

Thesis Diploma

DEVELOPMENT OF AN ONLINE INTERACTIVE LEARNING

APPLICATION

Georgios Harakis

UNIVERSITY OF CYPRUS

DEPARTMENT OF COMPUTER SCIENCE

June 2020

UNIVERSITY OF CYPRUS

DEPARTMENT OF COMPUTER SCIENCE

DEVELOPMENT OF AN ONLINE INTERACTIVE LEARNING APPLICATION

Georgios Harakis

Supervisor

Dr. Anna Philippou

The Individual Diploma Thesis was submitted for partial fulfillment of the requirements for

obtaining the degree of Informatics of the Department of Informatics of the University of

Cyprus

June 2020

Acknowledgements

I would like to thank IAESTE Cyprus for giving me the opportunity to work at the University

of Oslo in Norway, where I gained important knowledge on how to develop a web

application. I would also like to thank the faculty at the University of Oslo for also providing

me with knowledge on the subject.

I would like to thank the professors at the University of Cyprus for the various courses that I

had undertook in all four years of the program. I would also like to thank my supervisor for

giving me the opportunity to work on a thesis that I am interested in and also for giving me

the freedom on how to develop the application.

Abstract

The goal of my thesis was to develop an interactive web application, which would serve as a

learning tool (for class and home) for the course EPL 211. In our age it is very important to

use technology in our daily tasks. Teaching is one of these tasks and the benefits of using

technology in combination with teaching are endless. Students are more engaged during

lectures when there’s technology involved. The days where the students read only from books

are behind us and we need to embrace new teaching methods that involve our devices.

The aim of my thesis was the develop a web application that promotes active learning during

lectures and at home. With the use of a web application, the student will have more initiative

to pay attention during the class and have more motivation for study at home using the

application. The aim of the thesis was to develop a useful web application for this purpose.

I have had many constraints during the development of the application. I had to create many

prototypes and switch technologies in order to because some were more viable than the

others. I had to learn these new technologies and that took a lot of time, where I had to spend

hours to practise and fix small mistakes in my code. I was also constraint by time. By the end

of the year I had created 3 prototypes each with more features than the other, but this cost me

a lot of time that could have been used for the final prototype. This is because I was not very

familiar with the technologies and had to learn them in a small period.

The final prototype is running on the web and has many features available. You can create

your own user and profile. Then you can navigate through the web application and create

your own exercises for other users to solve (both homework and for in class). You can also

enter the discussion forums and post your questions for other users to answer. You can also

answer other user’s questions.

Table of Contents

Chapter 1 Introduction……………………………………………………………1

 1.1 Background and Motivation 1

 1.2 Description of the system 2

 1.3 Outline of thesis 2

Chapter 2 Educational applications research……………………………………4

 2.1 Amazon Kindle 4

2.2 Coursera 5

2.3 Duolingo 6

2.4 Khan Academy 7

2.5 Quiz Up 8

2.6 Language Drops 9

2.7 Kahoot 10

Chapter 3 Theoretical Background and Technologies used……………………12

 3.1 Web application 12

 3.2 Frontend development 13

 3.3 Backend development 13

 3.4 Framework 14

3.5 Basic frontend technologies (HTML, CSS, JavaScript) 14

3.6 Frontend frameworks (vue.js, react.js) 15

3.7 Backend frameworks and tools (node.js, express) 16

3.8 Database (mongo dB) 17

3.9 Others (NPM) 19

Chapter 4 Project Perspective ……………………………………………… …20

4.1 Functional and Non-Functional requirements 20

4.2 System Interfaces 22

4.3 User Interface 22

4.4 Software Interfaces 23

4.5 Reliability, Availability, Accessibility 23

4.6 Constraints (privacy, security) 24

 4.7 Agile (Prototypes, git) 25

4.8 Service-Oriented Software Engineering 25

Chapter 5 Implementation ……………………………………………………… 26

 5.1 Prototype 1

 5.1.1 Technologies used and environment setup 26

 5.1.2 Screenshots from the prototype and description 27

 5.1.3 What I did not like and what needs improvement 30

 5.2 Prototype 2

 5.2.1 Technologies used and environment setup 31

 5.2.2 Screenshots from the prototype and description 31

 5.2.3 What I did not like and what needs improvement 34

 5.3 Prototype 1

 5.3.1 Technologies used and environment setup 35

 5.3.2 Screenshots from the prototype and description 37

 5.3.3 Code structure 47

 5.3.4 What I did not like and like, and feedback from users 54

 5.3.5 Survey on third prototype 56

Chapter 6 Conclusion ……………………………………………………… …61

6.1 Summary 61

6.2 Assess my work and future improvements 61

Bibliography ………………………………………………………………………….60

Appendix Α……………………….……..…………………………….……………..A1

Appendix B …………………………………………………………………………...B1

1

Chapter 1

Introduction

1.1 Background and Motivation

1.2 Description of the system

1.3 Outline of thesis

1.1 Background and Motivation

In the past few years there has been a tremendous development of technology. Particularly,

there has been a strong interest in using technology in the education system. Interactive tools

such as web applications and web conferencing have gained an increase in their usage in

classrooms around the world. The reason for this rapid development is the obvious

improvement technology provides to the teaching quality. Students are more likely to be

engaged in the classroom when they use their electronic devices, such as their laptops or their

smartphones. Therefore, the aim of my thesis was to come up with an idea for an educational

web application. EPL 211 is a good candidate for this subject, because it is a theoretical

course, and will benefit from a web application that would add more practical interactivity to

it.

Another reason for this project is the increasing use of active learning in classes. Active

learning is a way of teaching, that makes students active participants in their learning during

class time. Typically, these strategies involve several students working together during class

but may also involve individual homework. These teaching approaches range from short,

simple problem solving and discussions, to longer, involved activities or pedagogical

frameworks like case studies, role plays, and structured team-based learning. This work

during class can be made possible with the use of a web application.

The following plan was followed: in September of 2019 I started preparing a system’s

requirements and specification document, which served as the roadmap of what I was going

to develop in the following months. I prepared a system’s requirements documents, which

2

also contained the various constraints (GDPR, hardware, accessibility issues etc.) that all

developers have to take note of before starting to develop their web application.

Then I started creating prototypes for the application. The first prototype was developed only

with the frontend part of the web application, the second prototype with both frontend and

backend and the third and final prototype was designed with frontend, backend (and

database) and authentication. Then I did some testing of the third prototype and finally put it

in the web.

1.2 Description of the system

In the web application, there are login and registration features, where you can create your

own user and profile. After creating a user and logging in you can create your own multiple-

choice questions for other users to solve. You can also ask questions in the discussion

forums. You can also answer other user’s questions. The final prototype has a user-friendly

interface and satisfactory response times that provide a good user experience. Finally, all the

data of the web application are stored in a database.

1.3 Outline of thesis

First in Chapter 2, I am going to present a research I have done during October, when I

downloaded some web applications and I tried them out. This research is the first thing I am

going to present, because it sets the tone of what kind of application I built. I chose the most

popular educational applications that are available for free which include Duolingo,

Language Drops, Coursera, Kahoot! Etc. Then after using them for some time, I wrote my

observations and my thoughts on the advantages and disadvantages of each application.

In Chapter 3, there are explanations for the various theoretical terms that have to do with a

web application. Particularly these are what are web application, frontend development,

backend development and framework. Also, in chapter 3, the various technologies that were

used to develop the applications are explained. Particularly these technologies are HTML,

CSS, JavaScript, vue.js, react.js, node.js, express, mongo DB and npm.

In Chapter 4, I analyze the functional requirements of the final system and I also analyze the

non-functional requirements of the web application and constraints that must be taken into

consideration, such as security, privacy of information. Then there is an analysis of what

interfaces should be included in the web application. Examples of these interfaces include

Register interface, Login interface etc. I finally present the various, issues of reliability,

availability and accessibility of a web application.

3

In Chapter 5, there are details about the implementation of the three prototypes. For all three

prototypes there is an introduction on how the environment was setup and screenshots with

descriptions from features of the actual implemented applications. For the third prototype

there is explanation for the key parts of the code. All three prototypes have a section, which

includes comments on the prototypes and the features, which were included in the end.

Finally, in Chapter 6, I summarize my thesis.

4

Chapter 2

Educational application research

2.1 Amazon Kindle

2.2 Coursera

2.3 Duolingo

2.4 Khan Academy

2.5 Quiz Up

2.6 Language Drops

2.7 Kahoot

For the preparation of this section I have downloaded some of the most popular educational

that were available in the google play store. My choices were also based on how highly

ranked they were. I have made a critical assessment on which features are advantages and

disadvantages of each application.

2.1 Amazon Kindle

Amazon provides a service which has a large amount of reference guides, how-to books, self-

help books, textbooks, and much more. It is the traditional way of learning, by simply reading

your textbooks through your device. [1]

5

 Figure 2.1: Amazon Kindle application interface

Advantages

• Can hold a large amount of text books, reference guides.

• Can make notes next to important parts of a text book.

• User friendly and has night mode feature. Also, size customization is

available. A night mode feature should be useful for the students that study late

night, even though many browsers have night mode on their own.

• Can upload your own text books.

• Has the option to listen to e-books.

Disadvantages

• Only contains e-books that might be boring for some people.

• Not engaging because it has no interactive activities or mini games.

• The price of some of the e-books can be discouraging to some people.

2.2 Coursera

Coursera is an education application where you can enlist yourself in several classes or topics

in many categories of subjects including IT and technology. The classes are available in the

form of video lectures and some also contain homework, which can be corrected by a teacher.

6

Also, there can be multiple choice questions or simple fill the gaps exercise in between

lectures. Finally, you can receive a certificate for completing certain courses, so it is more

official. [1]

Figure 2.2: Coursera application interface

Advantages

• The video format of the lecture is very flexible as you can re-watch lectures,

play them at the pace you want to play them.

• Has very easy to use forums and thus discussion is very active.

• People can review assignments of other students via the peer review system.

• Has a strong authentication mechanism.

2.3 Duolingo

Duolingo is a language learning application. But in my opinion as an avid user of Duolingo

myself it has some great features that could be included in other web applications as well.

Duolingo teaches you languages through little mini games and the lessons get harder the

more you play a certain language. [1]

7

Figure 2.3: Duolingo application

Advantages

• Has a beautiful, simple and practical interface, which motivates the user to

spend time solving many exercises. The user interface is simplistic with eye

friendly colors.

• Duolingo has a competitive nature, because with every sets of exercises you

complete you gain experience. The more points you have the higher climb the

leaderboard and the top players get extra lingots (Duolingo currency).

• You can spend lingots (currency) in an in-game store unlocking cool features,

which helps with competition and motivation.

• Contributors who are native in a language can moderate a language course and

add exercises.

2.4 Khan Academy

Khan Academy is an application where you can enlist yourself in several classes or topics in

many categories of subjects, like math, science, physics, economics and many others. The

classes are available in the form of video lectures and sometimes as text. Furthermore, khan

academy offers quizzes in between some lessons to test your skills. [1]

8

Figure 2.4: Khan Academy application interface

Advantages

• Very similar to Coursera but Khan Academy has a lighter feel when It comes

to its material, as it offers very basic classes to very advanced. Coursera mainly

offers University courses.

• Has a points system similar to Duolingo (collecting stars for completion of

exercises or tutorial).

• Some users are also teachers that create material for students. They also

answer questions if they want to. Similarly, the teacher of the web application can

post questions.

2.5 Quiz Up

Quiz Up is a competitive quiz application, in which you select one of over 1000 categories

and compete against other people in the world. Unlike Duolingo the quizzes are always in the

style of a competition, where you play directly against a player. [1]

9

Figure 2.5: Quiz up application interface

Advantages

• Its competitive nature gives initiative to students to exercise regularly in order

to beat their opponent in the quiz competitions.

• Huge number of categories available to keep users interested.

Disadvantages

• User interface is not friendly. Interface is loaded with advertisements and

surprisingly, it is loaded when you try to select category to quiz.

2.6 Language Drops

Language drops is a language learning application that supports dozens of foreign languages

.The learning is done using mini games (such as crosswords as seen in the images below),

and the focus is primarily on vocabulary and not grammar. [1]

10

Figure 2.6: Language Drops application

Advantages

• User interface is very simple with beautiful colours. There is also a varying

change in colour depending on what type of exercise you are doing.

• Learning via recognizable images.

Disadvantages

• Limited Material for free users.

• Sometimes it runs slow, which is not ideal when you many people want to use

it.

2.7 Kahoot

With Kahoot!, teachers and students can create multiple-choice quizzes and also polls and

surveys. It is also used to include questions that do not award points so that you can gather

opinion data, or include a question with multiple correct answers without skewing point

totals. [1]

11

Figure 2.1: Kahoot! application

Advantages

• Provides quiz questions and polls that stimulate quick instructional decisions as well

as whole-class discussion.

• Students can connect with other students globally to play or can connect with their

peers to compete for new scores.

• Data is saved from each round of play and can be exported to Google Drive or

downloaded.

Disadvantages

• The reports are helpful, but they are limited because of the way students connect to

the platform. For teachers, this means it can be time-intensive to analyze students'

growth patterns or individual problem areas using Kahoot! quizzes.

12

Chapter 3

Theoretical Background

3.1 Web application

3.2 Frontend development

3.3 Backend development

3.4 Framework

3.5 Basic frontend technologies (HTML, CSS, JavaScript)

3.6 Frontend frameworks (vue.js, react.js)

3.7 Backend frameworks and tools (node.js, express)

3.8 Database (mongo dB)

3.9 Others (NPM)

For the development of the system I followed a prototyping model. Particularly, I have

created three prototypes. The first prototype only had frontend, the second prototype had

frontend and backend and the final prototype had frontend, backend and authentication. The

prototyping model gave me the chance to try out various tools and technologies. These

technologies are explained in this section of the thesis. More information about which

technologies I used on each prototype is on the next chapter. This chapter also focuses on

some important theoretical terms.

3.1 Web application

Web application is a client-server application where server-side scripts are used to retrieve

information from a server and client-side scripts are used to display this information to the

user. This allows the user to interact with the service using forms, posting requests etc. An

advantage of the web application is that its portability depends on the web browser and not on

a specific operating or hardware configuration.

A website relies heavily on the server to load pages. On the other hand, a web application

does a lot more on the client side. Also, a website is uses static pages and has no interactivity

unlike a web application. [2]

13

3.2 Frontend development

Front-end is the part of the web application you can view. It is the part of the website that a

user or customer interacts with. For example, when we go to Amazon, we do not think about

their database solutions etc. and we only care about the part the user interacts with to buy

stuff. This includes the layout of the website and specifically buttons, images, pagination and

even how quick the website loads. A frontend developer has tasks such as designing and

developing new layouts, make sure the website is responsive on the mobile phone and make

sure the website is accessible all people (e.g. disabled).

Everything on the frontend is designed with a mix of HTML, CSS and client-side scripts of

JavaScript. HTML (Hyper text markup language is the skeleton of the web page and is both

the structure and the content of the website. CSS (Cascading style sheet) is the styling of the

website. Finally, JavaScript is the interactions, how the website moves. JavaScript can be

used in both the server and the browser making it very powerful.

Apart from these technologies there are some more specialized platforms called front end

frameworks like react.js and vue.js, both of which I use later for my prototypes. [11]

3.3 Backend development

Back-end is the part of the development of a web application that is concerned with the

interaction of the server, the application and the database. It can also be described as the logic

of the web application because it describes how the application works. The server part of the

backend processes the data that is received from the front-end and returns the result to the

client. Specialized frameworks are also available for the backend.

A backend developer must be comfortable with database creation, integration, and

management. Also, he/she must know how to use back-end frameworks to build server-side

software and know how to make checks for data validation. Finally, he/she must integrate

user-facing elements with server-side logic.

Technologies usually associated with backend include MySQL, MongoDB, Oracle. In our

web application I used MongoDB for database and node.js for data management.

14

An example of backend is when you login into a web application. When you press submit

your data is sent to the server-side software, which makes sure that the text is in the right

format and right after will send it to the database where it checks if a user-password duo

exists. [2]

3.4 Framework

Framework is a platform for developing software (and web) applications. A framework

contains reusable code (predefined classes and functions) that can be used to help the

development of an application. Frameworks for web application, offer a variety of tools to

handle databases, security, session management, dynamic web development. [3]

3.5 Basic frontend technologies (HTML, CSS, JavaScript)

HTML (Front-end)

HTML is a hypertext markup language, which means it defines the overall structure of the

page. HTML features various elements such as paragraphs, lists, headers, links, tables etc. To

provide us with options on how to display our data to the user in the browser. HTML is

interpreted by the browser and then the formatted text is displayed in the computer or mobile

device screen.

An example of HTML code is “<p> Hello World </p>”, which creates a paragraph tag with

the content “Hello World”. [10]

CSS (Front-end)

CSS is cascading style sheets and it provides us the tools to design how to interpret text is

displayed on the screen. In other words, we can create the style of our web application with

CSS. For example, we can change fonts, colors, layout etc. Of our html tags. Finally, CSS

enables the web application to become responsive.

An example of CSS code is: “p { text-align: center; color: red;}, where a paragraph’s text is

of color red and the text alignment is centered. [10]

JavaScript (Front-end and Back-end)

15

JavaScript adds interactivity to our web application. For example when you click submit to a

form JavaScript methods are invoked in order to take action. Now with the new frameworks

(node.js and express) JavaScript can also be used as a back-end language. [10]

3.6 Frontend frameworks (vue.js, react.js)

Vue.js (Front-end framework)

Vue.js is a progressive and performant JavaScript framework used for building user

interfaces and front-end applications. It is very popular because it has less of a learning curve

than other frameworks. It is also, fast, lightweight. [4]

Below there’s an example of Vue.js code. The Component is divided in the actual content of

the component(output), its functionality and its styling.

Output

<template>

<div class=”user”>

<h1>{{user.name}} </h1>

</div>

</template>

Functionality

<script>export default {

 name:”User”,

 data(){

 return{

 user {name:”Brad”

 } } }</script>

Style

<style scoped>

 h1{Font-size:2rem;}

</style>

 Figure 3.1 Example of vue.js code

React Js (Front-end library)

React.Js is a JavaScript library created by Facebook and is used for building user interfaces

and front-end applications. It is often mistaken for a framework because of its many

capabilities. React is very popular, because it makes frontend easier and makes working in

teams easier. It uses self-contained, independent components with their own state. It features

JSX, which incorporates JS in mark-up (the HTML). React uses components, where each

16

component can have state which is an object that determines how that component renders and

behaves. [6]

 Below there is an example of React Js code. The Class of the Component is divided into the

state, which is something like variable of a Component and the rendered component, which

returns HTML.

Class Post extends React.Component{

 state{title : ‘Post One’,body: ‘This is my post’ }

 render() {return(

 <div>

 <h3> {this.state.title} </h3>

 <p> {this.state.body} </p>

 </div>)}}

Figure 3.2 Example of React.js code

3.7 Backend frameworks and tools (node.js, express)

Node.js

Node.js is a JavaScript Runtime and neither a language nor a framework as it is usually

mistaken for. It is built on the V8 JavaScript engine, it is written in C++ and its main task is

to allow JavaScript code to run on the server. Some of the advantages of Node is that it is

fast, efficient, scalable. Its model is event-driven and non-blocking I/O, which means it does

not wait for an input or an output to continue do other tasks (works on a single thread

though). This allows it to support a great amount of concurrent connections. [7]

Node.js is best used in REST API & microservices, CRUD applications and basically

anything that is not CPU intensive. [7]

Express (backend framework)

17

Express is a fast, minimalist web framework for Node.js. It can be used in combination with

front-end frameworks to build full stack applications. Makes building web applications with

Node.js easier and it is light, fast and free. With express we have full control of request and

response in the web application. Great compatibility with other frameworks as it’s all

JavaScript in the end. [7]

 Example of express server syntax. Here we initialize a connection with the server and if it is

successful it will output “Hello World”. The port in which the connection is run is the port

number with the number 5000.

const express = require(‘express’);

//Init express

const app = express();

//Create your endpoints/route handlers

app.get(‘/’, function(req,res) {

 res.send(‘Hello World’);

//Listen on a port

 app.listen(5000);});

Figure 3.3: Example code of Express

Express Middleware functions are functions that have access to the request and response

object. Express has built in middleware but middleware can also come from 3rd party

packages as well as custom middleware. Middleware functions can execute any code, make

changes to the request/response object and call the next middleware in the stack. [7]

3.8 Database (mongo dB)

MongoDB is a No-SQL database. No-SQL databases are much different than relational

databases such as SQL or Postgress. With relational database you have to map out exactly

18

what you need in the schema, such as what table you will create, what fields each table will

have and their types. With NO-SQL you don’t need all this planning and it’s much more

scalable. It is document based and all the data is stored in JSON format. It is also much

faster than relational databases. [7]

3.9 Others (NPM, Redux)

React with Redux (State management framework)

Redux is a predictable state container for JavaScript apps. It helps you write applications that

behave consistently, run in different environments (client, server), and is easy to test.

Redux is a state management framework that can be used with a number of different web

technologies, including React. In Redux, there is a single state object that's responsible for the

entire state of your application. So in our React web application each component had its own

local state, the entire state of the app would be defined by a single state object that resides in

the Redux store.

Redux store is the single source of truth when it comes to application state. Every change in

the state of the program must go through it. All state updates are triggered by dispatching

actions. An action is simply a JavaScript object that contains information about an action

event that has occurred. The Redux store receives these action objects, then updates its state

accordingly. Sometimes a Redux action also carries some data. For example, the action

carries a username after a user logs in.

After an action is created and dispatched, the Redux store needs to know how to respond to

that action. This is the job of a reducer function. Reducers in Redux are responsible for the

state modifications that take place in response to actions. A reducer takes state and action as

arguments, and it always returns a new state

Although React components can have their own state locally, when you develop a big app,

it's best to keep the state in one location with Redux. Redux is not designed to work with

React out of the box, you need to use the react-redux package. It provides a way for you to

pass Redux state and dispatch to your React components as props. [7]

NPM – Node Package Manager

https://redux.js.org/

19

NPM is used to install 3rd party packages(frameworks, libraries, tools etc) and everything

you download is saved in the node_modules folder of your project and the dependencies are

listed in package.json file. [7]

20

Chapter 4

Planning the web application

4.1 Functional and Non-Functional requirements

4.2 System Interfaces

4.3 User Interface

4.4 Software Interfaces

4.5 Reliability, Availability, Accessibility

4.6 Constraints (privacy, security)

4.7 Agile (Prototypes, git)

4.8 Service-Oriented Software Engineering

In this chapter there is a description of the requirements (functional and non-functional) of

the system (final prototype). This chapter also contains the interfaces of the web application.

Also, there is a discussion about all the issues that involve reliability, availability accessibility

of the system and also the constraints (privacy, security etc.) in web development.

4.1 Functional and Non-Functional requirements

Functional Requirements: These requirements consider the needs of a course at University.

Particularly, it must be interactive, so the student has to be able to create and solve exercises.

Also, the student needs to be able to interact with other users of the web application through

discussion forums. They must be able to customize their profile with a few options. There is

not a distinction between users, so every user can create and delete their own exercises and

discussion posts. The home exercises are in their own section, and the in-class exercises are

in their own section as well. The application is meant to be used both in the students’ free

time and in-class during lectures.

1. User CRUD (create, read, update, delete) login: A user wants to create, read, update,

and delete his/her user profile and then sign in the web app.

21

 2. Homepage with overview of the web application: A user wants to view an overview of

what to expect in the web application.

 3. Exercise CRUD: A user wants to create, read, update, delete an exercise.

 4. Exercise type, Multiple Choice: A user wants to be able to create and solve multiple

choice exercises.

 5. Discussion forums: A user wants to take part in a discussion forum, where users can

post their questions, thoughts and other users can answer them in a comment section

 6. Dashboard of user with activity: A user wants to have a dashboard page for their

profile.

 7. Web application available online: A user must be able to access the web application

online

Non-functional requirements: These requirements are concerned with user friendliness,

privacy, security, performance, and reliability of the system.

 1) User Friendliness: The application needs to be easy to use, not complicated to navigate,

have a good pattern of colors so the user doesn’t get irritated. Also there needs to be a logical

way the use can navigate through the navigation bars and buttons.

 2) Privacy: The user needs to know and consent with what data he/she needs to provide

before he signs up to the web application.

 3) Security: The web application needs to be protected from intruders and the data of

users needs to be saved securely.

 4) Performance and Reliability: The web application needs to have fast response times to

the requests of the users, from a simple mouse click on a button to more complicated tasks

such as fetching a lot of data from the database. Also, the systems need to be reliable, in the

sense that it needs to be working online all dthe time.

22

4.2 System Interfaces

The user should be able to access the web application via his personal computer, laptop, or

his/her smartphone as it will be fully responsive and adaptive for these interfaces.

4.3 User Interface

This is a brief description of some of the interfaces that will be in the web application. These

are always subject to change as the development of the web application progresses.

More specifically the interfaces are:

Login Interface: It is a form that will include two text boxes one for the username and the

other for the password. Also, there will be three buttons below the form. The “register”

button is to register a new user and “submit” to submit the login credentials for validation. In

order to press “submit” you need to have inputted matching password and username and also

that both two text fields are filled in and not empty.

Register Interface: It is a form that prompts you to enter a username, password twice and an

e-mail. The username must not be taken from other users, the two passwords needs to match

with each other and the e-mail needs to be in the correct format. Also, there will be two

buttons below the form. The “submit” button is to submit the register form and the cancel to

return to the login page.

Home Interface: Contains a welcoming message to the web application, which also contains

the options to navigate to the login or register pages

Dashboard Interface: Contains the page where a user can delete his account or click on a

link which takes you to the official EPL 211 website.

Exercises Create Interface: Contains the form to create a new exercise.

Exercises Choose Type Interface: An interface where you choose between two buttons

whether to complete in class exercises or home exercises.

Exercises Interface: Contains the list of all the exercises that have been posted by users.

There is also a form at the top of the page, where a user can add his own multiple-choice

exercise for others to solve

23

Discussion Interface: Contains the list of all the posts that have been posted by users. There

is also a form at the top of the page, where a user can add his own post for others to view and

comment on.

Specific Discussion Interface: Contains the page of a discussion and the comments on a

certain discussion.

4.4 Software Interfaces

The web application should be working on the following in web browsers such as Google

Chrome, Mozilla Firefox and mobile browsers, such as the Samsung browser.

4.5 Reliability, Availability, Accessibility

Most performance issues are user experience issues which all boil down to bad response

times. This can be a result of or a combination of unavailable servers, insufficient numbers of

servers, unexpected spike in user traffic, inefficient code, delays from third-party APIs.

Reliability encompasses factors that make a web application strong, usable and effective.

Performance and scalability issues are factors that affect the response time of a user request.

The web app is not be taking more time than the expected response time when the user

requests are increased, as this would cause user dissatisfaction.

Availability issue, the server should be available at all times, because you can’t deny a user

from practising in case, they need it immediately.

Fast response time in fixing errors, updates on the code should be made fast when a bug

occurs in order to minimize the time the application is not working as intended.

Some basic rules for the web application’s reliability are the following:

• Should be able to support up to at least the current students that are enrolled in

EPL 211 for that semester.

• Should have a very small response time when submitting exercises, must be less

than a second.

• Should not freeze because of high memory consumption.

24

• In class questionnaires and exercises need to give results in a fast fashion as the

professor wants an instant feedback.

• The connection with the database is consistent. There can be serious consequences

if it fails to update new values as fast as possible.

• Average page load (from a user perspective) must be less than 1 second.

• Slowest page load cannot take more than 5 seconds.

• The app must be available more than 99.5% of the time.

4.6 Constraints (privacy, security)

Regulatory policies: There are some regulatory policies the web application follows.

The right of users to grant consent for the use of their data. A privacy compliant was created

as it’s important for individuals who sign up on the website, to understand how their personal

data will be processed. There’s a tab in the web application called “Privacy”, where users can

view their rights. Users registering to the web application have to agree with the privacy

compliance text, before they can submit the form. Finally, no cookies are used in the web

application so the privacy message does not include a section about cookies.

Accessibility, when designing a web application, we need to take care for some precautions

such as

• Low contrast on text.

• Missing alt text on images.

• Missing link text.

• Ambiguous link text.

• Too many navigation links.

• Empty form labels.

• Unclear form controls.[9]

Cyber security and protecting personal data, take appropriate steps to prevent personal data

from being accidentally or deliberately compromised. The passwords are salted and

encrypted when they are saved in the database and every request is HTTPs, which are HTTP

requests over the secure SSL protocol.

25

Respect copyright, which includes using licensed pictures or documents. Also, this includes

protecting the web application from other websites that might steal the data. Every source and

tutorial used for the prototypes are listed in the Bibliography of this paper.[9]

4.7 Agile (Prototypes, git)

In the course of the year I have done three prototypes, and for some I have used different

technologies. The only fully completed prototype is the third and final, which is available

online at epl211webapp.herokuapp.com. Hence the software engineering paradigm that I had

used in my development is incremental development where each prototype is better and has

more features than the previous one.

For the storage of my code, I used a git repository. Git is a version control system for tracking

changes in computer files. For the final prototype I have created a separate Git account with

the email epl211webapp@outlook.com, which will help with transferring the ownership of

the application from me to my supervisor.

4.8 Service Oriented software engineering

Building applications based on services allows us to have more freedom and scalability.

Service based applications can be built by linking services from various providers using most

of the programming languages.

RESTful web services are the latest standard for web services and it’s less heavyweight and

simpler than the previous standards of web services (such as WSDL). The fundamental

element in a RESTful architecture is a resource. The operations that can be performed on a

resource are Create resource (POST), Delete (DELETE), READ (GET), Update a value of

the resource (PUT). When a RESTful approach is used, the data is exposed and is accessed

using its URL. More on how I used these commands on my resources in the implementation

chapter. [9]

mailto:epl211webapp@outlook.com

26

Chapter 5

Implementation

5.1 Prototype 1

 5.1.1 Technologies used and environment setup

 5.1.2 Screenshots from the prototype and description

 5.1.3 What I did not like and needs improvement

 5.2 Prototype 2

 5.2.1 Technologies used and environment setup

 5.2.2 Screenshots from the prototype and description

 5.2.3 What I did not like and needs improvement

 5.3 Prototype 1

 5.3.1 Technologies used and environment setup

 5.3.2 Screenshots from the prototype and description

 5.3.3 Code structure

 5.3.4 What I did not like and needs improvement and feedback from people that have

used the web application

 5.3.5 Survey on third prototype

5.1 Prototype 1

 5.1.1 Technologies used and environment setup

For the first prototype I have used Vue.js for the frontend but I have not done anything

backend or database related.

In my opinion the big mistake that I had made was not doing the backend before doing the

frontend. I wanted visual proof for my work and that cost me time. Another problem with

Vue.js that I had stumbled upon was the fact that I could not find many sources to help me

with the development. When I had a problem there weren’t many sources that could redirect

me to a solution to my problems. Below, I present screenshots from some of the features of

the first prototype.

27

I wasn’t satisfied with the colors of the application and the responsiveness of the prototype

and that is why I really wanted to start something from the beginning.

My idea for the exercises in the beginning was for the professor to submit a list of exercises,

and they would be meant to be presented to the user like in Duolingo. Like a series of

exercises and in the end, you would get a score on how many of those you did correct and

how many you did wrong.

 5.1.2 Screenshots from the prototype and description

Prototype 1 – Screenshots

1. First of all I have created a home page, where I explain the purpose of the web application

and where the user can be redirected to the material of the course or he/she can choose to go

to the Practice.

2. I have included a frontend design for the login page, where I put an option to continue as a

guest to the website. Also, there is an option if the user does not have an account to create

one with “Create User”.

28

3. I have included validation to my form, like the email must be of the right format

(xxxx@yyy.com), and the passwords must match.

4. When you choose Material or Practice you are presented with a page of all the chapters of

the course. In Material, each option is a link to the respective slide presentation of the chapter

of the course.

mailto:xxxx@yyy.com

29

5. Similarly, if the user chooses “Practice” from the home navigation bar the user will be

presented with the same interface as the “Material”, but when the user clicks on a chapter

he/she is automatically redirected to a quiz. The quiz has a series of multiple-choice

questions. Each time the user skips or submits one of the questions, the process bar is

augmented. The user can always cancel the quiz at any time you wish. After the quiz is done,

the user will be redirected to a page where he/she is asked whether he/she wants to repeat the

quiz or do another one. I have not finished the feature which counts how many answers were

correct by the users

30

6. Finally, I made a page that included the details of the user, which was unfinished. Other

unfinished pages were the Discuss and Settings pages.

 5.1.3 What I did not like and what needs improvement

User Interface and Design: I didn’t follow any color scheme for this prototype, which

resulted in a not so great color user interface. The colors of a web application should be

dominant and bold. Variations of light blue do not give a nice contrast between e.g. the

exercise been solved and the background. In the next prototype the use of light blue with

31

contrast to white or black instead of another light blue is a better choice. Also, there must be

an improvement in the fonts (make them more professional and formal).

Accessibility: The top navigation bar follows basic accessibility rules, like a having a logical

order of features of the web application. First, we have the home button, then material and

exercises and finally account related features like login and settings.

Missing features: Repeating from above, the backend, databases and authorization are

missing. Also, some features from the MUST have features in the system’s requirements are

also missing, for example.

Below there is a list of the features of prototype 1 (taken from the screenshots of the previous

section):

• Welcome page with a description of the web application.

• Login page.

• Registration page with continue as guest option.

• Choose chapter to study material buttons in a separate page.

• Choose chapter to complete a series of exercises buttons in a separate page.

• User details page.

 5.2 Prototype 2

 5.2.1 Technologies used and environment setup

For the second prototype I followed a tutorial by FreeCodecamp on YouTube, which is

included in the bibliography. In the tutorial the instructor created a task tracker web

application. After studying it I proceeded to make the EPL 211 web application. For this

prototype I used React.js for the frontend and node.js for the backend and mongo dB for the

databases part. The only part missing from this prototype was authentication for the users.

This proved to be a big problem for me in the end because it was very difficult to think of a

way to authenticate the users when you have already done the frontend and backend work. I

also did not implement the login and register functionalities. [12]

5.2.2 Screenshots from the prototype and description

32

1. The home page contains a link to the material of the course in the official website of EPL

211. There is a navigation bar at the top of page with the various sections of the application.

The plan for the “Click for in-class questions” was to be a quick way for the students to click

on the button and be redirected to a quiz in class.

2. When the user clicks “Exercises -> Create an exercise” he/she is redirected to this page,

where the user should input the description of an exercise, choices (A to D), what type of

question it is (multiple choice, radio etc.), tags that can be used to identify a question and the

correct choice of the exercise. Finally, the user clicks on the “Create exercise Log” to create

an exercise.

33

3. In the exercises list the user can view the correct choice for the question, how many

students answered correctly and how many answered wrong. There is the option to edit,

delete and solve each exercise.

4. When the user clicks solve, he/she is redirected to this page, where the user should select

the choice to complete the exercise.

34

5. This is the registration page, where the user can create a new user and assign a privilege.

The thought process behind the privilege was to have different privilege levels for a professor

and a regular student.

6. Finally, there was an idea to create a discussion forum for the web application. Here the

students can create new discussions

 5.2.3 What I did not like and what needs improvement

35

User Interface and Design: This time the colors are much better, with the combination of

light blue, grey, black and white harmonizing together to deliver a professional and tidy look

to the web application.

Accessibility: The top navigation bar follows basic accessibility rules, like a having a logical

order of features of the web application. First home, then practice and exercises and account

and social aspects of the web application are last in the order.

Missing features: Even though in the creation of the user I included a privilege field, which

can be the basis of having distinct privileges between professors and students. Also, in this

prototype are some checks to authorization of users is missing and will be implemented in the

third and final prototype.

Below I have included the features of the second prototype:

• Welcome page with link to study material.

• Welcome also has a quick button that redirects to a page for an in-class question.

• User creation page.

• Discussion creation page.

• Exercise creation page.

• Exercise list page, with options to edit and delete.

• Exercise solving page.

 5.3 Prototype 3

 5.3.1 Technologies used and environment setup

The structure of my code and the way of my thinking for developing the third prototype were

taken from the Udemy course: MERN stack front to back, from Traversy Media. It’s a

tutorial, where the teacher uses react.js, mongo dB and node.js with express just like the other

prototype. [7]

For the final prototype I used React once again. Some very useful React features

include:

• JSX: JSX is a JavaScript syntax extension.

36

• Components: React is all about components. Every part of React should be a

component.

• Unidirectional data flow: React implements one-way data flow which makes it easy

to think about the logic of your application. [7]

React advantages:

1) Uses a virtual DOM (Document object model) which is a JavaScript object and it is faster

than regular DOM.

2) Can be used on both client and server side and with other frameworks.

3) Very good readability because of the use of Components.

4) Using JSX templating makes the application faster, because it performs optimization while

compiling JavaScript code. Also, most errors are caught during compilation. Finally, it makes

it easier and faster to write templates, if you’re familiar with HTML. [7]

Local Environment Setup

Before installing React we need to first install Node.js. The Node.js distribution comes as a

binary installable for most operating systems and processor types. The prompts in the

installation window will guide you to install node.js and by default the installer uses the

Node.js distribution in C:\ProgramFiles\nodejs on windows. So, the installer should set the

C:\ProgramFiles\nodejs\bin in window's PATH environment variable. [7]

Creating the react.js project

There are two ways of creating a react.js project, a manual and more automatic way. I

followed the automatic way because it’s more convenient. These are the instructions.

1st) We go to the folder of the project and do the command “npx create-react-app my-app".

2nd) Remove any unnecessary files you won’t need for your project (e.g. pictures).

3rd) Start adding your own files.

4th) You can run your application in local host by running the command “npm start”.

37

 The next step was creating my user in a service that provides databases. I chose MongoDB.

[7]

MongoDB Database contents

MongoDB is not a relational database so there is no way to create ER diagrams, because the

contents are documents and not tables with relationships. Below I have included the

documents that are in the database.

1. Exercises Document: The exercises documenss contain fields for _id, description,

choiceA, choiceB,choiceC, choiceD (the four choices for the multiple choice

question), correct_choice (the correct choice of the four) , in_class_or_home (wether

the exercise is for home or for class), week (which week the exercise will be posted

under), chapter (in which chapter the exercise will be posted under), password (an

optional field for an exercise password), name (the name of the user that created the

exercise), user (the ID of the user that created the exercise), answers (an array with

the answers for each user that answered), date (the date that the exercise was posted)

and finally correct_users (an array with the users which answered “correctly”).

2. Posts document: The post documents contain fields for _id, text (the text of the

post), name (the user that created the post), user (the ID the user that created the post),

likes (an array of the users that have liked a post), comments (an array of the

comments that users left on a post), date (the date that the post was posted).

3. Profiles document: The profiles documents contain fields for _id, user (the user that

creates the profile) company (which can also be a University and not a company), bio

(a small description) and finally the status (whether you’re studying or learning etc.).

4. Users document: The user document contains fields for _id, name(the full name of

the user), email (the email of the user, which doesn’t have be an actual valid email),

password (the password for the user), and the date (the date that the user was

created).

 5.3.2 Screenshots from the prototype and description

1. When we first enter the web application at https://epl211webapp.herokuapp.com/, we’re

presented with the following page. As you can see the navigation bar at the top, has four

https://epl211webapp.herokuapp.com/

38

options. Privacy is a prompt for the GDPR, Users is a list of registered users, Register to

register a user and login to login if you already have a registered user. This homepage also

contains Sign Up and Login buttons in the centre of the page.

2. When we click Sign Up or Register, we’re redirected to the register page. Here the user has

to input a username, an email (not a valid one), a password twice and consent to the privacy

prompt of the web application.

There are some checks in the register form and these include that you have to input a valid

email (**@**). This is indicated this a red border and also a small message (but you have to

click on Register).

39

If passwords do not match the following message will appear at the top of the page.

If you do not type exactly “I AGREE” the following warning will appear at the top of the

page. You can view GDPR by clicking “Click here to read GDPR”.

When everything is okay the user ready to submit by clicking on the “Submit button”.

3. If at the navigation bar you click on “Users” the following page with the users of the web

application can be viewed.

4. After registering the user is redirected to the Dashboard where he/she has to click on

“Create a profile” to create his/her profile.

40

5. The fields that need to be filled in are Status, university or company, and a free input field

where the user can type in whatever you want about himself/herself.

6. Now the user’s dashboard is updated and the user has the option to permanently delete

his/her account or click on the link “Official EPL 211 website” to be redirected to the official

EPL211 website where he/she can find the material of the course.

41

7. At the navigation bar at the top (which has now changed since the user is logged in) the

user clicks on Discussion. Here the user can start a discussion by inputting in the input box at

the top of the page and clicking on Submit. As we can see in the screenshot below, the user

Giorgos Harakis has already started a discussion. The user can also like and unlike a

discussion post, so people know which discussions are important.

42

8. When the user clicks on “Discussion” from number 7, he/she is redirected to the page of

the specific Discussion where he/she can comment below that post.

The user can always delete your comments and discussions posts by clicking on the “X”.

9. When the user clicks on “Create Exercises” on the navigation bar at the top the user will be

redirected to the page to create an exercise. There’s a button that slides down the create an

exercise form.

43

10. There are a lot of fields to fill in. But first, it must be noted that if you want to reset your

input fields you can always click on the Dismiss Button. The rules for the first five input

fields are the follows. Description, red and blue choices are mandatory, while green and

orange can be empty. None of the choices can be the same as another choice.

The following error codes might be displayed depending on the mistake.

There are also some other fields after the orange choice. Firstly, the user can choose an

optional correct choice but makes no difference to what is displayed to the user. There are

three drops downs, where the user can choose whether the exercise is for Home or Class, the

chapter of the exercise and the week that it will taught at. When the user is done inputting

he/she can click on the submit button.

44

11. When you’re done and press submit, you can click on the Exercises from the navigation

where you can choose from Execises for home and Exercises for class.

12. If you choose Exercises for home the user is presented with buttons for each of the

chapters of the course to click on. Click to display and click again to dismiss a certain

chapter.

45

13. When you click on Exercises for class you can view the buttons for each week, where you

can select the exercises of what week you want to complete. Below we chose week 2, and in

that way you can view the exercises for week 2. In this example the box for the exericse does

not show the description, only a number and the question might be password protected. If it is

not password protected you can just press “Solve”

14. When the user puts his/hers password (or not if optional) then the user can view the page

for solving the particular exercise.

46

After the user clicks and submits his/her answer then he/she can view what others have

answered (not including your answer). The user can only answer once (every other answer

the user attempts will not count on the total).

47

15. The user can logout by clicking on the arrow button at the right part of the navigation

bar.

16. When the user logout you can login again. If the user puts wrong credentials then, a

message will be displayed.

 5.3.3 Code structure

Src folder:

In the src folder we have actions, components, reducers and utils folders. We also have

App.css, App.js, index.js, store.js

Components folder: Here are the components, which were created using react.js. The

following image shows what is included in this folder:

48

Below I will explain the components that are included in each of these folders.

Auth:

1)Login.js contains the page for the Login. If the user is already logged in and authenticated

instead of the Login page, he/she will be redirected to the dashboard page. The main features

of this page is the Login form.

2) Register.js contains the page for the Register. If the user is already logged in and

authenticated instead of the Register page, he/she will be redirected to the dashboard page.

The main features of the file is the Register form, where the user is prompted to input a name,

email and also to type in twice his/her password, and they are checked through a function if

they match.

Dashboard:

1) Dashboard.js contains the page for the dashboard of a user. If the user has no profile, then

there is a link for a page to create a profile. If he/she has a profile already then, the dashboard

includes information about the user and also a button that allows him/her to delete his/her

account.

Exercise:

1)Exercise.js is the component for the presentation of an individual exercise. This is the

component page which displays the exercise to be solved (with the choices).

Exercises:

49

1)ExerciseChapterButton.js is the component that is the button that appears when you click

on one of the chapters in the Home exercises page. There is a mechanism to click on the

button and then the exercises for that chapter appear and you can always click it again to

dismiss it.

2)ExerciseChoose.js contains the page for the two-button choice of whether you would like to

do home exercises or in-class exercises.

3)ExerciseCreate.js contains the page for the form that contains the form that you can create

an exercise.

4)ExerciseForm.js contains the actual form for creating an exercise. The form includes all the

necessary fields of an exercises (e.g. description, choices etc).

5)ExerciseItem.js is the component for the presentation of an individual exercise. This means

the individual box of an exercise when it appears on the exercises list in various parts of the

application.

6)Exercises.js contains all the buttons for individual chapters (ExerciseChapterButton.js)

7)ExerciseWeekButton.js is similar to the ExerciseChapterButton, but instead of the chapters

it’s for the weeks of the semester.

Layout

1)Alert.js contains the box of alerts that show up on the top of the page, when a user does an

action (e.g. creating an exercise), or a user makes a mistake (e.g. an alert for wrong

password).

2)Landing.js is the page, which the user views when he first visits the website (the

homepage), before he logins or registers. That is why there are buttons on this component

prompting him to login or register.

3)Navbar.js is component for the navigation bar at the top of the web application and mainly

contains buttons to the many parts of the application (e.g. exercises, profiles etc).

4)Spinner.js is the component for the spinner effect when a page is loading data from the

database.

50

Post

1)CommentForm.js contains the form for creating a comment under a post. The form

includes a text input field for the comment

2)CommentItem.js is the component that displays a comment that has been posted, with all

the authorization that is needed in order for user that has created a certain comment to delete

it.

3)Post.js contains the page for an individual post, where the post itself is being displayed and

below that are the comments from other users about the post.

Posts

1)PostForm.js contains the form for creating a post. The form includes a text input field for

the post.

2)PostItem.js is the component that represents box that contains a post (including description,

dates etc) in the Posts page of the web application

3)Posts.js is the actual pages with all the posts and the Post Items in them.

Profile

1)Profile.js is the component that has the page that displays the profile of a certain user

Profile-Form

1)CreateProfile.js is the component that contains the form for creating a profile and includes

all the required fields (e.g. status, thoughts etc.)

Profiles

1)ProfileItem.js is the component that represents box that contains a profile(e.g. username

etc) in the Profiles page of the web application

2)Profiles.js is the component for the page that contains all the registered profiles in the web

application’s database.

Routing

51

1)PrivateRoute.js is a special component for the administration of private routes in the web

application, for example when the user has already logged in, a private route is used to

redirect the user to contents of the web application that were not available before logging in.

Next, I will explain the Redux part of the project and particularly the actions and reducers

folders, which I explained above at the Redux sections.

Actions folder

1)alert.js includes only the set_alert action, which dispatches a set_alert type of action

2)auth.js includes the actions that tell us of the success or failure for the authorization actions

(load user, register user, login user, logout)

3)exercise.js includes the actions that tell us of the success or failure for the exercise actions

(get exercises, delete exercises, add exercise, add answer, add correct answer by user, get

exercise, authorize exercise)

4)post.js includes action for posts (get posts, add like, remove like, delete post, add post, get

post, add comment, delete comment)

5)profile.js includes the actions for the profiles (get current profile, get profiles, get profile

by id, create profile , delete account

6)types.js includes all the constants which are used by all the other action files. This is

usually made for convenience to have all the types at one place. a

Reducers folder includes alert.js, auth.js ,exercise.js ,post.js, profile.js and also the index.js

which is the reducer’s combine file.

Utils folder

SetAuthToken.js is the file that contain the code for the authentication token. Token is a

unique identifier for every user.

Apart from folder src contains and a lot of files

52

App.css contains all the styling for the web application. Every styling (e.g. fonts, alignments,

colours etc) are all included in this file and not on the individual components.

App.js is a very important file. This is where we put all the components which are to be pages

with a URL (e.g. /exercises redirects to the exercises component). Here are also the Provider

tag, which is tasked with passing down the store for Redux. There is also the Router tag,

which is responsible for the routing for the pages.

Index.js is is the main file of the application, where the actual application is rendered. This is

like the main for other

Store.js is where the store for Redux initialized, created and finally exported to the

application.

The following section is dedicated to the backend of the application. In this section I will

document the config, middleware, models, routes folders and also the server.js file.

Config folder

1)db.js is the file related with the database configuration

Middleware folder

1)auth.js is the file for the authorization, where we create the token for each user.

Models folder contains the model files for each entity of the application.

1) Exercise.js, Post.js, Profile.js, Users.js contains the schema (the properties in other words),

for the various entities in the application. For example the Exercise.js contains properties

such as description, name, choice A, choice B etc of an exercise entity

Routes folder contains the route files for REST requests of the application. In these files I

will explain every RESTful request.

1)auth.js contains

GET request to “/”, which finds the current user that is logged in the application.

POST request to “/”, which sends email and password of the user that logs in to authenticate

that it is really him/her.

53

2)exercises.js

POST request to “/”, which creates and posts an exercise (with its details) to the server.

GET request to “/”, which brings us all exercises from the database.

GET request to “/:id”, which bring an exercise by id.

POST request to “/exercises/:id” , which is when you put a password to solve a password-

exercise.

DELETE request to “/exercises/:id”, which deletes an exercise by id

PUT request to “/exercises/answer/:id”, which puts an answers of a certain user for a certain

exercise by id.

PUT request to “/exercises/correct_users/:id”, which puts which users have answered

correctly to an exercise by id.

3)posts.js

POST request to “/”, which creates and posts a post(with its details) to the server.

GET request to “/”, which brings us all posts from the database.

GET request to “/:id”, which bring a post by id.

DELETE request to “/posts/:id”, which deletes a post by id

PUT request to “/posts/like/:id”, which puts a like of a certain user for a certain post by id.

PUT request to “/posts/unlike/:id”, which puts an unlike of a certain user for a certain post by

id.

POST request to “/posts/comment/:id”, which puts a comment under a post.

54

POST request to “/posts/comment/:id/:comment_id”

4)profile.js

GET request to “/profile/me”, which gets the current logged in user’s profile.

POST request to “/profile”, which posts the profile’s information to the database.

GET request to “/profile”, which gets a profile from the database.

GET request to “/profile/user/:user_id”, which brings a profile by id.

DELETE request to “/profile”, which deletes the current profile (removes user posts, profile

and user).

5)users.js

POST request to “/users” which is the request that creates a user and sends it to the database.

Server.js file is the file where we connect to the database, initialize middleware and define

routes of the application.

 5.3.4 What I did not like and what needs improvement, according to me and

others who have tried the web application.

What I liked: The user interaction is the best so far. The web application is very responsive

and has some very nice colour combinations. The total look of the web application is more

professional than the predecessors and there aren’t any missing parts this time.

What needs improvement: Some responsiveness on a mobile phone can be improved.

Especially on small screen smart phones. This does not hinder the usability of the application,

but things could improve.

In this section I will analyse whether the functional requirements from Chapter 3 have been

met. The proof of my work can be validated when you visit

https://epl211webapp.herokuapp.com/.

https://epl211webapp.herokuapp.com/

55

1. User CRUD (create, read, update, delete) login: A user can create a new account in

the web application by

 2. Homepage with overview of the web application: There is a homepage which states

the purpose of the web application, and also provides buttons to Sign up or Sign into the

system.

 3. Exercise CRUD: A user can choose from the navigation bar the option “Create an

exercise” to view the form to create a new exercise.

 4. Exercise type, Multiple Choice: The only exercise type available are multiple choice

questions, and they can have from 2 to 4 options.

 5. Discussion forums: When you click on discussion the user can post anything he/she

wants others to view. The user can also comment on other users’ posts, and like or unlike

them.

 6. Dashboard of user with activity: The dashboard has a link to the official EPL211

website and also an option to delete the account.

 7. Web application available online: The web application is online at all times.

I also provide results for the non-functional requirements. After completing the final

prototype I have come with satisfactory results. First of all, I did not use third-party APIs, so

delays related to third-party APIs will not occur. I have used the reliable Heroku.com servers,

and even though it is the free version it still ensures that the web application will have an

almost 100% uptime. Most of the interactivity of the application belongs to the browser

(frontend) so it all depends on the device of the user and the browser he/she uses. But even if

it is a slow browser or device the application will likely still run smoothly as the

technologies, which are explained in chapter 4 of the thesis are mostly lightweight and

portable for all devices. When it comes to security, the passwords are salted and saved safely

in the database. The connection is running on HTTPS, which is very secure protocol for

network communication, so there is no risk for intrusion.

56

5.3.5 Survey on the third prototype

I have created a questionnaire from people that have tried the application. These people are

my personal friends and students from my year at University. I have asked around 13 people

to try my web application and complete the survey. The full results of the survey are at

Appendix C. I will summarize the results here.

1)Most users would use the system frequently.

2)Most users did not find the system unnecessarily complex.

3)Most users found the system easy to use, except from one person who did not find it easy at

all.

4) Most users did not feel the need for a technical person in order to use the system.

5) Most users found the functions in the system to be well integrated.

6) Most users found the system consistent but there were a few others who did not find it

consistent.

7) Most users think that everyone can learn the system very easily.

8) Some users found the system cumbersome to use.

9) Most users felt confident using the system.

10) Most users felt they did not need to learn a lot of things before using the system.

Below is the actual survey. In this part I analyse the results in more detail. The scale is from 1

to 5, where 1 means “not at all” and 5 means “very likely”.

In the first question, the answers were mostly positive, but some answers also tended to the

middle. This can mean that these people would not use the system if it would not be

mandatory to use in class.

57

Next, most people did not find the system complex at all, and only 3 were neutral on the

subject. This means that the system is not complex and can be used by most people.

A very similar question to the previous one. One person had a difficult time navigating the

web application. Perhaps a page with instructions on how to use the web application could

help the person.

58

Next, the need for a technical person is not needed according to almost all the participants of

the survey. This is a good sign, because it means that there isn’t a big amount of technical

complexity that would require the assistance of a technical person.

Next, most people agreed that the functions of the system were well integrated, but the 8

people voted for the second-best answer and not the “Very likely”. This means that there can

be an improvement to integrate the features of the web application a little more.

59

Next, most people did not find much inconsistency in the system, but there were some people

that found it inconsistent.

Next, almost everyone believes, from their experience using the application, that others who

will try to pick up the application will not find it hard to learn to use. This means that future

users, such as students will find it easy to learn the application.

60

Most users felt confident using the system, which is a very good sign.

Most users did not feel like they had to learn a lot of things before using the system and this

is positive. It means that the web application is beginner-friendly, and everyone can learn

how to use it fast.

61

Chapter 6

Conclusion

6.1 Summary

6.2 Assess my work and future improvements

6.1 Summary

The aim of my thesis was the develop a web application that promotes active learning during

lectures and at home. We always use technology for various tasks, so it is only natural that

we use technology for educational reasons as well. Students are more engaged during lectures

when they are engaged through their devices. With the use of a web application, the student

will pay more attention during the class and have more motivation for study at home using

the application.

I followed prototyping model of development which involved the creation of three

prototypes. So, it was natural that I faced some obstacles during the process of creating the

application. I had to learn new technologies and that took a lot of time and practise. This cost

me a lot of time that could have been used for the final prototype. Unfortunately, I was not

very familiar with the technologies and had to learn them in a small period of time.

The final prototype is running on the web and has many features available. You can create

your own user and profile. Then you can navigate through the web application and create

your own exercises for other users to solve (both homework and for in class). You can also

enter the discussion forums and post your questions for other users to answer. You can also

answer other user’s questions on the discussion forums. The final prototype is scalable and

new features can be added if needed. The web application was tested from me and other

people, who have also answered a survey on the usability of the system.

6.2 Assess my work and future improvements

An improvement could be to have an administrator for the web application that can

administrate from the website and not through the Mongo dB database. because now the

62

system of pre assigning the administrators might not be the most ideal, and most commercial

applications would not use such a system.

More features can be added to the web application. It would be nice if the application would

use more multimedia options, such as graphical representation of automata or an even more

difficult task of generating an automaton from a description given by the student. Another

good feature would be to have an offline version of the application which could be used on

the computer or smart phone.

There can be more interaction between users in the application. I have already developed the

features to post and comment in discussion forums. Also, there can be options to share

exercises or posts to a group of people. Furthermore, there can be virtual communities or

teams between users of the application with the same issues about the class.

There can be more focus on the exercises as well. An idea is to have a flagging mechanism to

highlight your favorites exercises or put tags on exercises with a search engine to be able to

find the exercises easier. Furthermore, there can be a difficulty system, where users can rate

exercises whether they are easy, hard or medium difficulty. The feature from my first

prototype of having a series of exercises to solve (like a test) can be added to the third

prototype as a new feature.

There can be features for the improvement of the student’s academic performance. One way

to do this is to put competition to the application. For example, there can be a points system,

where a student who completes the most correct exercises gets higher points than someone

that does not answer correctly or is not active at all in the web application. This can count on

the final grade of the course. Finally, there can also be a leader board in the forums, where

the student with the most activity or the most correct answers can advance to the top of the

leaderboard.

Some other ideas include: Multimedia communication between users (using video or voice

call), multimedia tutorials (tutorials for exercises), drawing of automata and Turing machines,

more categories of exercises, autosuggestion of exercises based on previous solved exercises,

university email verification (like in regular commercial applications).

63

Bibliography

[1] Android Authority. (2020, February 20). 10 best Android learning apps to increase

your knowledge. Joe Hindy. from https://www.androidauthority.com/best-android-

learning-apps-566227/

[2] Guru 99. (2019, May 20).What is a backend developer?.

from https://www.guru99.com/what-is-backend-developer.html

[3] Hackr. (2020, April 09). What is frameworks. Viljaya Singh.

from https://hackr.io/blog/what-is-frameworks

[4] YouTube – Traversy Media. (2019, January 09). Vue.js Crash course. Traversy Media

Channel. from https://www.youtube.com/watch?v=Wy9q22isx3U&t=1522s

[5] Log Rocket. (2018, August 31). Why use Redux? Reasons with clear examples. Neo

Ighodaro. from https://blog.logrocket.com/why-use-redux-reasons-with-clear-

examples-d21bffd5835/

[6] Traversy Media YouTube. (2019, January 20). ReactJs crash course. Traversy Media.

from https://www.youtube.com/watch?v=sBws8MSXN7A&t=5107s

[7] Traversy Media Udemy. (2019, July). MERN stack front to back. Traversy Media.

from https://www.udemy.com/course/mern-stack-front-to-back/f

[8] Hallam. (2018, October 16). Website legal requirements: laws and regulations in the

UK (2018). Susan Hallam. from https://www.hallaminternet.com/internet-marketing-

and-the-law-legal-issues-affecting-you-and-your-website/

[9] Accessible Metrics. (2020, February 20). Top 8 Most Common Accessibility Issues to

Avoid and Solve. Sam Stemler. from https://www.accessiblemetrics.com/blog/top-8-

most-common-accessibility-issues-to-avoid-and-solve/

[10] Medium Extend. (2020, September 5). What is REST — A Simple Explanation for

Beginners, Part 1: Introduction. Shim Vrehm Abraham.

https://www.androidauthority.com/best-android-learning-apps-566227/
https://www.androidauthority.com/best-android-learning-apps-566227/
https://www.guru99.com/what-is-backend-developer.html
https://hackr.io/blog/what-is-frameworks
https://www.youtube.com/watch?v=Wy9q22isx3U&t=1522s
https://blog.logrocket.com/why-use-redux-reasons-with-clear-examples-d21bffd5835/
https://blog.logrocket.com/why-use-redux-reasons-with-clear-examples-d21bffd5835/
https://www.accessiblemetrics.com/blog/top-8-most-common-accessibility-issues-to-avoid-and-solve/
https://www.accessiblemetrics.com/blog/top-8-most-common-accessibility-issues-to-avoid-and-solve/

64

from https://medium.com/extend/what-is-rest-a-simple-explanation-for-beginners-

part-1-introduction-b4a072f8740f

[11] Frontend Maters. (Date) What is Frontend Developers from

https://frontendmasters.com/books/front-end-handbook/2018/what-is-a-FD.html

[12] FreeCodeCamp Youtube (2019 June 25) FreeCodeCamp Learn the MERN Stack -

Full Tutorial (MongoDB, Express, React, Node.js)from

https://www.youtube.com/watch?v=7CqJlxBYj-M

[13] W3schools () HTML Tutorial from https://www.w3schools.com/html/

[14] W3schools () CSS Tutorial from https://www.w3schools.com/css/

[15] W3schools () HTML Tutorial from https://www.w3schools.com/js/

[16] W3schools ()Node.js MongoDB Create Database from

https://www.w3schools.com/nodejs/nodejs_mongodb_create_db.asp

[17] W3schools () React Tutorial from https://www.w3schools.com/react/default.asp

[18] W3schools () JSON Introduction from https://www.w3schools.com/js/js_json_intro.asp

[19] Node Source (2017 February 17) An Absolute Beginner's Guide to Using npm from

https://nodesource.com/blog/an-absolute-beginners-guide-to-using-npm/

https://www.youtube.com/watch?v=7CqJlxBYj-M
https://www.w3schools.com/html/
https://www.w3schools.com/css/
https://www.w3schools.com/js/
https://www.w3schools.com/nodejs/nodejs_mongodb_create_db.asp
https://www.w3schools.com/react/default.asp
https://www.w3schools.com/js/js_json_intro.asp
https://nodesource.com/blog/an-absolute-beginners-guide-to-using-npm/

1

Appendix A

The code of the first prototype is in this github repository:

https://github.com/harakisgeorge/theapp

The code of the second prototype is in this github repository:

https://github.com/harakisgeorge/EPL211_web_app

The code of the third prototype is in this github repository:

https://github.com/epl211webapp/social_media_app/

 A-1

https://github.com/harakisgeorge/theapp
https://github.com/harakisgeorge/EPL211_web_app
https://github.com/epl211webapp/social_media_app/

1

Appendix B

How to use MongoDB database.

1. Go to https://account.mongodb.com/account/login and login if you already have an

account, otherwise register and then login.

2. If your account is new, you will be prompted with a few options (e.g. your region) and then

your first cluster will be created. Otherwise if you have already a cluster, you’re presented

with the following page, where you can view information about your cluster.

 B-1

https://account.mongodb.com/account/login

2

3. In order to receive information about how to connect with your database you need to click

on connect where you will be prompted with the following window.

 B-2

3

4. We will usually choose “Connect your application” where you’re provided with a link,

which you can copy and paste on the appropriate location in the code of your application.

That link is the link between your code and your database, because it contains authentication

information (username,password).

5. Now if we’re already connected we don’t need to do this everytime. If you just want to

check your collections you have to click on “Collections” from point number 2, so you can

view your collections. Then in my case I can view the list of the collectiosn that are in the

web application (exercises, posts, profiles, users).

 B-3

4

6. If for example I click on “exercises” I can view in JSON format the contents of the

exercises data collection.

Note: Of course there are many more other packages that I used that I can’t explain here, but

most of the packages I used are the same as the Udemy tutorial I mentioed at the beginning of

the section. [7]

1

