 if mode == "funonly’:

754

755 self.sess.run(self.cal_loss, feed_dict={

756 x: batch_input,

757 y: batch_labels, })

758

759 elif mode == ’fungrad’:

760

761 self.sess.run(self.cal_lossgrad, feed_dict={

762 x: batch_input,

763 y: batch_labels, })

764

765 else:

766

F-14

767
768
769
770
771
772
773
774
775
776
771
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823

self.sess.run(self.cal_lossGv, feed_dict={
x: batch_input,
y: batch_labels})

average over batches
if mode == "funonly’:

self.sess.run(self.add_reg_avg_loss)
elif mode == ’fungrad’:

self.sess.run([self.add_reg_avg_loss, self.add_reg_avg_grad])
else:

self.sess.run(self.add_reg_avg_Gv,

feed_dict={self._lambda: self.config._lambda})

def _update_model(self):
update_model_ops =[]
x = self.inverse_vectorize(self.s, self.param)
for i, p in enumerate(self.param):
op = tf.compat.v1.assign(p, p + (self.alpha—self.old_alpha) * x[i])
update_model_ops.append(op)
return tf.group(xupdate_model_ops)

def _init_cg_vars(self):

init_ops =[]

init_r = tf.compat.v1.assign(self.r, —self.g)

init_v = tf.compat.v1.assign(self.v, —self.g)

init_s = tf.compat.v1.assign(self.s, tf.zeros_like(self.g))
gnorm = self.calc_norm(self.g)

init_r'Tr = tf.compat.v1.assign(self.rTr, gnorms=2)

init_cgtol = tf.compat.v1.assign(self.cgtol, self.config.xixgnorm)
init_ops = [init_r, init_v, init_s, init_rTr, init_cgtol]
return tf.group(xinit_ops)

def _CG(self):
wun
CG:
define operations that will be used in method newton
Same as the previous loss calculation,

Gv has been summed over batches when samples were fed into Neural Network.

wnn

def CG_ops():
vGv = tf.tensordot(self.v, self.Gv, axes=1)

alpha = self.rTr / vGv
with tf.control_dependencies([alpha]):
update_s = tf.compat.v1.assign(self.s, self.s + alpha * self.v, name="update_s_ops’)

update_r = tf.compat.v1.assign(self.r, self.r — alpha * self.Gv, name="update_r_ops’)

with tf.control_dependencies([update_s, update_r]):
rewTrnew = self.calc_norm(update_r)**2
update_beta = tf.compat.v1.assign(self.beta, rnewTrnew / self.r'Tr)
with tf.control_dependencies([update_beta]):

F-15

824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880

update_rTr = tf.compat.v1.assign(self.rTr, rnewTrnew, name="update_rTr_ops’)
return tf.group(x[update_s, update_beta, update_rTr])

def update_v():
return tf.compat.v1.assign(self.v, self.r + self.betaxself.v, name="update_v’)

return (CG_ops(), update_v())

def newton(self, full_batch, val_batch, saver, network, test_network=None):
Conduct newton steps for training
args:
full_batch & val_batch: provide training set and validation set. The function will
save the best model evaluted on validation set for future prediction.
network: a tuple contains (x, y, loss, outputs).
test_network: a tuple similar to argument network. If you use layers which behave differently
in test phase such as batchnorm, a separate test_network is needed.
return:
None
check whether data is valid
full_inputs, full_labels = full_batch
assert full_inputs.shape[0] == full_labels.shape[0]

if full_inputs.shape[0] != self.config.num_data:
raise ValueError('The_number,_of_full_batch_inputs_does_not_agree_with_the_config_argument.\
This_jis_important_because_global_loss_is_averaged_over_those_inputs’)

[T TR T TR TR TR TR TR TR T

X, Y, _, outputs = network

tf.compat.v1l.summary.scalar(’loss’, self.f)
merged = tf.compat.v1.summary.merge_all()

train_writer = tf.compat.vl.summary.FileWriter(’./summary/train’, self.sess.graph)

print(self.config.args)

if not self.config.screen_log_only:
log_file = open(self.config.log_file, 'w’)
print(self.config.args, file=log_file)

self.minibatch(full_batch, x, y, mode="fungrad’)

f = self.sess.run(self.f)

output_str = "initial_f:_{:.3f} .format(f)

print(output_str)

if not self.config.screen_log_only:
print(output_str, file=log_file)

best_acc = 0.0
total_running_time = 0.0
self.config.elapsed_time = 0.0
total_CG =0

for k in range(self.config.iter_max):

randomly select the batch for Gv estimation

F-16

881 idx = np.random.choice(np.arange(0, full_labels.shape[0]),

882 size=self.config.GNsize, replace=False)
883

884 mini_inputs = full_inputs[idx]

885 mini_labels = full_labels[idx]

886

887 start = time.time()

888

889 self.sess.run(self.init_cg_vars)

890 cgtol = self.sess.run(self.cgtol)

891

892 avg_cg_time = 0.0

893 for CGiter in range(1, self.config.CGmax+1):
894

895 cg_time = time.time()

896 self.minibatch((mini_inputs, mini_labels), x, y, mode="Gv’)
897 avg_cg_time += time.time() — cg_time

898

899 self.sess.run(self.CG)

900

901 rmewTrnew = self.sess.run(self.rTr)

902

903 if rnewTrnew=x0.5 <= cgtol or CGiter == self.config.CGmax:
904 break

905

906 self.sess.run(self.update_v)

907

908 print(’Avg,_time_per,_Gv_iteration:_{:.5f}_s\r\n’.format(avg_cg_time/CGiter))
909

910 gs, sGs = self.sess.run([self.update_gs, self.update_sGs], feed_dict={
911 self._lambda: self.config._lambda

912 1)

913

914 # line_search

915 fold=f

916 alpha =1

917 while True:

918

919 old_alpha = 0 if alpha == 1 else alpha/0.5
920

921 self.sess.run(self.update_model, feed_dict={
922 self.alpha:alpha, self.old_alpha:old_alpha
923 1))

924

925 prered = alphaxgs + (alphax*2)*sGs

926

927 self.minibatch(full_batch, x, y, mode="funonly”)
928 f = self.sess.run(self.f)

929

930 actred =f — f_old

931

932 if actred <= self.config.etaxalphaxgs:

933 break

934

935 alpha %= 0.5

936

937 # update lambda

938 ratio = actred / prered

939 if ratio < 0.25:

940 self.config._lambda x= self.config.boost

941 elif ratio >= 0.75:

942 self.config._lambda *= self.config.drop

943

944 self.minibatch(full_batch, x, y, mode="fungrad’)

945 f = self.sess.run(self.f)

946

947 gnorm = self.sess.run(self.gnorm)

948

949 summary = self.sess.run(merged)

950 train_writer.add_summary(summary, k)

951

952 # exclude data loading time for fair comparison

953 end = time.time()

954

955 end = end — self.config.elapsed_time

956 total_running_time += end—start

957

958 self.config.elapsed_time = 0.0

959

960 total_CG += CGiter

961

962 output_str = "{ }—iter_f:_{:.3f}_lgl:_{:.5f} _alpha:_{:.3e} _ratio:_{:.3f} _lambda:_{:.5f}_#CG:_{}_actred:_{:.5f}_prered:
— {5} _time:_{:3f}".\

963 format(k, f, gnorm, alpha, actred/prered, self.config._lambda, CGiter, actred, prered, end—start)

964 print(output_str)

965 if not self.config.screen_log_only:

966 print(output_str, file=log_file)

967

968 if val_batch is not None:

969 # Evaluate the performance after every Newton Step

970 if test_network == None:

971 val_loss, val_acc, _ = predict(

972 self.sess,

973 network=(x, y, self.loss, outputs),

974 test_batch=val_batch,

975 bsize=self.config.bsize,

976)

977 else:

978 # A separat test network part has not been done...

979 val_loss, val_acc, _ = predict(

980 self.sess,

981 network=test_network,

982 test_batch=val_batch,

983 bsize=self.config.bsize

984)

985

986 output_str = "\r\n_{ } —iter_val_acc:_{:.3f}%_val_loss_{:.3f}\r\n’.\

987 format(k, val_accx100, val_loss)

988 print(output_str)

989 if not self.config.screen_log_only:

990 print(output_str, file=log_file)

991

992 if val_acc > best_acc:

993 best_acc = val_acc

994

995

996

997

998

999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014

1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049

checkpoint_path = self.config.model_file
save_path = saver.save(self.sess, checkpoint_path)
print(’Best_model_saved_in_{}\r\n’.format(save_path))

if val_batch is None:
checkpoint_path = self.config.model_file
save_path = saver.save(self.sess, checkpoint_path)
print("Model_at_the_last_iteration_saved_in_{}\r\n’ format(save_path))
output_str = "total_#CG_{}_|_total_running_time_({:.3f}s’.format(total_CG, total_running_time)
else:
output_str = "Final_acc:_{:.3f}%_|_best_acc_{:.3f}%_|_total #CG_{}_|_total_running, time_({:3f}s’.\
format(val_acc100, best_acc+100, total_CG, total_running_time)
print(output_str)
if not self.config.screen_log_only:
print(output_str, file=log_file)
log_file.close()

"""##Set Train Arguments##"""

Arguments for HF0O - PSSP dataset
train_args = ("——optim, NewtonCG_——GNsize,_2048_——C_0.01_——net_CNN_4layers_——bsize 12288 _,——iter_max_50_,
— "+
"——train_set_./" + TRAIN_FILE + "_——val_set_./" + TEST_FILE +"_——dim_" +
str(WINDOW) + "_" + str(AMINO_ACID_LEN) + "_1").split()

Arguments for SGD - PSSP dataset

train_args = ("--optim SGD --1r 0.01 --C 0.01 --net CNN_4layers --bsize 256 " +
"--train_set ./" + TRAIN_FILE + " --val_set ./" + TEST_FILE + " --dim " +

str(WINDOW) + " " + str(AMINO_ACID_LEN) + " 1").split()

"""##Declare Train Function##"""

import pdb

import numpy as np

import tensorflow as tf

tf.compat.vl.disable_eager_execution()
import time

import math

import argparse

from net.net import CNN
from newton_cg import newton_cg

from utilities import read_data, predict, ConfigClass, normalize_and_reshape

def parse_args():
parser = argparse.ArgumentParser(description="Newton_method_on_DNN’)
parser.add_argument(’ ——C’, dest="C’,
help="regularization_term,_or_so—called_weight,_decay_where’+\
weight_decay_=_lr/(Cxnum_of_samples)_in_this_implementation’ ,
default=0.01, type=float)

Newton method arguments

parser.add_argument(’ ——GNsize’, dest="GNsize’,
help="number_of_samples_for_estimating_Gauss—Newton_matrix’,
default=4096, type=int)

parser.add_argument(’ ——iter_max’, dest="iter_max’,

help="the_maximal_number_of,_Newton_iterations’,

F-19

1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106

default=100, type=int)

parser.add_argument(’ ——xi’, dest="xi’,
help="the_tolerance_in_the_relative_stopping,condition_for_CG’,
default=0.1, type=float)

parser.add_argument(’ ——drop’, dest="drop’,
help="the_drop_constants_for_the_LM, method’,
default=2/3, type=float)

parser.add_argument(’——boost’, dest="boost’,
help="the_boost_constants_for_the_LM_method’,
default=3/2, type=float)

parser.add_argument(’ ——eta’, dest="eta’,
help="the_parameter_for_the_line_search_stopping_condition’,
default=0.0001, type=float)

parser.add_argument(’ ——CGmax’, dest="CGmax’,
help="the_maximal_number_of_CG_iterations’,
default=250, type=int)

parser.add_argument(’ ——lambda’, dest="_lambda’,
help="the_initial_lambda_for_the LM, method’,
default=1, type=float)

SGD arguments

parser.add_argument(’ ——epoch_max’, dest="epoch’,
help="number_of_training,_epoch’,
default=500, type=int)

parser.add_argument(’ ——1r’, dest="Ir’,
help="learning_rate’,
default=0.01, type=float)

parser.add_argument(’ ——decay’, dest="lr_decay’,
help="learning_rate_decay_over_each_mini—batch_update’,
default=0, type=float)

parser.add_argument(’ ——momentum’, dest="momentum’,
help="momentum_of_learning’,
default=0, type=float)

Model training arguments
parser.add_argument(’ ——bsize’, dest="bsize’,
help="batch_size_to_evaluate_stochastic_gradient, Gv,_etc._Since_the_sampled_data_\
oo for_computing, Gauss—Newton_matrix_and,_etc.,_might_not_fit_into_memeory, \

for_one_time,_we_will_split_the_data_jinto_several_segements_and_average\

[T T TR TR TR TR}

e eesoooover_them.”,
default=1024, type=int)

parser.add_argument(’ ——net’, dest="net’,
help="classifier_type’,
default="CNN_4layers’, type=str)

parser.add_argument(’ ——train_set’, dest="train_set’,
help="provide_the_directory_of_.mat_file_for_training’,
default=None, type=str)

parser.add_argument(’ ——val_set’, dest="val_set’,
help="provide_the_directory_of_.mat_file_for_validation’,
default=None, type=str)

parser.add_argument(’ ——model’, dest="model_file’,
help="model_saving,_address’,
default="./saved_model/model.ckpt’, type=str)

parser.add_argument(’ ——log’, dest="log_file’,
help="log_saving,_ directory’,
default="./running_log/logger.log’, type=str)

parser.add_argument(’ ——screen_log_only’, dest="screen_log_only’,

F-20

1107 help="screen,_printing_running, log, instead, of_storing_it’,

1108 action="store_true’)

1109 parser.add_argument(’ ——optim’, ’—optim’,

1110 help="which_optimizer_to_use:_ SGD,_Adam_or,_NewtonCG’,

1111 default="NewtonCG’, type=str)

1112 parser.add_argument(’ ——loss’, dest="loss’,

1113 help="which_loss_function_to_use: MSELoss_or_CrossEntropy’,
1114 default="MSELoss’, type=str)

1115 parser.add_argument(’ ——dim’, dest="dim’, nargs="+’, help="input_dimension_,of_data,’+\
1116 ’shape_must_be:_, height_width_num_channels’,

1117 default=[32, 32, 3], type=int)

1118 parser.add_argument(’ ——seed’, dest="seed’, help="a_nonnegative_integer_for_\
1119 o eooooreproducibility’, type=int)

1120

1121 args = parser.parse_args(args=train_args)

1122 return args

1123

1124

1125 args = parse_args()

1126

1127 def init_model(param):
1128 init_ops =[]
1129 for p in param:

1130 if "kernel’ in p.name:

1131 weight = np.random.standard_normal(p.shape)* np.sqrt(2.0 / ((np.prod(p.get_shape().as_listO)[:—1]))))
1132 opt = tf.compat.v1.assign(p, weight)

1133 elif ’bias’ in p.name:

1134 zeros = np.zeros(p.shape)

1135 opt = tf.compat.v1.assign(p, zeros)

1136 init_ops.append(opt)

1137 return tf.group(xinit_ops)
1138
1139 def gradient_trainer(config, sess, network, full_batch, val_batch, saver, test_network):

1140 X, Y, loss, outputs, = network

1141

1142 global_step = tf.Variable(initial_value=0, trainable=False, name="global_step’)
1143 learning_rate = tf.compat.v1.placeholder(tf.float32, shape=[], name="learning_rate’)
1144

1145 # Probably not a good way to add regularization.

1146 # Just to confirm the implementation is the same as MATLAB.

1147 reg =0.0

1148 param = tf.compat.v1.trainable_variables()

1149 for p in param:

1150 reg = reg + tf.reduce_sum(input_tensor=tf.pow(p,2))
1151 reg_const = 1/(2xconfig.C)

1152 batch_size = tf.compat.v1.cast(tf.shape(x)[0], tf.float32)

1153 loss_with_reg = reg_const+reg + loss/batch_size

1154

1155 if config.optim == "SGD’:

1156 optimizer = tf.compat.v1.train.MomentumOptimizer(
1157 learning_rate=learning_rate,

1158 momentum=config.momentum).minimize(
1159 loss_with_reg,

1160 global_step=global_step)

1161 elif config.optim == *Adam’:

1162 optimizer = tf.compat.v1.train.AdamOptimizer(learning_rate=learning_rate,
1163 betal=0.9,

F-21

1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220

beta2=0.999,
epsilon=1e—08).minimize(
loss_with_reg,
global_step=global_step)

train_inputs, train_labels = full_batch
num_data = train_labels.shape[0]

num_iters = math.ceil(num_data/config.bsize)

print(config.args)

if not config.screen_log_only:
log_file = open(config.log_file, 'w’)
print(config.args, file=log_file)

sess.run(tf.compat.v1.global_variables_initializer())

print(——H—H—M———————— _initializing_network_by_methods_in_He_et_al. (2015)_

param = tf.compat.v1.trainable_variables()

sess.run(init_model(param))

total_running_time = 0.0
best_acc = 0.0
Ir = config.Ir

for epoch in range(0, args.epoch):

loss_avg = 0.0

start = time.time()

for i in range(num_iters):

load_time = time.time()
randomly select the batch
idx = np.random.choice(np.arange(0, num_data),

size=config.bsize, replace=False)

batch_input = train_inputs[idx]

batch_labels = train_labels[idx]

batch_input = np.ascontiguousarray(batch_input)
batch_labels = np.ascontiguousarray(batch_labels)
config.elapsed_time += time.time() — load_time

step, _, batch_loss= sess.run(

—

[global_step, optimizer, loss_with_reg],

feed_dict = {x: batch_input, y: batch_labels, learning_rate: Ir}

)

print initial loss

ifepoch==0andi==0:

output_str = "initial_f_(reg_+_avg._loss_of_1st_batch):_{:.3f} .format(batch_loss)

print(output_str)
if not config.screen_log_only:

print(output_str, file=log_file)

loss_avg = loss_avg + batch_loss
print log every 10% of the iterations
if i % math.ceil(num_iters/10) == 0:

F-22

1221 end = time.time()

1222 output_str = "Epoch_{}: {}/{}_l_loss_{:.4f} I Ir_{:.6}_|_elapsed_time_{:3f}’\
1223 format(epoch, i, num_iters, batch_loss , Ir, end—start)

1224 print(output_str)

1225 if not config.screen_log_only:

1226 print(output_str, file=log_file)

1227

1228 # adjust learning rate for SGD by inverse time decay
1229 if args.optim !="Adam’:

1230 Ir = config.Ir/(1 + args.Ir_decay=step)

1231

1232 # exclude data loading time for fair comparison

1233 epoch_end = time.time() — config.elapsed_time

1234 total_running_time += epoch_end — start

1235 config.elapsed_time = 0.0

1236

1237 if val_batch is None:

1238 output_str = In_epoch,_{} _train_loss:_{:.3f}_I|_epoch_time_{:.3f}"\
1239 format(epoch, loss_avg/(i+1), epoch_end—start)

1240 else:

1241 if test_network == None:

1242 val_loss, val_acc, _ = predict(

1243 sess,

1244 network=(x, y, loss, outputs),

1245 test_batch=val_batch,

1246 bsize=config.bsize

1247)

1248 else:

1249 # A separat test network part have been done...

1250 val_loss, val_acc, _ = predict(

1251 sess,

1252 network=test_network,

1253 test_batch=val_batch,

1254 bsize=config.bsize

1255)

1256

1257 output_str = "In_epoch_ {} _train_loss:_{:.3f}_I_val_loss:_{:.3f}_|l _val_accuracy: {:.3f}%_|_epoch_time_{:.3f}’\
1258 format(epoch, loss_avg/(i+1), val_loss, val_accx100, epoch_end—start)
1259

1260 if val_acc > best_acc:

1261 best_acc = val_acc

1262 checkpoint_path = config.model_file

1263 save_path = saver.save(sess, checkpoint_path)

1264 print(’Saved_best_model_in_{} .format(save_path))

1265

1266 print(output_str)

1267 if not config.screen_log_only:

1268 print(output_str, file=log_file)

1269

1270 if val_batch is None:

1271 checkpoint_path = config.model_file

1272 save_path = saver.save(sess, checkpoint_path)

1273 print(’Model_at_the_last_iteration_saved_in_{}\r\n’.format(save_path))
1274 output_str = "total_running,_time_ {:.3f}s’ format(total_running_time)
1275 else:

1276 output_str = "Final_acc:_{:.3f}%_|_best_acc_{:.3f}%_|_total_running_time_{:.3f}s’\
1277 format(val_accx100, best_acc*100, total_running_time)

F-23

1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334

print(output_str)

if not config.screen_log_only:
print(output_str, file=log_file)
log_file.close()

def newton_trainer(config, sess, network, full_batch, val_batch, saver, test_network):

_, _, loss, outputs = network
newton_solver = newton_cg(config, sess, outputs, loss)

sess.run(tf.compat.v1.global_variables_initializer())

param = tf.compat.v1.trainable_variables()
sess.run(init_model(param))
newton_solver.newton(full_batch, val_batch, saver, network, test_network)

def train_model():

full_batch, num_cls, label_enum = read_data(filename=args.train_set, dim=args.dim)

if args.val_set is None:
print(’No_validation_gset,_is_provided._Will_output_model_at_the_last_iteration.”)
val_batch = None

else:

val_batch, _, _ =read_data(filename=args.val_set, dim=args.dim, label_enum=label_enum)

num_data = full_batch[0].shape[0]
config = ConfigClass(args, num_data, num_cls)

if isinstance(config.seed, int):
tf.compat.v1l.random.set_random_seed(config.seed)
np.random.seed(config.seed)

if config.net in CCNN_4layers’, "CNN_7layers’, "VGG11’, ’'VGG13’, ’'VGG16’,"VGG19’):
X, y, outputs = CNN(config.net, num_cls, config.dim)
test_network = None

else:
raise ValueError(’Unrecognized,_training,model’)

if config.loss == "MSELoss’:
loss = tf.reduce_sum(input_tensor=tf.pow(outputs—y, 2))
else:
loss = tf.reduce_sum(input_tensor=tf.nn.softmax_cross_entropy_with_logits(logits=outputs, labels=y))

network = (X, y, loss, outputs)

sess_config = tf.compat.v1.ConfigProto()
sess_config.gpu_options.allow_growth = True

with tf.compat.v1.Session(config=sess_config) as sess:
full_batch[0], mean_tr = normalize_and_reshape(full_batch[0], dim=config.dim, mean_tr=None)

if val_batch is not None:

val_batch[0], _ = normalize_and_reshape(val_batch[0], dim=config.dim, mean_tr=mean_tr)

F-24

1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363

1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390

param = tf.compat.v1.trainable_variables()

mean_param = tf.compat.v1.get_variable(name="mean_tr’, initializer=mean_tr, trainable=False,
validate_shape=True, use_resource=False)

label_enum_var=tf.compat.v1.get_variable(name="label_enum’, initializer=label_enum, trainable=False,
validate_shape=True, use_resource=False)

saver = tf.compat.v1.train.Saver(var_list=param+[mean_param])

if config.optim in CSGD’, ’Adam’):
gradient_trainer(
config, sess, network, full_batch, val_batch, saver, test_network)
elif config.optim == "NewtonCG’:
newton_trainer(

config, sess, network, full_batch, val_batch, saver, test_network=test_network)
W Train #ENM0
train_model()
W Predict #ENMY

Arguments for prediction PSSP dataset
pred_args = ("——bsize_1024_——test_set_./" + TEST_FILE + "_——train_set_./" + TRAIN_FILE +

——model,./saved_model/model.ckpt_——dim_" +
str(WINDOW) + "_" + str(AMINO_ACID_LEN) + "_1").split()

test_origin = "https://gitlab.com/perf.ai/pssp_project/—/raw/master/originalData_" + dataset + "/testSet" + str(ds_num) + ".txt"

train_origin = "https://gitlab.com/perf.ai/pssp_project/—/raw/master/originalData_" + dataset + "/trainSet" + str(ds_num) + ".txt"

excluded_proteins = "https://gitlab.com/perf.ai/pssp_project/—/raw/master/originalData_" + dataset + "/excluded_" + dataset + ".
— txt"

train_origin, test_origin, excluded_proteins

import requests

test_f = requests.get(test_origin)

test_f = test_f.text.split("\n’)[0:—1]

train_f = requests.get(train_origin)

train_f = train_f.text.split("\n")[0: —1]
excluded_f = requests.get(excluded_proteins)
excluded_f = excluded_f.text.split("\n")[0: —1]

excluded_f

TEST_PRED_FILE="pred_testSet{0}.txt".format(ds_num)
TRAIN_PRED_FILE="pred_trainSet{0}.txt".format(ds_num)
TEST_PRED_FILE

""hH#Declare Predict Methods##"""

def create_output_pred(pred_test, pred_train):
pred = pred_test.astype(int)
labels = ['C’, ’E’, "H’]
counter =0
outFileName = TEST_PRED_FILE
with open(outFileName, w’) as out_file:
for line in range(0, len(test_f)//3):
protein_name = test_f[linex3]
if (protein_name in excluded_f):

F-25

1391 # print(protein_name)

1392 continue

1393 primary_structure = test_f[linex3+1].replace(’!’, *”)
1394 secondary_structure = test_f[linex3+2].replace(’!’, *”)
1395 prediction =""

1396 for c in secondary_structure:

1397 if (c!="0"):

1398 prediction = prediction + labels[pred[counter]]
1399 counter += 1

1400 # else:

1401 # prediction = prediction + c

1402 # print("Protein name: " + protein_name)
1403 # print("Actual: " + secondary_structure)
1404 # print("Prediction: " + prediction)

1405 out_file.write(protein_name + "\n")

1406 out_file.write(primary_structure + "\n")

1407 out_file.write(secondary_structure + "\n")

1408 out_file.write(prediction + "\n")

1409 pred = pred_train.astype(int)

1410 counter = 0

1411 outFileName = TRAIN_PRED_FILE

1412 with open(outFileName, "w’) as out_file:

1413 for line in range(0, len(train_f)//3):

1414 protein_name = train_{[linex3]

1415 if (protein_name in excluded_f):

1416 # print(protein_name)

1417 continue

1418 primary_structure = train_f[linex3+1].replace(’!’, **)
1419 secondary_structure = train_f[linex3+2].replace(’!’, ’’)
1420 prediction =""

1421 for c in secondary_structure:

1422 if (c!="0"):

1423 prediction = prediction + labels[pred[counter]]
1424 counter += 1

1425 # else:

1426 # prediction = prediction + c

1427 # print("Protein name: " + protein_name)
1428 # print("Actual: " + secondary_structure)
1429 # print("Prediction: " + prediction)

1430 out_file.write(protein_name + "\n")

1431 out_file.write(primary_structure + "\n")

1432 out_file.write(secondary_structure + "\n")

1433 out_file.write(prediction + "\n")

1434

1435 # import tensorflow as tf

1436 # tf.compat.vl.disable_eager_execution()

1437 # from utilities import predict, read_data, normalize_and_reshape
1438 # from net.net import CNN

1439 # import numpy as np

1440 # import argparse

1441 # import pdb

1442

1443 def parse_args():

1444 parser = argparse.ArgumentParser(description="prediction’)

1445 parser.add_argument(’ ——test_set’, dest="test_set’,
1446 help="provide_the_directory_of_.mat_file_for_testing’,
1447 default=None, type=str)

F-26

1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504

parser.add_argument(’ ——train_set’, dest="train_set’,
help="provide_the_directory_of,_.mat_file_for_training’,
default=None, type=str)

parser.add_argument(’ ——model’, dest="model_file’,
help="provide_file_storing_network_parameters,_i.e._./dir/model.ckpt’,
default="./saved_model/model.ckpt’, type=str)

parser.add_argument(’ ——bsize’, dest="bsize’,
help="batch_size’,
default=1024, type=int)

parser.add_argument(’ ——loss’, dest="loss’,
help="which_loss_function_to_use: MSELoss_or_CrossEntropy’,
default="MSELoss’, type=str)

parser.add_argument(’ ——dim’, dest="dim’, nargs="+’, help="input_dimension_of,_data,”+\
’shape_must_be:_, height_width_num_channels’,
default=[32, 32, 3], type=int)

args = parser.parse_args(args=pred_args)
return args

def predict_model():

args = parse_args()

sess_config = tf.compat.v1.ConfigProto()

sess_config.gpu_options.allow_growth = True

with tf.compat.v1.Session(config=sess_config) as sess:
graph_address = args.model_file + ’.meta’
imported_graph = tf.compat.v1.train.import_meta_graph(graph_address)
imported_graph.restore(sess, args.model_file)
mean_param = [v for v in tf.compat.v1.global_variables() if "'mean_tr:0’ in v.name][0]

label_enum_var = [v for v in tf.compat.v1.global_variables() if "label_enum:0’ in v.name][0]

sess.run(tf.compat.vl.variables_initializer([mean_param, label_enum_var]))
mean_tr = sess.run(mean_param)

label_enum = sess.run(label_enum_var)

test_batch, num_cls, _ = read_data(args.test_set, dim=args.dim, label_enum=label_enum)

test_batch[0], _ = normalize_and_reshape(test_batch[0], dim=args.dim, mean_tr=mean_tr)

x = tf.compat.v1.get_default_graph().get_tensor_by_name(’main_params/input_of_net:0”)
y = tf.compat.v1.get_default_graph().get_tensor_by_name(’main_params/labels:0”)

outputs = tf.compat.v1.get_default_graph().get_tensor_by_name(’output_of_net:0’)

if args.loss == "MSELoss’:
loss = tf.reduce_sum(input_tensor=tf.pow(outputs—y, 2))
else:
loss = tf.reduce_sum(input_tensor=tf.nn.softmax_cross_entropy_with_logits(logits=outputs, labels=tf.stop_gradient(y)))

network = (X, y, loss, outputs)

avg_loss, avg_acc, results = predict(sess, network, test_batch, args.bsize)
convert results back to the original labels

inverse_map = dict(zip(np.arange(num_cls), label_enum))

results = np.expand_dims(results, axis=1)

results = np.apply_along_axis(lambda x: inverse_map[x[0]], axis=1, arr=results)

F-27

1505 train_batch, num_cls, _ = read_data(args.train_set, dim=args.dim, label_enum=label_enum)

1506 train_batch[0], _ = normalize_and_reshape(train_batch[0], dim=args.dim, mean_tr=mean_tr)
1507

1508 avg_loss_train, avg_acc_train, results_train = predict(sess, network, train_batch, args.bsize)
1509 # convert results back to the original labels

1510 inverse_map = dict(zip(np.arange(num_cls), label_enum))

1511 results_train = np.expand_dims(results_train, axis=1)

1512 results_train = np.apply_along_axis(lambda x: inverse_map[x[0]], axis=1, arr=results_train)
1513

1514 create_output_pred(results, results_train)

1515

1516 print(’In_test_phase,_average_loss:_{:.3f}_|_average_accuracy:_{:.3f}%’.\

1517 format(avg_loss, avg_accx100))

1518

1519 print(’In_train_phase,_average_loss:_{:.3f}_|_average_accuracy:_{:.3f}%’.\

1520 format(avg_loss_train, avg_acc_trainx100))

1521

1522 """##Run Predict and Display output##"""

1523

1524 predict_model()

1525

1526 # !'cat "$TEST_PRED_FILE"

1527

1528 # !cat "$TRAIN_PRED_FILE"

F-28

Appendix G

Ensembles Program

This Python program was used to combine the results from multiple trained models using

the ensembles method. It was provided by Dionysiou [24].

1 from numpy import *
2 import string as string
3 import sys
4
5
6 class Ensembles:
7 def run(filenames, windowSize, ensemble, outPred, outSOV, outWeka):
8 f = open(outPred, "w"
9 files = open(filenames, "r").readlines()
10 files = [w.replace(’\n’, **) for w in files]
11 files = [open(i, "r") for i in files]
12 i=0
13 LABELS =['C’,’E’, "H’,’!"]
14 if ensemble == 1:
15 for rows in zip(«files):
16 ifi==3:
17 for j in range(0, len(rows[0].translate(str.maketrans(’’, *’, string.whitespace))), 1):
18 count = [0, 0, 0, 0]
19 for k in range(0, len(rows), 1):
20 if rows[k][j] =="C’:
21 count[0] +=1
22 elif rows[k][j] =="E’:
23 count[1] +=1
24 elif rows[k][j] =="H":
25 count[2] +=1
26 else:
27 count[3] +=1
28 f.write(LABELS[argmax(count)])
29 f.write("\n’)
30 i=0
31 else:
32 f.write(rows[0])
33 i+=1
34 f.close()
35 else:
36 printCERROR!!!_Invalid_ensemble_option.”)
37

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

count accuracy

f = open(outPred, "r")

lines = f.readlines()

f.close()

count =0

countall =0

for i in range(0, len(lines), 4):

for j in range(0, len(lines[i + 2].translate(str.maketrans(’’, *’, string.whitespace))), 1):
if lines[i + 2][j] == lines[i + 3][j]:
count += 1

countall += 1

print(’ Accuracy:_’ + str(float(count) / float(countall) % 100) + %)

Confusion Matrix

countHH =0
countHE =0
countHC =0
countEH =0
countEE =0
countEC =0
countCH=0
countCE =0
countCC =0
countH=0
countE =0
countC =0
countHp =0
countEp=0
countCp =0
for i in range(0, len(lines), 4):
for j in range(0, len(lines|[i + 2].translate(str.maketrans(’’, *’, string.whitespace))), 1):
if lines[i + 2][j] == "H’ and lines[i + 3][j] == "H’:
countHH += 1
elif lines[i + 2][j] == 'H’ and lines[i + 3][j] =="E”:
countHE += 1
elif lines[i + 2][j] == "H’ and lines[i + 3][j] =="C’:
countHC +=1
elif lines[i + 2][j] == "E’ and lines[i + 3][j] =="H":
countEH +=1
elif lines[i + 2][j] == 'E’ and lines[i + 3][j] =="E’:
countEE +=1
elif lines[i + 2][j] == "E’ and lines[i + 3][j] =="C":
countEC += 1
elif lines[i + 2][j] == ’C’ and lines[i + 3][j] == "H’:
countCH +=1
elif lines[i + 2][j] == 'C’ and lines[i + 3][j] =="E’:
countCE += 1
elif lines[i + 2][j] == ’C’ and lines[i + 3][j] =="C":
countCC +=1
’223f lines[i + 2][j] == °*H’:
countH += 1
elif lines[i + 2][j] == ’E’:
countE += 1
elif lines[i + 2][j] == °C’:

countC += 1

95

96 if lines[i + 3][j] == ’H’:
97 countHp += 1
98 elif lines[i + 3][j] == ’E’:
99 countEp += 1
100 elif lines[i + 3][j] == °C’:
101 countCp += 1°7°
102
103 print("\n\tW\CONFUSION,_MATRIX\n")
104 print(’{0:10}{1:10}{2:10}{3:10}" .format(’’, '"H’, ’E’, ’C’))
105 print(’{0:1}{1:10d}{2:10d}{3:10d}’.format(’H’, countHH, countHE, countHC))
106 print(’{0:1}{1:10d}{2:10d}{3:10d}’.format(’E’, countEH, countEE, countEC))
107 print(’ {0:1}{1:10d}{2:10d}{3:10d} .format(’C’, countCH, countCE, countCC))
108
109 # SOV input file
110 # f = open(outPred, "r")
111 f1 = open(outSOV, "w")
112 # lines = f.readlines()
113 # f.close()
114
115 for i in range(0, len(lines), 4):
116 fl.write("’>OSEQ\n’)
117 f1.write(lines[i + 2])
118 fl.write(C>PSEQ\n’)
119 f1.write(lines[i + 3])
120 fl.write(">AA\n’)
121 fl.write(lines[i + 1])
122 fl.close()
123
124 # weka input file
125 f1 = open(outWeka, "w'")
126 f1.write(C @RELATION_secondary_structure\n\n’)
127 for i in range(0, windowSize * 2 — 1, 1):
128 fl.write(C @ ATTRIBUTE_aminoacid’ + str(i) + ’_{C,E,H,0.0}\n’)
129 fl.write(C @ ATTRIBUTE_output_{C,E,H}\n")
130 fl.write("\n@DATA\n")
131
132 leadingzeros = zeros((1, (windowSize — 1)))
133 for i in range(3, len(lines), 4):
134 line = leadingzeros
135 line = append(line, list(lines[i].rstrip()))
136 line = append(line, leadingzeros)
137 for j in range(0, len(lines|i].rstrip()), 1):
138 for k in range(0, windowSize * 2 — 1, 1):
139 fl.write(str(line[j + k]) +°,”)
140 fl.write(lines[i — 1].rstripQ[j] + "\n’)
141
142 fl.close()
143
144 files = sys.argv[1].replace(’,’, ")
145 run(files, int(sys.argv[2].replace(’,’, **)), int(sys.argv[3].replace(’,’, ’’)), sys.argv[4].replace(’,”, **),
146 sys.argv[5S].replace(’,’, ’*), sys.argv[6])
147 # print(’\nEnd of ensembles script\n’)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

Appendix H

External Rules Program

This Python program was used to apply the external rules filtering. It was provided by
Dionysiou [24].

import sys

class externalRules:
def applyRules(filename, outSOV, outPred):
f = open(filename, "r")
lines = f.readlines()
f.close()
f = open(outSOV, "w")
f1 = open(outPred, "w")

for i in range(0, len(lines), 4):
f1.write(lines[i])
f1.write(lines[i + 1])
fl.write(lines[i + 2])
f.write(">OSEQ\n")
f.write(lines[i + 2])
f.write(">PSEQ\n")
j=0
lines[i + 3] = list(lines[i + 3].translate({ord(c):”’ for c in *_\n\t\r’ }))
print(len(lines[i + 3]))
while j < len(lines[i + 3]):
if len(lines[i + 3]) — j >=4:
if lines[i + 3][j] =="H’ and lines[i + 3][j + 1] =="E’ and lines[i + 3][j + 2] =="E’ and \
lines[i + 3][j + 3] =="H":
lines[i + 3][j] ="H’
lines[i+3][j + 1]="H’
lines[i + 3][j + 2] ="H’
lines[i + 3][j + 3] ="H’
j +=4
continue
if lines[i + 3][j] !="H’ and lines[i + 3][j + 1] == "H’ and lines[i + 3][j + 2] =="H’ and \
lines[i + 3][j + 3] !'="H":
lines[i+3][j + 1]="C
lines[i + 3][j + 2] ="C’
j+=4
continue
if len(lines[i + 3]) — j >=3:

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

if lines[i + 3][j] == "H’ and lines[i + 3][j + 1] =="E’ and lines[i + 3][j + 2] =="H":
lines[i + 3][j + 1] ="H’
j+=3
continue

j+=1

if lines[i + 3][0] ==E’ and lines[i + 3][1] !="E’:
f.write("C")
fl.write("C")

elif lines[i + 3][0] == "H’ and lines[i + 3][1] !="H’:
f.write("C")
fl.write("C")

else:
f.write(lines[i + 3][0])
f1.write(lines[i + 3][0])

for j in range(1, len(lines[i + 3]) — 1):

if lines[i + 3][j — 1] !="E’ and lines[i + 3][j] == 'E’ and lines[i + 3][j + 1] !="E”:
f.write("C")
fl.write("C")
continue

elif lines[i + 3][j — 1] !="H’ and lines[i + 3][j] =="H’ and lines[i + 3][j + 1] !="H":
f.write("C")
fl.write("C")
continue

f.write(lines[i + 3][j1)

fl.write(lines[i + 3][j])

if lines[i + 3][len(lines[i + 3]) — 1] =="E’ and lines[i + 3][len(lines[i + 3]) — 2] !="E”:
f.write("C")
fl.write("C")

elif lines[i + 3][len(lines[i + 3]) — 1] =="H’ and lines[i + 3][len(lines[i + 3]) — 2] !="H":
f.write("C")
fl.write("C")

else:
f.write(lines[i + 3][len(lines[i + 3]) — 1])
f1.write(lines[i + 3][len(lines[i + 3]) — 1])

f.write("\n”)
fl.write("\n")
f.write(">AA\n")
f.write(lines[i + 1])

EEEIET) IR

applyRules(sys.argv[1].replace(’,’, *’), sys.argv[2].replace(’,’, **), sys.argv[3])

print (’End of external rules script\n’)

Appendix I

SOV calculation

To calculate the SOV score the two following C programs were used. Both were provided

by Dionysiou [24].

#include <stdio.h>
#include <stdlib.h>

1

2

3

4 int main (int argc, charx argv[]){
5 FILE sfp=fopen(argv[1], "t");
6 FILE x*out;

7 char xline = NULL;

8 size_tlen =0;

9 ssize_t read;

10 fclose(fopen("resultSOV.txt","w"));

11

12 if (fp == NULL)

13 exit(0);

14 system("cc_,./q3_sov_scripts/sov.c_—o_,./q3_sov_scripts/sov, ,—Im");
15 while ((read = getline(&line, &len, fp)) = —1) {
16 out=fopen("SOVinput.txt", "w");

17 if (out == NULL)

18 exit(0);

19 fprintf(out,"%s", line);

20 getline(&line, &len, fp);

21 fprintf(out,"%s", line);

22 getline(&line, &len, fp);

23 fprintf(out,"%s", line);

24 getline(&line, &len, fp);

25 fprintf(out,"%s", line);

26 getline(&line, &len, fp);

27 fprintf(out,"%s", line);

28 getline(&line, &len, fp);

29 fprintf(out,"%s", line);

30 fclose(out);

31

32 system("./q3_sov_scripts/sov_SOVinput.txt_>>resultSOV.txt");
33 }

34

35 free(line);
36 fclose(fp);
37 return 0;

38

I-2

N=lEC RN e Y S

[Y Y Y Y Y Y e N T T O T - - N UL B VS U U RO R VS R UL B O B O B I N S I O R S R S S S S S S o e e e e e
N O R WY = O 0 0NN R WD = O 0 0NN R WD =, O 0 0NN R WD = O 0 0NN R WD = O

Program: sov.c

Secondary structure prediction accuracy evaluation

SOV (Segment OVerlap) measure

Copyright by Adam Zemla (11/16/1996)
Email: adamz@llnl.gov

NN N N N N N N NN

~

~

\
Q
e)
8

el
5.
=
o
a
(¢]
n
o
<
9]

|
o
n
o
]

|
—
8

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>

#define MAXRES 5000

typedef struct {
int input;
int order;
int q3_what;
int sov_what;
int sov_method;
float sov_delta;
float sov_delta_s;
int sov_out;
char fname[100];

} parameters;
char xletter_ AA="ARNDCQEGHILKMFPSTWYV—?X"; /* 23 chars */

void default_parameters(parameters x);

int read_aa_osec_psec(char[MAXRES], char[MAXRES], char[MAXRES],
parameters *, charx);

float sov(int, charflMAXRES], char[MAXRES], parameters *);

float q3(int, charfMAXRES], char[MAXRES], parameters x*);

int check_aa(char, charx, int);

int main(int argc, char xargv[])
{
int i, n_aa, sov_method;
char ¢, aal MAXRES], osec[lMAXRES], psec[MAXRES];
parameters pdata;
float out0, outl, out2, out3;

if(arge<2){
printf("_Usage:, sov,_<input_data>\n");
printf("_HELP:__sov_—h\n");
exit(0);

}

if(!strncmp(argv[1],"—h\0",2) Il

I-3

58 Istrncmp(argv[1],"help\0",5) Il

59 Istrncmp(argv[1],"—help\0",6)) {

60 system("more_./README.sov");

61 printf("\n");

62 exit(0);

63 }

64

65 default_parameters(&pdata);

66

67 strepy(pdata.fname,argv[1]);

68

69 n_aa=read_aa_osec_psec(aa,osec,psec,&pdata,letter_AA);
70

71 if(pdata.input==1) {

72 n_aa=read_aa_osec_psec(aa,osec,psec,&pdata,letter_AA);
73 }

74

75 if(pdata.order==1) {

76 for(i=0;i<n_aa;i++) {

71 c=osec[i];

78 osec[i]=psec[i];

79 psecli]=c;

80 }

81 }

82

83 if(n_aa<=0) {

84 printf("\n_ERROR!_There_is_no_’AA_OSEC_PSEC’_data_in_submited_prediction.");
85 printf("\n_,_,_.........The_submission_should_contain_an_observed_and_predicted");
86 printf("\n___._._._._._secondary_structure_in_COLUMN_format.\n");
87 exit(0);

88 }

89

90 printf("\n\n_SECONDARY_STRUCTURE_PREDICTION");
91 printf("\n_NUMBER_OF_RESIDUES_PREDICTED:_LENGTH,_=_%d",n_aa);

92 printf("\n_AA_,_OSEC__PSEC___._._NUM");

93 for(i=0;i<n_aa;i++) {

94 printf("\n_,_%Ilc_, . %lc_ . .. Plc_ %4d"aali],osec[i],psec[i],i+1);
95 }

96 printf(("\n-—-————-———-—-H——H—"—""-——————— \n");

97 printf("\n_SECONDARY _STRUCTURE_PREDICTION,_ ACCURACY,_EVALUATION._ N_AA_=_%4d\n",n_aa);
98 if(pdata.sov_out>=1) {
99 printf("\n_SOV_parameters:_,_, DELTA_=_%5.2f___DELTA—-S_=_%5.2f\n",
100 pdata.sov_delta,
101 pdata.sov_delta_s);
102 }
103
104 printf("\n_ e ALL o HELIX . STRAND,
105
106 pdata.q3_what=0;
107 outO=q3(n_aa,osec,psec,&pdata);
108 pdata.q3_what=1;
109 outl=q3(n_aa,osec,psec,&pdata);
110 pdata.q3_what=2;
111 out2=q3(n_aa,osec,psec,&pdata);
112 pdata.q3_what=3;
113 out3=q3(n_aa,osec,psec,&pdata);
114 printf("\n_Q3

COIL\n");

[TRSTRT

%61, WH6.1f . %6.1f . %6.1f",

I

-4

115 out0x100.0,0out1x100.0,0ut2x100.0,0ut3x100.0);
116 printf("\n");

117

118 sov_method=pdata.sov_method;

119

120 if(sov_method!=0) pdata.sov_method=1;

121

122 if(pdata.sov_method==1) {

123 pdata.sov_what=0;

124 outO=sov(n_aa,osec,psec,&pdata);

125 pdata.sov_what=1;

126 outl=sov(n_aa,osec,psec,&pdata);

127 pdata.sov_what=2;

128 out2=sov(n_aa,osec,psec,&pdata);

129 pdata.sov_what=3;

130 out3=sov(n_aa,osec,psec,&pdata);

131 printf("\n_SOV e e 00 U 6.1 %6.1f_ %6.11",
132 out0x100.0,0out1x100.0,0ut2x100.0,0ut3x100.0);
133 printf("\n");

134 }

135

136 if(sov_method!=1) pdata.sov_method=0;

137

138 if(pdata.sov_method==0) {

139 pdata.sov_delta=1.0;

140

141 pdata.sov_what=0;

142 outO=sov(n_aa,osec,psec,&pdata);

143 pdata.sov_what=1;

144 outl=sov(n_aa,osec,psec,&pdata);

145 pdata.sov_what=2;

146 out2=sov(n_aa,osec,psec,&pdata);

147 pdata.sov_what=3;

148 out3=sov(n_aa,osec,psec,&pdata);

149 printf("\n_SOV_(1994_JMB._[delta=50])_: . %6.1f___%6.1f__ %6.1f___%6.1f",
150 out0*100.0,0ut1x100.0,0ut2x100.0,0ut3x100.0);
151

152 pdata.sov_delta=0.0;

153

154 pdata.sov_what=0;

155 outO=sov(n_aa,osec,psec,&pdata);

156 pdata.sov_what=1;

157 outl=sov(n_aa,osec,psec,&pdata);

158 pdata.sov_what=2;

159 out2=sov(n_aa,osec,psec,&pdata);

160 pdata.sov_what=3;

161 out3=sov(n_aa,osec,psec,&pdata);

162 printf("\n_SOV_(1994_JMB._[delta=0])_, : ... %6.1f__ %6.1f__ _%6.1f__ %6.1f",
163 out0x100.0,0ut1x100.0,0ut2x100.0,0ut3x100.0);
164

165 printf("\n");

166 }

167

168 printf(("\n_——-———-—-—-—-—-H—-H——¥—“(+-"-"-—"-——————— \n");

169

170 exit(0);

171}

172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

int check_aa(char token, charx letter, int n)

{

int i;

for(i=0;i<n;i++) {
if(letter[i]==token)

return i;

}

return n;
}
/K e
/
/ read_aa_osec_psec - read secondary structure segments file
/
/e */

int read_aa_osec_psec(char aal MAXRES], char sss1[MAXRES],
char sss2[MAXRES], parameters *pdata, charx letter)

inti,j,n_aa, n_aa_l,n_aa 2,n_aa_3,f seq, alt_c, alt_e, alt_h;

float x;

char line[MAXRES],keyword[MAXRES].firstf MAXRES],second[MAXRES],third[MAXRES],junk[MAXRES];
FILE xfp;

alt_c=0;
alt_e=0;
alt_h=0;

if((fp = fopen(pdata—>fname,"r"))==NULL) {
printf("\n#_error_opening_file_%s_for_read\n\n",pdata—>fname);
exit(0);

f_seq=0;
pdata—>input=0;
n_aa=0;
n_aa_1=0;
n_aa_2=0;

n_aa_3=0;

while (fgets(line, MAXRES, fp) != NULL) {
strepy(keyword," . ");

" u),
LT

strepy(first
strepy(second,” . ");
strepy(third,",_,");

" u),
> i /o

strepy(junk
i=0;

i=0;
while(line[i] =="_’ && line[i] !="\n’ && line[i] !="\0" && i<MAXRES) i++;
if(i<MAXRES) {

=i

229 while(line[i] !="_ " && line[i] !="\n" && line[i] !="\0" && i<MAXRES) i++;
230 }

231 j=i—js

232 if(<MAXRES && j>0) {

233 sscanf(line,"%s" keyword);

234 }

235 if(!strncmp(keyword,"#",1)) {}

236 else if(!strncmp(keyword,"————— "5) {}

237 else if(!strncmp(keyword,"NUMBER\0",7)) {}

238 else if(!strncmp(keyword,"SECONDARY\0",10)) {}
239 else if(!strncmp(keyword,"END\0",4) && f_seq==0) {
240 fclose(fp);

241 return n_aa;

242 }

243 else if(!strncmp(keyword," AA—OSEC—PSEC\0",13)) {
244 printf("%s", line);

245 sscanf(line," %s_ %s" keyword,first);

246 strepy(pdata—>tname, first);

247 pdata—>input=1;

248 }

249 else if(line[0] == "\n’ Il !strncmp(keyword," . \0",4)) {}
250 else if(!strncmp(keyword,"AA\0",3) && f_seq==0) {
251 sscanf(line,"%s_ %s,_ %s" keyword,first,second);
252 if(!strncmp(keyword,"AA\0",3) &&

253 Istrnemp(first,"PSEC\0",5) && !strncmp(second,"OSEC\0",5)) {
254 pdata—>order=1;

255 }

256 }

257 else if(!strncmp(keyword,"SOV—DELTA\0",10)) {
258 printf("%s", line);

259 sscanf(line,"%s_ %f" keyword,&x);

260 pdata—>sov_delta=x;

261 }

262 else if(!strncmp(keyword,"SOV—DELTA—S\0",12)) {
263 printf("%s", line);

264 sscanf(line,"%s_ %f" keyword,&x);

265 pdata—>sov_delta_s=x;

266 }

267 else if(!strncmp(keyword,"SOV—-METHOD\0",9)) {
268 printf("%s", line);

269 sscanf(line,"%s,_ %d" keyword,&i);

270 pdata—>sov_method=i;

271 }

272 else if(!strncmp(keyword,"SOV—-OUTPUT\0",9)) {
273 printf("%s", line);

274 sscanf(line,"%s_%d" keyword,&i);

275 pdata—>sov_out=i;

276 }

277 else if(line[0]==">") {

278 printf("%s", line);

279 if(f_seq<2) n_aa=0;

280 f_seq++;

281 }

282 else if(f_seq==0) {

283 if(j>1) {

284 if(!strncmp(keyword,"SSP\0",4)) {

285 sscanf(line,"%s,_ %s_%s_%s_%s" keyword,junk,first,second,third);

I-7

286 }

287 else {

288 printf("\n_ERROR!_(line:_%d),_Check_COLUMN,_ format_of,_your_prediction/\n",n_aa+1);
289 fclose(fp);

290 exit(0);

291 }

292 }

293 else {

294 sscanf(line,"%s,_ %s, %s" first,second,third);

295 }

296 aa[n_aa]=first[0];

297 sss1[n_aa]=second[0];

298 sss2[n_aa]=third[0];

299 if(check_aa(aa[n_aa],letter,23)==23) {

300 printf("\n#_ERROR!\n%s" line);

301 printf("\n#_ERROR!_(line:_%d),_Check_amino_acid_code_, %c\n",n_aa+1,aa[n_aa]);

302 fclose(fp);

303 exit(0);

304 }

305 if(sss1[n_aal=="_ Il sss2[n_aa]=="_") {

306 printf("\n#_ERROR!\n%s" line);

307 printf("\n#_ERROR!_(line:_%d)_Check_secondary_structure_code\n",n_aa+1);

308 fclose(fp);

309 exit(0);

310 }

311 if(sss1[n_aa]=="L" Il sss1[n_aa]=="T" Il sss1[n_aa]=="S") {

312 if(alt_c==0) {

313 printf("#_WARNING!_(line:_%d),_The_’%c’_characters_are_interpreted_as_’C’_(coil)\n",n_aa+1,sss1[n_aa]);
314 alt_c=1;

315 }

316 sssl[n_aal="C’;

317 }

318 if(sss1[n_aa]=="B’) {

319 if(alt_e==0) {

320 printf("#_WARNING!_(line:_%d)_The_’%c’_characters_are_interpreted_as_’E’_(strand)\n",n_aa+1,sssl[n_aa]);
321 alt_e=1;

322 }

323 sssl[n_aal="E’;

324 }

325 if(sss1[n_aa]=="G’ Il sss1[n_aa]=="T") {

326 if(alt_h==0) {

327 printf("#_WARNING!_(line:_%d)_The_’%c’_characters_are_interpreted_as_’H’_(helix)\n",n_aa+1,sss1[n_aa]);
328 alt_h=1;

329 }

330 sssl[n_aa]="H’;

331 }

332 if(sss2[n_aa]=="L" Il sss2[n_aa]=="T" Il sss2[n_aa]=="S") {

333 if(alt_c==0) {

334 printf("#_WARNING!_(line:_%d)_The_’%c’ _characters_are_interpreted_as_’C’_(coil)\n",n_aa+1,sss2[n_aa]);
335 alt_c=1;

336 }

337 sss2[n_aa]="C’;

338 }

339 if(sss2[n_aa]=="B’) {

340 if(alt_e==0) {

341 printf("#_WARNING!_(line:_%d)_The_’%c’ _characters_are_interpreted_as_’E’_(strand)\n",n_aa+1,sss2[n_aa]);
342 alt_e=1;

343 }

344 sss2[n_aal]="E’;

345 }

346 if(sss2[n_aa]=="G’ Il sss2[n_aal=="T") {

347 if(alt_h==0) {

348 printf("#_WARNING!_(line:_%d)_The_’%c’ _characters_are_interpreted_as,_ H’_(helix)\n",n_aa+1,sss2[n_aa]);
349 alt_h=1;

350 }

351 sss2[n_aa]="H’;

352 }

353 if(sss1[n_aa]!="C" && sssl[n_aa]!="E’ && sssl[n_aa]!="H’) {

354 printf("\n#_ERROR!\n%s" line);

355 printf("\n#_ERROR!_(line:_%d)_Check_secondary_structure_code_, %c\n",n_aa+1,sss1[n_aa]);
356 fclose(fp);

357 exit(0);

358 }

359 if(sss2[n_aa]!l="C" && sss2[n_aa]!="E’ && sss2[n_aa]!="H’) {

360 printf("\n#_ERROR!\n%s" line);

361 printf("\n#_ERROR!_(line:_%d)_Check_secondary_structure_code_, %c\n",n_aa+1,sss2[n_aa]);
362 fclose(fp);

363 exit(0);

364 }

365 n_aa++;

366 if(n_aa>=MAXRES) {

367 printf("\n#_ERROR!_Check_number_of,_amino_acid_lines. (MAX_=_%d)\n\n",MAXRES);
368 fclose(fp);

369 exit(0);

370 }

371 }

372 else if(f_seq==1) {

373 i=0;

374 while(line[i] !="\n") {

375 if(line[i] !="_ && line[i] !="\t' && line[i] !="\0" &&

376 line[i] !="\a’ && line[i] !="\b’ && line[i] !="\f" &&

377 line[i] !="\r" && line[i] !="\v’ && i<MAXRES) {

378 aa[n_aal="X’;

379 sss1[n_aa]=linel[i];

380 if(sss1[n_aa]=="L’ Il sss1[n_aa]=="T" Il sss1[n_aa]=="S") {

381 if(alt_c==0) {

382 printf("#_WARNING! _The_’%c’_characters_are_interpreted_as_’C’_(coil)\n",sss1[n_aa]);
383 alt_c=1;

384 }

385 sssl[n_aa]="C’;

386 }

387 if(sss1[n_aa]=="B’) {

388 if(alt_e==0) {

389 printf("#_WARNING! _The_’%c’_characters_are_interpreted_as_’E’_(strand)\n",sss1[n_aa]);
390 alt_e=1;

391 }

392 sssl[n_aa]="E’;

393 }

394 if(sss1[n_aa]=="G’ Il sss1[n_aal=="T") {

395 if(alt_h==0) {

396 printf("#_WARNING!_The_’%c’_characters_are_interpreted_as_’H’_ (helix)\n",sss1[n_aa]);
397 alt_h=1;

398 }

399 sssl[n_aa]="H’;

400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456

}
if(sss1[n_aa]!="C" && sssl[n_aa]!="E’ && sssl[n_aa]!="H’) {
printf("\n#_ERROR!\n%s" line);
printf("\n#_ERROR!_Check_secondary,_structure_code:_%c\n",sss1[n_aa]);
fclose(fp);
exit(0);
}
n_aa++;
if(n_aa>=MAXRES) {
printf("\n#_ERROR!_Check_number_of_residues. (MAX_=_%d)\n\n",MAXRES);
fclose(fp);
exit(0);
}
}
i++;
}
n_aa_l=n_aa;
}
else if(f_seq==2) {
i=0;
while(line[i] !="\n") {
if(line[i] !="_" && line[i] !="\t" && line[i] !="\0" &&
line[i] !="\a’ && line[i] !="\b" && line[i] !="\f" &&
line[i] ="\’ && line[i] !="\v’ && i<MAXRES) {
aa[n_aa]="X’;
sss2[n_aa]=linel[i];
if(sss2[n_aa]=="L" Il sss2[n_aa]=="T" Il sss2[n_aa]=="S") {
if(alt_c==0) {
printf("#_WARNING! _The_’%c’ _characters_are_interpreted_as_’C’_(coil)\n",sss2[n_aa]);
alt_c=1;
}
sss2[n_aal]="C";
}
if(sss2[n_aa]=="B’) {
if(alt_e==0) {
printf("#_WARNING!_The_’%c’_characters_are_interpreted_as_’E’_(strand)\n",sss2[n_aa]);
alt_e=1;
}
sss2[n_aa]="E’;
}
if(sss2[n_aal=="G’ Il sss2[n_aa]=="T") {
if(alt_h==0) {
printf("#_WARNING!_The_’%c’_characters_are_interpreted_as_’H’_ (helix)\n",sss2[n_aa]);
alt_h=1;
}
sss2[n_aa]="H’;
}
if(sss2[n_aa]!="C" && sss2[n_aa]!="E’ && sss2[n_aa]!="H’) {
printf("\n#_ERROR\n%s" line);
printf("\n#_ERROR!_Check_secondary_structure_code:_%c\n",sss2[n_aa]);
fclose(fp);
exit(0);
}
n_aa++;
if(n_aa>=MAXRES) {
printf("\n#_ERROR!_Check_number_of_residues. (MAX_=_%d)\n\n",MAXRES);
fclose(fp);

I-10

457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513

exit(0);

}
i++;
}
n_aa_2=n_aa;
}
else if(f_seq==3) {
i=0;
while(line[i] !="\n") {

if(line[i] !="_ && line[i] !="\t" && line[i] !="\0" &&
line[i] !="\a’ && line[i] !="\b’ && line[i] !="\f" &&
line[i] !="\r" && line[i] !="\v’ && i<MAXRES) {

aa[n_aa_3]=line[i];
if(check_aa(aa[n_aa_3],letter,23)==23) {
printf("\n#_ERROR!\n%s" line);

printf("\n#_ERROR!_(N_res:_%d)_Check_amino,_acid,_code_,_ %c\n",n_aa_3+1,aa[n_aa_3]);

fclose(fp);

exit(0);
}
n_aa_3++;
if(n_aa_3>=MAXRES) {

printf("\n#_ERROR!_Check_number_of_residues. (MAX_=_%d)\n\n",MAXRES);

fclose(fp);
exit(0);
}

i++;

}

if(n_aa_1!=n_aa_2) {

printf("\n#_ERROR!_Check_format_of_your_submission.");

printf("\n#
fclose(fp);
exit(0);

}

return n_aa;

[TET TR TR T}

void default_parameters(parameters «pdata)

{

pdata—>input=0;
pdata—>order=0;

pdata—>sov_method=1; // 0 - SOV definition (1994 JMB.)

pdata—>sov_delta=1.0;
pdata—>sov_delta_s=0.5;
pdata—>sov_out=0;

return;

s

Different_length_of,_observed_and_predicted_structures.\n");

1 - SOV definition (1999 Proteins)

514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570

/ sov - evaluate SSp by the Segment OVerlap quantity (SOV)

/ Input: secondary structure segments

float sov(int n_aa, char sss][MAXRES], char sss2[MAXRES], parameters *pdata)
{

int i, k, length1, length2, beg_s1, end_s1, beg_s2, end_s2;

int j1, j2, k1, k2, minov, maxov, d, d1, d2, n, multiple;

char sl, s2, sse[3];

float out;

double s, x;

sse[0]="#";
sse[1]="#;
sse[2]="#";

if(pdata—>sov_what==0) {
sse[0]="H’;
sse[1]="E’;
sse[2]="C’;
}
if(pdata—>sov_what==1) {
sse[0]="H’;
sse[1]="H’;
sse[2]="H’;
}
if(pdata—>sov_what==2) {
sse[0]="E’;
sse[1]="E’;
sse[2]="E’;
}
if(pdata—>sov_what==3) {
sse[0]="C’;
sse[1]="C’;
sse[2]="C’;
}
n=0;
for(i=0;i<n_aa;i++) {
sl=sssl[i];
if(s1==sse[0] Il sI==sse[1] Il sI==sse[2]) {
n++;

}

out=0.0;

s=0.0;

length1=0;

length2=0;

i=0;

while(i<n_aa) {
beg_sl=i;
sl=sssl[i];
while(sss1[i]==s1 && i<n_aa) {

i++;

}

end_sl=i—1;

I-12

571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622

623
624
625
626

lengthl=end_s1—beg_s1+1;
multiple=0;
k=0;
while(k<n_aa) {
beg_s2=k;
s2=sss2[k];
while(sss2[k]==s2 && k<n_aa) {
k++;
}
end_s2=k—1;
length2=end_s2—beg_s2+1;
if(s1==sse[0] Il sl==sse[1] Il s1==sse[2]) {
if(s1==s2 && end_s2>=beg_sl && beg_s2<=end_sl) {
if(multiple>0 && pdata—>sov_method==1) {
n=n+lengthl;
}
multiple++;
if(beg_s1>beg_s2) {
jl=beg_sl;
j2=beg_s2;
}
else {
jl=beg_s2;
j2=beg_sl;
}
if(end_sl<end_s2) {
kl=end_sl;
k2=end_s2;
}
else {
kl=end_s2;
k2=end_sl;
}
minov=kl—jl1+1;
maxov=k2—j2+1;
d1=floor(length1xpdata—>sov_delta_s);
d2=floor(length2xpdata—>sov_delta_s);
if(d1>d2) d=d2;
if(d1<=d2 Il pdata—>sov_method==0) d=d1;
if(d>minov) {
d=minov;
}
if(d>maxov—minov) {
d=maxov—minov;
}
x=pdata—>sov_deltaxd;
x=(minov+x)x*lengthl;
if(maxov>0) {
s=s+x/maxov;
}
else {
printf("\n_ERROR!_minov_=_%—4d_maxov_=_%—4d_length_=_%—4d_d_=_%—4d__._%4d_%4d__%4d_%4
— d",
minov,maxov,lengthl,d,beg_s1+1,end_s1+1,beg_s2+1,end_s2+1);
}
if(pdata—>sov_out==2) {
printf("\n_TEST:_minov,_=_%—4d_maxov_=_%—4d_length_=_%—4d_d_=_%—4d___%4d_%4d__%4d_%4d"

I-13

>,
627 minov,maxov,lengthl,d,beg_s1+1,end_s1+1,beg_s2+1,end_s2+1);
628 }
629 }
630 }
631 }
632 }
633 if(pdata—>sov_out==2) {
634 printf("\n_TEST:_Number_of_considered_residues_=_%d",n);
635 }
636 if(n>0) {
637 out=s/n;
638 }
639 else {
640 out=1.0;
641 }
642 return out;
643 }
644
645 /Koo
646 /
647 / Q3 - evaluate SSp by the residues predicted correctly (Q3)

648 / Input: secondary structure segments

649 /

650 /e */
651 float q3(int n_aa, char sssI[MAXRES], char sss2[MAXRES], parameters *pdata)
652 |

653 int i, n;

654 float out;

655 char s, sse[3];
656

657 sse[0]="#;
658 sse[1]="#;
659 sse[2]="#";

660

661 if(pdata—>q3_what==0) {
662 sse[0]="H’;

663 sse[1]="E’;

664 sse[2]="C";

665 }

666 if(pdata—>q3_what==1) {
667 sse[0]="H’;

668 sse[1]="H’;

669 sse[2]="H’;

670 }

671 if(pdata—>q3_what==2) {
672 sse[0]="E’;

673 sse[1]="E’;

674 sse[2]="E’;

675 }

676 if(pdata—>q3_what==3) {
677 sse[0]="C";

678 sse[1]="C";

679 sse[2]="C’;

680 }

681

682 n=0;

I-14

683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

out=0.0;
for(i=0;i<n_aa;i++) {
s=sss1[i];
if(s==sse[0] Il s==sse[1] Il s==sse[2]) {
n++;
if(sss1[i]==sss2[i]) {
out=out + 1.0;

1
if(n>0) {
out=out/n;

}
else {
out=1.0;

return out;

I-15

O 00 N N L AW N =

O
N o= O

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Appendix J
Calculation of Q3 accuracy

The following Python program was implemented to calculate the Q3 accuracy for each

class and the overall Q3 accuracy.

import sys
Execute: python calc_Q3.py <pred_file>
import string
lines = None
labels = ["'H’, ’E’, °C’]
with open(sys.argv[1]) as file:
lines = file.readlines()
if lines is None: exit(0)
countCor = [0, 0, 0]
countAll = [0, 0, 0]
for | in range(0, len(lines)//4):
protein_name = lines[4x]]
primary = lines[4x%] + 1]
secondary = lines[4x*] + 2]
prediction = lines[4x] + 3]
for s, p in zip(secondary, prediction):
if s =="\n’: continue
ifs==p:
countCor[labels.index(s)] += 1
countAll[labels.index(s)] += 1
total = countAll[0] + countAll[1] + countAll[2]
correct = countCor[0] + countCor[1] + countCor[2]
headers = [’Q3_All’, "Q3_C’,’Q3_E’, "Q3_H’]
q3 = [(100xcorrect/total),
(100xcountCor[0]/countAll[0]),
(100xcountCor[1]/countAll[1]),
(100xcountCor[2]/countAll[2])]
print("\n___{O:11}{1:11}{2:11}{3:11}" format(’ _Q3_ALL’,’ Q3_H’,’ Q3_E’,’ _Q3_C"))
print(’{0:11.4f}{1:11.4f}{2:11.4f}{3:11.4f}\n’ .format(q3[0], q3[11, q3[2], q3[3]))

Appendix K

Data pre-processing for filtering

This python program was used to prepare the datasets for the SVM filtering method. The
same datasets were used to train the decision trees and random forests. It was provided

by Dionysiou [24].

1 # Execute: python prepare_SVM_files.py <test_filename> <train_filename> <WINDOW> <out_test> <
— out_train>
import sys
#open TEST file to read data
with open(sys.argv[1],"r") as testfile:
lines_test = testfile.readlines()
#open TRAIN file to read dat

with open(sys.argv[2],"r") as trainfile:

oI B Y .]

lines_train = trainfile.readlines()

=]

linenum = 1

10 window = int(sys.argv[3])
11 leftwindow = int(window/2)
12 #create train file

13 with open(sys.argv[5], "w") as svmtrain:

14 for line in lines_train:

15 if linenum == 5: linenum = 1

16 if linenum == 3:

17 target_out = line

18 # if linenum ==

19 for i in range(leftwindow):

20 zeros = leftwindow — i

21 for zer in range(zeros):

22 svmtrain.write("0,")

23 for rem in range(i):

24 if line[rem] == "C": svmtrain.write("0,")
25 if line[rem] == "E": svmtrain.write("1,")
26 if line[rem] == "H": svmtrain.write("2,")
27 #place right aminos

28 for j in range(leftwindow+1):

29 if line[i+j] == "C": svmtrain.write("0,")
30 if line[i+j] == "E": svmtrain.write("1,")
31 if line[i+j] == "H": svmtrain.write("2,")
32 #place label at the end

33 if target_out[i] == "C": svmtrain.write("0")
34 if target_out[i] == "E": svmtrain.write("1")
35 if target_out[i] == "H": svmtrain.write("2")

K-1

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
)
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

svmtrain.write("\n")
#place aminos with no boundary constraints
for amino in range(leftwindow,len(line)—leftwindow—1):
for curr in range(—leftwindow,leftwindow+1):
if line[amino+curr] == "C": svmtrain.write("0,")
if line[amino+curr] == "E": svmtrain.write("1,")
if line[amino+curr] == "H": svmtrain.write("2,")
#place label
if target_out[amino] == "C": svmtrain.write("0")
if target_out[amino] == "E": svmtrain.write("1")
if target_out[amino] == "H": svmtrain.write("2")
svmtrain.write("\n")
#place last aminos with padding
for i in range(len(line)—leftwindow— 1 len(line)—1):
printed=0
for left in range(i—leftwindow—1,i):
if line[left] == "C": svmtrain.write("0,")
if line[left] == "E": svmtrain.write("1,")
if line[left] == "H": svmtrain.write("2,")
for j in range(i,len(line)—1):
if line[j] == "C": svmtrain.write("0,")
if line[j] == "E": svmtrain.write("1,")
if line[j] == "H": svmtrain.write("2,")
printed=printed+1
zeros = leftwindow—printed
for z in range(zeros):
svmtrain.write("0,")
place label
if target_out[i] == "C": svmtrain.write("0")
if target_out[i] == "E": svmtrain.write("1")
if target_out[i] == "H": svmtrain.write("2")
svmtrain.write("\n")
linenum += 1
svmtrain.flush()
linenum=1
#create TEST file
with open(sys.argv[4], "w") as svmtest:
for line in lines_test:
if linenum == 5: linenum = 1
if linenum == 3: target_out = line
if linenum == 4:
for i in range(leftwindow):
zeros = leftwindow — i
for zer in range(zeros):
svmtest.write("0,")

for rem in range(i):

if line[rem] == "C": svmtest.write("0,")
if line[rem] == "E": svmtest.write("1,")
if line[rem] == "H": svmtest.write("2,")

#place right aminos
for j in range(leftwindow+1):
if line[i+j] == "C": svmtest.write("0,")
if line[i+j] == "E": svmtest.write("1,")
if line[i+j] == "H": svmtest.write("2,")
#place label at the end
if target_out[i] == "C": svmtest.write("0")
if target_out[i] == "E": svmtest.write("1")

K-2

93 if target_out[i] == "H": svmtest.write("2")

94 svmtest.write("\n")
95 #place aminos with no boundary constraints
96 for amino in range(leftwindow,len(line)—leftwindow—1):
97 for curr in range(—Ileftwindow,leftwindow+1):
98 if line[amino+curr] == "C": svmtest.write("0,")
99 if line[amino+curr] == "E": svmtest.write("1,")
100 if line[amino+curr] == "H": svmtest.write("2,")
101 #place label
102 if target_out[amino] == "C": svmtest.write("0")
103 if target_out[amino] == "E": svmtest.write("1")
104 if target_out[amino] == "H": svmtest.write("2")
105 svmtest.write("\n")
106 #place last aminos with padding
107 for i in range(len(line)—leftwindow— 1 len(line)—1):
108 printed=0
109 for left in range(i—leftwindow—1,i):
110 if line[left] == "C": svmtest.write("0,")
111 if line[left] == "E": svmtest.write("1,")
112 if line[left] == "H": svmtest.write("2,")
113 for j in range(i,len(line)—1):
114 if line[j] == "C": svmtest.write("0,")
115 if line[j] == "E": svmtest.write("1,")
116 if line[j] == "H": svmtest.write("2,")
117 printed+=1
118 zeros = leftwindow—printed
119 for z in range(zeros):
120 svmtest.write("0,")
121 # place label
122 if target_out[i] == "C": svmtest.write("0")
123 if target_out[i] == "E": svmtest.write("1")
124 if target_out[i] == "H": svmtest.write("2")
125 svmtest.write("\n")
126 linenum += 1
127 svmtest.flush()

K-3

Appendix L

Training Filtering Methods

The following program was implemented to train the filtering models and apply the filter-

ing techniques on the output data of the Convolutional Neural Network.

Execute: python train_SVM.py <test_filename> <train_filename> <WINDOW> <pred_file> <

< out_prediction> <out_sov> <filter_opt>

M=l RN Bie Y L)

L L W L L W W NN NN DN NN DN = = = = = e e e e
AR WD = O 0 0NN R WD = O 0 0NN R WD~ O

from __future__ import print_function

import sys

import string

import numpy as np

import numpy as np

from sklearn.metrics import classification_report
from sklearn.svm import SVC

from sklearn import svm, pipeline

from sklearn import linear_model

from sklearn.metrics import confusion_matrix
from sklearn.tree import DecisionTreeClassifier

from sklearn.ensemble import RandomForestClassifier

def get_balanced_data(X_train, y_train):
classH =[]
classE =[]
classC =[]
for i,label in enumerate(y_train):
if label == 0:
classH.append(i)
elif label == 1:
classE.append(i)
else:
classC.append(i)
rows = min(len(classH), len(classE), len(classC))

Create a balanced data set

X_balanced = np.concatenate((X_train[classH][0:rows], X_train[classE][0:rows], X_train[classC][0:rows]), axis=0)

y_balanced = np.concatenate((y_train[classH][0:rows], y_train[classE][0:rows], y_train[classC][0:rows]), axis=0)

balanced = np.zeros((X_balanced.shape[0], X_balanced.shape[1]+1), dtype=int)

balanced[:,—1] = y_balanced
balanced|:,:—1] = X_balanced

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

np.random.shuffle(balanced)
return balanced[:,:—1], balanced[:,—1]

def create_output_pred(pred, input_f, out_f, outSOV):
with open(input_f, "r'") as pred_file:
pred_lines = pred_file.readlines()
pred = pred.astype(int)
labels = ['C’, ’E’, "H’]
counter = 0
with open(out_f, *w’) as out_file:
for line in range(0, len(pred_lines)//4):
protein_name = pred_lines[linex4][0:—1]
primary_structure = pred_lines[linex4+1][0:—1]
secondary_structure = pred_lines[linex4+2][0:—1]
prediction =""
for c in secondary_structure:
prediction = prediction + labels[pred[counter]]
counter += 1
out_file.write(protein_name + "\n")
out_file.write(primary_structure + "\n")
out_file.write(secondary_structure + "\n")
out_file.write(prediction + "\n")

with open(out_f, "r") as out_file:
lines = out_file.readlines()
with open(outSOV, "w") as f1:
for i in range(0, len(lines), 4):
fl.write(">OSEQ\n")
f1.write(lines[i + 2])
fl.writeC>PSEQ\n’)
f1.write(lines[i + 3])
fl.write(C>AA\n")
f1.write(lines[i + 1])
train_dataset = np.loadtxt(sys.argv[2], delimiter=",")
win=int(sys.argv([3])
X_train = train_dataset[:, O:win]
y_train = train_dataset[:, [win]]
test_dataset = np.loadtxt(sys.argv[1], delimiter=",")
X_test = test_dataset[:, 0:win]
y_test = test_dataset[:, [win]]
y_train = np.reshape(y_train,len(y_train))
y_test = np.reshape(y_test,len(y_test))

X_train, y_train = get_balanced_data(X_train, y_train)
print("Training,_....")

if (sys.argv[7] =="1"):
clf = SVC(C=10, break_ties=False, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape="ovr’, degree=3, gamma=0.1, kernel="rbf’,
max_iter=—1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)
elif (sys.argv[7] =="2"):
clf = DecisionTreeClassifier(max_depth=20)
elif (sys.argv[7] =="3"):
clf = RandomForestClassifier(max_depth=25, random_state=42)

L-2

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

elif (sys.argv[7] =="0"):
kernels = ["Polynomial’, ’RBF’, ’Sigmoid’, Linear’]
#A function which returns the corresponding SVC model
def getClassifier(ktype):
if ktype == 0:
Polynomial kernal
return SVC(kernel="poly’, degree=8, gamma="auto")
elif ktype == 1:
Radial Basis Function kernel
return SVC(kernel="rbf’, gamma="auto")
elif ktype == 2:
Sigmoid kernel
return SVC(kernel="sigmoid’, gamma="auto")
elif ktype == 3:
Linear kernel

return SVC(kernel="linear’, gamma="auto")

for i in range(1, 4):

Train a SVC model using different kernels
svclassifier = getClassifier(i)
svclassifier.fit(X_train, y_train)

Make prediction
y_pred = svclassifier.predict(X_test)

Evaluate model
print("Evaluation:", kernels[i], "kernel")
print(classification_report(y_test, y_pred))

from sklearn.model_selection import GridSearchCV

param_grid = {"C’: [0.1, 1, 10], "gamma’: [1, 0.1, 0.01, 0.001], kernel’: ['rbf’]}
grid = GridSearchCV(SVC(), param_grid, refit=True, verbose=2)
grid.fit(X_train, y_train)

print(grid.best_estimator_)

y_pred = grid.predict(X_test)
print(confusion_matrix(y_test, y_pred))
print(classification_report(y_test, y_pred))
exit(0)

else:
print(’Error!_train_SVM.py_currently_has_no_such_filtering_option.”)
print(’Please_try_again_(availiable_options:_0—3)")
exit(0)

Predict the response for test dataset
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)

print("THE_SCORE:_ ", clf.score(X_test, y_test))
print("")

creating a confusion matrix
cm = confusion_matrix(y_test, y_pred)
print(’Confusion_Matrix’)

print(cm)

print("")

create_output_pred(y_pred, sys.argv[4], sys.argv[5], sys.argv[6])

L-3

Appendix M

All filtering methods on CB513

This bash script was implemented and used to apply the ensembles and the filtering meth-

ods in various orders and display the results for each fold of the CB513 dataset.

1 #!/bin/bash

2 # Author : Panayiotis Leontiou

3 # Since : April 2020

4 # Version: 1.0

5 # Bugs : No known bugs

6

7 TEST_FOLDER="./CB513_test_pred"

8 TRAIN_FOLDER="./CB513_train_pred"

9 WINDOW="15"

10 SVM_WIN="13"

11 filterOpt=("1" "2" "3")

12

13 echo"

14

15

16 PPPPPPPPPPPPPPPPP_ ., . . . SSSSSSSSSSSSSSSSSSSSSSSSSSSSSS, PPPPPPPPPPPPPPPPP
17 P SS: B ::SP:: P

18 PPPPPP:::::P_S SP::::::PPPPPP:::::P

19 oo P PSS SSSSSSSS:zS, L SSSSSSSPPiP L PP
20 PunPo o PrnPSinS eSS e PP PP
21 _PunP . PuiPSioinS S::S P::::P

22 PuuPPPPPP:iP_ S::iSSSS. oS SSSS s PiiiiPPPPPPP
23 PooenePP oSS SSSSS 0SS SSSSS L P PP

24 _PuuPPPPPPPPP__ SSS::SS. .. SSSiSS, . P:i:PPPPPPPPP
25 PP o tmmonon o SSSSSSnS oL L SSSSSS:S L PP

26 L PP eSS eSS PP

27 PP eSS eSS PP

28 PP:::PP, SSSSSSS S:::::SSSSSSSS_ .S SPP:i: PP

29 PunniPooooonenn St SSSSSS:iSSi:SSSSSSeiiSPriP

30 PunnnPloooooooo St SS S SS PaiiiiP

31 PPPPPPPPPP__ SSSSSSSSSSSSSSS_. . . SSSSSSSSSSSSSSS, . . PPPPPPPPPP
32

33

34 "

35 print_fold () {

36 case $1 in

37 fold0)

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

cat << ’EOF’
oOOI__I/_\ITIN\/\
ol _ITQOHI_IhI__10lI
TS__[O] _IL1I___/I /11 _/

{ ______ | [RREEL| |nnnnn| Innmml Immnnl [RREEL|

Jo——000"_"*—0—0—""*—0—0—"_"—0—0—"_"*—0—0—" "*—0—0—"_"*—0—0—
EOF

foldl)

cat_<<_"EOF"

TR

[T

B =
PPN O © PN A R A RN L S A W
PPN PP N P G 0 R L AL) L

PR S 1) P PP W /P N PR Y S N N I

{______l | nn | |wmvmv| |mvmm| Immnul |nnmm| Iﬂnunnl
Li======

Jo——000" "*—0—0—"_"—0—0—"_"—0—0—" "*—0—0—"_"*—0—0—"_"*—0—0—
EOF
fold2)
cat << "EOF"
0001 _1/_\IINL)
ol IO IL_Inl__
TS__[O] _II___/1__I_/I_I/__|

{ | Jrmmng |nunnn| |unmm| Immnul Jrmvng

Jo——000° " —0—0—""*—0—0—"_"*—0—0—"_"—0—0—" "*—0—0—"_"*—0—0—
EOF

fold3)

cat_<<_"EOF"

[ATRT

[ETESTRRTIT

T
PPN 0 O A0 © P R R AV NN L R A N I |
uuuouuuuuuuuuh_ PP L AR) Y A B

N ©) PP N VY SPP E PP EEY /SPE, NE PR B

{______l | i | |mvvmu| |mvmm| Immuul |vHH|un| qumml
A======

o —000" " —0—0—" " —0—0— " —0—0—" " —0—0—’ "—0—0—" "*—0—0—
EOF
fold4)
cat << "EOF"

o OOl _I/_\ITINIT
ol ITOI__Ihl___
TS_[O] _ILI__/I N S N o

{ ______ | g |uunun| |mmnu| |ﬂuﬂnu| g

Jo——000" " —0—0—""*—0—0—"_"*—0—0—"_"—0—0—" "*—0—0—"_"*—0—0—
EOF

folds)

cat_<<_"EOF"

[ATRT
[ETESTRRTIT

0_0_0 [R A II (AN |

00000 s s st
O e O s D e N
LIS [O) e N
=== L

Jo——000" "—0—0—" "—0—0—" "—0—0—""—0-0—" "—0—0—" "—_0—0—

95 EOF

96 3
97 fold6)
98 cat << "EOF"
%
100 o0OOI_I/_\IIIN//
101 ol Tyl /_\
102 TS_[O] I\ /1 1/ I_/
103 {======l """ et
104 ./o—-000’_"‘-0-0-""*-0-0-"_"*-0-0-"_"*—0—0—""*-0—0—"_"*—0—0—"
105 EOF
106 oo oo
107 __.__fold7)
108 . _._._.._cat << "EOF"
100 e
110 _.0.0.0 ol /o oo e]
111 0o O o D]
112 TS_[O] Il .\ /. . .l [S A I A Y
113 {======l__1 """ e ey
114 ./o—-000’"*-0-0-"_"*-0-0-"_"*-0—-0-""‘-0-0-—"_"*—-0—0—"_"*—0—0—"
115 EOF
116 N
117 fold8)
118 cat << "EOF"
-
120 o0OOI_I/_\NITIN(L)
121 ol Tyl /_\
122 TS_[O] I\ /11l /1 I_/
123 {======|_| """ I "t
124 ./o—-000’_"‘-0-0-""*-0-0-"_"*-0-0-"_"*—0—-0-""*-0—-0—"_"*—0—0—"
125 EOF
126 _ooolh
127 . _fold9)
128 __._._._._cat << "EOF"
129 . . _ - —
130 _...0.0.0 ol o/ oo s o N
131 0o O oD e\
132 TS_[O] I oo N /A
133 {======I__ 1 """l
134 ./o—-000’"*-0-0-’_"*-0-0-"_"*-0-0-""‘-0-0-—"_"*—-0—-0—"_"*—0—0—"
135 EOF
136 3
137 *)
138 0
139 esac
140
141 }
142

143 print_SOV_score(){

144 cat /resultSOV.txt | grep —e SOV’ lawk —F’_* *{sovAll_+=_$3;_sovH_+=_%$4;_sovE_+=_$5; sovC_+=_$6} _END_{
— printf_"\n_,_, . SOV_ALL SOV_H SOV_E SOV_Cw,_, ., %Af_ . %Af_ . %A . . %4
— f\n",_sovAll/NR,_sovH/NR,_sovE/NR,_sovC/NR}’

(TR TR AT [ETESTRTRT

145 }

146

147 get_filter_name(){
148 case $1 in

149 "1")

150 filter_name="SVM"

151 0

152 "2")

153 filter_name="Decision_Tree"
154 5

155 "3")

156 filter_name="Random_Forest"
157 5

158 *)

159 filter_name="Unknown,_ Filter
160 i

161 esac

162}

163

164 get_filter_abr(){

165 case $1 in

"

166 "1")

167 filter_abr="svm"
168 3

169 "2")

170 filter_abr="dtree"
171 3

172 "3")

173 filter_abr="rforest"
174 3

175 *)

176 filter_abr="unknown"
177 I

178 esac

179 }

180

181 SCRIPTS="./q3_sov_scripts"

182 TEMP_FOLDER="./temp_runAll_CB513"

183 RUN_ALL_FOLDER="./CB513_runAll_out_files"

184 CROSS_VAL_FOLDER="./CB513_cross_validation"

185 [—d "$TEMP_FOLDER"] Il mkdir "$TEMP_FOLDER"

186 [—d "$RUN_ALL_FOLDER"] Il mkdir "$RUN_ALL_FOLDER"

187

188 echo" "
189 echo "_>Cross_ Validation_Results"

190 echo"

191 foriin ‘Is "$CROSS_VAL_FOLDER"*

192 do

193 echo "$i"

194 new_folder="$RUN_ALL_FOLDER/cross_val_res"

195 [—d "$new_folder"] Il mkdir "$new_folder"

196 out_file=("$TEMP_FOLDER/$i""_cross_val.txt")

197 for j in ‘Is "$CROSS_VAL_FOLDER/$i"

198 do

199 echo "$CROSS_VAL_FOLDER/$i/$}"

200 done > "$out_file"

201 python "$SCRIPTS/ensembles.py” "$Sout_file" "$WINDOW" 1 "$new_folder/ens_pred.txt" "$new_folder/ens_sov.txt" "
— $new_folder/ens_weka.txt"

202 "$SCRIPTS/runSOV" "$new_folder/ens_sov.txt"

203 print_SOV_score

204 python "$SCRIPTS/calc_Q3.py" "$new_folder/ens_pred.txt"

205 echo "
Oy
oy

206 done

207 echo" "

208 echo "

209 foriin ‘ls "$TEST_FOLDER"*

210 do

211 print_fold $i

212 new_folder="$RUN_ALL_FOLDER/$i""_results"
213 [—d "$new_folder"] Il mkdir "$new_folder"

214 out_file="$TEMP_FOLDER/$i""_files.txt")

215

216 for j in ‘Is "$TEST_FOLDER/$i"*

217 do

218 echo "$TEST_FOLDER/$i/$;"

219 done > "$out_file"

220 echo " "

221 echo "_>Ensembles_Results"

222 echo "
R
oy

223 python "$SCRIPTS/ensembles.py" "$out_file" "$WINDOW" 1 "$new_folder/ensembles_pred.txt" "$new_folder/ensembles_sov.
— txt" "$new_folder/ensembles_weka.txt" > "$new_folder/ensembles_out.txt"

224 "$SCRIPTS/runSOV" "$new_folder/ensembles_sov.txt"

225 print_SOV_score

226 python "$SCRIPTS/calc_Q3.py" "$new_folder/ensembles_pred.txt"

227 echo " "

228 echo "_>Ensembles_+_External_Rules_Results"

229 echo "
T
o

230 python "$SCRIPTS/externalRules.py” "$new_folder/ensembles_pred.txt" "$new_folder/ens_rules_sov.txt" "$new_folder/
— ens_rules_pred.txt"

231 "$SCRIPTS/runSOV" "$new_folder/ens_rules_sov.txt"

232 print_SOV_score

233 python "$SCRIPTS/calc_Q3.py" "$new_folder/ens_rules_pred.txt"

234

235 for filter in "${filterOpt[@]}"

236 do

237 get_filter_name $filter

238 get_filter_abr $filter

239 echo " !

240 echo "_>Ensembles_+_External_Rules_+_»$filter_name_Results"

241 echo "
O
o

242 python "$SCRIPTS/prepare_SVM_files.py" "$new_folder/ens_rules_pred.txt" "$TRAIN_FOLDER/$i""_train_pred.txt" "
— $SVM_WIN" "$new_folder/temp_svm_test.txt" "$new_folder/temp_svm_train.txt"

243 python "$SCRIPTS/train_SVM.py" "$new_folder/temp_svm_test.txt" "$new_folder/temp_svm_train.txt" "$SVM_WIN" "
— $new_folder/ens_rules_pred.txt" "$new_folder/ens_rules_$filter_abr""_pred.txt" "$new_folder/ens_rules_$filter_abr
— ""_sov.txt" "$filter" > "$new_folder/ens_rules_$filter_abr""_out.txt"

244 "$SCRIPTS/runSOV" "$new_folder/ens_rules_$filter_abr""_sov.txt"

245 print_SOV_score

246 python "$SCRIPTS/calc_Q3.py" "$new_folder/ens_rules_$filter_abr""_pred.txt"

247 echo " "

M-5

248
249

250

251

252
253
254
255
256
257

258

259
260
261
262
263
264
265
266
267
268
269
270
271

echo "_>Ensembles_+_$filter_name_Results"
echo "

python "$SCRIPTS/prepare_SVM_files.py" "$new_folder/ensembles_pred.txt" "$TRAIN_FOLDER/$i""_train_pred.txt" "
— $SVM_WIN" "$new_folder/temp_svm_test.txt" "$new_folder/temp_svm_train.txt"

python "$SCRIPTS/train_SVM.py" "$new_folder/temp_svm_test.txt" "$new_folder/temp_svm_train.txt" "$SVM_WIN" "
— $new_folder/ensembles_pred.txt" "$new_folder/ens_$filter_abr""_pred.txt" "$new_folder/ens_$filter_abr""_sov.txt"
—s "$filter" > "$new_folder/ens_$filter_abr""_out.txt"

"$SCRIPTS/runSOV" "$new_folder/ens_$filter_abr""_sov.txt"

print_SOV_score

python "$SCRIPTS/calc_Q3.py" "$new_folder/ens_$filter_abr""_pred.txt"

echo "

echo "_>Ensembles_+_$filter_name_+_External_Rules_Results"

echo "

python "$SCRIPTS/externalRules.py” "$new_folder/ens_$filter_abr""_pred.txt" "$new_folder/ens_$filter_abr""_rules_sov.txt
— " "$new_folder/ens_$filter_abr""_rules_pred.txt"
"$SCRIPTS/runSOV" "$new_folder/ens_$filter_abr""_rules_sov.txt"
print_SOV_score
python "$SCRIPTS/calc_Q3.py" "$new_folder/ens_$filter_abr""_rules_pred.txt"
done

echo "

nn

echo
exit O
done

Remove temp files
rm —rf "$TEMP_FOLDER"
rm resultSOV.txt

rm SOVinput.txt

M-6

11
12
13
14

15
16
17
18
19
20

21
22
23
24
25
26

27
28

Appendix N

View filtering results of CB513

The following bash script was implemented and used to view all the ensembles and filter-

ing results in a table format, for the CB513 dataset.

#!/bin/bash
file="./final_results_CB513.txt"

echo "Ensembles_Results"
echo —e "Q3_ALL\tQ3_H\tQ3_EMQ3_C\tSOV_ALL\USOV_H\SOV_EMSOV_C"

sed —n ’/Ensembles_Results/,/=====/p’ "$file" | grep —E *[0—9]+’| grep —v ’[a—zA—Z] | tr —s "_" | sed —e *s/M[_\t]«//’ | awk
< —F_’ ’BEGIN{switch=1} {if_(switch_==_1)_{v1=$1;_v2=$2; v3=$3;_v4=$4;_switch=2;} _else_{printf_"%.2\t%.2
— \t%.20\t%.20\t%.20\t% .20\t %.2f\t%.2f\n", _$1,_$2, $3, %4, v1, v2, v3, v4; switch=1}}

n

echo

echo "Ensembles,_+_External_Rules_Results"
echo —e "Q3_ALL\tQ3_H\tQ3_E\tQ3_C\UtSOV_ALL\tSOV_H\tSOV_E\MSOV_C"

sed —n ’/Ensembles_+_External_Rules_Results/,/=====/p’ "$file" | grep —E *[0—9]+’| grep —v ’[a—zA—Z] | tr —s "_" | sed —e
< s/ M/ lawk —F°) "BEGIN{switch=1} {if _(switch_==_1)_{v1=$1;_v2=$2;_v3=$3;_v4=$4; switch=2;} _else
— {printf_"%.2f\t%.2f\t%.2f\t% .2\t % .20\t %.2f\t%.2f\t%.2f\n",_$1,_$2, $3, $4,_v1, v2, v3, v4;_switch=1}}’

nn

echo

echo "Ensembles_+_External_Rules_+_SVM_Results"

echo —e "Q3_ALL\tQ3_H\tQ3_EMQ3_C\tSOV_ALL\USOV_HUSOV_EMSOV_C"

echo'——mfMm8MHe———1 11— — — — —— —— —— ——

sed —n ’/Ensembles_+_External_Rules_+_SVM, Results/,/=====/p’ "$file" | grep —E "[0—9]+’| grep —v '[a—zA—Z]" | tr —s "
— "Ised —e s/ \]x//" | awk —F’)’ "BEGIN{switch=1}{if_(switch_==_1)_{v1=$1;_v2=$2; v3=$3;_v4=$4;_switch
< =2;}_else_ {printf_"%.20\t%.20\t%.20\t% .20\t % .2\t % .2\t % .2\t % .2f\n",_$1,_$2, $3, $4, v1, v2, v3, v4;_switch
— =1}}

n

echo

echo "Ensembles,_+_SVM, Results"
echo —e "Q3_ALL\tQ3_H\tQ3_E\tQ3_C\UtSOV_ALL\SOV_H\tSOV_E\MSOV_C"

sed —n ’/Ensembles_+_SVM,_ Results/,/=====/p’ "$file" | grep —E *[0—9]+’| grep —v ’[a—zA—-Z] | tr —s "_" | sed —e *s/*[_\t
<]x//" lawk —F’_’ "BEGIN{switch=1} {if_(switch,_==_1)_{v1=8$1;_v2=$2;_v3=$3; v4=$4; switch=2;}_else_{printf_
— "%.2f\t%.2\t%.2f\t%.2f\t% .2\t %.2f\t%.2f\t%.2f\n", _$1,_$2,_$3,_$4,_v1,_v2, v3, v4;_switch=1}}’

nn

echo

29
30
31
32

33
34
35
36
37
38

39
40
41
42
43
44

45
46
47
48
49
50

51
52
53
54
55
56

57
58
59
60
61
62

63
64
65
66
67
68

echo "Ensembles_+_SVM, +_External_Rules_Results"
echo —e "Q3_ALL\tQ3_H\tQ3_EMQ3_C\tSOV_ALL\USOV_HUSOV_EMSOV_C"

sed —n ’/Ensembles_+_SVM, +_External_Rules_Results/,/=====/p’ "$file" | grep —E "[0—9]+’| grep —v '[a—zA—Z]" | tr —s "
— "Ised —e s/ \t]x//" | awk —F’)’ "BEGIN{switch=1}{if_(switch_==_1)_{v1=$1;_v2=$2; v3=$3;_v4=$4;_switch
< =2;}_else_ {printf_"%.20\t%.20\t%.20\t% .20\t % .20\t % .2\t % 2\t % .2f\n",_$1,_$2, $3, $4, v1, v2, v3, v4;_switch
= =1y

nn

echo

echo "Ensembles_+_External_Rules_+_Decision_Tree_Results"
echo —e "Q3_ALL\tQ3_H\tQ3_EMQ3_C\tSOV_ALLMSOV_H\USOV_EMSOV_C"
echg"—-——— ——— —— —

— tr—s"_"Ised —e s/ \t]x// | awk —F_’ "BEGIN{switch=1}{if_(switch_==_1)_{v1=$1;_v2=8$2; v3=$3; v4=$4,;
— _switch=2;}_else_{printf_"%.20\t%.20\t%.20\t%.20\t%.2\t%.20\t % .2\t %.2f\n", _$1,_$2, $3, $4, v1, v2, v3, v4;_
— switch=1}}’

"

echo

echo "Ensembles_+_Decision_Tree_Results"

echo —e "Q3_ALL\tQ3_H\tQ3_EMQ3_C\tSOV_ALLMSOV_H\tSOV_EMSOV_C"

echg"————— —— 1 o —— "

sed —n ’/Ensembles_+_Decision_Tree_Results/,/=====/p’ "$file" | grep —E *[0—9]+’| grep —v ’[a—zA—Z] Itr —s "_" | sed —e
< s/ \#// lawk —F° " "BEGIN{switch=1}{if_(switch_==_1)_{v1=$1;_v2=$2; v3=$3;_v4=$4; switch=2;} _else_,
— {printf_"%.2f\t%.20\t% .2f\t%.20\t % .20\t % .2\t % .20\t %.2f\n",_$1,_$2, $3, $4. v1, v2, v3, v4; switch=1}}

nn

echo

echo "Ensembles_+_Decision_Tree_+_External_Rules_Results"
echo —e "Q3_ALL\tQ3_H\tQ3_EMQ3_C\tSOV_ALLMSOV_H\USOV_EMSOV_C"
echg"—-——— ———

— tr—s"_"Ised —e s/ \t]x//’ | awk —F_’ "BEGIN{switch=1}{if_(switch_==_1)_{v1=$1;_v2=8$2; v3=$3; v4=$4,;
— _switch=2;}_else_{printf_"%.20\t%.20\t%.20\t% .2\t %.2\t%.20\t % .2\t %.2f\n", _$1,_$2, $3, $4, v1, v2, v3, v4;_
— switch=1}}’

"

echo

echo "Ensembles_+_External_Rules_+_Random,_Forest_Results"

echo —e "Q3_ALL\tQ3_H\tQ3_E\tQ3_C\USOV_ALL\tSOV_H\tSOV_E\MSOV_C"

eho"——— —— ——— —— —— — "

sed —n ’/Ensembles_+_External_Rules_+_Random,_Forest_Results/,/=====/p’ "$file" | grep —E *[0—9]+’| grep —v ’[a—zA—Z]
— ltr—s"_"Ised —e s/ M)/ |awk —F’_’ "BEGIN{switch=1}{if (switch,_==_1)_{v1=$1;_v2=$2; v3=$3; v4=
< $4;_switch=2;}_else_/{printf_"%.20\t%.20\t%.20\t%.21\t%.20\t% .20\t %.2f\t%.2f\n", _$1,_$2, $3, $4, v1, v2, v3, v4;
— _switch=1}}’

nn

echo

echo "Ensembles,_+_Random_Forest_Results"
echo —e "Q3_ALL\tQ3_H\tQ3_E\tQ3_C\USOV_ALL\tSOV_H\tSOV_E\tSOV_C"

sed —n ’/Ensembles_+_Random,_Forest_Results/,/=====/p’ "$file" | grep —E *[0—9]+’| grep —v ’[a—zA—Z] | tr —s "_" | sed —e
— s \x// lawk —F " "BEGIN{switch=1}{if_(switch_==_1)_{v1=$1;_v2=$2;_v3=$3;_v4=$4; switch=2;} _else_
— {printf_"%.20\t%.20\t% .20\t % .20\t % .20\t % .20\t %.2f\t%.2f\n", _$1,_$2, $3._$4, v1, v2, v3, v4;_switch=1}}’

"

echo

echo "Ensembles_+_Random,_Forest_+_External_Rules_Results"

echo —e "Q3_ALL\tQ3_H\tQ3_EMQ3_C\tSOV_ALLMSOV_H\tSOV_EMSOV_C"

eho"———— ————— —— "

sed —n ’/Ensembles_+_Random,_Forest_+_External_Rules_Results/,/ /p’ "$file" | grep —E *[0—9]+’| grep —v ’[a—zA—Z]
— T ltr—s"_"Ised —e *s/A[M)/ | awk —F’_’ "BEGIN{switch=1}{if_(switch,_==_1)_{v1=$1;_v2=$2; v3=$3; v4=

N-2

— $4;_switch=2;}_else_{printf_"%.2f\t%.20\t%.20\t%.2\t%.20\t % .2\t % .2\t %.2f\n", _$1,_$2,_$3, $4, v1, v2, v3, v4;
— _switch=1}}’

N-3

Appendix O

All filtering methods on PISCES

This bash script was implemented and used to apply the ensembles and the filtering meth-

ods in various orders and display the results for each fold of the PISCES dataset.

#!/bin/bash

Author : Panayiotis Leontiou
Since : May 2020

Version: 1.0

Bugs : No known bugs

TEST_FOLDER="./PISCES._test_pred"
TRAIN_FOLDER="./PISCES._train_pred"
WINDOW="15"

SVM_WIN="19"

filterOpt=("2" "3")

O 00 N N L AW N =

O
N o= O

13 echo"

14

15

16

17 PPPPPPPPPPPPPPPPP__ . . . SSSSSSSSSSSSSSS_.SSSSSSSSSSSSSSS, PPPPPPPPPPPPPPPPP
18 :SPe
19 SSSSSS P

20 S SSSSSSSS:S, . SSSSSSSppeziicP L PP
21

S S:::S P::::P
22

S S::S P::::P PP
23 P::::PPPPPP:::::P__S::::SSSS S::::SSSS P::::PPPPPP:::::P

24 PooPP SS:iSSSSS, 0SS SSSSS, P PP

25 P::::PPPPPPPPP_ . ._._SSS:::::SS_ o SSS::SS P::::PPPPPPPPP
26 L PP e SSSSSSS ol SSSSSSS PP
27 P
P

28

[T

[T AT TR TR TR TR TR}

29 PP::::PP, SSSSSSS S:::::SSSSSSSS S:::i:SPP:ii:PP

TR TR TR TR RN} [ATRTRTRTEN

[ATRTRTRTEN

30
31
32 PPPPPPPPPP__ SSSSSSSSSSSSSSS. . . SSSSSSSSSSSSSSS.. . PPPPPPPPPP
33

34

35

36 "

37 print_fold () {

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

case $1 in
fold0)
cat << ’EOF’
oOOI__I/_\NITIN/\

ol ITQOII_IHI__10l
TS_[O] I\ /1 1/ 1T \/

[g |uuunn| |ﬂnnnn| quunnl)

Jo——000" " —0—0—""*—0—0—"_"*—0—0—"_"*—0—0—""*—0—0—"_"*—0—0—’
EOF

foldl)

cat_<<_"EOF"

[T

[ETESTRTIT

T .
PRI © A © SN S AR AP A L P A N
PPN PP R P G X PR L AL) L

USRS [©) P N WY S S P N /S N R

TR I I I I e
T

Jo—e—000" " —0—0—" "—0—0—’ "—0—0—" " —0—0—’ "—0—0—" "‘—(—0—"
EOF
fold2)
cat << "EOF"
o0OO!_I/_\IIINIL)
ol _I1()II__INhl___
TS__[O]_II___/I I/ 1/__1
{mmmmma] _| "0 | ey o)
Jo——000"_" —0—0—""—0—0—"_"*—0—0—"_"—0—0—" "—0—0—"_"—0—0—"
EOF
fold3)
cat_<<_"EOF"

[T

[ETESTRRTIT

T VU VT U
0 OO)] o) L
O O D e\

T U IO N AU R 0 SO N O B

______ N N

— -

Jo——000" "—0—0—" " 0—0—" "—0—0—"""—0-0—" "—0—0—" "—_0—0—"
EOF
fold4)
cat << "EOF"

o OOl _I/_\NITINITH

ol ITO)IMI_Ihl___
TS__[O] _ILI___/I [

{ | Jrmn |ummu| Inumml Immnnl Jrmn

o 000" " —0—0—" " 00— " 00— " —0—0—* " 0—0—"_"—0—0—"
EOF

folds)

cat_<<_"EOF"

AR
[ETESTRRTIT
b b

0.0_0, o /o Il [P |

[ETESTRNTIN JUN GHF T TRTRNTEL R RTINS O T T T T TR L S TR T ST T TR AT TR TR TR TR TR TR LW

0, I I\

[T n_u_u_u_u_n_“_u_u_Jln_J—In_u_u_Jln_J()n_Jln_“_u_J uiuuuulul)uluuuuiuuuuu —

.IS[O] Il _/ | I I/ 1 __/

e —— e —— e —— o e — e

0-2

95 {______l |) [) o
T L R ! ! ! !

% ./o—-000""‘-0-0-’_"‘-0-0-"_"‘-0-0-""‘-0-0-"_"*-0-0—"_"*—0—0—"
97 EOF
98 3
99 fold6)
100 cat << "EOF"
ot
102 o0 OOl _I/_\ITIN//
103 ol TNl /_\
104 TS_[O] I\ /1 1__/1__I_/
105 {======l """
106 ./o—-o000’_"‘-0-0-’"*-0-0-’_"*-0-0-"_"*-0-0-""*-0—-0—"_"*—0—0—"
107 EOF
108 oo
109 ____fold7)
110 __._._._._cat_<<_"EOF"
| B B
112 . ..0.0.0 .|l /_\ I (A (|
113 0o O o D
114 __TS_[O] ol oo N /oo e
115 A======I__1 """ """ ey
116 ./o—-o000’"*-0-0-’_"*-0-0-’_"*-0-0-""‘-0-0-"_"*-0—-0—"_"‘—0—0—"
117 EOF
118 0
119 fold8)
120 cat << "EOF"
2
122 o0 OOl _I/_\NITIN(L)
123 ol TNl /_\
124 TS_[O] I\ /1 1__/1___I_/
125 {======l _| """
126 ./o—-000’_"‘-0-0-’"*-0-0-"_"*-0-0-"_"*-0-0-""*-0—-0—"_"*—0—0—"
127 EOF
128 oo
129 ____fold9)
130 __._._.._cat_<<_"EOF"
|)
132 ...0.0.0 ot /oo e e s N
) S XX 2N o X R AU A G N NN A A A) N AR W
134 _TS_[O] Il oo N /oo
135 {======l__1 """l ey
136 ./o—-000’"*-0-0-’_"*-0-0-’_"*-0-0-""*-0-0-"_"*—0—-0—"_"*—0—0—"
137 EOF
138 0
139 *)
140 5
141 esac
142
143}
144

145 print_SOV_score(){

146 cat ./resultSOV.txt | grep —e SOV’ | awk —F’_” *{sovAll_+=_$3;_sovH_+=_%$4;_sovE_+=_$5;_sovC_+=_$6}_END_{
< printf_"\n__, . SOV_ALL SOV_H SOV_E SOvV_Cw,, , , %4f_ %Af_ KA %4
— f\n",_sovAll/NR,_sovH/NR,_sovE/NR,_sovC/NR}’

[RTRTT TR AT [ETESTTRTRT

147 }
148
149 get_filter_name(){

0O-3

150 case $1 in

151 ")

152 filter_name="SVM"

153 0

154 "2")

155 filter_name="Decision_Tree"
156 0

157 "3")

158 filter_name="Random_Forest"
159 0

160 *)

161 filter_name="Unknown_Filter'
162 0

163 esac

164}

165

166 get_filter_abr(){

167 case $1 in

"

168 ")

169 filter_abr="svm"
170 0

171 "2")

172 filter_abr="dtree"
173 0

174 "3")

175 filter_abr="rforest"
176 0

177 *)

178 filter_abr="unknown"
179 0

180 esac

181 }

182

183 SCRIPTS="./q3_sov_scripts"

184 TEMP_FOLDER="./temp_runAll_PISCES"

185 RUN_ALL_FOLDER="./PISCES_runAll_out_files"

186 CROSS_VAL_FOLDER="./PISCES_cross_validation"

187 [—d "$TEMP_FOLDER"] Il mkdir "$TEMP_FOLDER"

188 [—d "$RUN_ALL_FOLDER"] Il mkdir "$RUN_ALL_FOLDER"

189

190 echo" "
191 echo "_>Cross_ Validation_Results"

192 echo”

193 foriin ‘ls "$CROSS_VAL_FOLDER"*

194 do

195 echo "$i"

196 new_folder="$RUN_ALL_FOLDER/cross_val_res"

197 [—d "$new_folder"] Il mkdir "$new_folder"

198 out_file=("$TEMP_FOLDER/$i""_cross_val.txt")

199 for j in ‘Is "$CROSS_VAL_FOLDER/S$i"¢

200 do

201 echo "$CROSS_VAL_FOLDER/$i/$j"

202 done > "$out_file"

203 python "$SCRIPTS/ensembles.py” "$Sout_file" "$WINDOW" 1 "$new_folder/ens_pred.txt" "$new_folder/ens_sov.txt" "
— $new_folder/ens_weka.txt"

204
205
206
207

208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

225

226
227
228
229
230
231

232

233
234
235
236
237
238
239
240
241
242
243

244

245

246
247

"$SCRIPTS/runSOV" "$new_folder/ens_sov.txt"
print_SOV_score
python "$SCRIPTS/calc_Q3.py" "$new_folder/ens_pred.txt"

echo "

R
oy

done

echo " "

echo ""

foriin ‘Is "$TEST_FOLDER"¢

do

print_fold $i
new_folder="$RUN_ALL_FOLDER/$i""_results"
[—d "$new_folder"] Il mkdir "$new_folder"
out_file=("$TEMP_FOLDER/$i""_files.txt")

for jin ‘Is "$TEST_FOLDER/$i"*
do

echo "$TEST_FOLDER/$i/$;"
done > "$out_file"

echo "

echo "_>Ensembles_Results"

echo "
o
oy

python "$SCRIPTS/ensembles.py” "$out_file" "$WINDOW" 1 "$new_folder/ensembles_pred.txt" "$new_folder/ensembles_sov.
— txt" "$new_folder/ensembles_weka.txt" > "$new_folder/ensembles_out.txt"

"$SCRIPTS/runSOV" "$new_folder/ensembles_sov.txt"
print_SOV_score

python "$SCRIPTS/calc_Q3.py" "$new_folder/ensembles_pred.txt"
echo "

echo "_>Ensembles_+_External_Rules_Results"
echo "

non "o

python "$SCRIPTS/externalRules.py" "$new_folder/ensembles_pred.txt" "$new_folder/ens_rules_sov.txt" "$new_folder/
— ens_rules_pred.txt"
"$SCRIPTS/runSOV" "$new_folder/ens_rules_sov.txt"
print_SOV_score
python "$SCRIPTS/calc_Q3.py" "$new_folder/ens_rules_pred.txt"
for filter in "${filterOpt[@]}"
do
get_filter_name $filter
get_filter_abr $filter
echo "$filter $filter_name"

echo "

echo "_>Ensembles_+_External_Rules_+_$filter_name_Results"
echo "

python "$SCRIPTS/prepare_SVM_files.py" "$new_folder/ens_rules_pred.txt" "$TRAIN_FOLDER/$i""_train_pred.txt" "
— $SVM_WIN" "$new_folder/temp_svm_test.txt" "$new_folder/temp_svm_train.txt"
python "$SCRIPTS/train_SVM.py" "$new_folder/temp_svm_test.txt" "$new_folder/temp_svm_train.txt" "$SVM_WIN" "

"o nn "o

< $new_folder/ens_rules_pred.txt" "$new_folder/ens_rules_$filter_abr""_pred.txt" "$new_folder/ens_rules_$filter_abr
— ""_sov.txt" "$filter" > "$new_folder/ens_rules_$filter_abr""_out.txt"
"$SCRIPTS/runSOV" "$new_folder/ens_rules_S$filter_abr""_sov.txt"

print_SOV_score

248
249
250
251

252

253

254
255
256
257
258
259

260

261
262
263
264
265
266
267
268
269
270
271
272
273

python "$SCRIPTS/calc_Q3.py" "$new_folder/ens_rules_$filter_abr""_pred.txt"
echo "

echo "_>Ensembles_+_$filter_name_Results"
echo "

python "$SCRIPTS/prepare_SVM._files.py" "$new_folder/ensembles_pred.txt" "$TRAIN_FOLDER/$i""_train_pred.txt" "
— $SVM_WIN" "$new_folder/temp_svm_test.txt" "$new_folder/temp_svm_train.txt"
python "$SCRIPTS/train_SVM.py" "$new_folder/temp_svm_test.txt" "$new_folder/temp_svm_train.txt" "$SVM_WIN" "

n "

— $new_folder/ensembles_pred.txt" "$new_folder/ens_$filter_abr
— "$filter" > "$new_folder/ens_$filter_abr""_out.txt"
"$SCRIPTS/runSOV" "$new_folder/ens_$filter_abr""_sov.txt"
print_SOV_score
python "$SCRIPTS/calc_Q3.py" "$new_folder/ens_$filter_abr""_pred.txt"
echo "

_pred.txt" "$new_folder/ens_$filter_abr""_sov.txt

echo "_>Ensembles_+,_ $filter_name_+_External _Rules_Results"
echo "

python "$SCRIPTS/externalRules.py" "new_folder/ens_Sfilter_abr""_pred.txt" "$new_folder/ens_$filter_abr""_rules_sov.txt
— " "$new_folder/ens_$filter_abr""_rules_pred.txt"
"$SCRIPTS/runSOV" "$new_folder/ens_S$filter_abr""_rules_sov.txt"
print_SOV_score
python "$SCRIPTS/calc_Q3.py" "$new_folder/ens_$filter_abr""_rules_pred.txt"
done

echo "
echo ""
exit O

done

Remove temp files
rm —rf "$TEMP_FOLDER"
rm resultSOV..txt

rm SOVinput.txt

0-6

11
12
13
14

15
16
17
18
19
20

21
22
23
24
25
26

27
28

Appendix P

View filtering results of PISCES

The following bash script was implemented and used to view all the ensembles and filter-
ing results in a table format, for the PISCES dataset.

#!/bin/bash
file="./final _results_PISCES.txt"

echo "Ensembles_Results"
echo —e "Q3_ALL\tQ3_H\tQ3_EMQ3_C\tSOV_ALL\USOV_H\SOV_EMSOV_C"

sed —n ’/Ensembles_Results/,/=====/p’ "$file" | grep —E *[0—9]+’| grep —v ’[a—zA—Z] | tr —s "_" | sed —e *s/M[_\t]«//’ | awk
< —F_’ ’BEGIN{switch=1} {if_(switch_==_1)_{v1=$1;_v2=$2; v3=$3;_v4=$4;_switch=2;} _else_{printf_"%.2\t%.2
— \t%.20\t%.20\t%.20\t% .20\t %.2f\t%.2f\n", _$1,_$2, $3, %4, v1, v2, v3, v4; switch=1}}

n

echo

echo "Ensembles,_+_External_Rules_Results"
echo —e "Q3_ALL\tQ3_H\tQ3_E\tQ3_C\UtSOV_ALL\tSOV_H\tSOV_E\MSOV_C"

sed —n ’/Ensembles_+_External_Rules_Results/,/=====/p’ "$file" | grep —E *[0—9]+’| grep —v ’[a—zA—Z] | tr —s "_" | sed —e
< s/ M/ lawk —F°) "BEGIN{switch=1} {if _(switch_==_1)_{v1=$1;_v2=$2;_v3=$3;_v4=$4; switch=2;} _else
— {printf_"%.2f\t%.2f\t%.2f\t% .2\t % .20\t %.2f\t%.2f\t%.2f\n",_$1,_$2, $3, $4,_v1, v2, v3, v4;_switch=1}}’

nn

echo

echo "Ensembles_+_External_Rules_+_Decision_Tree_Results"

echo —e "Q3_ALL\tQ3_H\tQ3_EMQ3_C\tSOV_ALL\USOV_HUSOV_EMSOV_C"

echo'——mfMm8MHe———1 11— — — — —— —— —— ——

sed —n ’/Ensembles_+_External_Rules_+_Decision_Tree _Results/,/=====/p’ "$file" | grep —E *[0—9]+’| grep —v ’[a—zA—Z]" |
— tr—s " "Ised —e s/ \]x//" | awk —F_’ "BEGIN{switch=1}{if_(switch_==_1)_{v1=$1;_v2=$2;_v3=$3;_v4=$4;
< _switch=2;}_else_ {printf_"%.20\t%.20\t% .2\t % .2\t % .2\t % .2\t % .2\t % .2f\n", _$1,_$2, $3, $4, v1, v2, v3, v4;_
— switch=1}}’

n

echo

echo "Ensembles_+_Decision_Tree_Results"
echo —e "Q3_ALL\tQ3_H\tQ3_E\tQ3_C\UtSOV_ALL\SOV_H\tSOV_E\MSOV_C"

sed —n ’/Ensembles_+_Decision_Tree_Results/,/=====/p’ "$file" | grep —E '[0—9]+’| grep —v ’[a—zA—Z] | tr —s "_" | sed —e
< /N M/ lawk —F’_ "BEGIN {switch=1} {if_(switch_==_1)_{v1=$1;_v2=$2; v3=$3; v4=$4; switch=2;} _else_,
— {printf_"%.2f\t%.2f\t%.2f\t% .2\t %.2f\t%.2f\t%.2f\t%.2f\n",_$1,_$2, $3. $4,_v1, v2, v3, v4;_switch=1}}’

nn

echo

echo "Ensembles_+_Decision_Tree_+_External_Rules_Results"
echo —e "Q3_ALL\tQ3_H\tQ3_E\tQ3_C\USOV_ALL\tSOV_H\tSOV_E\tSOV_C"

sed —n ’/Ensembles_+_Decision_Tree_+_External_Rules_Results/,/=====/p’ "$file" | grep —E *[0—9]+’| grep —v ’[a—zA—Z]" |
— tr—s"_"Ised —e s/ \t]*// | awk —F_’ "BEGIN{switch=1}{if_(switch_==_1)_{v1=$1;_v2=$2; v3=$3; v4=$4,;
< _switch=2;}_else_ {printf_"%.20\t%.20\t% .20\t % .2\t % .2\t % .2\t % .2\t % .2f\n", _$1,_$2, $3, $4, v1, v2, v3, v4;_
— switch=1}}’

nn

echo

echo "Ensembles_+_External_Rules_+_Random, Forest_Results"
echo —e "Q3_ALL\tQ3_H\tQ3_EMQ3_C\tSOV_ALLMSOV_H\USOV_EMSOV_C"
echg"—-——— ——— —— —

— 7 ltr—s"_"Ised —e 's/\[_\]*//" | awk —F’_’ "BEGIN{switch=1}{if_(switch_==_1)_{v1=$1;_v2=$2; v3=$3; vd=
— $4;_ switch=2;}_else_{printf_"%.20\t%.20\t%.20\t%.21\t%.2\t% .2\t %.2f\t%.2f\n", _$1,_$2, $3, $4, v1, v2, v3, v4;
— _switch=1}}’

"

echo

echo "Ensembles_+_Random_Forest_Results"

echo —e "Q3_ALL\tQ3_H\tQ3_EMQ3_C\tSOV_ALLMSOV_H\tSOV_EMSOV_C"

echg"————— —— 1 o —— "

sed —n ’/Ensembles_+_Random_Forest_Results/,/=====/p’ "$file" | grep —E *[0—9]+’| grep —v ’[a—zA—Z] I tr —s " _" | sed —e
— s M/ lawk —F " "BEGIN({switch=1} {if_(switch_==_1)_{v1=$1;_v2=$2;_v3=$3; v4=$4;_switch=2;} _else_,
— {printf_"%.2f\t%.20\t% .2f\t%.20\t % .20\t % .2\t % .20\t %.2f\n",_$1,_$2, $3, $4. v1, v2, v3, v4; switch=1}}

nn

echo

echo "Ensembles_+_Random,_ Forest_+_External_Rules_Results"
echo —e "Q3_ALL\tQ3_H\tQ3_EMQ3_C\tSOV_ALLMSOV_H\USOV_EMSOV_C"
echg"—-——— ———

— 7 ltr—s"_"Ised —e s/ _\]*//" | awk —F’_’ "BEGIN{switch=1}{if_(switch_==_1)_{v1=$1;_v2=$2; v3=$3; vd=
— $4; switch=2;}_else_{printf_"%.20\t%.20\t%.20\t%.2\t%.2\t% .2\t %.2f\t%.2f\n", _$1,_$2, $3, $4, v1, v2, v3, v4;
— _switch=1}}’

	Introduction
	Protein Secondary Structure Prediction problem
	The Importance of PSSP
	Previous Research on PSSP

	Background
	Biology Background
	The Biological Role of Proteins
	Amino Acids
	Protein Structures
	Primary Structure
	Secondary Structure
	Tertiary Structure
	Quaternary Structure

	Artificial Neural Networks Background
	Origins of Artificial Neural Networks
	Variations of Artificial Neural Networks and Optimizers
	McCulloch and Pitts (McP)
	Multi-Layer Perceptron (MLP)
	Recurrent Neural Network (RNN)
	Convolutional Neural Network (CNN)
	Line Search
	Conjugate Gradient (CG)
	Newton’s Method

	Hessian Free Optimisation (HFO)
	Intro to HFO
	Analysis of HFO
	Hessian-Vector Multiplication evaluation

	Data Manipulation
	PSSP Metrics
	Protein Databases and DSSP
	Dataset Format
	Data Encoding and MSA profiles
	CB513 and PISCES Datasets
	Dataset preprocessing with MSA profiles
	Significant neighboring amino acids
	Training/ Testing Set and Cross Validation
	Ensembles
	Filtering
	External Rules
	Support Vector Machines
	Decision Trees
	Random Forests

	Implementation
	A new approach for the PSSP problem
	CNN and HFO combination
	Subsampled Hessian Newton (SHN) Method
	Network Implementation

	Experiments and Results
	Experiments for Implementation Evaluation
	Experiments with CB513 dataset
	Fine Tuning of Hyper Parameters
	10-fold Cross-Validation and Ensembles Results
	CNN and SVM Combination
	Filtering Results for CB513
	Additional experiments with CB513
	Final results for CB513

	Experiments with PISCES dataset
	5-fold Cross-Validation and Ensembles Results
	Filtering Results for PISCES
	Final Results for PISCES

	Best Results for CB513 and PISCES

	Conclusion and Future Work
	Conclusions
	Suggestions for Future Work on PSSP

	References
	Appendices
	Appendix Excluded proteins from CB513
	Appendix Excluded proteins from PISCES
	Appendix Convert datasets to Matlab files
	Appendix CB513 dataset pre-processing
	Appendix PISCES dataset pre-processing
	Appendix Python Implementation
	Appendix Ensembles Program
	Appendix External Rules Program
	Appendix SOV calculation
	Appendix Calculation of Q3 accuracy
	Appendix Data pre-processing for filtering
	Appendix Training Filtering Methods
	Appendix All filtering methods on CB513
	Appendix View filtering results of CB513
	Appendix All filtering methods on PISCES
	Appendix View filtering results of PISCES

