
Bachelor Thesis

CrowdBED: A Crowdsourcing system that leverages on

Blockchain technology for rEliability and Decentralisation

Adamos Ttofari

University of Cyprus

Department of Computer Science

June 2020

University of Cyprus

Department of Computer Science

CrowdBED: A Crowdsourcing system that leverages onBlockchain

technology for rEliability and Decentralisation

Adamos Ttofari

Advisor

Chryssis Georgiou

Diploma project has been submitted for partial fulfillment of the

requierements of Informatics Degree acquisition from the University of

Cyprus

June 2020

Acknowledgement

For the achievement of this project firstly, I would like to express my sincere gratitude to my

advisor Assistant Professor Chryssis Georgiou. That gave me the opportunity to work on this

unique project and the collaboration. During the year he push me towards the best result. Addi-

tionally I would like to give my gratitude to the CrowdBED teamDr. Evgenia Christoforou, Dr.

Nicolas Nicolaou and Dr. Efstathios Stavrakis for providing advises during the meetings. Also I

would like to thank Nicolas and Efstathios for providing a Virtual Machine for the development.

Special thanks to the Linux Foundation team for maintaining the Hyperledger projects and

specifically the Sawtooth distributed ledger. Additionally I would like to thank the Sawtooth

team for being available and helpful in the chat and specifically special gratitude to Arun for

answering my questions regarding Sawtooth on StackOverflow. Furthermore I would like to

thank the Computer Science Department for the courses and the knowledge provided that helped

me during the implementation.

Finally I would like to thank my family and friends for being with me during my life and

supporting me at every step.

i

Abstract

This thesis presents the implementation of CrowdBED, a prototype framework for crowdsourc-

ing computational tasks on top of Blockchain technology to achieve reliability and decentralisa-

tion, thus achieving crowsourcing’s full potential. Consider a case where a requester publishes

a task with a deadline. Then a set of workers independently try to solve the task and submit their

answers for a reward. The whole process is orchestrated by a smart contract on a blockchain

network.

The implementation was done with Hyperledger Sawtooth distributed ledger framework,

which is an open source project in the Hyperledger greenhouse, maintained by the Linux Foun-

dation. Thus making it the first decentralised solution using a Hyperledger distributed ledger.

CrowdBED has a flexible, modular and secure network design, while at the same time provides

a language neutral interface for client implementation. It supports general-purpose deterministic

computational tasks, meaning the requester just writes the computation script and provides the

data for the workers to run and submit the result. Simultaneously having a permisionless access

for the clients, hence achieving anonymity.

ii

CONTENTS CONTENTS

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 2

1.3 Methodology . 2

1.4 Thesis Structure . 3

2 Background Knowledge 5

2.1 Crowsourcing . 6

2.2 Cryptography . 6

2.2.1 Public Key Cryptography . 6

2.2.2 Hash Functions . 7

2.2.3 Digital Signatures . 7

2.3 Fault Tolerance . 7

2.3.1 Crash Fault Tolerance . 8

2.3.2 Byzantine Fault Tolerance . 8

2.4 Blockchain . 9

2.5 Hyperledger Project . 11

2.5.1 Hyperledger Fabric . 11

2.5.2 Hyperledger Iroha . 12

2.5.3 Hyperledger Sawtooth . 13

2.6 Other Technologies Used . 14

2.6.1 Protocol Buffers . 15

2.6.2 gRPC . 15

2.7 Related Work . 15

iii

CONTENTS CONTENTS

3 A Deep Dive into Sawtooth 17

3.1 Global State . 18

3.1.1 Merkle Hashes . 18

3.1.2 Radix Addresses . 19

3.1.3 Serialization . 20

3.2 Transactions and Batches . 21

3.2.1 Transaction Structure . 21

3.2.2 Transaction Header Structure . 22

3.2.3 Batch Structure . 23

3.2.4 Batch Header Structure . 24

3.3 Sawtooth Network . 24

3.4 REST API . 26

3.5 Events . 27

3.6 Consensus in Sawtooth . 27

3.7 A Day in the Life of a Hyperledger Sawtooth Transaction 30

3.8 CrowdBED Architecture . 31

3.8.1 CrowdBED Network . 31

3.8.2 CrowdBED Consensus . 32

4 The Data on the Ledger 33

4.1 User . 34

4.2 Task . 35

4.3 Submission . 37

4.4 Lock . 38

4.5 Proof . 39

4.6 Validation . 40

4.7 Wrapper . 41

5 CrowdBED Transaction Family 42

5.1 When a Transaction Arrives . 43

5.2 New User Appears . 44

5.3 Task Creation . 44

5.4 Locking the Task . 46

iv

CONTENTS CONTENTS

5.5 Adding the Proof . 47

5.6 Submitting Answers . 48

5.7 Validation . 50

6 CrowdBED Client 53

6.1 Generating a User . 54

6.2 Requester . 55

6.3 Worker . 57

6.4 Validation . 59

7 Implementation 61

7.1 CrowdBED Project Structure . 62

7.2 CrowdBED Client . 63

7.2.1 Register User . 63

7.2.2 Add Task . 64

7.2.3 Add Submission . 64

7.2.4 Work . 65

7.2.5 List . 66

7.3 Running Docker Simulations . 68

7.4 Deployment on a Real Network . 69

8 Conclusion 72

8.1 Summary . 72

8.2 Challenges . 73

8.3 Future Work . 73

8.3.1 Finite Submissions . 73

8.3.2 Modular Validation . 74

8.3.3 New Clients . 74

8.3.4 Auditors . 74

8.3.5 Malicious Tasks . 75

8.3.6 Sybil Attack and Collusion . 75

8.3.7 Storage . 75

8.3.8 Leaky Validators . 76

v

CONTENTS CONTENTS

Appendices 81

A.1 Batcher . A-1

A.2 Client . A-4

A.3 Blockchain API . A-11

A.4 Task API . A-19

A.5 Submission API . A-24

A.6 User API . A-30

A.7 Validation API . A-33

A.8 Hashtools . A-36

A.9 Unlock . A-38

A.10 Transaction Family . A-40

A.11 Data Types . A-55

A.12 Batcher gRPC . A-56

A.13 Single Node (Dev Mode) . A-58

A.14 PBFT Network . A-62

A.15 First Node . A-79

A.16 Other Nodes . A-84

A.17 Makefile . A-88

vi

LIST OF FIGURES LIST OF FIGURES

List of Figures

2.1 Hyperledger Fabric Overview [4] . 12

2.2 Hyperledger Iroha Overview [9] . 13

2.3 Hyperledger Sawtooth Overview [14] . 14

3.1 Merkle Tree [16] . 19

3.2 Radix Address [16] . 19

3.3 Tree Update [16] . 20

3.4 Transaction Structure . 21

3.5 Transaction Header Structure . 22

3.6 Batch Structure . 23

3.7 Batch Header Structure . 24

3.8 High Level Overview [14] . 25

3.9 Sawtooth PBFT Overview [19] . 30

3.10 CrowdBED Overview . 32

4.1 User Structure . 34

4.2 User Address . 34

4.3 Task Structure . 35

4.4 Task Address . 36

4.5 Submission Structure . 37

4.6 Submission Address . 37

4.7 Lock Structure . 38

4.8 Proof Structure . 39

4.9 Proof Address . 39

4.10 Validation Structure . 40

4.11 Wrapper Structure . 41

vii

LIST OF FIGURES LIST OF FIGURES

5.1 Batcher . 47

6.1 User Transaction Header Structure . 54

6.2 Task Transaction Header Structure . 56

6.3 Lock Transaction Header Structure . 56

6.4 Submission Transaction Header Structure . 58

6.5 Proof Transaction Header Structure . 58

6.6 Validation Transaction Header Structure . 60

7.1 Task List . 66

7.2 Submissions List for Sum Task . 67

7.3 User List . 67

7.4 Single Node Deployment . 68

7.5 PBFT Network Deployment . 69

viii

CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

Contents

1.1 Motivation . 1

1.2 Contributions . 2

1.3 Methodology . 2

1.4 Thesis Structure . 3

1.1 Motivation

Crowdsourcing environments promote various types of collaborative Internet-based activi-

ties and they have a societal, scientific and technological impact, changing forever the way

humans and machines interact and collaborate for a given purpose. The partial availability

of resources in personal computers and the access to the Internet, have led to the volunteer

internet-based computing. Among the most popular examples is SETI@home [28] where its

purpose was to analyze radio signals, searching for signs of extraterrestrial life. Addition-

ally, computing platforms where users gain rewards for their contributions exist, for example

Amazon Mechanical Turk [1].

Traditional crowdsourcing solutions are controlled by a centralized platform, managed

by a believed-to-be trusted party, and connecting the requester of a crowdsourcing activity

with the crowd. Although centralized platform solutions promise a smooth, relative trusted

and reliable interaction of the requesters with the crowd, usually the usage of the platform

implies large fees, imposes strict rules, but most importantly, it consists of a single point of

1

1.2. CONTRIBUTIONS CHAPTER 1. INTRODUCTION

security and performance bottleneck. Thanks to recent technology advancements, blockchain

technology has proven to be a transparent, scalable, decentralized solution, that provides strict

security and performance guarantees. Thus, a distributed crowdsourcing approach could

leverage the blockchain technology to alleviate the shortcomings of the centralized solutions,

augmenting and promoting the catholic impact of crowdsourcing.

With the implementation of CrowdBED we aim to create a decentralised solution for

crowdsourcing computational tasks. On the same time we aim for the validation to be

requester independent, thus providing transparent reward distribution mechanism for the

workers.

1.2 Contributions

CrowdBED is the first decentralised crowdsourcing solution using a Hyperledger Distributed

Ledger. Specifically Hyperledger Sawtooth was used, thus providing a modular and byzan-

tine fault tolerant network design. At the same time Sawtooth is a public blockchain, meaning

it provides transparency for all the operation that took place on the network. Additionally

CrowdBED provides a language neutral interaction interface for client implementation.

At the same time, giving a permissionless access for the clients, thus providing total

anonymity. Plus because answers are deterministic, submissions are validated on the system,

thus requesters can’t steal the answers without giving reward to the workers. At the same time

giving a simple interface for task creation, with only requirement to implement a computation

script and provide the input for workers just to execute it and submit the output to CrowdBED.

1.3 Methodology

During the course of implementationAgile SoftwareDevelopment process took place. Mean-

ing the implementation underwent various changes depending on the challenges appearing

during the process and focused on the functionality of CrowdBED. Part of the methodology

was the regular meetings and discussions with the members of the CrowdBED team that

guided the major decisions about the system.

Initially a study took place on how different distributed ledgers work and deciding how

can they can solve the problem. Specifically, three different Hyperledger distributed ledgers

2

1.4. THESIS STRUCTURE CHAPTER 1. INTRODUCTION

were studied Fabric [22], Iroha [8] and Sawtooth [10]. After running a test network and

completing the tutorial for every ledger, we examined the advantages and the disadvantages

of every ledger, Hyperledger Sawtooth was the choise for the CrowdBED implementation.

After that, the main focus was on the implementation of the Transaction Family because

of the modularity of Sawtooth that provides the separation between application logic and net-

work. Meaning that development environment was used. At the same time a client prototype

was implemented as Command Line Interface.

When the first version was ready then the implementation was deployed to a network

simulator with Docker containers [32] to test the correctness of the implementation. After

that any additions to the system were tested firstly on the developer mode of Sawtooth with

one node and then on the network simulator.

Finally after the finalization of the implementation EC2 t2.micro Virual Machines were

deployed in the Amazon Web Services for testing CrowdBED correctness on a real network

environment.

1.4 Thesis Structure

The thesis consists of eight chapters:

• Chapter One: is an brief introduction about CrowdBED motivation, contribution,

objective and methodology.

• Chapter Two: Previous knowledge is discussed, in order gain understanding of basic

concepts that are used in the CrowdBED implementation.

• Chapter Three: Hyperledger Sawtooth is examined thoroughly, in order to get under-

standing how CrowdBED network works.

• Chapter Four: How data is structured in CrowdBED. For every data type, the fields

are explained in detail and how they contribute to the crowsourcing paradigm in

CrowdBED.

• Chapter Five: This chapter discusses the logic behind CrowdBED and how client

requests are handled in the system. To support the basic functions of crowdsourcing.

3

1.4. THESIS STRUCTURE CHAPTER 1. INTRODUCTION

• Chapter Six: In this chapter client semantics are discussed in order to achieve a smooth

communication between client and the CrowdBED network.

• Chapter Seven: In this chapter we discuss the implementation of CrowdBED.

• Chapter Eight: Conclusions are made and future work is discussed.

4

CHAPTER 2. BACKGROUND KNOWLEDGE

Chapter 2

Background Knowledge

Contents

2.1 Crowsourcing . 6

2.2 Cryptography . 6

2.2.1 Public Key Cryptography . 6

2.2.2 Hash Functions . 7

2.2.3 Digital Signatures . 7

2.3 Fault Tolerance . 7

2.3.1 Crash Fault Tolerance . 8

2.3.2 Byzantine Fault Tolerance . 8

2.4 Blockchain . 9

2.5 Hyperledger Project . 11

2.5.1 Hyperledger Fabric . 11

2.5.2 Hyperledger Iroha . 12

2.5.3 Hyperledger Sawtooth . 13

2.6 Other Technologies Used . 14

2.6.1 Protocol Buffers . 15

2.6.2 gRPC . 15

2.7 Related Work . 15

5

2.1. CROWSOURCING CHAPTER 2. BACKGROUND KNOWLEDGE

Before discussing how CrowdBED works it is important to understand some concepts

that were very important in the implementation of the system.

2.1 Crowsourcing

With the availability of computational resources and access to the broadband Internet. Inter-

net based computing has began. With various projects that helped to contribute to scientific

problems from searching for alien life (SETI@home [28]) to fighting the COVID-19 pan-

demic (Folding@home [5]) executed in personal computers when they are idle. Providing a

flexible and scalable solution when normally data centers would take place for these execu-

tions. Moreover computational platfroms where workers who compute for reward exist, for

example Amazon Mechanical Turk [1].

CrowdBED follows the Master-Worker paradigm, where a master or requester publishes

a task on a platform. The interested workers then get the task and solve it on their personal

machines and submit their answers to the platform and get the expected reward if they submit

the correct answer. In this paradigm, malicious workers could report wrong answers and

malicious masters that report that the answers are incorrect and steal them [38].

2.2 Cryptography

Cryptography is the process that two parties want to communicate in secret and modify their

messages in a predefined process that only they can undo. It is used in secure communications

for thousands of years [36].

Traditional cryptography used symmetric key cryptography where the sender and the

receiver used the same key for encryption and decryption. The main challenge is how the

sender can send the secret key in a public environment like the Internet.

2.2.1 Public Key Cryptography

Currently in modern age, Public Key cryptography is used for secure communications. In

order to communicate each entity has a pair of mathematically related keys, called public

and private key. Private key is only known to the entity and the Public key can be published

6

2.3. FAULT TOLERANCE CHAPTER 2. BACKGROUND KNOWLEDGE

to everyone. Encryption of a message happens with one of the keys, and decryption happens

only with the other key [36].

2.2.2 Hash Functions

Hash functions are one-way deterministic functions applied to a sequence of data creating a

unique digest of fixed size. The basic requirements are the following [36]:

• Preimage resistance: Having a digest h(x)it should be impossible to find the data

sequence x.

• Second Preimage resistance: Knowing the digest h(x) and the data sequence xit

should be impossible to find a different data sequence y that h(x) = h(y).

• Collision resistance: It should be impossible to find any pair of different data se-

quences x and y that h(x) = h(y).

2.2.3 Digital Signatures

Adigital signature is a mathematical scheme for verifying the authenticity of digital messages

or documents [36]. A valid signature gives a very strong reason that the message was created

by the sender and was not altered in transit. The process is the following:

• The sender applies hash function to the message. Then encrypts the digest with the

private key, thus creating the signature. Finally sends the original message and the

signature.

• The receiver gets the message and the signature. Decrypts the signature with the

sender’s public key and checks the message’s digest with the decrypted digest.

2.3 Fault Tolerance

Fault tolerance refers to the ability of a system (computer, network, cloud cluster, etc.) to

continue operating normally when one or more of its components fail [39]. The objective of

creating a fault-tolerant system is to stop disruptions arising from a single point of failure,

7

2.3. FAULT TOLERANCE CHAPTER 2. BACKGROUND KNOWLEDGE

ensuring the high availability and continuity of applications or systems. Every system should

achieve the following goals:

• Availability: A system should be ready to be used at any time.

• Reliability: A system should continue to work normally without a failure for a very

long time.

• Safety: Even after a failure the consequences should not be catastrophic.

• Maintainability: How easy a failed system can be repaired and return to normal func-

tioning.

A common solution is state machine replication. A state machine, at any moment stores

the state of the system. It receives inputs and by applying them in a sequential order ,updates

the state and produces an output. In distributed systems the components simulate a state

machine and at any moment all of them have the same state of the system. In simple terms

a set of nodes process the same sequence of commands and are in the same state. Meaning

that a client can interact with any of the components without finding any distinction between

them [37].

2.3.1 Crash Fault Tolerance

A crash tolerant system is a system that operates efficiently while tolerating crash faults of its

components [39]. The system, although some nodes crash, it continues to operate normally

without interruptions or unexpected behaviour.

Currently a popular solution used in the Hyperledger implementations is Raft [35] for

state machine replication. In Raft consensus the network passes through a series of rounds.

In each round a leader is chosen and executes some commands where the rest of the nodes

repeat the same commands. For the system to work properly at least the half of the nodes

need to function properly.

2.3.2 Byzantine Fault Tolerance

Byzantine nodes made first appearance in the paper: The Byzantine Generals Problem [29].

A node is Byzantine if it exhibits arbitrary/malicious behavior (deviating by its specification)

8

2.4. BLOCKCHAIN CHAPTER 2. BACKGROUND KNOWLEDGE

and might intentionally cause problems to the system. The problem is defined as follows:

Imagine that several divisions of the Byzantine army are camped outside an enemy city,

each division commanded by its own general. The generals can communicate with one an-

other only by messenger. After observing the enemy, they must decide upon a common plan

of action. However, some of the generals may be traitors, trying to prevent the loyal generals

from reaching agreement. The generals must have an algorithm to guarantee that:

• All loyal generals decide upon the same plan of action.

• A small number of traitors cannot cause the loyal generals to adopt a bad plan.

The conclusion of the paper is that the generals cannot make the decision unless the

number of generals is strictly greater than three times the number of traitors. Meaning that

the problem can’t be solved unless N >= 3f + 1 where N is the number of generals and f

the number of traitors.

In simple terms the above problem states that even with a small percentage of malicious

participants in a system such that the system can still work correctly without interruptions or

unexpected behaviour. Byzantine Fault Tolerance was introduced by the PBFT paper [25].

A state machine replication algorithm to achieve Byzantine Fault Tolerance. This solution is

used in Hyperledger Sawtooth to achieve consensus and will be discussed in Section 3.6.

2.4 Blockchain

What is Blockchain? Simply speaking it is a chain of blocks. But there is more than that, other

may reference blockchain as an append only immutable ledger. Every block stores a lists of

transactions cryptographically signed by the clients, and the hash of the previous block. The

blockchain is stored in every peer’s local storage. Making it hard to exploit because in order

to modify a block’s contents a malicious perticipant must recreate every block after it in order

to create a valid blockchain and replace. [34]

Blockchain technology became popular with the introduction of Bitcoin by Satoshi

Nakamoto [33]. It was the first cryptocurency to solve the double spending problem using

a decentralized network without a central authority for example a bank. In order to add a

block it uses the Proof of Work [26], a lottery based algorithm where a peer must guess a

number that will make the block’s hash have a specific amount of zeroes that is defined by

9

2.4. BLOCKCHAIN CHAPTER 2. BACKGROUND KNOWLEDGE

the network in order to have one block every 10 minutes. But due to that there is a possibility

of a fork where multiple versions of the ledger appear. So in order to have one ledger the

peers choose the longest chain after some time. The main flaw with bitcoin and proof of work

is that it consumes a lot of power and has harmull impact to the environment.

But despite the flaws of bitcoin, blockchain technology became popular because of it’s

properties. Giving the start for many popular projects. Etherium [3] is a popular example

because it maintains it’s own cryprtocurency named Ether and adds the support of smart

contracts, developer programs that are executed and handle the logic of transactions on the

ledger. At this moment there are over 4000 cryptocurencies [2]. Linux Foundation started

the Hyperledger [7] group for open source blockchain solutions. Finally even tech giants

like Facebook understanding the importance of blockchain anoucent their own cryptocurency

Libra [11], with that proving that blockchain will make an impact in the future.

Aditionally blockchain networks are somany and havemany applications that are divided

into categories. There is a division between the blockchains based on their data access and

on the peer access. When we reference the data access there are two categories public and

private ledgers. Where the public ledgers everyone can submit a transaction and read the

blockchain contents. On other hand private blockchains cannot be viewd publicly and only

authorised members can view the blockchain contents. Meanwhile peer access is divided

into permissioned and permisionless blockchains. Where the permissionless ledgers allow

everyone to add their machine to the blockchain network to maintain it, on the other hand in

permissioned networks a system administrator must add the new members.

Permissionless networks have high security, open environment and provide anonymity.

Notable examples are Bitcoin and Etherium. Popular reasons to use a public solution is to

have public transparency, true decentralization, immutability and great business to consumer

solution. But to achieve that, permissionless blockchains take a lot of time to add a block in

order to make sure everything is correct. For example Proof ofWork takes almost 10 minutes

to add a block. On other hand permissioned ledgers are efficient, usually private, stable and

are a great bussiness to bussiness solutions. Notable example is Hyperledger Fabric.

Depending on the problem the appropriate choice is made, in the case of a decentralised

currency that is not dependand on a central authority like a bank a public ledger is the choice,

meanwhile the case of supply chain, a private ledger between the supply companies is more

better choice.

10

2.5. HYPERLEDGER PROJECT CHAPTER 2. BACKGROUND KNOWLEDGE

2.5 Hyperledger Project

Hyperledger is a community that started from Linux Foundation. Its main purpose is to

develop a suite of stable frameworks, tools and libraries for enterprise-grade blockchain

deployments. It serves as a home to many distributed ledger frameworks like Fabric, Iroha

and Sawtooth, as well as tools that can help blockchain deployment like Avalon and Aries.

2.5.1 Hyperledger Fabric

Hyperledger Fabric [22] is a open source private enterprise blockchain frameworkmaintained

mainly by IBM. It is the first to run distributed applications called Chaincodes with the use

of general use laguages like Java, Golang or Javascript without the use of a cryptocurrency

or depending on the system. It has a permisioned design and is crash fault tolerant using the

Raft consensus algorithm. It is the most popular and maintained project in the Hyperledger

Community.

In brief, the the architecture of Fabric is the following. The nodes in the network are

divided into two categories Peers and Orderers. Orderers are responsible for getting en-

dorsed transactions groupping them in blocks and adding them to the ledger. Meanwhile

peers contain the chaincodes and a ledger copy, they are the ones that endorse transaction

proposals.

When an application proposes a transaction it sends it to the peers for endorsements. Then

the peers execute the transaction locally and depending on the result endorses the proposal and

sends it back. The application receives the endorsements and when the endorsment policy is

met the application sends it to the ordering service. The orderers collect endorsed transactions

and add them to blocks. They reach consensus with the use of Raft and sends the block to

peers to update the global state.

11

2.5. HYPERLEDGER PROJECT CHAPTER 2. BACKGROUND KNOWLEDGE

Figure 2.1: Hyperledger Fabric Overview [4]

At the current stage, Hyperledger Fabric is crash fault tolerant and requires every par-

ticipant to be trusted. Leaving the network vulnerable to a malicious orderers or peers.

Additionally Fabric has the ability to have private data on the ledger. Meaning even as a

decentralized blockchain framework it has to be managed by a believed-to-be-trusted party.

Because of that Fabric wasn’t the choice for CrowdBED’s implementation.

2.5.2 Hyperledger Iroha

Hyperledger Iroha [8] is an other distributed ledger framework maintained by Soramitsu. It

is popular in Japan with many use cases. It features simple deployment, variety of libraries,

role-based access control, modular design and assets/identity management. Additionally it

supports multi signature transactions. It is a private blockchain with permisioned design for

data on the ledger. Features a novel consensus algorithm called YAC. Currently it doesn’t

support any smart contracts and is mainly used for asset management.

Briefly the base architecture of Iroha is the following. Initially the transaction is proposed

from the client through the Torii a gRPC gateway for accepting transactions. After that the

transaction goes to the TSP (Multisignature Transactions Processor) to be exchanged with

other peers for signatures that are missing. After that the transaction is sent to the oprdering

service for a stateless validation of the transaction. After that the transaction is verified and

updates the world state view in a simulator and added to a block. Then the block is send to

network in order to be endorsed by the YAC algorithm. When the block is accepted the block

12

2.5. HYPERLEDGER PROJECT CHAPTER 2. BACKGROUND KNOWLEDGE

is stored in the blockstore and updates the world state. In the meantime sychronizer makes

sure the blockchain is up to date.

Figure 2.2: Hyperledger Iroha Overview [9]

At the current stage Hyperledger Iroha is a private blockchain software, is crash fault

tolerant and doesn’t support smart contracts. The reason Iroha isn’t the framework of

CrowdBED’s implementation is because at a task’s deadline validation must take place that

needs a smart contract to support this operation.

2.5.3 Hyperledger Sawtooth

Hyperledger Sawtooth [10] is a flexible and modular blockchain framework created in Intel

Labs and maintained by the Linux Foundation. The architecture seperates the application

logic from the network layer. The application logic is implemented as transaction families

and run as independent modular processes on every node. Sawtooth supports various con-

sensus algorithms like Practical Byzantine Fault Tolerance and Proof of Elapsed Time. It is a

public blockchain, meaning everyone can see the blockchain contents and submit transactions

13

2.6. OTHER TECHNOLOGIES USED CHAPTER 2. BACKGROUND KNOWLEDGE

without a central authority. But is a permisioned network meaning in order to add a peer it

must be added by a system administrator.

Figure 2.3: Hyperledger Sawtooth Overview [14]

Because of the separation between the core system and the application, the simple trans-

action family implementation, the Byzantine fault tolerance support. At the same time the

ability for permissionless support for clients providing anonymity and transparency. Hyper-

ledger Sawtooth was the choice for the CrowdBED’s implementation. In the next chapter an

in depth analysis of Sawtooth will be discussed.

2.6 Other Technologies Used

Some other technologies were used for the implementation of CrowdBED and are mentioned

in thesis. This section serves as a brief explanation what additional technologies were used

in the implementation.

14

2.7. RELATED WORK CHAPTER 2. BACKGROUND KNOWLEDGE

2.6.1 Protocol Buffers

Protocol buffers [12] are Google’s language-neutral, platform-neutral, extensible mechanism

for serializing structured data. The developer defines how you want data is to be structured

once, then a special generated source code can be used to easily write and read the structured

data to and from a variety of data streams and using a variety of languages.

The developer must write a .proto file where he defiones the data structure using the proto

language structure. Then he compiles the file and generates a source code for the chosen

language. Thus providing a language neutral way to define data and serialization mechanism

providing abstraction and interoperability between different technologies.

2.6.2 gRPC

gRPC [6] is a language neutral language RPC framework. In RPC a client can call a method

on a server on a different machine as if it were a local object, making it easier for creating

distributed applications and services. By default, gRPC uses Protocol Buffers, Google’s

open source mechanism for serializing structured data. Thus providing an environment for

heterogeneous client and server implementations.

2.7 Related Work

There are others Blockchain-based crowdsourcing systems. Notable examples are CrowdBC

[30], ZebraLancer [31] and WorkerRep [24]. All of these are implemented on Ethereum

[3], an permisionless blockchain network and use some degree of Registration Authority for

the users. Meanwhile CrowdBED is implemnted on Hyperledger Sawtooth providing some

degree of administration on the network. Additionally providing permisionless registration

for the users, thus providing total anonymity for the users.

In ZebraLancer the encrypted submissions are added to the ledger using public key cryp-

tography where provided by the requester. Eventually when the requester will gain enough

submissions hewill decrypt them and decide how to reward the workers based on the answers.

On the other hand in CrowdBED, the transaction family is responsible for the reward of the

users without the requester’s intervention.

Meanwhile on CrowdBC requester must define how the task will be validated. Whitch re-

15

2.7. RELATED WORK CHAPTER 2. BACKGROUND KNOWLEDGE

quires some effort for creating the task from the requester side. On the other hand CrowdBED

uses majority voting for determining the answer. The reason is that CrowdBED aims com-

putational tasks that the data and code is provided by the requester meaning the answer is

unique, thus it is easy to cross-check the answer. Additionally the only thing required by the

requester to write the code and the data, in the current implementation any simple Python3

script is supported.

On the other hand WorkerRep provides a unique validation scheme where the workers

validate each other solutions. In order to get a worker’s solution validated he must vali-

date solutions of other workers after his submission. In the CrowdBED implementation the

blockchain is responsible for a centralized the validation by the Transaction Family.

16

CHAPTER 3. A DEEP DIVE INTO SAWTOOTH

Chapter 3

A Deep Dive into Sawtooth

Contents

3.1 Global State . 18

3.1.1 Merkle Hashes . 18

3.1.2 Radix Addresses . 19

3.1.3 Serialization . 20

3.2 Transactions and Batches . 21

3.2.1 Transaction Structure . 21

3.2.2 Transaction Header Structure 22

3.2.3 Batch Structure . 23

3.2.4 Batch Header Structure . 24

3.3 Sawtooth Network . 24

3.4 REST API . 26

3.5 Events . 27

3.6 Consensus in Sawtooth . 27

3.7 A Day in the Life of a Hyperledger Sawtooth Transaction 30

3.8 CrowdBED Architecture . 31

3.8.1 CrowdBED Network . 31

3.8.2 CrowdBED Consensus . 32

17

3.1. GLOBAL STATE CHAPTER 3. A DEEP DIVE INTO SAWTOOTH

For the implementation of CrowdBED, Hyperledger Sawtooth was used. Sawtooth is one

of the distributed ledger frameworks in the Hyperledger ecosystem. Hyperledger Sawtooth

offers a flexible and modular architecture separates the network from the logic that runs on

the ledger. Meanong smart contracts can specify the rules for applications without needing

to know the underlying design of the core system. Hyperledger Sawtooth supports a variety

of consensus algorithms, including Practical Byzantine Fault Tolerance (PBFT) and Proof of

Elapsed Time (PoET).

As a distributed ledger, a Sawtooth network is a Peer to Peer network, which consists of

multiple nodes. Each peer is called Validator Node and contains various components that

run inside containers. The main components are the Validator, the Rest API, the Consensus

Engine and one or more Transaction Proccessors. The components communicate with the use

of ZeroMQ messaging library. This architecture helps to keep the modularity of the system.

Sawtooth represents state for all transaction families in a single instance of a Merkle-

Radix tree on each validator. The process of block validation on each validator ensures that

the same transactions result in the same state transitions and that the resulting data is the same

for all participants in the network.

In this chapter we will discuss the architecture of Hyperledger Sawtooth in order to gain

a better understanding on how CrowdBED operates.

3.1 Global State

The main goal of Sawtooth is to achieve consensus on the global state [16] of data on the

ledger. It is achieved efficiently with the use of Radix-Merkle Tree.

3.1.1 Merkle Hashes

Sawtooth uses an addressable Merkle-Radix tree to store data. A Merkle tree is a rooted tree

structure where a node’s value computed as a hash of it’s aggregated children values. The

leaf because it doesn’t have children and keeps the hash of the data the address stores. It is an

efficient way to check the expected value after validating blocks because a single root hash

is calculated in the root of the tree as the global state value. If after validating a block the

value on the root is a a different hash, the block is not considered valid.

18

3.1. GLOBAL STATE CHAPTER 3. A DEEP DIVE INTO SAWTOOTH

Figure 3.1: Merkle Tree [16]

3.1.2 Radix Addresses

Figure 3.2: Radix Address [16]

The tree is an addressable Radix tree because addresses uniquely identify the paths to leaf

nodes in the tree where information is stored. Because every node has 256 children the choice

of the next node can be identified by the current bit. An address is a hex-encoded 70 character

string representing 35 bytes. This means that the depth of the tree is 35. The address format

is divided into two parts: the namespace (3 bytes) and the Namespace-specific address (32

bytes). The namespace prefix is used in dividing types of data on the ledger and adding write

19

3.1. GLOBAL STATE CHAPTER 3. A DEEP DIVE INTO SAWTOOTH

permission to the addresses of same namespace. The remaining bytes are must be defined by

the developer to find specific data in the Tree. When a update is occurred, the changes are

happening across the path from the leaf to the root, thus calculating the new global state.

Figure 3.3: Tree Update [16]

3.1.3 Serialization

In addition to namespace design, developers need to define the serialization of data. A simple

way to picture the whole process is like a hashmap where the key is the address and value is

a byte array of serialized data. The processor provides commands like set(address, data) and

get(address). It is important when a data is serialized, the serialization function to provide

always the same result across space and time. Data structures which don’t enforce ordered

serialization (e.g. sets, maps, dicts) should be avoided. Because as explained earlier the leafs

compute the hash of data and update the whole path to the root.

20

3.2. TRANSACTIONS AND BATCHES CHAPTER 3. A DEEP DIVE INTO SAWTOOTH

3.2 Transactions and Batches

The way to modify the data on the ledger is with transactions. Transactions are proposed

directly by the clients and applied by the validator nodes. Thus causing changes to the ledger.

Transactions must be wrapped inside Batches, which is a list of Transactions. Batches and

Transactions are serialized with the use of Protocol Buffers [21].

3.2.1 Transaction Structure

Transaction is an atomic structure of data that is used to initiate smart contract execution on

the ledger.

Transaction

Byte[] Header

String Header Signature

Byte[] Payload

Figure 3.4: Transaction Structure

The fields of a transaction are defined as follows:

• Header: Is the serialized version of the transaction header (with the use of Protocol

Buffers). Contains metadata about the transaction.

• Header Signature: Transaction Header signed by the private key of the client who is

constructing the transaction.

• Payload: Payload is the serialized data that will determinate the changes to the ledger.

21

3.2. TRANSACTIONS AND BATCHES CHAPTER 3. A DEEP DIVE INTO SAWTOOTH

3.2.2 Transaction Header Structure

Transaction Header

String Batcher Public Key

String[] Dependencies

String Family Name

String Family Version

String[] Inputs

String[] Outputs

String Payload SHA512

String Signer Public Key

String Nonce

Figure 3.5: Transaction Header Structure

The fields of a transaction header are defined as follows:

• Batcher Public Key: The public ECDSA key using the secp256k1 curve of the entity

that will sign the batch that contains the transaction and send it to the ledger. Can be

the public key of the client if the batch is created by him.

• Dependencies: A list of transaction headers as hex strings. All the specified transac-

tions are needed to be added to the ledger before this transaction is processed. If the

transaction headers (that are unique) are not added to the ledger the transaction will

be added to a queue and will stay there until these transactions are added before being

processed.

• Family Name: The name of the transaction Family that will process the transaction.

• Family Version: The version of the transaction Family that will process the transac-

tion.

• Inputs: A list of radix addresses that the transaction family will need to read in order

to process the transaction. If during the processing transaction family tries to read from

address that isn’t in the list, then the transaction fails.

22

3.2. TRANSACTIONS AND BATCHES CHAPTER 3. A DEEP DIVE INTO SAWTOOTH

• Outputs: A list of radix addresses that the transaction family will need to modify

during the process of the transaction. If during the processing transaction family tries

to write to address that isn’t in the list, then the transaction fails.

• Payload SHA512: The digest of the payload using the SHA512 algorithm.

• Signer Public Key: The public ECDSA key using the secp256k1 of the client.

• Nonce: A random string.

3.2.3 Batch Structure

Batch is a list of transactions, it is required every transaction to be contained in a batch in

order to be processed by the transaction processor.

Batch

Byte[] Header

String Header Signature

Transaction[] Transactions

Figure 3.6: Batch Structure

The fields of a batch are defined as follows:

• Header: Is the serialized version of the batch header (with the use of Protocol Buffers).

Contains metadata about the batch.

• Header Signature: Batch Header signed by the private key of the batcher who is

constructing the batch.

• Transactions: Is a list of transactions that are included in the batch.

23

3.3. SAWTOOTH NETWORK CHAPTER 3. A DEEP DIVE INTO SAWTOOTH

3.2.4 Batch Header Structure

Batch

String Signer Public Key

String[] Transaction IDs

Figure 3.7: Batch Header Structure

The fields of a batch header are defined as follows:

• Signer Public Key: The public ECDSA key using the secp256k1 of the batcher in hex

form.

• Transaction IDs: The transaction headers serialized in hex form. It is important to be

in the same order as in the Transactions field in the batch.

3.3 Sawtooth Network

The network layer is responsible for communication between validators in a Sawtooth net-

work, including performing initial connectivity, peer discovery, andmessage handling. Upon

startup, validator instances begin listening on a specified interface and port for incoming

connections. Upon connection and peering, validators exchange messages with each other

based on the rules of a gossip or epidemic protocol.

A primary design goal is to keep the network layer as self-contained as possible. For

example, the network layer should not need knowledge of the payload of application mes-

sages, nor should it need application-layer provided data to connect to peers or to build out

the connectivity of the network. Conversely, the application should not need to understand

implementation details of the network in order to send and receive messages.

24

3.3. SAWTOOTH NETWORK CHAPTER 3. A DEEP DIVE INTO SAWTOOTH

Figure 3.8: High Level Overview [14]

Every node contains various components that help it do it’s role as described in the Saw-

tooth Glossary [17]:

• Validator: Component responsible for validating batches of transactions, combining

them into blocks, maintaining consensus with the Sawtooth network, and coordinating

communication between clients, transaction processors, and other validators on the

network. Each validator has the following components:

– State: Database that stores a local (validator-specific) record of transactions for

the blockchain. Sawtooth represents state in a single instance of a Merkle-Radix

tree on each Sawtooth node.

– Consensus Proxy: Interface that allows a consensus engine to interact with the

validator in order to handle consensus functionality in a separate process.

– BlockManagement Component: A component that is responsible for the block

management and validation. [18]

25

3.4. REST API CHAPTER 3. A DEEP DIVE INTO SAWTOOTH

– Transaction Handling Component: A component that is responsible for han-

dling transactions and creation of the blocks. [18]

– Interconnect: Responsible for the communication with the components of the

validator.

– Network Interface: A component that is responsible for the communication with

the peer to peer network.

• RESTAPI: In Sawtooth, a core component that adapts communicationwith a validator

to HTTP/JSON standards. Sawtooth includes a REST API that is used by clients such

as the Sawtooth CLI commands. Developers can use this RESTAPI or develop custom

APIs for client-validator communication.

• Consensus Engine: Sawtooth component that provides consensus-specific function-

ality for a Sawtooth node. The consensus engine runs as a separate process on the node

and communicates with the validator through the consensus API.

• Transaction Processor: Validates transactions and updates state based on the rules

defined by the associated transaction family.

3.4 REST API

Hyperledger Sawtooth provides a REST API that allows clients to interact with a validator.

It provides a simple interface for client use. It simply passes every request to the validator to

be authorized with signature verification or another strategy that is defined by a transaction

processor. The REST API process runs as a separate process, rather than as part of the

validator process. It treats the validator as a black box, simply submitting transactions and

fetching the results.

REST API Endpoint Specifications

Some of the requests a client can invoke are the following [20]:

• POST /batches: It is the main way that new batches are sent to the ledger to be added.

• GET /batches: Gets the list of accepted batches.

• GET /batch_statuses: Gets the status of the batch.

26

3.5. EVENTS CHAPTER 3. A DEEP DIVE INTO SAWTOOTH

• GET /state: Gets the addresses and data that exist in the Merkle tree. If it gets as

argument a address prefix it will return the list of addresses that have the same prefix

with their data.

• GET /blocks: Gets the blocks on the blockchain.

• GET /transactions: Gets the list of accepted transactions.

• GET /peers: Gets the list of peers on the network.

Using the above commands it creates a language neutral interface for communication between

client and the blockchain network, additionally it provides the transparency of the ledger.

3.5 Events

Sawtooth events [15] occur when blocks are committed — that is, the validator broadcasts

events when a commit operation succeeds — and are not persisted in state. Each transaction

family can define the events that are appropriate for its business logic.

An attribute is a key-value pair that contains transparent metadata about the event. The

key is the name of the attribute, and the value is the specific contents for that key. The same

key can be used for multiple attributes in an event.

A client can subscribe to events and stay in a blocking state while waiting for the network

to broadcast them. The events as stated contain a key-value pair where the client can filter

in order to get the events it is interested or are defined by the client’s logic. The subscription

happen through a ZMQ socket. Moreover a browser based applications can subscribe through

Web Sockets but the functionality is limited.

3.6 Consensus in Sawtooth

Hyperledger Sawtooth provides four different consensus algorithms to handle the consensus

process as written in the Sawtooth Glossary [17]:

• Devmode consensus: Simple random-leader consensus algorithm that can be used to

test a transaction processor on a single Sawtooth node. (Devmode is short for “devel-

27

3.6. CONSENSUS IN SAWTOOTH CHAPTER 3. A DEEP DIVE INTO SAWTOOTH

oper mode”.) Devmode consensus is not recommended for a multiple-node network;

it should not be used for production.

• Raft: Leader-based consensus algorithm that is designed for small networks with a

restricted membership. Raft is crash fault tolerant, not Byzantine fault tolerant, and

has finality (does not fork).

• Proof of Elapsed Time: Proof of Elapsed Time, a Nakamoto-style consensus algo-

rithm that is designed to support large networks. PoET does not have finality (can

fork). Sawtooth offers two version of PoET consensus:

– PoET-SGX relies on a Trusted Execution Environment (TEE), such as Intel®

Software Guard Extensions (SGX), to implement a leader-election lottery system.

PoET-SGX is sometimes called PoET/BFT because it is Byzantine fault tolerant.

– PoET simulator provides the same consensus algorithm on a system without

a Trusted Execution Environment. PoET simulator is also called PoET/CFT

because it is crash fault tolerant, not Byzantine fault tolerant.

• Practical Byzantine Fault Tolerance: Practical Byzantine Fault Tolerance, a voting-

based consensus algorithm with Byzantine fault tolerance (BFT) that has finality (does

not fork). Sawtooth PBFT extends the original PBFT algorithm with features such as

dynamic network membership, regular view changes, and a block catch-up procedure.

Practical Byzantine Fault Tolerance

PBFT was proposed in 1999 by Miguel Castro and Barbara Liskov [25]. It is a leader-

based and non-forking, unlike other lottery based algorithms. It does not support open-

enrollment, but nodes can be added and removed by an administrator and requires full peer-

ing.

A PBFT network consists of a series of peers, where n is the number of peers in the

network. There is a maximum number of “bad” peers that the PBFT network can tolerate.

As long as this number of bad nodes—referred to as the constant f—is not exceeded, the

network will work properly. For PBFT, the constant f is equal to one third of the peers in the

network or f = n−1
3
. No more than a third of the network (rounded down) can be “out of

order” or dishonest at any given time for the algorithm to work.

28

3.6. CONSENSUS IN SAWTOOTH CHAPTER 3. A DEEP DIVE INTO SAWTOOTH

As the network progresses, the peers move through a series of “views”. A view is a period

of time a node is the primary (leader) of the network. In other words peers take turns who

will be the primary. In a N peer network, the peer 0 is primary in the view 0, the peer 1

is primary in the view 1 and so on; when the view reaches N then it will start from peer 0

and repeat. An easy to find the primary node is by finding the modulo of the view with the

number of nodes. For example during the view 69 with a 7 peer network the node 6 is the

primary because 69 ≡ 6 (mod 7).

In addition to moving through a series of views, the network moves through a series of

sequence numbers. In Sawtooth PBFT, a node’s sequence number is the same as the block

number of the next block in the chain. For example, a node that is on sequence number 8 has

already committed block 7 and is evaluating block 8.

To commit a block and make progress, the nodes in a PBFT network go through three

phases Pre-prepare, prepare and commit.

Having the above in mind the following procedure takes place to commit a block:

• Pre-Prepare Phase: All peers begin in the PrePreparing phase; the purpose of this

phase is for the primary to publish a new block and endorse the block with a PrePrepare

message. The block is created and broadcasted through network gossip to the network.

Then the primary peer will send a pre-prepare message to all the the peers to endorse

the block. After a secondary peer validates the block it enters the preparing phase.

• Prepare Phase: In the Preparing phase, all secondary peers (not the primary) broadcast

a Prepare message that matches the accepted PrePrepare message. Once a peer has 2f

+ 1 Prepare messages in its log that match the accepted PrePrepare, it will move on to

the Committing phase.

• Commiting Phase: The Committing phase is similar to the Preparing phase; peers

broadcast a Commit message to all peers in the network, wait until there are 2f + 1

Commit messages in their logs, then move on to the Finishing phase. The only major

difference between the Preparing and Committing phases is that in the Committing

phase, the primary is allowed to broadcast a message.

• Finishing Phase: Once in the Finishing phase, each peer will tell its validator to com-

mit the block for which they have a matching PrePrepare, 2f + 1 Prepare messages,

29

3.7. A DAY IN THE LIFE OF A HYPERLEDGER SAWTOOTH TRANSACTIONCHAPTER 3. A DEEP DIVE INTO SAWTOOTH

and 2f+1 Commit messages. The node will then wait for a BlockCommit notification

from its validator to signal that the block has been successfully committed to the chain.

After receiving this confirmation, the node will update its state as follows: Increment

its sequence number by 1, update its current chain head to the block that was just

committed and reset its phase to PrePreparing.

Figure 3.9: Sawtooth PBFT Overview [19]

In case a new peer is added to the network or has fallen behind the Sawtooth implemen-

tation has a mechanism to catch up with the rest of the network. If, while waiting to receive

2f + 1 commit messages from its peers, a peer receives the next block in the chain, the peer

has an opportunity to short-circuit consensus. This is done by validating the consensus seal

in the new block and confirming that it is a valid proof for the block that the node is currently

trying to commit. If it is, then the node copies the commit messages from the consensus seal

into its own message log and commits the block.

3.7 A Day in the Life of a Hyperledger Sawtooth Transac-

tion

In this section we will sum up and explain the whole process of how a transaction is added

to the blockchain in a short and simple way without getting deep into technical details.

1. Transaction Creation: The transaction is created on the client side and added to a

batch.

2. Sending the Batch: Then the client sends the batch to the validator through the REST

API.

30

3.8. CROWDBED ARCHITECTURE CHAPTER 3. A DEEP DIVE INTO SAWTOOTH

3. Broadcasting the Batch: The validator checks the signature and makes sure the batch

is valid and broadcasts it to the other validators in the networks and store it to the local

memory.

4. Transaction Processing: The validator takes the transactions from the batch and sends

them to the transaction processor to process the transaction and get the new global state.

5. Block Creation: After an amount of transactions are complete the validator creates a

block and sends it to the other validators through network gossip with minimal infor-

mation (only the batch headers).

6. Block Validation: During the Pre-Preparing phase the seconadry peers validate the

block by running the transactions in the batches in the block and making sure they

produce the same global state using the radix merkle tree.

7. Reaching Consensus: Then the PBFT phases take place and consensus is reached and

finally the block is commited to the ledger by every validator.

8. Reading the Blockchain: Finally after the block is commited, everyone can query the

blockchain through the REST API and read the transaction contents.

3.8 CrowdBED Architecture

In this section we will discuss what were the choices for the CrowdBED architecture. Be-

cause Hyperledger is a flexible and modular system there were no many changes in the core

architecture.

3.8.1 CrowdBED Network

The CrowdBED Network architecture follows the architecture of the sawtooth network. The

reason is that the abstraction the Hyperledger Sawtooth provides, shifts the primary focus

from the network managment to the transaction family implementation.

But due the requirement of deadlines and the lack of support for submitting transactions

on specific time because of fear of skewed time between the peers. An additional lightweight

31

3.8. CROWDBED ARCHITECTURE CHAPTER 3. A DEEP DIVE INTO SAWTOOTH

component was implemented called batcher that keeps transactions and submits them on a

specific time. The requirements of CrowdBED transaction family are not affected by the

skewed time.

Figure 3.10: CrowdBED Overview

Additionally a single transaction processor was created for the CrowdBED needs. The

transaction family was named cbed.

3.8.2 CrowdBED Consensus

For the CrowdBED implementation PBFT consensus was chosen. The main reason it is

bevcause it is a Byzantine Fault tolerance, meaning it guarantees liveness and safety in of

the network even when some portion of the network is faulty or malicious. Additionally the

blockchain wont fork meaning there wont be two different versions of the ledger on different

set of nodes. Additionally it does not depend on the hardware like the PoET consensus.

But because of the consensus engine it is easy to swap different between different consensus

algorithms making it easy to choose the one that fits the system administrator’s requirements

32

CHAPTER 4. THE DATA ON THE LEDGER

Chapter 4

The Data on the Ledger

Contents

4.1 User . 34

4.2 Task . 35

4.3 Submission . 37

4.4 Lock . 38

4.5 Proof . 39

4.6 Validation . 40

4.7 Wrapper . 41

For Crowdsourcing to work, basic data types are needed to represent the whole process.

The basic are the Task and the Submission. But because the workers work for reward it is

important to have a data type User to represent the users that interact with the system. But

because the Sawtooth ledger is public and in order to keep the submissions private additional

data types were created called Lock and Proof. In order to close a task life a Validation

transaction is needed. Finally in order to have a simple network architecture the wrapper

data type was created. Each data type is explained in detain in this chapter.

As mentioned earlier, the data is stored in an addressable Merkle Radix tree. The ad-

dresses are calculated by the CrowdBED framework and will be explained for each entity.

Additionally it’s up to the developer to provide a method of serialization. For the serialization

protocol buffers fromGoogle were used to ensure correct serialization protocol across various

client implementations.

33

4.1. USER CHAPTER 4. THE DATA ON THE LEDGER

4.1 User

User data type contains user information and metadata. The main component is the User’s

Public key. The user is created once and then the reputation and tokens are modified accord-

ing to the user’s behaviour.

User

String Public Key

Double Reputation

Double Tokens

Figure 4.1: User Structure

• Public Key: The public key of the User. The key is a sepc256k1 public key. The value

is the hexadecimal representation of the key bytes.

• Reputation: The Current Reputation of the User.

• Tokens: The Tokens the user currently posses.

The address that we store an User is calculated the following way:

SHA512(”user”)[0:6] SHA512(Public Key)[0:64]

Figure 4.2: User Address

Note the SHA512(x) function calculates the hexadecimal representation of the output of

the SHA512 algorithm, and [a:b] notation returns the sub-array with indexes [a,b).

In order to calculate the address we get the namespace of the user data structure that is the

first 6 characters of the hexadecimal representation of the SHA512 digest of the string ”user”,

then the first 64 characters of the hexadecimal representation of the SHA512 digest of the

field Public Key. With this encoding we can support 2512 users.

When constructing the User transaction the input and output field must contain the User

address in order to be valid.

34

4.2. TASK CHAPTER 4. THE DATA ON THE LEDGER

4.2 Task

Task data type contains a task information and metadata. The during the task creation the

client should include the following values: Name, User, Deadline, Tokens, Code, Data, De-

scription and Lock. The fields will be validated for correctness from the transaction family.

The rest of the fields will be filled at the end of the validation.

Task

String Name

String User

Integer Deadline

Double Tokens

Boolean Validated

Byte[] Answer

Byte[] Code

Byte[] Data

Byte[] Description

String Lock

Boolean Locked

Figure 4.3: Task Structure

• Name: The Name of the task. Added on the task creation.

• User: The address on the ledger of the Requester. Added on the task creation.

• Deadline: The deadline of the task. Using the Unix time format. Added on the task

creation.

• Tokens: The amount of tokens the requester will pay for the task completion. The

amount is gathered from the requester at the task creation (will be subtracted from the

requester’s account) , and distributed to the workers after the task validation. Added

on the task creation.

35

4.2. TASK CHAPTER 4. THE DATA ON THE LEDGER

• Validated: A Boolean value to indicate if the task was validated. True if validated and

false if not.

• Answer: The accepted answer for the task. Added after the task validation.

• Code: The script that will process the data. Currently there is only Python3 support.

Added on the task creation.

• Data: The Data that will be processed. Added on the task creation.

• Description: The description of the task. Added on the task creation.

• Lock: A signed transaction header. After this transaction will be processed the sub-

missions will be added to the ledger. This field is an important component to ensure

the submissions will stay hidden until the end of the deadline.

• Locked: A Boolean variable that shows if the lock has applied to the task.

The address that we store a Task is calculated the following way:

SHA512(”task”)[0:6] SHA512(User)[0:32] SHA512(Name)[0:32]

Figure 4.4: Task Address

Note the SHA512(x) function calculates the hexadecimal representation of the output of

the SHA512 algorithm, and [a:b] notation returns the sub-array with indexes [a,b).

In order to calculate the address we gate the namespace of the task data structure that is

the first 6 characters of the hexadecimal representation of the SHA512 digest of the string

”task”, then the first 32 characters of the hexadecimal representation of the SHA512 digest

of the field User, and finally the first 32 characters of the hexadecimal representation of the

SHA512 digest of the field Name. With this encoding we can support 2256 users and each

user can have 2256 different task names. Additionally using this encoding we can easily use

the REST API to get the tasks by a specific user using the first 40 characters of the address

(the namespace and the user field).

When constructing the Task transaction the input field must contain the User address and

the Task address meanwhile the output filed should contain the Task address because if not

the transaction will be invalid.

36

4.3. SUBMISSION CHAPTER 4. THE DATA ON THE LEDGER

4.3 Submission

Submission data type contains a submission information and metadata. The during the sub-

mission creation the client should fill every field. The fields will be validated for correctness

from the transaction family.

Submission

String Task

Byte[] Data

String User

String Lock

String Proof

String Signature

Figure 4.5: Submission Structure

• Task: The address of the task that the submission was created for.

• Data: The worker’s answer to the task.

• User: The address of the user.

• Lock: The header of the lock transaction. The need for this field is to verify that the

submission can be added to the ledger without leaking the worker’s answer. It can be

found in the Task’s Locks field.

• Proof: The submissions proof address. In order to verify that the submission was

computed before the deadline.

• Signature: The signature of the data. Signed by the worker. A crucial component to

ensure the submission was created before the deadline.

The address that we store a Submission is calculated the following way:

SHA512(”submission”)[0:6] SHA512(Task)[0:32] SHA512(User)[0:32]

Figure 4.6: Submission Address

37

4.4. LOCK CHAPTER 4. THE DATA ON THE LEDGER

Note the SHA512(x) function calculates the hexadecimal representation of the output of

the SHA512 algorithm, and [a:b] notation returns the sub-array with indexes [a,b).

In order to calculate the address we gate the namespace of the task data structure that is

the first 6 characters of the hexadecimal representation of the SHA512 digest of the string

”submission”, then the first 32 characters of the hexadecimal representation of the SHA512

digest of the field Task, and finally the first 32 characters of the hexadecimal representation

of the SHA512 digest of the field User. With this encoding we can support 2256 tasks and

each task can have 2256 different submissions (from different users). Additionally using this

encoding we can easily use the REST API to get the submissions for a specific task using the

first 40 characters of the address (the namespace and the task field).

When constructing the Submission transaction the dependency field should contain the

lock field of the submission, the input field must contain the user and proof addresses and

the output field must contain the submission address and the user address otherwise the

transaction will be invalid.

4.4 Lock

Lock data type contains a lock information and metadata. A lock is submitted to the network

after the deadline of the task. The reason is the submissions are dependant to the lock trans-

actions. After the lock is submitted after and only after the submission will be processed.

The lock is created by the requester and sent to the batcher service where the batcher will

keep the lock until the deadline. The transaction header is saved in the Locks field of the

task. The fields will be validated for correctness from the transaction family.

Lock

String Task

Figure 4.7: Lock Structure

• Task: The address of the task that the lock was created for.

The locks are not saved in an address. It is only enough to include the transaction in a

block on the ledger to fulfill it’s purpose. When constructing the lock transaction the input

38

4.5. PROOF CHAPTER 4. THE DATA ON THE LEDGER

field must contain the task address otherwise the transaction will be invalid.

4.5 Proof

Proof data type contains a proof information and metadata. A proof is created by the worker

and submitted with the submission. Because the lock will be submitted after the deadline

this means the submission will be processed after the deadline, thus we implemented the

mechanism Proof of Submission that ensures that the submission was created and submitted

by the specific worker before the deadline. The proof is created by the worker and submitted

at the same time with the submission. During the proof creation every field should be filled.

The fields will be validated by the transaction family.

Proof

String Submission

String Task

String User

String Hignature

Figure 4.8: Proof Structure

• Submission: The submission address that will need the proof in order to be added.

• Task: The task address that the submission was created.

• User: The address of the worker.

• Hignature: A hexadecimal representation of the SHA512 digest of the signature of

the submission data.

The address that we store a Submission is calculated the following way:

SHA512(”proof”)[0:6] SHA512(Task)[0:32] SHA512(Submission)[0:32]

Figure 4.9: Proof Address

39

4.6. VALIDATION CHAPTER 4. THE DATA ON THE LEDGER

Note the SHA512(x) function calculates the hexadecimal representation of the output of

the SHA512 algorithm, and [a:b] notation returns the subarray with indexes [a,b).

In order to calculate the adress we get the namespace of the task data structure that is

the first 6 characters of the hexadecimal representation of the SHA512 digest of the string

”proof”, then the first 32 characters of the hexadecimal representation of the SHA512 digest

of the field Task, and finally the first 32 characters of the hexadecimal representation of

the SHA512 digest of the field Submission. With this encoding we can support 2256 tasks

and each task can have 2256 different proofs (from different users). Additionally using this

encoding we can easily use the REST API to get the submissions for a specific task using the

first 40 characters of the address (the namespace and the task field).

When constructing the Proof transaction the input field must contain the user and task

addresses and the output field must contain the proof and the user otherwise the transaction

will be invalid.

4.6 Validation

Validation is the data type that is responsible to start the validation for a task. The validation

can be submitted any moment after the deadline.

Validation

String Task

Figure 4.10: Validation Structure

• Task: Is the task address of the task that will do the validation.

When creating the transaction input and output fields must contain the task address, the

submissions addresses, the proofs addresses and the user addresses for every submission for

the task, otherwise the transaction will be invalid.

40

4.7. WRAPPER CHAPTER 4. THE DATA ON THE LEDGER

4.7 Wrapper

Because the protocol buffers can’t identify the data type of the serialised data in the payload

filed of the transaction. One way top process data was with the use of multiple transaction

processors in order to handle each data type. But that will increase the amount of containers

needed in order to maintain the network. A better approach is to create a Wrapper data type

that will be used to execute commands in the transaction family.

Wrapper

String Tribe

String Command

Byte[] Data

Figure 4.11: Wrapper Structure

• Tribe: The aim of this field is to determinate what type of data is serialized in the field

Data. Can get only values from the following set of strings {”Task”, ”Submission”,

”Lock”, ”Proof”, ”User”, ”Validation”} according what type of data was serialized in

the Data field.

• Command: This field is responsible on how will the data will be processed in the

transaction family.

• Data: The serialized data of the transaction.

When constructing the transaction, the fields of the transaction are the same as explained

previously for every data type.

41

CHAPTER 5. CROWDBED TRANSACTION FAMILY

Chapter 5

CrowdBED Transaction Family

Contents

5.1 When a Transaction Arrives . 43

5.2 New User Appears . 44

5.3 Task Creation . 44

5.4 Locking the Task . 46

5.5 Adding the Proof . 47

5.6 Submitting Answers . 48

5.7 Validation . 50

Transaction families are the logic of the Sawtooth Ledger. They are responsible for

processing every transaction and update the global state. When a transaction is applied the

transaction family gets as arguments the transaction and the context (the state of the ledger).

A transaction to be valid it must be executed from every peer in the network and be accepted

after consensus is reached with the PBFT algorithm. In this chapter will be discussed how

the transaction family of CrowdBED operates.

Before implementing the CrowdBED some technical details must be defined like the

FamilyName, FamilyVersion and the Namespaces of the transaction family. The Fami-

lyName is ”cbed”, the FamilyVersion is ”1.0”. Because cbed transaction family handles

multiple data types and each is saved in a different namespace the following namespaces are

used:

42

5.1. WHEN A TRANSACTION ARRIVESCHAPTER 5. CROWDBED TRANSACTION FAMILY

• Namespace 366785: Is the namespace for Tasks and is calculated using the calculation

SHA512(”task”)[0:6].

• Namespace 5e34c8: Is the namespace for Submissions and is calculated using the

calculation SHA512(”submission”)[0:6].

• Namespace d570ab: Is the namespace for Locks and is calculated using the calculation

SHA512(”lock”)[0:6].

• Namespace 2178da: Is the namespace for Proofs and is calculated using the calculation

SHA512(”proof”)[0:6].

• Namespace b14361: Is the namespace for Users and is calculated using the calculation

SHA512(”user”)[0:6].

5.1 When a Transaction Arrives

As stated each transaction sent to cbed Transaction Family is serialized using the Wrapper

Data type. The first thing cbed does is to get the transaction payload and unmarshal the byte

array using the proto.Unmarshal() method. After the wrapper is deserialised, depending what

value is set in the Tribe field the Transaction Family will act. If non of the predetermined

values are set, the transaction is invalid.

43

5.2. NEW USER APPEARS CHAPTER 5. CROWDBED TRANSACTION FAMILY

5.2 New User Appears

When a User Registration is issued the following procedure takes place:

Algorithm 1: User Registration

Data: TransactionHeader, User, Context

Result: A new User is Registered

if !UserExists(TransactionHeader.PublicKey) then

InitializeReputation(User);

Context.SetAddress(UserAddress(User), User);

else

error(”InvalidTransaction”);

end

In order to keep anonymity on the network the only requirement is to not have a registered

account. The reputation is initialized and the user is registered. Note that in the current

implementation Users define how many tokens they have. After the process is complete the

user is registered in the ledger and the data about him is stored in the merkle radix tree.

5.3 Task Creation

Tasks contains the task information by the requester. When a Task Creation is initiated the

following procedure takes place in the transaction family:

44

5.3. TASK CREATION CHAPTER 5. CROWDBED TRANSACTION FAMILY

Algorithm 2: Task Creation

Data: TransactionHeader, Task, Context

Result: A new Task is Added

if UserExists(TransactionHeader.PublicKey) and

Task.User==UserAddress(TransactionHeader.PublicKey) and !TaskExists(Task)

then

User=Context.getAddress(Task.User);

if User.Tokens >Task.Tokens then

User.Tokens=User.Tokens-Task.Tokens;

Context.SetAddress(Task.User, User);

Task.Validated=False;

Task.Locked=False;

Context.SetAddress(TaskAddress(Task), Task);

Context.CreateEvent(”cbed/NewTask”, TaskAddess);

else

error(”InvalidTransaction”);

end

else

error(”InvalidTransaction”);

end

When a Task creation is proposed some checks must take place before the task is created

in order to be valid. The transaction family will check if the user exists based on the public

key that signed the transaction, if the user field in the task matches the expected user address

and if the task doesn’t already exists (a task is defined by the name and the user posting

it), in case it exists the transaction is invalid. After that the Transaction Family checks if the

requester has enough tokens to propose the task and adds it to the ledger. After the transaction

will be added to a block and then to the blockchain, an event will broadcasted that a new task

was created.

45

5.4. LOCKING THE TASK CHAPTER 5. CROWDBED TRANSACTION FAMILY

5.4 Locking the Task

As mentioned locks are responsible for keeping the Submission hidden until the deadline

passes. They are submitted after the deadline and allow the submissions to be added to the

ledger. When a lock is added the following procedure takes place:

Algorithm 3: Adding the Lock

Data: TransactionHeader, Lock, Context

Result: A Lock transaction is added

if TaskExists(Task) then

Task=Context.getAddress(Lock.Task);

if Task.User==UserAddress(TransactionHeader.PublicKey) and

isAfterDeadline(Task.Deadline) and ¬ Task.Locked then

Task.Locked=true;

Context.setAddress(TaskAddress(Task), Task);

else

error(”InvalidTransaction”);

end

else

error(”InvalidTransaction”);

end

The transaction family ensures that task exists and that the lock was created by the re-

quester who posted the task. Finally it is important that the lock is submitted after the deadline

because if a lock is added before the deadline then the submissions that depend on it will

become public and can then be stolen.

Batcher Service

The existence of locks means that the requester must manually submit the lock in order

to get the submissions. In order to solve this tedious responsibility batcher service was

implemented. It is an additional process on every node in the CrowdBED network. The

main responsibility is to collect locks and when the deadline arrives, it will submit them to

the ledger.

It is implemented in Golang and every lock is just a goroutine to keep it light as possible.

46

5.5. ADDING THE PROOF CHAPTER 5. CROWDBED TRANSACTION FAMILY

The lock submission happens a through gRPC. The protocol is that the requester requests the

public key of the batcher in order to create the transaction header and then sends the lock

transaction to the batcher to keep the lock until the deadline comes.

Figure 5.1: Batcher

But because if we have one batcher in case of a fault the submissions wont appear at the

ledger. To solve this issue multiple batchers are created in order to keep the service robust.

In the current implementation every Node in the CrowdBED network has a Batcher proccess

running on port 7000. It is a lightweight solution because the amount of locks that will be held

are as the number of unfinished tasks, each lock is held in an goroutine and it is in a blocking

state until the deadline arrives. So a requester just needs to send the Lock transaction to all

nodes in the network to keep it until the deadline. The IP of the nodes can be easily found

with the use of REST API provided by the core Sawtooth implementation. The only lock

that will be added will be the first one because it will change the state of the Task to locked,

thus reducing the amount of transactions on the ledger.

Finally after submitting the lock transaction, after some time the batcher service generates

the validation transaction and submits it to the ledger.

5.5 Adding the Proof

The Proof transaction is a way to ensure the specific worker calculated the data of his sub-

mission before the deadline. When a proof is added the following procedure takes place:

47

5.6. SUBMITTING ANSWERS CHAPTER 5. CROWDBED TRANSACTION FAMILY

Algorithm 4: Adding the Proof

Data: TransactionHeader, Proof, Context

Result: A Proof is added

if UserExists(TransactionHeader.PublicKey) and TaskExists(Proof.Task) and

SubmissionAdress(Proof.Task,

TransactionHeader.PublicKey)==Proof.Submission then

Task=Context.getAddress(Proof.Task);

if ¬ Task.Locked then
Context.setAdress(ProofAddress(Proof), Proof);

else

error(”InvalidTransaction”);

end

else

error(”InvalidTransaction”);

end

When a Proof is added the transaction family checks if the user is registered, the task

exists and if the submission is for that task is the specific for that user. After that checks if it

is submitted before the deadline in order to ensure that the submission was generated before

the deadline. When everything is alright the proof is saved on the ledger.

5.6 Submitting Answers

The submission is the answer of the worker for a task. When a submission is submitted the

following procedure takes place:

48

5.6. SUBMITTING ANSWERS CHAPTER 5. CROWDBED TRANSACTION FAMILY

Algorithm 5: Adding a Submission

Data: TransactionHeader, Submission, Context

Result: A Submission is added

if UserExists(TransactionHeader.PublicKey) and TaskExists(Submission.Task) and

!SubmissionExists(Submission) and ProofExists(Submission.Proof) then

Task=Context.getAddress(Submission.Task);

Proof=Context.getAddress(Submission.Proof);

if Task.Locked and ProofOfSubmission(Proof, Submission,

TransactionHeader.PublicKey) then

Context.setAdress(SubmissionAddress(Submission), Submission);

else

error(”InvalidTransaction”);

end

else

error(”InvalidTransaction”);

end

When receiving a submission the transaction family checks if the Task, User and Proof

exist. Aditionally checks that the submission doesn’t exist in order to ensure one submission

is added per task for every user. After that we check if the submission is after the deadline

and if passes the proof of submission. If everything is alright then the submission is placed.

Proof of Submission

Algorithm 6: Proof of Submission

Data: Proof, Submission, PublicKey

Result: True if the proof holds, False otherwise

if VerifySignature(Submission.Signature, Submission.Data, PublicKey) and

SHA512(Submission.Signature)==Proof.Hignature then

return True;

else

return False;

end

It is a simple way to ensure that a user created the specific submission before the deadline.

There is a small window between the deadline and the validation we must ensure that when

49

5.7. VALIDATION CHAPTER 5. CROWDBED TRANSACTION FAMILY

submissions go public someone wont copy and submit them as their own submission. So

there is a need to prove that a worker submitted before the deadline.

One approach is for proof to use the digest of the submission data and submit it as proof.

This can be easily exploited because a malicious user can get this digest generate a proof

with this digest and submit the proof. When this specific submission becomes public the

malicious will steal the submission and submit it before the deadline. Other approach is to

use the signature but this doesn’t make much difference with the previous case because the

public key is displayed in the transaction header and the malicious user can just decode the

digest generate a proof and sign the digest with his key and then steal the submission in the

deadline-validation window.

Given that every signature is distinct, that cryptographic hash functions (in this case

SHA512) are one way functions. When publishing the digest of the signature it is impossible

for someone to get the digest of the submission data. Because every proof for the same result

will be unique for every worker.

Suppose some the answer for a task is D and two different workers computed the same

result. In order to get the signature first we need to hash the data and then encrypt it with the

private key. We know that for every user the private/public key pair is unique. That means:

Encrypt(SHA512(D), privKeyx)! = Encrypt(SHA512(D), privKeyy)

Finally thanks to the collision and pre-image resistance resistance it is almost impossible that:

SHA512(Encrypt(SHA512(D), privKeyx)) = SHA512(Encrypt(SHA512(D), privKeyy))

Meaning it is almost impossible to break Proof of Submission and can easily be used to prove

that a specific worker submitted a specific submission and it is impossible for a malicious

worker to steal other worker’s work. Meaning it can provide the possibility for validation to

happen even long time after the deadline period.

5.7 Validation

The validation is the final stage of a task’s life. It is when submissions are validated, users

rewarded or punished and the answer is chosen. It is the most Important operation in the

Transaction Family because it is responsible for the reputation changes, token distribution

50

5.7. VALIDATION CHAPTER 5. CROWDBED TRANSACTION FAMILY

and a task’s answer. Having a correct validation procedure is crucial for the CrowdBED’s

goal. Assuming that the tasks are deterministic the following procedure takes place:

Algorithm 7: Validation of a Task

Data: TaskAddress, Context

Result: Validate the Submissions of a Task

if AddressExists(TaskAddress) then

Task=Context.getAddress(TaskAddress);

if isAfterDeadline(Task.Deadline+SubmissionWindow) then

Proofs[]=Context.getAddresses(ProofPrefix(Task));

Users, Submissions=GetUsersAndSubsFromProofs(Proofs);

Answer, HowMany=FindAnswer(Submissions, Users);

if HowMany=0 then

Requester=Context.getAddress(Task.User);

Requester.Tokens+=Task.Tokens;

Context.setAddress(UserAdress(Requester), Requester);

else

RewardAndPunishment(Users, Submissions);

end

Task.Answer=Answer;

Task.Validated=True;

context.setAddress(TaskAddress(Task), Task);

else

error(”InvalidTransaction”);

end

else

error(”InvalidTransaction”);

end

Firstly the transaction family checks if the task exists. Then checks happens after the

deadline plus some small submission window, this window is the time when submissions

are added to the ledger and in order to proceed correctly with validation. Thanks to Proof

of Submission it is impossible to add more submissions than the ones that have proof added

before the deadline, and proofs after the deadline are not accepted. Meaning the window can

51

5.7. VALIDATION CHAPTER 5. CROWDBED TRANSACTION FAMILY

be indefinitely long.

Other approach would be to add submission dependencies to the validation transaction

header, meaning the validation will start the moment all submissions are added. But no one

can guarantee that a worker will add the submission although he added the proof resulting in

a deadlock.

After that all the proofs for the task are collected using the common prefix of the addresses

(40 first characters) and after using the proof data we acquire the workers who submitted

and the submissions. It is important to use proofs and not submissions because as stated

previously there is no guarantee that if a proof exists then the submission exists meaning

there may be some workers that didn’t follow the submission protocol.

After gathering the workers and the submissions everything is ready for the validation.

Currently there is simple procedure where the answer with the most occurrences is chosen.

The data inside the submissions are passed through SHA512 hash function and then compare

their digests. If there are no submissions the tokens of the task return to the requester.

Otherwise iterating through every worker and checking if his submission data is the same

as the answer. If it is the user gets reward and reputation increase, if not or the submission is

missing then the worker gets punished. In the current implementation the tokens are divided

evenly among the workers that gave the correct answer and increase/decrease the reputation

by 1 if the answer is correct or missing or wrong.

The way the final answer is chosen and how reward and punishment can be easily updated

according to system administrator’s needs for a better reputation/reward scheme.

52

CHAPTER 6. CROWDBED CLIENT

Chapter 6

CrowdBED Client

Contents

6.1 Generating a User . 54

6.2 Requester . 55

6.3 Worker . 57

6.4 Validation . 59

Here will be explained how a CrowdBED client should be implemented in order to inter-

act with the Network. A client is expected to do the following operations:

• Generate and register a new user.

• Create a Task.

• Submit a Submission.

• Read from the Ledger.

The current implementation is implemented as a Command Line Interface and serves as an

example how a client can be implemented. Because data is serialized using Protocol Buffers

gives the opportunity for developers to implement a Client using their preferred language that

supports protocol buffers and gRPC.

53

6.1. GENERATING A USER CHAPTER 6. CROWDBED CLIENT

6.1 Generating a User

Before any user can interact with the ledger he need to create an account on the ledger in

order to keep the reputation and token amount of the user.

Algorithm 8: Creation of a User

Result: User Creation on the Client Side

privateKey=GenerateSecp256k1Key();

SaveLocally(privateKey);

User=getUser(privateKey);

Transaction=GetUserTransaction(User);

Batch=CreateBatch(Transaction);

SendBatchToLedger(Batch);

The user creation is pretty simple. Anyone can generate a Secp256k1 key pair and use

the public key as Identification for the ledger. After that the key is saved locally, because

without you can’t do anything on the ledger with this user. Then the transaction is created

and afterwards the batch is generated and sent.

User Transaction Header

Batcher Public Key=User Public Key

Dependencies=[]

Family Name=”cbed”

Family Version=”1.0”

Inputs={UserAddress}

Outputs={UserAddress}

Payload SHA512=SerializedUser

Signer Public Key=User Public Key

Figure 6.1: User Transaction Header Structure

In order for the transaction to be processed correctly the user address should be added in

the inputs and outputs section, if it is not added the transaction will be invalid the moment

when it will try to access this address.

54

6.2. REQUESTER CHAPTER 6. CROWDBED CLIENT

In the current implementation the user defines how much tokens he has in possession.

6.2 Requester

A requester is the user that creates and adds the task to the ledger.

Algorithm 9: Creation of a Task

Result: Task Creation on the Client Side

name=getTaskName();

privateKey=readPrivateKey(keyLocation);

lock=getTaskLock(name, privatekey.getPublicKey());

description=getTaskDescription();

tokens=getTaskTokens();

code=getTaskCode();

data=getTaskData();

task=getTask(pricateKey.getPublicKey(), name, data, code, task, tokens, lock);

Transaction=GetTaskTransaction(task);

Batch=CreateBatch(Transaction);

SendBatchToLedger(Batch);

Transaction=GetTaskTransaction(lock);

Batch=CreateBatch(Transaction);

IPs=GetPeerIPs();

foreach batcherIP ∈ IPs do

SendBatchToBatcher(Batch, batcherIP);

end

The requester must undergo the following procedure. He must first get the metadata of

the task: name, description, code, input data, tokens and requester’s public key. After getting

the task name and the public key he can generate the lock transaction for the task. Then the

task transaction is generated and submitted directly to the ledger.

The Lock transaction replicated and sent to every peer in the network. Specifically to

the batcher process that runs on the peer. The reason is that if the lock transaction is lost

then the submissions will be lost. Thus fault tolerance is crucial in the lock mechanism, and

because the lock processing in the transaction family is designed in a way that at least one

55

6.2. REQUESTER CHAPTER 6. CROWDBED CLIENT

lock is submitted we get a high degree of fault tolerance. Even if the lock transaction is lost

the requester can recreate the lock using the public key and the task name and send it to the

ledger after the deadline in order to get the submissions unlocked.

Task Transaction Header

Batcher Public Key=User Public Key

Dependencies=[]

Family Name=”cbed”

Family Version=”1.0”

Inputs={UserAddress, TaskAdress}

Outputs={UserAddress, TaskAdress}

Payload SHA512=SerializedTask

Signer Public Key=User Public Key

Figure 6.2: Task Transaction Header Structure

When creating the task transaction header the client must add the user and task addresses

in the input and the output fields. If they are not specified the task transaction will fail.

Lock Transaction Header

Batcher Public Key=User Public Key

Dependencies=[]

Family Name=”cbed”

Family Version=”1.0”

Inputs={TaskAdress}

Outputs={TaskAdress}

Payload SHA512=SerializedLock

Signer Public Key=User Public Key

Figure 6.3: Lock Transaction Header Structure

When creating the task transaction header the client must add the task address in the input

and the output field. If they are not specified the task transaction will fail.

56

6.3. WORKER CHAPTER 6. CROWDBED CLIENT

6.3 Worker

The worker is the user that submits the submission for a task.

Algorithm 10: Creation of a Submission

Result: Submission Creation on the Client Side

taskAdress=getTaskAdress();

privateKey=readPrivateKey(keyLocation);

task=getTaskData(TaskAdress);

answer=execute(task);

signature=sign(answer, privateKey);

hignature=SHA512(signature);

proof=getProof(hignature, taskAdress, privateKey.getPublicKey());

submission=getSubmission(answer, privateKey.getPublicKey(), task,

proofAddress);

Transaction=GetProofTransaction(proof);

Batch=CreateBatch(Transaction);

SendBatchToLedger(Batch);

Transaction=GetSubmissionTransaction(submission);

Batch=CreateBatch(Transaction);

SendBatchToLedger(Batch);

The worker does the following procedure in order to submit his answer to the ledger.

It is only required to have the task address for the worker to access the task. Before doing

anything else the worker reads the private key from the key location, because without it he

can’t submit. After that he requests the task from the ledger and downloads the task. After

that executes the task code with input the data provided by the requester and takes the answer.

Then the client must create the proof for the submission. First he signs the data and then gets

the digest after applying the SHA512 algorithm. After that he generates the submission and

proof transactions and submits them directly to the ledger. The whole procedure must take

place before the deadline because the proof wont be accepted.

57

6.3. WORKER CHAPTER 6. CROWDBED CLIENT

Submission Transaction Header

Batcher Public Key=User Public Key

Dependencies={Task.Lock}

Family Name=”cbed”

Family Version=”1.0”

Inputs={TaskAdress, SubmissionAdress, ProofAdress}

Outputs={TaskAdress, SubmissionAdress, ProofAdress}

Payload SHA512=SerializedSubmission

Signer Public Key=User Public Key

Figure 6.4: Submission Transaction Header Structure

In order for the submission to be valid the input and output field on the transaction header

must include task, proof and submission addresses. Additionally it is important that the

dependencies field ontain the task lock header (that can be found in the task lock field).

The reason is that without the dependency the submission will be shown before the deadline.

The client can submit anytime the transaction before the validation.

Proof Transaction Header

Batcher Public Key=User Public Key

Dependencies={}

Family Name=”cbed”

Family Version=”1.0”

Inputs={TaskAddress, ProofAddress, UserAddress}

Outputs={TaskAddress, ProofAddress, UserAddress}

Payload SHA512=SerializedProof

Signer Public Key=User Public Key

Figure 6.5: Proof Transaction Header Structure

For a proof to be accepted the transaction header of a transaction must contain the proof,

task and user addresses. Otherwise the transaction will be invalid. Note that it is important

58

6.4. VALIDATION CHAPTER 6. CROWDBED CLIENT

to submit the proof before the deadline.

Automating the Submissions

In the current implementation a worker has the option to start the client in background mode.

When a task is added to the ledger an event is created and broadcasted to the subscribers.

Meaning that a client can subscribe for task creations and be be in a blocked state until a task

is broadcast ed. After a task is added to the ledger the worker will unblock and automatically

get the task, calculate the answer and submit it to the ledger in a SETI@Home fashion.

6.4 Validation

The validation is the transaction that initiates the transaction. Currently the validation trans-

action is generated in the batcher service.

Algorithm 11: Creation of a Validation

Result: Validation Creation on the Batcher Side

taskAdress=getTaskAdress();

proofprefix=getTaskProofs(taskAddress);

proofs=getProofs(proofPrefix);

useraddresses, submissionaddresses, proofaddresses=getAddresses(proofs);

validation=getValidation(getTaskAddress);

Transaction=getValidationTransaction(validation, useraddresses,

submissionaddresses, proofaddresses);

Batch=CreateBatch(Transaction);

SendBatchToLedger(Batch);

The procedure for a validation transaction to be created is the following. Knowing the

task address after the deadline the client requests from the ledger the proof list and gets the

proof, user and submission addresses. These addresses are required for the transaction family

to validate the submissions. After that the validation transaction is generated and sent to the

ledger. The validation must be submitted after the deadline, the reason is that the submissions

must be added before the validation.

59

6.4. VALIDATION CHAPTER 6. CROWDBED CLIENT

Validation Transaction Header

Batcher Public Key=User Public Key

Dependencies={}

Family Name=”cbed”

Family Version=”1.0”

Inputs={TaskAddress, RequesterAddress, ProofAddress1, · · · , P roofAddressn ,

WorkerAddress1, · · · ,WorkerAddressn, SubmissionAddress1, · · · , SubmissionAddressn}

Outputs={TaskAddress, RequesterAddress, ProofAddress1, · · · , P roofAddressn,

WorkerAddress1, · · · ,WorkerAddressn, SubmissionAddress1, · · · , SubmissionAddressn}

Payload SHA512=SerializedValidation

Signer Public Key=User Public Key

Figure 6.6: Validation Transaction Header Structure

The transaction header must include the addresses of the requester, the task , the workers

who submitted, the submissions and the proofs. Without the above addresses the validation

won’t be able to complete.

60

CHAPTER 7. IMPLEMENTATION

Chapter 7

Implementation

Contents

7.1 CrowdBED Project Structure . 62

7.2 CrowdBED Client . 63

7.2.1 Register User . 63

7.2.2 Add Task . 64

7.2.3 Add Submission . 64

7.2.4 Work . 65

7.2.5 List . 66

7.3 Running Docker Simulations . 68

7.4 Deployment on a Real Network . 69

In this chapter we will discuss how we implemented CrowdBED. We will talk about the

project structure (the full code implementation will be in the Appendix), how the current

client operates and how to start a network simulation and how to start a real network using

different machines fore the implementation.

61

7.1. CROWDBED PROJECT STRUCTURE CHAPTER 7. IMPLEMENTATION

7.1 CrowdBED Project Structure

A brief explanation of the CrowdBED project structure:

CrowdBED: The root directory

Batcher: This folder contains the batcher implementation

Client: This folder contains the client implementation and test scripts

CrowdBED API: This folder is the CrowdBED library

batcherrpc: Batcher gRPC configuration

blockchain: Functions that interact with the blockchain

crowdsourcing

Submission: Functions for Submission and Proof Data Types

Task: Functions for Task and Lock Data Types

hashtools: Hashing Tools

reputation

User: Functions for User Data Type

Validation: Functions for Validation Data Type

Tribes: Proto file that defines the CrowdBED data types

unlock:Tools for key managment

Transaction Family: This folder contains the cbed TF implementation

DockerNetworks: Docker Network simulations

SingleNode.yaml: Single Node simulation with Devmode consensus

PBFT-Network.yaml: Network simulation with PBFT consensus

Node: PBFT CrowdBED node containers

FirstNode.yaml: The first node of the network

OtherNodes.yaml: The other nodes in the network

Install.sh: Installation script

makefile: make commands for compilation and deployment automation

62

7.2. CROWDBED CLIENT CHAPTER 7. IMPLEMENTATION

7.2 CrowdBED Client

The CrowdBED client is implemented as a Command Line Interface using Golang. The CLI

works with arguments and supports the following operations:

• Register User

• Add Task

• Add Submission

• Work

• List

– Submissions of a Task

– Tasks

– Users

The commands follow the following pattern:

./Client -key=<key location> -IP=<IP of one of the peers in the

↪→ CrowdBED network> -tribe=<The command the client will follow>

After the Tribe there will be a tail of data depending on the Tribe argument the client will

execute. The details based how it is structured will be explained in the subsections.

7.2.1 Register User

To register a user the client must run the client process with the following way

./Client -key=<Key to be saved or use location> -IP=<IP of one of the

↪→ validators> -tribe=User Register

the key argument will go to the location mentioned if it contains a key then it will use it for

user registration (meaning that a user can use a key that was used in the past) otherwise a new

key will be generated. An example will be:

./Client -key=adamos.pem -IP=127.0.0.1 -tribe=User Register

63

7.2. CROWDBED CLIENT CHAPTER 7. IMPLEMENTATION

7.2.2 Add Task

To add a task the client must run the client process with the following way:

./Client -key=<key location> -IP=<IP of one of the validators> -tribe=

↪→ Task Add <Name of the task> <Tokens> <The python3 script> <input

↪→ file> <task description>

The key argument finds the key of the requester, it is important that the user is registered on

the CrowdBED network. The IP could be any IP of a peer in the CrowdBED network. Then

after tribe argument ”Task Add” must written and after that the name of the task, the amount

of tokens the requester wishes to pay, the location of the python3 script, the location of the

input file and the location of the task description. An example:

./Client -key=adamos.pem -IP=127.0.0.1 -tribe=Task Add Sum 42.0 Sum/sum

↪→ .py Sum/input.txt Sum/description.txt

In order to show the simplicity of the task creation the following code is the code of the task:

a=input()

a=a.split()

sum=0

for x in a:

sum+=int(x)

print(sum)

and the input data:

45 67 98 103

It is important that the code is deterministic or has a very high probability that it will produce

the same result every time, because of the freedom of answer format the answers are validated

based on the digest.

7.2.3 Add Submission

To add a submission the command should follow the following the following pattern:

./Client -malicious=<To be or not to be> -key=<Key location> -IP=<IP of

↪→ one of the validators> -tribe=Submssion Add <Task Address>

64

7.2. CROWDBED CLIENT CHAPTER 7. IMPLEMENTATION

The key argument finds the key of the worker, it is important that the user is registered on

the CrowdBED network. The IP could be any IP of a peer in the CrowdBED network. Then

after tribe argument ”Submission Add” the task address must be added. Then the Client

will download the task script/data and run it locally and send the answer to the ledger. The

malicious argument is just a boolean argument that if it set true then it will send ”HelloWorld”

as an answer to the ledger (it was used to test implementation correctness). An example run

is the following:

./Client -malicious=False -key=adamos.pem -IP=127.0.0.1 -tribe=

↪→ Submission Add 3667854231

↪→ eaaf9704c81d700bb4b7a4f1b78a6189278b21a4ddf3ca77f10ac8182939

The address can be found from the List command. Additionally the client can’t check if

the code that is running, if it is malicious or because of the halting problem if it will stop. But

possible solutions would be to add a time limit and run the client inside a container.

7.2.4 Work

If a worker doesn’t want do manually every task, an automated solution was implemented. In

a SETI@home fashion the client has the ability to run in the background and do automatically

every task is added to the ledger. It is possible with the Sawtooth events that the client

subscribes to. In order to do this the following pattern should be written:

./Client -key=<Key location> -IP=<IP of one of the validators> -tribe=

↪→ Work

An example run will be:

./Client -key=adamos.pem -IP=127.0.0.1 -tribe=Work

With this call the worker can leave the machine and have the CrowdBED client do all the

job automatically. It waits for task creation events in a blocking state, after a task is created

the event is broadcasted and the client creates a submission for that task (by following the

submission procedure) and then waits for the next task.

65

7.2. CROWDBED CLIENT CHAPTER 7. IMPLEMENTATION

7.2.5 List

It is the way anyone can read from the ledger and see at any moment. The pattern for listing

tasks and users is:

./Client -key=<Key location> -IP=<IP of one of the validators> -tribe=

↪→ List <Tasks or Users>

meanwhile for task submissions is:

./Client -key=<Key location> -IP=<IP of one of the validators> -tribe=

↪→ List Submissions <Task Address>

with the following examples:

./Client -key=adamos.pem -IP=127.0.0.1 -tribe=List Tasks

./Client -key=adamos.pem -IP=127.0.0.1 -tribe=List Users

./Client -key=adamos.pem -IP=127.0.0.1 -tribe=List Submission

↪→ 3667854231

↪→ eaaf9704c81d700bb4b7a4f1b78a6189278b21a4ddf3ca77f10ac8182939

It is a user friendly way to present the ledger data. In the future a Graphical User Interface

could be written for a better presentation.

Figure 7.1: Task List

66

7.2. CROWDBED CLIENT CHAPTER 7. IMPLEMENTATION

Figure 7.2: Submissions List for Sum Task

Figure 7.3: User List

67

7.3. RUNNING DOCKER SIMULATIONS CHAPTER 7. IMPLEMENTATION

7.3 Running Docker Simulations

There are two docker compose files that run CrowdBED simulations, the one is for one node

for development and the other is for a PBFT network simulation with five nodes.

The single node deployment was used mainly for transaction family testing, that the logic

is correct.

Figure 7.4: Single Node Deployment

In order to start a single node deployment for testing run the following command:

make OneNode

The above command builds the batcher and cbed transaction family images and starts the

containers for a single node deployment.

The PBFT simulation network was used to run a simulation to check network correctness.

In order to run a PBFT network simulation with five nodes run the following command:

make PBFT-Net

The above command builds the cbed Transaction Family and batcher and starts a PBFT

network. During the execution PBFT logs will appear like view change and block proposals.

68

7.4. DEPLOYMENT ON A REAL NETWORK CHAPTER 7. IMPLEMENTATION

Figure 7.5: PBFT Network Deployment

7.4 Deployment on a Real Network

After testing on network simulations using docker containers a proof of concept execution is

needed. For starting a real deployment it takes some additional steps. For a PBFT network

to start there is a requirement of at least four nodes to create the initial network in order to

ensure Byzantine Fault Tolerance.

For the network start, a node must create the genesis block that contains at least four

public keys. The keys are generated on every node and are sent to the first node to start the

network. Then every node starts and connects to all the nodes in the network. For the current

network five nodes were deployed, the one was provided by Algolysis and the others are

deployed in AWS.

69

7.4. DEPLOYMENT ON A REAL NETWORK CHAPTER 7. IMPLEMENTATION

Before deployment on the validator container configuration at the –endpoint field add the

IP of the machine:

...

sawtooth-validator -vv \

\bfseries --endpoint tcp://<insert IP here>:8800 \

--bind component:tcp://eth0:4004 \

--bind consensus:tcp://eth0:5050 \

--bind network:tcp://eth0:8800 \

--scheduler parallel \

--peering static \

--maximum-peer-connectivity 10000

...

The first node is responsible for the genesis node and must configure the PBFT with the

kkeys of the other nodes so in the sawtooth.consensus.pbft.members field when a proposal

would be made should contain the keys (note that it’s not the location of the keys) in the

FirstNode.yaml file:

...

sawset proposal create \

-k /etc/sawtooth/keys/validator.priv \

sawtooth.consensus.algorithm.name=pbft \

sawtooth.consensus.algorithm.version=1.0 \

sawtooth.consensus.pbft.members=\\['\"'$$(cat <Public key file 1>)

↪→ '\"', ... , '\"'$$(cat <Public key file N>)'\"'\\]\

sawtooth.publisher.max_batches_per_block=1200 \

-o config.batch

...

then just by calling:

make GenesisNode

tjhe first node will be deployed. After that for every node to start in the OtherNodes.yaml

file in the validator container configuration every other node that started in the network must

be added to the –peers argument:

70

7.4. DEPLOYMENT ON A REAL NETWORK CHAPTER 7. IMPLEMENTATION

sawtooth-validator -vv \

--endpoint tcp://validator:8800 \

--bind component:tcp://eth0:4004 \

--bind consensus:tcp://eth0:5050 \

--bind network:tcp://eth0:8800 \

--scheduler parallel \

--peering static \

--maximum-peer-connectivity 10000 \

--peers tcp://<IP of Node 1>:8800 \

...

--peers tcp://<IP of Node j-1>:8800

and deploy the node with:

make FatherNode

For more details we refer to the official Sawtooth documentation [13].

71

CHAPTER 8. CONCLUSION

Chapter 8

Conclusion

Contents

8.1 Summary . 72

8.2 Challenges . 73

8.3 Future Work . 73

8.3.1 Finite Submissions . 73

8.3.2 Modular Validation . 74

8.3.3 New Clients . 74

8.3.4 Auditors . 74

8.3.5 Malicious Tasks . 75

8.3.6 Sybil Attack and Collusion . 75

8.3.7 Storage . 75

8.3.8 Leaky Validators . 76

8.1 Summary

In this thesis a prototype for crowdsourcing computational tasks on top of blockchain network

was implemented. The aim was to provide reliability and decentralization to achieve full

potential of crowdsourcing. The end result was the implementation of a blockchain network.

A secure transaction family that implements the Master-Worker paradigm supporting a new

user registration, task creation, answer submission and submission evaluation. On top of that

72

8.2. CHALLENGES CHAPTER 8. CONCLUSION

a Client example was implemented as a Command Line Interface for interacting with the

blockchain. Additionally Sawtooth events were used to create enable the client to run on the

background without the user to interfere with the whole process in a SETI@home fashion

but at the same time providing easy to use client API for arbitrary submissions for a closer to

Amazon Mechanical Turk usage. Finally, we tested the implementation’s correctness on a

real network on the Amazon Web Services cloud infrastructure using 5 EC2 t2.micro Virtual

Machines, hence providing a proof of concept for a decentralized crowdsourcing platform.

8.2 Challenges

The whole experience was generally smooth. But some issues occurred.

Initially I had no experience with blockchains so I had to devote time to understand how

blockchains work. After that I had to read countless of pages of Hyperledger documenta-

tion and communicate with the Linux Community to solve some questions either through

StackOverflow or the Hyperledger chat. Mastering a Hyperledger framework takes a lot of

time and dedication to know all the technology details. Sometimes I had to get my hands

dirty and read the Sawtooth code in order to gain better understanding because there was no

documentation or it was inconsistent. But through this process I developed some ideas how

to contribute to the Hyperledger Sawtooth in the future.

The biggest challenge was how deal with deadlines. How can a worker show publicly that

he computed the answer without leaking it to the other workers? The proof of submission had

many failed versions and was exciting to find ways to break it until it becomes unbreakable.

Generally CrowdBED meets the requirments but has some weaknesses that need to be

addressed and solved in the future to be more functional.

8.3 Future Work

8.3.1 Finite Submissions

Some master-worker implementations give the ability to the master to choose the workers

that will solve the task or have a finite number of submissions. The task structure should be

updated in order to specify the users that will be allowed to solve the task. In case the master

73

8.3. FUTURE WORK CHAPTER 8. CONCLUSION

doesn’t care who solves the task a pseudo-random procedure could take place for choosing

randomly N online users that only they will be able to submit an answer.

But because Sawtooth requires the transactions to be deterministic the following approach

could take place: Add new namespace that displays the online users, every user when wants

to participate in crowdsouring could update it’s status to online and then update it to offline

when wants to stop. Thus giving a responcibility to users to maintain their online status.

When a task is added the transaction family could gather the online users sort them based

on the address, append them and at the end the task header, hash the long sequence with the

SHA512 algorithm and use the digest as a seed to choose randomly N clients to solve the

task. Because the determinism is defined by the state of blockchain and the transaction it

doesn’t break the Sawtooth requirments for transaction family.

8.3.2 Modular Validation

Because Sawtooth permits the sharing of namespaces, a good design practice is to create

a separate Transaction Family for the validation giving the opportunity for trying different

reputation schemes and validation algorithms by creating a container.

8.3.3 New Clients

Sawtooth supports stable SDKs for the following languages: Python, Go, Javascript and Rust.

This means clients can be written in these languages and a web client for AmazonMechanical

Turk style tasks.

8.3.4 Auditors

Adding the auditor role to the model. Auditors are trusted entities that will validate the an-

swers of the submissions. The auditors can be automated with the use of Hyperledger Avalon

a trusted off chain computation environment. It could randomly solve tasks to determinate

and the submission will be chosen by default and punish the users who did not submit the

same answer.

74

8.3. FUTURE WORK CHAPTER 8. CONCLUSION

8.3.5 Malicious Tasks

A requester can submit a Task that doesn’t stop or that harms the clients machine. The never

ending task can be detected due to the halting problem and the harm can be avoided by running

the task in a container for isolating the task execution from the rest of the system. A time

limit can be introduced to the task execution and can be adjusted by the task creator. The

bigger the task time limit for execution the higher the price of the task. Thus higher reward

for the workers.

8.3.6 Sybil Attack and Collusion

The biggest weakness of CrowdBED is a case of a sybil attack. Consider a case where a

worker registers N accounts and then genuinely solves a task and submits the same correct

answer from every account without computing it N times. Meaning that he will get N times

more rewards. The current implementation does not handle this kind of attack since it treats

every submission as a different user.

A solution was proposed in the “Algorithmic Mechanisms for Reliable Crowdsourcing

Computation under Collusion“ paper by Antonio Fernández Anta et al [27]. This solution

requires the selection of specific set of workers to solve the task, and it was discussed in the

previous section how it can be implemented.

Other approach would be to add a Central Authority for registering users. The Central

Authority can be a decentralized identity like Hyperledger Aries or Indy in order to not allow

a user to create multiple accounts. This will require communication between the Sawtooth

network and the central authority when registering new user.

8.3.7 Storage

The current implementation stores the metadata of a submission and a task on the ledger.

Meaning that each peer needs to keep a copy of the blockchain. Eventually the blockchain

will not be scalable with data files like images, the requirments for huge data storages will

be an issue for CrowdBED. A common approach is the use of a Distributed Hash Table like

InterPlanetary File System (IPFS) [23]. Thus removing the data from the ledger and keeping

only the hashses of the data. Eventually the transactions will have constant size and can scale

freely.

75

8.3. FUTURE WORK CHAPTER 8. CONCLUSION

8.3.8 Leaky Validators

A secret stops being a secret when you share it with at least one person. Meaning when a

worker sends a submission to the network, even if the default implementation of a validator

can’t display the uncommitted transactions, a custom implementation of a malicious validator

could take submission data and submit it as its own submission to the system.

For solving this issue there are two possible solution. By defying a window for submitting

the submission after the deadline and before the validation, thanks to proof of submission it

can’t be leaked. However by preselcting the group of workers who will submit, thus reducing

the probability the validator will be on the list and gain reward from an other workers work.

76

BIBLIOGRAPHY BIBLIOGRAPHY

Bibliography

[1] Amazon mechanical turk. https://www.mturk.com/. Accessed: 2020-05-26.

[2] Coinlore. https://www.coinlore.com/all_coins. Accessed: 2020-05-26.

[3] Ethereum. https://ethereum.org/. Accessed: 2020-05-26.

[4] Fabric peers. https://hyperledger-fabric.readthedocs.io/en/release-2.0/peers/peers.html.

Accessed: 2020-05-26.

[5] Folding@Home. https://foldingathome.org/. Accessed: 2020-05-26.

[6] grpc. https://grpc.io/. Accessed: 2020-05-26.

[7] Hyperledger. https://www.hyperledger.org/. Accessed: 2020-05-26.

[8] Hyperledger iroha. https://www.hyperledger.org/use/iroha. Accessed: 2020-05-26.

[9] Hyperledger iroha architecture. https://iroha.readthedocs.io/en/

master/concepts_architecture/architecture.html. Accessed: 2020-05-26.

[10] Hyperledger sawtooth. https://www.hyperledger.org/use/sawtooth. Accessed: 2020-

05-26.

[11] Libra. https://libra.org. Accessed: 2020-05-26.

[12] Protocol buffers. https://developers.google.com/protocol-buffers. Accessed: 2020-05-

26.

[13] Sawtooth Administrators Guide. https://sawtooth.hyperledger.org/docs/core/releas-

es/latest/sysadmin_guide.html. Accessed: 2020-05-26.

77

BIBLIOGRAPHY BIBLIOGRAPHY

[14] Sawtooth architecture. https://sawtooth.hyperledger.org/docs/core/releases/latest/ar-

chitecture.html. Accessed: 2020-05-26.

[15] Sawtooth events. https://sawtooth.hyperledger.org/docs/core/releases/latest

/architecture/events_and_transactions_receipts.html. Accessed: 2020-05-26.

[16] Sawtooth global state. https://sawtooth.hyperledger.org/docs/core/releases/latest

/architecture/global_state.html. Accessed: 2020-05-26.

[17] Sawtooth glossary. https://sawtooth.hyperledger.org/docs/core/releases/latest/glos-

sary.html. Accessed: 2020-05-26.

[18] Sawtooth journal. https://sawtooth.hyperledger.org/docs/core/releases/latest/architec-

ture/journal.html. Accessed: 2020-05-26.

[19] Sawtooth PBFT. https://sawtooth.hyperledger.org/docs/pbft/nightly/master/introduction-

to-sawtooth-pbft.html. Accessed: 2020-05-26.

[20] Sawtooth rest api endpoint specification. https://sawtooth.hyperledger.org/docs/-

core/releases/latest/rest_api/endpoint_specs.html. Accessed: 2020-05-26.

[21] Sawtooth transactions and batches. https://sawtooth.hyperledger.org/docs/core/releas-

es/latest

/architecture/transactions_and_batches.html. Accessed: 2020-05-26.

[22] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Chris-

tidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Laventman, Yacov

Manevich, and et al. Hyperledger fabric. Proceedings of the Thirteenth EuroSys Con-

ference, Apr 2018.

[23] Juan Benet. Ipfs - content addressed, versioned, p2p file system. 07 2014.

[24] Gurpriya Bhatia, Shubham Gupta, Alpana Dubey, and Ponnurangam Kumaraguru.

Workerrep: Immutable reputation system for crowdsourcing platform based on

blockchain. 05 2020.

[25] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In Proceedings

of the Third Symposium on Operating Systems Design and Implementation, OSDI ’99,

page 173–186, USA, 1999. USENIX Association.

78

BIBLIOGRAPHY BIBLIOGRAPHY

[26] Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail. In

Annual International Cryptology Conference, pages 139–147. Springer, 1992.

[27] Antonio Fernández Anta, Chryssis Georgiou, Miguel A. Mosteiro, and Daniel Pareja.

Algorithmic mechanisms for reliable crowdsourcing computation under collusion.

PLOS ONE, 10(3):1–22, 03 2015.

[28] Eric Korpela, D. Werthimer, David Anderson, Jeff Cobb, and M. Leboisky.

Seti@home-massively distributed computing for seti. Computing in Science Engi-

neering, 3:78 – 83, 02 2001.

[29] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem.

ACMTransactions on Programming Languages and Systems (TOPLAS), 4(3):382–401,

1982.

[30] M. Li, J. Weng, A. Yang, W. Lu, Y. Zhang, L. Hou, J. Liu, Y. Xiang, and R. H.

Deng. Crowdbc: A blockchain-based decentralized framework for crowdsourcing.

IEEE Transactions on Parallel and Distributed Systems, 30(6):1251–1266, 2019.

[31] Yuan Lu, Qiang Tang, and Guiling Wang. Zebralancer: Decentralized crowdsourcing

of human knowledge atop open blockchain, 2018.

[32] Dirk Merkel. Docker: lightweight linux containers for consistent development and

deployment. Linux journal, 2014(239):2, 2014.

[33] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system.

[34] Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller, and Steven

Goldfeder. Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction.

Princeton University Press, USA, 2016.

[35] Diego Ongaro and John Ousterhout. In search of an understandable consensus algo-

rithm. page 305–320, 2014.

[36] Christof Paar and Jan Pelzl. Understanding Cryptography: A Textbook for Students

and Practitioners. Springer Publishing Company, Incorporated, 1st edition, 2009.

79

BIBLIOGRAPHY BIBLIOGRAPHY

[37] Fred B. Schneider. Implementing fault-tolerant services using the state machine ap-

proach: A tutorial. ACM Comput. Surv., 22(4):299–319, December 1990.

[38] Jeffrey Shneidman and David C. Parkes. Rationality and self-interest in peer to peer

networks. In M. Frans Kaashoek and Ion Stoica, editors, Peer-to-Peer Systems II, pages

139–148, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[39] Andrew S. Tanenbaum and Maarten Van Steen. Distributed Systems. Pearson Educa-

tion, 2013.

80

Appendices

81

A.1. BATCHER

A.1 Batcher

package main

import (

"Tribes"

pb "batcherrpc"

"blockchain"

"context"

"log"

"net"

"os"

"reputation/Validation"

"time"

"unlock"

"github.com/hyperledger/sawtooth-sdk-go/protobuf/batch_pb2"

"github.com/golang/protobuf/proto"

"github.com/hyperledger/sawtooth-sdk-go/protobuf/transaction_pb2

↪→ "

"github.com/hyperledger/sawtooth-sdk-go/signing"

"google.golang.org/grpc"

)

type HolderServer struct {

pb.UnimplementedHolderServer

signer *signing.Signer

IP string

}

func (srv *HolderServer) GetKey(ctx context.Context, nothing *pb.Empty)

A-1

A.1. BATCHER

↪→ (*pb.Key, error) {

return &pb.Key{Hex: srv.signer.GetPublicKey().AsHex()}, nil

}

func (srv *HolderServer) SendTransaction(ctx context.Context, trans *pb

↪→ .Trans) (*pb.Empty, error) {

go handleLock(trans.Serial, srv.signer, srv.IP)

return &pb.Empty{}, nil

}

func handleLock(transBytes []byte, signer *signing.Signer, validatorIP

↪→ string) {

var batch batch_pb2.Batch

err := proto.Unmarshal(transBytes, &batch)

var transaction transaction_pb2.Transaction

if len(batch.Transactions) != 1 {

return

}

err = proto.Unmarshal(transBytes, batch.Transactions[0])

if err != nil {

log.Println("Error in Transaction Bytes", err)

return

}

var wrap Tribes.Wrapper

proto.Unmarshal(transaction.Payload, &wrap)

var lock Tribes.Lock

proto.Unmarshal(wrap.Data, &lock)

time.Sleep(10 * time.Second)

states := blockchain.GetStates(lock.Task, validatorIP)

if len(states) != 1 {

log.Println("No task found")

A-2

A.1. BATCHER

return

}

var task Tribes.Task

proto.Unmarshal(states[lock.Task], &task)

time.Sleep(time.Until(time.Unix(task.Deadline, 0)))

//time.Sleep(1 * time.Minute) //DeadLine

blockchain.SendTransaction(transaction, signer, validatorIP)

time.Sleep(2 * time.Second)

validation := Tribes.Validation{

Task: lock.Task,

}

blockchain.SendTransaction(Validation.Transaction(validation,

↪→ signer, validatorIP), signer, validatorIP)

}

func main() {

user := unlock.GetNewUser("key.pem")

batcherServer := HolderServer{

signer: user,

IP: os.Args[1],

}

lis, err := net.Listen("tcp", ":7000")

if err != nil {

log.Panicln("failed to listen: %v", err)

}

grpcServer := grpc.NewServer()

pb.RegisterHolderServer(grpcServer, &batcherServer)

grpcServer.Serve(lis)

}

A-3

A.2. CLIENT

A.2 Client

package main

import (

"Tribes"

"blockchain"

"crowdsourcing/Submission"

"crowdsourcing/Task"

"flag"

"fmt"

"hashtools"

"io/ioutil"

"log"

"os"

"os/exec"

"reputation/User"

"strconv"

"time"

"unlock"

"github.com/hyperledger/sawtooth-sdk-go/protobuf/events_pb2"

)

func RunCode(code []byte, data []byte) ([]byte, error) {

ioutil.WriteFile("task.py", code, 0666)

ioutil.WriteFile("input.txt", data, 0666)

cmd := exec.Command("python3", "task.py")

cmd.Stdin, _ = os.Open("input.txt")

cmd.Stdout, _ = os.Create("output.txt")

err := cmd.Run()

if err != nil {

A-4

A.2. CLIENT

return nil, err

}

var ans []byte

ans, err = ioutil.ReadFile("output.txt")

if err != nil {

return nil, err

}

os.Remove("task.py")

os.Remove("input.txt")

os.Remove("output.txt")

return ans, nil

}

//Myth Hunter

func Worker(validatorIP string, keypath string, todos <-chan string) {

signer := unlock.GetUser(keypath)

for taskID := range todos {

log.Printf("Started working for task %s\n", taskID)

task := Task.GetTaskList(validatorIP)[taskID]

lock := task.Lock

ans, err := RunCode(task.Code, task.Data)

if err != nil {

log.Println(err)

continue

}

submission := Tribes.Submission{

Task: taskID,

User: User.KeyAddr(signer.GetPublicKey().AsHex()),

Data: ans,

Lock: lock,

}

A-5

A.2. CLIENT

Submission.SendSubmission(submission, signer, validatorIP

↪→)

log.Printf("Submission sent for task %s\n", taskID)

}

}

func WhatToDo(IP string, keypath string, tribe string) {

validatorIP := "http://" + IP + ":8000"

//batcherIP := []string{IP + ":7000"}

batcherIP := []string{"95.216.219.236:7000", "34.236.159.44:7000

↪→ ", "3.87.161.101:7000", "100.27.23.26:7000", "

↪→ 3.83.51.184:7000"}

//batcherIP := []string{IP + ":7000", IP + ":7001", IP +

↪→ ":7002", IP + ":7003", IP + ":7004"}

args := flag.Args()

switch tribe {

case "User":

switch args[0] {

case "Register":

signer := unlock.GetNewUser(keypath)

user := User.NewUser(signer.GetPublicKey().AsHex()

↪→)

User.RegisterUser(user, signer, validatorIP)

}

case "Task":

/*

Arg_0 what to do with the task.

Arg_1 name of the task

Arg_2 cost of task

Arg_3 codefile

Arg_4 datafile

A-6

A.2. CLIENT

Arg_5 descriptionfile

*/

switch args[0] {

case "Add":

signer := unlock.GetUser(keypath)

task := Tribes.Task{

Name: args[1],

User: User.KeyAddr(signer.GetPublicKey().

↪→ AsHex()),

Deadline: time.Now().Add(time.Minute).Unix

↪→ (),

}

var err error

task.Tokens, err = strconv.ParseFloat(args[2], 64)

if err != nil {

log.Panicln(err)

}

task.Code, err = ioutil.ReadFile(args[3])

if err != nil {

log.Panicln(err)

}

task.Data, err = ioutil.ReadFile(args[4])

if err != nil {

log.Panicln(err)

}

task.Description, err = ioutil.ReadFile(args[5])

if err != nil {

log.Panicln(err)

}

Task.SendTask(task, signer, validatorIP, batcherIP

↪→)

A-7

A.2. CLIENT

fmt.Print(Task.TaskAddr(task))

}

case "Submission":

switch args[0] {

case "Add":

signer := unlock.GetUser(keypath)

taskID := args[1]

task := Task.GetTaskList(validatorIP)[taskID]

lock := task.Lock

ans, err := RunCode(task.Code, task.Data)

if err != nil {

log.Panicln(err)

}

submission := Tribes.Submission{

Task: args[1],

User: User.KeyAddr(signer.GetPublicKey().

↪→ AsHex()),

Data: ans,

Lock: lock,

}

Submission.SendSubmission(submission, signer,

↪→ validatorIP)

}

case "Work":

Filter := events_pb2.EventFilter{

Key: "ID",

MatchString: hashtools.Hexdigest("task")[:6] + ".*

↪→ ",

FilterType: events_pb2.EventFilter_REGEX_ANY,

}

todos := make(chan string, 2)

A-8

A.2. CLIENT

go blockchain.Listen(IP, Filter, "cbed/NewTask", todos)

Worker(validatorIP, keypath, todos)

case "List":

switch args[0] {

case "Submissions":

subs := Submission.GetSubmissionList(args[1],

↪→ validatorIP)

fmt.Printf("There are %d Submissions: \n\n", len(

↪→ subs))

for _, sub := range subs {

fmt.Printf("By %s:\n", sub.User)

fmt.Printf("%s\n\n", sub.Data)

}

case "Tasks":

tasks := Task.GetTaskList(validatorIP)

fmt.Printf("There are %d Tasks: \n\n", len(tasks))

for addr, task := range tasks {

fmt.Printf("Task ID: %s\n", addr)

fmt.Printf("Name: %s\n", task.Name)

fmt.Printf("Description: %s\n", task.

↪→ Description)

fmt.Printf("By: %s\n\n", task.User)

}

case "Users":

users := User.GetUsers(validatorIP)

fmt.Printf("There are %d users: \n\n", len(users))

for addr, user := range users {

fmt.Printf("User %s:\n", addr)

fmt.Printf("Reputation: %f\n", user.

↪→ Reputation)

fmt.Printf("Tokens: %f\n\n", user.Tokens)

A-9

A.2. CLIENT

}

}

default:

panic("What is this?\n")

}

}

func main() {

//signer := unlock.GetUser("key.pem")

//validatorIP := "http://localhost:8008"

var gui bool

flag.BoolVar(&gui, "gui", false, "Use graphical user interface")

var keypath string

flag.StringVar(&keypath, "key", "key.pem", "User key")

var IP string

flag.StringVar(&IP, "IP", "localhost", "Validator IP to connect"

↪→)

var tribe string

flag.StringVar(&tribe, "tribe", "", "Type of command to iniate")

flag.Parse()

WhatToDo(IP, keypath, tribe)

}

A-10

A.3. BLOCKCHAIN API

A.3 Blockchain API

package blockchain

import (

"batcherrpc"

"bytes"

"context"

"encoding/base64"

"encoding/hex"

"encoding/json"

"errors"

"fmt"

"io/ioutil"

"log"

"net/http"

"github.com/pebbe/zmq4"

"google.golang.org/grpc"

"github.com/golang/protobuf/proto"

"github.com/hyperledger/sawtooth-sdk-go/messaging"

"github.com/hyperledger/sawtooth-sdk-go/protobuf/batch_pb2"

"github.com/hyperledger/sawtooth-sdk-go/protobuf/

↪→ client_event_pb2"

"github.com/hyperledger/sawtooth-sdk-go/protobuf/events_pb2"

"github.com/hyperledger/sawtooth-sdk-go/protobuf/transaction_pb2

↪→ "

"github.com/hyperledger/sawtooth-sdk-go/signing"

)

func CreateBatch(transaction transaction_pb2.Transaction, signer *

A-11

A.3. BLOCKCHAIN API

↪→ signing.Signer) batch_pb2.Batch {

TransactionHeaders := []string{transaction.GetHeaderSignature()}

rawBatchHeader := batch_pb2.BatchHeader{

SignerPublicKey: signer.GetPublicKey().AsHex(),

TransactionIds: TransactionHeaders,

}

batchHeaderBytes, _ := proto.Marshal(&rawBatchHeader)

signature := hex.EncodeToString(signer.Sign(batchHeaderBytes))

batch := batch_pb2.Batch{

Header: batchHeaderBytes,

Transactions: []*transaction_pb2.Transaction{&transaction

↪→ },

HeaderSignature: signature,

}

return batch

}

func SendTransaction(transaction transaction_pb2.Transaction, signer *

↪→ signing.Signer, validatorIP string) {

batch := CreateBatch(transaction, signer)

sendBatch(batch, validatorIP)

}

func SendToBatcher(transaction transaction_pb2.Transaction, signer *

↪→ signing.Signer, batcherIP string) {

conn, err := grpc.Dial(batcherIP, grpc.WithInsecure())

if err != nil {

log.Panicln(err)

}

defer conn.Close()

batch := CreateBatch(transaction, signer)

A-12

A.3. BLOCKCHAIN API

batchBytes, _ := proto.Marshal(&batch)

trans := batcherrpc.Trans{

Serial: batchBytes,

}

client := batcherrpc.NewHolderClient(conn)

_, err = client.SendTransaction(context.Background(), &trans)

if err != nil {

log.Panicln(err)

}

}

func sendBatch(batch batch_pb2.Batch, validatorIP string) {

rawBatchList := batch_pb2.BatchList{

Batches: []*batch_pb2.Batch{&batch},

}

batchListBytes, _ := proto.Marshal(&rawBatchList)

response, err := http.Post(

validatorIP+"/batches",

"application/octet-stream",

bytes.NewBuffer(batchListBytes),

)

if err != nil {

log.Panicf("Failed to send Transaction:\n%s\n%s\n",

↪→ response, err)

}

}

func GetStates(prefix string, validatorIP string) map[string][]byte {

response, err := http.Get(validatorIP + "/state?address=" +

↪→ prefix)

A-13

A.3. BLOCKCHAIN API

if err != nil {

fmt.Println("Error in http, ", err)

return nil

}

defer response.Body.Close()

reponseBody, _ := ioutil.ReadAll(response.Body)

var states map[string][]map[string]string

json.Unmarshal(reponseBody, &states)

retVal := make(map[string][]byte)

for _, singTask := range states["data"] {

decode, _ := base64.StdEncoding.DecodeString(singTask["

↪→ data"])

retVal[singTask["address"]] = decode

}

return retVal

}

func Listen(IP string, Filter events_pb2.EventFilter, eventType string,

↪→ todos chan<- string) error {

zmq_context, err := zmq4.NewContext()

// Error creating a ZMQ context

if err != nil {

return err

}

zmq_connection, err := messaging.NewConnection(

zmq_context,

zmq4.DEALER,

"tcp://"+IP+":4004",

false,

)

if err != nil {

A-14

A.3. BLOCKCHAIN API

return err

}

filters := []*events_pb2.EventFilter{&Filter}

my_identifier_subscription := events_pb2.EventSubscription{

EventType: "cbed/NewTask",

Filters: filters,

}

request := client_event_pb2.ClientEventsSubscribeRequest{

Subscriptions: []*events_pb2.EventSubscription{

&my_identifier_subscription,

},

}

serialized_subscribe_request, err := proto.Marshal(&request)

if err != nil {

return err

}

/*

Instead of 500 there should be validator_pb2.

↪→ Message_CLIENT_EVENTS_SUBSCRIBE_REQUEST but

I am getting compile error so I changed it to 500 (

↪→ because it's a constant value)

No I dea why the error

by Adamos

*/

corrId, err := zmq_connection.SendNewMsg(500,

↪→ serialized_subscribe_request)

if err != nil {

return err

A-15

A.3. BLOCKCHAIN API

}

_, response, err := zmq_connection.RecvMsgWithId(corrId)

if err != nil {

return err

}

events_subscribe_response := client_event_pb2.

↪→ ClientEventsSubscribeResponse{}

err = proto.Unmarshal(response.Content, &

↪→ events_subscribe_response)

if err != nil {

return err

}

if events_subscribe_response.Status != client_event_pb2.

↪→ ClientEventsSubscribeResponse_OK {

return errors.New("Client subscription failed")

}

// Listen for events in an infinite loop

fmt.Println("Listening to events.")

for {

_, message, err := zmq_connection.RecvMsg()

if err != nil {

return err

}

/*

Instead of 504 there should be validator_pb2.

↪→ Message_CLIENT_EVENTS_SUBSCRIBE_REQUEST but

I am getting compile error so I changed it to 504

↪→ (because it's a constant value)

No I dea why the error

A-16

A.3. BLOCKCHAIN API

by Adamos

*/

if message.MessageType != 504 {

continue

}

event_list := events_pb2.EventList{}

err = proto.Unmarshal(message.Content, &event_list)

if err != nil {

return err

}

// Received following events from validator

for _, event := range event_list.Events {

// handle event here

fmt.Printf("Task received: %s\n", (*event).

↪→ Attributes[0].Value)

todos <- (*event).Attributes[0].Value

}

}

// Unsubscribe from events

events_unsubscribe_request := client_event_pb2.

↪→ ClientEventsUnsubscribeRequest{}

var serialized_unsubscribe_request []byte

serialized_unsubscribe_request, err = proto.Marshal(&

↪→ events_unsubscribe_request)

if err != nil {

return err

}

/*

Instead of 502 there should be validator_pb2.

↪→ Message_CLIENT_EVENTS_UNSUBSCRIBE_REQUEST but

A-17

A.3. BLOCKCHAIN API

I am getting compile error so I changed it to 502 (

↪→ because it's a constant value)

No I dea why the error

by Adamos

*/

corrId, err = zmq_connection.SendNewMsg(502,

↪→ serialized_unsubscribe_request)

if err != nil {

return err

}

_, unsubscribe_response, err := zmq_connection.RecvMsgWithId(

↪→ corrId)

if err != nil {

return err

}

events_unsubscribe_response :=

client_event_pb2.ClientEventsUnsubscribeResponse{}

err = proto.Unmarshal(unsubscribe_response.Content, &

↪→ events_unsubscribe_response)

if err != nil {

return err

}

if events_unsubscribe_response.Status !=

client_event_pb2.ClientEventsUnsubscribeResponse_OK {

return errors.New("Client couldn't unsubscribe

↪→ successfully")

}

return nil

}

A-18

A.4. TASK API

A.4 Task API

package Task

import (

"Tribes"

"blockchain"

"encoding/hex"

"hashtools"

"github.com/golang/protobuf/proto"

"github.com/hyperledger/sawtooth-sdk-go/protobuf/transaction_pb2

↪→ "

"github.com/hyperledger/sawtooth-sdk-go/signing"

)

func GetTaskList(validatorIP string) map[string]Tribes.Task {

states := blockchain.GetStates(hashtools.Hexdigest("task")[:6],

↪→ validatorIP)

retVal := map[string]Tribes.Task{}

for addr, trans := range states {

var temp Tribes.Task

proto.Unmarshal(trans, &temp)

retVal[addr] = temp

}

return retVal

}

//

↪→ ---

↪→

A-19

A.4. TASK API

func WrapTask(task Tribes.Task) Tribes.Wrapper {

data, _ := proto.Marshal(&task)

wrap := Tribes.Wrapper{

Tribe: "Task",

Data: data,

}

return wrap

}

func TaskTransaction(task Tribes.Task, signer *signing.Signer)

↪→ transaction_pb2.Transaction {

wrap := WrapTask(task)

payloadBytes, _ := proto.Marshal(&wrap)

rawTransactionHeader := transaction_pb2.TransactionHeader{

SignerPublicKey: signer.GetPublicKey().AsHex(),

FamilyName: "cbed",

FamilyVersion: "1.0",

Dependencies: []string{},

BatcherPublicKey: signer.GetPublicKey().AsHex(),

Inputs: []string{task.User},

Outputs: []string{TaskAddr(task), task.User},

PayloadSha512: hashtools.HashData(payloadBytes),

}

transactionHeaderBytes, _ := proto.Marshal(&rawTransactionHeader

↪→)

signature := hex.EncodeToString(signer.Sign(

↪→ transactionHeaderBytes))

transaction := transaction_pb2.Transaction{

Header: transactionHeaderBytes,

HeaderSignature: signature,

Payload: payloadBytes,

A-20

A.4. TASK API

}

return transaction

}

func TaskAddr(task Tribes.Task) string {

ans := hashtools.Hexdigest("task")[:6] + hashtools.Hexdigest(

↪→ task.User)[:32] + hashtools.Hexdigest(task.Name)[:32]

return ans

}

/*

func DeadlinePassed(task Tribes.Task) bool {

return !task.Deadline.Before(time.Now())

}*/

func getLock(task Tribes.Task, signer *signing.Signer) Tribes.Lock {

lock := Tribes.Lock{

Task: TaskAddr(task),

}

return lock

}

func SendTask(task Tribes.Task, signer *signing.Signer, validatorIP

↪→ string, batcherIP []string) {

lock := getLock(task, signer)

for _, batcher := range batcherIP {

lockTransaction := LockTransaction(lock, signer)

task.Lock = lockTransaction.HeaderSignature

blockchain.SendToBatcher(lockTransaction, signer, batcher

↪→)

}

A-21

A.4. TASK API

taskTransaction := TaskTransaction(task, signer)

blockchain.SendTransaction(taskTransaction, signer, validatorIP)

}

//

↪→ ---

↪→

func LockTransaction(lock Tribes.Lock, signer *signing.Signer)

↪→ transaction_pb2.Transaction {

wrap := WrapLock(lock)

payloadBytes, _ := proto.Marshal(&wrap)

rawTransactionHeader := transaction_pb2.TransactionHeader{

SignerPublicKey: signer.GetPublicKey().AsHex(),

FamilyName: "cbed",

FamilyVersion: "1.0",

Dependencies: []string{},

BatcherPublicKey: signer.GetPublicKey().AsHex(),

Inputs: []string{lock.GetTask()},

Outputs: []string{LockAddr(lock), lock.GetTask()},

PayloadSha512: hashtools.HashData(payloadBytes),

}

transactionHeaderBytes, _ := proto.Marshal(&rawTransactionHeader

↪→)

signature := hex.EncodeToString(signer.Sign(

↪→ transactionHeaderBytes))

transaction := transaction_pb2.Transaction{

Header: transactionHeaderBytes,

HeaderSignature: signature,

Payload: payloadBytes,

}

A-22

A.4. TASK API

return transaction

}

func LockAddr(lock Tribes.Lock) string {

ans := hashtools.Hexdigest("lock")[:6] + hashtools.Hexdigest(

↪→ lock.Task)[:64]

return ans

}

func WrapLock(lock Tribes.Lock) Tribes.Wrapper {

data, _ := proto.Marshal(&lock)

wrap := Tribes.Wrapper{

Tribe: "Lock",

Data: data,

}

return wrap

}

A-23

A.5. SUBMISSION API

A.5 Submission API

package Submission

import (

"Tribes"

"blockchain"

"encoding/hex"

"fmt"

"hashtools"

"github.com/golang/protobuf/proto"

"github.com/hyperledger/sawtooth-sdk-go/protobuf/transaction_pb2

↪→ "

"github.com/hyperledger/sawtooth-sdk-go/signing"

)

func ProofTransaction(proof Tribes.Proof, signer *signing.Signer)

↪→ transaction_pb2.Transaction {

wrap := WrapProof(proof)

payloadBytes, _ := proto.Marshal(&wrap)

rawTransactionHeader := transaction_pb2.TransactionHeader{

SignerPublicKey: signer.GetPublicKey().AsHex(),

FamilyName: "cbed",

FamilyVersion: "1.0",

Dependencies: []string{},

BatcherPublicKey: signer.GetPublicKey().AsHex(),

Inputs: []string{proof.GetUser(), proof.GetTask()},

Outputs: []string{ProofAddr(proof), proof.GetUser()},

PayloadSha512: hashtools.HashData(payloadBytes),

}

transactionHeaderBytes, _ := proto.Marshal(&rawTransactionHeader

A-24

A.5. SUBMISSION API

↪→)

signature := hex.EncodeToString(signer.Sign(

↪→ transactionHeaderBytes))

transaction := transaction_pb2.Transaction{

Header: transactionHeaderBytes,

HeaderSignature: signature,

Payload: payloadBytes,

}

return transaction

}

func ProofAddr(proof Tribes.Proof) string {

ans := hashtools.Hexdigest("proof")[:6] + hashtools.Hexdigest(

↪→ proof.Task)[:32] + hashtools.Hexdigest(proof.Submission)

↪→ [:32]

return ans

}

func WrapProof(proof Tribes.Proof) Tribes.Wrapper {

data, _ := proto.Marshal(&proof)

wrap := Tribes.Wrapper{

Tribe: "Proof",

Data: data,

}

return wrap

}

//

↪→ --

↪→

A-25

A.5. SUBMISSION API

func SubmissionTransaction(submission Tribes.Submission, signer *

↪→ signing.Signer) transaction_pb2.Transaction {

wrap := WrapSubmission(submission)

payloadBytes, _ := proto.Marshal(&wrap)

rawTransactionHeader := transaction_pb2.TransactionHeader{

SignerPublicKey: signer.GetPublicKey().AsHex(),

FamilyName: "cbed",

FamilyVersion: "1.0",

Dependencies: []string{submission.Lock},

BatcherPublicKey: signer.GetPublicKey().AsHex(),

Inputs: []string{submission.User, submission.Proof},

Outputs: []string{SubmissionAddr(submission), submission.

↪→ GetUser()},

PayloadSha512: hashtools.HashData(payloadBytes),

}

transactionHeaderBytes, _ := proto.Marshal(&rawTransactionHeader

↪→)

signature := hex.EncodeToString(signer.Sign(

↪→ transactionHeaderBytes))

transaction := transaction_pb2.Transaction{

Header: transactionHeaderBytes,

HeaderSignature: signature,

Payload: payloadBytes,

}

return transaction

}

func SubmissionAddr(submission Tribes.Submission) string {

ans := hashtools.Hexdigest("submission")[:6] + hashtools.

↪→ Hexdigest(submission.Task)[:32] + hashtools.Hexdigest(

↪→ submission.User)[:32]

A-26

A.5. SUBMISSION API

return ans

}

func getProof(submission *Tribes.Submission, signer *signing.Signer)

↪→ Tribes.Proof {

proof := Tribes.Proof{

Submission: SubmissionAddr((*submission)),

Task: (*submission).Task,

User: (*submission).User,

Hignature: hashtools.Hexdigest(hex.EncodeToString(signer.

↪→ Sign([]byte((*submission).Data)))),

}

(*submission).Proof = ProofAddr(proof)

return proof

}

func WrapSubmission(submission Tribes.Submission) Tribes.Wrapper {

data, _ := proto.Marshal(&submission)

wrap := Tribes.Wrapper{

Tribe: "Submission",

Data: data,

}

return wrap

}

func SendSubmission(submission Tribes.Submission, signer *signing.

↪→ Signer, validatorIP string) {

submission.Signature = hex.EncodeToString(signer.Sign([]byte(

↪→ submission.Data)))

proof := getProof(&submission, signer)

proofTransaction := ProofTransaction(proof, signer)

A-27

A.5. SUBMISSION API

submissionTransaction := SubmissionTransaction(submission,

↪→ signer)

//fmt.Println("Depends on:", submission.Lock)

blockchain.SendTransaction(proofTransaction, signer, validatorIP

↪→)

blockchain.SendTransaction(submissionTransaction, signer,

↪→ validatorIP)

}

func GetSubmissionList(task string, validatorIP string) map[string]

↪→ Tribes.Submission {

prefix := hashtools.Hexdigest("submission")[:6] + hashtools.

↪→ Hexdigest(task)[:32]

states := blockchain.GetStates(prefix, validatorIP)

retVal := map[string]Tribes.Submission{}

for addr, sub := range states {

var temp Tribes.Submission

proto.Unmarshal(sub, &temp)

retVal[addr] = temp

}

return retVal

}

func GetProofList(task string, validatorIP string) map[string]Tribes.

↪→ Proof {

prefix := hashtools.Hexdigest("proof")[:6] + hashtools.Hexdigest

↪→ (task)[:32]

fmt.Println(prefix)

states := blockchain.GetStates(prefix, validatorIP)

retVal := map[string]Tribes.Proof{}

for addr, proof := range states {

A-28

A.5. SUBMISSION API

var temp Tribes.Proof

proto.Unmarshal(proof, &temp)

retVal[addr] = temp

}

return retVal

}

A-29

A.6. USER API

A.6 User API

package User

import (

"Tribes"

"blockchain"

"encoding/hex"

"hashtools"

"github.com/golang/protobuf/proto"

"github.com/hyperledger/sawtooth-sdk-go/protobuf/transaction_pb2

↪→ "

"github.com/hyperledger/sawtooth-sdk-go/signing"

)

func NewUser(PublicKey string) Tribes.User {

user := Tribes.User{

PubKey: PublicKey,

Reputation: 100.0,

Tokens: 69.0,

}

return user

}

func UserAddr(user Tribes.User) string {

ans := hashtools.Hexdigest("user")[:6] + hashtools.Hexdigest(

↪→ user.PubKey)[:64]

return ans

}

func KeyAddr(key string) string {

ans := hashtools.Hexdigest("user")[:6] + hashtools.Hexdigest(key

↪→)[:64]

A-30

A.6. USER API

return ans

}

func WrapUser(user Tribes.User, command string) Tribes.Wrapper {

data, _ := proto.Marshal(&user)

wrap := Tribes.Wrapper{

Tribe: "User",

Command: command,

Data: data,

}

return wrap

}

func Punish(user *Tribes.User) {

(*user).Reputation -= 1.0

}

func Reward(user *Tribes.User) {

(*user).Reputation += 1.0

}

func UserTransaction(user Tribes.User, command string, signer *signing.

↪→ Signer) transaction_pb2.Transaction {

wrap := WrapUser(user, command)

payloadBytes, _ := proto.Marshal(&wrap)

rawTransactionHeader := transaction_pb2.TransactionHeader{

SignerPublicKey: signer.GetPublicKey().AsHex(),

FamilyName: "cbed",

FamilyVersion: "1.0",

Dependencies: []string{},

BatcherPublicKey: signer.GetPublicKey().AsHex(),

Inputs: []string{UserAddr(user)},

Outputs: []string{UserAddr(user)},

PayloadSha512: hashtools.HashData(payloadBytes),

A-31

A.6. USER API

}

transactionHeaderBytes, _ := proto.Marshal(&rawTransactionHeader

↪→)

signature := hex.EncodeToString(signer.Sign(

↪→ transactionHeaderBytes))

transaction := transaction_pb2.Transaction{

Header: transactionHeaderBytes,

HeaderSignature: signature,

Payload: payloadBytes,

}

return transaction

}

func RegisterUser(user Tribes.User, signer *signing.Signer, validatorIP

↪→ string) {

userTransaction := UserTransaction(user, "Register", signer)

blockchain.SendTransaction(userTransaction, signer, validatorIP)

}

func GetUsers(validatorIP string) map[string]Tribes.User {

states := blockchain.GetStates(hashtools.Hexdigest("user")[:6],

↪→ validatorIP)

users := map[string]Tribes.User{}

for addr, userBytes := range states {

var temp Tribes.User

proto.Unmarshal(userBytes, &temp)

users[addr] = temp

}

return users

}

A-32

A.7. VALIDATION API

A.7 Validation API

package Validation

import (

"Tribes"

"crowdsourcing/Submission"

"encoding/hex"

"hashtools"

"reputation/User"

"github.com/golang/protobuf/proto"

"github.com/hyperledger/sawtooth-sdk-go/protobuf/transaction_pb2

↪→ "

"github.com/hyperledger/sawtooth-sdk-go/signing"

)

func ValidationWrap(validation Tribes.Validation) Tribes.Wrapper {

data, _ := proto.Marshal(&validation)

wrap := Tribes.Wrapper{

Tribe: "Validation",

Data: data,

}

return wrap

}

func SplitProof(proofs map[string]Tribes.Proof) ([]string, []string,

↪→ []string) {

submission := []string{}

proof := []string{}

user := []string{}

for addr, data := range proofs {

submission = append(submission, data.Submission)

A-33

A.7. VALIDATION API

proof = append(proof, addr)

user = append(user, data.User)

}

return submission, proof, user

}

func GetAnswer(submissions map[string]Tribes.Submission) (int, []byte)

↪→ {

counter := map[string]int{}

var maxVal int

var maxAns []byte

for _, submission := range submissions {

counter[hashtools.HashData(submission.Data)]++

if maxVal < counter[hashtools.HashData(submission.Data)]

↪→ {

maxVal = counter[hashtools.HashData(submission.

↪→ Data)]

maxAns = submission.Data

}

}

return maxVal, maxAns

}

func ReputationUpdate(users map[string]Tribes.User, submissions map[

↪→ string]Tribes.Submission, answer []byte, reward float64) map[

↪→ string]Tribes.User {

tempUsers := users

hanswer := hashtools.HashData(answer)

for _, submission := range submissions {

temp := tempUsers[submission.User]

if hashtools.HashData(submission.Data) == hanswer {

A-34

A.7. VALIDATION API

User.Reward(&temp)

temp.Tokens += reward

} else {

User.Punish(&temp)

}

tempUsers[submission.User] = temp

}

return tempUsers

}

func Transaction(validation Tribes.Validation, signer *signing.Signer,

↪→ validatorIP string) transaction_pb2.Transaction {

submittedProofs := Submission.GetProofList(validation.Task,

↪→ validatorIP)

submission, proof, user := SplitProof(submittedProofs)

var access []string

access = append(access, submission...) //r,w on submissions

access = append(access, proof...) //r,w on proofs

access = append(access, user...) //r,w on users

access = append(access, validation.Task) //r,w on task

wrap := ValidationWrap(validation)

payloadBytes, _ := proto.Marshal(&wrap)

rawTransactionHeader := transaction_pb2.TransactionHeader{

SignerPublicKey: signer.GetPublicKey().AsHex(),

FamilyName: "cbed",

FamilyVersion: "1.0",

Dependencies: []string{},

BatcherPublicKey: signer.GetPublicKey().AsHex(),

Inputs: access,

Outputs: access,

PayloadSha512: hashtools.HashData(payloadBytes),

A-35

A.8. HASHTOOLS

}

transactionHeaderBytes, _ := proto.Marshal(&rawTransactionHeader

↪→)

signature := hex.EncodeToString(signer.Sign(

↪→ transactionHeaderBytes))

transaction := transaction_pb2.Transaction{

Header: transactionHeaderBytes,

HeaderSignature: signature,

Payload: payloadBytes,

}

return transaction

}

A.8 Hashtools

package hashtools

import (

"crypto/sha512"

"encoding/hex"

"strings"

)

func Hexdigest(str string) string {

hash := sha512.New()

hash.Write([]byte(str))

hashBytes := hash.Sum(nil)

return strings.ToLower(hex.EncodeToString(hashBytes))

}

func HashData(payloadBytes []byte) string {

hashHandler := sha512.New()

A-36

A.8. HASHTOOLS

hashHandler.Write(payloadBytes)

payloadSha512 := strings.ToLower(hex.EncodeToString(hashHandler.

↪→ Sum(nil)))

return payloadSha512

}

A-37

A.9. UNLOCK

A.9 Unlock

package unlock

import (

"crypto/ecdsa"

"crypto/elliptic"

"crypto/rand"

"crypto/x509"

"encoding/pem"

"fmt"

"io/ioutil"

"os"

"github.com/hyperledger/sawtooth-sdk-go/signing"

)

func GetSybilUser() *signing.Signer {

context := signing.NewSecp256k1Context()

privateKey := context.NewRandomPrivateKey()

signer := signing.NewCryptoFactory(context).NewSigner(privateKey

↪→)

return signer

}

func GetNewUser(path string) *signing.Signer {

priv, _ := ecdsa.GenerateKey(elliptic.P256(), rand.Reader)

keyOut, _ := os.OpenFile(path, os.O_WRONLY|os.O_CREATE|os.

↪→ O_TRUNC, 0600)

privBytes, _ := x509.MarshalPKCS8PrivateKey(priv)

pem.Encode(keyOut, &pem.Block{Type: "PRIVATE KEY", Bytes:

↪→ privBytes})

A-38

A.9. UNLOCK

keyOut.Close()

return GetUser(path)

}

func GetUser(path string) *signing.Signer {

buf, _ := ioutil.ReadFile(path)

key := string(buf)

context := signing.NewSecp256k1Context()

privateKey, err := signing.PemToSecp256k1PrivateKey(key, "")

if err != nil {

fmt.Print("Epie tou kolou i prospathia")

}

signer := signing.NewCryptoFactory(context).NewSigner(privateKey

↪→)

return signer

}

A-39

A.10. TRANSACTION FAMILY

A.10 Transaction Family

package handler

import (

"Tribes"

"crowdsourcing/Submission"

"crowdsourcing/Task"

"encoding/hex"

"fmt"

"hashtools"

"reputation/User"

"reputation/Validation"

"time"

"github.com/golang/protobuf/proto"

"protobuf/processor_pb2"

"github.com/hyperledger/sawtooth-sdk-go/logging"

"github.com/hyperledger/sawtooth-sdk-go/processor"

"github.com/hyperledger/sawtooth-sdk-go/signing"

)

type CbedHandler struct {

Restapi string

}

func (self *CbedHandler) FamilyName() string {

return "cbed"

}

A-40

A.10. TRANSACTION FAMILY

func (self *CbedHandler) FamilyVersions() []string {

return []string{"1.0"}

}

func (self *CbedHandler) Namespaces() []string {

return []string{hashtools.Hexdigest("task")[:6], hashtools.

↪→ Hexdigest("submission")[:6], hashtools.Hexdigest("lock")

↪→ [:6], hashtools.Hexdigest("proof")[:6], hashtools.

↪→ Hexdigest("user")[:6]}

}

var logger *logging.Logger = logging.Get()

func logIn(useraddr string, pubkey string, context *processor.Context)

↪→ (Tribes.User, error) {

if useraddr != User.KeyAddr(pubkey) {

return Tribes.User{}, &processor.InvalidTransactionError{

Msg: fmt.Sprint("Invalid UserID"),

}

}

state, err := context.GetState([]string{useraddr})

if err != nil {

return Tribes.User{}, &processor.InvalidTransactionError{

Msg: fmt.Sprint("Failed to Retrieve User: ", err),

}

}

if _, ok := state[useraddr]; !ok {

return Tribes.User{}, &processor.InvalidTransactionError{

Msg: fmt.Sprint("User doesn't exist!!!"),

}

}

A-41

A.10. TRANSACTION FAMILY

var user Tribes.User

err = proto.Unmarshal(state[useraddr], &user)

if err != nil {

return Tribes.User{}, &processor.InvalidTransactionError{

Msg: fmt.Sprint("Failed to Decode User: ", err),

}

}

return user, nil

}

func (self *CbedHandler) Apply(request *processor_pb2.TpProcessRequest,

↪→ context *processor.Context) error {

/*defer func() {

if err := recover(); err != nil {

logger.Info("Crashed but stays strong")

}

}()*/

var wrap Tribes.Wrapper

err := proto.Unmarshal(request.Payload, &wrap)

if err != nil {

return &processor.InvalidTransactionError{

Msg: fmt.Sprint("Failed to decode payload: ", err)

↪→ ,

}

}

switch wrap.Tribe {

case "Task":

var task Tribes.Task

var user Tribes.User

var state map[string][]byte

err := proto.Unmarshal(wrap.Data, &task)

if err != nil {

A-42

A.10. TRANSACTION FAMILY

return &processor.InvalidTransactionError{

Msg: fmt.Sprint("Failed to decode Task: ",

↪→ err),

}

}

user, err = logIn(task.User, request.Header.

↪→ SignerPublicKey, context)

if err != nil {

return err

}

state, err = context.GetState([]string{Task.TaskAddr(task

↪→)})

if _, ok := state[Task.TaskAddr(task)]; ok {

return &processor.InvalidTransactionError{

Msg: fmt.Sprint("Task already exists", task

↪→ .Name),

}

}

if user.Tokens < task.Tokens {

return &processor.InvalidTransactionError{

Msg: fmt.Sprint("User doesn't have enough

↪→ founds!!!"),

}

}

user.Tokens -= task.Tokens

UserBytes, _ := proto.Marshal(&user)

_, err = context.SetState(map[string][]byte{task.User:

↪→ UserBytes})

if err != nil {

return &processor.InvalidTransactionError{

A-43

A.10. TRANSACTION FAMILY

Msg: fmt.Sprint("Failed to Update User

↪→ Funds: ", err),

}

}

_, err = context.SetState(map[string][]byte{Task.TaskAddr

↪→ (task): wrap.Data})

if err != nil {

return &processor.InvalidTransactionError{

Msg: fmt.Sprint("Failed to Add Task: ", err

↪→),

}

}

newTask := processor.Attribute{

Key: "ID",

Value: Task.TaskAddr(task),

}

attributes := []processor.Attribute{newTask}

var empty []byte

context.AddEvent("cbed/NewTask", attributes, empty)

case "Submission":

var submission Tribes.Submission

var state map[string][]byte

var proof Tribes.Proof

//TODO: Check if it is before the Deadline

err := proto.Unmarshal(wrap.Data, &submission)

if err != nil {

return &processor.InvalidTransactionError{

Msg: fmt.Sprint("Failed to decode

A-44

A.10. TRANSACTION FAMILY

↪→ Submission: ", err),

}

}

_, err = logIn(submission.User, request.Header.

↪→ SignerPublicKey, context)

if err != nil {

return err

}

state, err = context.GetState([]string{submission.Proof})

if err != nil {

return &processor.InvalidTransactionError{

Msg: fmt.Sprint("Failed to Retrieve Proof:

↪→ ", err),

}

}

if _, ok := state[submission.Proof]; !ok {

return &processor.InvalidTransactionError{

Msg: fmt.Sprint("Proof doesn't exist!!!"),

}

}

err = proto.Unmarshal(state[submission.Proof], &proof)

if err != nil {

return &processor.InvalidTransactionError{

Msg: fmt.Sprint("Failed to decode Proof: ",

↪→ err),

}

}

//Proof of Submission

bytekey, _ := hex.DecodeString(request.GetHeader().

A-45

A.10. TRANSACTION FAMILY

↪→ SignerPublicKey)

PubKey := signing.NewSecp256k1PublicKey(bytekey)

keycontext := signing.NewSecp256k1Context()

signature, _ := hex.DecodeString(submission.Signature)

if !keycontext.Verify([]byte(signature), []byte(

↪→ submission.Data), PubKey) || proof.Hignature !=

↪→ hashtools.Hexdigest(submission.Signature) {

return &processor.InvalidTransactionError{

Msg: fmt.Sprint("Submission Doesn't match

↪→ with proof!!!"),

}

}

state, err = context.GetState([]string{Submission.

↪→ SubmissionAddr(submission)})

if _, ok := state[Submission.SubmissionAddr(submission)];

↪→ ok {

return &processor.InvalidTransactionError{

Msg: fmt.Sprint("Already Submitted!!!"),

}

}

_, err = context.SetState(map[string][]byte{Submission.

↪→ SubmissionAddr(submission): wrap.Data})

if err != nil {

return &processor.InvalidTransactionError{

Msg: fmt.Sprint("Failed to Add Submission:

↪→ ", err),

}

}

case "Lock":

A-46

A.10. TRANSACTION FAMILY

//TODO: Check if after Deadline (UTC Time)

var lock Tribes.Lock

var task Tribes.Task

var states map[string][]byte

err := proto.Unmarshal(wrap.Data, &lock)

if err != nil {

return &processor.InvalidTransactionError{

Msg: fmt.Sprint("Failed to decode lock: ",

↪→ lock),

}

}

states, err = context.GetState([]string{lock.Task})

if err != nil {

return &processor.InvalidTransactionError{

Msg: fmt.Sprint("Failed to Retrieve task: "

↪→ , err),

}

}

if _, ok := states[lock.Task]; !ok {

return &processor.InvalidTransactionError{

Msg: fmt.Sprint("Task doesn't exists: ",

↪→ lock.Task),

}

}

err = proto.Unmarshal(states[lock.Task], &task)

if err != nil {

return &processor.InvalidTransactionError{

Msg: fmt.Sprint("Failed to decode task: ",

↪→ err),

}

A-47

A.10. TRANSACTION FAMILY

}

if time.Now().Before(time.Unix(task.Deadline, 0)) || task

↪→ .Locked {

return &processor.InternalError{

Msg: fmt.Sprint("Too soon for the lock"),

}

}

task.Locked = true

state, _ := proto.Marshal(&task)

_, err = context.SetState(map[string][]byte{lock.Task:

↪→ state})

if err != nil {

return &processor.InvalidTransactionError{

Msg: fmt.Sprint("Failed to update task: ",

↪→ err),

}

}

if User.KeyAddr(request.Header.SignerPublicKey) != task.

↪→ User {

return &processor.InvalidTransactionError{

Msg: fmt.Sprint("Invalid user adds lock"),

}

}

case "Proof":

//TODO: Check if before Deadline (UTC Time)

var proof Tribes.Proof

var states map[string][]byte

err := proto.Unmarshal(wrap.Data, &proof)

if err != nil {

return &processor.InvalidTransactionError{

A-48

A.10. TRANSACTION FAMILY

Msg: fmt.Sprint("Failed to decode Proof: ",

↪→ err),

}

}

_, err = logIn(proof.User, request.Header.SignerPublicKey

↪→ , context)

if err != nil {

return err

}

states, err = context.GetState([]string{proof.Task})

if err != nil {

return &processor.InvalidTransactionError{

Msg: fmt.Sprint("Failed to Retrieve task: "

↪→ , err),

}

}

if _, ok := states[proof.Task]; !ok {

return &processor.InvalidTransactionError{

Msg: fmt.Sprint("Task doesn't exists: ",

↪→ proof.Task),

}

}

var task Tribes.Task

proto.Unmarshal(states[proof.Task], &task)

if !time.Now().Before(time.Unix(task.Deadline, 0)) {

return &processor.InvalidTransactionError{

Msg: fmt.Sprint("Too late for the proof"),

}

}

_, err = context.SetState(map[string][]byte{Submission.

↪→ ProofAddr(proof): wrap.Data})

A-49

A.10. TRANSACTION FAMILY

if err != nil {

return &processor.InvalidTransactionError{

Msg: fmt.Sprint("Failed to Add Proof: ",

↪→ err),

}

}

case "User":

switch wrap.Command {

case "Register":

var user Tribes.User

err := proto.Unmarshal(wrap.Data, &user)

if err != nil {

return &processor.InvalidTransactionError{

Msg: fmt.Sprint("Failed to decode

↪→ User: ", err),

}

}

users, _ := context.GetState([]string{User.KeyAddr

↪→ (request.Header.SignerPublicKey)})

if len(users) != 0 {

return &processor.InvalidTransactionError{

Msg: fmt.Sprint("User already exists

↪→ : ", err),

}

}

_, err = context.SetState(map[string][]byte{User.

↪→ KeyAddr(request.Header.SignerPublicKey):

↪→ wrap.Data})

if err != nil {

return &processor.InvalidTransactionError{

A-50

A.10. TRANSACTION FAMILY

Msg: fmt.Sprint("Failed to Register

↪→ User: ", err),

}

}

}

case "Validation":

var validation Tribes.Validation

err := proto.Unmarshal(wrap.Data, &validation)

if err != nil {

return &processor.InvalidTransactionError{

Msg: fmt.Sprint("Failed to decode

↪→ Validation: ", err),

}

}

states, err := context.GetState([]string{validation.Task

↪→ })

if err != nil {

return &processor.InvalidTransactionError{

Msg: fmt.Sprint("Failed to get Task: ", err

↪→),

}

}

if len(states) == 0 {

return &processor.InvalidTransactionError{

Msg: fmt.Sprint("Task doesn't exist!!!"),

}

}

var task Tribes.Task

proto.Unmarshal(states[validation.Task], &task)

if task.Validated {

//return nil

A-51

A.10. TRANSACTION FAMILY

return &processor.InvalidTransactionError{

Msg: fmt.Sprint("Task already Validated!!!"

↪→),

}

}

if time.Now().Before(time.Unix(task.Deadline, 0).Add(10 *

↪→ time.Second)) {

return &processor.InternalError{

Msg: fmt.Sprint("Too soon for the

↪→ Validation"),

}

}

proofs := Submission.GetProofList(validation.Task, self.

↪→ Restapi)

submissionAddr, _, userAddr := Validation.SplitProof(

↪→ proofs)

states, _ = context.GetState(submissionAddr)

submissions := map[string]Tribes.Submission{}

for addr, submissionBytes := range states {

var temp Tribes.Submission

proto.Unmarshal(submissionBytes, &temp)

submissions[addr] = temp

}

states, _ = context.GetState(userAddr)

users := map[string]Tribes.User{}

for addr, UserBytes := range states {

var temp Tribes.User

proto.Unmarshal(UserBytes, &temp)

users[addr] = temp

A-52

A.10. TRANSACTION FAMILY

}

howmany, answer := Validation.GetAnswer(submissions)

if howmany == 0 {

requesterbytes, _ := context.GetState([]string{

↪→ task.User})

var requester Tribes.User

proto.Unmarshal(requesterbytes[task.User], &

↪→ requester)

requester.Tokens += task.Tokens

task.Tokens = 0

requesterbytes[task.User], _ = proto.Marshal(&

↪→ requester)

context.SetState(requesterbytes)

} else {

reward := task.Tokens / float64(howmany)

users = Validation.ReputationUpdate(users,

↪→ submissions, answer, reward)

for addr, user := range users {

states[addr], _ = proto.Marshal(&user)

}

context.SetState(states)

task.Validated = true

task.Answer = answer

task.Tokens = 0

taskBytes, _ := proto.Marshal(&task)

context.SetState(map[string][]byte{Task.TaskAddr(

↪→ task): taskBytes})

}

A-53

A.10. TRANSACTION FAMILY

default:

return &processor.InvalidTransactionError{

Msg: fmt.Sprint("Non existent Tribe"),

}

}

return nil

}

package main

import (

cbed "handler"

"os"

"syscall"

"github.com/hyperledger/sawtooth-sdk-go/processor"

)

func main() {

//"tcp://validator:4004"

endpoint := os.Args[1]

handler := cbed.CbedHandler{

Restapi: os.Args[2],

}

processor := processor.NewTransactionProcessor(endpoint)

processor.AddHandler(&handler)

processor.ShutdownOnSignal(syscall.SIGINT, syscall.SIGTERM)

processor.Start()

}

A-54

A.11. DATA TYPES

A.11 Data Types

syntax="proto3";

package Tribes;

option go_package = "CrowdBED_API/src/Tribes";

message Task{

string Name=1;

string User=2;

int64 Deadline=3;

double Tokens=4;

bool Validated=5;

bytes Answer=6;

bytes Code=7;

bytes Data=8;

bytes Description=9;

string Lock=10;

bool Locked=11;

}

message Submission{

string Task=1;

bytes Data=2;

string User=3;

string Lock=4;

string Proof=5;

string Signature=6;

}

message Wrapper{

string Tribe=2;

string Command=3;

bytes Data=4;

A-55

A.12. BATCHER GRPC

}

message Lock{

string Task=1;

}

message User{

string PubKey=1;

double Reputation=2;

double Tokens=3;

}

message Validation{

string Task=1;

}

message Proof{

string Submission=1;

string Task=2;

string User=3;

string Hignature=4;

}

A.12 Batcher gRPC

syntax="proto3";

package batcherrpc;

option go_package = ".;batcherrpc";

message Empty{

}

message Key{

string hex=1;

}

message Trans{

A-56

A.12. BATCHER GRPC

bytes serial=1;

}

service Holder{

rpc GetKey(Empty)returns(Key){}

rpc SendTransaction(Trans)returns(Empty){}

}

A-57

A.13. SINGLE NODE (DEV MODE)

A.13 Single Node (Dev Mode)

Copyright 2017 Intel Corporation

#

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

#

http://www.apache.org/licenses/LICENSE-2.0

#

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or

↪→ implied.

See the License for the specific language governing permissions and

limitations under the License.

#

↪→ --

↪→

version: "3.3"

services:

settings-tp:

image: hyperledger/sawtooth-settings-tp:latest

container_name: sawtooth-settings-tp-default

depends_on:

- validator

entrypoint: settings-tp -vv -C tcp://validator:4004

cbed-tp-go:

A-58

A.13. SINGLE NODE (DEV MODE)

image: sawtooth-cbed-tp-go:latest

container_name: cbed-tp-go-default

depends_on:

- validator

entrypoint: "./bin/cbed tcp://validator:4004 http://rest-api:8000"

batcher-go:

image: sawtooth-batcher-go:latest

container_name: sawtooth-batcher-go

ports:

- "7000:7000"

depends_on:

- rest-api

entrypoint: "./bin/batcher http://rest-api:8000"

validator:

image: hyperledger/sawtooth-validator:latest

container_name: sawtooth-validator-default

expose:

- 4004

ports:

- "4004:4004"

start the validator with an empty genesis batch

entrypoint: "bash -c \"\

sawadm keygen && \

sawtooth keygen my_key && \

sawset genesis -k /root/.sawtooth/keys/my_key.priv && \

sawset proposal create \

-k /root/.sawtooth/keys/my_key.priv \

sawtooth.consensus.algorithm.name=Devmode \

sawtooth.consensus.algorithm.version=0.1 \

A-59

A.13. SINGLE NODE (DEV MODE)

-o config.batch && \

sawadm genesis config-genesis.batch config.batch && \

sawtooth-validator -vv \

--endpoint tcp://validator:8800 \

--bind component:tcp://eth0:4004 \

--bind network:tcp://eth0:8800 \

--bind consensus:tcp://eth0:5050 \

\""

devmode-engine:

image: hyperledger/sawtooth-devmode-engine-rust:latest

container_name: sawtooth-devmode-engine-rust-default

depends_on:

- validator

entrypoint: devmode-engine-rust -C tcp://validator:5050

rest-api:

image: hyperledger/sawtooth-rest-api:latest

container_name: sawtooth-rest-api-default

ports:

- "8000:8000"

depends_on:

- validator

entrypoint: sawtooth-rest-api -C tcp://validator:4004 --bind rest-

↪→ api:8000

shell:

image: hyperledger/sawtooth-shell:latest

container_name: sawtooth-shell-default

depends_on:

- rest-api

A-60

A.13. SINGLE NODE (DEV MODE)

entrypoint: "bash -c \"\

sawtooth keygen && \

tail -f /dev/null \

\""

A-61

A.14. PBFT NETWORK

A.14 PBFT Network

Copyright 2019 Cargill Incorporated

#

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

#

http://www.apache.org/licenses/LICENSE-2.0

#

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or

↪→ implied.

See the License for the specific language governing permissions and

limitations under the License.

version: '3.3'

volumes:

pbft-shared:

services:

-------------=== rest api ===-------------

rest-api-0:

image: hyperledger/sawtooth-rest-api:latest

container_name: sawtooth-rest-api-default-0

expose:

- 8008

ports:

A-62

A.14. PBFT NETWORK

- "8000:8008"

command: |

bash -c "

sawtooth-rest-api \

--connect tcp://validator-0:4004 \

--bind rest-api-0:8008

"

stop_signal: SIGKILL

rest-api-1:

image: hyperledger/sawtooth-rest-api:latest

container_name: sawtooth-rest-api-default-1

expose:

- 8008

ports:

- "8001:8008"

command: |

bash -c "

sawtooth-rest-api \

--connect tcp://validator-1:4004 \

--bind rest-api-1:8008

"

stop_signal: SIGKILL

rest-api-2:

image: hyperledger/sawtooth-rest-api:latest

container_name: sawtooth-rest-api-default-2

expose:

- 8008

ports:

- "8002:8008"

A-63

A.14. PBFT NETWORK

command: |

bash -c "

sawtooth-rest-api \

--connect tcp://validator-2:4004 \

--bind rest-api-2:8008

"

stop_signal: SIGKILL

rest-api-3:

image: hyperledger/sawtooth-rest-api:latest

container_name: sawtooth-rest-api-default-3

expose:

- 8008

ports:

- "8003:8008"

command: |

bash -c "

sawtooth-rest-api \

--connect tcp://validator-3:4004 \

--bind rest-api-3:8008

"

stop_signal: SIGKILL

rest-api-4:

image: hyperledger/sawtooth-rest-api:latest

container_name: sawtooth-rest-api-default-4

expose:

- 8008

ports:

- "8004:8008"

command: |

A-64

A.14. PBFT NETWORK

bash -c "

sawtooth-rest-api \

--connect tcp://validator-4:4004 \

--bind rest-api-4:8008

"

stop_signal: SIGKILL

-------------=== settings tp ===-------------

settings-tp-0:

image: hyperledger/sawtooth-settings-tp:latest

container_name: sawtooth-settings-tp-default-0

expose:

- 4004

command: settings-tp -C tcp://validator-0:4004

stop_signal: SIGKILL

settings-tp-1:

image: hyperledger/sawtooth-settings-tp:latest

container_name: sawtooth-settings-tp-default-1

expose:

- 4004

command: settings-tp -C tcp://validator-1:4004

stop_signal: SIGKILL

settings-tp-2:

image: hyperledger/sawtooth-settings-tp:latest

container_name: sawtooth-settings-tp-default-2

expose:

- 4004

command: settings-tp -C tcp://validator-2:4004

A-65

A.14. PBFT NETWORK

stop_signal: SIGKILL

settings-tp-3:

image: hyperledger/sawtooth-settings-tp:latest

container_name: sawtooth-settings-tp-default-3

expose:

- 4004

command: settings-tp -C tcp://validator-3:4004

stop_signal: SIGKILL

settings-tp-4:

image: hyperledger/sawtooth-settings-tp:latest

container_name: sawtooth-settings-tp-default-4

expose:

- 4004

command: settings-tp -C tcp://validator-4:4004

stop_signal: SIGKILL

-------------=== shell ===-------------

shell:

image: hyperledger/sawtooth-shell:latest

container_name: sawtooth-shell-default

volumes:

- pbft-shared:/pbft-shared

command: |

bash -c "

sawtooth keygen

tail -f /dev/null

"

stop_signal: SIGKILL

A-66

A.14. PBFT NETWORK

-------------=== validators ===-------------

validator-0:

image: hyperledger/sawtooth-validator:latest

container_name: sawtooth-validator-default-0

expose:

- 4004

- 5050

- 8800

volumes:

- pbft-shared:/pbft-shared

command: |

bash -c "

if [-e /pbft-shared/validators/validator-0.priv]; then

cp /pbft-shared/validators/validator-0.pub /etc/sawtooth/keys/

↪→ validator.pub

cp /pbft-shared/validators/validator-0.priv /etc/sawtooth/keys

↪→ /validator.priv

fi &&

if [! -e /etc/sawtooth/keys/validator.priv]; then

sawadm keygen

mkdir -p /pbft-shared/validators || true

cp /etc/sawtooth/keys/validator.pub /pbft-shared/validators/

↪→ validator-0.pub

cp /etc/sawtooth/keys/validator.priv /pbft-shared/validators/

↪→ validator-0.priv

fi &&

if [! -e config-genesis.batch]; then

sawset genesis -k /etc/sawtooth/keys/validator.priv -o config-

↪→ genesis.batch

A-67

A.14. PBFT NETWORK

fi &&

while [[! -f /pbft-shared/validators/validator-1.pub || \

! -f /pbft-shared/validators/validator-2.pub || \

! -f /pbft-shared/validators/validator-3.pub || \

! -f /pbft-shared/validators/validator-4.pub]];

do sleep 1; done

echo sawtooth.consensus.pbft.members=\\['\"'$$(cat /pbft-shared/

↪→ validators/validator-0.pub)'\"','\"'$$(cat /pbft-shared/

↪→ validators/validator-1.pub)'\"','\"'$$(cat /pbft-shared/

↪→ validators/validator-2.pub)'\"','\"'$$(cat /pbft-shared/

↪→ validators/validator-3.pub)'\"','\"'$$(cat /pbft-shared/

↪→ validators/validator-4.pub)'\"'\\] &&

if [! -e config.batch]; then

sawset proposal create \

-k /etc/sawtooth/keys/validator.priv \

sawtooth.consensus.algorithm.name=pbft \

sawtooth.consensus.algorithm.version=1.0 \

sawtooth.consensus.pbft.members=\\['\"'$$(cat /pbft-shared/

↪→ validators/validator-0.pub)'\"','\"'$$(cat /pbft-

↪→ shared/validators/validator-1.pub)'\"','\"'$$(cat /

↪→ pbft-shared/validators/validator-2.pub)'\"','\"'$$(cat

↪→ /pbft-shared/validators/validator-3.pub)'\"','\"'$$(

↪→ cat /pbft-shared/validators/validator-4.pub)'\"'\\] \

sawtooth.publisher.max_batches_per_block=1200 \

-o config.batch

fi &&

if [! -e /var/lib/sawtooth/genesis.batch]; then

sawadm genesis config-genesis.batch config.batch

fi &&

if [! -e /root/.sawtooth/keys/my_key.priv]; then

sawtooth keygen my_key

A-68

A.14. PBFT NETWORK

fi &&

sawtooth-validator -vv \

--endpoint tcp://validator-0:8800 \

--bind component:tcp://eth0:4004 \

--bind consensus:tcp://eth0:5050 \

--bind network:tcp://eth0:8800 \

--scheduler parallel \

--peering static \

--maximum-peer-connectivity 10000

"

validator-1:

image: hyperledger/sawtooth-validator:latest

container_name: sawtooth-validator-default-1

expose:

- 4004

- 5050

- 8800

volumes:

- pbft-shared:/pbft-shared

command: |

bash -c "

if [-e /pbft-shared/validators/validator-1.priv]; then

cp /pbft-shared/validators/validator-1.pub /etc/sawtooth/keys/

↪→ validator.pub

cp /pbft-shared/validators/validator-1.priv /etc/sawtooth/keys

↪→ /validator.priv

fi &&

if [! -e /etc/sawtooth/keys/validator.priv]; then

sawadm keygen

mkdir -p /pbft-shared/validators || true

A-69

A.14. PBFT NETWORK

cp /etc/sawtooth/keys/validator.pub /pbft-shared/validators/

↪→ validator-1.pub

cp /etc/sawtooth/keys/validator.priv /pbft-shared/validators/

↪→ validator-1.priv

fi &&

sawtooth keygen my_key &&

sawtooth-validator -vv \

--endpoint tcp://validator-1:8800 \

--bind component:tcp://eth0:4004 \

--bind consensus:tcp://eth0:5050 \

--bind network:tcp://eth0:8800 \

--scheduler parallel \

--peering static \

--maximum-peer-connectivity 10000 \

--peers tcp://validator-0:8800

"

validator-2:

image: hyperledger/sawtooth-validator:latest

container_name: sawtooth-validator-default-2

expose:

- 4004

- 5050

- 8800

volumes:

- pbft-shared:/pbft-shared

command: |

bash -c "

if [-e /pbft-shared/validators/validator-2.priv]; then

cp /pbft-shared/validators/validator-2.pub /etc/sawtooth/keys/

↪→ validator.pub

A-70

A.14. PBFT NETWORK

cp /pbft-shared/validators/validator-2.priv /etc/sawtooth/keys

↪→ /validator.priv

fi &&

if [! -e /etc/sawtooth/keys/validator.priv]; then

sawadm keygen

mkdir -p /pbft-shared/validators || true

cp /etc/sawtooth/keys/validator.pub /pbft-shared/validators/

↪→ validator-2.pub

cp /etc/sawtooth/keys/validator.priv /pbft-shared/validators/

↪→ validator-2.priv

fi &&

sawtooth keygen my_key &&

sawtooth-validator -vv \

--endpoint tcp://validator-2:8800 \

--bind component:tcp://eth0:4004 \

--bind consensus:tcp://eth0:5050 \

--bind network:tcp://eth0:8800 \

--scheduler parallel \

--peering static \

--maximum-peer-connectivity 10000 \

--peers tcp://validator-0:8800 \

--peers tcp://validator-1:8800

"

validator-3:

image: hyperledger/sawtooth-validator:latest

container_name: sawtooth-validator-default-3

expose:

- 4004

- 5050

- 8800

A-71

A.14. PBFT NETWORK

volumes:

- pbft-shared:/pbft-shared

command: |

bash -c "

if [-e /pbft-shared/validators/validator-3.priv]; then

cp /pbft-shared/validators/validator-3.pub /etc/sawtooth/keys/

↪→ validator.pub

cp /pbft-shared/validators/validator-3.priv /etc/sawtooth/keys/

↪→ validator.priv

fi &&

if [! -e /etc/sawtooth/keys/validator.priv]; then

sawadm keygen

mkdir -p /pbft-shared/validators || true

cp /etc/sawtooth/keys/validator.pub /pbft-shared/validators/

↪→ validator-3.pub

cp /etc/sawtooth/keys/validator.priv /pbft-shared/validators/

↪→ validator-3.priv

fi &&

sawtooth keygen my_key &&

sawtooth-validator -vv \

--endpoint tcp://validator-3:8800 \

--bind component:tcp://eth0:4004 \

--bind consensus:tcp://eth0:5050 \

--bind network:tcp://eth0:8800 \

--scheduler parallel \

--peering static \

--maximum-peer-connectivity 10000 \

--peers tcp://validator-0:8800 \

--peers tcp://validator-1:8800 \

--peers tcp://validator-2:8800

"

A-72

A.14. PBFT NETWORK

validator-4:

image: hyperledger/sawtooth-validator:latest

container_name: sawtooth-validator-default-4

expose:

- 4004

- 5050

- 8800

volumes:

- pbft-shared:/pbft-shared

command: |

bash -c "

if [-e /pbft-shared/validators/validator-4.priv]; then

cp /pbft-shared/validators/validator-4.pub /etc/sawtooth/keys/

↪→ validator.pub

cp /pbft-shared/validators/validator-4.priv /etc/sawtooth/keys

↪→ /validator.priv

fi &&

if [! -e /etc/sawtooth/keys/validator.priv]; then

sawadm keygen

mkdir -p /pbft-shared/validators || true

cp /etc/sawtooth/keys/validator.pub /pbft-shared/validators/

↪→ validator-4.pub

cp /etc/sawtooth/keys/validator.priv /pbft-shared/validators/

↪→ validator-4.priv

fi &&

sawtooth keygen my_key &&

sawtooth-validator -vv \

--endpoint tcp://validator-4:8800 \

--bind component:tcp://eth0:4004 \

--bind consensus:tcp://eth0:5050 \

A-73

A.14. PBFT NETWORK

--bind network:tcp://eth0:8800 \

--scheduler parallel \

--peering static \

--maximum-peer-connectivity 10000 \

--peers tcp://validator-0:8800 \

--peers tcp://validator-1:8800 \

--peers tcp://validator-2:8800 \

--peers tcp://validator-3:8800

"

-------------=== pbft engines ===-------------

pbft-0:

image: hyperledger/sawtooth-pbft-engine:latest

container_name: sawtooth-pbft-engine-default-0

command: pbft-engine -vv --connect tcp://validator-0:5050

stop_signal: SIGKILL

pbft-1:

image: hyperledger/sawtooth-pbft-engine:latest

container_name: sawtooth-pbft-engine-default-1

command: pbft-engine -vv --connect tcp://validator-1:5050

stop_signal: SIGKILL

pbft-2:

image: hyperledger/sawtooth-pbft-engine:latest

container_name: sawtooth-pbft-engine-default-2

command: pbft-engine -vv --connect tcp://validator-2:5050

stop_signal: SIGKILL

pbft-3:

A-74

A.14. PBFT NETWORK

image: hyperledger/sawtooth-pbft-engine:latest

container_name: sawtooth-pbft-engine-default-3

command: pbft-engine -vv --connect tcp://validator-3:5050

stop_signal: SIGKILL

pbft-4:

image: hyperledger/sawtooth-pbft-engine:latest

container_name: sawtooth-pbft-engine-default-4

command: pbft-engine -vv --connect tcp://validator-4:5050

stop_signal: SIGKILL

-------------=== cbed tps ===-------------

cbed-tp-go-0:

image: sawtooth-cbed-tp-go:latest

container_name: cbed-tp-go-default-0

expose:

- 4004

depends_on:

- validator-0

entrypoint: "./bin/cbed tcp://validator-0:4004 http://rest-api

↪→ -0:8008"

cbed-tp-go-1:

image: sawtooth-cbed-tp-go:latest

container_name: cbed-tp-go-default-1

expose:

- 4004

depends_on:

- validator-1

entrypoint: "./bin/cbed tcp://validator-1:4004 http://rest-api

A-75

A.14. PBFT NETWORK

↪→ -1:8008"

cbed-tp-go-2:

image: sawtooth-cbed-tp-go:latest

container_name: cbed-tp-go-default-2

expose:

- 4004

depends_on:

- validator-2

entrypoint: "./bin/cbed tcp://validator-2:4004 http://rest-api

↪→ -2:8008"

cbed-tp-go-3:

image: sawtooth-cbed-tp-go:latest

container_name: cbed-tp-go-default-3

expose:

- 4004

depends_on:

- validator-3

entrypoint: "./bin/cbed tcp://validator-3:4004 http://rest-api

↪→ -3:8008"

cbed-tp-go-4:

image: sawtooth-cbed-tp-go:latest

container_name: cbed-tp-go-default-4

expose:

- 4004

depends_on:

- validator-4

entrypoint: "./bin/cbed tcp://validator-4:4004 http://rest-api

↪→ -4:8008"

A-76

A.14. PBFT NETWORK

-------------=== Batchers ===-------------

batcher-go-0:

image: sawtooth-batcher-go:latest

container_name: sawtooth-batcher-go-0

expose:

- 7000

ports:

- "7000:7000"

depends_on:

- rest-api-0

entrypoint: "./bin/batcher http://rest-api-0:8008"

batcher-go-1:

image: sawtooth-batcher-go:latest

container_name: sawtooth-batcher-go-1

expose:

- 7000

ports:

- "7001:7000"

depends_on:

- rest-api-1

entrypoint: "./bin/batcher http://rest-api-1:8008"

batcher-go-2:

image: sawtooth-batcher-go:latest

container_name: sawtooth-batcher-go-2

expose:

- 7000

ports:

- "7002:7000"

A-77

A.14. PBFT NETWORK

depends_on:

- rest-api-2

entrypoint: "./bin/batcher http://rest-api-2:8008"

batcher-go-3:

image: sawtooth-batcher-go:latest

container_name: sawtooth-batcher-go-3

expose:

- 7000

ports:

- "7003:7000"

depends_on:

- rest-api-3

entrypoint: "./bin/batcher http://rest-api-3:8008"

batcher-go-4:

image: sawtooth-batcher-go:latest

container_name: sawtooth-batcher-go-4

expose:

- 7000

ports:

- "7004:7000"

depends_on:

- rest-api-4

entrypoint: "./bin/batcher http://rest-api-4:8008"

A-78

A.15. FIRST NODE

A.15 First Node

version: '3.3'

volumes:

pbft-shared:

services:

-------------=== rest api ===-------------

rest-api:

image: hyperledger/sawtooth-rest-api:latest

container_name: sawtooth-rest-api-default

expose:

- 8008

ports:

- "8000:8008"

command: |

bash -c "

sawtooth-rest-api \

--connect tcp://validator:4004 \

--bind rest-api:8008

"

stop_signal: SIGKILL

-------------=== settings tp ===-------------

settings-tp:

image: hyperledger/sawtooth-settings-tp:latest

container_name: sawtooth-settings-tp-default

expose:

A-79

A.15. FIRST NODE

- 4004

command: settings-tp -C tcp://validator:4004

stop_signal: SIGKILL

-------------=== shell ===-------------

shell:

image: hyperledger/sawtooth-shell:latest

container_name: sawtooth-shell-default

volumes:

- ./pbft-shared:/pbft-shared

command: |

bash -c "

sawtooth keygen

tail -f /dev/null

"

stop_signal: SIGKILL

-------------=== validators ===-------------

validator:

image: hyperledger/sawtooth-validator:latest

container_name: sawtooth-validator-default

expose:

- 4004

- 5050

- 8800

volumes:

- ./pbft-shared:/pbft-shared

command: |

bash -c "

A-80

A.15. FIRST NODE

if [-e /pbft-shared/validators/validator-0.priv]; then

cp /pbft-shared/validators/validator-0.pub /etc/sawtooth/keys/

↪→ validator.pub

cp /pbft-shared/validators/validator-0.priv /etc/sawtooth/keys

↪→ /validator.priv

fi &&

if [! -e config-genesis.batch]; then

sawset genesis -k /etc/sawtooth/keys/validator.priv -o config-

↪→ genesis.batch

fi &&

echo sawtooth.consensus.pbft.members=\\['\"'$$(cat /pbft-shared/

↪→ validators/validator-0.pub)'\"','\"'$$(cat /pbft-shared/

↪→ validators/validator-1.pub)'\"','\"'$$(cat /pbft-shared/

↪→ validators/validator-2.pub)'\"','\"'$$(cat /pbft-shared/

↪→ validators/validator-3.pub)'\"','\"'$$(cat /pbft-shared/

↪→ validators/validator-4.pub)'\"'\\] &&

if [! -e config.batch]; then

sawset proposal create \

-k /etc/sawtooth/keys/validator.priv \

sawtooth.consensus.algorithm.name=pbft \

sawtooth.consensus.algorithm.version=1.0 \

sawtooth.consensus.pbft.members=\\['\"'$$(cat /pbft-shared/

↪→ validators/validator-0.pub)'\"','\"'$$(cat /pbft-

↪→ shared/validators/validator-1.pub)'\"','\"'$$(cat /

↪→ pbft-shared/validators/validator-2.pub)'\"','\"'$$(cat

↪→ /pbft-shared/validators/validator-3.pub)'\"','\"'$$(

↪→ cat /pbft-shared/validators/validator-4.pub)'\"'\\] \

sawtooth.publisher.max_batches_per_block=1200 \

-o config.batch

fi &&

if [! -e /var/lib/sawtooth/genesis.batch]; then

A-81

A.15. FIRST NODE

sawadm genesis config-genesis.batch config.batch

fi &&

if [! -e /root/.sawtooth/keys/my_key.priv]; then

sawtooth keygen my_key

fi &&

sawtooth-validator -vv \

--endpoint tcp://validator:8800 \

--bind component:tcp://eth0:4004 \

--bind consensus:tcp://eth0:5050 \

--bind network:tcp://eth0:8800 \

--scheduler parallel \

--peering static \

--maximum-peer-connectivity 10000

"

-------------=== pbft engines ===-------------

pbft:

image: hyperledger/sawtooth-pbft-engine:latest

container_name: sawtooth-pbft-engine-default

command: pbft-engine -vv --connect tcp://validator:5050

stop_signal: SIGKILL

-------------=== cbed tps ===-------------

cbed-tp-go:

image: sawtooth-cbed-tp-go:latest

container_name: cbed-tp-go-default

expose:

- 4004

depends_on:

A-82

A.15. FIRST NODE

- validator

entrypoint: "./bin/cbed tcp://validator:4004 http://rest-api:8008"

-------------=== Batchers ===-------------

batcher-go:

image: sawtooth-batcher-go:latest

container_name: sawtooth-batcher-go

expose:

- 7000

ports:

- "7000:7000"

depends_on:

- rest-api

entrypoint: "./bin/batcher http://rest-api:8008"

A-83

A.16. OTHER NODES

A.16 Other Nodes

version: '3.3'

volumes:

pbft-shared:

services:

-------------=== rest api ===-------------

rest-api:

image: hyperledger/sawtooth-rest-api:latest

container_name: sawtooth-rest-api-default

expose:

- 8008

ports:

- "8000:8008"

command: |

bash -c "

sawtooth-rest-api \

--connect tcp://validator:4004 \

--bind rest-api:8008

"

stop_signal: SIGKILL

-------------=== settings tp ===-------------

settings-tp:

image: hyperledger/sawtooth-settings-tp:latest

container_name: sawtooth-settings-tp-default

expose:

A-84

A.16. OTHER NODES

- 4004

command: settings-tp -C tcp://validator:4004

stop_signal: SIGKILL

-------------=== shell ===-------------

shell:

image: hyperledger/sawtooth-shell:latest

container_name: sawtooth-shell-default

volumes:

- ./pbft-shared:/pbft-shared

command: |

bash -c "

sawtooth keygen

tail -f /dev/null

"

stop_signal: SIGKILL

-------------=== validators ===-------------

validator:

image: hyperledger/sawtooth-validator:latest

container_name: sawtooth-validator-default

expose:

- 4004

- 5050

- 8800

volumes:

- ./pbft-shared:/pbft-shared

ports:

- "4004:4004"

- "5050:5050"

A-85

A.16. OTHER NODES

- "8800:8800"

command: |

bash -c "

if [-e /pbft-shared/validators/validator-.priv]; then

cp /pbft-shared/validators/validator-.pub /etc/sawtooth/keys/

↪→ validator.pub

cp /pbft-shared/validators/validator-.priv /etc/sawtooth/keys/

↪→ validator.priv

fi &&

sawtooth keygen my_key &&

sawtooth-validator -vv \

--endpoint tcp://validator:8800 \

--bind component:tcp://eth0:4004 \

--bind consensus:tcp://eth0:5050 \

--bind network:tcp://eth0:8800 \

--scheduler parallel \

--peering static \

--maximum-peer-connectivity 10000 \

--peers tcp://95.216.219.236:8800

"

-------------=== pbft engines ===-------------

pbft:

image: hyperledger/sawtooth-pbft-engine:latest

container_name: sawtooth-pbft-engine-default

command: pbft-engine -vv --connect tcp://validator:5050

stop_signal: SIGKILL

-------------=== cbed tps ===-------------

cbed-tp-go:

A-86

A.16. OTHER NODES

image: sawtooth-cbed-tp-go:latest

container_name: cbed-tp-go-default

expose:

- 4004

depends_on:

- validator

entrypoint: "./bin/cbed tcp://validator:4004 http://rest-api:8008"

-------------=== Batchers ===-------------

batcher-go:

image: sawtooth-batcher-go:latest

container_name: sawtooth-batcher-go

expose:

- 7000

ports:

- "7000:7000"

depends_on:

- rest-api

entrypoint: "./bin/batcher http://rest-api:8008"

A-87

A.17. MAKEFILE

A.17 Makefile

BuildTF:

-@rm -rf TransactionFamily/relative

mkdir TransactionFamily/relative

cp -r CrowdBED_API/src/* TransactionFamily/relative

docker build -f TransactionFamily/TransactionFamily.dockerfile -

↪→ t sawtooth-cbed-tp-go TransactionFamily/

rm -rf TransactionFamily/relative

BuildBatcher:

-@rm -rf Batcher/relative

mkdir Batcher/relative

cp -r CrowdBED_API/src/* Batcher/relative

docker build -f Batcher/Batcher.dockerfile -t sawtooth-batcher-

↪→ go Batcher/

rm -rf Batcher/relative

RunClient:

go run Client/src/main.go

OneNode:

make BuildTF

make BuildBatcher

sleep 2

docker-compose -f DockerNetworks/SingleNode.yaml up

PBFT-Net:

make BuildTF

make BuildBatcher

sleep 2

docker-compose -f DockerNetworks/PBFT_Network.yaml up

Nuke:

-@docker stop `docker ps -aq`

docker system prune -f

docker volume prune -f

A-88

A.17. MAKEFILE

Tribes:

protoc --go_out=. CrowdBED_API/src/Tribes/*.proto

BatcherRPC:

protoc -I=./CrowdBED_API/src/batcherrpc --go_out=plugins=grpc:./

↪→ CrowdBED_API/src/batcherrpc ./CrowdBED_API/src/batcherrpc/

↪→ batcher.proto

InstallSawtooth:

sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --

↪→ recv-keys 8AA7AF1F1091A5FD

sudo add-apt-repository 'deb [arch=amd64] http://repo.sawtooth.

↪→ me/ubuntu/chime/stable bionic universe'

sudo apt-get update

sudo apt-get install -y sawtooth

sudo apt-get install -y sawtooth sawtooth-pbft-engine

GenerateKeys:

-@mkdir ./Node/pbft-shared

-@mkdir ./Node/pbft-shared/validators

-@sudo rm /etc/sawtooth/keys/validator*

sudo sawadm keygen

sudo chmod 644 /etc/sawtooth/keys/validator.priv

sudo chmod 644 /etc/sawtooth/keys/validator.pub

sudo cp /etc/sawtooth/keys/validator.pub ./Node/pbft-shared/

↪→ validators/validator-$(WHO).pub

sudo cp /etc/sawtooth/keys/validator.priv ./Node/pbft-shared/

↪→ validators/validator-$(WHO).priv

GenesisNode:

make GenerateKeys WHO="0"

docker-compose -f Node/FirstNode.yaml up

FatherNode:

docker-compose -f Node/OtherNodes.yaml up

89

	Introduction
	Motivation
	Contributions
	Methodology
	Thesis Structure

	Background Knowledge
	Crowsourcing
	Cryptography
	Public Key Cryptography
	Hash Functions
	Digital Signatures

	Fault Tolerance
	Crash Fault Tolerance
	Byzantine Fault Tolerance

	Blockchain
	Hyperledger Project
	Hyperledger Fabric
	Hyperledger Iroha
	Hyperledger Sawtooth

	Other Technologies Used
	Protocol Buffers
	gRPC

	Related Work

	A Deep Dive into Sawtooth
	Global State
	Merkle Hashes
	Radix Addresses
	Serialization

	Transactions and Batches
	Transaction Structure
	Transaction Header Structure
	Batch Structure
	Batch Header Structure

	Sawtooth Network
	REST API
	Events
	Consensus in Sawtooth
	A Day in the Life of a Hyperledger Sawtooth Transaction
	CrowdBED Architecture
	CrowdBED Network
	CrowdBED Consensus

	The Data on the Ledger
	User
	Task
	Submission
	Lock
	Proof
	Validation
	Wrapper

	CrowdBED Transaction Family
	When a Transaction Arrives
	New User Appears
	Task Creation
	Locking the Task
	Adding the Proof
	Submitting Answers
	Validation

	CrowdBED Client
	Generating a User
	Requester
	Worker
	Validation

	Implementation
	CrowdBED Project Structure
	CrowdBED Client
	Register User
	Add Task
	Add Submission
	Work
	List

	Running Docker Simulations
	Deployment on a Real Network

	Conclusion
	Summary
	Challenges
	Future Work
	Finite Submissions
	Modular Validation
	New Clients
	Auditors
	Malicious Tasks
	Sybil Attack and Collusion
	Storage
	Leaky Validators

	Appendices
	Batcher
	Client
	Blockchain API
	Task API
	Submission API
	User API
	Validation API
	Hashtools
	Unlock
	Transaction Family
	Data Types
	Batcher gRPC
	Single Node (Dev Mode)
	PBFT Network
	First Node
	Other Nodes
	Makefile

