
RECOMMENDATION SYSTEM

FOR

ICARUS PLATFORM
By

Kristian Litsis

A thesis submitted to

the University of Cyprus

for the degree of

COMPUTER SCIENCE

Icarus

Department of Computer Science

University of Cyprus

May 2020

Declaration

I hereby certify that the material, which I now submit for assessment on the pro-

grammes of study leading to the award of Bachelor of Science, is entirely my own

work and has not been taken from the work of others except to the extent that such

work has been cited and acknowledged within the text of my own work. No portion

of the work contained in this thesis has been submitted in support of an application

for another degree or qualification to this or any other institution.

———————————–

Student Name

May 22, 2020

c© Copyright by KRISTIAN LITSIS, 2020

All Rights Reserved

ACKNOWLEDGMENTS

I would like to express my heartfelt gratitude to my supervisor Dr. George Pallis,

Assistant Professor in the Computer Science Department of University of Cyprus,

for his endless willing and the opportunity that gave me to work my thesis in one of

the biggest new-age trends that recommendation system represent and be part of a

big European project like Icarus is. I would also like to thank him for trusting in

me and for the opportunity he has given me to.

Moreover, I would like to thank the MS.C. candidate Chrysovalantis Christodoulou

for his excellent guidance and the chance he gave me to learn an incredible amount

of technologies and consultancies.

Last but not least, I would like to say a big thank you to my friends and family for

the support and support they have shown me during this work.

ii

DEDICATION

This dissertation/thesis is dedicated to my family and my friends who

provided both emotional and financial support

iii

ABSTRACT

The recent developments in machine learning algorithms in Recommendation sys-

tems and the integration of them into business have become a prime focus of research

for gaining profit for both customers and the providers.

In this thesis, we focus on the Hybrid recommendation system that will be used

for the ICARUS platform, a European Project in development, that will present to

the customer’s data about aviation industries. Therefore, a content-based system

will be used for new users that entered the platform where it will solve the cold start

problem and Collaborative filtering for finding similar users and items to recommend

based on ratings. In the end, a weighted hybrid recommender will be implemented

to combine the results of different techniques into a single recommendation list that

will treat the outputs of each technique as inputs to generate a function. This

function will make it possible to change the system dynamically by introducing a

coefficient that will multiply each input. Then we have performed a data visual-

ization process in order to represent the recommendation list of the User, and for

this, we implemented a Restful API that can be called from every User. Moreover,

we tried different approaches for the Hybridization with the Dataset provided by

the Icarus Platform, and we compared those results to decide with which method

to proceed.

In the end, Prediction accuracy, Decision support, and some non-traditional

metrics were performed to evaluate the recommender where we achieved around 85%

precision, 35% recall and around 50% f1-score. Finally, an outline of the conclusions

drawn from the research is given and some suggestions for future work are proposed.

iv

TABLE OF CONTENTS

Table of Contents

Page

1 Introduction . 1
1.1 Motivation . 1
1.2 Challenges . 2
1.3 Contributions . 3
1.4 Outline Contents . 4

2 Literature review and Related work 7
2.1 History and Overview about Recommendation Systems 7

2.1.1 Types of Recommender System 8

2.1.1.1 Content-based filtering 8

2.1.1.2 Collaborative filtering 9

2.1.1.3 Hybrid and Deep Learning 10
2.2 Importance of Recommendation systems 11
2.3 Recommendation systems in Aviation industry 13
2.4 Challenges and problems of Recommenders 13

2.4.1 Scalability . 13
2.4.2 Data Sparsity . 14
2.4.3 Cold Start . 15
2.4.4 Reduced Coverage . 15
2.4.5 Shilling Attacks . 16
2.4.6 Gray Sheep . 16

2.5 Similar Researches/Models on Recommender Systems 17
2.6 Visualization for Recommender System 20

3 Methodology . 22
3.1 Methodology Overview . 22
3.2 Problem Formulation . 23
3.3 Data Collection . 25
3.4 Data Visualization and REST API 25

v

3.5 Building the Recommender . 28
3.5.1 Collaborative filtering model 28
3.5.2 Content-Based model . 29
3.5.3 Hybrid model . 30

3.6 Prediction Generation . 31

4 Evaluation . 34
4.1 Recommender performance . 34
4.2 Comparisons . 37

4.2.1 Experiment Setup . 37
4.2.2 Representation of data . 38
4.2.3 Results and Comparison . 39

5 Conclusion . 49
5.1 Conclusion . 49
5.2 Lesson Learnt . 50
5.3 Future Work . 51

References . 54

Appendices

A Acronynms List . 56

vi

List of Figures

2.1 Types of recommenders . 8

2.2 Content Based recommender . 9

2.3 Collaborative filtering recommender 10

3.1 Overview of Icarus Recommender . 24

3.2 Representation of Restful API . 26

3.3 Method of Payment . 27

3.4 Target Purpose. 27

3.5 k-NN basic prediction equation . 29

3.6 Cosine similarity equation . 29

3.7 Cosine similarity between two vectors 29

3.8 Representation of User/Item vectors 30

3.9 Hybrid model . 31

3.10 Top 10 Predictions of the Recommender 32

4.1 Novelty of Recommender . 36

4.2 Long tail plot of items . 38

4.3 Distribution of all ratings . 39

4.4 Coverage of the Recommenders . 41

vii

4.5 Mean Average recall . 42

4.6 kNN results for different k neighbors 43

4.7 Estimation ratings comparison . 44

4.8 kNN Baseline measures for top 5 recommendations 44

4.9 SVD measures for top 5 recommendations 45

4.10 Precision and Recall for 2 algorithms 46

4.11 kNN measures for top 10 recommendations 47

4.12 SVD measures for top 10 recommendations 47

viii

List of Tables

2.1 Hybridization methods based on Robin Burke 11

2.2 Different recommenders and their advantages 18

4.1 Evaluation of different Algorithms . 40

4.2 Evaluation of Novelty and Personalization 42

ix

Chapter One

Introduction

Contents
1.1 Motivation . 1

1.2 Challenges . 2

1.3 Contributions . 3

1.4 Outline Contents . 4

1.1 Motivation

It is a fact that in the era we live in, due to the rapid development of technology and

big data, people are more dependent on devices and different web-based platforms

that help their everyday tasks. These tasks may include social interactions with

their companions, websites where they can access the information that they need

or for eCommerce shopping. This has lead to the advancement of different recom-

mendations systems where such information like user preferences and interactions

are gathered to help the system find which recommendations would be preferred the

most and push the User to buy shortly. Recommendations systems are one of the

most important research areas today’s because it helps users to find their interest

in the internet [15]. The users of such systems often have diverse, conflicting needs.

Differences in personal preferences, social and educational backgrounds, and private

or professional interests are pervasive. As a result, it seems desirable to have per-

sonalized intelligent systems that process, filter, and display available information

1

Introduction

in a manner that suits each individual using them. The need for personalization has

led to the development of systems that adapt themselves by changing their behavior

based on the inferred characteristics of the User interacting with them. Moreover,

these systems will help not only the User be satisfied, but also there would be profits

from companies and different organizations that will provide and sell the data.

1.2 Challenges

Today’s Recommender system is a relatively new area of research in machine learning

and artificial intelligence and has accumulated a lot of attention in every field to

make a profit. A recommendation engine can be very powerful while, on the other

hand, it can be torture that is easily manipulated. First and foremost, continuous

and valid Dataset is required for the Recommender to work successfully, and this

is very hard to find it. Because Icarus is still a running project, we had to create

our mock data given the structure of the Dataset and the specifications that were

presented in the deliverables.

Another obstacle that we faced was the cold start problem on how to deal with

new users and products that don’t have any history and interaction with the system.

Besides that, in the user events dataset, the user-item rating matrix was very sparse(

many NaN items) because we created a realistic dataset where many items are

provided, and all those products will not be rated by many users, in our case the

companies. In the real-world, a regular user does not give ratings to even 1 percent

of the total items [29]. Therefore, around 99 percent of the cells of this matrix is

empty. This sparsity makes training computationally inefficient, and the prediction

very difficult.

Furthermore, we faced difficulties in dealing with the products that were prac-

tically the same by the description but different in their content. For example,

different datasets were linked with airplanes, but one would present air tickets while

others would present accidents. Since we don’t use product descriptions for collab-

2

Introduction

orative filtering, we can miss the information about similar items.

Because of the nature of the creation of the datasets that were based in the

structure by using data fabrication, we introduced another challenge, the known

Grey-Sheep Problem, which from the name it means that a group of users who have

special tastes and may agree or disagree with the majority. These behaviors are un-

predictable because related items are rated offbeat, and this will confuse the system

to find the hidden patterns and will decrease the accuracy of the Recommender.

Last, a difficult found in the project was the evaluation of the Recommender.

My thesis objective was to provide recommendations of the datasets to the users,

which means that there is not just one correct result because it is not a classification

problem. However, we are able to filter the unwanted recommendations based on

the analysis that we performed, and we were able to provide the most similar items.

1.3 Contributions

Our research aims to provide results for the User that will use the platform and help

both the provider and also the consumer to maximize the profit from both parties.

Moreover, what we are trying to achieve is to create a hybrid recommender that

will be able to eliminate all the possible problems and give recommendations based

on different features. When deploying the collaborative filtering model, we often

would run into problems that we have to predict for unseen items or users. The

implementation of the hybrid model can solve this by analyzing the content and

every specific characteristic of the data. On the other hand, a few of the data are

missing cause we have not been able to collect them, and this will lead to difficulties

in Content-based methods, but here comes again Hybridization where it will find

the similarities between categories.

Another challenge that we wanted to contribute was on how to handle the data.

These data are complex and can be derived from heterogeneous data sources. To

handle this challenge, we decided to use ontologies that can be applied to facilitate

3

Introduction

the modeling of the data across multiple data sources. The Ontology is described

as: "An explicit specification of a conceptualization"[Tom Gruber]. From these

ontologies, we could gather all the metadata of the datasets and create an item

vector that would describe users and items. By using the ICARUS ontology, the

recommendation model would take into account both the contextual hierarchy and

the semantic annotations of the concepts. Furthermore, it will utilize the semantic

functionalities and will run through SPARQL queries, where scores/ranks that are

that will be returned from the Recommender will be used to provide the most

appropriate datasets that best match the preferences of a target user.

Furthermore, after lots of experiments that were performed in the Hybrid model,

we decided to use a function that would combine all the algorithms, and we intro-

duced a parameter that would change the model dynamically. This parameter is a

coefficient in the weighted hybrid model that depends on the sparsity of the Dataset

in the user interaction with the platform. By doing this, we achieved better results

in the recommendations, and we could avoid many problems.

Last but not least, we decided to have for the Recommender a Restful API,

which is a black box whose implementation details are unclear and can be called to

recommend different data for the User. The core of the system is a flask app that

receives a user ID and returns the relevant items for that User.

1.4 Outline Contents

Chapter 1: Introduction

In the introduction chapter, we briefly present how recommendation systems have

expanded nowadays and how these systems are used to help users find their favorite

items on the web. In addition, we mention the challenges that we encounter in our

research and the output that we will represent as a recommendation to our User.

Lastly, we talk about our contribution to this area and how it will be used for future

projects.

4

Introduction

Chapter 2: Literature review and related work

In the introduction chapter, we briefly present how recommendation systems have

expanded nowadays and how these systems are used to help users find their favorite

items on the web. In addition, we mention the challenges that we encounter in our

research and the output that we will represent as a recommendation to our User.

Lastly, we talk about our contribution to this area and how it will be used for future

projects.

Chapter 3: Methodology

In the Methodology chapter, we explain in detail the process of our work, and we

represent a detailed analysis of our research. We explain how our recommender

system works using diagrams and graphs, how we create the data using Data Fabri-

cation and different software that help us with the platform. In addition, we describe

the process of creating a hybrid system by combining two of the known methods the

collaborative filtering with content-based that are combined to give a final score in

the form of a black box API that the User can access. Moreover, we represent all

the technology used, and we provide the result of our experiment by drawing some

conclusions.

Chapter 4: Evaluation

Chapter 4 focuses on the presentation of our findings and our results from the exper-

iment. We compare our results with the features that literature work discovered by

showing the similarities and dissimilarities between recommenders. Furthermore, in

this chapter, we present all the different algorithms that we studied and compared

their performance in various types of datasets.

Chapter 5: Conclusion

In the final chapter, we define our conclusions and summarize them to provide an

5

Introduction

outcome for the reader.We also provide all the lessons learned in this dissertations

along with the challenges. Finally, we propose how the system can be improved

in the future by analyzing in more detail user preferences and descriptions and by

introducing more sophisticated techniques.

6

Chapter Two

Literature review and Related work

Contents
2.1 History and Overview about Recommendation Systems 7

2.1.1 Types of Recommender System 8

2.2 Importance of Recommendation systems 11

2.3 Recommendation systems in Aviation industry 13

2.4 Challenges and problems of Recommenders 13

2.4.1 Scalability . 13

2.4.2 Data Sparsity . 14

2.4.3 Cold Start . 15

2.4.4 Reduced Coverage . 15

2.4.5 Shilling Attacks . 16

2.4.6 Gray Sheep . 16

2.5 Similar Researches/Models on Recommender Systems 17

2.6 Visualization for Recommender System 20

2.1 History and Overview about Recommendation

Systems

Nowadays with these technological developments, people used to buy more products

online on the web than from stores. In the past, the purchase of items was based

on the reviews that their relatives or friends had given, but now as the internet has

7

Literature review and Related work

advanced, we need to assure clients that the product is good and they would like to

buy. To give this confidence, recommender systems were built. Recommendations

systems are machine learning applications in business. These engines filter out the

products that a particular user would be interested in buying or would buy based

on his/her previous purchase. The clear main purpose of the current recommender

systems is to guide the user to useful/interesting objects.

2.1.1 Types of Recommender System

There are many recommendation filtering techniques that each system operates in

several domains of application. In the following section, several types of Recom-

mendation Systems are presented, along with specific characteristics and examples

of applications in which they are used.

Figure 2.1

2.1.1.1 Content-based filtering

The content-based filtering approach is based on a description of the item and pro-

filing the user’s preference. They ignore interactions between users and items. In a

CB recommendation system, keywords are used to define the items. Besides that, a

user profile is built to indicate the category of the item this User likes [21]. These

methods try to recommend items that are related to those that a user liked in the

8

Literature review and Related work

past (or analyzing for the present). They try to find various candidate items by

comparing them with previously rated items by the User, and when items with the

same content are found, then the result is shown. Furthermore, since we make rec-

ommendations for only a particular user and we don’t use any interaction of that

User with the system, we make the Recommender more scalable in the term of the

number of users. On the other hand, content-based algorithms depend on the size

of the item-set. We need to examine all the items to find the similarities, and as

new data are introduced, the accuracy of the Recommender will decrease, making

this a drawback of this algorithm.

Figure 2.2 New item will be recommended to user based on similar items

2.1.1.2 Collaborative filtering

Collaborative filtering (CF) is the procedure of filtering or evaluating items over

the judgments of other people(Schafer et al.). This model uses implicit or explicit

interactions of users with items (like metadata or different rating and feedbacks).

They try to match users with similar interests. This technology brings together the

opinions of large interconnected communities on the web, supporting the filtering

of substantial quantities of data [27]. A key advantage of CF is that this approach

does not rely on analyzing the content of the item, and therefore it is capable of

finding recommendations accurately without requiring information, but his obstacle

is the new User that has not done any interaction in the system.

9

Literature review and Related work

Figure 2.3 New item will be recommended to user based on similar user

2.1.1.3 Hybrid and Deep Learning

Hybrid Recommenders combine both approaches that were mentioned above and

overcome a lot of the challenges of each method. These can be implemented in sev-

eral ways, by adding some of the components of Collaborative filtering to content-

based or vice versa, or by combining both of them to a new unified system. These

methods are more accurate and work well in different challenges by eliminating each

weakness of each algorithm mentioned. Although the positive facts that we pre-

sented for the hybrid models, estimating user ratings still remain a difficult task.

This challenge lies in the complexity that it is not easy to describe user preferences

just with some analysis in the metadata. Human interests are continuously changing

due to various factors in the real-life making the recommendation very difficult.

On the other hand, there is also another category that can be used by combining

multiple methods to create a new model, and we call them Deep Learning tech-

niques. These methods use multiple layers of neurons that create a hidden layer(the

reason why it’s called deep), which we can not control, and by using functions such

as gradient descent (SGD), they minimize the error of predictions. These methods

can achieve greater accuracy when combined with content-based or collaborative

filtering, and they can use both supervise or unsupervised learning.

10

Literature review and Related work

Below, we represent all the methods that a hybrid system can be constructed,

and for each method, we provide a description that was given by Burke in his book[4].

2.1. Table of Hybridization

Hybridization method Description

Weighted
The scores of several recommendation techniques are combine

together(as votes) to produce a single recommendation

Switching
The system switches between recommendation techniques

depending on the current situation

Mixed
Recommendations from several different recommenders are

presented at the same time

Feature combination
Features from different recommendation data sources are thrown

together into a single recommendation algorithm

Cascade One recommender refines the recommendations given by another

Feature augmentation Output from one technique is used as an input feature to another

Meta-level
The model learned by one recommender is used as input to

another

Table 2.1 Hybridization methods based on Robin Burke

In my research, we decided to go with the Weighted method, and we implemented

this by representing each recommendation as a function using a coefficient that was

dependent on the sparsity of the data. So the system would be dynamically changed

as soon as more user interaction was imported to the system.

2.2 Importance of Recommendation systems

The evolution of the industry and, in particular, the computers in combination with

the rapid development of network infrastructure has bought online shopping to a

11

Literature review and Related work

new level. This has become a challenge in e-commerce. We can’t wait for customers

to come to us. We have to figure out where they are, go there and drag them back

to the store (Paul Gram). However, as the information grows and becomes larger

every day, the internet becomes overloaded. This leads directly to the use of the

recommendation technology to manage this information and provide what is best

for the clients.

The recommenders are systems that use different algorithms to suggest items to

a user based on different characteristics. We encounter them in different areas,

shopping, news reading, movies, songs, and many others. Recommenders are used

to make every User’s decision easier. These decisions are mostly about low-cost

environments such as book and movie suggestions, with their primary scope being

to relieve the User from long searches (Jannach et al., 2010; Ricci et al., 2011) [10]

[23].

There are a lot of benefits from the use of these recommendation systems. The

most important benefits include making business at any time (availability) and from

any possible place and financial gaining for both the business, which reduces the

cost of maintenance and salaries and for the customer who buys cheaper without

giving any extra effort. E-commerce systems use these systems widely to improve

sales (Ricci, 2011) [23]. It helps the business by increasing its profit by attracting

as many customers as possible and trying to win their loyalty to come back for

acquiring other services/items according to their behavior, benefiting from the so-

called Long Tail Theory[1]. Their sales would be up (Amazon), and the User will be

more satisfied because they will decrease the searching cost and would be pleased

with the diversity of the products that are represented. Moreover, recommendations

generate a substantial amount of additional revenue for business(Malcolm et al.)[6].

The analysis in Malcolm et al. paper showed incomes would increase by introducing

shoppers to a new category to continue their shopping. They noticed that in order

to maintain a steady flow of direct extra revenue, the model files must be updated

frequently, or the performance would fall off rapidly.

12

Literature review and Related work

2.3 Recommendation systems in Aviation industry

The aviation industry has become one of the most important subjects in our life,

and various airlines are spreading across a large number of countries. Daily a large

number of flights operates in different locations for the transport of millions of

peoples. One of the major problems that this industry encounter is the lack of proper

recommendations systems for the User-based on the experience of the customer[11].

Many different algorithms are used in this field to solve these obstacles.[31] Tuteja

used Flight Recommendation client (FRC) to recommend flights to customers on the

basis of user preferences and feedbacks. This system was created to help customers

to discover and select the most appropriate flights. Amadeus Company created an

intelligent application that would recommend possible destinations for the customers

based on business intelligence pieces of information as well as some unstructured

information from the web. They used Euclidean distance and cosine similarity to

find the top recommendations for the customers [2].

2.4 Challenges and problems of Recommenders

In this section, we discuss the key challenges for every Recommender. For each

challenge, we introduce the problem and then present a possible solution for these

problems.

2.4.1 Scalability

Scalability is yet another challenge facing current e-commerce recommendation sys-

tems. Many large websites may have millions of users nowadays, and these sites

are visited repeatedly consuming resources. These same sites want to maintain the

activity and responsiveness, and it should be scalable to billion of users with differ-

ent preferences and habits. Many profit-making recommender systems have never

handled a database that large, or they may crash from the overload. Many Artificial

13

Literature review and Related work

intelligence algorithms that work well for small-scale problems are too inefficient to

be used for very large problems. So there is a need for new algorithms or different

techniques that can handle very large-scale problems while maintaining accuracy.

For passing this challenge, clustering techniques can be used to scale up the

neighborhood formation process[25]. hese algorithms work by identifying groups of

users who appear to have similar preferences, and once the clusters are created, then

we could make the prediction of a new user based on the opinion that is created by

gathering all the other similar users in the neighborhood. Another method used by

(Koren et al.)[12] in the Netflix price that solves Scalability was the use of matrix

factorization and SVD (Singular Value Decomposition), which divides the problem

into the matrix and reduce the number of features by going to lower dimensions.

This method helps to find hidden patterns in lower dimensions and make the system

much more scalable.

2.4.2 Data Sparsity

Another challenge that we encounter in the recommendation systems nowadays is

the well-known data sparsity problem. We have to store every action that a user

does with the system in a matrix where each User has an interaction with an item.

However, this user-item rating matrix is very sparse(many null items) because

stores/online shops have many products, and all those products will not be rated

by many users. Actually, there exist very few people that frequently rate products.

In order to reduce the sparsity problem, some researchers have proposed to re-

ward every User for providing ratings to items. Others have proposed to capture

the ratings by implicitly looking at the User’s behavior [25].In his research, he ap-

proached to solve the sparsity problem by using user filtering agents called filter

bots or dynamic agents to automatically rate items and filled the empty values.

(Papagelis et al.)[20] used a similar method called trust inferences that are associa-

tions between users in order to gather the additional source of information.

14

Literature review and Related work

2.4.3 Cold Start

Cold start problem is a challenge that may be associated with the sparsity of the

Recommender. For systems that have just established, they are facing the cold start

problem where the recommender system is unable to accurately recommend items

due to the fact that only a few rating has been performed on items by each User

and we can not find any similarity between user/items. Being unable to store user

history, we can not find user preferences[28], and therefore we cannot fill the missing

values using typical matrix factorization techniques.

By using only collaborative filtering, we can not help in cold start problems

cause we don’t have any history about the new User. However, introducing content-

based information, we can improve our Recommender to find similarities between

items/users (Schein,2002)[28]. In his paper, he introduced two machine learning

algorithms to evaluate the data. Another solution would be the use of a k-arms

bandit in order to consider the exploration versus exploitation in new items.[18] [17]

2.4.4 Reduced Coverage

With the increasing catalog of items, it is always important to get high coverage

between different items while maintaining low latency. If recommender systems rely

only on items that have been rated or the popular ones, then it is missing a lot

of good items for the recommendation that are hidden because no one has rated

them or they just have been published in the market. This is called the Coverage

metrics, which is the percentage of items for which a recommender agent can provide

predictions. The long tail distribution of items describes it best that the gain of every

business is more in the long tail than in popular purchase[Amazon].

A solution is by using the bandit arms[13], in which we have to try to switch

between exploration and exploitation for every item. Exploitation consists of trying

to represent items that we know and have information on them in the search space,

while in for exploration, we are seeking to find new positions in the searching space,

15

Literature review and Related work

hoping to find a better solution. If we found a brand-new item that advertises very

well, we would like to present it to users more (exploitation). But concurrently, you

would also want to present others which have not been shown as much, because they

can be even more popular than the items you have shown already (exploration) by

using e-greedy or more sophisticated methods.

2.4.5 Shilling Attacks

Because of the availability that exists on the web, everyone can enter to the internet

very easily and try to do different malicious things. For a recommender, it introduces

a challenge of not understanding whether a user is real, and his rating is based on

the experience he had with the items, or he is trying to game the recommendation

system. These ratings are carried out in order to influence the system’s behavior

and have been termed "shilling" or "profile injection" attacks that can also be made

for personal profit. For example, some clients can be giving a lot of negative reviews

for different items in order to distance themselves from their competitors.

A method for detecting suspicious ratings based on suspicious time windows and

target item analysis can be used to detect those attackers [32]. Wei et al. an-

alyzed data streams of the rating items by using time windows and find groups

abnormalities between user ratings. He identified the attackers in four groups, ran-

dom, average, bandwagon, and segment attacking models. Seeing each model the

distribution of the variance of ratings, he could predict the character of the User.

2.4.6 Gray Sheep

The last challenge that we will describe is the known problem of gray sheep. It is a

challenge that affects similar products that are practically the same in content but

different in presentation. This problem we frequently face in collaborative filtering

methods since we don’t use product descriptions for collaborative filtering, and we

can miss the information about synonymy. Since online stores have different codes

16

Literature review and Related work

for these items, finding synonymy can be a problem and will lead to low accuracy of

the prediction by the Recommender. So the pure solution with collaborative filtering

would fail in this challenge because it does not analyze the content of the items.

There are also gray sheep users that are unique Users with very specific tastes that

affect the performance of the Recommender directly negatively. A solution would

be switching to a hybrid recommender where it will use content-based features to

find similar items. Gray sheep users can be identified using clustering algorithms in

an offline process, where the similarity threshold can be used to isolate these users

from the rest of clusters finding them empirically [8].

2.5 Similar Researches/Models on Recommender Sys-

tems

Table 2.2 will depict other’s papers authors names and the techniques used to pass

different challenges 2.2.

No Author name Techniques used Advantages

1 Panigrahia et.al. [19]
Alternating Least Square and

Clustering techniques
Sparsity,Scalability

2 Linden et.al. [14]
Item to Item Collaborative

Filtering

Scalable,faster for large

dataset

3 GroupLens [26]

Content based and

collaborative with special

techniques (feedback,filters)

Open Architecture

Platform,privacy,Openness

and scalable

4 Töscher et.al. [30]

Neighborhood-based

algorithm with RMF(Regular

matrix factorization)

Scalable, Improve speed and

accuracy for estimation of

unknown variable

5 Tharun et.al. [22]
Collaborative filtering

approach

Solve sparsity,cold start

problem and shriller attacks

17

Literature review and Related work

6 Breese et.al. [3]

Collaborative filtering using

Bayesian methods for

similarity

System more accurate,

probabilistic,smaller memory

requirement and faster

predictions. (SLOW training)

7 Koren et.al. [12]
Matrix Factorization

Technique

Solve scalability problems

and better accuracy (with

feedbacks), flexibility with

real-life situations.

8
Salakhutdinov et.al.

[24]

Restricted Boltzman

Machines

Outperform SVD by RMSE

(Root mean square error)

9 Ghazanfar et.al. [7]
Cascading hybrid

recommendation System

Eliminate problems of

scalability,data sparsity, cold

start and reduced coverage

10 A.Dev and Mohan [5]

Big data recommendation

using Map-Reduce framework

for distributed computing

High performance and

parallelism

Table 2.2 Different recommenders and their advantages

Panigrahia et al.[19] created a new hybrid algorithm called User-oriented collabo-

rative filtering where they used Dimensionality reduction techniques like Alternative

Least Square and Cluster techniques in order to overcome limitations of collabora-

tive filtering such as data sparsity and Scalability. They also tried to reduce cold

start problems by correlating the User to products through features. Apache Spark

was used for better computation and parallelism.

Greg Liden et al.[14] used a new Item to Item collaborative filtering that matches

each of the User’s purchases and the ratings of items, to similar items and then com-

bine them to a recommendation list. This made the system to be more scalable and

faster for large datasets.

18

Literature review and Related work

GroupLens(Resnick et al.) [26] developed an open architecture that worked

as a platform that would recommend news for different customers, and they use

techniques like filtering and feedbacks from customers to predict ratings with some

heuristic methods. Social and information filtering was done.

Toscher, Jahrer et al. [30] improved neighborhood-based algorithms for the

Large-Scale system. The introduced the problem as regression, which enabled them

to extract the similarities from the data, and the regular matrix factorization (RMF)

was improved with neighborhood-aware techniques, which made the Recommender

more scalable and more accurate.

Tharun and Nagaraju [22], in their paper, created a recommender using item-

based collaborative filtering with where they identified the relationships among var-

ious items to avoid cold start and other problems.

Bresse, Heckerman, and Kadie, [3] in their paper described a collaborative fil-

tering recommender using statistical Bayesian methods to improve accuracy for the

predictions. Smaller memory use used but the training was more delayed.

A matrix factorization technique for the recommendation system was used in

Koren et al.[12] and were given the winner for the Netflix price competition. These

techniques allowed the incorporation of additional information such as implicit feed-

back, temporal effects, and confidence levels. Scalability was solved, and the Rec-

ommender was more flexible for real-life situations.

Salakhutdinov, Mnih, and Hinton [24] showed how a class of two-layer undirected

graphical model, Restricted Boltzmann Machine(RBM), could be used to outper-

form collaborative filtering recommenders that could not handle very large data sets.

19

Literature review and Related work

The efficient learning of each neuron leads to better performance also from the SVD

algorithm.

Ghazanfar et al [7] on their paper described a Cascading hybrid recommender

by applying machine learning techniques for filtering unseen information and could

predict whether a user would like a given resource. They used Content-based, Col-

laborative filtering, and demographic Recommender to create a hybrid system. By

combining those techniques, they eliminated problems like Scalability, data sparsity,

cold start, and reduced coverage.

A.Dev and A.Mohan[5] introduced in their paper Map-Reduced techniques that

work with big data. The system was distributed, and they used a set-similarity join

to provide customized and personalized item recommendations to the User.

2.6 Visualization for Recommender System

Data Visualization is often one of the main milestones that we have to think while

performing a variety of analytical tasks. Because of the large datasets and informa-

tion out there, there is a need for tools that can support visual concepts and analyze

the data. To acquire knowledge, the pursuit of information need to be undertaken.

There is very little research in the data visualization, and we encounter them in

movie catalogs, for example, Netflix, where User can see their recommendations

by sliding into them, but there is a need for a more sophisticated tool being more

user-friendly than before.

The goal of a visualization recommender system is to search into data for in-

teresting trends and patterns to speed up data analysis(Illinsky, 2011)[9]. These

patterns may be then presented to the User at different stages of analysis, for ex-

ample, when they first entered the system, while performing some task, or viewing

a particular visualization.

20

Literature review and Related work

Tamara Munzner [16] made a 3-step model for data visualization design. Ac-

cording to the model that was described in the research, the first step that we need

to solve is to decide what we want to show to the User. Secondly, we need to explain

why we want to show it by providing implicit and explicit reasons, and finally, we

need to decide how we are going to represent it. (Munzner and Maguire, 2015).

21

Chapter Three

Methodology

Contents
3.1 Methodology Overview . 22

3.2 Problem Formulation . 23

3.3 Data Collection . 25

3.4 Data Visualization and REST API 25

3.5 Building the Recommender . 28

3.5.1 Collaborative filtering model 28

3.5.2 Content-Based model . 29

3.5.3 Hybrid model . 30

3.6 Prediction Generation . 31

3.1 Methodology Overview

In this section, we will describe the methodology that we used in the recommendation

system. We are using the weighted model as a hybridization method where the

coefficients that are used for every algorithm are weights that affect the impact of

the Recommender. The system will use Collaborative filtering methods, both user-

to-user CF and item-to-item CF, and the metric that will be used to measure the

similarity will be cosine similarity. On the other hand, to avoid different problems

related to recommendation systems like cold start and data sparsity, we will combine

collaborative techniques with Content-based methods. Users will be represented as

22

Methodology

a vector providing their preferences, and another vector will be constructed for the

item combined with a description that shows the category where it belongs. The

Recommender will be dynamically changed based on the coefficients described above

that will multiply each result that comes from every technique. These coefficients

depend on the sparsity of the Dataset. Our experiment is implemented using Python

and ran on a Windows PC with the Intel Core i7 processor having a speed of 2.9GHz

and RAM of 4GB. In order to find the best performance of the hybrid technique,

there are three experiments performing different combinations of the method used

on content-based filtering (CB) and item-based collaborative filtering (CF). The

algorithm that was used is provided by a surprise library for the implementation of

the Collaborative filtering part, and for the API, we used the SWAGGER framework

that is combined with a flask framework for back-end connection and to handle all

the request.

3.2 Problem Formulation

The research approach provides a solution in the recommendation system in the

Icarus platform. Our solution consists of gathering the data from the platform. We

analyzed those data to extract user preference, and the objective was to provide

various recommendations that would satisfy the User. We had different inputs to

analyze user behaviors through the interactions with the system and also user and

item categories. By collecting those features, we created a utility matrix for each

user-item combination, and through different machine learning algorithms, we would

calculate each score and provide the best match for the customer.

23

Methodology

Figure 3.1 A diagram which describe Icarus recommender

As shown in the diagram above, Icarus Recommender has divided into three

main parts the first part of the offline training, the second part of the aggregation

of each technique and the last part the prediction and the recommendation of items

in the form of Restful API that will be represented to the User.

In the first part of the Recommender, the system will gather data from the files

where user interactions with the items are presented. The Dataset will have different

details describing each rate that the User does on a scale from 0 to 5. First, data

will be processed, and after that, the training will begin. The algorithm that we

will be using for the Collaborative Filtering will be KNN(K- nearest neighbor), and

we decided to use this algorithm to solve the problem of Scalability, for the system

to be able to handle large datasets and to have a better understanding on how the

algorithm works.

The phase two of the Recommender starts as soon as the training has been

completed. Also, in this phase, the content-based algorithm will start, and we will

perform cosine similarity in the two vectors to create the matrix that will contain

user/items and their similarity. Each category will have a score that has a range

from 0 to 1. All the results will arrive in the aggregator, where is the process where

Hybridization takes part. Each matrix will be multiplied with a coefficient that will

24

Methodology

be related to the sparsity of the Dataset. After that, every User will use the API

that is created, and the Recommender will return the best results for that User.

3.3 Data Collection

The data will be provided by the Icarus platform. They are represented in JSON

format in order to be simple and make the preprocessing faster. Icarus will provide

both user interactions with the system and also the category of the profiles. By tak-

ing these categories, we will create the vector needed for the content-based methods.

From the metadata, we filtered out many unnecessary features, and we created a

matrix where each User would provide the rating for a particular item. In our case,

the User could be a company that had provided that Dataset (item), or a simple

user that liked the item, added to the favorite list, or proceed to checkout. Python

was used to run the program and JSON libraries along with NumPy and scipy to

create the matrices and vectors representations of users and items.

3.4 Data Visualization and REST API

For the visualization of the data, we decided to use a Rest API that will be a black

box whose implementation details are unclear and can be called to recommend

different items from the User. It will help both the developers because there is no

need to install additional software or libraries when creating the API, and also it

will provide a great deal of flexibility. We know that a Rest API is stateless, so it

doesn’t need any resources or methods to run, and for this reason, it can handle

multiple user types of calls and return even different data formats(GET, POST,

etc.). Also, the system is layered, so different sections will be working together to

build a hierarchy. It makes the system much more scalable. Our API was build

using Flask and Swagger that are two open-source frameworks. The first one we

used to create the Rest API by handling all the recommendations methods while

25

Methodology

the second framework was used to develop the documentation of it.

(a) Hybrid API design

(b) Hybrid API recommendations

Figure 3.2 Representation of Restful API

We also used Elasticsearch, an search engine library where we loaded our JSON

dataset. For the visualization of the data, Kibana was used, which is an open-source

data visualization dashboard for Elasticsearch. We visualized below Icarus platform

dataset and summarized three different figures.

In the figure below, we can see that most of the purchases that happened on the

platform were via bank transfer. The second most popular method was via credit

or debit card.

26

Methodology

Figure 3.3 Method of payment

The figure below we visualize the target purpose of each item in the Dataset. We

notice that business is the most popular purpose around 55% while the non-profit

target is the least one around 6%

Figure 3.4 The target purpose of the dataset

27

Methodology

3.5 Building the Recommender

3.5.1 Collaborative filtering model

The main technique that is used in our Recommender will be the Collaborativefilter-

ing method using k-Nearest Neighbors(kNN). This is a machine learning algorithm

that tries to find clusters of similar users based on common item ratings and makes

predictions based on the users of the top-k nearest neighbors. The reason why we

decided this algorithm is that it makes the system much more scalable, and it per-

forms quicker then SVD or some other algorithms. We used a surprise library, which

is a python scikit for recommender systems. To find k-Nearest neighbors, we tried

the kNN basic algorithm.

The kNN Basic is the simplest algorithm that we decided to start the training in the

beginning, and it takes into account the similarities between users or items, which

can be switched by giving a parameter True/False at the beginning of the model.

This algorithm essentially boils down to forming a majority vote between the K

most similar instances to a given "unseen" observation. It uses cosine similarity (see

formula below) between neighbors and return the average rating as a prediction for

the given item. After we run some experiments on the kNN family algorithms, we

noticed that kNN baseline gave us better performance, so we decided to go with this

method for our collaborative filtering recommender. Generally, it is the same algo-

rithm, but this technique takes into account a baseline rating. This approach uses

heuristics, simple summary statistics, randomness, and machine learning to create

predictions for a dataset.

The collaborative filtering algorithm has three steps. The first step is to profile

every User or item if we are using item-based CF in order to find which of them are

similar to the target, the second step is to gather all the items selected by all the

neighbors and associate a coefficient that will perform like weights that represent

the importance of the item, and the last step is to present the recommendations

that have the highest score. The main step in this technique is the first step where

28

Methodology

the neighborhoods are created, and where the accuracy and Precision rely on.

r̂ui =

∑
v∈Nk

i (u)

sim(u, v) · rvi∑
v∈Nk

i (u)

sim(u, v)
(3.1)

Figure 3.5 k-NN basic predic-

tion equation

CosineSim(u, v) =

∑
i∈Iuv

rui · rvi√ ∑
i∈Iuv

r2ui ·
√ ∑

i∈Iuv
r2vi

(3.2)

Figure 3.6 Cosine similarity

equation

3.5.2 Content-Based model

The content-based algorithm is based on the similarity between items and users.

In this approach, users and items are represented as vectors in the m dimensional

user/item space where this is related to the number of users and the number of

items that we have in the platform. Cosine similarity is used to measure the sim-

ilarity of an inner product space of those vectors, and it computes the cosine of

the angle between them. As shown in figure 3.4 below, the smaller that angle, the

more similar they are, and we try to find the best matches for our recommendations.

Figure 3.7 Vector representation of items.

The more θ is small,the more similar are the items

Here describe how the vectors work.

First, the data are gathered and preprocessed. From the preprocess, we filter only

the userID and the category of the items that the user likes. This is also done for each

29

Methodology

item where we get the itemID and the category where it is placed. After the data

has been gathered, we create a matrix representation where each User represented

as a vector with his id and the category that he prefers, and the value is set to 1.

After vector creation, we use cosine similarity method provided by sklearn and find

all the best matches for every User. The values vary from -1 to 1, with the best

score be 1 if the items or users will be identical.

(a) Item vector category

(b) User vector category.

Figure 3.8 Representation of User/Item vectors

3.5.3 Hybrid model

The methods that were described above, the collaborative filtering and content-

based, are great techniques that are used a lot nowadays, but both have their faults.

Content-based algorithms have flaws when presenting a recommendation for the

User and items that don’t have any history on the system and their recommenda-

tions have a lack of diversity while Collaborative filtering has flaws when the matrix

of events is very sparse that means we don’t have user interactions into the system

and also in handling new users (Cold Start). To solve these challenges, we decided to

use a hybrid model for Icarus Recommender. More specifically, the method of Hy-

30

Methodology

bridization that we used is the weighted hybrid strategy. This method combines the

recommendations of multiple systems by computing weighted sums of their scores.

In more detail, we would take the results that our recommenders would provide

separately, and we introduced a coefficient, α, that would generate a function that

can be changed anytime. This coefficient act as a weight where it multiplies the

result that comes from the content-based method and with (1-α) that will multiply

the result that would come from the Collaborative-filtering methods. The result, in

the end, will merge together, creating a matrix with users and items where we will

measure the similarity, and we would present to the User the top recommendations.

We decided this coefficient to be dependent on the sparsity of the matrix in user

interactions, and we made this in order for the system to be changed dynamically

and to give us the best performance. By doing this, we represent a solution to all

the problems that we discussed above.

Figure 3.9 The diagram of Icarus Hybrid model

3.6 Prediction Generation

We split the dataset in training and testing, more specifically in 75% of the data in

training and the remaining 25% in testing. We used the train_test_split method

from the surprise library. The data are shuffled to make the prediction more realistic,

and we use k-fold to split into sections (fold=5). By using models that have been

built, the performance can be evaluated by predicting user ratings on the testing

31

Methodology

set. We will represent the user rating prediction, and along with that, we added an

extra column that is the real rating of the User for specific items. The estimated

value is scaled from 0 to 5 to remove any unnecessary noise. The evaluation metric

used is the Mean Absolute error(MAE). RMSE is an error measurement comparing

the real rating value and the prediction score. We expect the value of RMSE as

small as possible. The value of zero means that no error exists in our prediction,

and we found with accurate user rating. Below are the representation of the top 10

best and worst predictions.

(a) Top 10 Best Predictions

(b) Top 10 Worst Predictions.

Figure 3.10 Top 10 Predictions of the Recommender

Uid(userId), iid(itemId), rui(rating of user for item) , Estimated(predicted rat-

32

Methodology

ing) and the error.

33

Chapter Four

Evaluation

Contents
4.1 Recommender performance . 34

4.2 Comparisons . 37

4.2.1 Experiment Setup . 37

4.2.2 Representation of data 38

4.2.3 Results and Comparison 39

4.1 Recommender performance

To measure the performance of our Recommender, we decided to evaluate it through

several metrics. There are three categories in total that we evaluated, and those are

Prediction accuracy metrics, Decision support metrics, and some non-traditional

metrics.

Prediction accuracy metrics are techniques that we use to measures how close

our prediction is to the real value. For those measures, we used MAE (Mean abso-

lute error), MSE (Mean squared error) and RMSE (root mean squared error).

Mean absolute error measures the average difference of the error in the set of pre-

dictions, and because we have the use of absolute, we don’t consider the direction

of the error. It is the average over the sample of the absolute difference between

34

Evaluation

predictions and actual ratings.

MAE =
1

|R̂|

∑
r̂ui∈R̂

|rui − r̂ui|

On the other hand, we have the MSE and RMSE that are quite similar in their

equations. The difference with MAE is that they use quadratic scoring rules where

MSE squares the error in the predictions, and RMSE introduces the squared root

of the average squared magnitude.RMSE method has the benefit of penalizing large

errors, so sometimes, it gives us better information about the performance of the

Recommender.

MSE =
1

|R̂|

∑
r̂ui∈R̂

(rui − r̂ui)2. (4.1)
RMSE =

√√√√ 1

|R̂|

∑
r̂ui∈R̂

(rui − r̂ui)2.

(4.2)
The second category of the measures that we used is the decision support metrics.

Their focus is on the correct classification or differentiation between right and wrong

predictions. In other words, we are not only interested in whether the Recommender

properly predicts the ratings but whether the system will predict that the User will

prefer this item in the future. We have 2 main concepts here the Precision and the

recall, and then we calculate f1-score.

Precision =
] True-Positive(TP)

] True-Positive(TP) +] False-Positive(FP)
(4.3)

Recall =
] True-Positive(TP)

] True-Positive(TP) +] False-Negative(FN)
(4.4)

In our case for the recommendation system, these concepts would be presented as

Precision, the number of our recommendations that are relevant divided by the

number of all the items that were recommended and for recall, the number of rec-

ommendations that are relevant divided by all possible relevant items. To simplify,

Precision will count how many items did users like from all the recommendations

and recall, will count what proportion of items that the User liked were actually

35

Evaluation

recommended.

Recommender system precision: P =
] of our recommendations that are relevant

] of items we recommended

Recommender system recall: r =
] of our recommendations that are relevant

] of all the possible relevant items

F1-score is simply related to the above equations and carries the balance between

Precision and recall and is calculated as the equation below shows.

F1-score =
2 ∗ (Precision ∗Recall)
Precision+Recall

The last metrics that we tried are two non-traditional methods that include coverage

and novelty. With coverage, we try to show the percentage of items or users that

the model is able to recommend. The higher the value of coverage, the better the

system.

coverage =
I

N
× 100%

Novelty, on the other hand, shows how many unknown items are to a user. If the

value of novelty is high, then this means that less popular items are being recom-

mended and the contrary.

Figure 4.1 Novelty of Recommender

Personalization is the dissimilarity between User’s lists of recommendations. We

used this metric to study our recommendations and provide a score. A high score

36

Evaluation

indicates User’s recommendations are different, whether a low personalization score

indicates User’s recommendations are very similar.

We used those metrics to evaluate our Recommender for different models. We

trained different collaborative filtering algorithms, and we measured the performance

of every technique to select the best algorithm that best suits the Icarus recom-

mender.

4.2 Comparisons

4.2.1 Experiment Setup

One of the main contributions that we made is to compare different types of algo-

rithms, mainly in the collaborative filtering method that will be used later to create

the hybrid model. Therefore we trained every model separately with the same

Dataset to see each model performance. We used the algorithms that the Surprise

library enables us, and for each technique, we used the Cross-validation method to

estimate the skills of each model for measuring the performance of Recommender for

unseen data. After the result, we decided to take some extra evaluation for the kNN

Baseline, SVD, and BaselineOnly algorithms for better understanding. Moreover, we

have to mention that every experiment takes place at my personal computer, which

is composed of 2-cores Hyper-threading and 4-threads CPU clocked in 2.5 GHz to 3.1

in turbo mode, 4 Gb RAM, and Windows 10 operating system. From the software

perspective, we used Jupyter Notebook, which helps us to write Python program-

ming language. Surprise library used to perform every recommendation technique

and sklearn for measuring the similarity for the content-based method. The matplot

library was used for the representation of the graph and the metrics.

37

Evaluation

4.2.2 Representation of data

Before we run our experiments for the evaluation of the system, we decided to study

our Dataset and see if we can extract some features. The first thing that we did was

to see the long-tail graph. It shows the distribution of ratings or popularity among

every item in our set. In the x-ax, we have the items, and on y-ax, we display the

popularity of the items. Overall, it can be seen that the number of popular items is

related smaller than the unpopular ones, with respectively 548 and 6168 items. The

long-tail graph shows us some valuable information about diversity and sparsity. It

shows us that moving to the right will bring us more diversity among items, and

for sparsity, it means that the right side would have a sparse rating matrix, and the

more we go to the right, the worse the recommendation will be.

Figure 4.2 Long tail for popular and nonpopular items

Below we represent a histogram for every rating that we have in the user-item

interaction dataset. We see an even distribution of ratings among items where the

most popular rate would be 4.0, which means that the user/company have liked the

item and have bought it.

38

Evaluation

Figure 4.3 Distribution of all ratings from users

4.2.3 Results and Comparison

In this section, we present the results of our research by providing a table that

summarizes the performance of each collaborative filtering, where we measured the

RMSE, the time that is needed for the training of the model, and test time. More-

over, we will present different metrics that were performed on the kNN Baseline

algorithm that we choose for our system, but also some of the best algorithms that

gave us better performance in table 1.1. Overall, it can be seen that we decided to

go with the kNN baseline method because it gave almost similar results with SVDpp

in RMSE error, but it required much less time for the training and testing of the

model, and by creating neighborhoods we made the system scalable. By using the

kNN baseline, we could have had a better image of how the recommendations of the

hybrid system are created and because this technique doesn’t hide any information

like the SVD method and we could change the system dynamically by switching

from collaborative filtering to content-based method depending on the sparsity of

39

Evaluation

the Dataset. Also, the use of kNN made it easy the combination of Collaborative

filtering with Content-based because the matrix we’re the same, and the method for

comparing similarities was cosine similarity, so we did not have to change anything

in the content-based method.

Algorithm RMSE FIT_TIME TEST_TIME

SVDpp 0.812378 1465.699063 43.294074

KNNBaseline 0.823541 0.625860 12.269759

SVD 0.825586 12.993089 0.786548

BaselineOnly 0.828726 0.117569 0.380656

KNNWithZScore 0.82711 0.612947 10.401690

KNNWithMeans 0.836682 0.496899 9.412825

SlopeOne 0.841448 12.199456 36.792021

NMF 0.859715 13.379431 0.493514

KNNBasic 0.877670 0.466622 9.115010

CoClustering 0.889319 3.035781 0.479544

NormalPredictor 1.367177 0.171363 0.469020

Table 4.1 Evaluation of different Algorithms

After the model was tested with the knn Baseline method, we tried to run some

analyses in the predictions of the items. For this experiment, we decided to measure

the coverage of the Recommender by comparing the system with 2 other methods of

predictions that use the recommendation of the popular items and the other method

that picks random items for recommendation. As we can see in the figure above,

the catalog coverage for the recommendation of the popular item is the smallest

while the random Recommender has 100% coverage. Our Collaborative filtering is

something between in the middle that means that the system is able to cover 30%

of our items in the catalog.

40

Evaluation

(a) Different methods of predictions

(b) Coverage of different predictions

Figure 4.4 Coverage of the Recommenders

We measured the novelty and the personalization of our Recommender, and we

noticed that our collaborative filtering method had values similar to the Random

Recommender, which means that the system is able to propose novel and unexpected

items that User didn’t know. Also, we measured personalization that measures the

dissimilarity between user recommendation lists that varies in scale from 0 to 1, and

we noticed that we had around 0.95 score, which means that the recommendations

were very different for each User.

41

Evaluation

Novelty Value

Random Novelty 3.0858

Popular Novelty 0.4835

Collaborative Filtering Novelty 1.9108

Personalization 0.9475

Table 4.2 Evaluation of Novelty and Personalization

Here we perform another experiment to measure the average recall among the

recommenders that were mentioned above. As we can see recall in random and

popular Recommender is near to 0 while collaborative filtering shows us the opposite

which means that around 30% of our recommendations were actually liked by the

user.

Figure 4.5 Mean Average recall for different predictions(k = max number

of predicted items)

We decided to run some experiments with all the knn methods to see how each

technique would perform with our Dataset. We run the experiment with different

k neighbors from 15 to 60, and we use the cosine technique for the similarity. We

notice that the number of neighbors increases, the RMSE decreases. This happens

because the algorithm increases the generalizability at the cost of variance, and the

42

Evaluation

system will create a smoother function for the classification. The model has more

neighbors and is more complex by increasing this parameter.

Figure 4.6 Comparisons of algorithm for different neighbors

Here we present distribution of rating in 3 different algorithms. We notice that

knn has the prediction accumulated in the center of the ratings, and this because it

creates clusters of neighbors, and we know that most of the ratings in our Dataset are

accumulated in the range between 3 and 4.5 stars. The other two algorithms SVD

and Baseline, have better distribution and can also handle other extreme ratings,

but we are not very interested in extremities. In our research, we were interested

in the recommendations that are liked by the users in our case companies, and we

wanted them to find similar datasets that are in their preferences, so it seemed right

to use kNN algorithm to create neighborhoods.

43

Evaluation

Figure 4.7 Comparisons of ratings for different algorithms

The last metrics that we measured were the decision support metrics. We decided

to experiment in two main algorithms the kNN and SVD where we used the top 5

recommendations with a rating threshold of 4.5.

(a) kNN Baseline measures for k-folds

= 5 (b) Plot of kNN measures

Figure 4.8 kNN Baseline measures for top 5 recommendations

44

Evaluation

(a) SVD measures for k-folds = 5 (b) Plot of SVD measures

Figure 4.9 SVD measures for top 5 recommendations

As we can see from the figures above, the SVD method has better results regard-

ing the Precision, but we noticed that kNN has significantly better performance

regarding the Recall and F1-score.

Below there is the graphical representation of Precision and Recall, and we think

them as a function of the index i, where i symbolize the next prediction of the item.

The resulting plot depends heavily on the particular sequence of correct/incorrect

recommendations. If the recommendation is correct, then both Precision and recall

will increase. It can be seen that the kNN baseline reaches a better and smoother

curve of the line, whereas recall values are greater than in the SVD method.

45

Evaluation

(a) Precision/Recall kNN

(b) Precision/Recall SVD

Figure 4.10 Precision and Recall for 2 algorithms

We decided to run another experiment and change the number of recommenda-

tions to the top 10 and give a threshold of 3.5 in the ratings. As the figures showed,

46

Evaluation

the Precision of the system remained the same around 85%, but we noticed an in-

crease in the recall value to around 35% that was the same for the kNN and SVD

method. Regarding the F1-score, both methods gave the same score of around 50%.

(a) kNN measures for k-folds = 5 (b) Plot of kNN measures

Figure 4.11 kNN measures for top 10 recommendations

(a) SVD measures for k-folds = 5 (b) Plot of SVD measures

Figure 4.12 SVD measures for top 10 recommendations

To conclude, SVD and kNN methods provide fast and accurate ways of estimat-

ing missing values in the user event interaction matrix. Both methods would surpass

the methodology of recommending the most popular items or by estimating the row

47

Evaluation

average of the ratings of that User. Seeing the result and comparing the graphs,

we concluded that the SVD method performs well with large datasets. When given

small datasets, the performance decrease, so we wanted to go with kNN, which works

well with large and small datasets. We saw that performance of the kNN methods

declines when a lower number of neighbors is used for estimation, primarily due to

overemphasis of a few dominant expression patterns, so as many more neighbors

were used, a more generalized model will be created, thus better performance of the

system.

48

Chapter Five

Conclusion

Contents
5.1 Conclusion . 49

5.2 Lesson Learnt . 50

5.3 Future Work . 51

5.1 Conclusion

This research aimed to identify effective algorithms and different techniques that

would be used to contribute to the Icarus recommendations system. We showed

that the problems of Collaborative filtering and Content-based recommenders could

be solved by combining them with a weighted hybrid model, as we described in

chapter 3.

Moreover, we tried to create a system that would change dynamically, and our

Recommender depending on the coefficients that we introduced, making it possible

to combine user interests with collaborative selections. In comparison with different

recommenders that used algorithms like SVD (Single value decomposition), our

recommendation has been shown to have similar results in performance, with the

advantage that it was better in the cost of training time. Our method made it

possible for the system to be scalable and handle multiple users and data. We plan

to continue our experiments and implementations of the dynamic processes involved,

in particular, to further doing more research in areas of the collaborative and content-

49

Conclusion

based components by improving their relative performance by decreasing the error

in order to have better results in the future.

5.2 Lesson Learnt

This research allowed me to pursue my interests, learn something new, and to point

my problem-solving skills in the sector of recommendation systems. I gained hands-

on experience completing research in a creative project like ICARUS is. Assisting

in the project gave me opportunities to discover new knowledge about different

algorithms that are used nowadays for the recommendation, their advantages, and

disadvantage, and I learned valuable skills and tools that are essential for a data

scientist. I earned a lot of experience working in a research lab closely with faculty

mentors and accomplished academic credentials that will help create a well-rounded

resume.

The research showed that by combining different components and different ap-

proaches to implement a hybrid model, we use each algorithm’s advantages and use

them to solve many problems. Creating a dynamically changed recommender would

give better predictions and would change over time, making it easy for the developer

and also for the users of the system to be satisfied. We also learned that evaluating

system performance is very difficult because this is not a classification problem, and

the system should be trained and tested in real life. This was also shown in the met-

rics that we provided where the recall measures were around 50% that aren’t very

important in the recommender section, but what is important was that we achieved

around 85% in Precision, where relevant items that we provided were liked by the

User. The real challenge that we encounter in recommenders today is the extraction

of features and providing unlimited and continuous data that affect directly in the

performance. If this system isn’t updated frequently, then the performance and the

incomes would fall off rapidly.

50

Conclusion

5.3 Future Work

Our research results and conclusions can be effectively used in future work. As

we discussed in the contribution section, our hybrid Recommender would prevent

some of the challenges, but it still needs some improvements. Different filters may

be included in the first phases of the Recommender to prevent different attacks and

remove some of the outliers. Moreover, great future work would be the integration of

the content-based system with the TF-IDF technique to find the similarity between

items when provided the description and by adding demographic-based filtering

techniques as soon as they are provided from the datasets. The system could then

be evaluated again as soon as the interactions of the user increase. We can add

different components in the hybrid model, and one of this can be a deep layered

network that will take inputs of users and items, and will give back some results

that can be merged with our Hybrid to create a more powerful model that would

handle all the kinds of users with unique tastes. Last but not least, more advanced

research should be focused on the ontology to integrate it with the datasets that the

Recommender will use.

51

References

[1] Chris Anderson. The long tail: Why the future of business is selling less of
more. Hachette Books, 2006.

[2] Raul Sergio Barth. “Design and implementation of a flight recommendation
engine.” In: (2014).

[3] John S Breese, David Heckerman, and Carl Kadie. “Empirical analysis of pre-
dictive algorithms for collaborative filtering”. In: arXiv preprint arXiv:1301.7363
(2013).

[4] Robin Burke. “Hybrid recommender systems: Survey and experiments”. In:
User modeling and user-adapted interaction 12.4 (2002), pp. 331–370.

[5] Arpan V Dev and Anuraj Mohan. “Recommendation system for big data ap-
plications based on set similarity of user preferences”. In: 2016 International
Conference on Next Generation Intelligent Systems (ICNGIS). IEEE. 2016,
pp. 1–6.

[6] M Benjamin Dias et al. “The value of personalised recommender systems to
e-business: a case study”. In: Proceedings of the 2008 ACM conference on Rec-
ommender systems. 2008, pp. 291–294.

[7] Mustansar Ali Ghazanfar and Adam Prugel-Bennett. “A scalable, accurate
hybrid recommender system”. In: 2010 Third International Conference on
Knowledge Discovery and Data Mining. IEEE. 2010, pp. 94–98.

[8] Mustansar Ghazanfar and Adam Prugel-Bennett. “Fulfilling the needs of gray-
sheep users in recommender systems, a clustering solution”. In: (2011).

[9] Noah Iliinsky and Julie Steele. Designing data visualizations: Representing
informational Relationships. " O’Reilly Media, Inc.", 2011.

[10] D Jannach, M Zanker, and A Felfernig. et G. Friedrich (2010). Recommender
Systems: An Introduction.

[11] D Khaturia et al. “A Comparative study on Airline Recommendation System
Using Sentimental Analysis on Customer Tweets”. In: International Journal
of Advanced Science and Technology 111 (2018), pp. 107–114.

[12] Yehuda Koren, Robert Bell, and Chris Volinsky. “Matrix factorization tech-
niques for recommender systems”. In: Computer 42.8 (2009), pp. 30–37.

52

REFERENCES

[13] Lihong Li et al. “A contextual-bandit approach to personalized news arti-
cle recommendation”. In: Proceedings of the 19th international conference on
World wide web. 2010, pp. 661–670.

[14] Greg Linden, Brent Smith, and Jeremy York. “Amazon. com recommenda-
tions: Item-to-item collaborative filtering”. In: IEEE Internet computing 7.1
(2003), pp. 76–80.

[15] Marwa Hussien Mohamed, Mohamed Helmy Khafagy, and Mohamed Hasan
Ibrahim. “Recommender Systems Challenges and Solutions Survey”. In: 2019
International Conference on Innovative Trends in Computer Engineering (ITCE).
IEEE. 2019, pp. 149–155.

[16] Tamara Munzner. Visualization analysis and design. CRC press, 2014.

[17] Hai Thanh Nguyen and Anders Kofod-Petersen. “Using multi-armed bandit
to solve cold-start problems in recommender systems at telco”. In: Mining
Intelligence and Knowledge Exploration. Springer, 2014, pp. 21–30.

[18] Hai Thanh Nguyen, Jérémie Mary, and Philippe Preux. “Cold-start prob-
lems in recommendation systems via contextual-bandit algorithms”. In: arXiv
preprint arXiv:1405.7544 (2014).

[19] Sasmita Panigrahi, Rakesh Kumar Lenka, and Ananya Stitipragyan. “A Hy-
brid Distributed Collaborative Filtering Recommender Engine Using Apache
Spark.” In: ANT/SEIT. 2016, pp. 1000–1006.

[20] Manos Papagelis, Dimitris Plexousakis, and Themistoklis Kutsuras. “Allevi-
ating the sparsity problem of collaborative filtering using trust inferences”. In:
International conference on trust management. Springer. 2005, pp. 224–239.

[21] Michael J Pazzani and Daniel Billsus. “Content-based recommendation sys-
tems”. In: The adaptive web. Springer, 2007, pp. 325–341.

[22] Lakshmi Tharun Ponnam et al. “Movie recommender system using item based
collaborative filtering technique”. In: 2016 International Conference on Emerg-
ing Trends in Engineering, Technology and Science (ICETETS). IEEE. 2016,
pp. 1–5.

[23] Francesco Ricci, Lior Rokach, and Bracha Shapira. “Introduction to recom-
mender systems handbook”. In: Recommender systems handbook. Springer,
2011, pp. 1–35.

[24] Ruslan Salakhutdinov, Andriy Mnih, and Geoffrey Hinton. “Restricted Boltz-
mann machines for collaborative filtering”. In: Proceedings of the 24th inter-
national conference on Machine learning. 2007, pp. 791–798.

[25] Badrul M Sarwar et al. “Recommender systems for large-scale e-commerce:
Scalable neighborhood formation using clustering”. In: Proceedings of the fifth
international conference on computer and information technology. Vol. 1. 2002,
pp. 291–324.

53

REFERENCES

[26] Badrul Sarwar et al. Application of dimensionality reduction in recommender
system-a case study. Tech. rep. Minnesota Univ Minneapolis Dept of Computer
Science, 2000.

[27] Ben Schafer et al. “Collaborative Filtering Recommender Systems”. In: Jan.
2007.

[28] Andrew I Schein et al. “Methods and metrics for cold-start recommendations”.
In: Proceedings of the 25th annual international ACM SIGIR conference on
Research and development in information retrieval. 2002, pp. 253–260.

[29] G. Sharma. “How to Build a Recommender System(RS) - Data Driven In-
vestor. Retrived from: https://medium.com/datadriveninvestor/how-to-built-
a-recommender-system-rs-616c988d64b2”. In: (2018).

[30] Andreas Töscher, Michael Jahrer, and Robert Legenstein. “Improved neighborhood-
based algorithms for large-scale recommender systems”. In: Proceedings of the
2nd KDD Workshop on Large-Scale Recommender Systems and the Netflix
Prize Competition. 2008, pp. 1–6.

[31] Mohit Tuteja. “Flight Recommendation System based on user feedback, weight-
ing technique and context aware recommendation system”. In: International
Journal of Engineering and Computer Science 5.9 (2016).

[32] Wei Zhou et al. “Shilling attack detection for recommender systems based on
credibility of group users and rating time series”. In: PloS one 13.5 (2018).

54

APPENDICES

Appendix A

Acronynms List

CB Content Based

CF Collaborative filtering

API Application programming interface

REST Representational state transfer

ML Machine learning

AI Artificial intelligence

NAN Not a Number

DLN Deep layered network

SGD Stochastic gradient descent

SVD Singular Value Decomposition

RMF Regular matrix factorization

RBM Restricted Boltzman Machines

MSE Mean square error

MAE Mean absolute error

RMSE Root mean square error

ALS Alternative Least Square

56

Acronynms List

kNN K-nearest neighbor)

JSON JavaScript Object Notation

TP True-Positive

FP False-Positive

TN True-Negative

FN False-Negative

P Precision

r Recall

CV Cross-validation

NMF Non-negative matrix factorization

Tf-idf Term frequency-inverse document frequency

57

Acronynms List

58

	Title Page
	Copyright
	Acknowledgments
	Dedication Page
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Challenges
	1.3 Contributions
	1.4 Outline Contents

	2 Literature review and Related work
	2.1 History and Overview about Recommendation Systems
	2.1.1 Types of Recommender System
	2.1.1.1 Content-based filtering
	2.1.1.2 Collaborative filtering
	2.1.1.3 Hybrid and Deep Learning

	2.2 Importance of Recommendation systems
	2.3 Recommendation systems in Aviation industry
	2.4 Challenges and problems of Recommenders
	2.4.1 Scalability
	2.4.2 Data Sparsity
	2.4.3 Cold Start
	2.4.4 Reduced Coverage
	2.4.5 Shilling Attacks
	2.4.6 Gray Sheep

	2.5 Similar Researches/Models on Recommender Systems
	2.6 Visualization for Recommender System

	3 Methodology
	3.1 Methodology Overview
	3.2 Problem Formulation
	3.3 Data Collection
	3.4 Data Visualization and REST API
	3.5 Building the Recommender
	3.5.1 Collaborative filtering model
	3.5.2 Content-Based model
	3.5.3 Hybrid model

	3.6 Prediction Generation

	4 Evaluation
	4.1 Recommender performance
	4.2 Comparisons
	4.2.1 Experiment Setup
	4.2.2 Representation of data
	4.2.3 Results and Comparison

	5 Conclusion
	5.1 Conclusion
	5.2 Lesson Learnt
	5.3 Future Work

	References
	Appendix
	A Acronynms List

