
DEEP REINFORCEMENT LEARNING FOR HARD EXPLORATION

PROBLEMS: LESSONS LEARNT

Stelios Tymvios

A Thesis

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Bachelor of Science

at the

University of Cyprus

Recommended for Acceptance

by the Department of Computer Science

June, 2020

APPROVAL PAGE

Bachelor of Science Thesis

DEEP REINFORCEMENT LEARNING FOR HARD EXPLORATION

PROBLEMS: LESSONS LEARNT

Presented by

Stelios Tymvios

Research Supervisor
Professor Christos Christodoulou

Committee Member
Dr Vassilis Vassiliades

ii

University of Cyprus

June, 2020

iii

ABSTRACT

In this thesis, we give a brief introduction to Reinforcement Learning (RL) with an

emphasis on reward functions and their consequences, along with short overview of other

issues that extend beyond maximizing a function. We give a brief, yet pragmatic introduc-

tion to Deep Reinforcement Learning (DRL) by reviewing the most influential model-free,

not distributed and Deep Hierarchical Reinforcement Learning (DHRL) algorithms for

both discrete and continuous domains along with some important extensions and explo-

ration schemes. This thesis is focused on two key issues in DRL, correctness of implemen-

tation and hard exploration problems.

In DRL, implementation details go well beyond the logic and the structure of the

source code. Implementation details such as weight initialization, network dimensions,

value magnitudes, activation functions and weight optimization algorithms can have a

profound effect on the performance and behavior of an agent. In this thesis, we identify

some important silent bugs and undesired behavior that occurs when training a DRL

model. In tandem we provide guidelines to assist in solving these issues along with the

reasoning and intuition behind the bug and the solution.

The second focal point of this thesis is the class of hard exploration problems. This

class of problems provides very little information to the model as to how it should perform.

In turn, agents are clueless as to how to solve them and how to behave. We put emphasis

on problem decomposition as it is inherent to how we learn. We provide examples of such

problems from both tabular RL and DRL. We pay special attention to the domain of the

Obstacle Tower (OT) as it presents a formidable yet highly decomposable benchmark for

current algorithms and present our proposed solution.

Stelios Tymvios – University of Cyprus, 2020

iv

ACKNOWLEDGEMENTS

First and foremost, I would like to express my gratitude towards my supervisor, Pro-

fessor Christos Christodoulou, for trusting me to undertake this project and enabling me

to delve deeper into my interests and his continuous support throughout the project.

I would like to express my most sincere appreciation to my co-supervisor and reviewer,

Dr. Vassilis Vassiliades, for his invaluable opinion and thoughts on my ideas, for his

excellent guidance, and for broadening my horizons.

Last, but not least, I would like to thank my mother. This thesis is dedicated to you,

and your inexhaustible patience with me and my shenanigans over the last year.

iii

TABLE OF CONTENTS

Chapter 1: Introduction 4

Chapter 2: Reinforcement Learning 7

2.1 Markov Decision Processes . 9

2.1.1 Partially Observable MDPs . 12

2.1.2 Goal conditioned MDPs . 13

2.1.3 Options . 14

2.2 Exploration vs Exploitation . 14

2.2.1 ε− greedy Exploration . 16

2.2.2 Softmax Boltzman Distribution . 17

2.3 Reward Maximization . 17

2.4 Beyond Reward Maximization . 18

Chapter 3: Deep Learning 23

3.1 Optimization . 23

3.1.1 Gradient Descent . 23

3.1.2 SGD . 24

3.1.3 RMSProp . 25

3.1.4 Adam . 25

3.2 Training Techniques . 26

3.2.1 Stochastic Computation Graphs . 26

3.2.2 Penalty Annealing . 27

3.2.3 Weight Regularization . 27

iv

3.2.4 Independent and Identically Distributed 28

3.3 Self-Supervised Learning . 28

3.3.1 AutoEncoders . 29

3.3.2 Variational AutoEncoders . 29

3.3.3 MMD-VAE . 31

Chapter 4: DQN and Friends 32

4.1 DQN . 32

4.1.1 Experience Replay . 33

4.1.2 Offline updates . 33

4.1.3 Target Weights . 33

4.1.4 Optimization Procedure . 34

4.2 Double DQN . 34

4.3 Dueling DQN . 35

4.4 DRQN . 36

4.4.1 Bootstrapped Sequential Updates . 37

4.4.2 Bootstrapped Random Updates . 38

4.5 R2D2 . 38

4.5.1 Burn-In-Phase . 39

4.6 C51 . 41

4.6.1 Control . 41

4.6.2 Optimization Procedure . 42

4.7 Rainbow . 43

4.8 Off-Policy Correction . 43

v

4.8.1 Importance Sampling . 44

4.8.2 Q(λ) . 45

4.8.3 Tree Backup(λ) . 45

4.8.4 Retrace(λ) . 46

Chapter 5: Policy Gradients 47

5.1 Vanilla Policy Gradient . 48

5.1.1 Ignoring the Past . 49

5.2 Advantage Actor Critic . 50

5.3 Generalized Advantage Estimation . 52

5.4 Trust Region Policy Optimization . 52

5.5 Proximal Policy Optimization . 53

5.6 The Deterministic Policy Gradient . 55

5.7 Deep Deterministic Policy Gradient . 56

5.8 Twin Delayed DDPG . 58

5.9 Soft Actor Critic . 59

5.9.1 Continuous Soft Actor Critic . 62

5.9.2 Discrete Soft Actor Critic . 63

5.10 Conclusion . 64

5.10.1 KL Divergence . 65

Chapter 6: Tools, Exploration methods and Hierarchies 67

6.1 Prioritized Experience Replay . 67

6.2 Hindsight Experience Replay . 70

6.3 Noisy Linear Layers . 71

vi

6.4 (Pseudo-)Count Based Exploration . 72

6.5 Random Network Distillation . 73

6.6 Bootstrapped DQN . 74

6.7 h-DQN . 75

6.8 Feudal Networks . 78

6.8.1 Feudal Learning . 79

6.9 Competitive Ensembles of Information-Constrained Primitives 80

6.10 Hierarchical Actor Critic . 83

6.11 Conclusion . 87

Chapter 7: Problem Decomposition and the Obstacle Tower 89

7.1 Decomposition . 90

7.2 Goal based Problems . 91

7.3 Mountain Car . 91

7.4 The Taxi Problem . 93

7.5 Four Rooms . 94

7.6 Sokoban . 95

7.7 Obstacle Tower . 96

Chapter 8: Design and Implementation 101

8.1 Proximal Policy Optimization . 101

8.2 Architecture and Modules . 103

8.3 Obstacle Tower Environment . 104

8.3.1 Action Space Modifications . 105

8.4 Current State . 106

vii

8.4.1 Stable Baselines . 107

8.4.2 PPO . 108

8.4.3 Current Limitations . 109

8.4.4 Preliminary Results . 110

8.4.5 Computational Resources . 110

Chapter 9: Ghosts in the Tensors 112

9.1 Fantastic deltas and how to fight them . 112

9.2 Actor Collapse . 114

9.3 Off Policy Over-Optimization . 116

9.4 Proximal Policy Over-Optimization . 117

9.5 Diluted Experience . 118

9.6 Minding your business . 119

9.7 Handling Termination . 120

9.8 Dead neurons and misleading gradients . 121

9.9 Sawtooth . 122

9.10 Time is but a stubborn illusion . 125

Chapter 10: Conclusion 126

10.1 Future Work . 127

10.1.1 The future for the Obstacle Tower 128

References 130

Appendix A: DQN and Friends 147

A.1 Dueling Architectures . 147

viii

A.2 C51 . 148

Appendix B: Policy Gradient methods 152

B.1 Variance of Advantage function . 152

Appendix C: Source 154

C.1 Environment . 154

C.1.1 ALE Emulator . 154

C.1.2 Communication . 157

C.1.3 Action Wrappers . 161

C.2 PPO . 165

C.2.1 Policies . 165

C.2.2 Algorithm . 181

C.3 Modules . 196

C.3.1 Nature AutoEncoder . 196

C.4 Utilities . 200

C.4.1 VecNoise . 200

ix

LIST OF FIGURES

1 The general interaction of the agent and the environment 7

2 The Options Framework . 15

3 The dueling DQN architecture . 36

4 Computing the target value in C51 . 42

5 The network architecture of Bootstrapped DQN 75

6 The h-DQN architecture . 77

7 The FUN architecture . 79

8 An example of a feudal system. 80

9 The CEiCP architecture . 81

10 Visualization of goals in HAC . 84

11 Visualization of a trajectory generated by HAC. 85

12 Rendering of the Mountain Car Problem . 92

13 The taxi problem domain . 94

14 The four rooms domain . 95

15 Example instances of the Sokoban puzzle 96

16 Our neural network architecture . 103

17 Performance Comparison between different types of exploration 110

18 Analysis of the computation of target values for C51 149

x

1

Summary of Notation

Capital letters are used for random variables, whereas lower case letters are used for the

values of random variables and for scalar functions. Quantities that are required to be real-

valued vectors are written in bold and in lower case (even if random variables). Matrices

are bold capitals.

.= equality relationship that is true by definition

≈ approximately equal

∝ proportional to

Pr{X=x} probability that a random variable X takes on the value x

X ∼ p random variable X selected from distribution p(x) .= Pr{X=x}

E[X] expectation of a random variable X, i.e., E[X] .= ∑
x p(x)x

R set of real numbers

← assignment

(a, b] the real interval between a and b including b but not including a

ε probability of taking a random action in an ε-greedy policy

η learning rate

γ discount-rate parameter

λ decay-rate parameter for Generalized Advantage Estimation and N-step returns

s, s′ states

a an action

r a reward

2

S set of all nonterminal states

S+ set of all states, including the terminal state

R set of all possible rewards, a finite subset of R

∈ is an element of; e.g., s ∈ S, r ∈ R

|S| number of elements in set S

t discrete time step

T, T (t) final time step of an episode, or of the episode including time step t

At action at time t

St state at time t, typically due, stochastically, to St−1 and At−1

Rt reward at time t, typically due, stochastically, to St−1 and At−1

π policy (decision-making rule)

π(s) action taken in state s under deterministic policy π

π(a|s) probability of taking action a in state s under stochastic policy π

Gt return following time t

h horizon, the time step one looks up to in a forward view

Gt:t+n, Gt:h n-step return from t+ 1 to t+ n, or to h (discounted and corrected)

p(s′, r | s, a) probability of transition to state s′ with reward r, from state s and action a

p(s′ | s, a) probability of transition to state s′, from state s taking action a

r(s, a) expected immediate reward from state s after action a

r(s, a, s′) expected immediate reward on transition from s to s′ under action a

3

V, Vt array estimates of state-value function vπ or v∗

Q,Qt array estimates of action-value function qπ or q∗

δt temporal-difference (TD) error at t (a random variable)

θ parameter vector of target policy

θk parameter vector of target policy at the kth optimization step

π(a|s; θ) probability of taking action a in state s given parameter vector θ

πθ policy corresponding to parameter (vector) θ

∇π(a|s; θ) column vector of partial derivatives of π(a|s; θ) with respect to θ

Jθ(·) Objective of policy πθ evaluated at the input

∇Jθ(·) column vector of partial derivatives of Jθ with respect to θ evaluated at the input

b(a|s) behavior policy used to select actions while learning about target policy π

Chapter 1

Introduction

Deep Reinforcement Learning is a relatively young field that attempts to solve the

curse of dimensionality, through ‘deep‘ function approximators, or, more specifically, Neu-

ral Networks. Deep Reinforcement Learning (DRL) has taken the scientific world by storm

when it exhibited proficiency in a large number of games in the Arcade Learning Envi-

ronment (ALE) [1, 2, 3]. Further work showed mastery of GO, a feat thought impossible

due to the combinatorial nature of the problem [4]. Since then, the popularity, academic

interest, and achievements have only grown. While earlier work used domain knowledge

to beat humans in combinatorial problems such as Go, further work surpassed humans not

only in Go, but also Shogi, and Chess without any domain knowledge or, in the case of

chess, exhaustive search like Stockfish [5]. Parallel work in problems where the rules of the

problem are not given has shown performance competitive with humans in the domains

of Starcraft 2 [6, 7] and Dota 2 [8], while exhibiting superhuman performance in simpler

problems encountered such as those in the ALE [9, 10, 11, 12, 13, 14, 15, 16].

While DRL works, there are still a number of open problems holding it back. DRL

has its roots in Reinforcement Learning (RL) and owes many of its successes to the theory

4

5

behind it. RL is a mathematical formalization of a process, or agent, that interacts with

its environment, the environment responds with a new state and a reward, the goal of the

process is to maximize the reward it receives. Learning with rewards is a very natural way

to learn associations and resembles Operant Conditioning [17, 18]. RL is plagued by the

poor sample efficiency, balancing exploration, and the credit assignment problem, while

DRL also suffers from worse sample efficiency (relatively, DRL suffers only because the

problems it tackles are multiple orders of magnitude greater than that of RL), brittleness

with respect to hyper-parameters and initialization, random seeds, generalization and lack

of information in imperfect information problems [17, 2, 19, 20, 9, 11, 15, 16, 12, 9, 10, 21].

In DRL, implementation details go well beyond the logic and the structure of the

source code. Implementation details such as weight initialization, network dimensions,

value magnitudes, activation functions and weight optimization algorithms can have a

profound effect on the performance and behavior of an agent [2, 22, 23, 24, 20]. In this

thesis, we identify some important, yet silent bugs and undesired behavior that occurs

when training a DRL model. In tandem we provide guidelines to assist in solving these

issues along with the reasoning and intuition behind the bug and the solution.

The second focal point of this thesis is Hard Exploration Problems and how they

can be solved through decomposition and temporarily extended actions. Hard Explo-

ration Problems tend to use uninformative reward functions and very delayed rewards,

thus, the algorithm needs to solve both the exploration and credit assignment prob-

lems. Hierarchical and Deep Hierarchical RL (HRL, DHRL) algorithms solve problems

by decomposing them into smaller and simpler ones, or by performing composite actions

[25, 26, 27, 28, 29, 30]. We draw attention to the domain of the Obstacle Tower (OT)

[21] as it presents a formidable benchmark for current algorithms while remaining highly

6

decomposable. The OT is, by design, a Herculean task for current algorithms as it draws

on the current limitations of the field. We present our own potential solution to the prob-

lem based on state-of-the-art algorithms and outline several implementation details and

decisions along with the reasoning behind them.

Chapter 2

Reinforcement Learning

The problems Reinforcement Learning is concerned with are those where an actor

or agent needs to learn how to operate in an unknown environment with some optimal

behavior with delayed feedback. To communicate our goals, we provide a reward signal

to the agent, and the agent is usually tasked with maximizing it.

The reward hypothesis

Simply put, the reward hypothesis states:

That all of what we mean by goals and purposes can be well thought of as
maximization of the expected value of the cumulative sum of a received scalar
signal (reward). Richard Sutton

Figure 1: The general framework in Reinforcement Learning. The agent performs some
action at time t conditioned on the previous state, and the environment responds with a
reward and a new state.

7

8

Although a trivial observation, it can not be understated that the reward signal has

high implications on the behavior of an agent. It is important that we are explicit with

the goal the agent is tasked with solving and refrain from directing an agent towards

particular behavior [17]. For example, suppose that we own a paper clip company and we

would like to maximize our revenue. Rewarding indirect behavior such as maximizing a

quantity like the number of paper clips produced is not necessarily a good proxy for the

desired outcome. It is likely that the model will mindlessly create more paper clips [31]

when the desired goal is to maximize profit.

It is also important to take into consideration the length, or horizon of the problem

we are trying to solve. For example, certain problems are considered episodic as they

have a terminal state. An example of such a problem is the game of pong. In episodic

problems, the agents are concerned with maximizing their reward over the whole episode.

Problems that lack a terminal state or whose terminal state is very far into the future

are considered infinite horizon problems. In infinite horizon problems, unlike episodic,

the agent can not consider rewards infinitely far into the future because that is infinity.

Therefore, to prevent the estimation from exploding into infinity, the agents are concerned

with exponentially discounted rewards. The rate of exponential discount is determined

by scalar called the discount factor. Smaller values make an agent greedy and myopic

with respect to up coming rewards. Larger discount factors force an agent to take into

consideration long term rewards, allowing it to make short term sacrifices for long term

profit.

9

2.1 Markov Decision Processes

Markov Decision Processes (MDPs) are the framework we use to formulate a particular

problem. MDPs impose certain restrictions on the formulation that in turn, provide us

with certain guarantees on convergence and optimal behavior. MDPs allow us to describe

the relationship between the environment and an agent operating in it.

More formally, an MDP is the quintuple 〈S,A,R, γ, p〉, where S denotes the state space,

or the set of all states; A denotes the action space, or the set of all possible actions; R

denotes the reward space , or the set of all possible rewards; γ is the discount factor and p

defines the dynamics of the system. The dynamics define the probability of transitioning

to state s′ with reward r from state s with action a′. Using the same notation as [17]:

p(s′, r|s, a) : S× R× S×A→ [0, 1]

∑
s′∈S,r∈R

p(s′, r|s, a) = 1, for all a ∈ A, s ∈ S (1)

Equivalently, we can define the probability of transitioning from state s ∈ S to state s′ ∈ S

using action a ∈ A through 1 as:

p(s′|s, a) : S× S×A→ [0, 1]

p(s′|s, a) =
∑
r∈R

p(s′, r|s, a) (2)

At any point t in time, an agent receives a representation s ∈ S of the environment and

selects an action a ∈ A, the agent then receives a reward r ∈ R and a new representation

of the state s′, creating a sequence, or a trajectory, of the following form:

S1, A1, R2, S2, A2, ..., Rt, St (3)

The constraint of MDPs is that the state S needs to have the Markov property. The

Markov property requires that any particular state is a sufficient statistic of the future.

10

In other words, the state encodes enough information to fully describe the distribution of

future states. Given the Markov property, we can compute the probability of any finite

trajectory:

P (T;π) .= p(S0)
T∏
i=0

π(Ai|Si)p(Si+1|Si, Ai) (4)

(5)

The consequence of the Markov property is that at any point in time t = T , regardless of

what our behavior was at t = 0, 1, 2, .., T , we can make an optimal decision that takes into

consideration all of the future states because the current state has enough information

about them, thereby reducing the problem into making informed sequential decisions.

These informed decisions depend on whether the agent needs to find long term or short

term policy. The behavior is adjusted through the discount factor γ ∈ [0, 1]. Defining the

return as the sum of the rewards at time step t until the final time step T :

Gt = Rt +R1 +R2...+RT

= Rt +
T∑

i=t+1
Ri (6)

= Rt +Gt+1 (7)

We can adjust the behavior of the agent by discounting the future rewards using the

discount factor γ:

Gt
.= Rt + γGt+1 =

T∑
i=t

γi−tRi (8)

which results in exponential decay of the value of future rewards. In episodic problems,

agents are tasked with finding the best possible behavior for the episode and therefore

they need to take into consideration the undiscounted return which is equivalent of using

11

γ = 1. Undiscounted rewards cannot be used in infinite horizon problems because the

series diverges. Using a discount factor of γ = 0 turns the agent into a bandit because

only the immediate rewards are considered.

As we mention above, the goal is maximize the discounted cumulative reward. The

reason we consider discounted rewards is because in infinite horizon problems, and without

discounting, adding up the rewards received from a suboptimal policy will still result in

infinite rewards because the series diverges, while it converges for any γ in [0, 1) :

∞∑
i=0

γi = 1
1− γ (9)

Although MDPs give access to the dynamics of the environment, RL algorithms are

concerned with problems that do not provide such information. Algorithms that learn the

dynamics through a model are referred to as model based algorithms, those that do not,

are referred to as model free algorithms. The reward function is part of the dynamics of

the system, in some applications such as robotics, we may have access to it, i.e. we can

query it.

We will use the term episode to refer to problems where the agent starts from subspace

of the state space and operates until it reaches a terminal state and therefore can not

operate. To bridge the gap between episodic problems and infinite problems, one can

consider terminal states as those where every action transitions into the same terminal

state and the observed reward is always 0.

We will use the term policy to refer to the behavior of an agent. More formally, the

policy is the function π : S × A → R that gives the probability that the agent will take

action a at state s, thus ∑a∈A π(a|s) = 1.

12

We define the State Value function V π : S → R of policy π as an estimator of the

Expected discounted return [8] following the policy π from state s:

V π(S) = Eπ [R|St = s] (10)

=
∑

a∈A,s′∈S,r∈R
p(s′, r|s, a)π(a|s)(r + γV π(s′)) (11)

Where R is the return. We will use the subscript π in Expectations to denote that we

’follow’ the policy π.

We define the State Action Value function Qπ : S × A → R as an estimation of the

Expected return [8] of taking action a, at state s and then following the policy π:

Qπ(s, a) = Eπ [R|St = s,At = a] (12)

= r(s, a) + γ
∑
s′∈S

p(s′|s, a)V π(s′) (13)

= r(s, a) + γ
∑

s′∈S,a′∈A
p(s′|s, a)π(a′|s′)Qπ(s′, a′) (14)

We also refer to Qπ(s, a) as the Q function, and V π(s) as the V function.

Let us now define optimality. The optimal policy π is any policy such that it achieves

the maximum discounted cumulative reward from any state. We denote Q∗(s, a) and

V ∗(s) as the optimal State Action Value and State Value functions respectively.

2.1.1 Partially Observable MDPs

Although MDPs are quite flexible, they come up short when the feedback the environ-

ment is insufficient and the Markov property is violated. Such problems are referred to

as partially observable or partial information problems. To illustrate the difference, lets

juxtapose between a fully observable and a partially observable problem. The former is

checkers and the latter is pong. In checkers, one can make an informed decision using just

13

an image of the board. In pong, a single frame does not contain enough information as

it is impossible to deduce the direction of the ball, however, two subsequent frames are

sufficient.

Problems like Pong are referred to as Partially Observable because the environment

does not provide a state, like in MDPs, instead it provides an observation. The observation

is, in essence, a limited representation of the internal state.

More formally, a POMDP is the sextuple 〈S,A,R, γ, p,Ω,O〉, where S denotes the state

space, or the set of all states; A denotes the action space, or the set of all possible actions;

R denotes the reward space , or the set of all possible rewards; γ is the discount factor

and p defines the dynamics of the system, just as before, Ω defines the observation space

o ∼ Ω and O is a distribution of the observations conditioned on the current state [32].

A common approach to solving POMDPs is by incorporating a history. This can be

done by keeping a history of the observations but this comes at the cost of increased

dimensions. Modern algorithms incorporate neural networks with memory cells such as

LSTMs and GRUs [33, 34, 35, 32, 12, 36].

2.1.2 Goal conditioned MDPs

Goal conditioned MDPs, or Universal MDPs (UMDP) are a simple extension to vanilla

MDPs that reformulates the problem from the finding a policy that maximizes the dis-

counted reward function r(s, a), to finding a policy that maximizes the discounted reward

function r(s, a, sg) over a distribution of goals sg ∼ G [37, 29, 38, 39]. Therefore a Goal con-

ditioned MDP is the sextuple 〈S,A,R, γ, p,G〉, where G is the goal space. In consequence,

the goal of the agent becomes to find the optimal policy according to:

14

π∗ = max
π
Eπ

[
Esg∼G

[
T∑
i=0

γir(si, ai, sg)
]]

(15)

2.1.3 Options

An important extension to the MDP framework is the idea of high level temporarily

extended actions and one of the common formulations of this idea is known as Options[25].

A Markovian Option is the triplet 〈Io, πo, βo〉, where Io is the initiation set, i.e. a set of

states from which an option may be used, πo is a particular option’s policy, and βo is the

termination condition [26, 25]. Primitive actions can be generalized to options, where the

initiation set is every state, the policy selects the corresponding action, and the termination

condition is always true after performing said action [25]. An example of ’options’ can be

found in figure 2.

2.2 Exploration vs Exploitation

The Exploration Exploitation dilemma is simply asking whether to exploit prior knowl-

edge, or to continue exploration in an attempt to find something better. Ideally, we would

like to commit just enough exploration that we reach an optimal policy. In non trivial

problems, it is rarely the case that agents have committed sufficient exploration and not

fall into a locally optimal policy [40]. In addition, exploration based on successful policies

is a source of bias as algorithms converge to a set of solutions [41] and therefore influence

the distribution of future scenarios.

Agents that perform sufficient exploration of either the policy can come up with novel

strategies that were unknown to humans such as move 37 in match 2 of AlphaGo [4] vs

15

Figure 2: An example of the options framework in the four rooms domain. The agent can
perform primitive actions, i.e. move North, South, East and West like in the top figure,
or, it can perform a high level action and move to the corridors, like in the bottom figure
[25].

16

Lee Sedol, exploit bugs in environments such as Qbert [42] and Sonic [43], and even exhibit

emerging behavior in multi agent systems [41].

To illustrate the necessity for exploration, lets take the simple case of a binary bandit

that uses the first pull of each action to estimate the reward, i.e. is biased. The bandit has

the following expected rewards for arms k = 1 and k = 2, where p(R|k = x) denotes the

probability of receiving reward R given the selected arm is x. The first arm receives reward

1000 with probability 0.5 and 0 with probability 0.5, the second arm receives reward 1

with probability 1.

Ek=1 = 1000 ∗ p(1000|k = 1) + 0 ∗ p(0|k = 1)

= 1000 ∗ 0.5

= 500

Ek=2 = 1 ∗ p(1|k = 2)

= 1

Therefore the optimal policy should pick k = 1 with probability 1. For a bandit

without any form of exploration, the first pull is enough to cause it to always pick k = 2.

2.2.1 ε− greedy Exploration

A common exploration strategy is to use an εgreedy behavior policy. An ε− greedy

policy acts greedily by selecting a = π(s) from a deterministic policy π : S → A with

probability 1 − ε, and explores with probability ε by sampling a ∼ U(A). In ε− greedy

policies, the greedy action π(s) is selected 1− ε(|A|−1)
|A| often and the rest of the actions are

selected ε
|A| often. [17]

17

Therefore, an ε− greedy policy is:

p(·|s) =

π(s) with probability 1− ε

U(A) with probability ε

In practice, ε− greedy policies often begin with a large value for ε and slowly anneal

to a smaller value. Starting with large exploration and annealing allows a model to build

a less biased estimation because it does not bootstrap on lucky prior observations [17].

2.2.2 Softmax Boltzman Distribution

An alternative method of performing both exploration and exploitation is using a

stochastic policy p : S×A→ [0, 1] that draws samples from a Boltzman Distribution [17].

Under such policy the probability of selecting an action is as follows:

p(a|s; t) =
exp q(a|s)

t∑A
a′ exp q(a′|s)

t

Where t is the temperature. The temperature performs an adjustment on the values and

directly alters the entropy of the policy. Small temperature values cause values to be

exaggerated which results in increased probabilities, and thus, lower entropy. Whereas

larger temperatures repress the values and thus, the probability of selecting actions with

lower values increases.

2.3 Reward Maximization

An agent’s behavior, by definition, can only be as good as the reward function allows

as its goal is to maximize said reward function. In consequence, achieving optimality with

respect to some reward function does not necessarily achieve optimality with respect to

18

our goals. The misalignment is a consequence of poorly defined reward functions. Besides

misalignment, another important issue is poor performance that occurs in hard exploration

problems, where the signal is sporadic and thus, results in an agent that wonders around

aimlessly. Moreover, sporadic reward functions introduce the problem of attributing the

reward to particular actions, this is commonly referred to as the reward assignment prob-

lem.

Uninformative reward functions present the greatest obstacle in teaching agents how

to solve particular problems. Depending on the underlying algorithm, the same reward

function can have radically different results based on the information they provide. We

would like to put emphasis on the term uninformative. We often consider empty, or

zero valued reward signals as uninformative, but that is not always the case. The same

reward function can be informative for an agent that performs very frequent updates, or

completely useless for an agent that performs sporadic updates [17].

2.4 Beyond Reward Maximization

Although the goal in Reinforcement Learning is to learn the optimal behavior through

a reward signal, the process of learning hides many intricacies and nuances that make

it difficult to diagnose the exact short-comings of a particular algorithm. This issue is

exacerbated in Deep Reinforcement Learning as the algorithms are more volatile and

incorporate a lot of moving parts. Regardless, we can decompose and understand an

agent by evaluating it in a variety of different environments that allow us to deconstruct

its behavior into the following performance evaluations:

• Noise

19

• Scale

• Memory

• Generalization

• Exploration

• Credit Assignment

It is important to separate the facets of performance in DRL as, unlike other fields

of Machine Learning, an agent’s behavior and performance dictates the future states it

will observe. In consequence, an agent is responsible for its own dataset, this creates an

amplifying feedback loop that can cause an agent to fall into behavioral local minima, to

forget prior experience, and even to never learn.

Noise

Noise refers to an agent’s robustness to noisy reward signals [19]. Noisy reward signals

can result in varying behavior depending on the underlying algorithm and require different

approaches when optimizing the loss function.

Scale

Scale refers to the robustness of an algorithm in terms of the size of the provided

rewards. Although tabular algorithms can learn with rewards in varying scales, DRL

algorithms are not as robust due to the methods that we use to train them and because

the changes are not local. Differences in magnitude can result in very large gradients and

gradient updates that cause catastrophic forgetting [44] and numerical instability [2], they

20

can mess with optimizers such as Adam [35] that keep track of magnitude and last but not

least, different optimization algorithms like Adam and SGD can exhibit wildly different

results depending on the scale [19].

Memory

Classic RL algorithms assume that the problems they observe is Markov, thus the state

provides a sufficient representation of the future. This is in contrast to real world problems

as they are usually partially observable problems. We can transform a POMDP into an

MDP by constructing a state representation with sufficient information [36, 17]. In classic

algorithms, this was done by increasing the state space to account for more observations,

in contrast, DRL algorithms usually incorporate a memory augmented neural network

that keeps an internal state that is separate from the received observation [36].

Generalization

Generalization refers to the ability to generalize behavior to unseen inputs [19] and is

the reason DRL algorithms use neural networks to learn a policy. Tabular methods do

not generalize without some compression of the state space that can result in suboptimal

behavior [17]. An agent with high generalization capabilities is, by definition, more sample

efficient than other agents that achieve the same final performance. In certain cases such

as [45], an agent with lower performance on seen examples may be able to generalize better

than other agents that showcase better performance on seen examples.

Generalization in RL comes by introducing randomness in the behavior of the model

and the observations of the environment; batch normalization; and regularization [46].

Specifically, we make an agent more stochastic by making it ε− greedy which overrides

21

the actions of an agent, use dropout layers that introduce stochasticity at runtime by

disabling neurons, L2 regularization to avoid over-fitting just like in Deep Learning [35, 46],

data augmentation to modify the incoming observations [46] and induced invariance by

introducing random filters through randomly initialized Convolutional filters [45].

Exploration

Exploration is paramount to learning optimal behavior. Lack of sufficient exploration

of the state space may result in agents that may never experience states with high rewards

that occur behind states with some penalties [17, 19]. This is very similar to how we

humans learn and behave, we encounter the same dilemma in our lives in the form of

choosing between entertainment and discipline.

It is important that we separate Exploration and Generalization. The former refers

to observing semantically different states, whereas the latter refers to semantically similar

states. This is an important distinction that distinguishes some classes of agents with

others. Soft agents [47], i.e. agents that use entropy maximization techniques as intrinsic

reward, attempt to perform exploration by receiving novel observations. Such agents can

fall victim to the Noisy-TV problem, where the agent receives highly entropic observations

and thus high intrinsic reward and ignores the extrinsic reward [48]. We can circumvent

this limitation through other schemes such as structured exploration [9], observation dis-

tillation [48], noisy networks [49], or action noise [50, 51].

Credit Assignment

Credit Assignment refers to the ability to assign credit to the correct action at the

correct time [19]. Reinforcement Learning is an extension to contextual bandits in that the

22

agent’s actions directly affect the distribution of future states, hence, the significance and

emphasis on obtaining the Markov property. Another issue with Credit Assignment is the

existence delayed rewards which are even more exacerbated in sparse reward environments

[17, 21, 38].

Chapter 3

Deep Learning

3.1 Optimization

While ’learning’ is often thought of as synonymous to optimization, the reality is far

from it. Optimization is used to achieve learning in a neural network or other differentiable

methods [35]. We can think of neural networks as a function F (X,θ), where the neural

network defines the operations in F , and the weights, θ, are the learnable parameters of

the function. The goal of ’learning’, is to minimize a differentiable error function that

includes F , and a training dataset X, and hoping that the model generalizes to a new

dataset X ′ that is sampled from the same distribution as X [35].

3.1.1 Gradient Descent

Gradient Descent is a very simple optimization procedure that iteratively updates the

parameters of a differentiable function. In our case, gradient descent simply computes the

gradient of a weight vector, usually denoted with θ, with respect to some cost function that

needs to be minimized. The gradient of a function gives us the direction of the steepest

ascent, by taking the negative of that function, we go towards the opposite direction [35].

23

24

θ ← θ − η∇θE(F (X; θ), Y) (16)

Where θ are the parameters of the differentiable function, E(Y, Ŷ) is a differentiable cost

function between the predicted value Ŷ and the true value Y that needs to be minimized,

and η scales the size of the step.

We take the liberty of treating the weights of a neural network as a single vector

since we can select individual elements from the weight vector through matrix multipli-

cation. This approach provides a very useful abstraction that hides the complexity of the

underlying model and focuses on the important content [35].

3.1.2 SGD

It is often physically impossible to compute the gradient with respect to the whole

dataset due to hardware, and time limitations, an alternative approach is to compute the

gradient for a single example and update the weights with respect to that, this method is

called Stochastic Gradient Descent (SGD) [35].

Due to the high variance of using a single example to compute the gradient, SGD may

perform steps that are destructive. The first remedy is to use a minibatch, i.e. more than

one example. Minibatches essentially compute the gradient for all examples and then

perform a reduction. The reduction operation can be either summation, or averaging. In

the case of summation, we need to reduce the step size accordingly to avoid too large steps.

The second remedy is to use ‘momentum‘. The momentum is, in essence, an exponential

recency moving average of the gradients [35].

25

V0 = 0

Vt = βVt−1 + (1− β)∇θE(F (X; θ), Y) (17)

θ ← θ − ηVt (18)

Where Vt is the momentum at time t, and β adjusts the speed of the updates.

3.1.3 RMSProp

Root Mean Square Propagation (RMSProp) is a modification on the momentum. Mo-

mentum estimates the first moment of the gradient, RMSProp is a second moment method.

It computes of the magnitude of the weights, by keeping track of the squared gradients

[35].

V0 = 0

Vt = βVt−1 + (1− β)(∇θE(F (X; θ), Y))2 (19)

θ ← θ − η√
Vt
�∇θE(F (X; θ), Y) (20)

We perform an element wise multiplication that results in weights mostly around 1, then

we account for that through the learning rate. The effect of RMSProp is that we gain more

robust updates because the weights are neither too small or too large and by multiplying

with the gradient vector, we know the correct direction to change the weights [35].

3.1.4 Adam

Adaptive Moment Estimation (Adam) combines RMSProp and Momentum, along with

a de-biasing mechanism for the early stages. De-biasing is used because in the early stages

26

are by definition biased because we have very poor estimate of the actual moments [52, 35].

M0 = 0

Mt = βMt−1 + (1− β)∇θE(F (X; θ), Y)
1− b1

V0 = 0

Vt = βVt−1 + (1− β)(∇θE(F (X; θ), Y))2

1− b2

θ ← θ − η√
Vt
�Mt (21)

where b1, b2 are the de-biasing factors, M denotes the momentum from SGD, and V is the

second moment from RMSProp [52, 35].

3.2 Training Techniques

3.2.1 Stochastic Computation Graphs

A common pattern when training neural networks and DRL models in particular is

that of estimating a distribution. This arises in two forms, Probability Density Functions

(PDF) and Probability Mass Functions (PMF). The issue that arises is that sampling is

not a differentiable operation and thus breaks end-to-end training. We can go around this

issue through two ways, the reparameterization trick [53], and estimating probabilities.

The reparameterization trick is used when we compute a PDF. The idea is that we

can separate the sampling process from the estimation of the distribution by

1. Sampling z from N(0, I), and

2. Skewing z

This two step process allows us to estimate the distribution parameters, and then map

the noise to that distribution [53, 35].

27

Estimating probabilities is done by computing values for the different outputs of the

model, apply the softmax operator, and then sample from the resulting categorical distri-

bution [53, 35].

3.2.2 Penalty Annealing

A common occurrence in DL is to train for multiple, or composite objective functions.

One of the issues that arise with composite objectives is that an auxiliary task may end

up dominating the loss function and in consequence destroy cause the network to collapse

or cause numerical instability that results in infinities.

A common approach is to slowly introduce the penalties through annealing, i.e. multi-

plying the penalty with a factor that grows from 0 up to 1. This approach is particularly

useful when training a VAE network as it allows the decoder model to learn to produce

good reconstructions before imposing the DKL penalty from eq. 24 [54, 55].

3.2.3 Weight Regularization

Weight Regularization penalizes the weights the network based on the norm of its

weights, and in consequence constrains the network to smaller values. The penalty is

usually in terms of L1 and L2 norms. Suppose that we have some arbitrary cost function

J(·; θ), the new cost function becomes:

Jreg(·; θ) = J(·; θ) + λ‖θ‖nn (22)

Where n is the norm, i.e. L1, L2.

28

3.2.4 Independent and Identically Distributed

When training neural network, we train on a training set X and hope that the model

generalizes to a different set, X’ that is sampled using the same process as X.

We generally assume that our samples are identically distributed, this means that any

two examples have the same probability of occurring. Identical distribution is important

because it provides a gateway towards generalization. If the sampling process does not

result in identically distributed samples, then the probability of finding a subset of samples

is greater than the rest. In consequence, there is an incentive to learn how to solve inputs

that occur more often.

In addition, we want the items from the batch that we use to train the model are

independent, this means that the probability of observing a particular input is dependent

on the probability of observing a different input. This, again, hinders generalization.

When a dataset has both Independent and Identically Distributed (I.I.D) elements, we

say that it has the I.I.D property.

3.3 Self-Supervised Learning

Unsupervised Learning as a field of ML is concerned with learning the underlying

structure of the data using models to help researchers understand patterns in the data,

or perform some form of dimensionality reduction. In modern literature, Unsupervised

Learning serves auxiliary tasks for models, and agents that help in optimizing the main

task. In this context, Unsupervised models are referred to as Self-Supervised models.

In DRL, Self-Supervised Learning is used to learn observation representations through

AutoEncoder[35] models, state representations through autoregressive models, and world

dynamics through forward predictive models.

29

3.3.1 AutoEncoders

An AutoEncoder (AE) [35, 53] learns an identity function F : Rn → Rn. Identity

functions on their own are not interesting, however, the goal of an AE is to learn an identity

function through an information bottleneck. We define an AE as the composite function

F (x; θ,φ) : Rn → Rn = D◦E, where E(x; θ) : Rn → Rz, D(z;φ) : Rz → Rn and Rz 6= Rn.

The intuition behind autoencoders is that we can learn a mapping or an encoding function,

E(·; θ) that transforms a higher dimensional space Rn to a lower dimensional space Rz,

and another mapping or in this case a decoding function, D(·;φ) that transforms the lower

dimensional space Rz back to the higher dimensional space Rn. Learning these mappings

is possible because we store the information of the transformations into the parameters θ

and φ. In short, an AE is a composite function F (x; θ, φ) that learns to minimize:

J(x; θ, φ) = E
[
(X − F (X))2

]
= E

[
(X −D(E(X; θ);φ))2

]
(23)

which results in learning two individual functions, D(·;φ) and E(·; θ). In general, AEs

are used to construct an informative representation of the input and perform some sort of

dimensionality reduction.

3.3.2 Variational AutoEncoders

Variational AutoEncoders (VAEs) [35, 53, 56] provide a Bayesian approach to learn-

ing an informative latent variable by assuming that the input is a transformation of a

Multivariate Gaussian distribution that is sampled from and that the dataset exhibits the

iid (independent and identically distributed) property. Similarly to AEs, VAEs learn an

encoder and a decoder, however, VAEs are stochastic models whereas AEs are not.

30

The goal of a VAE is to learn to produce the original input with high probability by

encoding it into a distribution instead of a latent variable [53, 56]. This allows us to impose

certain restrictions on the distribution which we can not do in a sensible way on regular

AEs. VAEs work by assuming that the input is the result of sampling from a Multivariate

Gaussian distribution, the prior p(x). The encoder model learns to map the input into

the distribution q(x) and is penalized based on the KL Divergence between the prior and

the learnt distributions [56, 53]:

Ldistr = DKL(q(x)||p(x)) (24)

The decoder model works by sampling from q(x) and reconstructing an image with the

goal to maximize the probability that the given input will be created:

Lrec = Ex∼data
[
Ez∼q(x) log p(x|z)

]
(25)

which results in the following objective function:

J = −βLdistr + Lrec

= −βDKL(q(x)||p(x)) + Ex∼dataEz∼q(x) log d(x|z) (26)

Where β ∈ (0, 1] is a scaling factor, z is some latent sampled from the learnt distribution

q(x) and p(x) is the prior that defines the underlying distribution which is assumed to be

a Multivariate Gaussian and d(x) is the decoder function. It is important to note that

sampling in of itself is a non-differentiable operation. In consequence, we can not sample

directly from q(x) however, we use the reparameterization trick to handle this issue (see

3.2.1). An extension on VAEs, the β-VAE [56] suggests that extending the scaling factor,

β, to penalties greater than 1 produces disentangled representations that are easier to

interpret over the representations created by a VAE or an AE.

31

3.3.3 MMD-VAE

Maximum Mean Discrepancy Variational AutoEncoder (MMD-VAE) builds on Vari-

ational AutoEncoders by identifying and solving two issues, a) the latent variable that

is forwarded from the encoder model is not used during decoding, b) the model overes-

timates the variance of latent code and pushes it to infinity. MMD fixes these issues by

penalizing the distance between the transformation of a random variable and two kernels,

one constructed by the learnt variable and a gaussian one [57, 58].

Chapter 4

DQN and Friends

4.1 DQN

Deep Q-Networks(DQN) [2] not only showed that Neural Networks are capable of

solving high dimensional problems through raw pixels, it also established a set of core

practices and created the era of Deep Reinforcement Learning. DQN was tested on the

Atari benchmark [1] suite where it managed to learn from raw pixels how to play classic

atari games.

DQN is a spiritual successor to the ubiquitous Q-learning [17], however, it provides

some significant changes that enable learning how to behave in high dimensional environ-

ments using neural networks as function approximators.

The main ingredients of DQN’s success are the usage of an off-policy algorithm, the

usage of an Experience Replay (ER) buffer that was sampled periodically, the usage of

target weights, and the usage of offline updates.

32

33

4.1.1 Experience Replay

The usage of Experience Replay is not new, however, it is only possible because DQN

is an off-policy algorithm. Off-policy algorithms can use experience from other agents

in order to optimize their own behavior, just like Q-learning. The Experience Replay

is a buffer that contains the N most recent experiences and is sampled uniformly and

periodically.

The inclusion of ER allows the agent to sample transitions that it would have otherwise

’forgot’. Forgetting transitions occurs because in RL the distribution of future states is

dependent on the policy. Thus, as the policy of an agent improves, the distribution

of observed states changes. Uniform sampling allows the agent to avoid catastrophic

forgetting by ensuring that all states have a non zero sampling probability. In addition,

it de-correlates the updates.

4.1.2 Offline updates

Due to the nature of neural networks, updating on every step, like in Q-learning is

expensive, susceptible to noise, and catastrophic forgetting. In [2], DQN is updated every

X number of steps with a number of transitions. The increased interval between updates

allows the network to remain stable and avoid catastrophic updates to the policy. In

addition, larger number of transitions allow for better and more stable estimations of the

gradient, thus the neural network is able to learn.

4.1.3 Target Weights

DQN keeps track of two sets of weights, one set is the policy weights θ, and the second

is the target weights θ′. DQN periodically copies the policy weights to the target weights.

34

The target weights are used to estimate the target values for the policy network. The

inclusion of target weights avoids the network bootstrapping off its own overestimations for

the state-action values. This change removes bias from the state-action value estimation

and keeps the policy stable.

4.1.4 Optimization Procedure

DQN works by treating the learning process as a regression problem, where given the

current state s the network needs to estimate a target that is created using the target

weights. More specifically, the optimization objective in DQN is:

δt = r + (1− d)γmax
a′

Q(st+1, a
′; θ′)−Q(st, at; θ)

Jdqn(θ,θ′) = E[δ2
t] (27)

and the overall algorithm is available in 4.1.4.

The optimization objective forces the policy weights to learn to estimate the reward in

addition to the estimation of the next state value, which enables, the network to reduce

the δt error.

4.2 Double DQN

Double Q-learning uses two Q-functions a means of reducing the overestimation that

occurs in particular scenarios [17, 59]. Double DQN is an adaptation of the Double

Q-learning approach specifically for DQN. More specifically, it adapts the optimization

objective to select an action using the policy weights, the value of the action is estimated

35

Algorithm 1 DQN
1: InitializeD← {}
2: Initializeweights θ
3: Initializeε− greedy policy πθ

4: θ′ ← θ
5: s ∼ S0

6: for step in 0..T do
7: a ∼ π(s)
8: take action a
9: Observe s′, r, d . next state, reward, episode termination
10: D← D ∪ {〈s, a, r, s′, d〉}
11: s← s′

12: if d == True then
13: s ∼ S0

14: end if
15: if is time to update weights then
16: θ ← θ −∇θJdqn(θ,θ′)
17: end if
18: if is time to update target weights then
19: θ′ ← θ
20: end if
21: end for

using the target weights [59]. It alters the computation of the δt to:

δt = r + (1− d)γQ(st+1, arg max
a′

Q(st+1, a
′; θ); θ′)−Q(st, at; θ) (28)

Jdqn−double(θ,θ′) = E[δ2
t] (29)

4.3 Dueling DQN

Dueling DQN introduces a dueling head architecture that enables a network to decom-

pose the Q(s, a) estimation to

Q(s, a) = V (s) + (A(s, a)−max
a′

A(s, a′)) (30)

and

Q(s, a) = V (s) + (A(s, a)− 1
|A|

∑
a′∈A

A(s, a′)) (31)

36

Figure 3: The DQN architecture (top) and the Dueling DQN architecture(bottom) [60].
Both networks estimate Qπ(s, a) at the final layer. The green component implements one
of [30], [31]. Source [60].

The reasoning behind this estimation is that the neural networks that we use to es-

timate these values produce an |A| dimensional vector with the state-action values for

every action for a particular input state. Decomposing Q(s, a) like above shows us that

V (s) is estimated for every action, thus, we can create a module with two internal output

heads, one to estimate V (s) and one to estimate A(s, a). When we sum the outputs of the

modules, V (s) is projected, thus, the value is added to every action. This change enables

the networks to learn significantly faster because V (s) does not need to be learned over

and over again for every state-action pair [59].1

4.4 DRQN

Deep Recurrent Q-Network (DRQN) is a first attempt in using RNNs, more specifically

LSTMs [33], in DQN. A number of problems are not fully observable. Such problems

are referred to as ’Partially Observable’ problems and need a means of transforming the

observations into informative states before they can be solved. DRQN accomplishes this

1The keen eye will notice that neither function is the ’correct’ advantage function. The explanation is
listed in the appendix.

37

transformation by incorporating an LSTM cell before the fully connected part of the neural

network. The introduction of the LSTM cell allows the network to remember information

across different time-steps.

The introduction of the LSTM layer allows an agent to learn a proper mapping of se-

quences of observations into the state-space and enables the agent to solve some POMDPs.

In [36] the authors also identify the issue of initializing the hidden state when training

a recurrent neural network and provide two distinct mechanisms to perform the Bellman

backup updates with back-propagation through time.

Besides a significant improvement in POMDPs, DRQN exhibits better performance in

some fully observable problems, however, it also exhibited significant differences depend-

ing on the location of the LSTM layer. Both DRQN and DQN were tested on Arcade

Learning Environment (ALE) [1]. ALE provides observations in the form of images, thus,

the agents require a Convolutional Neural Network [35]. Both agents used the same net-

work architecture, except DRQN used an LSTM layer in-place of the first fully connected

layer right after the last convolution layer. In [36], DRQN exhibits severe performance

degradation depending on the location of the LSTM layer, and the activation function

that follows.

4.4.1 Bootstrapped Sequential Updates

The first proposed update mechanism to the initialization problem is to sample episodes

from an Experience Replay. The updates happen from the beginning of an episode up to

the end. This allows the RNN to retain the hidden/context state throughout the episode

and the sample algorithm is available in 4.4.1.

38

Algorithm 2 Bootstrapped Sequential Updates
Require: D . Trajectory Experience Replay
Require: N > 1 . Number of trajectories to sample
Require: θ . Weights
Require: θ′ . Target weights
Require: λ > 0 . learning rate

1: BellmanError ← 0
2: for i in 0..N do
3: h = 0
4: h’ = 0
5: trajectory ∼ D
6: for (s, a, r, s′) in trajectory do
7: q, h← Q(s, a, h; θ)
8: y, h′ ← maxa′ Q(s′, a′, h′; θ′)
9: y ← γ(1− d(s′))y + r
10: BellmanError ← BellmanError + (y − q)2

11: end for
12: end forθ ← θ − λ∇θBellmanError

4.4.2 Bootstrapped Random Updates

The second proposed mechanism is to select a random starting point in an episode and

update for a number of iterations. This proposal requires zeroing the internal state of the

RNN before the updates.

4.5 R2D2

Recurrent Replay Distributed DQN (R2D2) is a distributed, DQN based agent that

manages to achieve great performance in multiple domains. We consider the algorithm

in this section for the introduction of Burn-In-Phases that improve the training results of

Recurrent Agents [12].

39

Algorithm 3 Bootstrapped Random Updates
Require:
Require: D . Trajectory Experience Replay
Require: N >= 1 . Number of trajectories to sample
Require: K . BPPT Steps
Require: θ . Weights
Require: θ′ . target weights
Require: λ . learning rate

1: BellmanError ← 0
2: for i in 0..N do
3: h = 0
4: h’ = 0
5: trajectory ∼ D
6: j ∼ [0 : |trajectory| − k]
7: trajectory ← trajectory[j :]
8: for (s, a, r, s′) in trajectory do
9: q, h← Q(s, a, h; θ)
10: y, h′ ← arg maxa′ Q(s′, a′, h′; θ′)
11: y ← γ(1− d(s′))y + r
12: BellmanError ← BellmanError + (y − q)2

13: end for
14: end forθ ← θ − λ∇θBellmanError

4.5.1 Burn-In-Phase

The Burn-in-phase is similar to Bootstrapped Sequential Updates in the sense that

the whole trajectory is replayed, however, instead of updating from the beginning of the

trajectory, the network is allowed to go through a series of steps in the trajectory in order

to build the context/hidden state before adjusting the weights. The algorithm is available

in 4.5.1.

Intuitively, Bootstrapped Sequential Updates violate the I.I.D property but, unlike

DQNs, the input is not as correlated because RNN architectures have a hidden state and

LSTMs have both a hidden state and a cell state, thus, while the input states are not

40

Algorithm 4 Burn-in-phase
Require: Trajectory Experience Replay D

Require: number of trajectories to sample N
Require: Burn in steps K
Require: BackProp through time steps M
Require: weights θ
Require: target weights θ′

Require: λ learning rate
BellmanError ← 0
for i in 0..N do

h = 0
h’ = 0
trajectory ∼ D
j ∼ [0 : |trajectory| −K −M]
burn-in-trajectory ← trajectory[j : j +K]
for (s, a, r, s′) in burn-in-trajectory do

_, h← Q(s, a, h; θ)
_, h′ ← arg maxa′ Q(s′, a′, h′; θ′)

end for
bptt-trajectory ← trajectory[j +K : j +K +M]
for (s, a, r, s′) in bptt-trajectory do

q, h← Q(s, a, h; θ)
y, h′ ← arg maxa′ Q(s′, a′, h′; θ′)
y ← γ(1− d(s′))y + r
BellmanError ← BellmanError + (y − q)2

end for
end for
θ ← θ − λ∇θBellmanError

41

I.I.D catastrophic interference may be avoided. Bootstrapped Random Updates require

zeroing the internal state of the RNN and makes it harder for the Network to learn

to use the internal state but the update is not as correlated. According to [36], both

approaches exhibit the same behavior. Last but not least, the Burn-in-phase appears

to facilitate better representation learning as the Recurrent Network achieved greater

performance than the feed forward equivalent in Pong. The performance discrepancy

suggests that RNNs may not only serve as memory modules but also assist in better

feature extraction that results in better representation learning by considering the context

[12], this observation is in line with [36].

4.6 C51

C51 is a distributional agent. Instead of learning the expected value, it learns a

distribution. Learning distributions has the additional benefit of allowing us to estimate

the variance between the estimated rewards of the actions. Thus, given two actions that

have the same mean, a risk averse agent would prefer the one with the lowest variance.

In addition, variance could be a proxy for the amount of exploration performed with

particular state-action pairs, this however is not a guaranteed. Further on, estimating

distributions makes the process of optimization easier since the targets are bound within

some range, and thus, do not need to estimate values of different magnitudes [61].

4.6.1 Control

To perform control with C51, we compute the support for each atom, then estimate

the mean by multiplying with each individual weight. In essence, we create a histogram,

and then estimate the mean. Each atom (or bin) of the histogram has a corresponding

42

Figure 4: a) The distribution as estimated by the Q-Network with emerging policy π. b)
applying the discount factor results in shrinking the distribution towards 0. c) Adding the
reward shifts the distribution. d) The distribution is projected onto the target distribution.
Source [61]

value, i.e. weight, we then use the weight to estimate the mean of the histogram. We will

denote the support for atom i as pi(s, a), and its weight with zi.

Algorithm 5 Q-value Estimation
Require: s ∈ S, a ∈ A

q = ∑N
i zipi(s, a)

return q

4.6.2 Optimization Procedure

In C51, we estimate the distribution of the next state, and discount the values by γ

and add the reward r. Then we readjust the target distribution in 51 bins. The step of

readjusting is necessary because we shift and squeeze the distribution, thus it is possible

that it ends up out of bounds. The readjustment process ensures that estimations over

the bounds are put into the final or first bin if the estimation is over or under the bin.

43

The error is reduced through CrossEntropyLoss [61]. A more thorough explanation on

C51 exists in A.2.

Algorithm 6 C51 Optimization Step
Require: s ∈ S, a ∈ A, γ, s′ ∈ S

a′ ← arg maxa′ Q-Value-Estimation(s′, a′) . Compute the best action
bi = (γzi)pi(s′, a′) + r . Create Projection
m← adjust bins(b, 51)
return −

∑N
i mi log pi(s, a)

4.7 Rainbow

Rainbow is the current published state-of-the-art Q-learning method. It combines DQN

with

• Distributional value estimation as in C51

• Dueling Value estimation modules as in Dueling networks

• Double Q-learning as in Double DQN

With Prioritized Experience Replay and Noisy Networks and N-step Return [2, 61, 60,

62, 49, 59, 63]. Further work incorporates Implicit Quantile Networks with Rainbow to

achieve even greater performance. 2

4.8 Off-Policy Correction

Although DQN and derivatives are off-policy algorithms and by definition, can use

experience collected from other policies, they can only converge to an optimal policy iff

that the source (behavior) policy and the current policy are not too far apart [64, 65].
2The work has not been published in a paper form, but is available here https://github.com/

medipixel/rl_algorithms. We last accessed the page on the 29th of May, 2020. An archive for the
repository exists in the WayBackMachine here https://web.archive.org/web/20200529154653/https:
//github.com/medipixel/rl_algorithms.

https://github.com/medipixel/rl_algorithms
https://github.com/medipixel/rl_algorithms
https://web.archive.org/web/20200529154653/https://github.com/medipixel/rl_algorithms
https://web.archive.org/web/20200529154653/https://github.com/medipixel/rl_algorithms

44

Not accounting for differences between policies when considering experience can lead to

stability issues [64, 65].

Another concern choosing between algorithms that consider the whole return, i.e.

Monte Carlo methods instead of single or few step methods. Monte Carlo methods allow

the swift propagation of future rewards at the cost of requiring additional steps and

increased variance, whereas few step methods can use the readily available experience

at the cost of increased bias [17, 64]. We can bridge the gap using n-step return updates:

Q(s, a)← Q(s, a) + Eµ[
n∑
t≥0

γt(Πt
x=1cx)(rt + γEπQ(st+1, ·)−Q(st, at))] (32)

4.8.1 Importance Sampling

Importance Sampling (IS) is a technique that attempts to account for the bias intro-

duced when sampling from a set that is generated from a different distribution. In RL, IS

can be used to adjust for the off-policy-ness of transitions by accounting for the differences

in the probability of selecting the same action between the two policies [17, 64, 66]. IS

alters c in equation [32] to be the fraction of the probability of selecting that specific action

using the current policy over the policy that ’experienced’ the transition

cx = π(a|sx)
µ(a|sx) (33)

where π is the learnt policy, i.e. current policy and µ is the behavior policy that generates

transitions and a is the performed action. An issue with IS is that it exhibits high variance

due to the fraction term. When the policy µ selects actions that are very likely in π, the

ratio c becomes enormous and in the opposite case, results in small values. Thus, IS

can result in variance explosions [64]. Consider for example an ε− greedy policy µ that

anneals ε and a deterministic policy π, both using the same DQN. We optimize π and

45

select actions using µ. Let us also consider a transition selected in the early stages where

the epsilon was large, with action a, that is also the greedy action. The consequence of

using IS here is that π(a|sx) is guaranteed to be larger than µ(a|sx) simply because ε was

annealed to a smaller value, thus the greedy action is more probable and, thus cx > 1.

Since equation [32] uses a product, a series of selecting the greedy action is guaranteed to

explode. This introduces instability issues that can cause a Neural Network to collapse

[64].

4.8.2 Q(λ)

Q(λ) solves the variance of IS by using a constant value, c = λ. Given the following

definition of ‘off-policy-ness‘ ε = maxs |π(s, ·)− µ(s, ·)|, which is the maximum difference

of the action probabilities between the two policies. Q(λ) can converge to the Q∗ with a

worst case of λ ≤ 1−γ
2γ . This however, results in very small values. Due to the product

operator, the small values quickly becomes useless. When attempting to learn Qµ, we can

converge when λ < 1−γ
γε [64, 65]. Thus, Q(λ) learns quickly, given the two policies are not

very different which requires knowing ε which is intractable [64]. Thus, Q(λ) works well

in the on-policy scenario, but falls short in the off-policy case.

4.8.3 Tree Backup(λ)

On the other side of this, Tree Backup(λ) (TB(λ)) [67] sets the value c to

cx = λπ(ax|sx) (34)

This is useful when we consider radically different policies, it wastes experience on the

on-policy case [64].

46

4.8.4 Retrace(λ)

Retrace(λ) strikes a balance between the three aforementioned techniques by setting

the value cx to

cx = λmin(1, π(ax|sx)
µ(ax|sx))

Retrace(λ) accounts for the degrees of ’off-policy-ness’ through a truncated IS, while

preventing variance explosions by clamping the ratio and does not waste experience in the

on policy case since

c =

min(1, π(ax|sx)

µ(ax|sx)) ≥ π(ax|sx) in the on policy case

min(1, π(ax|sx)
µ(ax|sx)) ≤ 1 in the off-policy case

(35)

Moreover, Retrace(λ) can use increasingly greedier policies, i.e. reducing ε in ε− greedy,

or decreasing entropy when using a Boltzman distribution, and can converge to the optimal

policy without requiring infinite exploration in the limit3 [64, 17].

Unfortunately, the λ term is another hyperparameter that needs to be tuned and is

dependent on the underlying algorithm, the particular problem, and the γ. However,

understanding the behavior of the correction as we outline above can give hints on how

to choose it. For example, in the case of TB(λ), we can get away with a larger lambda

function if we use ε− greedy with small ε.

3We suggest reading about Greedy In the Limit with Infinite Exploration (GLIE) in [17]

Chapter 5

Policy Gradients

Policy Gradient algorithms optimize directly the target policy. Value Function Ap-

proximation algorithms attempt to estimate the value of each action at a state and create

a deterministic policy. Policy gradient methods differ in that they directly optimize the

policy by increasing the probability of good trajectories to occur. Policy Gradient algo-

rithms exhibit several advantages over Value-Function Approximations. First, they are

able to learn stochastic policies; second, they are resistant to small changes whereas DQN

and derivatives are not [2, 60, 59]; Policy Gradient methods are proven to at least converge

to a locally optimal policy [68, 17], and last, but not least, they can learn how to solve

continuous action problems where DQN and derivatives fall short.

The general idea is that if we sample enough trajectories, we can build an unbiased

estimation of the performance of the policy and adjust it towards actions that create

trajectories with high performance. In essence, Policy Gradients are Monte-Carlo Control

through Policy Optimization.

Actor-Critic Methods improve upon plain Policy Gradient by incorporating two mod-

ules, an actor and a critic. The critic is a value function approximator and the actor is

47

48

a policy network. Actor-Critic methods alternate between optimizing the critic and the

actor [51, 50, 47]

Policy Gradient methods are able to solve both discrete and continuous action prob-

lems. For discrete problems, they estimate a discrete probability distribution and sample

from it. For continuous problems, the usual approach is estimating a multivariate Gaus-

sian distribution by estimating the mean and the logarithm of the standard deviation. For

discrete problems, we create a probability mass function using Softmax and sample from

it.

5.1 Vanilla Policy Gradient

We will begin the introduction to On-Policy Policy Gradient Algorithms with REIN-

FORCE [69, 17] and slowly incorporate improvements to build up to the full Vanilla Policy

Gradient to justify introducing other algorithms and the reasoning behind their choices.

REINFORCE provides the basis for policy gradient algorithms. In REINFORCE, an

agent consists of just a stochastic policy π(s) that outputs a conditional probability distri-

bution that is used to sample the action for the current state. The policy is adjusted such

that trajectories that resulted in good returns are more likely to occur. The probability

for a trajectory T to occur is

P (T; θ) = p(S0)
T∏
t=1

p(St|St−1, At−1)πθ(At−1|St−1) (36)

∇θ logP (T; θ) =
T∑
t=0
∇θ log πθ(At|St) (37)

Where p(S0) is the probability of the state S0 to be the first state, π(Ai|Si) is the proba-

bility of selecting the action Ai at time i under policy π on state Si. Since we are trying

49

to maximize the expected return and we would like to increase the probability of encoun-

tering trajectories that result in high returns, the reward function J(θ) we are trying to

maximize is:

GT =
T∑
t=1

γt−1RT
t

J(θ) = Eπθ
[GT] (38)

Where GT are the rewards for the trajectory T and RT
t is the reward at time t for trajectory

T. Since the goal is to maximize the function, we need to calculate the gradient.

∇θĴ(D; θ) = 1
|D|

∑
T∈D

T∑
t=0
∇θ log πθ(At|St)γtGT (39)

WhereD is a collection of trajectories which are used to estimate the gradient, GT is the

return of the trajectory T. In REINFORCE, the actions taken sampled from a distribution

π(·|St), therefore we can not take the gradient with respect to a single instance, instead we

use an estimation of the gradient by sampling a large number of trajectories. Because the

estimation of the gradient is dependent on the probability of selecting a particular action

at a particular state, REINFORCE can only be trained on-policy through trajectories

collected using the same set of weights as those that were used to collect the roll-out.

5.1.1 Ignoring the Past

An initial observation on the update scheme of the weights is that good actions may

be punished for mistakes that occurred earlier. A Natural idea is to implement a scheme

similar to Monte Carlo Control (MMC) [17]. MCC uses the truncated return to adjust

estimation of a particular action by considering only the future events [17]. This idea is

often referred to as rewards to go. As a result of this modification, gradient becomes:

50

GT
t:T =

T∑
i=t

γi−tRT
i (40)

∇θJ(θ) = 1
|D|

∑
T∈D

T∑
t=0
∇θ log πθ(At|St)GT

t:T (41)

Where RT
i is the reward from trajectory T at time-step i, and GT

t:T is the return from

time-step t to time-step T for the trajectory T.

While REINFORCE does work, and can learn a policy to solve particular problems,

the algorithm is usually unstable and that is due to the high variance introduced when

we use the return. In addition, REINFORCE does not consider the dynamics of the

environment directly, i.e. it doesn’t consider the new state, which is one of the sources of

variance. Instead, it simply improves the probability of selecting an action based on just

the return.

5.2 Advantage Actor Critic

To alleviate the susceptibility of REINFORCE to variance and noise, we can use a

function that reduces the variance. The general policy gradient form

∇θJ(D; θ) = 1
|D|

∑
T∈D

T∑
t=0
∇θ log πθ(At|St)Ψt (42)

allows Ψt to be any of

• Gt:T

• ∑T
t′=t γ

t′−tRt′ − b(st′)1

• V π(s)
1Any substitute of b(st) is a valid baseline function

51

• Qπ(s, a)

• Aπ(s, a) = Qπ(s, a)− V π(s′)

• rt + γV π
θ (s′)− V π

θ (s)

where all of the above functions are γ-just, and can be used in place of Ψt [70]. γ-just

functions are functions that can approximate the advantage function.

Advantage Actor Critic (A2C) is the simplest improvement on REINFORCE. In the

generalized policy gradient equation, it sets Ψt = rt+γV π
θ (s′)−V π

θ (s), i.e. the Advantage

function. We select Ψt to be the advantage function because it has the lowest variance,

for more details, see B.1,[70]. A2C is often referred to as ‘Vanilla Policy Gradient‘2 , and,

like REINFORCE, is an on policy Policy Gradient algorithm and the code is available in

5.2. Unlike REINFORCE, A2C uses a number of parallel workers to collect roll-outs. The

workers are used to collect trajectories in order to get a better estimate of the true gradient.

The return of the trajectory by definition has the greatest variance. We can reduce the

Algorithm 7 A2C
1: Initializestochastic policy πθ

2: Initializecritic Vψ
3: Initializelearning rate η
4: for K=1.. do
5: Sample D trajectories
6: Compute Rewards to Go
7: Compute Advantage using any γ-just function
8: θ ← θ + η∇θJθ(D) . Perform gradient ascent
9: ψ ← ψ − η∇ψ(Vψ(st)−Gt)2 . for all steps in all trajectories
10: end for

variance by considering just the state-value function Ψ = Vθ(s). Vθ(s) is less noisy simply

because it provides an expectation of the return, instead of the discounted sum of the

rewards. We can further reduce the variance by setting Ψt = rt + γV π(st+1)− V (st), i.e.
2Some people refer to REINFORCE as the Vanilla Policy Gradient, others to A2C

52

an estimation of the Advantage. Setting Ψt as the estimate of the Advantage function

further reduces the variance because the value of γV π
θ (st+1) is in a included in V (s),

except that it is weighted. In addition, this estimation of the Advantage function takes

into consideration the current state, the next state, and the observed reward, with the

latter being the only real source of noise. Thus, the Advantage function also improves the

policy based on the new state. The consequence is that we make actions that result in

good new states more probable, instead of blindly following the return.

5.3 Generalized Advantage Estimation

Taking the idea of using an estimation of the advantage a step further, we can consider

the Advantage across the steps in the episode [70] as that will give a better estimate of

the true advantage function. Recall that we do not have access to the advantage function,

only an estimate.

Â
GAE(γ,λ)
t

.=
T∑
t′=0

(γλ)t′(Â(st+t′ , at+t′)t+t′) (43)

Where Â(s, a) is any γ − just estimator of the Advantage [70].

Â
GAE(γ,λ)
t provides a significantly better and more stable estimate than −V (s) + r +

V (s′) and is almost always the preferred method of estimating the advantage[70]. Although

Â
GAE(γ,λ)
t appears very similar to TD(λ), ÂGAE(γ,λ)

t is concerned with the advantage,

where TD(λ) is concerned with the return [70].

5.4 Trust Region Policy Optimization

Trust Region Policy Optimization (TRPO) [68] improves upon A2C 5.2 by solving the

constrained optimization problem: Maximize the advantage of the newer policy over the

53

old policy subject to a constrain on the KLD between the old and the new policy.

θk+1 = max
θ

L(θk,θ) (44)

subject to KLD(θ||θk) ≤ δ

L(θk,θ) = E[πθ(a|s)
πθk(a|s)A(s, a)] (45)

Where θ are the network weights before the optimization steps, and θk are the network

weights after k optimization steps on the current trajectories. Note that while we can

perform multiple optimization steps, we do not use older experience like in DQN and

derivatives.

The TRPO’s optimization problem allows it to update the policy such that it makes

monotonic improvements. TRPO uses a second order optimization algorithm (Conjugate

Gradient) to update the policy, while the critic is updated using any gradient descent algo-

rithm. The main issue of TRPO is that second order optimization methods are expensive

to compute. In addition, it can get stuck on local optima [68], this is especially prominent

when the batch size is small.

5.5 Proximal Policy Optimization

Proximal Policy Optimization [22] (PPO) improves upon TRPO [68] by removing all

together the constrained optimization problem. Instead, it explicitly limits how large the

difference between the old policy and the newer policy can be using a clipped objective.

JPPO(s, a,θk,θ) = min(πθ(a|s)
πθk(a|s)Â

GAE(γ,λ)
t , Clip(πθ(a|s)

πθk(a|s) , 1− ε, 1 + ε)ÂGAE(γ,λ)
t) (46)

54

Where θk are the weights of the policy after k updates onto θ. To understand why this

objective works and how the gradients flow, we need to understand how autograd works,

mainly, how the Clip and min operations work.

First of all, the Clip operation sets a bound onto the value, so in [46], the Clip operation

limits the upper bound that the value can have to 1 + ε and the lower bound to 1 − ε,

so any value out of the bounds is squashed into those. Second, the min operation can

be easily decomposed in two operatios, first is an element wise multiplication, and the

second, a linear combination of values. The element-wise multiplication takes each row

and multiplies every element by 0, except the one that has the lowest value, that element is

multiplied by 1. The linear combination is a multiplication with 1. This linear combination

simply adds the columns together. Since every element except 1 was multiplied by 0, then

the matrix has the smallest values of each row.

The element-wise clip operation results in gradients of the following form:

∇Clip(x, lower, upper) =

1 if lower ≤ x ≤ upper

0 otherwise

(47)

Thus, the clip operation does not propagate gradients when the probability of selecting an

action becomes too large or too little. Thus, when we use the min operator with a clipped

and an unclipped value, by definition, we select the clipped value. Since the gradient for

the clipped values is 0, we disallow them from flowing backwards. This combination of

operations effectively reduces the training batch to fewer values.

The ratio objective allows PPO to a) perform more than 1 optimization step, b)

constrain the change of the policy and by proxy limiting the DKL. The objective function

increases the probability of selecting an action when its advantage is positive, and reduces

it when its advantage is negative, in addition, it clips this change, such that the policy is

55

not significantly altered, much like TRPO. In addition, since PPO uses the probabilities

of the older policy, it can perform many optimization steps whereas other Policy Gradient

algorithms cannot since the probability of experiencing a trajectory after optimization is

different.

Algorithm 8 PPO
1: Initializestochastic policy πθ

2: Initializecritic Vψ
3: Initializelearning rate η
4: for N=1.. do
5: Sample D trajectories
6: Compute Rewards to Go
7: Compute Advantage using GAE.
8: θk ← θ
9: for K=1.. do
10: θk+1 ← θk + η∇θkJPPO . Perform gradient ascent
11: end for
12: θ ← θk
13: ψ ← ψ − η∇ψ(Vψ(st)−Gt)2 . for all steps in all trajectories
14: end for

5.6 The Deterministic Policy Gradient

The equivalence between the deterministic policy gradient and the stochastic policy

gradient has been proven in [71]. Since then, Deterministic policy gradients have taken

robotics tasks by storm. We will not derive the equivalence, as [71] includes a thorough

and comprehensive derivation. Instead we will build the intuition behind it.

Consider a policy π : S → A where A is a continuous space. We can estimate the

quality of this using a Q-network. The DQN Q-networks are a function in the form of

Q : S→ R|A| because they only handle discrete actions. We can alter the Q-network to be

a function of the form Q : S×A→ 1, where we concatenate the state and the action spaces

[39]. From here, we can treat the Q-network as a function that needs to be maximized.

56

Jθ(s) = Qψ(s, πθ(s)) (48)

∇θJθ(s) = ∇θπθ∇θQψ(s, πθ(s)) (49)

In essence, we learn a differentiable function Q, as a surrogate to the actual problem that

we are trying to solve. Then, we use this function to derive the policy.

5.7 Deep Deterministic Policy Gradient

Deep Deterministic Policy Gradient (DDPG) [51] can be thought of as the spiritual

successor of DQN, but for continuous action spaces. DDPG, like DQN, uses target net-

works to create more stable updates and avoid feedback loops. Unlike DQN though,

DDPG uses a Polyak average update of the networks:

ψtarget ← τθtarget + (1− τ)ψ (50)

θtarget ← τθtarget + (1− τ)θ (51)

Where ψ denotes the weights of the critic, and θ denotes the weights of the actor.

In order to update the critic, we use the two target networks to create the target value,

and then update in the same fashion as DQN:

y = r + γ(1− d)Qψtarget(s′, πψtarget(s′)) (52)

δt = y −Qψ(s, a) (53)

JDDPGψ(D) = E〈s,a,r,d,s′〉∼D[δ2
t] (54)

In order to update the actor, we use the critic network directly:

JDDPGθ
(D) = E〈s,a,r,d,s′〉∼D[Qψ(s, πθ(s))] (55)

57

An issue with the deterministic Policy Gradient is the lack of exploration. In [51], this is

handled through action noise generated from an Ornstein-Uhlenberg process, alternatively,

action noise sampled from a multivariate Gaussian or a factored multivariate Gaussian can

also be used. We provide the algorithm for DDPG in 5.7.

Algorithm 9 DDPG
Initializeθ . Policy weights
Initializeψ . Critic weights
θtarget ← θ
ψtarget ← ψ
D← {}
Initializenoise process AN
s ∼ S0

for step 1.. do
n ∼ AN
a = clip(π(s) + n,−1, 1) . Normalized Actions not included in [51]
a′ = unscale(a) . Unscale the clipped action to fit the action space
take action a′ . Take the unscaled action
Observe s′, r, d
D← D ∪ {〈s, a, r, s′, d〉} . Store the normalized action
s← s′

if d == True then
Initialize noise process AN

end if
if is time to update then

for however many updates do
ψ = ψ − η∇ψJDDPGψ(D) . Update Critic
θ = θ + η∇θJDDPGθ

(D) . Update Actor, gradient ascent
ψtarget ← τθtarget + (1− τ)ψ . Update target critic
θtarget ← τθtarget + (1− τ)θ . Update target actor

end for
end if

end for

The original DDPG algorithm did not include action scaling, however, it improves

performance when the action bounds are outside [−1, 1], this is likely because NNs perform

poorly when values get too large. Scaling can be achieved through the hyperbolic tangent

function.

58

5.8 Twin Delayed DDPG

DDPG suffers from a number of instability issues and poor performance. First of all,

since we are treating Q as a function that is to be optimized, we need to be aware that

NNs are not smooth approximators which means that when we optimizing against them,

we may fall into local minimum/maximum in the input space that minimizes/maximizes

the neural network, but not the true objective, i.e. the policy may exploit shortcomings

in the critic network. Second, the critic in DDPG suffers from the same over-estimation

issues that plague DQN. Twin Delayed DDPG(TD3) identified and addressed the above

issues [50].

Twin

To address the issue of over-estimation, TD3 uses a pair, hence twin, Q-networks when

computing the target values and selects the minimum of the two. Thus, the objective for

the critic becomes:

y = r + γ(1− d) min
i∈{1,2}

Qiψtarget (s
′, πψtarget(s′)) (56)

δti = y −Qψi(s, a)

JTD3ψ(D) = E〈s,a,r,d,s′〉∼D[
∑

i∈{1,2}
δ2
ti] (57)

It needs to be noted and emphasized that y is a target value thus that ∇ψy = 0. TD3

uses Q1 to update the actor:

JTD3θ
(D) = E〈s,a,r,d,s′〉∼D[Q1ψ(s, πθ(s)) (58)

59

Delayed

To further improve stability, TD3 delays the rate of update of the policy and the target

network to a fraction of the critic. The observation is that the policy should change slower

than the critic, so as to preserve the performance and avoid rapid changes.

Smoothing

One important observation in DDPG is that the policy was likely exploit bugs in the

critic. To avoid these bugs, TD3 performs policy smoothing. When computing the target

value, the output of the target policy network is smoothed by adding noise from a Gaussian

distribution.

a′ = Clip(π(s′) + Clip(ε,−c, c),−1, 1), ε ∼ N(0, σ) (59)

y = r + γ(1− d) min
i∈{1,2}

Qiψtarget (s
′, πψtarget(s′)) (60)

δti = y −Qψi(s, a)

JTD3ψ(D) = E〈s,a,r,d,s′〉∼D[
∑

i∈{1,2}
δ2
ti] (61)

The overall algorithm, available in 5.8, is mostly the same as DDPG except for the im-

provements we mention above.

5.9 Soft Actor Critic

Soft Actor Critic (SAC) relaxes the basic goal of RL to also include entropy [47]. In

RL, the main goal is to learn a policy that results in the highest expected return. SAC

alters that goal to learning a policy with the highest possible expected return and expected

60

Algorithm 10 TD3
Initializeθ . Policy weights
Initializeψ . Critic weights
Initializenoise process AN
Initializedelay . TD3 sets the delay to 2
θtarget ← θ
ψtarget ← ψ
D← {}
s ∼ S0

for step 1.. do
n ∼ AN
a = clip(π(s) + n,−1, 1)
a′ = unscale(a) . Unscale the clipped action to fit the action space
take action a′ . Take the unscaled action
Observe s′, r, d
D← D ∪ {〈s, a, r, s′, d〉} . Store the normalized action
if is time to update then

for i in 1..however many updates do
ψ = ψ − η∇ψJTD3ψ(D) . Update Critic
if i ≡ 0(mod delay) then

θ = θ + η∇θJTD3θ
(D) . Update Actor, gradient ascent

ψtarget ← τθtarget + (1− τ)ψ . Update target critic
θtarget ← τθtarget + (1− τ)θ . Update target actor

end if
end for

end if
end for

61

entropy
∑T
t E(st,at)∼ρπ [r(st, at)] classic RL

∑T
t E(st,at)∼ρπ [r(st, at) + αH(π(·|st))] maximum entropy RL

where (st, at) ∼ ρπ are the state-action marginals from following the policy π at timestep

t, and H is the entropy of the policy’s action distribution at st [47].

The conventional RL objective can be achieved by turning the temperature parameter

α to 0, the temperature is a tradeoff coefficient that allow us to adjust how much we

value entropy in the policy to be [47]. We can also incorporate discounts but, we need to

discount both the reward and the entropy. We can retrieve V π(s) and Qπ(s, a) through:

V π(s) = Ea∼π[r(s, a)] + αH(π(·, s)) + Es′∼ρπ(s)[γV (s′)] (62)

Qπ(s, a) = r(s, a) + Es′∼ρπ(s)[γV (s′)] (63)

Qπ(s, a) = Ea,s∼ρπ(s)[r(s, a) + γ(Qπ(s′, a′) + H(π(·|s′)))] (64)

Where ρπ(s′) are the state marginals from following policy π at state s′, α is the temper-

ature.

SAC builds ontop of TD3 [50] and uses a pair of twin Q-Networks that are updated

with the Squared Bellman Error of their prediction and the target value. The target value

is the minimum Q-value of two Q-networks that are updated using Polyak updates, as in

TD3. While SAC is off-policy, the target Q-values [64] and the state entropy are computed

using actions sampled from the current policy. SAC also includes automatic temperature

adjustment:

JSACCα(D) = Eat∼π,st∼D[−α(log π(at|st) +H)] (65)

where H is a constant vector equal to the hyper parameter of the target entropy.

62

5.9.1 Continuous Soft Actor Critic

Similarly to TD3, the continuous policy outputs values in the [−1, 1] range using

hyperbolic tangent activation, however, the policy is stochastic whereas the TD3 policy is

not. The SAC policy network outputs a factored Gaussian probability distribution using

the reparameterization trick

aθ(s) = tanh(µθ(s) + ε� σθ(s)) ε ∼ N(0, I) (66)

where µθ(s) and σθ(s) are outputs of the network and ε is factored Gaussian noise. The

output is then squashed using the hyperbolic tangent activation. This combination allows

SAC to sample bounded actions whose probability (and entropy) can be computed in

closed form [47]. Furthermore, the sampling removes the need to use policy smoothing

from TD3, however, the algorithm is mostly the same and is available in 5.9.1.

The update for the Q-functions becomes:

y = r + γ(1− d) min
i∈{1,2}

[Qiψtarget (s
′, a′) + H(π(·|s′))] a′ ∼ aθ(s) (67)

δti = y −Qψi(s, a)

JSACCψ(D) = E〈s,a,r,d,s′〉∼D[
∑

i∈{1,2}
δ2
ti] (68)

The policy update in SAC uses the minimum estimation of the Q function in order to

update the policy:

JSACCθ
(D) = Es∼D

[
min
i∈{1,2}

[Qi(s, a) +H(πθ(·|s))]
]

a ∼ aθ(s) (69)

The above equation is the temperature objective for the continuous version, hence JSACC ,

we include the objective for the temperature for the discrete case later.

63

Algorithm 11 SAC Continuous
Initializeθ . Policy weights
Initializeψ . Critic weights
InitializeH . Target entropy
θtarget ← θ
ψtarget ← ψ
D← {}
s ∼ S0

for step 1.. do
a ∼ aθ

a′ = unscale(a) . Unscale the clipped action to fit the action space
take action a′ . Take the unscaled action
Observe s′, r, d
D← D ∪ {〈s, a, r, s′, d〉} . Store the normalized action
if is time to update then

for i in 1..however many updates do
ψ = ψ − η∇ψJSACCψ(D) . Update Critic with gradient descent
θ = θ + η∇θJSACCθ

(D) . Update Actor with gradient ascent
ψtarget ← τψtarget + (1− τ)ψ . Update target Critic
α = α+ η∇αJSACCα(D) . Update temperature

end for
end if

end for

5.9.2 Discrete Soft Actor Critic

Discrete SAC trains a discrete actor critic agent in an off-policy way. This enables

greater sample efficiency over on-policy policy gradient methods as the agent can reuse

experience collected in the experience replay. At the same time, discrete SAC can learn

faster since it does not need to rely on ε− greedy approaches to explore the state-action

space.

In Continuous SAC (and TD3, DDPG), the Q-Networks are a function of the form

Q(s, a) : S×A→ R, we will use DQN style Q-Networks Q(s, a) : S→ R|A|, which allows

64

us to compute

V (st) = π(st)T [Q(st)− α log(π(st))] (70)

JSACDα(D) = Est∼D
[
π(st)T

[
−α(log(π(st)) +H)

]]
(71)

JSACDπ(D) = Est∼D

[
π(st)T

[
min
i∈{1,2}

QΨi(st)− a log(πθ(st))
]]

(72)

JSACDΨ(D) = Es∼D

 ∑
i∈{1,2}

[QΨi(s, a)− [r(s, a) + γ(1− d)V (st+1)]]2
 (73)

where α is the temperature and log(π(st)) is the log probability of sampling each action

from the policy. By computing the dot product of the log probability and the probability

π(st)T log(π(st)), we can retrieve the entropy of the action distribution for a Categorical

Distribution. Furthermore, because we know the action probabilities for a particular state,

we do not need to obtain a Monte Carlo estimate (i.e. sample), we can instead compute

V (s) directly. Note that in [73], we are still using the minimum of the two QNetworks

to estimate the action values. The algorithm is available in 5.9.2 and remains unchanged

except for the objective functions.

5.10 Conclusion

In this chapter, we introduced the most common approaches to solving DRL problems

using policy gradient methods. We introduced two classes of policy gradients, on-policy

and off-policy methods. Policy gradient algorithms separate the policy from its evaluation

and train two neural neural networks simultaneously. One can think of this as a form of

Generalized Policy Improvement [17].

On-policy actor critic methods usually use an estimation of the advantage function in

order to reduce the large variance of relying introduced as they rely on return. In contrast,

the off-policy methods learn a Q function and optimize against it.

65

Algorithm 12 SAC Discrete
Initializeθ . Policy weights
Initializeψ . Critic weights
InitializeH . Target entropy
θtarget ← θ
ψtarget ← ψ
D← {}
s ∼ S0

for step 1.. do
a ∼ πθ

take action a
Observe s′, r, d
D← D ∪ {〈s, a, r, s′, d〉}
if is time to update then

for i in 1..however many updates do
ψ = ψ − η∇ψJSACDψ(D) . Update Critic with gradient descent
θ = θ + η∇θJSACDθ

(D) . Update Actor with gradient ascent
ψtarget ← τψtarget + (1− τ)ψ . Update target Critic
α = α− η∇αJSACDα(D) . Update temperature

end for
end if

end for

Off-policy methods are more sample efficient, however, they suffer from convergence

issues. In contrast, On-policy methods exhibit more stable performance while they remain

less sample efficient. The On-Policy methods that we outlined can run in parallel envi-

ronments, this enables them to collect more experience in less time, thus they have better

Wall-Time compared to Off-policy methods. For tasks such as robotics, the collection of

trajectories is expensive, thus off-policy methods are preferred, in contrast, emulator tasks

are usually very cheap to run, so On-Policy methods are used.

5.10.1 KL Divergence

KL Divergence is used as a regularization term in PPO and TRPO [22, 68] in order to

prevent the gradients from performing significant changes in the policy. In essence, it is

a measure of the difference between two distributions of selected action. This constraint

66

is particularly important on robotics tasks. Because the changes in the weights are not

local, simply due to the gradients, even theoretically small changes can have catastrophic

results in the policy. This is particularly important in robotics. Given a handcrafted

policy, we want to be frugal with its modifications in order to avoid dangerous states that

may damage the robot.

Chapter 6

Tools, Exploration methods and Hierarchies

6.1 Prioritized Experience Replay

An important shortcoming of DQN is that the ER buffer is sampled uniformly and

thus, we waste optimization steps in values that do not improve the policy. A natural

solution to selecting good transitions is using the [66], δt error. In [62], this is done in two

ways through a priority value. The probability of selecting a transition is given through

the priority value:

P (i) = p(i)/a∑
j p(j)/a

(74)

where the priority p for δt error is computed using its absolute value and is adjusted with

the temperature parameter a.

The natural way to give priority is using the absolute δt error.

p(i) = |δti|+ ε (75)

67

68

This approach is referred to as proportional, and is vulnerable to outliers [66]. An alter-

native approach is to use a rank based priority:

p(i) = rank(δti)−1 (76)

Where rank(i) is the rank of δti after sorting the transitions using their absolute δt values.

The rank based version is more robust to outliers and follows a power law distribution.

While the two approaches guarantee a non zero probability of sampling each action, they

do not guarantee that transitions with low initial δt error are seen often enough to ensure

that their priority is correct at the current time step. The reason this is an issue is because

as the policy changes, some transitions become more useful than others [66]. Note that

new observations are inserted with the maximum priority.

Recall that Q-learning methods rely on expectations, thus, when we alter the sampling

probabilities, we introduce a certain bias into the update. In order to account for the

introduced bias, we use Importance Sampling to correct for the bias and reduce the effect

of outliers.

wi = (1
N · P (i))β (77)

Where β dictates how aggressively we account for bias. Q-learning methods are by defi-

nition biased, thus, we can allow them to be biased while the model learns and anneal β

towards the end of the training process [66].

The objective function remains almost the same as Double DQN, except for the bias

correction weight, the algorithm remains the same for the most part is available in 6.1.

∇θJPrioritizedQ(θ,θ′) = 1
N

∑
s,a,r,s′,w∼D

w · δt∇θQ(s, a; θ) (78)

69

Algorithm 13 Prioritized Experience Replay DQN
1: Initialize empty Prioritized Experience Replay D with capacity N
2: Initialize random Q-network Q
3: Initialize learning rate λ
4: Initialize PER bias compensation β
5: Initialize policy πθ with weights θ
6: θ′ ← θ
7: s ∼ U(initial states)
8: for T Steps do
9: a ∼ πθ(a|s)
10: r, s′ ∼ p(st+1|s, a)
11: D← D ∪ {(s, a, r, s′, priority = max)
12: s← s′

13: if is time to update then
14: batch ∼ D

15: compute δt for batch
16: compute p(·) for batch using β
17: θ ← θ − η∇θJPrioritizedQ(θ,θ′)
18: update priority for batch in D

19: end if
20: if is time to update target weights then
21: θ′ ← θ
22: end if
23: anneal β
24: end for

70

6.2 Hindsight Experience Replay

In UMDPs, an agent is given a task to complete over the duration of an episode. The

reward the agent receives is based on the completion of the task. Usually the agent is

given a reward of 1 on completion and no reward in-between. In the DRL setting, the

state and the goal, as given by the environment, are transformed into an input through

concatenation, the vector is then given to the agent. Because the reward function is usually

uninformative, this approach results in an agent that wonders aimlessly until it stumbles

on the desired goal. Hindsight Experience Replay [38] (HER) provides a mechanism that

allows an agent to make efficient use of experience collected from a UMDP and learn

significantly faster by re-purposing experience.

HER, just like ER from DQN stores the collected experience in a construct and samples

them during training. In contrast to ER though, HER also creates experiences with Hind-

sight. These hindsight experiences instead of being the tuple 〈si, gi, a, r(gi, si+1), si+1〉,

for state, goal, action, reward, and next state, they are the tuple 〈si, sj , a, r(si, sj), si+1〉,

where gi is replaced by an observed state using a sampling policy G. This change allows

the agent to generalize better across states because it sees more rewards, has more expe-

riences, and thus gains a better understanding of the state space [38]. In [38] the authors

propose three sampling methods:

• Final: The final state of the episode

• Episode: A random state sampled from all the states observed in an episode

• Future: A future state from the same trajectory

with Final and Future achieving the best results. The introduction of HER effectively

allows an agent to consider multiple goals in the state space. HER consists the basis for

71

a number of Hierarchical algorithms that are considered later in the thesis. Since HER is

a general algorithm orthogonal to others, we provide a general approach in 14.

Algorithm 14 Store With Hindsight
1: for all 〈si, gi, a, si+1〉 ∈ T do . For all transitions in the trajectory.
2: D← D ∪ {〈si, gi, a, r(si, gi, ai), si+1〉}
3: for all g′ ∼ G(S) do
4: D← D ∪ {〈si, g′, a, r(si, g′, ai), si+1〉}ß
5: end for
6: end for

Note that HER is usually used in Robotics tasks where the reward function is usually

provided by the environment and thus we can use it. In cases where the reward function

is not provided, alternative functions are negative cosine similarity: −s·g
‖g‖2µ‖s‖

2
µ

, or the norm

of the difference e.g. L1, L2.

6.3 Noisy Linear Layers

A particularly important issue in RL is the lack of exploration schemes. This can cause

agents to fall into locally optimal behavior [49, 20, 51]. This is particularly problematic

when we consider deterministic methods such as DQN. Many algorithms address this issue

by using an ε− greedy exploration policy, or by introducing noise in the action space or

through entropy maximization methods [49, 51, 50, 47].

An alternative approach is to introduce noise in the weight space. Consider a Linear

function

L(x;W, b) = xW + b

Where W is the weight matrix and b is the bias vector.

72

We can make the function stochastic by sampling noise from a Gaussian distribution

for both terms using the reparameterization [53] trick

L(x;Wµ,Wσ, bmu, bσ) = x(ε�Wσ +Wµ) + (ξ � bσ + bµ) (79)

where Wµ,Wσ correspond to the mean and the standard deviation of the noisy weight

matrix; bµ, bσ are the mean and the standard deviation of the bias vector; and ε, ξ are

sampled Gaussian noises from the same space as Wµ and bµ respectively, with mean 0 and

σ = 1.

Thus, for off-policy methods, we can use the noisy linear layers instead of linear layers

to introduce noise in the parameter space for better exploration. Noisy linear layers in

On-policy Policy Gradient methods are quite problematic as the optimization procedure

will use experience that was collected with different weights [49]. To handle this, the agent

should retain the same noisy weights through the optimization step as those that collected

the transitions regardless of the number of the collected rollouts.

6.4 (Pseudo-)Count Based Exploration

Exploration of the world is paramount to learning good behavior. Curious agents learn

to explore the world through intrinsic motivation. In its core, intrinsic motivation provides

guidance to an agent as to what and where is should learn more of [72, 48, 73]

Pseudo-Count Based Exploration works by learning a density model of the states based

on the sequence of observed states. In its core, Pseudo-Count Based Exploration learns

a ‘coding‘ of the input state and the observation history, and gives back to the agent

the probability of coding the state [72, 73]. An always novel agent will always observe a

73

positive reward as the probability of novel states is approximately 0 [72, 73]. This is done

through a generative model.

Extending the above idea, DQN-PixelCnn [73] combines a PixelCnn[74] as the density

model along with Mixed Monte Carlo (MMC) return:

Q(s, a) = Q(s, a) + α[(1− β)δt(s, a) + β(δtMC(s, a))] (80)

and Retrace(λ)[64]. Mixed δt rewards allow for better propagation of intrinsic reward back

to previous states which facilitates better exploration and improved performance [73].

6.5 Random Network Distillation

Auto-regressive intrinsic reward[75, 76] models fall short to the noisy-tv problem [48].

In short, the Noisy-TV problem occurs when an agent has no incentive to explore because

the environment itself provides novel observations even when the agent does not work

towards the goal. Under this circumstances, such agents do not perform any actions as

that will decrease the intrinsic reward they receive.

Random Network Distillation (RND) solves the noisy tv problem by using a randomly

initialized network. The random network receives the observation and outputs a lower

dimensional vector, i.e. a compression of the observation. Then, another network tries to

predict the output of the random network. In RND the intrinsic reward is given by the

difference between the predicted output of the random network and the actual output of

the network. This change causes the network to be more robust to noise and entropy over

the previous approaches [48].

JRND(θ) = ||f̂(x)− fθ(x)||22 (81)

where f̂(x) is the random network, and fθ(x) is the network that is part of the agent.

74

6.6 Bootstrapped DQN

Bootstrapped DQN [20] aims to improve the exploration properties of DQN. In [2],

DQN uses an ε− greedy policy and derivative works and implementations use an annealing

ε. ε− greedy strategies are dithering, they are not deep, nor targeted. While ε− greedy

strategies work for bandits and contextual bandits, these problems consider only single

steps. In contrast, RL considers trajectories and indefinite amount of steps, thus dithering

strategies do not provide an incentive to perform long sequences of exploration.

Bootstrapped DQN consists of N independent linear heads and a set of shared weights.

Each head is trained with its own subset of the experience collected from the ER and

provides as estimate of the Q value. In addition, each head has its own equivalent target

head.

Training in Bootstrapped dqn consists of selecting a random head at the start of each

episode and storing the collected experience in the ER. When storing an experience tuple,

the tuple is marked using a probability distributionM . The mark signifies which heads can

use that tuple. Thus, each head is not trained with the experience it collects, but rather,

with a sample of all the collected experience. This allows different heads to encounter

state-action pairs that they would not have been encountered otherwise. In essence, Boot-

strapped DQN exploits the uncertainty through networks that ’lack experience’ to drive

exploration.

Bootstrapped DQN alters the DQN Objective function in the following manner:

• The backup equation remains mostly the same as the Double DQN objective.

• The gradient is filtered using the mask mt to prevent the gradient from propagating

to the wrong heads.

75

Figure 5: The network architecture for Bootstrapped DQN. The network share a collection
of weights, in [20] the shared network is a CNN with the same convolution layers as [2].

y = r + γ(1− d(s′))Qk(s, arg max
a′

Qk(s, a′; θ′); θ)

δt = y −Q(s, a)

∇θJbsQ(θ,θ′) = 1
N

∑
s,a,r,s′,m∼D

k∑
i=1

mk · δt∇θQk(s, a; θ) (82)

Where Qk(s, a; θ) is the Q value for state, action and head s, a, k respectively, mi is a

mask that denotes whether the experience sampled can be used to adjust the head i.

6.7 h-DQN

h-DQN [27] builds on the original DQN algorithm and extends it in order to learn

temporal abstractions. h-DQN uses three components, two neural networks and a critic.

The two neural networks are the meta-controller and the controller. The meta-controller

outputs goals and the controller attempts to achieve them, the critic decides whether the

goal was achieved or not.

The meta-controller operates in a coarser granularity than the controller and outputs

goals from the observation space by creating a binary mask of an area. The meta-controller

is a DQN agent that is trained through the extrinsic reward[27].

76

Algorithm 15 Bootstrapped DQN
1: Initialize empty Experience Replay D with capacity N
2: Initialize random Q-network Q with weights θ and K heads
3: Initialize learning rate λ
4: Initialize policy πθ,h with weights θ and head h ∼ U({1..K})
5: Initialize distribution M to create bootstrap masks
6: θ′ ← θ
7: s ∼ U(initial states)
8: for T Steps do
9: a ∼ πθ,h(a|s)
10: r, s′ ∼ p(st+1, r|s, a)
11: mt ∼M
12: D← D ∪ {(s, a, r, s′,mt)}
13: s← s′

14: if is time to update and can sample C transitions from D then
15: θ ← θ − λ∇θJbsQ(θ,θ′)
16: end if
17: if is time to update target weights then
18: θ′ ← θ
19: end if
20: if is time to change head then
21: h′ ∼ U(1..K)
22: πθ,h ← πθ,h′

23: end if
24: end for

77

Figure 6: The schematic of the h-DQN architecture. Source [27].

The critic is an arbitrary function that decides whether the goal was achieved and

provides the intrinsic reward for the controller. Because the critic is arbitrary, it needs to

be tuned to the particular task at hand. The critic gives a 0 reward in every step and a

reward of 1 when the goal is achieved[27].

The controller is a DQN agent that learns to achieve the goals of the meta-controller.

The controller uses an ε− greedy behavior where the ε is annealed from 1 to 0.1 depending

on the rate with which the controller achieves goals. If the success rate is equal or greater

than 90% then ε = .1, otherwise it is linearly annealed[27].

h-DQN suffers frm two issues. The first issue is the lack of control with respect to how

long the lower level policy operates. This is due to the way the ’critic’ function is defined.

h-DQN allows the lower level policy to operate until the critic function decides the goal is

achieved, or the episode terminates. The second issue is that the model is not end-to-end

differentiable.

78

6.8 Feudal Networks

FeUdal Networks[77] (FUNs) are based on the principle of separation of concerns in-

troduced in Feudal Learning [78]. FUNs learn a meta-policy, the manager, and a primitive

policy, the worker. The manager produces goals in a latent space common to both policies

and the worker works towards materializing the goal. In order to learn, the manager uses

the extrinsic reward that depends on the agent’s actions. The worker learns by receiving

an intrinsic reward that is based on the distance of the goal and a latent representation

of the state, the closer the latent state to the goal, the higher the reward.

In essence, the worker is a meta-learner, it receives an input and an embedding of

the task and learns to solve them. This observation allows us to use techniques from

meta-learning to insert more information to the network. More specifically, the goal is

embedded using a multiplicative relationship as it prevents the worker from ignoring it

[77]. It should be noted that the goal as created from the manager is detached from the

computation graph, this is done to prevent the loss of the worker from interfering with the

loss of the manager [77]. The manager can be trained using a policy gradient algorithm

since we require continuous actions, the worker can be trained with on-policy or off-policy

discrete methods, however, [77] uses asynchronous A2C for both and joins the losses.

FUNs were used to solve Montezuma’s revenge [1, 77], thus, they use a CNN as a

vision module, however, for other problems, the vision module can be a multi-layer neural

network. The meta-policy sets goals in the latent space of the vision module, i.e. the

space that the vision module compresses the observation. Since Montezuma’s Revenge is

partially observable, both agents use LSTMs[33]. Because the manager needs to operate

in coarser granularity than the worker, there needs to be a way to make the operation

79

coarse. FUNs introduced the idea of dilated LSTMs that operate similarly to clockwork

RNNs [79], except instead of just ticking at a lower rate, they observe all the inputs from

the previous up to the current tick. We can see the general architecture of FUNs in figure

7.

Figure 7: The general architecture of the FUNs. fpercept is the vision module,
fMrnn, fWrnn are the RNNs for the manager and worker respectively, fMspace is a lin-
ear layer followed by a ReLu activation that creates the implicit state of the model. The
goal of the worker is embedded using φ into a lower dimension, then, the dot product of
the embedding and the result of the neural network is taken to create the log probability
for the actions [1, 77]. Figure source [77].

6.8.1 Feudal Learning

Feudal Learning [78] uses a managerial approach to constructing hierarchies. In Feudal

Learning, a high level policy takes an observation and provides to the lower level policy

a task to solve. The manager observes the environment at a temporal scale that depends

on its level in the hierarchy. Higher level policies operate at a coarser temporal scale and

the lowest/primitive policy operates at every timestep. This separation of concerns allows

80

Figure 8: An example of a feudal system in a maze task. Source [78].

an agent to remain agnostic on how the lower level policies operate [78]. In addition, it

allows the policies to remain agnostic to the rewards received by the higher level policies

as their rewards depend on whether the goal was achieved. An example of such a policy

can be found in figure 8.

While in principle feudal learning should work, it is rather limited in that the hierarchy

needs to be crafted specifically for the task at hand and it’s observation space. This

prevents us from building a general algorithm that can solve decomposable problems,

however it provides the basis for other algorithms.

6.9 Competitive Ensembles of Information-Constrained Primitives

Many Hierarchical algorithms attempt to solve problems by learning a meta-policy

that triggers specific actions to occur in a lower level policy. Algorithms that learn both a

meta-policy and a primitive policy require learning and extracting features from all states

[80]. In [80], it is argued that such policies learn slowly because they need to learn both

a temporal or spatial structure and the meta-policy needs to learn to produce actions for

81

Figure 9: An illustration of the behavior of CEICP. To the left, we see that composite
environments activate different primitive policies of the agent. To the right, we see how
an action is selected. The agent creates K latent variables, the latent variables are used
by the decoders to create k different action distributions for each state, distributions are
selected by sampling based on the information usage of the primitive, and the action is
then sampled from the selected distribution. Source [80]

all observations. Furthermore, the meta-policy usually operates at a different granularity,

thus, there needs to be a mechanism to stop the primitive policy when it achieves the goal

[30]. While such a mechanism is possible in robotic tasks, it becomes problematic in video

game environments as the input is usually high dimensional. Other work simply ignores

goal checking [32].

Competitive Ensembles of Information-Constrained Primitives (CEICP) [80], uses an

ensemble of primitive policies and selects an action based on information. Each policy

learns an encoder penc(z|s) and a decoder pdec(a|z) that creates primitive actions

πkθ(a|s) =
∫
z
penc(zk|s)pdec(a|zk)dzk (83)

this results in an overall policy that is a mixture of experts, each specializing in a sub-task

πθ(a|s) =
∑
k

ckπ
k
θ(a|s) (84)

where ck = δkk′ , k
′ ∼ p(k|s) where ak(s)

.= p(k|s) is the probability of selecting primitive

k in state s. The encoder constructs a latent representation of the state zk that is used to

82

by the decoder to construct a distribution over the actions. The encoder is penalized for

the distance between the latent zk and a Gaussian prior p(z). The penalty is given by the

KL divergence between the two latent variables, i.e. the variational bottleneck objective

[81]:

Lk = DKL(zk||p(z)) = DKL(penc(zk|s)||p(z)) (85)

The penalty forces the policies to constrain their knowledge over the input state. In

essence, the more information the encoder puts in the latent variable, the greater the

distance to the prior. In order to select a primitive, we use 85 in a Boltzman distribution

and sample from it

ak = exp(βLk)∑
i exp(βLi)

(86)

In order to transfer information about the reward, [80] uses A2C [82], but other Policy

gradient algorithms may be used as well. This is done by weighing the reward for each

particular primitive by ak: rk = ∑T
t=0 rtγ

tak. Agents with high probability of acting at

particular states are rewarded more and penalized more. This creates an incentive to act

in particular subspaces of the observation space and ignore others.

At the moment, the different policies may be overlapping. In order to promote diver-

sity, we include another regularization loss:

Lreg =
∑
k

akLk = −H(a) + log(
∑
k

exp(Lk)) (87)

Where H(a) is the entropy of the action distribution. The proof for 87 can be found in

[80] and the final objective is:

Jkθ = Eπθ
[rk]− βindLk − βregLreg (88)

83

where βind and βreg are weight parameters for the respective terms.

While Competitive-Ensembles can successfully learn skills and can generalize, it does

not provide a mechanism for temporal abstraction. The lack of temporal abstraction does

not assist in solving the credit assignment problem. The second issue of Competitive-

Ensembles is the introduction of yet another hyperparameter that needs task dependent

tuning.

6.10 Hierarchical Actor Critic

Hierarchical Actor Critic (HAC) is based on the observation that agents that operate

in a Feudal Learning [78] hierarchy are effectively solving a goal-based problem [30]. Due

to the goal based nature of Feudal Learning, we can exploit HER [38, 30], to teach an

agent how to solve its particular problem through Hindsight experience.

The issue with the above approach is that it assumes that each level in the hierarchy

works independently of the others. This is false. If we treat each agent in isolation,

then any non primitive agent assumes that the underlying MDP is stationary and thus

it can solve its problem. This assumption does not hold because for each non primitive

agent (i.e. any agent that produces goals and not primitive actions), the agent below

alters its perceived dynamics because it learns. This results in a non stationary MDP

which gravely hinders convergence and performance [30]. HAC solves the non-stationary

dynamics by treating each sub-policy as if it was already optimal and thus allows an agent

to assume that the dynamics do not change [30]. HAC defines ’optimal’ as achieving the

goal state in as few steps as possible [30]. The second form of non-stationary dynamics

involves exploration. In order to learn an optimal policy, exploration is necessary, and

thus we need to perform it. Moreover, even if exploration does not assist in altering

84

Figure 10: An ant moving in a continuous four rooms domain problem. The agent consists
of three hierarchies, Π0,Π1,Π2, Π0 performs primitive actions and has a goal provided by
Π1 (pink), Π1 perms a high level action, i.e. sets the goal in pink for Π0 based on the
goal provided by Π2 (green). Π3 produces the green goals for the Π2 policy based on the
yellow goal provided by the environment as the current task. Source [30].

the underlying policy, the dynamics remain non-stationary, because exploration is usually

annealed over the learning process.

HAC is based on DDPG [51]. DDPG is an off-policy method that uses an Experience

Replay in order to improve sample efficiency. HAC uses N DDPG agents in a hierarchy

and each agent, except the primitive, produces actions that are in the same space as the

observations. An example of this is visible in figure 10 the green and pink are actions

produced by the high level policies, while yellow is the goal provided by the environment.

Because each agent operates in a goal based environment, we can use HER to generalize

the goals as usual, and we can also use future states as actions that were performed even

if they were not. Thus, the fact that the goal space, the action space, and the observation

space for all non primitive agents is the same allows us to treat lower policies as already

optimal.

85

Figure 11: A trajectory in a toy problem. The flagpole indicates the goal of the top level
policy, the pink circles indicate the actions of the top level policy and goals of the primitive
policy. The gray circles indicate the achieved goals and the dashes indicate the primitive
actions. Source [30].

HAC runs each agent for Hsteps, at which point, control returns back to the higher

level policy, the higher level policy introduces a new goal and the process repeats until

termination, an example trajectory can be found in figure 11. In order to learn, HAC

uses three types of action transitions:

1. Hindsight Action Transitions. These transitions treat the current state as a selected

action. For example, in figure 11, the agent is at state s0 and sets as action g0.

The robot ends up in s1, thus, the higher level policy can store 〈old − state =

s0, new−state = s1, action = s1, reward = −1, goal = yellow−flag, done = False〉.

In its transitions. The higher level policy stores reward of -1 because it assumes the

lower level policy is optimal and thus it can reach s1 in a single step. When the goal

is achieved, e.g. the robot reaches the flag, then it uses a reward of 0, to indicate

that the goal is reached and done = True to indicate end of episode.

86

2. Hindsight Goal Transitions. These are the same transitions used in HER [38]. Hind-

sight Goal Transitions add both the experienced transition, from the previous exam-

ple: 〈old− state = s0, new − state = s1, action = g0, reward = −1, goal = yellow −

flag, done = False〉, and a transition of the form 〈old − state = st, new − state =

st+1, action = gt, reward = X, goal = Y, done = Z〉, where the hindsight goal Y is

selected as from one of the future states, X is 0 if the hindsight goal is the next state,

otherwise −1 and Z is true if the next state is the hindsight goal, false otherwise.

3. Goal Testing Transitions. The previous two forms of transitions limit the policies to

learning how to achieve short goals, this is due to the fact that they alter the done

signal. This results in myopic agents that do not know how to react to longer policies.

This is also a shortcoming of the need for exploration, noisy policies may be unable to

achieve the proposed goal. To handle this issue, HAC uses Goal Testing Transitions

with probability λ. These transitions tell the agent below to be deterministic and to

attempt to reach the goal. If the goal is achieved, then the agent uses a reward of

0, if the policy below fails, then the agent receives a reward of -H and sets the done

signal as True. This teaches the agent about distant goals as well.

The major short-coming of HAC is that it only works in robotics. This is a consequence

of HAC’s definition of optimality and that the goals are tied to the state and ignores

extrinsic rewards. In robotic tasks, the goals need to be achieved as fast as possible, the

intermediate rewards are 0, and when the agent reaches the goal, it receives a positive

reward. Thus, there is no notion of optimality with respect to the collected rewards

because there are not any rewards.

87

Furthermore, the agents in HAC produce actions in the observation space. This is

problematic in POMDPs because the same observation can be produced by an indefinite

amount of internal states. An alternative solution is to use actions in a latent space

produced by an RNN. This is however makes the problem non-stationary because the

latent variable is produced through a function that changes with training, if we stop the

gradients from flowing in the RNN then the representation of the state will probably be

poor and informative.

Last but not least, HAC requires a notion of ’closeness’ to the goal. Since the higher

level policy performs a check on whether the goal was achieved, the distance needs to be

quantified in some form or another. This can be done through any distance functions such

as cosine or euclidean, the issue is that these functions are meaningless in environments

with image inputs. A potential solution is to perform extreme max pooling of the pixels

akin to how go-explore differentiates states [9], but this operation significantly reduces

the information provided by the images. Even if there was a way to measure closeness in

images, the effectiveness is limited. Video game benchmarks often use ’rooms’, thus, in

order to have a proper distance measurement, a policy has to put goals confined within

the specific ’room’.

6.11 Conclusion

In this chapter we summarized a number of useful utilities that help alleviate some is-

sues of exploration, temporal abstraction and by extension the credit assignment problem.

Unfortunately, all the three problems remain open. In particular, exploration schemes are

not purposeful. By that we mean that they do not explicitly attempt to explore in order

to learn good policies as they also attempt to balance exploration with sample efficiency.

88

We also drew attention to a number of useful extensions to the experience replay.

While the list is far from exhaustive, we believe that it is a good stepping stone before

delving deeper into topic.

Last but not least, we introduced a few hierarchical algorithms in order to help build

some intuition on the topic and as to how we understand it. We paid special attention to

HAC as it introduces temporal abstraction in robotics which assists in solving the credit

assignment problem. We also paid attention to Competitive Ensembles as it focuses on

task decomposition, one of the main focal points of the thesis.

Chapter 7

Problem Decomposition and the Obstacle Tower

Through the previous chapters we introduced a number of flat1 algorithms that are

able to solve a variety of tasks ranging from Robotics to video games. While they exhibit

impressive results and often super human performance [63, 13, 62, 48, 22, 83, 9], they

are still unable to solve hard exploration problems with sparse rewards despite focused

effort. In particular, [84] argues that bonus based exploration [48, 73] are not sufficient

to properly explore the state action space, and instead are over optimized to the specific

problem they were tasked with solving. The most common Hard Exploration benchmark

is Montezuma’s Revenge (MR) from the Arcade Learning Environment (ALE) [84, 1, 48].

The problem of exploration goes hand in hand with the credit assignment problem. In

short, the credit assignment problem asks the agent to attribute the rewards it received to

particular actions. These actions can be arbitrarily far from the time the agent received

the reward. A modern example of this is in the DeepMind Behaviour Suite [19]. In the

Behavior Suite, one of the tasks determines the reward on the first action taken, but, the

reward is given a few hundred steps later.
1Flat is used to refer to non hierarchical agents.

89

90

7.1 Decomposition

A different approach to tackling both exploration and credit assignment is decomposing

a task into sub tasks. Sub tasks are a very natural way of decomposing problems because

it is similar to how we, humans, handle problems.

An intuitive way to think of sub tasks is to consider how we solve a particular problem.

For example, if the task is to make a sandwich, we need to get the bread, cut it, place

the condiments and the cheese, grill it, and then add tomato. All these are sub tasks or

problems that need to be solved before solving the actual problem. These problems can

be further decomposed, for example getting the bread requires moving our muscles. Thus,

decomposition gives us a variable granularity over high level actions. This enables easier

chaining of high, and low level actions, localized exploration, e.g. learn to optimally solve

different sub tasks instead of solving the whole task, and remedies the credit assignment

problem.

Sub tasks can be thought of in a more mathematical fashion that we believe helps in

bridging the gap between intuition and practice. We can think of sub tasks as distinct

regions of the state space that need to be observed sequentially, or sub spaces of the state

space that are locally similar but reside in different regions. The first way to think of it

resembles a sequence of high level actions. In the example above, the sub tasks that we

outlined are these regions of space. The second way allows us to share experience and

knowledge across these high level actions. In the above example, an example of shared

knowledge is how to hold the utensils in order to cut the bread and the tomato, as well

as how to spread mayonnaise with a knife. All these sub tasks share a common structure,

91

holding and using a knife and thus, all of them can be thought of as generalizations over

that.

7.2 Goal based Problems

Many problems in robotics are defined in terms of goals. These goals reside in the

observation space and when the agent observes the goal, the episode is considered a success.

The most common approach to providing goals to a DRL agent is by concatenating the

observation with the goal. An alternative for discrete observation problems is to expand

the observation space to include the goal. The latter approach is most prominent in

discrete problems where the observation space is finite. This approach results in increasing

the observation space by a factor equal to the number of goals.

Problems that concatenate the goal and the observation effectively create a new obser-

vation space where the state is locally similar, but, due to the inclusion of the goals, they

reside in different regions. HER effectively bridges the gap between the locally similar

states and allows agents to generalize to new goals [30].

7.3 Mountain Car

In the Mountain Car problem, the agent controls a car that is positioned between two

hills. The agent receives a negative reward when it expends energy to move the car. The

agent receives a positive reward when it reaches the top of the right hill. The engine of

the car is too weak for it to drive to the top of the hill. The only way to reach the top is

by building momentum. Momentum is built by driving back and forth. Thus, the agent

needs to expend energy to reach a high enough momentum and then ascend the hill using

that momentum [85].

92

Figure 12: A rendering of the Mountain Car problem from OpenAI gym. The reward is

given upon reaching the flag to the right.

The Mountain Car problem is one of the simplest and toughest exploration prob-

lems because it requires directed exploration. Dithering [20] exploration methods like

ε− greedy, or sampling from a softmax/Boltzman [17] distribution are very unlikely to

solve it. By directed exploration, we refer to attempting to exploring a subspace of the

state action space with the purpose of finding good policies. Dithering techniques try to

minimize the negative impact of selecting actions at random by selecting mostly optimal

actions [17]. This however makes it very unlikely that a policy will perform the correct

sequence of actions in order to explore a new subspace. This is particularly problematic

in single step methods as they are highly biased [17], thus, they are unlikely to make a

short term sacrifice for long term rewards [17, 20].

The Mountain Car in the OpenAI gym [3] has two versions, one with a discrete action

space, and one with continuous action space. In the case of continuous action space,

the problem can be solved with directed perturbations (noise) introduced in the actions,

the most common approach to this, is through an Ornstein Uhlenbeck [86] process that

generates noise that resembles Brownian motion [51]. Further on, a common approach for

93

single step algorithms is to delay the policy update until after collecting a large number

of transitions [51, 50].

Many of the ’high performing’ agents in OpenAI gym’s leaderboard on the problem

alter the reward function in order to solve the problem. We believe this is an unfair

approach as it embeds knowledge and significantly alters the MDP.

An alternative approach that goes a long way in solving the problem is by decreasing

the temporal granularity of the agents. This is done by repeating the action of the agent

for multiple steps. This decrease in granularity makes it significantly easier to stumble by

accident onto the solution.

The Mountain Car problem is easy to decompose into multiple steps, at the highest

level, the decomposition is A) gain enough momentum, and B) ascend. From here, A can

be further decomposed into A1) partially ascend the right hill, and A2) partially ascend

the left hill. This decomposition is an example of ’nested’ sub tasks, however, it can be

flattened into A) partially ascend the right hill, B) partially ascend the left hill, and finally

C) fully ascend the right hill.

7.4 The Taxi Problem

The Taxi problem [87] is a tabular example of nested hierarchies. In the Taxi problem

there are 4 locations from which the agent | which operates a taxi | picks up a passenger

and takes them to the destination location. The agent receives a -1 reward at every

step, in the case of illegal pick ups and drop offs, the agent receives a -10 reward. The

Taxi problem provides a state that encodes the location of the agent, the location of the

passenger and the goal destination. The agent moves in a grid with walls, when the agent

94

Figure 13: An example state of the taxi problem, the agent controls the car, orange, and
needs to pick up the passenger from R, to Y.

attempts to drive towards a wall, it stays on the same location and takes a -1 penalty.

Upon completing the trajectory, the agent receives a +20 reward.

The Taxi problem is effectively a goal problem, thus, there is a shared structure in how

to operate. The agent does not need to relearn how to navigate to different spots in the

grid when the passenger is in a different location, or the passenger needs to be dropped

to a different location. The decomposition of the Taxi problem is trivial to decompose, a)

reach the passenger, b) pick up the passenger, c) move passenger to goal, d) drop off the

passenger.

7.5 Four Rooms

The Four Rooms domain is a classic goal based, tabular problem and provides the

basis for many other procedurally generated environments. In short, the problem consists

of 4 rooms each connected to two others via a hall. The agent can move north, south,

95

Figure 14: The four rooms domain. G1 and G2 are potential goals and O1, O2 are high
level actions that take the agent to the respective hallway, source [88]

east and west. The actions are stochastic and fail 1/3rd of the time. On failure, one of

the other actions is executed at random [88].

7.6 Sokoban

Sokoban is a family of difficult procedurally generated grid puzzles that require an

agent to push boxes at top of target locations. The agent can push a box as long as

the cell behind the box is empty and can move to empty cells that are above it, below

it, to the left of it, or to the right of it. While Sokoban can be solved through classic

search algorithms, the state space is enormous which makes search algorithms rather

problematic. The Sokoban puzzles are MDPs and thus RL agents are good candidates,

but, they need to commit to performing an action whereas search algorithms do not.

This is rather problematic because it is possible to enter states where the puzzle becomes

unsolvable. Such states occur when a box is pushed into a position that can not be

moved afterwards. The Sokoban puzzle is a good candidate for planning and model based

agents however, recent work has shown that strong inductive biases through architectures

96

Figure 15: Some procedurally generated instances of the sokoban puzzle. The agent is
represented by the green alien, the boxes are represented by the yellow squares and the
target locations by the red squares. Source [93]

specifically designed for this task allow even model free algorithms to work [89, 90, 91, 92,

93, 94].

The Sokoban puzzle can be decomposed by separating the puzzle into sub puzzles or

sub tasks. From here, we can further decompose the sub tasks into aligning the boxes

and then pushing them to the correct spot. It is easy to see that there is some common

structure if we consider different sub puzzles in isolation and in relative terms, i.e. two

puzzles that need the box to be pushed upwards 5 times are identical even if they are

located in different regions of the grid.

7.7 Obstacle Tower

The Obstacle Tower was the main motivation for this thesis, and therefore deserves

an extensive analysis. In short the OT is a 3rd person, partially observable, procedurally

generated, time attack, 3D platformer. The OT is composed of 100 floors, each floor is

filled with puzzles, platforms and enemies. In order to beat a floor, the agent needs to

enter the final door of the maze. Upon entering the final door, the agent receives the

reward.

The OT is a time attack problem, meaning that the agent has a limited amount of

steps available in order to solve it. It is procedurally generated which allows for a vast

97

number of different configurations that can be created deterministically. The problem is

partially observable in the sense that the agent does not have access to the state of the

floor. The problem is a platformer which refers to a class of games that include platforms

and the player is required to traverse the platforms in order to beat them.

As a vision problem

The OT, unlike the aforementioned problems, is executed in a 3D environment and

provides a picture from a third person point of view as the observation. Unlike atari

games, the OT is not limited to just one art style. Instead, it includes up to five different

visual themes that are applied to the floor layout. This forces the agent to learn how to

extract features from all of them. While the different themes use different textures, the

environment introduces different lighting conditions that significantly alter the colors of

the environment.

As a generalization problem

The OT, unlike Atari games, is also a generalization problem. Atari games are mostly

deterministic and while they may include some stochastic elements, it is entirely possible

that an agent just learns how to navigate them. Agents that simply learn how to navigate

an environment fail to solve slightly modified versions of said environments because they

do not generalize, they memorize.

The OT uses procedurally generated mazes (floors) in order to prevent agents from

memorizing a correct path and in turn, forces them to identify key components from the

observations in order to generalize to the different layouts. Furthermore, the OT includes

the ability to tweak the difficulty of the layouts by including cycles and branching.

98

As a planning problem

The OT incorporates a continuous version of the Sokoban puzzle. By continuous, we

mean that unlike the original Sokoban, OT does not use cells and instead it uses x and

y coordinates. It also extends the Sokoban puzzles by including a z axis, this allows for

elevation, and even dropping the box under the platform.

As a control problem

The OT is a control problem because it requires high amount of movement fidelity in

order to traverse the platforms, avoid enemies and enemy projectiles. Falling off platforms

in the OT, or hitting enemies and their projectiles results in termination of the episode.

As a hard exploration problem

The OT is a hard exploration problem as the agent receives very little information

regarding its objective. In fact, the only information it receives is a reward when it

manages to beat a specific floor. This is particularly problematic when we take into

consideration that the layout of the floors changes and the length of a solution increases

with the difficulty of the floors. This makes the task of propagating the reward in the

early stages of single step algorithms rather difficult.

Furthermore, higher levels in the OT include a noisy tv. As we mention in 6.5, the

noisy TV problem can cause agents to get stuck in a situation where they constantly

receive novel observations and therefore do not have an incentive to continue exploring

because the intrinsic reward overpowers the extrinsic.

99

As a constrained information problem

The OT is an imperfect information problem for multiple reasons. First and foremost,

the agent does not have access to all information about the current floor, it receives as

much information as a camera can provide. The camera is tied to the character model

that the agent operates and moves with it. The agent has access to, and can manipulate

said camera by turning it around. Thus, the agent is not only in charge of navigating, it

is also in charge of the information it receives.

Furthermore a third person point of view also includes a character model. The char-

acter model obstructs information about what is behind it and can result in radically

different observations when the agent pans the camera to angles it is not used to seeing

even though the environment’s state is virtually identical. This forces the agent to be

careful about how it manipulates the camera.

The inclusion of cycles and branching in the layouts further hinders the performance

of the agents. Partially observable problems require some form of memory in order to

construct an informative state. The inclusion of branches and cycles further increase

the requirement for informative states as the agent will need to be aware of the cycles

otherwise it falls into an infinite loop. However, because the OT is a time attack problem,

an agent in an infinite loop will simply finish the episode and fail. This is particularly

problematic for Monte Carlo methods since the agent’s trajectory will be comprised of

effectively the same set of observations.

When attempting to solve the Sokoban puzzles, the agent needs to stand behind a large

box. Due to the third person perspective of the camera, the agent does not have access to

a lot of information about its surroundings when pushing the box because it obstructs the

100

view. The situation is further hindered by the fact that when pushing the box, most of the

observations are almost identical even if the actual state of the environment is different.

Chapter 8

Design and Implementation

In this chapter, we will outline our algorithm, the implementation and our design

choices. As shown in [24], implementation details are important and should not be hand-

waved, thus we will go through them. We begin by explaining the optimizations in PPO

that allow it to attain good performance, and explain our extensions to make it work in

the domain of the Obstacle Tower [21].

8.1 Proximal Policy Optimization

Our algorithm is based on PPO, and the overall algorithm is available in 5.5. While

[22] focuses on the clipped objective:

L(s, a,θk,θ) = min(πθ(a|s)
πθk(a|s)Â

GAE(γ,λ)
t , Clip(πθ(a|s)

πθk(a|s) , 1− ε, 1 + ε)ÂGAE(γ,λ)
t) (89)

Further work argues that the objective is only one of the factors that give PPO its

performance [95, 24]. More specifically [24] empirically shows that PPO’s performance is

a consequence of the following additional ‘code optimizations‘ in the standard1 codebase:
1By standard we refer to the code base provided by the authors of PPO: https://github.com/openai/

baselines

101

https://github.com/openai/baselines
https://github.com/openai/baselines

102

1. Value function clipping. In [22], the suggested objective is

Lv = (Vθk − Vtarget)2

but the standard implementation provided by the authors of [22] instead fits the

value network with a PPO-like objective:

Lv = min
[
(Vθk − Vtarget)2, (Clip(Vθk , Vθk−1 − ε, Vθk−1 + ε)− Vtarget)2)

]

where Vθ is clipped around the previous value estimates and ε is the same as the one

in [89].

2. Reward Scaling and Clipping. The standard implementation clips the rewards within

a certain range [−10, 10] and divides them with the standard deviation of a rolling

discounted sum of the rewards.

3. Scaled Orthogonal initialization. Depending on the framework used to implement

neural networks, the weights are initialized with different schemes, usually Xavier

[96]. The standard implementation uses an Orthogonal initialization that is scaled

on a per layer basis.

4. Learning Rate annealing.

5. Observation Normalization and Clipping. The observation is normalized using the

running mean and standard deviation of the matrix. The observations are then

clipped to the range [−10, 10]. Note, in Atari-like problems, the observations are

tensors of uint8 values in the range [0,255]. The common approach is to normalize

to [0,1] range by dividing by 255, however, this is not necessary here.

6. Usage of hyperbolic tangent activation over ReLu [35].

103

Figure 16: The black lines show the forward propagation of the input. The blue lines
show the propagation of the gradients of the critic. The green lines show the propagation
of the gradients of the MMD-VAE, the red lines show the propagation of the gradients of
the RND, and the orange lines show the propagation of the gradients of the policy.

7. Global gradient clipping (L2 norm) does not exceed 0.5.

8.2 Architecture and Modules

Building up from the work of [97], we include a deterministic auto-encoder using MMD-

VAE [98] to help in learning better representations of the observations. As the Obstacle

Tower is a partially observable problem [21], we incorporate a GRU cell [35, 34] in order

to learn temporarily extended relationships [36]. Due to the inclusion of a GRU cell, we

alter the architecture described in [97] by adding the cell after the encoder as evidence

suggests it provides better encoding of the state [36].

Agents with informative representations can learn faster and more robust policies

[99, 97, 100, 28]. In order to achieve better representations, agents use auxiliary tasks

104

(objectives) in order to get more informative gradients. Some ways this can be achieved is

through dynamics predictions, inverse dynamics predictions, immediate reward predictions

and observation reconstruction [99, 101]. The usage of AutoEncoder modules has been

studied in a number of ways [97, 102, 101, 99, 103, 100] and the conclusion drawn from [97]

is that stochastic models are brittle, unstable, and can interfere with the policy. Thus,

we employ a MMD-VAE [98] which is deterministic, and exhibits properties similar to

β − V AE [56], VAE [104], and Regularized AE (RAE) [105], which is low dimensional,

stable, and provides disentangled representations.

Further more, due to the nature of the problem, we require a form of structured

exploration [21]. For this reason, we include an RND Module [48] in order to facilitate

exploration. In addition, we treat the RND as an auxiliary task for the agent. However,

since the objective function for the RND is ||f̂(s)− f(s)||22 and can result in high values,

we include a hyper parameter as in [99]. The hyper parameter is used to weigh the effect

of the gradients from the RND since it is a secondary goal.

We give illustrate our implementation in 16. One potential modification in the archi-

tecture is to stop the propagation of gradients from the actor (orange) from flowing to the

shared layers of the critic and actor. This is done in [103] and their experimental findings

is that it helps improve the stability of the policy, but the modification was done in SAC

and not PPO and the critic and actor networks did not share any layers.

8.3 Obstacle Tower Environment

The Obstacle Tower is implemented with the Unity game engine in C#, therefore it

is necessary to have some form of communication interface between the game engine and

the agents. This is achieved by having the Obstacle Tower also run a server application.

105

The server listens to the instructed port for inputs (actions), performs the desired actions

and responds back with the observation, the reward, whether the episode has finished

and some additional information. In order to communicate with the Obstacle Tower, we

implemented an Application Programming Interface (API) based on the one provided in

[21] that is compatible with the Gym API[3] and the Stable-Baselines project, the source

code is available in C.3.

The recent release of StableBaselines (SB), more specifically version StableBaselines3

(SB3) introduced some breaking changes that changed the available wrappers. Wrappers

are objects that alter the behavior of the environment, e.g. they can alter the information

presented in the observations and even alter the reward signal.

The StableBaselines3 project makes use of wrappers from [3] that make an environment

compliant with suggestions from [106]. In order to make our environment compliant with

the wrappers used by SB3, we implemented an object that communicates with Unity

environments and emulates an ALE [1] environment. The emulator is not tied to the OT

can be used with other environments. The source is available in Appendix C.1.1.

8.3.1 Action Space Modifications

We perform a number of modifications in the action-space to make the problem easier

for the agent. In particular, we reduce the action-space from a multi-discrete with [3, 3, 2, 3]

actions down to just discrete 12 through the following modifications:

• We remove the option of walking backwards. This change does not reduce the

agent’s ability to navigate the environment as walking backwards can be achieved

by rotating 180 degrees. This modification reduces by 1
3 the action space to 36

actions.

106

• We tie the camera movement i.e. camera pan to the agent’s direction. This means

that the camera pans along with the agent. This change reduces the available actions

to just 12.

• We change the Multi-Discrete action-space to plain discrete as there is no significant

difference between the two [107] and makes the implementation easier.

We implement these modifications through a family of objects that implement the Action-

Wrapper interface. Our implementation computes the mapping between the actions before

and after the modification, then it intercepts the action provided to the environment and

alters it to the correct one. The code for the modifications is available in Appendix C.1.3.

Another potential change in the ActionSpace is to use continuous actions and then

discretize them. This approach would be ideal in environments with analog inputs and

motion but not as much in OT. Although we have not tested it, we believe that this

change removes the semantics behind the actions and introduces unnecessary complexity

due to mixed spaces. The other issue is that it, in a sense, removes the notion of entropy

for the continuous action. We can have a highly entropic continuous action that when

discretized, it becomes deterministic. If we discretize continuous values from [-1, 1] to two

discrete actions for [-1, 0] and (0, 1], a policy that creates a Gaussian Distribution may put

the mean way too far above 1, and the log standard deviation to be large, but not large

enough to get values in [-1, 0] range, thus thee action is deterministic when discretized.

8.4 Current State

Implementing DRL algorithms is both a difficult, and a tedious process. Unlike other

types of programs, DRL algorithms fail silently and take an excruciating amount of time

107

to validate. In particular, DRL algorithms fail silently due to logical errors in the math-

ematics behind the algorithm, tensor operations that result in incorrect structures and

therefore gradients. Furthermore, validation is difficult as we need to perform a large

number of tests with different seeds to verify the validity of the algorithm before we are

able to look for appropriate hyper-parameters.

8.4.1 Stable Baselines

We began this project using StableBaselines v2 as the project provides a number of high

quality implementations with a stable API [108]. Our implementations were dependent on

the Stable Baselines project, as we reused existing source code. Besides borrowing code,

we made a few contributions to the project.

We implemented a minor extension to replay buffers that allowed agents to store a

large number of transitions at the same time instead of a single one, this was implemented

in commit 109e12a. Furthermore, we made a few bug and consistency fixes in the com-

mits. More specifically, we corrected a model initialization inconsistency between SAC and

TD3/DDPG in commit ac92d2e, we fixed an inconsistency between environment wrapper

objects in commit d2364c9, and last but not least, we corrected a bug that prevented

models from resuming the training process in commit ae4f6c5. Last but not least, we

implemented a module that allows for Noise Processes with different lifespans, this mod-

ule makes it easier to run multiple environments in parallel without multiprocessing. The

stacked noise module was added in commit 78e8d40 of the SB3 repository and the source

is available in Appendix C.4.1

The SB with version 3 has moved on to pytorch, with this change, a large volume of our

source code was obsolete. Our implementation was very similar to the SB3 implementation

108

of PPO, but we chose to migrate to SB3 as it has been extensively tested, validated and

used in published work and because it altered a number of tools that we used. Our

current implementation builds on-top of SB3 PPO and includes the modules that we

mention above, except for the GRU layer, in its place, we use frame stacking2 which does

not introduce additional complexity. Due to the partial observability of the problem, and

in particular when cycles exist in the room layout, a large number of frames need to be

stacked. We suggest at least 20.

8.4.2 PPO

We provide an implementation of PPO based on the one provided by SB3 in Appendix

C.2. The SB3 library separates the algorithm and the underlying network that selects

the actions. For example, PPO and A2C use the same underlying networks and action

selection methods, the only difference is the optimization processes, which is algorithm

specific. We use the same philosophy, we extend the existing ‘policy‘ objects with an RND

module. More specifically, we added two additional networks after the feature extraction

part of the model, i.e. either after the CNN or, for non image tasks, right in the beginning.

We alter the ‘policy‘ object to also provide the RND error along with the action selection,

the source code is available in Appendix C.2.1. The RND prediction error is summed onto

the current reward, thus, we also altered the algorithm part of PPO, and the source is

available in Appendix C.2.2. Our PPO implementation also includes Generalized State

Dependent Exploration (gSDE) as that is a core feature of the SB3 [109].

We provide three different ‘policy‘ classes, ‘RndPolicy‘,‘CnnRndPolicy‘ and ‘AERnd-

Policy‘. RndPolicy implements the RND modules and action selection logic. The action

2Frame stacking provides a history of the last n frames provided by the environment.

109

selection logic is derived from SB3’s ‘PPOPolicy‘ class. The CnnRndPolicy class extends

the ‘RndPolicy‘ class and adds a CNN feature extractor. The AERndPolicy class extends

the CnnRndPolicy and adds a few modifications in order to use an AutoEncoder module.

The source code for all policy classes is available in Appendix C.2.1

In SB3, the feature extraction is performed through a family of objects that extend

‘BaseFeaturesExtractor‘. In order to add support for the MMD-Vae, we create the ‘Na-

tureAE‘. NatureAE is a feature-extractor class that also implements an AutoEncoder.

More specifically, it uses an encoder with the CNN provided in [2], which is referred to

as ‘NatureCnn‘, and a decoder that is symmetric to the encoder. We then derive the Na-

tureAE to create NatureMMD which implements an MMD-Vae. The code for NatureAE

and NatureMMD is available in Appendix C.3.1.

8.4.3 Current Limitations

Due to lack of computational resources, we are unable to test and fine tune our model

in Atari Games or the OT. One of the main bottlenecks is the inclusion of MMD-VAE.

While MMD-VAE allows us to significantly reduce the size of the latent dimension, it also

introduces a large bottleneck in the form of Gaussian Kernels. In particular, we need to

compute a non trivial number of kernels in order to get a good loss for the latent variable,

however, this can be alleviated using a dedicated processor for tensor products 3 .

Our implementation also lacks a memory module, eg. GRU which severely hinders

performance in POMDPs. While this can be partially alleviated using a frame buffer/s-

tacked frames, certain papers have shown that Recurrent Networks can learn significantly

3A Graphics Processing Unit (GPU) or a Tensor Processing Unit (TPU).

110

Figure 17: Performance of our implementation with different kinds of Exploration.

better representations over non recurrent ones even in MDPs [36] and that RNNs may be

crucial to certain problems [7, 8].

8.4.4 Preliminary Results

We made some preliminary experiments with our implementation on the MountainCar

(Continuous Version) [3]. The results are shown in figure 17. Unfortunately MountainCar

does not allow RND and gSDE to show their full strength as it is a relatively easy problem

to solve. The nature of PPO, i.e. take a series of steps before optimizing along with the

sampling nature allows PPO to reach the terminal state faster than other algorithms, but

RND appears to help. We performed 9 experiments with 9 fixed seeds and display the

performance of the 5 runs with the best final performance.

8.4.5 Computational Resources

Atari-like environments are usually run for 100-200 million timesteps with multiple

seeds and domain specific hyper parameter tuning. On-policy policy gradients such as

PPO are run for 200 million timesteps. Fortunately, the OT and PPO can run multiple

environments in parallel. We tried to run our implementation on an 8 core workstation

111

with a gtx 1080ti and the StableBaselines 2’s implementation of PPO without any modi-

fications. The workstation needed approximately 1 hour to compute 200 thousand steps,

thus it will take roughly 42 days to complete 200M steps. If we are to assume perfect

strong scaling, then with 32 cores, the process will take approximately 10.5 days. Thus,

in order to have a general algorithm without any form of domain knowledge learn how

to behave in a reasonable amount of time, a cluster of 128 cores and 16 GPUs of 1080ti

class or greater are the bare minimum. The GPUs are necessary in order to run the envi-

ronment and we believe that 128 cores running 4 instances of the environment each will

saturate a single GPU, thus we suggest running 16 of them, so each GPU can run up to

35 instances of the environment and leave 1 GPU dedicated to computing the forward and

backward passes.

Chapter 9

Ghosts in the Tensors

Adaptive programs are guilty of hiding nuances and are ridden with pitfalls, both

large and small; thus, they often exhibit chaotic and undesired behavior. This chapter

is an attempt to enumerate some of these nuances and provide a mental toolkit to help

understand and diagnose unexpected behavior.

9.1 Fantastic deltas and how to fight them

Let us assume that we have stumbled on some optimal policy π in some fully observable

and deterministic environment ε, with state-space Sε and action-space Aε. A logical first

assumption about π is that it is also deterministic, otherwise it would not have been

optimal because the probability of making a suboptimal decision would be non zero.

While in the common case a stochastic policy is suboptimal, it is not always true.

Suppose that some state s ∈ Sε exists which acts as a sink, and thus, for every action

a ∈ A, p(s|s, a) = 1. In this case, every action is optimal so a stochastic policy can be

optimal iff it is also optimal in every other state. The question now becomes, is it possible

to have a stochastic function that is almost always optimal even in non sink states?

112

113

The answer is a solid maybe. It depends on the function approximator we use. Because

neural networks are universal approximators, they can also approximate Dirac δ functions

or, with some help, Kronecker δij functions. In the continuous action-space, an optimal

and deterministic policy can be thought of as an estimator of a Dirac δ function centered at

the optimal value and is used as a probability density function. In a discrete action-space,

an optimal policy would behave like a Kronecker δij function, where the optimal action

has probability 1, and every other action has probability 0. In consequence, a function

approximator that can behave like a delta function can result in an almost deterministic

policy.

Although deterministic and optimal functions are desirable and often the end goal,

suboptimal deterministic functions on their own are not, as they can fall into local optima.

Although local optima can be stable, and the algorithms can behave in a predictable

manner, deterministic policies do not allow us to perform sufficient exploration which

prohibits us from learning an optimal policy. In addition, stochastic policies can also

degenerate to deterministic behavior and fall into local optima as well.

The degeneration of a NN into a delta function in the discrete domain in policy gradient

methods can be solved through the addition of an entropy term in the loss function.

∇θJ = ET∼πθ

[
T∑
t=0
∇θ log πθ(a|st)Aπθ (st, at) + βH(At|πθ, st)

]
(90)

= ET∼πθ

 T∑
t=0
∇θ log πθ(a|st)Aπθ (st, at) + β

∑
a′∈A

πθ(a′|st) log πθ(a′|st)

 (91)

We added two terms, the Shannon entropy on the selected action At conditioned on the

current policy πθ and the current state st, and a hyper parameter, β, which is often

referred to as the entropy loss factor, together, they are referred to as entropy loss. The

entropy loss factor is used to regularize the effect of entropy and is usually a small number

114

close to zero, eg. 1e − 4. It is paramount that we understand the effect of entropy loss

on our objective function. Since we are performing gradient ascent on the whole objective

function, the optimitzation algorithms will attempt to increase the final objective. Thus,

a very high entropy loss factor can end up dominating the advantage loss and the agent

will fall into a local minima.

9.2 Actor Collapse

A common practice in Actor-Critic agents that use first order optimization methods

such as Adam, SGD, RMSProp and so on, is to share the initial input weights between the

critic and the actor, and then separate them. The idea is that the model learns to extract

useful features from the state that are useful to both the actor and the critic. In addition,

weight sharing greatly reduces the number of parameters in a model which results in less

computation and greater memory efficiency.

If we compute the backward pass for either the critic, or the actor, and apply the

gradients, the optimizer will release the gradients. In consequence, when we attempt to

do a backward pass on the other model, we will have to recompute both the forward and

backward pass again, as the shared gradients were released already.

The common practice is to sum the objectives of the two models and perform gradient

ascent or descent depending on the case. Thus, the objective function becomes:

J(πθ, Qφ) = Jπ(πθ) + JQ(Qφ|πθ) (92)

Where Jπ(πθ) is the objective function of the policy network, and JQ(Qφ) is the objective

function of the critic network. Note that the objective function of the policy network is

usually eq. 91, which includes the entropy loss.

115

Although it is not very obvious at first, summing the two objective functions has

catastrophic consequences as the two objective functions may end up having losses in

different orders of magnitude. Recall that the objective function for a critic is usually

either of:

JQ(Qφ|πθ) = ET∼πθ

[
T−1

T∑
t=0

(r + γ(1− d)Q(st+1, πθ(st+1))−Q(st, at))2
]

(93)

JV (Vφ|πθ) = ET∼πθ

[
T−1

T∑
t=0

(r + γ(1− d)V πθ (st+1)− V πθ (st))2
]

(94)

Where the former is the objective function used by the critic in deterministic policy gradi-

ents, and the latter is used by stochastic policy gradients, both are, in essence the Temporal

Difference Residual Error squared. The term d is a convention, represents whether st+1 is

a terminal state and is a boolean, by convention 1− d = 0 if d is true, and 1− d = 1 if d

is false.

The problem with summing the critic and actor objectives is that both of the critic

objectives shown above may be in different order of magnitude than objective function of

the policy Jπ(πθ). Thus, the weight of the critic’s loss collapses the policy by changing the

weights of the common layers in the direction that causes the critic’s loss to be less, not in

a way that increases the policy’s performance. In consequence, the objective is minimized

without actually solving the problem. To deal with critic collapse, we introduce another

term, α in 92, that acts as a regularization factor.

J(πθ, Qφ) = Jπ(πθ) + αJQ(Qφ|πθ) (95)

116

Alternatively, instead of reducing the mean squared error, we can reduce the mean smooth

L1 error, or Huber Loss:

L1,smooth(Y, Ŷ) .=

|Y − Ŷ | if |Y − Ŷ | > α

(Y−Ŷ)2

|α| if |Y − Ŷ | <= α

(96)

This kind of collapse is only possible in A2C and derivatives, e.g. PPO, and the reason is

that they share a common core of layers. We can completely resolve this issue by simply

having the two networks be independent. The reason being that the computation graph

of the two losses is independent besides the addition, and the gradient of the addition of a

loss function with respect to the other loss function is 0 (iff the graphs are independent).

9.3 Off Policy Over-Optimization

On policy algorithms like A2C, with the exception of PPO [22], perform a single

optimization step on a collection of trajectories whereas off policy algorithms like DQN,

DDPG and TD3 can perform multiple optimization steps per step in the environment

(note that PPO also performs multiple optimization steps on a collection of trajectories).

Because off-policy algorithms (and PPO) can perform multiple optimization steps, they

tend to have better sample efficiency over on-policy algorithms at the cost of additional

hyper parameter tuning. A direct consequence of performing multiple optimization steps

is that a model that learns quickly, will fall into local optima due to insufficient exploration

[19].

To combat the issue of over-fitting on few samples or early converging is through a

set of orthogonal methods, a) the addition of noise in parameters, b) addition of noise in

actions, c) delaying optimization until a large number of experiences has been collected,

and d) uniform sampling from the action-space in early stages in order to diversify the

117

observations [46]. Note that not all methods are applicable in all problems. For discrete

problems, we can use d, but not b, for continuous problems, we can use both b and d, but

d is uncommon.

Noise addition in the network parameters is done by sampling noise from a Gaussian

distribution and perturbing the parameters. This technique allows the model to perform

better exploration by disallowing the convergence of the policy. Adding noise to actions can

be done by sampling from a Gaussian distribution, or by simulating an Ornstein-Uhlenbeck

process, in practice sampling from a Gaussian performs better. Delaying optimization is

done by ensuring that the replay buffer used by the algorithm is sufficiently large and

uniform sampling on the action-space is done until a number of steps have been performed

[49, 51, 50].

9.4 Proximal Policy Over-Optimization

PPO has a number of sources of bias that are rooted in PPO ’s nature of multiple

optimization steps [22]. As stated in 9.3, off-policy algorithms suffer by over-fitting on old

experiences, in contrast, PPO can suffer from over-fitting on current experiences.

Consider the following two trajectories: a) The agent receives -0.1 reward on every step

for N steps, b) The agent receives -10 reward on every step for N steps as well. Assume

that we are using GAE [51] to compute the return. Because we are using normalization

to scale the return of each trajectory to a Gaussian distribution centered at 0 in order

to avoid blowing up the gradients, both of the trajectories will result in the same values

despite the latter being objectively worse. The result is that the two trajectories will be

considered equivalent and thus, the weight update can be catastrophic, this is further

exacerbated when we consider that the optimization steps are more than one, thus it is

118

important that we are conservative with the amount of optimization steps when using

PPO.

The issue of adjusted rewards can be mitigated by keeping an average over the rewards

collected across concurrent trajectories. We can keep the mean across the trajectories the

same, but reduce the variance. Altering the mean of the rewards alters an agent’s will to

live [22]. However, removing some variance is beneficial.

9.5 Diluted Experience

A common approach to gathering experience, or, rollouts is to have a number of worker

threads, that simply run the policy and collect instances of 〈s, a, r, s′, d〉 where s, a, r, s′, d

are state, action, reward, new state, and terminal respectively. Parallel workers allow us

to better utilize the available machines and hardware.

The general procedure of collecting rollouts is to simply run the policy for N steps,

then update the policy or store the rollout in an Experience Replay Buffer. Although

collecting N steps works just fine in environments with dense rewards, they can back-fine

in sparse rewards.

To illustrate the issue, let’s assume that we have an environment that gives 100 upon

reaching the goal and in the general case [−0.03, 0] depending on the action. Let’s also

assume that reaching the goal is also rare, but it is terminal. The environment terminates

on either 100 steps or, upon reaching the goal. If the environment terminates, we will

reset and continue collecting experience until we reach the desired rollout steps.

119

Since the goal is rare, if we were to always collect, say 100 steps, even if we end up

reaching the goal, we will continue collecting experience, thus, the probability of choos-

ing the goal experience during the sampling process is lower than if we just stopped on

observing the goal and collected a shorter rollout.

9.6 Minding your business

DDPG and derivatives are based on the idea that we can use a Q function as any other

generic function that can be optimized, i.e. minimized or maximized [51, 50]. Thus, we

use Q : S× R→ R to teach the policy π : S→ A how to maximize Q on a given state S.

When we define the objective function Jθ,φ,... for DDPG and derivatives, we define an

objective function that returns a tuple of losses. If we were to join the tuples through

summation or multiplication, we end up with the issues discussed in 9.2, where one of the

network losses dominates the loss function, in addition, it is not necessary to join them as

the networks that need to be optimized are not involved with one another.

In DDPG and derivatives, the optimization of the policy network is delayed until we

have performed at least 1 optimization step on the Q network [51, 50]. in the case of TD3

[50], we are not only optimizing two Q networks to stabilize them, we are also updating

the policy after a number of optimization steps on the Q functions. A naive approach to

optimizing multiple networks is to create a single optimizer i.e. an object that performs a

form of optimization on the networks for every network. The correctness of this approach

is dependent on the underlying algorithm and its implementation.

An optimization algorithm like Adam[52], keeps track of first and second order moment

estimations to accelerate learning, this approach though comes with some caveats. Adam

can not use the moment estimation from early steps due to the high amount of bias it

120

introduces, therefore, it employs a de-biasing mechanism based on the number of steps

the algorithm has performed. In consequence, using a single optimizer object can cause

stability issues if the algorithm’s number of steps is inconsistent with the actual number

of optimization steps performed on the parameters.

Another issue that arises when using a single optimizer object is that because the

optimization objective uses two networks, makes it possible to accumulate gradients on

the critic networks while training the actor network, thus performing an update step

on the actor also changes the critic’s weights causing catastrophic interference. In fact,

performing gradient ascent on the result of the critic introduces over estimation which

is one of the problems that plague DDPG. Over estimation occurs because we take the

negative of the estimation and perform gradient descent.

9.7 Handling Termination

An important workflow change introduced in A2C [82] was using a single agent to run

multiple instances of the environment instead of each environment to run on their own.

This process is referred to as running a Batched Environment (or Vectorized Environment).

This change allowed for much better resource utilization of the underlying hardware as

more trajectories could be collected in parallel which results in greater diversity among

the training samples, all while remaining an on-policy algorithm.

Although there are many ways to implement Batched Environments, the general idea

is that a shell environment receives a list of actions which are then propagated accordingly,

the results are collected into lists or matrices and are propagated back to the agent. An

issue that arises in this scenario is how to handle the terminal cases. In RL theory, we

treat episodic environments as infinite horizon problems where every terminal state always

121

transitions to itself with reward 0. In the case of a single, non vectorized environment,

the process is simple, when the state is terminal, return it, and reset the environment to

start over. The trajectory has a clear boundary.

When implementing batched environments where the agent may perform more steps

than a trajectory, the question that arises is, how should we deal with termination? The

agent needs to be informed of both the terminal state, and the new state. The solution

here is that we replace the terminal state with the new state, but we signal to the agent

that the new state is terminal. Although this approach does not appear very sound, it is

based on the idea that if the state is terminal, we do not actually need to use it, thus,

even if it is filled with garbage, it does not bother the algorithm. This is obvious when we

consider the δt error:

δt = r + γ(1− d)Q(s′, a′)−Q(s)

Because of the (1− d) term, the state s′, if terminal, becomes irrelevant. This occurs by

the convention that if d = True, then it evaluates to 1 and 0 otherwise. This allows us

to replace the terminal state with the new state without introducing issues to the agent

when computing the return.

9.8 Dead neurons and misleading gradients

As mentioned in 2.4, dropout is used as a regularization technique and to facilitate

generalization [19, 45]. The use of dropout, while useful, is particularly problematic when

we consider on-policy algorithms and the behavior is entirely dependent on the workflow

of the training process. A common approach is to have a number of worker processes that

run inference on the model to collect experience. When we run inference on a model, we

122

avoid computing gradients and instead send the collected experience to a procedure that

performs the optimization step.

In the scenario above, the optimization procedure goes through the collected experi-

ence and computes the gradients. The issue here is that because drop out is stochastic,

the optimization procedure will compute different results to those that resulted in the

collected trajectory. In consequence, we are training an on-policy algorithm with experi-

ence gathered from a different policy. It is evident that in this scenario the optimization

procedure will fail to properly fit the model [17].

9.9 Sawtooth

Off-policy agents can perform a large number of optimization steps with experience

collected from other policies. In consequence, they are usually more sample efficient than

on-policy algorithms at the cost of stability [17]. In DRL applications, the instability

is further exacerbated by the fact that we are using function approximators and often

bootstrap from their results.

Off Policy algorithms can exhibit performance that resembles a sawtooth, where the

algorithm improves in performance until it reaches a peak, and then drops sharply to

random or worse. During the improvement the agent may exhibit a decrease in the rate of

improvement. This behavior is referred to as Catastrophic Forgetting [44]. Catastrophic

Forgetting in DRL does not have a ubiquitous solution, however, a number of useful tools

exist to handle it [110].

123

Keeping a logbook

The first, and most obvious solution is to keep a history of backups of the models and

when the optimization process shows signs of catastrophic forgetting to explicitly drop the

current model and use an older one. This comes with some caveats.

First and foremost, this approach increases the computational cost in order to deduce

that catastrophic forgetting has indeed occurred, and that the model was not unlucky due

to the seed, thus, more evaluations need to be done.

Second, drops in performance, are not always the result of catastrophic forgetting.

To showcase this, consider the Mountain Car problem. In this environment, the agent

controls a car at the bottom of a valley and needs to reach the top. In order to do that

however, it needs to build up momentum by going towards the direction opposite of the

goal. The agent receives a penalty based on the effort the car exerted, the more the effort,

the bigger the penalty. However, if it reaches the top, it receives a very large reward.

Without good exploration, the agent will learn that the optimal behavior is to do

nothing, and thus exert no effort and get a reward very close to 0. With good exploration,

the agent learns that it needs to get to the top by driving towards the opposite direction,

incurring a short term penalty and then going towards the goal as using its momentum.

In consequence, it is possible to mistake learning how to solve a task with catastrophic

forgetting because the solution is requires an upfront penalty. Thus, identifying catas-

trophic forgetting solely through the changes in the returns of an agent may be a mistake

and depends on the environment.

124

Learning Rate Annealing, Gradient Clipping, Gradient Norm Scaling

Learning rate annealing is a common approach used in all forms of DL. In the DRL

case, we often have access to a reward threshold, i.e. the reward the agent needs to achieve.

Using the reward threshold we can construct learning rate scheduling mechanisms that get

diminished as the agent’s performance increases, thus reducing the odds of catastrophically

forgetting.

Gradient clipping is another way of minimizing the effect of large prediction errors.

More specifically, after we computing the gradients using backprop, we clamp them into

a specified range. The most common starting point is [−
√

5,
√

5]. Gradient clipping is

particularly useful in RMSProp and Adam. The two methods keep a running average

of the magnitude of the gradient for particular weights which, allows them to accelerate

learning. However, exactly because they keep track of the magnitude, they can cause very

large shifts when the estimated gradient is biased, thus clipping can help reduce the size

of the change. Alternatively, we can reduce limit the global norm of the gradient to 0.5

as done in [22, 24, 95].

Identifying Catastrophic Forgetting

As we mentioned above, it is not always possible to identify catastrophic forgetting

through the returns alone, however, depending on the algorithm, different tools can be

used to diagnose this.

In the case of deterministic actor critic methods, such as DDPG [51], TD3 [50], and

derivatives, we can use the critic network(s) to estimate the performance of the current

policy. More specifically, we can use the critic to estimate the values of the policy after

125

optimizing and compare with the previous ones. The caveat here is that the critic may be

wrong in its estimations.

In the case of stochastic policy gradient algorithms like A2C and A3C [82], PPO[22],

we can use the fact that the policy creates a distribution of the actions and measure the KL

Divergence between the actions before, and after the changes in the policy. In particular,

PPO often exhibits a peak in KL Divergence after the updates and then catastrophically

forgets [95, 24].

9.10 Time is but a stubborn illusion

In DRL implementations, the agent-environment interaction is done in two steps, the

agent performs an action, and the environment responds with a new observation, a reward,

a termination signal, and diagnostic information. We could like to draw attention to the

termination signal. A common practice is to include a time-limit to prevent the agent

from getting stuck in uninformative areas of the environment. When the time-limit is

reached, the environment communicates through the done signal that the environment

has terminated. This is problematic if the time-limit is not communicated back to the

agent.

If the time-limit is not given to the agent, but the environment terminates, then the

agent learns a different MDP than the true because it believes that a non terminal state is

terminal, simply because the time was not provided. We can correct the behavior through

by, a) including the time in the observation space, or b) by altering the done signal and

accounting for the end of the trajectory by resetting the environment.

Chapter 10

Conclusion

Traditionally, a conclusion chapter is meant to provide answers for the questions posed

in the introduction through support from experiments, sum-up insights and provide the

grounds for future work. Due to the trajectory of the thesis, we will focus on our findings

in our attempts at implementing a general solution, and outline our thoughts on potential

ways for future work.

This thesis began as an attempt at finding a general, hierarchical approach that could

learn and solve the Obstacle Tower. Throughout the process we studied a number of

algorithms, flat and hierarchical in an attempt to identify their shortcomings and potential

extensions or improvements. However, after attempting to implement extensions and

verify the validity of our models, we concluded that the task was a Herculean one.

Reinforcement Learning is a unique field in many regards. In its core, Reinforcement

Learning is learning how to approximately solve a shortest path problem with extra steps

and, in a sense, it is the processes of learning a guess from a guess. Unlike other ’*

Learning’ fields, RL does not have the I.I.D property, in-fact, RL lacks it by its very

definition, and thus, learning is difficult.

126

127

In this thesis we put emphasis on hard exploration problems, and decomposable prob-

lems to provide a motivation for hierarchical algorithms. We provide a summary of com-

mon model-free algorithms, tools and extensions that, in our opinion, provide the necessary

stepping stone towards hierarchical algorithms. In addition, we provide the structure, a

partial implementation, and the reasoning behind our solution for the Obstacle Tower.

Last but not least, we provide a mental toolbox to help other researchers diagnose prob-

lems with their implementations.

10.1 Future Work

While this thesis was concerned with partially observable, hard exploration problems,

there are many other open topics in the field that should be first solved before we venture

into more complicated solutions such as hierarchical algorithms, after all, Occam’s razor

seems to repeatedly show up and we are guilty of ignoring it.

We believe that the first order of business is to understand the relationship between

different initialization procedures. Starting from randomly initialized Neural Networks

results in low inductive bias that hinders the network’s ability to learn [2, 97]. At the same

time, recent work has shown that in a randomly initialized Neural Network, multiple sub-

networks exist with very strong inductive bias and can achieve equivalent, or even better

performance than the whole network [111, 112].

The second area of interest is deciding and managing changes in the weights beyond a

simple gradient descent mechanism. PPO introduced a mechanism that restricted the flow

of gradients [22], while TRPO used a natural gradient optimization algorithm to achieve

monotonic improvement [23]. Further work has shown that in large and wide Neural

Networks, even tiny changes in weights can have tremendous effects in the policy [95].

128

The third area of interest is related to distributional agents. Agents that estimate

distributions, such as C51 [61, 63], Quantile Regression DQN [113], Implicit Quantile Re-

gression (IQR) [114], Distributed Distributional DDPG (D4PG) [115] exhibit enormous

improvements over their non distributional counterparts. Our hypothesis is that estimat-

ing distributions and in particular quantiles is significantly easier than estimating true

values as true values are usually very large. This belief stems from the fact that normal-

ized actions e.g. squashed in [-1,1], and normalized observations seem to greatly assist in

learning [24, 47].

10.1.1 The future for the Obstacle Tower

The Obstacle Tower proved to be a formidable opponent, one that has not seen a

conqueror yet, let alone one with a general solution that did not include domain knowledge.

We believe there is potential in this domain, especially when we consider the overall poor

sample efficiency of current methods.

First, we observe that the OT allows an agent to observe the world through different

themes. We believe that this can be exploited by an agent through Contrastive Learning

[103], or by forcing similar representations from a Vision module, in order to achieve better

state representations. This can be easily achieved by running the environment multiple

times with the same seed and just the different theme.

Our current implementation can be easily extended to include a form of Contrastive

Learning as done in [103]. In particular, the usage of MMD-VAE was deliberate because

it makes it fairly trivial to enforce a constraint on the representation. MMD-VAE works

by enforcing a constraint on the latent variable. The constraint forces the latent variable

to follow a Gaussian Distribution and is computed through Gaussian Kernels, the target

129

kernels. We can treat the representations created by the AutoEncoder with one theme as

the target kernel, and the other as the traditional latent variable. This modification is

similar to Siamese Networks [35].

Second, we believe that Imitation Learning is paramount to learning how to solve

the OT. Imitation Learning is a class of algorithms that use experience derived from an

expert in order to learn how to solve a particular problem [116, 117, 118]. Algorithms

such as Generative Adversarial Imitation Learning (GAIL) [117] and Behaviour Cloning

(BC) [116] are popular IL methods that are often used as a form of Pre-training for an

agent [29]. In essence, they introduce some form of inductive bias into the model.

Last, but not least, believe that there is potential in constructing sophisticated meta-

controllers to control an agent’s curriculum such as those used in [11]. Because the OT

exhibits natural difficulty progression scheme, we believe that it can be exploited to learn

faster.

References

[1] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The arcade learning en-

vironment: An evaluation platform for general agents,” Computing Research Repos-

itory CoRR, vol. abs/1207.4708, 2012. [Preprint] arxiv:1207.4708.

[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,

A. Graves, M. A. Riedmiller, A. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie,

A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hass-

abis, “Human-level control through deep reinforcement learning,” Nature, vol. 518,

no. 7540, pp. 529–533, 2015.

[3] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and

W. Zaremba, “Openai gym,” Computing Research Repository CoRR, vol. abs/gym,

2016. [Preprint] arxiv:gym.

[4] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driess-

che, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Diele-

man, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach,

K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of Go with

deep neural networks and tree search,” Nature, vol. 529, pp. 484–489, Jan. 2016.

130

131

[5] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot,

L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan, and D. Hassabis, “Mas-

tering chess and shogi by self-play with a general reinforcement learning algorithm,”

2017. [Preprint] arxiv:1712.01815.

[6] O. Vinyals, T. Ewalds, S. Bartunov, P. Georgiev, A. S. Vezhnevets, M. Yeo,

A. Makhzani, H. Küttler, J. Agapiou, J. Schrittwieser, J. Quan, S. Gaffney, S. Pe-

tersen, K. Simonyan, T. Schaul, H. van Hasselt, D. Silver, T. Lillicrap, K. Calderone,

P. Keet, A. Brunasso, D. Lawrence, A. Ekermo, J. Repp, and R. Tsing, “Starcraft

ii: A new challenge for reinforcement learning,” 2017. [Preprint] arxiv:1708.04782.

[7] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung,

D. H. Choi, R. Powell, T. Ewalds, P. Georgiev, J. Oh, D. Horgan, M. Kroiss, I. Dani-

helka, A. Huang, L. Sifre, T. Cai, J. P. Agapiou, M. Jaderberg, A. S. Vezhnevets,

R. Leblond, T. Pohlen, V. Dalibard, D. Budden, Y. Sulsky, J. Molloy, T. L. Paine,

C. Gulcehre, Z. Wang, T. Pfaff, Y. Wu, R. Ring, D. Yogatama, D. Wünsch, K. McK-

inney, O. Smith, T. Schaul, T. Lillicrap, K. Kavukcuoglu, D. Hassabis, C. Apps, and

D. Silver, “Grandmaster level in StarCraft II using multi-agent reinforcement learn-

ing,” Nature, vol. 575, pp. 350–354, Nov. 2019.

[8] C. Berner, G. Brockman, B. Chan, V. Cheung, P. Dębiak, C. Dennison, D. Farhi,

Q. Fischer, S. Hashme, C. Hesse, R. Józefowicz, S. Gray, C. Olsson, J. Pachocki,

M. Petrov, H. P. de Oliveira Pinto, J. Raiman, T. Salimans, J. Schlatter, J. Schnei-

der, S. Sidor, I. Sutskever, J. Tang, F. Wolski, and S. Zhang, “Dota 2 with large

scale deep reinforcement learning,” 2019. [Preprint] arxiv:1912.06680.

132

[9] A. Ecoffet, J. Huizinga, J. Lehman, K. O. Stanley, and J. Clune, “Go-explore: a new

approach for hard-exploration problems,” Computing Research Repository, CoRR,

2019. [Preprint] arxiv:1901.10995.

[10] A. Ecoffet, J. Huizinga, J. Lehman, K. O. Stanley, and J. Clune, “First return then

explore,” 2020. [Preprint] arxiv:2004.12919.

[11] A. P. Badia, B. Piot, S. Kapturowski, P. Sprechmann, A. Vitvitskyi, D. Guo,

and C. Blundell, “Agent57: Outperforming the atari human benchmark,” 2020.

[Preprint] arxiv:2003.13350.

[12] S. Kapturowski, G. Ostrovski, W. Dabney, J. Quan, and R. Munos, “Recurrent

experience replay in distributed reinforcement learning,” in International Conference

on Learning Representations, 2019.

[13] T. L. Paine, Ç. Gülçehre, B. Shahriari, M. Denil, M. D. Hoffman, H. Soyer, R. Tan-

burn, S. Kapturowski, N. C. Rabinowitz, D. Williams, G. Barth-Maron, Z. Wang,

N. de Freitas, and W. Team, “Making efficient use of demonstrations to solve hard

exploration problems,” Computing Research Repository, CoRR, 2019. [Preprint]

arxiv:1909.01387.

[14] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt,

A. Guez, E. Lockhart, D. Hassabis, T. Graepel, T. Lillicrap, and D. Silver, “Master-

ing atari, go, chess and shogi by planning with a learned model,” 2019. [Preprint]

arxiv:1911.08265.

[15] A. P. Badia, P. Sprechmann, A. Vitvitskyi, D. Guo, B. Piot, S. Kapturowski,

O. Tieleman, M. Arjovsky, A. Pritzel, A. Bolt, and C. Blundell, “Never give up:

133

Learning directed exploration strategies,” 2020. [Preprint] arxiv:2020.06038.

[16] R. Raileanu and T. Rocktäschel, “Ride: Rewarding impact-driven exploration for

procedurally-generated environments,” in International Conference on Learning

Representations, 2020.

[17] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. London,

England: The MIT Press, Cambridge Massachusetts, second ed., 2018.

[18] D. Sproatt and A. Navab, “Operant Conditioning,” in Encyclopedia of Autism Spec-

trum Disorders (F. R. Volkmar, ed.), pp. 2087–2088, New York, NY: Springer New

York, 2013.

[19] I. Osband, Y. Doron, M. Hessel, J. Aslanides, E. Sezener, A. Saraiva, K. McKin-

ney, T. Lattimore, C. Szepesvari, S. Singh, B. V. Roy, R. Sutton, D. Silver, and

H. V. Hasselt, “Behaviour suite for reinforcement learning,” Computing Research

Repository, CoRR, 2019. [Preprint] arxiv:1908.03568.

[20] I. Osband, C. Blundell, A. Pritzel, and B. V. Roy, “Deep exploration via boot-

strapped dqn,” 2016. [Preprint] arxiv:1602.04621.

[21] A. Juliani, A. Khalifa, V.-P. Berges, J. Harper, E. Teng, H. Henry, A. Crespi,

J. Togelius, and D. Lange, “Obstacle tower: A generalization challenge in vision,

control, and planning,” in Proceedings of the 28th International Joint Conference on

Artificial Intelligence, IJCAI-19, pp. 2684–2691, International Joint Conferences on

Artificial Intelligence Organization, 2019.

134

[22] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-

imal policy optimization algorithms,” Computing Research Repository, CoRR,

vol. abs/1707.06347, 2017. [Preprint] arxiv:1707.06347.

[23] J. Schulman, S. Levine, P. Abbeel, M. I. Jordan, and P. Moritz, “Trust region pol-

icy optimization,” in Proceedings of the 32nd International Conference on Machine

Learning, ICML 2015 (F. R. Bach and D. M. Blei, eds.), pp. 1889–1897, PMLR,

2015.

[24] L. Engstrom, A. Ilyas, S. Santurkar, D. Tsipras, F. Janoos, L. Rudolph, and

A. Madry, “Implementation matters in deep rl: A case study on ppo and trpo,”

in International Conference on Learning Representations, 2020.

[25] R. S. Sutton, D. Precup, and S. P. Singh, “Between mdps and semi-mdps: A frame-

work for temporal abstraction in reinforcement learning,” Artif. Intell., vol. 112,

no. 1-2, pp. 181–211, 1999.

[26] P.-L. Bacon, J. Harb, and D. Precup, “The option-critic architecture,” 2016.

[Preprint] arxiv:1609.05140.

[27] T. D. Kulkarni, K. Narasimhan, A. Saeedi, and J. Tenenbaum, “Hierarchical deep

reinforcement learning: Integrating temporal abstraction and intrinsic motivation,”

in Advances in Neural Information Processing Systems 29 (D. D. Lee, M. Sugiyama,

U. V. Luxburg, I. Guyon, and R. Garnett, eds.), pp. 3675–3683, Curran Associates,

Inc., 2016.

135

[28] O. Nachum, S. Gu, H. Lee, and S. Levine, “Data-efficient hierarchical reinforcement

learning,” in Advances in Neural Information Processing Systems 31: Annual Con-

ference on Neural Information Processing Systems 2018 (S. Bengio, H. M. Wallach,

H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, eds.), pp. 3307–3317,

Curran Associates, Inc., 2018.

[29] A. Gupta, V. Kumar, C. Lynch, S. Levine, and K. Hausman, “Relay policy learning:

Solving long-horizon tasks via imitation and reinforcement learning,” Computing

Research Repository, CoRR, 2019. [Preprint] arxiv:1910.11956.

[30] A. Levy, R. P. Jr., and K. Saenko, “Learning multi-level hierarchies with hindsight,”

Computing Research Repository, CoRR, 2017. [Preprint] arxiv:1712.00948.

[31] N. Bostrom, “Ethical issues in advanced artificial intelligence,” in Science fiction and

philosophy: from time travel to superintelligence (S. Schneider, ed.), pp. 277–284,

Whiley-Blackwell, 2009.

[32] A. S. Vezhnevets, S. Osindero, T. Schaul, N. Heess, M. Jaderberg, D. Silver, and

K. Kavukcuoglu, “Feudal networks for hierarchical reinforcement learning,” in Pro-

ceedings of the 34th International Conference on Machine Learning, ICML 2017,

Sydney, NSW, Australia, 6-11 August 2017 (D. Precup and Y. W. Teh, eds.), vol. 70

of Proceedings of Machine Learning Research, pp. 3540–3549, PMLR, 2017.

[33] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation,

vol. 9, no. 8, pp. 1735–1780, 1997.

[34] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,

and Y. Bengio, “Learning phrase representations using rnn encoder-decoder for

136

statistical machine translation,” Computing Research Repository CoRR, 2014.

[Preprint] arxiv:1406.1078.

[35] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. London, England: The

MIT Press, Cambridge Massachusetts, 2016. http://www.deeplearningbook.org.

[36] M. J. Hausknecht and P. Stone, “Deep recurrent q-learning for partially observable

mdps,” in 2015 AAAI Fall Symposia, Arlington, Virginia, USA, November 12-14,

2015, pp. 29–37, AAAI Press, 2015.

[37] L. P. Kaelbling, “Learning to achieve goals,” in Proceedings of IJCAI 1993, pp. 1094–

1098, Morgan Kaufmann, 1993.

[38] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. Mc-

Grew, J. Tobin, P. Abbeel, and W. Zaremba, “Hindsight experience replay,”

Computing Research Repository, CoRR, vol. abs/1707.01495, 2017. [Preprint]

arxiv:1707.01495.

[39] T. Schaul, D. Horgan, K. Gregor, and D. Silver, “Universal value function approxi-

mators,” in Proceedings of the 32nd International Conference on Machine Learning

(F. Bach and D. Blei, eds.), vol. 37 of Proceedings of Machine Learning Research,

(Lille, France), pp. 1312–1320, PMLR, 07–09 Jul 2015.

[40] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. Upper Saddle

River, NJ, USA: Prentice Hall Press, 3rd ed., 2009.

[41] J. Z. Leibo, J. Pérolat, E. Hughes, S. Wheelwright, A. H. Marblestone, E. A. Duéñez-

Guzmán, P. Sunehag, I. Dunning, and T. Graepel, “Malthusian reinforcement learn-

ing,” Computing Research Repository CoRR, vol. abs/1812.07019, 2018. [Preprint]

http://www.deeplearningbook.org

137

arxiv:1812.07019.

[42] P. Chrabaszcz, I. Loshchilov, and F. Hutter, “Back to basics: Benchmarking canon-

ical evolution strategies for playing atari,” 2018. [Preprint] arxiv:1802.08842.

[43] A. Nichol, V. Pfau, C. Hesse, O. Klimov, and J. Schulman, “Gotta learn fast: A

new benchmark for generalization in rl,” 2018. [Preprint] arxiv:1804.03720.

[44] M. McCloskey and N. J. Cohen, “Catastrophic interference in connectionist net-

works: The sequential learning problem,” vol. 24 of Psychology of Learning and

Motivation, pp. 109 – 165, Academic Press, 1989.

[45] K. Lee, K. Lee, J. Shin, and H. Lee, “Network randomization: A simple technique

for generalization in deep reinforcement learning,” in International Conference on

Learning Representations, 2020.

[46] K. Cobbe, O. Klimov, C. Hesse, T. Kim, and J. Schulman, “Quantifying gen-

eralization in reinforcement learning,” Computing Research Repository, CoRR,

vol. abs/1812.02341, 2018. [Preprint] arxiv:1812.02341.

[47] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy max-

imum entropy deep reinforcement learning with a stochastic actor,” in Proceedings

of the 35th International Conference on Machine Learning, ICML 2018 (J. G. Dy

and A. Krause, eds.), pp. 1856–1865, PMLR, 2018.

[48] Y. Burda, H. Edwards, A. J. Storkey, and O. Klimov, “Exploration by random

network distillation,” Computing Research Repository, CoRR, 2018. [Preprint]

arxiv:1810.12894.

138

[49] M. Fortunato, M. G. Azar, B. Piot, J. Menick, I. Osband, A. Graves, V. Mnih,

R. Munos, D. Hassabis, O. Pietquin, C. Blundell, and S. Legg, “Noisy networks for

exploration,” Computing Research Repository, CoRR, vol. abs/1706.10295, 2019.

[Preprint] arxiv:1706.10295.

[50] S. Fujimoto, H. van Hoof, and D. Meger, “Addressing function approxima-

tion error in actor-critic methods,” Computing Research Repository, CoRR,

vol. abs/1802.09477, 2018. [Preprint] arxiv:1802.09477.

[51] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and

D. Wierstra, “Continuous control with deep reinforcement learning,” Computing

Research Repository, CoRR, 2015. [Preprint] arxiv:1509.02971.

[52] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” Computing

Research Repository, CoRR, vol. abs/1412.6980, 2014. [Preprint] arxiv:1412.6980.

[53] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” Computing Re-

search Repository, CoRR, 2014. [Preprint] arxiv:1312.6114.

[54] A. A. Alemi, B. Poole, I. Fischer, J. V. Dillon, R. A. Saurous, and K. Murphy,

“Fixing a broken elbo,” 2017. [Preprint] arxiv:1711.00464.

[55] S. R. Bowman, L. Vilnis, O. Vinyals, A. M. Dai, R. Jozefowicz, and S. Bengio,

“Generating sentences from a continuous space,” 2015. [Preprint] arxiv:1511.06349.

[56] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed,

and A. Lerchner, “beta-vae: Learning basic visual concepts with a constrained vari-

ational framework,” in International Conference on Learning Representations, 2017.

139

[57] A. Gretton, K. Borgwardt, M. Rasch, B. Schölkopf, and A. J. Smola, “A kernel

method for the two-sample-problem,” in Advances in Neural Information Processing

Systems 19 (B. Schölkopf, J. C. Platt, and T. Hoffman, eds.), pp. 513–520, MIT

Press, 2007.

[58] S. Zhao, J. Song, and S. Ermon, “Infovae: Information maximizing variational

autoencoders,” Computing Research Repository, CoRR, vol. abs/1706.02262, 2017.

[Preprint] arxiv:1706.02262.

[59] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double q-

learning,” Computing Research Repository CoRR, 2015. [Preprint] arxiv:1509.06461.

[60] Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot, and N. de Freitas, “Du-

eling network architectures for deep reinforcement learning,” Computing Research

Repository CoRR, 2015. [Preprint] arxiv:1511.06581.

[61] M. G. Bellemare, W. Dabney, and R. Munos, “A distributional perspective on rein-

forcement learning,” 2017. [Preprint] arxiv:1707.06887.

[62] D. Horgan, J. Quan, D. Budden, G. Barth-Maron, M. Hessel, H. van Hasselt, and

D. Silver, “Distributed prioritized experience replay,” Computing Research Reposi-

tory, CoRR, 2018. [Preprint] arxiv:1803.00933.

[63] M. Hessel, J. Modayil, H. van Hasselt, T. Schaul, G. Ostrovski, W. Dabney, D. Hor-

gan, B. Piot, M. G. Azar, and D. Silver, “Rainbow: Combining improvements in deep

reinforcement learning,” in Proceedings of the 32nd AAAI Conference on Artificial

Intelligence (AAAI-18) (S. A. McIlraith and K. Q. Weinberger, eds.), pp. 3215–3222,

AAAI Press, 2018.

140

[64] R. Munos, T. Stepleton, A. Harutyunyan, and M. G. Bellemare, “Safe and efficient

off-policy reinforcement learning,” 2016. [Preprint] arxiv:1606.02647.

[65] A. Harutyunyan, M. G. Bellemare, T. Stepleton, and R. Munos, “Q(λ) with off-

policy corrections,” 2016. [Preprint] arxiv:1602.04951.

[66] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience replay,”

2015. [Preprint] arxiv:1602.04951.

[67] D. Precup, R. S. Sutton, and S. P. Singh, “Eligibility traces for off-policy policy

evaluation,” in ICML, 2000.

[68] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel, “Trust region policy

optimization,” 2015. [Preprint] arxiv:1502.05477.

[69] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist

reinforcement learning,” Machine Learning, vol. 8, pp. 229–256, May 1992.

[70] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-dimensional

continuous control using generalized advantage estimation,” 2015. [Preprint]

arxiv:1506.02438.

[71] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller, “Deter-

ministic policy gradient algorithms,” in Proceedings of the 31st International Con-

ference on International Conference on Machine Learning - Volume 32, ICML’14,

p. I–387–I–395, JMLR.org, 2014.

[72] M. G. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and R. Munos,

“Unifying count-based exploration and intrinsic motivation,” 2016. [Preprint]

arxiv:1606.01868.

141

[73] G. Ostrovski, M. G. Bellemare, A. van den Oord, and R. Munos, “Count-based

exploration with neural density models,” 2017. [Preprint] arxiv:1703.01310.

[74] A. van den Oord, N. Kalchbrenner, and K. Kavukcuoglu, “Pixel recurrent neu-

ral networks,” Computing Research Repository CoRR, vol. abs/1601.06759, 2016.

[Preprint] arxiv:1601.06759.

[75] R. Houthooft, X. Chen, Y. Duan, J. Schulman, F. D. Turck, and P. Abbeel, “Vime:

Variational information maximizing exploration,” 2016. [Preprint] arxiv:1605.09674.

[76] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-driven exploration

by self-supervised prediction,” 2017. [Preprint] arxiv:1705.05363.

[77] A. S. Vezhnevets, S. Osindero, T. Schaul, N. Heess, M. Jaderberg, D. Silver, and

K. Kavukcuoglu, “Feudal networks for hierarchical reinforcement learning,” 2017.

[Preprint] arxiv:1703.01161.

[78] P. Dayan and G. E. Hinton, “Feudal reinforcement learning,” in Advances in Neural

Information Processing Systems 5 (S. J. Hanson, J. D. Cowan, and C. L. Giles, eds.),

pp. 271–278, Morgan-Kaufmann, 1993.

[79] J. Koutník, K. Greff, F. Gomez, and J. Schmidhuber, “A clockwork rnn,” 2014.

[Preprint] arxiv:1402.3511.

[80] A. Goyal, S. Sodhani, J. Binas, X. B. Peng, S. Levine, and Y. Bengio, “Reinforce-

ment learning with competitive ensembles of information-constrained primitives,” in

International Conference on Learning Representations, 2020.

[81] A. A. Alemi, I. Fischer, J. V. Dillon, and K. Murphy, “Deep variational information

bottleneck,” 2016. [Preprint] arxiv:1612.00410.

142

[82] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver,

and K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,” in

Proceedings of the 33nd International Conference on Machine Learning, ICML 2016,

New York City, NY, USA, June 19-24, 2016 (M. Balcan and K. Q. Weinberger, eds.),

vol. 48 of JMLR Workshop and Conference Proceedings, pp. 1928–1937, PMLR, 2016.

[83] P. Christodoulou, “Soft actor-critic for discrete action settings,” Computing Research

Repository CoRR, 2019. [Preprint] arxiv:1910.07207.

[84] A. A. Taiga, W. Fedus, M. C. Machado, A. Courville, and M. G. Bellemare, “On

bonus based exploration methods in the arcade learning environment,” in Interna-

tional Conference on Learning Representations, Paper 1510, 2020.

[85] A. W. Moore, “Efficient memory-based learning for robot control,” tech. rep., 209

(UCAM-CL-TR-209 ISSN 1476-2986), Computer Laboratory, Univ of Cambridge,

1990.1990.

[86] G. E. Uhlenbeck and L. S. Ornstein, “On the theory of the brownian motion,” Phys.

Rev., vol. 36, pp. 823–841, Sep 1930.

[87] T. G. Dietterich, “Hierarchical reinforcement learning with the MAXQ value func-

tion decomposition,” J. Artif. Intell. Res., vol. 13, pp. 227–303, 2000.

[88] R. Sutton, D. Precup, and S. Singh, “Between MDPs and semi-MDPs: A framework

for temporal abstraction in reinforcement learning,” Artificial Intelligence, vol. 112,

pp. 181–211, 1999.

[89] M.-P. B. Schrader, “gym-sokoban.” https://github.com/mpSchrader/

gym-sokoban, 2018.

https://github.com/mpSchrader/gym-sokoban
https://github.com/mpSchrader/gym-sokoban

143

[90] A. Guez, M. Mirza, K. Gregor, R. Kabra, S. Racaniere, T. Weber, A. S. David Ra-

poso, L. Orseau, T. Eccles, G. Wayne, D. Silver, T. Lillicrap, and V. Valdes,

“An investigation of model-free planning: boxoban levels.” https://github.com/

deepmind/boxoban-levels/, 2018.

[91] A. Guez, M. Mirza, K. Gregor, R. Kabra, S. Racanière, T. Weber, D. Raposo,

A. Santoro, L. Orseau, T. Eccles, G. Wayne, D. Silver, and T. Lillicrap, “An inves-

tigation of model-free planning,” 2019. [Preprint] arxiv:1901.03559.

[92] L. Orseau, L. H. S. Lelis, T. Lattimore, and T. Weber, “Single-agent policy tree

search with guarantees,” 2018. [Preprint] arxiv:1811.10928.

[93] S. Racanière, T. Weber, D. Reichert, L. Buesing, A. Guez, D. Jimenez Rezende,

A. Puigdomènech Badia, O. Vinyals, N. Heess, Y. Li, R. Pascanu, P. Battaglia,

D. Hassabis, D. Silver, and D. Wierstra, “Imagination-augmented agents for deep

reinforcement learning,” in Advances in Neural Information Processing Systems 30

(I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and

R. Garnett, eds.), pp. 5690–5701, Curran Associates, Inc., 2017.

[94] S. I. Pspace-complete, J. C. Culberson, and J. C. Culberson, “Sokoban is pspace-

complete,” 1997.

[95] A. Ilyas, L. Engstrom, S. Santurkar, D. Tsipras, F. Janoos, L. Rudolph, and

A. Madry, “Are deep policy gradient algorithms truly policy gradient algorithms?,”

Computing Research Repository CoRR, 2018. [Preprint] arxiv:1811.02553.

https://github.com/deepmind/boxoban-levels/
https://github.com/deepmind/boxoban-levels/

144

[96] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward

neural networks,” in Proceedings of the Thirteenth International Conference on Ar-

tificial Intelligence and Statistics (Y. W. Teh and M. Titterington, eds.), vol. 9 of

Proceedings of Machine Learning Research, (Chia Laguna Resort, Sardinia, Italy),

pp. 249–256, PMLR, 13–15 May 2010.

[97] D. Yarats, A. Zhang, I. Kostrikov, B. Amos, J. Pineau, and R. Fergus, “Improving

sample efficiency in model-free reinforcement learning from images,” 2019. [Preprint]

arxiv:1910.01741.

[98] S. Zhao, J. Song, and S. Ermon, “Infovae: Information maximizing variational

autoencoders,” Computing Research Repository, CoRR, vol. abs/1706.02262, 2017.

[Preprint] arxiv:1706.02262.

[99] M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo, D. Silver, and

K. Kavukcuoglu, “Reinforcement learning with unsupervised auxiliary tasks,” Com-

puting Research Repository CoRR, 2016. [Preprint] arxiv:1611.05397.

[100] A. Raffin, A. Hill, K. R. Traoré, T. Lesort, N. D. Rodríguez, and D. Filliat, “Decou-

pling feature extraction from policy learning: assessing benefits of state representa-

tion learning in goal based robotics,” Computing Research Repository, CoRR, 2019.

[Preprint] arxiv:1901.08651.

[101] E. Shelhamer, P. Mahmoudieh, M. Argus, and T. Darrell, “Loss is its own reward:

Self-supervision for reinforcement learning,” 2016. [Preprint] arxiv:1612.07307.

[102] I. Higgins, A. Pal, A. A. Rusu, L. Matthey, C. P. Burgess, A. Pritzel, M. Botvinick,

C. Blundell, and A. Lerchner, “Darla: Improving zero-shot transfer in reinforcement

145

learning,” 2017. [Preprint] arxiv:1707.08475.

[103] A. Srinivas, M. Laskin, and P. Abbeel, “Curl: Contrastive unsupervised representa-

tions for reinforcement learning,” 2020. [Preprint] arxiv:2004.04136.

[104] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” 2013. [Preprint]

arxiv:1312.6114.

[105] P. Ghosh, M. S. M. Sajjadi, A. Vergari, M. Black, and B. Schölkopf, “From varia-

tional to deterministic autoencoders,” 2019. [Preprint] arxiv:1903.12436.

[106] M. C. Machado, M. G. Bellemare, E. Talvitie, J. Veness, M. Hausknecht, and

M. Bowling, “Revisiting the arcade learning environment: Evaluation protocols and

open problems for general agents,” 2017. [Preprint] arxiv:1709.06009.

[107] A. Kanervisto, C. Scheller, and V. Hautamäki, “Action space shaping in deep rein-

forcement learning,” 2020. [Preprint] arxiv:2004.00980.

[108] A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore, P. Dhariwal,

C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schulman, S. Sidor,

and Y. Wu, “Stable baselines.” https://github.com/hill-a/stable-baselines,

2018.

[109] A. Raffin and F. Stulp, “Generalized state-dependent exploration for deep reinforce-

ment learning in robotics,” 2020. [Preprint] arxiv:2005.05719.

[110] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter, “Continual lifelong

learning with neural networks: A review,” Neural Networks, vol. 113, pp. 54 – 71,

2019.

https://github.com/hill-a/stable-baselines

146

[111] V. Ramanujan, M. Wortsman, A. Kembhavi, A. Farhadi, and M. Rastegari, “What’s

hidden in a randomly weighted neural network?,” 2019. [Preprint] arxiv:1911.13299.

[112] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse, train-

able neural networks,” Computing Research Repository CoRR, 2018. [Preprint]

arxiv:1803.03635.

[113] W. Dabney, M. Rowland, M. G. Bellemare, and R. Munos, “Distributional rein-

forcement learning with quantile regression,” 2017. [Preprint] arxiv:1710.10044.

[114] W. Dabney, G. Ostrovski, D. Silver, and R. Munos, “Implicit quantile networks for

distributional reinforcement learning,” 2018. [Preprint] arxiv:1806.06923.

[115] G. Barth-Maron, M. W. Hoffman, D. Budden, W. Dabney, D. Horgan, D. TB,

A. Muldal, N. Heess, and T. Lillicrap, “Distributional policy gradients,” in Interna-

tional Conference on Learning Representations, 2018.

[116] D. A. Pomerleau, “Efficient training of artificial neural networks for autonomous

navigation,” Neural Comput., vol. 3, p. 88–97, Mar. 1991.

[117] J. Ho and S. Ermon, “Generative adversarial imitation learning,” in Advances in

Neural Information Processing Systems 29: Annual Conference on Neural Informa-

tion Processing Systems 2016 (D. D. Lee, M. Sugiyama, U. von Luxburg, I. Guyon,

and R. Garnett, eds.), pp. 4565–4573, Curran Associates, Inc., 2016.

[118] T. Salimans and R. Chen, “Learning montezuma’s revenge from a single demonstra-

tion,” 2018. [Preprint] arxiv:1812.03381.

Appendix A

DQN and Friends

A.1 Dueling Architectures

The common approach to thinking about Q-functions is as estimators of state-action

pairs. An important alternative view is that the Q-function Q(s, a) learns the value

function V π(s) for state s, and the advantage function Aπ(s, a). This simple decomposition

allows us to create a neural network that learns both Aπ(s, a) and V π(s) by providing two

output streams or ’dueling networks’[60]. From there, we can retrieve Qπ(s, a) using:

Qπ(s, a) = Aπ(s, a) + V π(s) (97)

This change, in theory, allows the network to generalize the state value across all actions,

thus, it does not need to be learnt for every action. However, the semantics are not

preserved, in-fact, this change prevents us from retrieving either Aπ(s, a) or V π(s):

Âπ(s, a) = Aπ(s, a) + Z

V̂ π(s) = V π(s)− Z

=⇒ Qπ(s, a) = Aπ(s, a) + V π(s) = Âπ(s, a) + V̂ π(s)

147

148

Thus, the network can not estimate V π(s) and Aπ(s, a) directly.

Let us recall that V ∗(s) = maxaQ∗(s, a), thus, maxaA∗(s, a) = 0. For a greedy policy,

V π(s) = maxaQπ(s, a), and maxaAπ(s, a) = 0 thus, we can estimate both V π(s) and

Aπ(s, a) by learning the mapping:

Qπ(s, a) = V π(s) + (Aπ(s, a)−max
a′

Aπ(s, a′)) (98)

Another approach that, while does not preserve the original semantics of V π(s) and

Aπ(s, a), is more stable[60] and learns the mapping:

Qπ(s, a) = V π(s) + (A(s, a)− |A|−1∑
a′

Aπ(s, a′)) (99)

A.2 C51

Let us consider the Q-function:

Qπ(s, a) = Eπ [R|S = s,A = a] (100)

The Q function learns an expectation over the immediate reward, plus the discounted

returns after following policy π. Since we are learning an expectation, instead of learning

the mean, we can learn a distribution and retrieve back the mean. Indeed this is the idea

behind C51 [61].

Modelling distributions has the additional benefit of allowing us to estimate the vari-

ance between the estimated rewards of the actions. Thus, given two actions that have the

same mean, a risk averse agent would prefer the one with the lowest variance. In addi-

tion, variance could be a proxy for the amount of exploration performed with particular

state-action pairs, this however is not a guaranteed. Further on, estimating distributions

makes the process of optimization easier since the targets are bound within some range,

and thus, do not need to estimate values of different, or very large magnitudes [61].

149

Learning to learn a Q-function, we recursively apply it to gain the estimate for the

next step. Estimating distributions over scalar values raises the following issues:

• how do we represent the estimations?

• how do we adjust the estimations between two states?

C51 solves the first issue by estimating a Categorical distribution of 51 discrete values, and

solves the second issue by minimizing the cross entropy loss between the current estimate

and the future estimate [61].

Figure 18: a) The target distribution as estimated by the Q-Network with emerging
policy π. b) applying the discount factor results in shrinking the distribution towards 0.
c) Adding the the reward shifts the distribution. d) The distribution is projected onto the
target distribution. The target distribution is readjusted to fill in the correct number of
atoms [61]

To perform control, the Q-Network in C51 outputs |A| vectors of 51 values. We perform

Softmax onto each vector to compute the support pi the atom i and then estimate the

mean. In addition, each bin is given a value zi annealed from Vmin up to Vmax, where

Vmin, Vmax are the bounds of the distribution. In C51 Vmax = −Vmin = 10.

150

∆z = (Vmax − Vmin)/N (101)

zi = Vmin + i∆z (102)

pi(s, a) = eθi(s,a)∑N
j e

θj(s,a)) (103)

Where N is the number of atoms, and θi(s, a) is the output of the Q-Network for state

and action s, a and atom i. Therefore, to select the best action, we use p and z to find

the mean of the distribution as in the Q-value Estimation algorithm.

Algorithm 16 Q-value Estimation
Require: s ∈ S, a ∈ A

q = ∑N
i zipi(s, a)

return q

Recall that to train a Q-Network with DQN and friends, we treat it as a regression

problem. In C51, we treat it as a classification problem, where the result of the network for

state-action distribution can be thought of as the labels and the target labels are derived

from the target network.

In C51, we estimate the distribution of the next state, and discount the values by γ

and add the reward r. Then we readjust the target distribution in 51 bins. The step of

readjusting is necessary because we shift and squeeze the distribution, thus it is possible

that it ends up out of bounds. The readjustment process ensures that estimations over

the bounds are put into the final or first bin if the estimation is over or under the bin.

The error is reduced through CrossEntropyLoss [61].

151

Algorithm 17 C51 Optimization Step
Require: s ∈ S, a ∈ A, γ, s′ ∈ S

a′ ← arg maxa′ Q-Value-Estimation(s′, a′) . Compute the best action
bi = (γzi)pi(s′, a′) + r . Create Projection
m← adjust bins(b, 51)
return −

∑N
i mi log pi(s, a)

Appendix B

Policy Gradient methods

B.1 Variance of Advantage function

Consider the generalized policy gradient gradient estimate:

∇θJ(θ) = 1
|D|

∑
T∈D

T∑
t=0
∇θ log πθ(At|St)Ψt (104)

Ψt can be any of

• Gt:T

• ∑T
t′=t γ

t′−tRt′ − b(st′)1

• V π(s)

• Qπ(s, a)

• Aπ(s, a) = Qπ(s, a)− V π(s′)

• rt + γV π(s′)− V (s)
1Any substitute of b(st) is a valid baseline function

152

153

However, the common approach is to use the advantage function because it has the

lowest variance. This is very simple to evaluate:

Qπ(s, a) = r(s, a) + Es′
[
γV π(s′)

∣∣S = s,A = a]

V π(s) = Ea∼π
[
r(s, a) + Es′

[
γV π(s′)

∣∣S = s,A = a]
]

Aπ(s, a) = r(s, a)− Ea∼π [r(s, a)] = r(s, a)−
∑
a′∈A

r(s, a′)π(a′|s) (105)

Âπ(s, a) = −V (s) + rt + γEs′
[
V (s′)

]
(106)

Whereas the rest of the functions are either the returns, or estimates of the returns,

thus, the Advantage function and its estimate provide the lowest variance.

Appendix C

Source

C.1 Environment

C.1.1 ALE Emulator

from path l i b import Path

import c on t e x t l i b

import gym

import cv2

import numpy as np

from mlagents . envs . environment import UnityEnvironment

from s t ab l e_ba s e l i n e s 3 . common . type_a l i a s e s import (

GymStepReturn , GymObs

)

from typing import Dict

class AleEmulator :

" " "

Implements the necessary f u n c t i o n s f o r the OT

to be used with gym . wrappers . a tar i_preproces s ing

" " "

154

155

def __init__(s e l f , worker_id , path ,

rea l t ime , timeout_wait) :

s e l f . r e a l t ime = rea l t ime

s e l f . worker_id = worker_id − 1

while getattr (s e l f , " unity_env " , None) i s None :

s e l f . worker_id += 1

with c on t e x t l i b . suppres s (Exception) :

s e l f . unity_env = UnityEnvironment (

path ,

s e l f . worker_id ,

docker_tra in ing=False ,

timeout_wait=timeout_wait ,

)

s e l f . brain_name = s e l f . unity_env . external_brain_names [0]

s e l f . bra in = s e l f . unity_env . exte rna l_bra ins [

s e l f . brain_name

]

s e l f . i n f o = s e l f . unity_env . r e s e t (

train_mode=s e l f . t r a i n i n g

) [s e l f . brain_name]

def l i v e s (s e l f) :

return 1

def getScreenGraysca l e (s e l f , obs : np . ndarray) :

obs [:] = cv2 . cvtColor (

s e l f . v isual_obs , cv2 .COLOR_BGR2GRAY

)

def getScreenRGB2 (s e l f , obs : np . ndarray) :

obs [:] = s e l f . v i sua l_obs

def act (s e l f , a c t i on) :

s e l f . i n f o = s e l f . unity_env . s tep (

ac t i on) [s e l f . brain_name]

156

def r e s e t (s e l f , params) :

s e l f . i n f o = s e l f . unity_env . r e s e t (

c on f i g=params , train_mode=s e l f . t r a i n i n g

) [s e l f . brain_name]

@property

def r e a l t ime (s e l f) −> bool :

return s e l f . _realt ime

@realt ime . s e t t e r

def r e a l t ime (s e l f , r t) −> None :

s e l f . _realt ime = bool (r t)

@property

def t r a i n i n g (s e l f) −> bool :

return not s e l f . r e a l t ime

@tra in ing . s e t t e r

def t r a i n i n g (s e l f , t r) −> None :

s e l f . r e a l t ime = not t r

@property

def visual_obs (s e l f) −> GymObs :

return (

s e l f . i n f o . v i sua l_obse rva t i on s [0] [0] [: ,

: , :] ∗ 255 .0

) . astype (np . u int8)

@property

def vector_obs (s e l f) −> np . ndarray :

return s e l f . i n f o . vec tor_observat ions [0]

@property

def reward (s e l f) −> f loat :

return s e l f . i n f o . rewards [0]

157

@property

def done (s e l f) −> bool :

return s e l f . i n f o . local_done [0]

@property

def reset_parameters (s e l f) −> Dict [str , f loat] :

return s e l f . unity_env . reset_parameters

def c l o s e (s e l f) :

s e l f . unity_env . c l o s e ()

C.1.2 Communication

from path l i b import Path

import c on t e x t l i b

import gym

import cv2

import numpy as np

from mlagents . envs . environment import UnityEnvironment

from s t ab l e_ba s e l i n e s 3 . common . type_a l i a s e s import (

GymStepReturn , GymObs

)

from typing import Dict

class ObstacleTowerEnv (gym .Env) :

ALLOWED_VERSIONS = [" 3 .1 "]

def __init__(

s e l f , env_path=None ,

worker_id=0, timeout_wait=30,

r e a l t ime=False , c on f i g=None

) :

" " "

Arguments :

158

env_path : The f i l e path to the Unity e x e c u t a b l e .

Does not r e q u i r e the ex t ens ion .

docker_tra ining : Whether t h i s i s running wi th in

a docker environment and shou ld use a v i r t u a l

frame b u f f e r (x v f b) .

worker_id : The index o f the worker in the case where

m u l t i p l e environments are running . Each

environment r e s e r v e s por t (5005 + worker_id) f o r

communication with the Unity e x e c u t a b l e .

realtime_mode : Whether to render the

environment window image and run environment

in r e a l t i m e .

" " "

env_path = env_path or str (

Path (

" ~/ . ob s t a c l e / obs tac l e tower "

) . expanduser () . r e s o l v e ()

)

s e l f . a l e = AleEmulator (

worker_id , env_path , rea l t ime , timeout_wait)

s e l f . act ion_space = gym . spaces . Mul t iD i s c r e t e (

[3 , 3 , 2 , 3])

s e l f . observat ion_space = gym . spaces . Box(

0 , 255 , s e l f . a l e . v i sua l_obs . shape , dtype=np . u int8

)

Environment r e s e t parameters

s e l f . _seed = None

s e l f . _ f loor = None

s e l f . cu r r en t_ f l oo r = s e l f . a l e . vector_obs [7]

s e l f . c on f i g = con f i g or {}

s e l f . action_meanings = {0 : "NOOP" }

def r e s e t (s e l f , c on f i g=None) :

" " "

159

Resets the s t a t e o f the environment and re turns an

i n i t i a l o b s e r v a t i o n .

In the case o f mult i−agent environments , t h i s i s a l i s t .

Returns : o b s e r v a t i o n (o b j e c t / l i s t) : the i n i t i a l

o b s e r v a t i o n o f the space .

" " "

reset_params = {}

reset_params . update (getattr (s e l f , " c on f i g " , {}))

reset_params . update (c on f i g or {})

i f s e l f . f l o o r i s not None :

reset_params [" s t a r t i ng −f l o o r "] = s e l f . f l o o r

i f s e l f . seed i s not None :

reset_params [" tower−seed "] = s e l f . seed

s e l f . reset_params = s e l f . _env . reset_parameters

s e l f . a l e . r e s e t (reset_params)

return s e l f . a l e . v i sua l_obs

def s tep (s e l f , a c t i on) −> GymStepReturn :

" " "

Run one t imes tep o f the environment ’ s dynamics .

When end of ep i sode i s reached , you are r e s p o n s i b l e

f o r c a l l i n g ‘ r e s e t () ‘ to r e s e t t h i s environment ’ s s t a t e .

Accepts an ac t ion and re turns a t u p l e

(observa t ion , reward , done , i n f o) . In the case o f mult i−agent

environments , t h e s e are l i s t s .

Args :

ac t ion (o b j e c t / l i s t) : an ac t ion prov ided by the environment

Returns :

o b s e r v a t i o n (o b j e c t / l i s t) : agent ’ s o b s e r v a t i o n o f the current

environment

reward (f l o a t / l i s t) : amount o f reward returned a f t e r prev ious ac t ion

done (boolean / l i s t) : whether the ep i sode has ended .

i n f o (d i c t) : conta ins a u x i l i a r y d i a g n o s t i c information ,

160

" " "

ac t i on = l i s t (ac t i on)

s e l f . a l e . act (ac t i on)

obs = s e l f . a l e . v i sua l_obs

reward = s e l f . a l e . reward

done = s e l f . a l e . done

key = np . argmax (s e l f . a l e . vector_obs [0 : 6] , ax i s=0)

time = s e l f . a l e . vector_obs [6]

f l o o r = int (s e l f . a l e . vector_obs [7])

i n f o = dict (time=time , f l o o r=f l o o r , key=key)

done = done or s e l f . cu r r en t_ f l oo r < f l o o r

s e l f . cu r r en t_ f l oo r = f l o o r

return s e l f . a l e . visual_obs , s e l f . a l e . reward , s e l f . a l e . done , i n f o

def c l o s e (s e l f) :

" " " Override _close in your s u b c l a s s to perform any necessary c leanup .

Environments w i l l a u t o m a t i c a l l y c l o s e () themse lves when

garbage c o l l e c t e d or when the program e x i t s .

" " "

s e l f . a l e . c l o s e ()

def get_action_meanings (s e l f) :

return s e l f . action_meanings

def seed (s e l f , seed=None) :

" " " Se t s a f i x e d seed f o r t h i s env ’ s random number generator (s) .

The v a l i d range f o r seeds i s [0 , 99999). By d e f a u l t a random seed

w i l l be chosen .

" " "

a s s e r t 0 <= int (seed) < 99999

s e l f . _seed = int (seed)

@property

def f l o o r (s e l f) :

return s e l f . _ f loor

161

@floor . s e t t e r

def f l o o r (s e l f , f l o o r) :

a s s e r t 0 < f l o o r < 100

s e l f . _ f loor = f l o o r

s

@property

def reward_range (s e l f) :

return −f loat (" i n f ") , f loat (" i n f ")

gym . r e g i s t e r (

"OT−v0 " , entry_point=" ob s t a c l e . tower . env : ObstacleTowerEnv ")

gym . r e g i s t e r (

"OTRT−v0 " ,

entry_point=" ob s t a c l e . tower . env : ObstacleTowerEnv " ,

kwargs=dict (r e a l t ime=True) ,

)

C.1.3 Action Wrappers

import i t e r t o o l s

import f un c t o o l s

import operator

from typing import Union , Dict , Tuple , L i s t , I t e r a b l e

import gym

from gym . spaces import Discre te , Mu l t iD i s c r e t e

class ActionMapping (gym . ActionWrapper) :

def __init__(s e l f , env , action_space , mapping) :

super () . __init__(env)

s e l f . __action_mapping = mapping

s e l f . act ion_space = act ion_space

a s s e r t mapping i s not None

162

def ac t i on (s e l f , act) :

return s e l f . __action_mapping [act]

@classmethod

def Flat ten (c l s , env : gym .Env) −> "ActionMapping " :

act ion_space : Union [Di sc re te ,

Mu l t iD i s c r e t e] = env . act ion_space

mapping : Dict [int , Union [int , Tuple [int , . . .]]] = {}

i f isinstance (action_space , D i s c r e t e) :

mapping . update (

{ i : i for i in range (act ion_space . n)})

else :

act ion_ranges = i t e r t o o l s . product (

∗map(range , act ion_space . nvec))

mapping . update (

{ i : tuple (ac t i on)

for i , a c t i on in enumerate(act ion_ranges)}

)

act ion_space = Di s c r e t e (

f un c t o o l s . reduce (

operator . mul , act ion_space . nvec)

)

return c l s (env , action_space , mapping)

@classmethod

def Combiner (

c l s , env : gym .Env , target_dim : int , o ther : int , ∗ othe r s : int

) −> "ActionMapping " :

dims = env . act ion_space . nvec

o the r s = (other , ∗ othe r s)

a s s e r t target_dim not in othe r s

a s s e r t a l l (dims [target_dim] == dims [other]

for other in othe r s)

mapping : Dict [Tuple [int , . . .] , Tuple [int , . . .]] = {}

act ion_ranges = i t e r t o o l s . product (

163

∗map(range , env . act ion_space . nvec))

for ac t i on in act ion_ranges :

newaction : L i s t [int] = []

for index , va l in enumerate(ac t i on) :

i f index in othe r s :

newaction . append (ac t i on [target_dim])

else :

newaction . append (va l)

a c t i on = tuple (

[a c t i on [i]

for i in range (len (ac t i on)) i f i not in othe r s]

)

mapping [ac t i on] = tuple (newaction)

act ion_space = gym . spaces . Mu l t iD i s c r e t e (

[dim for i , dim in enumerate(

dims) i f i not in othe r s]

)

return c l s (env , action_space , mapping)

@classmethod

def Remover (c l s , env : gym .Env , index : int ,

va lue : int) −> "ActionMapping " :

mapping : Dict [Tuple [int , . . .] , Tuple [int , . . .]] = {}

act ion_space = env . act ion_space

a s s e r t act ion_space . nvec [index] >= 2

a s s e r t act ion_space . nvec [index] > value

act ion_ranges : I t e r a b l e [Tuple [int , . . .]] = i t e r t o o l s . product (

∗map(range , act ion_space . nvec)

)

e l s = range (act ion_space . nvec [index])

a c t i on s : L i s t [int] = [

i for i in range (act ion_space . nvec [index]) i f i != value

]

action_mapping = {

o ldva lue : newvalue for newvalue , o ldva lue in enumerate(a c t i on s)

164

}

for ac t i on in act ion_ranges :

i f ac t i on [index] == value :

continue

newaction = (

∗ ac t i on [: index] ,

action_mapping [a c t i on [index]] ,

∗ ac t i on [index + 1 :] ,

)

mapping [newaction] = ac t i on

nvec = l i s t (act ion_space . nvec)

nvec [index] −= 1

act ion_space = Mul t iD i s c r e t e (nvec)

return c l s (env , action_space , mapping)

@classmethod

def Compose (c l s , env , ∗wrappers) :

mapping : Dict [Union [Tuple [int , . . .] , int] ,

Tuple [int , . . .]] = {}

act ion_space = wrappers [0] . act ion_space

def go_through (ac t i on) :

for f in wrappers :

a c t i on = f . a c t i on (ac t i on)

return ac t i on

a c t i on s : I t e r a b l e [Union [Tuple [int , . . .] , int]]

i f isinstance (action_space , D i s c r e t e) :

a c t i on s = range (act ion_space . n)

e l i f isinstance (action_space , Mul t iD i s c r e t e) :

act ion_ranges : I t e r a b l e [Tuple [int , . . .]] = i t e r t o o l s . product (

∗map(range , act ion_space . nvec)

)

else :

165

raise TypeError (act ion_space)

for ac t i on in a c t i on s :

mapping [ac t i on] = go_through (ac t i on)

return c l s (env , action_space , mapping)

C.2 PPO

C.2.1 Policies

from typing import Optional , L i s t , Tuple , Ca l lab l e , Union , Dict , Type , Any

from f un c t o o l s import p a r t i a l

import gym

import torch as th

import torch . nn as nn

import numpy as np

from hierarch ica l_methods . modules import NatureAE , NatureMMD

from s t ab l e_ba s e l i n e s 3 . common . p o l i c i e s import (

BasePol icy ,

r e g i s t e r_po l i c y ,

MlpExtractor ,

c reate_sde_features_extractor ,

NatureCNN ,

BaseFeaturesExtractor ,

F lat tenExtractor ,

create_mlp ,

)

from s t ab l e_ba s e l i n e s 3 . common . d i s t r i b u t i o n s import (

make_proba_distribution ,

D i s t r i bu t i on ,

DiagGauss ianDistr ibut ion ,

Ca t ego r i c a lD i s t r i bu t i on ,

Mu l t iCa t ego r i c a lD i s t r i bu t i on ,

Be rnou l l iD i s t r i bu t i on ,

166

StateDependentNoiseDistr ibut ion ,

)

from s t ab l e_ba s e l i n e s 3 . common . p r ep ro c e s s i ng import preprocess_obs

from s t ab l e_ba s e l i n e s 3 . ppo . p o l i c i e s import PPOPolicy

class RndPolicy (PPOPolicy) :

" " "

RndPolicy c l a s s (with both ac tor and c r i t i c) f o r A2C and d e r i v a t e s (PPO) .

: param observat ion_space : (gym . spaces . Space) Observat ion space

: param action_space : (gym . spaces . Space) Action space

: param lr_schedu le : (C a l l a b l e) Learning ra t e schedu l e (cou ld be constant)

: param net_arch : ([i n t or d i c t]) The s p e c i f i c a t i o n o f the p o l i c y and va lue networks .

: param dev i ce : (s t r or th . dev i ce) Device on which the code shou ld run .

: param ac t i va t i on_fn : (Type [nn . Module]) Ac t i va t ion func t i on

: param or tho_in i t : (boo l) Whether to use or not or thogona l i n i t i a l i z a t i o n

: param use_sde : (boo l) Whether to use S ta te Dependent Exp lora t ion or not

: param log_s td_in i t : (f l o a t) I n i t i a l va lue f o r the l o g standard d e v i a t i o n

: param f u l l _ s t d : (boo l) Whether to use (n_features x n_actions) parameters

f o r the s t d i n s t e a d o f only (n_features ,) when using gSDE

: param sde_net_arch : ([i n t]) Network a r c h i t e c t u r e f o r e x t r a c t i n g f e a t u r e s

when using gSDE. I f None , the l a t e n t f e a t u r e s from the p o l i c y w i l l be used .

Pass an empty l i s t to use the s t a t e s as f e a t u r e s .

: param use_expln : (boo l) Use ‘ ‘ exp ln () ‘ ‘ f unc t i on i n s t e a d o f ‘ ‘ exp () ‘ ‘ to ensure

a p o s i t i v e standard d e v i a t i o n (c f paper) . I t a l l o w s to keep var iance

above zero and prevent i t from growing too f a s t . In prac t i ce , ‘ ‘ exp () ‘ ‘ i s u s u a l l y enough .

: param squash_output : (boo l) Whether to squash the output us ing a tanh funct ion ,

t h i s a l l o w s to ensure boundaries when using gSDE.

: param f e a t u r e s _ e x t r a c t o r _ c l a s s : (Type [BaseFeaturesExtractor]) Features e x t r a c t o r to use .

: param features_extractor_kwargs : (Optional [Dict [s t r , Any]]) Keyword arguments

to pass to the f e a t u r e e x t r a c t o r .

: param normalize_images : (boo l) Whether to normal ize images or not ,

d i v i d i n g by 255.0 (True by d e f a u l t)

: param opt imizer_c las s : (Type [th . optim . Optimizer]) The op t imizer to use ,

‘ ‘ th . optim .Adam‘ ‘ by d e f a u l t

167

: param optimizer_kwargs : (Optional [Dict [s t r , Any]]) Add i t iona l keyword arguments ,

e x c l u d i n g the l e a r n i n g rate , to pass to the op t imizer

" " "

def __init__(

s e l f ,

observat ion_space : gym . spaces . Space ,

act ion_space : gym . spaces . Space ,

l r_schedu le : Ca l lab l e ,

net_arch : Optional [L i s t [Union [int , Dict [str , L i s t [int]]]]] = None ,

dev i c e : Union [th . device , str] = " auto " ,

a c t iva t i on_fn : Type [nn . Module] = nn . Tanh ,

o r tho_in i t : bool = True ,

use_sde : bool = False ,

log_std_in i t : f loat = 0 .0 ,

f u l l_ s td : bool = True ,

sde_net_arch : Optional [L i s t [int]] = None ,

use_expln : bool = False ,

squash_output : bool = False ,

f e a tu r e s_ex t r a c t o r_c l a s s : Type [BaseFeaturesExtractor] = FlattenExtractor ,

f eatures_extractor_kwargs : Optional [Dict [str , Any]] = None ,

rnd_rand_arch : Optional [L i s t [int]] = None ,

rnd_d i s t i l l_arch : Optional [L i s t [int]] = None ,

rnd_latent_dim : Optional [int] = None ,

normalize_images : bool = True ,

op t im i ze r_c la s s : Type [th . optim . Optimizer] = th . optim .Adam,

optimizer_kwargs : Optional [Dict [str , Any]] = None ,

) :

s e l f . rnd_latent_dim = rnd_latent_dim or 64

s e l f . rnd_rand_arch = rnd_rand_arch or [6 4 , 64]

s e l f . rnd_d i s t i l l_arch = rnd_d i s t i l l_arch or [6 4 , 64]

super (RndPolicy , s e l f) . __init__(

observat ion_space=observat ion_space ,

act ion_space=action_space ,

l r_schedu le=lr_schedule ,

168

net_arch=net_arch ,

dev i c e=device ,

a c t iva t i on_fn=act ivat ion_fn ,

o r tho_in i t=ortho_in i t ,

use_sde=use_sde ,

log_std_in i t=log_std_init ,

f u l l_ s td=fu l l_s td ,

sde_net_arch=sde_net_arch ,

use_expln=use_expln ,

squash_output=squash_output ,

f e a tu r e s_ex t r a c t o r_c l a s s=fea tu r e s_ext rac to r_c l a s s ,

f eatures_extractor_kwargs=features_extractor_kwargs ,

normalize_images=normalize_images ,

op t im i ze r_c la s s=opt imize r_c las s ,

optimizer_kwargs=optimizer_kwargs ,

)

def _get_data (s e l f) −> Dict [str , Any] :

data = super () . _get_data ()

data . update (

dict (

net_arch=s e l f . net_arch ,

ac t iva t i on_fn=s e l f . act ivat ion_fn ,

use_sde=s e l f . use_sde ,

log_std_in i t=s e l f . log_std_init ,

squash_output=(

s e l f . dist_kwargs [" squash_output "] i f s e l f . dist_kwargs else None

) ,

f u l l_ s td=(

s e l f . dist_kwargs [" f u l l_ s td "] i f s e l f . dist_kwargs else None) ,

sde_net_arch=(

s e l f . dist_kwargs [" sde_net_arch "] i f s e l f . dist_kwargs else None

) ,

use_expln=s e l f . dist_kwargs [" use_expln "] i f s e l f . dist_kwargs else None ,

dummy l r schedule , not needed f o r l oad ing

169

p o l i c y a lone

l r_schedu le=s e l f . _dummy_schedule ,

o r tho_in i t=s e l f . ortho_in i t ,

op t im i ze r_c la s s=s e l f . opt imize r_c las s ,

optimizer_kwargs=s e l f . optimizer_kwargs ,

f e a tu r e s_ex t r a c t o r_c l a s s=s e l f . f e a tu r e s_ext rac to r_c l a s s ,

f eatures_extractor_kwargs=s e l f . f eatures_extractor_kwargs ,

rnd_features_extractor_c las s=s e l f . rnd_features_extractor_c lass ,

rnd_features_extractor_kwargs=s e l f . rnd_features_extractor_kwargs ,

)

)

return data

def _build (s e l f , l r_schedu le : Ca l l ab l e) −> None :

" " "

Create the networks and the op t imizer .

: param lr_schedu le : (C a l l a b l e) Learning ra t e schedu l e

l r_schedu le (1) i s the i n i t i a l l e a r n i n g ra te

" " "

s e l f . mlp_extractor = MlpExtractor (

s e l f . features_dim ,

net_arch=s e l f . net_arch ,

ac t iva t i on_fn=s e l f . act ivat ion_fn ,

dev i c e=s e l f . device ,

)

s e l f . rnd_net = nn . Sequent i a l (

∗ create_mlp (

s e l f . features_dim ,

s e l f . rnd_latent_dim ,

net_arch=s e l f . rnd_rand_arch ,

ac t iva t i on_fn=s e l f . act ivat ion_fn ,

)

)

s e l f . rnd_net . requires_grad_ (Fal se)

170

s e l f . r nd_d i s t i l l_ne t = nn . Sequent i a l (

∗ create_mlp (

s e l f . features_dim ,

s e l f . rnd_latent_dim ,

net_arch=s e l f . rnd_di s t i l l_arch ,

ac t iva t i on_fn=s e l f . act ivat ion_fn ,

)

)

latent_dim_pi = s e l f . mlp_extractor . latent_dim_pi

Separate f e a t u r e e x t r a c t o r f o r gSDE

i f s e l f . sde_net_arch i s not None :

s e l f . sde_features_extractor , latent_sde_dim = create_sde_features_extractor (

s e l f . features_dim , s e l f . sde_net_arch , s e l f . a c t iva t i on_fn

)

i f isinstance (s e l f . act ion_dis t ,

DiagGauss ianDis t r ibut ion) :

s e l f . action_net , s e l f . log_std = s e l f . a c t i on_d i s t . proba_distr ibut ion_net (

latent_dim=latent_dim_pi , log_std_in i t=s e l f . l og_std_in i t

)

e l i f isinstance (s e l f . act ion_dis t , StateDependentNoi seDis t r ibut ion) :

latent_sde_dim = (

latent_dim_pi i f s e l f . sde_net_arch i s None else latent_sde_dim

)

s e l f . action_net , s e l f . log_std = s e l f . a c t i on_d i s t . proba_distr ibut ion_net (

latent_dim=latent_dim_pi ,

latent_sde_dim=latent_sde_dim ,

log_std_in i t=s e l f . log_std_init ,

)

e l i f isinstance (s e l f . act ion_dis t , Ca t e g o r i c a lD i s t r i bu t i on) :

s e l f . act ion_net = s e l f . a c t i on_d i s t . proba_distr ibut ion_net (

latent_dim=latent_dim_pi

)

171

e l i f isinstance (s e l f . act ion_dis t , Mu l t iCa t ego r i c a lD i s t r i bu t i on) :

s e l f . act ion_net = s e l f . a c t i on_d i s t . proba_distr ibut ion_net (

latent_dim=latent_dim_pi

)

e l i f isinstance (s e l f . act ion_dis t , B e r n ou l l iD i s t r i bu t i o n) :

s e l f . act ion_net = s e l f . a c t i on_d i s t . proba_distr ibut ion_net (

latent_dim=latent_dim_pi

)

s e l f . value_net = nn . Linear (

s e l f . mlp_extractor . latent_dim_vf , 1)

I n i t we igh t s : use or thogona l i n i t i a l i z a t i o n

with smal l i n i t i a l we ight f o r the output

i f s e l f . o r tho_in i t :

TODO: check f o r f e a t u r e s _ e x t r a c t o r

i n i t s = {

s e l f . f e a tu r e s_ex t r a c t o r : np . s q r t (2) ,

s e l f . mlp_extractor : np . s q r t (2) ,

s e l f . act ion_net : 1 ,

s e l f . value_net : 0 . 01 ,

s e l f . rnd_net : np . s q r t (2) ,

s e l f . r nd_d i s t i l l_ne t : np . s q r t (2) ,

}

for module , ga in in i n i t s . i tems () :

module . apply (

lambda module : s e l f . i n i t_we ight s (module , ga in))

Setup op t imizer with i n i t i a l l e a r n i n g ra te

s e l f . opt imize r = s e l f . op t im i ze r_c la s s (

s e l f . parameters () , l r=l r_schedu le (1) , ∗∗ s e l f . optimizer_kwargs

)

def forward (

s e l f , obs : th . Tensor , d e t e rm i n i s t i c : bool = False

) −> Tuple [th . Tensor , th . Tensor , th . Tensor , th . Tensor] :

" " "

172

Forward pass in a l l the networks (ac tor and c r i t i c)

: param obs : (th . Tensor) Observat ion

: param d e t e r m i n i s t i c : (boo l) Whether to sample or use d e t e r m i n i s t i c a c t i o n s

: re turn : (Tuple [th . Tensor , th . Tensor , th . Tensor , th . Tensor])

act ion , value , l o g p r o b a b i l i t y o f the ac t ion and d i s t i l l a t i o n error

" " "

latent_pi , latent_vf , latent_sde , latent_rnd , l a t e n t_ d i s t i l l = s e l f . _get_latent (

obs

)

Evaluate the v a l u e s f o r the g iven o b s e r v a t i o n s

va lue s = s e l f . value_net (la tent_vf)

d i s t r i b u t i o n = s e l f . _get_action_dist_from_latent (

latent_pi , latent_sde=latent_sde

)

a c t i on s = d i s t r i b u t i o n . get_act ions (

d e t e rm i n i s t i c=d e t e rm i n i s t i c)

log_prob = d i s t r i b u t i o n . log_prob (a c t i on s)

rnd_di f f = ((latent_rnd − l a t e n t_ d i s t i l l)

∗∗ 2) .mean(dim=1)

return act ions , values , log_prob , rnd_di f f

def _get_latent (

s e l f , obs : th . Tensor

) −> Tuple [th . Tensor , th . Tensor , th . Tensor , th . Tensor , th . Tensor] :

" " "

Get the l a t e n t code (i . e . , a c t i v a t i o n s o f the l a s t l a y e r o f each network)

f o r the d i f f e r e n t networks .

: param obs : (th . Tensor) Observat ion

: re turn : (Tuple [th . Tensor , th . Tensor , th . Tensor]) Latent codes

f o r the actor , the va lue func t i on and f o r gSDE func t ion

" " "

Preprocess the o b s e r v a t i o n i f needed

f e a t u r e s = s e l f . e x t r a c t_ f ea tu r e s (obs)

latent_pi , l a tent_vf = s e l f . mlp_extractor (f e a t u r e s)

173

Features f o r sde

l a tent_sde = latent_pi

i f s e l f . sde_feature s_extrac tor i s not None :

latent_sde = s e l f . sde_feature s_ext ractor (

f e a t u r e s)

latent_rnd = s e l f . rnd_net . forward (f e a t u r e s)

l a t e n t_ d i s t i l l = s e l f . rnd_d i s t i l l_ne t (f e a t u r e s)

return latent_pi , latent_vf , latent_sde , latent_rnd , l a t e n t_ d i s t i l l

def _predict (

s e l f , obse rvat i on : th . Tensor , d e t e rm i n i s t i c : bool = False

) −> th . Tensor :

" " "

Get the ac t ion according to the p o l i c y f o r a g iven o b s e r v a t i o n .

: param o b s e r v a t i o n : (th . Tensor)

: param d e t e r m i n i s t i c : (boo l) Whether to use s t o c h a s t i c or d e t e r m i n i s t i c a c t i o n s

: re turn : (th . Tensor) Taken ac t ion according to the p o l i c y

" " "

latent_pi , _, latent_sde , ∗ \

_ = s e l f . _get_latent (obse rvat i on)

d i s t r i b u t i o n = s e l f . _get_action_dist_from_latent (

latent_pi , latent_sde)

return d i s t r i b u t i o n . get_act ions (

d e t e rm i n i s t i c=d e t e rm i n i s t i c)

def eva luate_act ions (

s e l f , obs : th . Tensor , a c t i on s : th . Tensor

) −> Tuple [th . Tensor , th . Tensor , th . Tensor , th . Tensor] :

" " "

Evaluate a c t i o n s according to the current po l i cy ,

g iven the o b s e r v a t i o n s .

: param obs : (th . Tensor)

174

: param a c t i o n s : (th . Tensor)

: re turn : (th . Tensor , th . Tensor , th . Tensor) es t imated value , l o g l i k e l i h o o d o f t a k i n g those act ions ,

entropy o f the ac t ion d i s t r i b u t i o n , and the rnd error

" " "

latent_pi , latent_vf , latent_sde , latent_rnd , l a t e n t_ d i s t i l l = s e l f . _get_latent (

obs

)

d i s t r i b u t i o n = s e l f . _get_action_dist_from_latent (

latent_pi , latent_sde)

log_prob = d i s t r i b u t i o n . log_prob (a c t i on s)

va lue s = s e l f . value_net (la tent_vf)

rnd_di f f = (latent_rnd − l a t e n t_ d i s t i l l) ∗∗ 2

return values , log_prob , d i s t r i b u t i o n . entropy () , rnd_di f f

class CnnRndPolicy (RndPolicy) :

" " "

CnnPolicy c l a s s (with both ac tor and c r i t i c) f o r A2C and d e r i v a t e s (PPO) .

: param observat ion_space : (gym . spaces . Space) Observat ion space

: param action_space : (gym . spaces . Space) Action space

: param lr_schedu le : (C a l l a b l e) Learning ra t e schedu l e (cou ld be constant)

: param net_arch : ([i n t or d i c t]) The s p e c i f i c a t i o n o f the p o l i c y and va lue networks .

: param dev i ce : (s t r or th . dev i ce) Device on which the code shou ld run .

: param ac t i va t i on_fn : (Type [nn . Module]) Ac t i va t ion func t i on

: param or tho_in i t : (boo l) Whether to use or not or thogona l i n i t i a l i z a t i o n

: param use_sde : (boo l) Whether to use S ta te Dependent Exp lora t ion or not

: param log_s td_in i t : (f l o a t) I n i t i a l va lue f o r the l o g standard d e v i a t i o n

: param f u l l _ s t d : (boo l) Whether to use (n_features x n_actions) parameters

f o r the s t d i n s t e a d o f only (n_features ,) when using gSDE

: param sde_net_arch : ([i n t]) Network a r c h i t e c t u r e f o r e x t r a c t i n g f e a t u r e s

when using gSDE. I f None , the l a t e n t f e a t u r e s from the p o l i c y w i l l be used .

Pass an empty l i s t to use the s t a t e s as f e a t u r e s .

: param use_expln : (boo l) Use ‘ ‘ exp ln () ‘ ‘ f unc t i on i n s t e a d o f ‘ ‘ exp () ‘ ‘ to ensure

a p o s i t i v e standard d e v i a t i o n (c f paper) . I t a l l o w s to keep var iance

above zero and prevent i t from growing too f a s t . In prac t i ce , ‘ ‘ exp () ‘ ‘ i s u s u a l l y enough .

175

: param squash_output : (boo l) Whether to squash the output us ing a tanh funct ion ,

t h i s a l l o w s to ensure boundaries when using gSDE.

: param f e a t u r e s _ e x t r a c t o r _ c l a s s : (Type [BaseFeaturesExtractor]) Features e x t r a c t o r to use .

: param features_extractor_kwargs : (Optional [Dict [s t r , Any]]) Keyword arguments

to pass to the f e a t u r e e x t r a c t o r .

: param normalize_images : (boo l) Whether to normal ize images or not ,

d i v i d i n g by 255.0 (True by d e f a u l t)

: param opt imizer_c las s : (Type [th . optim . Optimizer]) The op t imizer to use ,

‘ ‘ th . optim .Adam‘ ‘ by d e f a u l t

: param optimizer_kwargs : (Optional [Dict [s t r , Any]]) Add i t iona l keyword arguments ,

e x c l u d i n g the l e a r n i n g rate , to pass to the op t imizer

" " "

def __init__(

s e l f ,

observat ion_space : gym . spaces . Space ,

act ion_space : gym . spaces . Space ,

l r_schedu le : Ca l lab l e ,

net_arch : Optional [L i s t [Union [int , Dict [str , L i s t [int]]]]] = None ,

dev i c e : Union [th . device , str] = " auto " ,

a c t iva t i on_fn : Type [nn . Module] = nn . Tanh ,

o r tho_in i t : bool = True ,

use_sde : bool = False ,

log_std_in i t : f loat = 0 .0 ,

f u l l_ s td : bool = True ,

sde_net_arch : Optional [L i s t [int]] = None ,

use_expln : bool = False ,

squash_output : bool = False ,

f e a tu r e s_ex t r a c t o r_c l a s s : Type [BaseFeaturesExtractor] = NatureCNN ,

features_extractor_kwargs : Optional [Dict [str , Any]] = None ,

rnd_rand_arch : Optional [L i s t [int]] = None ,

rnd_d i s t i l l_arch : Optional [L i s t [int]] = None ,

rnd_latent_dim : Optional [int] = None ,

normalize_images : bool = True ,

op t im i ze r_c la s s : Type [th . optim . Optimizer] = th . optim .Adam,

optimizer_kwargs : Optional [Dict [str , Any]] = None ,

176

) :

super (CnnRndPolicy , s e l f) . __init__(

observat ion_space ,

action_space ,

l r_schedule ,

net_arch ,

device ,

act ivat ion_fn ,

ortho_in i t ,

use_sde ,

log_std_init ,

fu l l_s td ,

sde_net_arch ,

use_expln ,

squash_output ,

f e a tu r e s_ext rac to r_c l a s s ,

features_extractor_kwargs ,

rnd_rand_arch ,

rnd_di s t i l l_arch ,

rnd_latent_dim ,

normalize_images ,

opt imize r_c las s ,

optimizer_kwargs ,

)

class AERndPolicy (CnnRndPolicy) :

" " "

MMDVae Po l i cy c l a s s (with both ac tor and c r i t i c) f o r A2C and d e r i v a t e s (PPO) .

: param observat ion_space : (gym . spaces . Space) Observat ion space

: param action_space : (gym . spaces . Space) Action space

: param lr_schedu le : (C a l l a b l e) Learning ra t e schedu l e (cou ld be constant)

: param net_arch : ([i n t or d i c t]) The s p e c i f i c a t i o n o f the p o l i c y and va lue networks .

: param dev i ce : (s t r or th . dev i ce) Device on which the code shou ld run .

: param ac t i va t i on_fn : (Type [nn . Module]) Ac t i va t ion func t i on

177

: param or tho_in i t : (boo l) Whether to use or not or thogona l i n i t i a l i z a t i o n

: param use_sde : (boo l) Whether to use S ta te Dependent Exp lora t ion or not

: param log_s td_in i t : (f l o a t) I n i t i a l va lue f o r the l o g standard d e v i a t i o n

: param f u l l _ s t d : (boo l) Whether to use (n_features x n_actions) parameters

f o r the s t d i n s t e a d o f only (n_features ,) when using gSDE

: param sde_net_arch : ([i n t]) Network a r c h i t e c t u r e f o r e x t r a c t i n g f e a t u r e s

when using gSDE. I f None , the l a t e n t f e a t u r e s from the p o l i c y w i l l be used .

Pass an empty l i s t to use the s t a t e s as f e a t u r e s .

: param use_expln : (boo l) Use ‘ ‘ exp ln () ‘ ‘ f unc t i on i n s t e a d o f ‘ ‘ exp () ‘ ‘ to ensure

a p o s i t i v e standard d e v i a t i o n (c f paper) . I t a l l o w s to keep var iance

above zero and prevent i t from growing too f a s t . In prac t i ce , ‘ ‘ exp () ‘ ‘ i s u s u a l l y enough .

: param squash_output : (boo l) Whether to squash the output us ing a tanh funct ion ,

t h i s a l l o w s to ensure boundaries when using gSDE.

: param f e a t u r e s _ e x t r a c t o r _ c l a s s : (Type [BaseFeaturesExtractor]) Features e x t r a c t o r to use .

: param features_extractor_kwargs : (Optional [Dict [s t r , Any]]) Keyword arguments

to pass to the f e a t u r e e x t r a c t o r .

: param normalize_images : (boo l) Whether to normal ize images or not ,

d i v i d i n g by 255.0 (True by d e f a u l t)

: param opt imizer_c las s : (Type [th . optim . Optimizer]) The op t imizer to use ,

‘ ‘ th . optim .Adam‘ ‘ by d e f a u l t

: param optimizer_kwargs : (Optional [Dict [s t r , Any]]) Add i t iona l keyword arguments ,

e x c l u d i n g the l e a r n i n g rate , to pass to the op t imizer

" " "

def __init__(

s e l f ,

observat ion_space : gym . spaces . Space ,

act ion_space : gym . spaces . Space ,

l r_schedu le : Ca l lab l e ,

net_arch : Optional [L i s t [Union [int , Dict [str , L i s t [int]]]]] = None ,

dev i c e : Union [th . device , str] = " auto " ,

a c t iva t i on_fn : Type [nn . Module] = nn . Tanh ,

o r tho_in i t : bool = True ,

use_sde : bool = False ,

log_std_in i t : f loat = 0 .0 ,

f u l l_ s td : bool = True ,

178

sde_net_arch : Optional [L i s t [int]] = None ,

use_expln : bool = False ,

squash_output : bool = False ,

f e a tu r e s_ex t r a c t o r_c l a s s : Type [NatureAE] = NatureMMD,

features_extractor_kwargs : Optional [Dict [str , Any]] = None ,

rnd_rand_arch : Optional [L i s t [int]] = None ,

rnd_d i s t i l l_arch : Optional [L i s t [int]] = None ,

rnd_latent_dim : Optional [int] = None ,

normalize_images : bool = True ,

op t im i ze r_c la s s : Type [th . optim . Optimizer] = th . optim .Adam,

optimizer_kwargs : Optional [Dict [str , Any]] = None ,

) :

super (AERndPolicy , s e l f) . __init__(

observat ion_space ,

action_space ,

l r_schedule ,

net_arch ,

device ,

act ivat ion_fn ,

ortho_in i t ,

use_sde ,

log_std_init ,

fu l l_s td ,

sde_net_arch ,

use_expln ,

squash_output ,

f e a tu r e s_ext rac to r_c l a s s ,

features_extractor_kwargs ,

rnd_rand_arch ,

rnd_di s t i l l_arch ,

rnd_latent_dim ,

normalize_images ,

opt imize r_c las s ,

optimizer_kwargs ,

)

s e l f . f e a tu r e s_ex t r a c t o r : NatureAE = s e l f . f e a tu r e s_ex t r a c t o r

179

def ex t r a c t_ f ea tu r e s (s e l f , obs : th . Tensor) −> th . Tensor :

" " "

Preprocess the o b s e r v a t i o n i f needed and e x t r a c t f e a t u r e s .

: param obs : (th . Tensor)

: re turn : (th . Tensor)

" " "

a s s e r t s e l f . f e a tu r e s_ex t r a c t o r i s not None , "No␣ f e a tu r e ␣ ex t r a c t o r ␣was␣ s e t "

preprocessed_obs = preprocess_obs (

obs , s e l f . observat ion_space , normalize_images=s e l f . normalize_images

)

return s e l f . f e a tu r e s_ex t r a c t o r . encode (

preprocessed_obs)

def _get_latent (

s e l f , obs : th . Tensor

) −> Tuple [th . Tensor , th . Tensor , th . Tensor , th . Tensor , th . Tensor , th . Tensor] :

" " "

Get the l a t e n t code (i . e . , a c t i v a t i o n s o f the l a s t l a y e r o f each network)

f o r the d i f f e r e n t networks .

: param obs : (th . Tensor) Observat ion

: re turn : (Tuple [th . Tensor , th . Tensor , th . Tensor , th . Tensor , th . Tensor]) Latent codes

f o r the actor , the va lue funct ion , f o r gSDE funct ion , and the decoded o b s e r v a t i o n

" " "

Preprocess the o b s e r v a t i o n i f needed

f e a t u r e s = s e l f . e x t r a c t_ f ea tu r e s (obs)

latent_pi , l a tent_vf = s e l f . mlp_extractor (f e a t u r e s)

Features f o r sde

l a tent_sde = latent_pi

i f s e l f . sde_feature s_extrac tor i s not None :

latent_sde = s e l f . sde_feature s_ext ractor (

f e a t u r e s)

180

latent_rnd = s e l f . rnd_net . forward (f e a t u r e s)

l a t e n t_ d i s t i l l = s e l f . rnd_d i s t i l l_ne t (f e a t u r e s)

return latent_pi , latent_vf , latent_sde , latent_rnd , l a t e n t_d i s t i l l , f e a t u r e s

def eva luate_act ions (

s e l f , obs : th . Tensor , a c t i on s : th . Tensor

) −> Tuple [th . Tensor , th . Tensor , th . Tensor , th . Tensor , th . Tensor] :

" " "

Evaluate a c t i o n s according to the current po l i cy ,

g iven the o b s e r v a t i o n s .

: param obs : (th . Tensor)

: param a c t i o n s : (th . Tensor)

: re turn : (th . Tensor , th . Tensor , th . Tensor) es t imated value , l o g l i k e l i h o o d o f t a k i n g those act ions ,

entropy o f the ac t ion d i s t r i b u t i o n , and the rnd error

" " "

(

latent_pi ,

latent_vf ,

latent_sde ,

latent_rnd ,

l a t e n t_d i s t i l l ,

f e a tu r e s ,

) = s e l f . _get_latent (obs)

d i s t r i b u t i o n = s e l f . _get_action_dist_from_latent (

latent_pi , latent_sde)

log_prob = d i s t r i b u t i o n . log_prob (a c t i on s)

va lue s = s e l f . value_net (la tent_vf)

rnd_di f f = (latent_rnd − l a t e n t_ d i s t i l l) ∗∗ 2

ae_loss = s e l f . f e a tu r e s_ex t r a c t o r . compute_loss (

obs , f e a t u r e s)

return values , log_prob , d i s t r i b u t i o n . entropy () , rnd_dif f , ae_loss

def forward (

181

s e l f , obs : th . Tensor , d e t e rm i n i s t i c : bool = False

) −> Tuple [th . Tensor , th . Tensor , th . Tensor , th . Tensor] :

" " "

Forward pass in a l l the networks (ac tor and c r i t i c)

: param obs : (th . Tensor) Observat ion

: param d e t e r m i n i s t i c : (boo l) Whether to sample or use d e t e r m i n i s t i c a c t i o n s

: re turn : (Tuple [th . Tensor , th . Tensor , th . Tensor , th . Tensor])

act ion , value , l o g p r o b a b i l i t y o f the ac t ion and d i s t i l l a t i o n error

" " "

(

latent_pi ,

latent_vf ,

latent_sde ,

latent_rnd ,

l a t e n t_d i s t i l l ,

∗_,

) = s e l f . _get_latent (obs)

Evaluate the v a l u e s f o r the g iven o b s e r v a t i o n s

va lue s = s e l f . value_net (la tent_vf)

d i s t r i b u t i o n = s e l f . _get_action_dist_from_latent (

latent_pi , latent_sde=latent_sde

)

a c t i on s = d i s t r i b u t i o n . get_act ions (

d e t e rm i n i s t i c=d e t e rm i n i s t i c)

log_prob = d i s t r i b u t i o n . log_prob (a c t i on s)

rnd_di f f = ((latent_rnd − l a t e n t_ d i s t i l l)

∗∗ 2) .mean(dim=1)

return act ions , values , log_prob , rnd_di f f

r e g i s t e r_po l i c y (" RndPolicy " , RndPolicy)

r e g i s t e r_po l i c y (" CnnRndPolicy " , CnnRndPolicy)

C.2.2 Algorithm

182

import time

from typing import List , Tuple , Type , Union , Ca l lab l e , Optional , Dict , Any

import gym

from gym import spaces

import torch as th

import torch . nn . f un c t i o n a l as F

Check i f tensorboard i s a v a i l a b l e f o r pytorch

TODO: f i n i s h tensorboard i n t e g r a t i o n

t r y :

from torch . u t i l s . t ensorboard import SummaryWriter

excep t ImportError :

SummaryWriter = None

import numpy as np

from s t ab l e_ba s e l i n e s 3 . common import l o gg e r

from s t ab l e_ba s e l i n e s 3 . common . base_c lass import BaseRLModel

from s t ab l e_ba s e l i n e s 3 . common . type_a l i a s e s import GymEnv, MaybeCallback

from s t ab l e_ba s e l i n e s 3 . common . bu f f e r s import Rol l ou tBu f f e r

from s t ab l e_ba s e l i n e s 3 . common . u t i l s import expla ined_var iance , get_schedule_fn

from s t ab l e_ba s e l i n e s 3 . common . vec_env import VecEnv

from s t ab l e_ba s e l i n e s 3 . common . c a l l b a ck s import BaseCallback

from hierarch ica l_methods . ppo . p o l i c i e s import RndPolicy , AERndPolicy

class RndPPO(BaseRLModel) :

" " "

Proximal Po l i cy Optimizat ion a lgor i thm (PPO) (c l i p ver s ion)

Paper : h t t p s :// a r x i v . org / abs /1707.06347

Code : This implementation borrows code from OpenAI Spinning Up (h t t p s :// g i t h u b . com/ openai / spinningup /)

h t t p s :// g i t h u b . com/ i k o s t r i k o v / pytorch−a2c−ppo−acktr −g a i l and

and S t a b l e Base l ines (PPO2 from h t t p s :// g i t h u b . com/ h i l l −a/ s t a b l e −b a s e l i n e s)

183

In t roduc t i on to PPO: h t t p s :// spinningup . openai . com/en/ l a t e s t / a l gor i thms /ppo . html

: param p o l i c y : (RndPolicy or s t r) The p o l i c y model to use (MlpPolicy , CnnPolicy , . . .)

: param env : (Gym environment or s t r) The environment to l earn from (i f r e g i s t e r e d in Gym, can be s t r)

: param learn ing_rate : (f l o a t or c a l l a b l e) The l e a r n i n g rate , i t can be a func t i on

o f the current progres s (from 1 to 0)

: param n_steps : (i n t) The number o f s t e p s to run f o r each environment per update

(i . e . batch s i z e i s n_steps ∗ n_env where n_env i s number o f environment cop ie s running in p a r a l l e l)

: param batch_size : (i n t) Minibatch s i z e

: param n_epochs : (i n t) Number o f epoch when op t imiz ing the surroga te l o s s

: param gamma: (f l o a t) Discount f a c t o r

: param gae_lambda : (f l o a t) Factor f o r trade−o f f o f b i a s vs var iance f o r Genera l i zed Advantage Estimator

: param cl ip_range : (f l o a t or c a l l a b l e) C l ipp ing parameter , i t can be a func t i on o f the current progres s

(from 1 to 0) .

: param cl ip_range_vf : (f l o a t or c a l l a b l e) C l ipp ing parameter f o r the va lue funct ion ,

i t can be a func t i on o f the current progres s (from 1 to 0) .

This i s a parameter s p e c i f i c to the OpenAI implementation . I f None i s passed (d e f a u l t) ,

no c l i p p i n g w i l l be done on the va lue func t i on .

IMPORTANT: t h i s c l i p p i n g depends on the reward s c a l i n g .

: param ent_coef : (f l o a t) Entropy c o e f f i c i e n t f o r the l o s s c a l c u l a t i o n

: param vf_coef : (f l o a t) Value func t i on c o e f f i c i e n t f o r the l o s s c a l c u l a t i o n

: param max_grad_norm : (f l o a t) The maximum va lue f o r the g r a d i e n t c l i p p i n g

: param use_sde : (boo l) Whether to use g e n e r a l i z e d S ta te Dependent Exp lora t ion (gSDE)

i n s t e a d o f ac t ion noise e x p l o r a t i o n (d e f a u l t : Fa lse)

: param sde_sample_freq : (i n t) Sample a new noise matrix every n s t e p s when using gSDE

Defau l t : −1 (only sample at the beg inning o f the r o l l o u t)

: param t a r g e t _ k l : (f l o a t) Limit the KL divergence between updates ,

because the c l i p p i n g i s not enough to prevent l a r g e update

see i s s u e #213 (c f h t t p s :// g i t h u b . com/ h i l l −a/ s t a b l e −b a s e l i n e s / i s s u e s /213)

By d e f a u l t , t he re i s no l i m i t on the k l d i v .

: param tensorboard_log : (s t r) the l o g l o c a t i o n f o r tensorboard (i f None , no l o g g i n g)

: param create_eval_env : (boo l) Whether to c r e a t e a second environment t h a t w i l l be

used f o r e v a l u a t i n g the agent p e r i o d i c a l l y . (Only a v a i l a b l e when pass ing s t r i n g f o r the environment)

: param pol icy_kwargs : (d i c t) a d d i t i o n a l arguments to be passed to the p o l i c y on c r e a t i o n

: param verbose : (i n t) the v e r b o s i t y l e v e l : 0 no output , 1 info , 2 debug

: param seed : (i n t) Seed f o r the pseudo random genera tors

184

: param dev i ce : (s t r or th . dev i ce) Device (cpu , cuda , . . .) on which the code shou ld be run .

S e t t i n g i t to auto , the code w i l l be run on the GPU i f p o s s i b l e .

: param _init_setup_model : (boo l) Whether or not to b u i l d the network at the c r e a t i o n o f the ins tance

: param use_ae : (boo l) Whether the model i s us ing an AutoEncoder p o l i c y

: param ae_coef : (f l o a t) Loss coe f f o r the auto encoder

" " "

def __init__(

s e l f ,

p o l i c y : Union [str , Type [RndPolicy]] ,

env : Union [GymEnv, str] ,

l e a rn ing_rate : Union [f loat , Ca l l ab l e] = 3e−4,

n_steps : int = 2048 ,

batch_size : Optional [int] = 64 ,

n_epochs : int = 10 ,

gamma: f loat = 0.99 ,

gae_lambda : f loat = 0.95 ,

c l ip_range : f loat = 0 .2 ,

c l ip_range_vf : Optional [f loat] = None ,

ent_coef : f loat = 0 .0 ,

v f_coef : f loat = 0 .5 ,

rnd_coef : f loat = 0 .5 ,

max_grad_norm : f loat = 0 .5 ,

use_sde : bool = False ,

sde_sample_freq : int = −1,

target_kl : Optional [f loat] = None ,

tensorboard_log : Optional [str] = None ,

create_eval_env : bool = False ,

pol icy_kwargs : Optional [Dict [str , Any]] = None ,

verbose : int = 0 ,

seed : Optional [int] = None ,

dev i c e : Union [th . device , str] = " auto " ,

_init_setup_model : bool = True ,

use_ae : bool = False ,

ae_coef : f loat = 0 .5 ,

) :

185

super (RndPPO, s e l f) . __init__(

po l i cy ,

env ,

RndPolicy ,

l earn ing_rate ,

pol icy_kwargs=policy_kwargs ,

verbose=verbose ,

dev i c e=device ,

use_sde=use_sde ,

sde_sample_freq=sde_sample_freq ,

create_eval_env=create_eval_env ,

support_multi_env=True ,

seed=seed ,

)

s e l f . batch_size = batch_size

s e l f . n_epochs = n_epochs

s e l f . n_steps = n_steps

s e l f . gamma = gamma

s e l f . gae_lambda = gae_lambda

s e l f . c l ip_range = cl ip_range

s e l f . c l ip_range_vf = cl ip_range_vf

s e l f . ent_coef = ent_coef

s e l f . v f_coef = vf_coef

s e l f . rnd_coef = rnd_coef

s e l f . max_grad_norm = max_grad_norm

s e l f . r o l l o u t_bu f f e r = None

s e l f . ta rget_kl = target_kl

s e l f . tensorboard_log = tensorboard_log

s e l f . tb_writer = None

s e l f . use_ae = use_ae

s e l f . ae_coef = ae_coef

i f _init_setup_model :

s e l f . _setup_model ()

186

i f use_ae :

a s s e r t isinstance (s e l f . po l i cy , AERndPolicy)

def _setup_model (s e l f) −> None :

s e l f . _setup_lr_schedule ()

s e l f . set_random_seed (s e l f . seed)

s e l f . r o l l o u t_bu f f e r = Ro l l ou tBu f f e r (

s e l f . n_steps ,

s e l f . observat ion_space ,

s e l f . act ion_space ,

s e l f . device ,

gamma=s e l f . gamma,

gae_lambda=s e l f . gae_lambda ,

n_envs=s e l f . n_envs ,

)

s e l f . p o l i c y = s e l f . p o l i c y_c l a s s (

s e l f . observat ion_space ,

s e l f . act ion_space ,

s e l f . l r_schedule ,

use_sde=s e l f . use_sde ,

dev i c e=s e l f . device ,

∗∗ s e l f . policy_kwargs ,

)

s e l f . p o l i c y = s e l f . p o l i c y . to (s e l f . dev i c e)

s e l f . c l ip_range = get_schedule_fn (s e l f . c l ip_range)

i f s e l f . c l ip_range_vf i s not None :

i f isinstance (s e l f . c l ip_range_vf , (f loat , int)) :

a s s e r t s e l f . c l ip_range_vf > 0 , (

" ‘ c l ip_range_vf ‘ ␣must␣be␣ po s i t i v e , ␣ "

" pass ␣ ‘None ‘ ␣ to ␣ deac t i va t e ␣ v f ␣ c l i p p i n g "

)

187

s e l f . c l ip_range_vf = get_schedule_fn (

s e l f . c l ip_range_vf)

def c o l l e c t_ r o l l o u t s (

s e l f ,

env : VecEnv ,

c a l l b a ck : BaseCallback ,

r o l l o u t_bu f f e r : Ro l loutBuf f e r ,

n_ro l lout_steps : int = 256 ,

) −> bool :

a s s e r t s e l f . _last_obs i s not None , "No␣ prev ious ␣ obse rvat i on ␣was␣ provided "

n_steps = 0

r o l l o u t_bu f f e r . r e s e t ()

Sample new weigh t s f o r the s t a t e dependent

e x p l o r a t i o n

i f s e l f . use_sde :

s e l f . p o l i c y . r e s e t_no i s e (env . num_envs)

c a l l b a ck . on_ro l lout_star t ()

while n_steps < n_rol lout_steps :

i f (

s e l f . use_sde

and s e l f . sde_sample_freq > 0

and n_steps % s e l f . sde_sample_freq == 0

) :

Sample a new noise matrix

s e l f . p o l i c y . r e s e t_no i s e (env . num_envs)

with th . no_grad () :

Convert to pytorch tensor

obs_tensor = th . as_tensor (

s e l f . _last_obs) . to (s e l f . dev i c e)

ac t ions , values , log_probs , rnd_di f f = s e l f . p o l i c y . forward (

188

obs_tensor)

a c t i on s = ac t i on s . cpu () . numpy()

Rescale and perform act ion

c l ipped_act i ons = ac t i on s

Clip the a c t i o n s to avoid out o f bound error

i f isinstance (s e l f . act ion_space ,

gym . spaces . Box) :

c l i pped_act i ons = np . c l i p (

ac t ions , s e l f . act ion_space . low , s e l f . act ion_space . high

)

new_obs , rewards , dones , i n f o s = env . s tep (

c l ipped_act i ons)

i f ca l l b a ck . on_step () i s False :

return False

s e l f . _update_info_buffer (i n f o s)

n_steps += 1

s e l f . num_timesteps += env . num_envs

i f isinstance (s e l f . act ion_space ,

gym . spaces . D i s c r e t e) :

Reshape in case o f d i s c r e t e ac t ion

a c t i on s = ac t i on s . reshape (−1 , 1)

rewards += rnd_di f f . cpu () . numpy()

r o l l o u t_bu f f e r . add (

s e l f . _last_obs , ac t ions , rewards , dones , va lues , log_probs

)

s e l f . _last_obs = new_obs

r o l l o u t_bu f f e r . compute_returns_and_advantage (

values , dones=dones)

189

ca l l b a ck . on_rollout_end ()

return True

def t r a i n (s e l f , n_epochs : int ,

batch_size : int = 64) −> None :

Update op t imizer l e a r n i n g ra te

s e l f . _update_learning_rate (s e l f . p o l i c y . opt imize r)

Compute current c l i p range

c l ip_range = s e l f . c l ip_range (s e l f . _current_progress)

Optional : c l i p range f o r the va lue func t i on

i f s e l f . c l ip_range_vf i s not None :

c l ip_range_vf = s e l f . c l ip_range_vf (

s e l f . _current_progress)

entropy_losses , a l l_k l_divs = [] , []

pg_losses , va lue_ lo s s e s = [] , []

c l i p_ f r a c t i o n s = []

rnd_losses = []

t r a i n f o r grad ien t_s teps epochs

for epoch in range (n_epochs) :

approx_kl_divs = []

Do a complete pass on the r o l l o u t b u f f e r

for ro l l out_data in s e l f . r o l l o u t_bu f f e r . get (

batch_size) :

a c t i on s = ro l l out_data . a c t i on s

i f isinstance (s e l f . act ion_space ,

spaces . D i s c r e t e) :

Convert d i s c r e t e ac t ion from f l o a t to

long

a c t i on s = ro l l out_data . a c t i on s . long () . f l a t t e n ()

Re−sample the noise matrix because the log_std has changed

TODO: i n v e s t i g a t e why the re i s no i s s u e with the g r a d i e n t

i f t h a t l i n e i s commented (as in SAC)

190

i f s e l f . use_sde :

s e l f . p o l i c y . r e s e t_no i s e (batch_size)

(

values ,

log_prob ,

entropy ,

rnd_dif f ,

∗ ae_loss ,

) = s e l f . p o l i c y . eva luate_act ions (ro l l out_data . obse rvat ions , a c t i on s)

i f s e l f . use_ae :

ae_loss = ae_loss [0]

else :

ae_loss = 0

va lue s = va lue s . f l a t t e n ()

Normalize advantage

advantages = ro l lout_data . advantages

advantages = (advantages − advantages .mean ()) / (

advantages . s td () + 1e−8

)

r a t i o between o ld and new po l i cy , shou ld

be one at the f i r s t i t e r a t i o n

r a t i o = th . exp (

log_prob − ro l l out_data . old_log_prob)

c l i p p e d surroga te l o s s

pol i cy_loss_1 = advantages ∗ r a t i o

po l i cy_loss_2 = advantages ∗ th . clamp (

ra t i o , 1 − c l ip_range , 1 + cl ip_range

)

po l i c y_ l o s s = − \

th .min(pol icy_loss_1 ,

po l i cy_loss_2) . mean ()

Logging

191

pg_losses . append (po l i c y_ l o s s . item ())

c l i p_ f r a c t i o n = th .mean(

(th . abs (r a t i o − 1) > cl ip_range) . f loat ()) . item ()

c l i p_ f r a c t i o n s . append (c l i p_ f r a c t i o n)

i f s e l f . c l ip_range_vf i s None :

No c l i p p i n g

values_pred = va lues

else :

Clip the d i f f e r e n t between o ld and new va lue

NOTE: t h i s depends on the reward

s c a l i n g

values_pred = ro l lout_data . o ld_values + th . clamp (

va lue s − ro l l out_data . old_values ,

− cl ip_range_vf , c l ip_range_vf

)

Value l o s s us ing the TD(gae_lambda) t a r g e t

va lue_los s = F. mse_loss (

ro l l out_data . returns , values_pred)

va lue_ lo s s e s . append (va lue_los s . item ())

Entropy l o s s favor e x p l o r a t i o n

i f entropy i s None :

Approximate entropy when no a n a l y t i c a l

form

entropy_loss = −log_prob .mean ()

else :

entropy_loss = −th .mean(entropy)

entropy_los se s . append (entropy_loss . item ())

rnd

rnd_loss = rnd_di f f . mean ()

rnd_losses . append (rnd_loss . item ())

l o s s = (

192

po l i c y_ l o s s

+ s e l f . ent_coef ∗ entropy_loss

+ s e l f . v f_coef ∗ va lue_los s

+ s e l f . rnd_coef ∗ rnd_loss

+ ae_loss ∗ s e l f . ae_coef

)

Optimizat ion s t e p

s e l f . p o l i c y . opt imize r . zero_grad ()

l o s s . backward ()

Clip grad norm

th . nn . u t i l s . clip_grad_norm_ (

s e l f . p o l i c y . parameters () , s e l f . max_grad_norm

)

s e l f . p o l i c y . opt imize r . s tep ()

approx_kl_divs . append (

th .mean(ro l l out_data . old_log_prob

− log_prob) . detach () . cpu () . numpy()

)

a l l_k l_divs . append (np .mean(approx_kl_divs))

i f (

s e l f . ta rget_kl i s not None

and np .mean(approx_kl_divs) > 1 .5 ∗ s e l f . ta rget_kl

) :

print (

f " Early ␣ stopping ␣ at ␣ s tep ␣{epoch}␣due␣ to ␣ reach ing ␣max␣ k l : ␣{np .mean(approx_kl_divs) : . 2 f } "

)

break

s e l f . _n_updates += n_epochs

explained_var = expla ined_var iance (

s e l f . r o l l o u t_bu f f e r . r e tu rn s . f l a t t e n (

) , s e l f . r o l l o u t_bu f f e r . va lue s . f l a t t e n ()

)

193

l o gg e r . logkv (" n_updates " , s e l f . _n_updates)

l o gg e r . logkv (" c l i p_ f r a c t i o n " ,

np .mean(c l i p_ f r a c t i o n))

l o gg e r . logkv (" c l ip_range " , c l ip_range)

i f s e l f . c l ip_range_vf i s not None :

l o gg e r . logkv (" c l ip_range_vf " , c l ip_range_vf)

l o gg e r . logkv (" approx_kl " , np .mean(approx_kl_divs))

l o gg e r . logkv (" exp la ined_var iance " , explained_var)

l o gg e r . logkv (" entropy_loss " ,

np .mean(entropy_los se s))

l o gg e r . logkv (" po l i cy_grad i ent_ lo s s " ,

np .mean(pg_losses))

l o gg e r . logkv (" va lue_los s " , np .mean(va lue_ lo s s e s))

i f hasattr (s e l f . po l i cy , " log_std ") :

l o gg e r . logkv (" std " , th . exp (

s e l f . p o l i c y . log_std) . mean () . item ())

l o gg e r . logkv (" rnd_loss " , np .mean(rnd_losses))

def l e a rn (

s e l f ,

t o ta l_t imes teps : int ,

c a l l b a ck : MaybeCallback = None ,

l o g_ in t e rva l : int = 1 ,

eval_env : Optional [GymEnv] = None ,

eva l_freq : int = −1,

n_eval_episodes : int = 5 ,

tb_log_name : str = "PPO" ,

eval_log_path : Optional [str] = None ,

reset_num_timesteps : bool = True ,

) −> "PPO" :

i t e r a t i o n = 0

ca l l ba ck = s e l f . _setup_learn (

eval_env ,

194

ca l lback ,

eval_freq ,

n_eval_episodes ,

eval_log_path ,

reset_num_timesteps ,

)

i f s e l f . tensorboard_log i s not None and SummaryWriter i s not None :

s e l f . t b_wri ter = SummaryWriter (log_dir=os . path . j o i n (s e l f . tensorboard_log , tb_log_name))

ca l l b a ck . on_tra in ing_start (locals () , globals ())

while s e l f . num_timesteps < tota l_t imes teps :

cont inue_tra in ing = s e l f . c o l l e c t_ r o l l o u t s (

s e l f . env , ca l lback , s e l f . r o l l ou t_bu f f e r , n_ro l lout_steps=s e l f . n_steps

)

i f cont inue_tra in ing i s False :

break

i t e r a t i o n += 1

s e l f . _update_current_progress (

s e l f . num_timesteps , to ta l_t imes teps)

Disp lay t r a i n i n g i n f o s

i f (

s e l f . verbose >= 1

and l o g_ in t e rva l i s not None

and i t e r a t i o n % log_ in t e rva l == 0

) :

f p s = int (s e l f . num_timesteps

/ (time . time () − s e l f . s tart_time))

l o gg e r . logkv (" i t e r a t i o n s " , i t e r a t i o n)

i f len (s e l f . ep_info_buf fer) > 0 and len (

s e l f . ep_info_buf fer [0]) > 0 :

195

l o gg e r . logkv (

"ep_rew_mean" ,

s e l f . safe_mean (

[ep_info [" r "]

for ep_info in s e l f . ep_info_buf fer]

) ,

)

l o gg e r . logkv (

" ep_len_mean " ,

s e l f . safe_mean (

[ep_info [" l "]

for ep_info in s e l f . ep_info_buf fer]

) ,

)

l o gg e r . logkv (" fp s " , f p s)

l o gg e r . logkv (" t ime_elapsed " , int (

time . time () − s e l f . s tart_time))

l o gg e r . logkv (" t o t a l ␣ t imes teps " ,

s e l f . num_timesteps)

l o gg e r . logkv (" ep i s ode s " , len (

s e l f . ep_info_buf fer))

l o gg e r . dumpkvs ()

s e l f . t r a i n (s e l f . n_epochs ,

batch_size=s e l f . batch_size)

For tensorboard i n t e g r a t i o n

i f s e l f . t b_wri ter i s not None :

s e l f . t b_wri ter . add_scalar (’ Eval /reward ’ , mean_reward , s e l f . num_timesteps)

ca l l b a ck . on_training_end ()

return s e l f

def get_torch_var iab les (

s e l f) −> Tuple [L i s t [str] , L i s t [str]] :

196

" " "

c f base c l a s s

" " "

s t a t e_d i c t s = [" po l i c y " , " p o l i c y . opt imize r "]

return s ta te_d ic t s , []

C.3 Modules

C.3.1 Nature AutoEncoder

from typing import Tuple , Optional

from abc import abstractmethod

import gym

import torch as th

from torch import nn

from torch . nn import f u n c t i o n a l as F

import t o r c h l a y e r s as t l

from s t ab l e_ba s e l i n e s 3 . common . p o l i c i e s import BaseFeaturesExtractor

from s t ab l e_ba s e l i n e s 3 . common . p r ep ro c e s s i ng import is_image_space

def nature_decoder () :

return nn . Sequent i a l (nn . F lat ten () ,)

class Reshaper (nn . Module) :

def __init__(s e l f , shape) :

super () . __init__ ()

s e l f . _features_dim = shape

def forward (s e l f , ob s e rva t i on s : th . Tensor) −> th . Tensor :

return obs e rva t i on s . reshape (

obs e rva t i on s . shape [0] , ∗ s e l f . features_dim)

197

@property

def features_dim (s e l f) :

return s e l f . _features_dim

class NatureAE(BaseFeaturesExtractor) :

" " "

CNN from DQN nature paper : h t t p s :// a r x i v . org / abs /1312.5602

: param observat ion_space : (gym . Space)

: param features_dim : (i n t) Number o f f e a t u r e s e x t r a c t e d .

This corresponds to the number o f un i t f o r the l a s t l a y e r .

" " "

def __init__(s e l f , observat ion_space : gym . spaces . Box ,

features_dim : int = 512) :

super (NatureAE , s e l f) . __init__(

observat ion_space , features_dim)

We assume CxWxH images (channels f i r s t)

Re−order ing w i l l be done by pre−preproces s ing or

wrapper

a s s e r t is_image_space (observat ion_space) , (

’You␣ should ␣use ␣NatureMMD␣ ’

f ’ only ␣with␣ images ␣not␣with␣{ observat ion_space }␣ ’

’ (you␣ are ␣ probably ␣ us ing ␣ ‘ CnnPolicy ‘ ␣ in s t ead ␣ o f ␣ ‘ MlpPolicy ‘) ’)

n_input_channels = observat ion_space . shape [0]

s e l f . encode = nn . Sequent i a l (

nn . Conv2d (n_input_channels , 32 ,

k e rne l_s i z e =8, s t r i d e =4, padding=0) ,

nn .ReLU() ,

nn . Conv2d (32 , 64 , k e rne l_s i z e =4,

s t r i d e =2, padding=0) ,

nn .ReLU() ,

nn . Conv2d (64 , 32 , k e rne l_s i z e =3,

s t r i d e =1, padding=0) ,

198

nn .ReLU() ,

nn . F lat ten () ,

t l . L inear (features_dim)

)

Compute shape by doing one forward pass

t l . bu i ld (s e l f . encode , th . as_tensor (

observat ion_space . sample () [None]) . f loat ())

s e l f . decode = nn . Sequent i a l (

t l . L inear (128) , nn .ReLU() , Reshaper ((2 , 8 , 8)) ,

t l . ConvTranspose (64 , k e rne l_s i z e =3,

s t r i d e =1, padding=0) , nn .ReLU() ,

t l . ConvTranspose (32 , k e rne l_s i z e =4,

s t r i d e =2, padding=1) , nn .ReLU() ,

t l . ConvTranspose (n_input_channels ,

k e rne l_s i z e =8, s t r i d e =4, padding=0)

)

t l . bu i ld (s e l f . decode , s e l f . encode (th . as_tensor (

observat ion_space . sample () [None]) . f loat ()))

def forward (

s e l f , ob s e rva t i on s : th . Tensor) −> Tuple [th . Tensor , th . Tensor] :

enc = s e l f . encode (ob s e rva t i on s)

dec = s e l f . decode (enc)

return enc , dec

def compute_loss (s e l f , ob s e rva t i on s : th . Tensor ,

f e a t u r e s : Optional [th . Tensor] = None) −> th . Tensor :

i f f e a t u r e s i s None :

f e a tu r e s , dec = s e l f (ob s e rva t i on s)

else :

dec = s e l f . decode (f e a t u r e s)

dec = dec . reshape (obs e rva t i on s . shape [0] , −1)

l o s s = F. mse_loss (ob s e rva t i on s . reshape (

199

obse rva t i on s . shape [0] , −1) , dec)

return l o s s

class NatureMMD(NatureAE) :

def __init__(s e l f , observat ion_space : gym . spaces . Box ,

features_dim : int = 32 , k e rn e l s =10):

super () . __init__(observat ion_space , features_dim)

s e l f . k e r n e l s = ke rn e l s

def compute_loss (s e l f , ob s e rva t i on s : th . Tensor ,

f e a t u r e s : Optional [th . Tensor] = None) −> th . Tensor :

i f f e a t u r e s i s None :

f e a tu r e s , r e c = s e l f (ob s e rva t i on s)

else :

r e c = s e l f . decode (f e a t u r e s)

def gauss ian_kerne l (a , b) :

dim1_1 , dim1_2 = a . shape [0] , b . shape [0]

depth = a . shape [1]

a = a . view (dim1_1 , 1 , depth)

b = b . view (1 , dim1_2 , depth)

a_core = a . expand (dim1_1 , dim1_2 , depth)

b_core = b . expand (dim1_1 , dim1_2 , depth)

numerator = (

a_core − b_core) .pow(2) . mean (2) / depth

return th . exp(−numerator)

Jrec = F. mse_loss (

rec , obse rvat ions , r educt i on="mean")

ke rne l = th . randn (

s e l f . k e rne l s , f e a t u r e s . shape [1] , requ i res_grad=False

) . to (f e a t u r e s . dev i c e)

200

g1 = gauss ian_kerne l (kerne l , k e rne l) . mean ()

g2 = gauss ian_kerne l (f e a tu r e s , f e a t u r e s) . mean ()

g3 = −2 ∗ gauss ian_kerne l (kerne l , f e a t u r e s) . mean ()

Jmmd = g1 + g2 + g3

return Jrec + Jmmd

C.4 Utilities

C.4.1 VecNoise

from typing import Optional , L i s t , I t e r a b l e

from abc import ABC, abstractmethod

import copy

import numpy as np

from s t ab l e_ba s e l i n e s 3 . common . no i s e import ActionNoise

class Vector i zedAct ionNoise (Act ionNoise) :

" " "

A Vector i zed ac t ion noise f o r p a r a l l e l environments .

: param base_noise : ActionNoise The noise generator to use

: param n_envs : (i n t) The number o f p a r a l l e l environments

" " "

def __init__(s e l f , base_noise : ActionNoise ,

n_envs : int) :

super () . __init__ ()

try :

s e l f . n_envs = int (n_envs)

a s s e r t s e l f . n_envs > 0

except (TypeError , As se r t i onErro r) :

raise ValueError (

f " Expected␣n_envs={n_envs}␣ to ␣be␣ p o s i t i v e ␣ i n t e g e r ␣ g r e a t e r ␣ than␣0 "

)

201

s e l f . base_noise = base_noise

s e l f . n o i s e s = [copy . deepcopy (s e l f . base_noise)

for _ in range (n_envs)]

def r e s e t (

s e l f , i n d i c e s : Optional [I t e r a b l e [int]] = None) −> None :

" " "

Reset a l l the noise processes , or those l i s t e d in i n d i c e s

: param i n d i c e s : Optional [I t e r a b l e [i n t]] The i n d i c e s to r e s e t . De fau l t : None .

I f the parameter i s None , then a l l p roces se s are r e s e t to t h e i r i n i t i a l p o s i t i o n .

" " "

i f i n d i c e s i s None :

i n d i c e s = range (len (s e l f . n o i s e s))

for index in i n d i c e s :

s e l f . n o i s e s [index] . r e s e t ()

def __repr__(s e l f) −> str :

return (

f " VecNoise (BaseNoise={repr (s e l f . base_noise) }) , ␣n_envs={l en (s e l f . n o i s e s)}) "

)

def __call__(s e l f) −> np . ndarray :

" " "

Generate and s t a c k the ac t ion noise from each noise o b j e c t

" " "

no i s e = np . s tack ([no i s e () for no i s e in s e l f . n o i s e s])

return no i s e

@property

def base_noise (s e l f) −> ActionNoise :

return s e l f . _base_noise

@base_noise . s e t t e r

202

def base_noise (s e l f , base_noise : Act ionNoise) :

i f base_noise i s None :

raise ValueError (

" Expected␣base_noise ␣ to ␣be␣an␣ in s t ance ␣ o f ␣ActionNoise , ␣not␣None " ,

ActionNoise ,

)

i f not isinstance (base_noise , Act ionNoise) :

raise TypeError (

" Expected␣base_noise ␣ to ␣be␣an␣ in s t ance "

" o f ␣ type␣ActionNoise " , Act ionNoise

)

s e l f . _base_noise = base_noise

@property

def no i s e s (s e l f) −> Li s t [Act ionNoise] :

return s e l f . _noises

@noises . s e t t e r

def no i s e s (s e l f , n o i s e s : L i s t [Act ionNoise]) −> None :

r a i s e s TypeError i f not i t e r a b l e

no i s e s = l i s t (n o i s e s)

a s s e r t (

len (n o i s e s) == s e l f . n_envs

) , f " Expected␣a␣ l i s t ␣ o f ␣{ s e l f . n_envs}␣ActionNoises , ␣ found␣{ l en (no i s e s) } . "

d i f f e r en t_type s = [

i

for i , no i s e in enumerate(n o i s e s)

i f not isinstance (no i se , type (s e l f . base_noise))

]

i f len (d i f f e r en t_type s) :

raise ValueError (

f " Noise ␣ i n s t an c e s ␣ at ␣ i n d i c e s ␣{ d i f f e r en t_type s } "

+ " don ’ t ␣match␣ the ␣ type␣ o f ␣ base_noise " ,

type (s e l f . base_noise) ,

203

)

s e l f . _noises = no i s e s

for no i s e in no i s e s :

no i s e . r e s e t ()

	 Introduction
	 Reinforcement Learning
	Markov Decision Processes
	Partially Observable MDPs
	Goal conditioned MDPs
	Options

	Exploration vs Exploitation
	epsilon-greedy Exploration
	Softmax Boltzman Distribution

	Reward Maximization
	Beyond Reward Maximization

	 Deep Learning
	Optimization
	Gradient Descent
	SGD
	RMSProp
	Adam

	Training Techniques
	Stochastic Computation Graphs
	Penalty Annealing
	Weight Regularization
	Independent and Identically Distributed

	Self-Supervised Learning
	AutoEncoders
	Variational AutoEncoders
	MMD-VAE

	 DQN and Friends
	DQN
	Experience Replay
	Offline updates
	Target Weights
	Optimization Procedure

	Double DQN
	Dueling DQN
	DRQN
	Bootstrapped Sequential Updates
	Bootstrapped Random Updates

	R2D2
	Burn-In-Phase

	C51
	Control
	Optimization Procedure

	Rainbow
	Off-Policy Correction
	Importance Sampling
	Q(lambda)
	Tree Backup(lambda)
	Retrace(lambda)

	 Policy Gradients
	Vanilla Policy Gradient
	Ignoring the Past

	Advantage Actor Critic
	Generalized Advantage Estimation
	Trust Region Policy Optimization
	Proximal Policy Optimization
	The Deterministic Policy Gradient
	Deep Deterministic Policy Gradient
	Twin Delayed DDPG
	Soft Actor Critic
	Continuous Soft Actor Critic
	Discrete Soft Actor Critic

	Conclusion
	KL Divergence

	 Tools, Exploration methods and Hierarchies
	Prioritized Experience Replay
	Hindsight Experience Replay
	Noisy Linear Layers
	(Pseudo-)Count Based Exploration
	Random Network Distillation
	Bootstrapped DQN
	h-DQN
	Feudal Networks
	Feudal Learning

	Competitive Ensembles of Information-Constrained Primitives
	Hierarchical Actor Critic
	Conclusion

	 Problem Decomposition and the Obstacle Tower
	Decomposition
	Goal based Problems
	Mountain Car
	The Taxi Problem
	Four Rooms
	Sokoban
	Obstacle Tower

	 Design and Implementation
	Proximal Policy Optimization
	Architecture and Modules
	Obstacle Tower Environment
	Action Space Modifications

	Current State
	Stable Baselines
	PPO
	Current Limitations
	Preliminary Results
	Computational Resources

	 Ghosts in the Tensors
	Fantastic deltas and how to fight them
	Actor Collapse
	Off Policy Over-Optimization
	Proximal Policy Over-Optimization
	Diluted Experience
	Minding your business
	Handling Termination
	Dead neurons and misleading gradients
	Sawtooth
	Time is but a stubborn illusion

	 Conclusion
	Future Work
	The future for the Obstacle Tower

	References
	 DQN and Friends
	Dueling Architectures
	C51

	 Policy Gradient methods
	Variance of Advantage function

	 Source
	Environment
	ALE Emulator
	Communication
	Action Wrappers

	PPO
	Policies
	Algorithm

	Modules
	Nature AutoEncoder

	Utilities
	VecNoise

