
 

1 | P a g e  

 

 

 

 

 

Thesis Dissertation 

 

 

 

Evaluating Randomized Binaries 

 

 

 

Antonis Yenagritis 

 

 

UNIVERSITY OF CYPRUS 

 

 

 

 

 

COMPUTER SCIENCE DEPARTMENT 

 

 

 

December 2018 

 

 



 

2 | P a g e  

 

 

UNIVERSITY OF CYPRUS 

COMPUTER SCIENCE DEPARTMENT 

 

 

 

 

 

 

 

Evaluating Randomized Binaries 

Όνομα Φοιτητή 

 

 

 

 

 

 

 

Supervisor 

Dr. Elias Athanasopoulos 

 

 

 

 

 

Thesis submitted in partial fulfilment of the requirements for the award of 

degree of Bachelor in Computer Science at University of Cyprus 

 

 

 



 

3 | P a g e  

 

 

December 2018 

 

 

Acknowledgements 

 

I would like to express my sincere gratitude to my thesis advisor Dr. Elias 
Athanasopoulos for guiding me throughout my research. 
 
I am also grateful for my family and friends who provided me with support and 
continuous encouragement throughout the process of the thesis. 
  



 

4 | P a g e  

 

Abstract 
 
One promising technique for countering code-reuse attacks is Execute-only Memory. 

This makes the code layout unreadable and thus attackers cannot locate any more 

malicious gadgets. For enforcing Execute-only Memory, randomizing the code layout 

of the process is essential. To this end, several frameworks have been proposed for 

fine-grained randomization of code. In this thesis we explore one of them, namely 

CCR, and measure the parts of code that are not randomized at all. Furthermore, we 

develop an LLVM pass, perform static analysis of C/C++ source code and then we 

measure which parts remain untouched by CCR. In conclusion, we find that CCR 

cannot perform any in-function randomization in 1-BB functions and cannot 

randomize virtual methods in C++ programs.   



 

5 | P a g e  

 

Contents 
 

1. Introduction 

2. Background 

2.1 LLVM Compiler Infrastructure 

2.2 LLVM Pass 

2.3 Clang 

2.4 Docker 

2.5 SQLite3 

3. Research Problems 

3.1 Software Exploitation 

3.2 How to Defend 

3.3 Defending ROP 

3.4 This Thesis 

4. Architecture 

4.1 LLVM Pass and Basic Block Count 

4.2 Function Randomization 

4.3 Virtual Functions and Virtual Table 

5. Implementation 

5.1 LLVM Pass 

5.2 Bash Script 

6. Evaluation 

7. Related Work 

8. Conclusion 

9. Bibliography 

10. Appendices  



 

6 | P a g e  

 

Chapter 1 
 
 

Introduction 
 

Control-flow attacks are one of the many problems a software developer has to face. 
A single bug in a code can be an open door for software exploitation. That is why many 
resources have been devoted to the research of a defence mechanism against this 
kind of threat. That being said, Return Oriented Programming (ROP) is one of the 
most-used control-flow attacks. Furthermore, a widely known mechanism for 
defending against ROP is code randomization. By rearranging the code of the 
programme it becomes much harder for a bug to become useful for exploitation. This 
led to the use of different approaches of code randomization such as the Compiler-
assisted code randomization (CCR) method. 

Like any other code randomization technique, the CCR has to be assessed so that it’s 
level of defence that is responsible for “giving” can be evaluated. This kind of 
evaluation is very important because it reveals the different weaknesses each 
technique possesses and gives the pros and cons of its use. Subsequently, this can be 
especially crucial for CCR because of its different approach. 

This evaluation however proves extremely challenging because it demands a heavily 
reverse engineering of C++ code as well as extensive knowledge on types of 
interpreters like Bash. In the case of this paper, the code was used to test the CCR in 
order to assess how it reacts. Further, there was a focus on how to change the code 
in order to track any changes in the CCR. Another example of reverse engineering in 
research might revolve around a piece of software that has been running for years and 
is responsible through its code for a number of functions in a business [26]. By using 
reverse engineering one can be able to detect and deal with vulnerabilities in order to 
protect the software. Lastly, when the need arises to maintain parts of a software or 
even enhance or reuse them, proficiency in reverse engineering is needed. 
Nevertheless, in this paper the main idea was to test how the CCR reacts in different 
changes to instances in the code. This way the different weaknesses of this defence 
mechanism become visible. 

Through the experiments and trials presented in this thesis the weakness that was 
found in CCR’s approach revolves around the virtual tables. The fact that the vtables 
always have the same fixed addresses regardless of the randomization in the rest of 
the code clearly creates a situation that can be exploited. 

As an answer to new defences against control-flow attacks, vtable hijacking has been 
adopted by many attackers. With this approach, the attacker takes advantage of bugs 
in C++ programs to overwrite pointers in the vtables of objects. This has led to the 
need for methods that pay attention in the ordering and interleaving of vtables in the 



 

7 | P a g e  

 

memory. This way suggests that by assessing the validity of a vtable at runtime is more 
efficient than a set membership test [25]. 

The following thesis starts by presenting some background work on LLVM Compiler 
Infrastructure and then describes what is an LLVM pass and where it can be used. 
Further, the Clang compiler is introduced and its relationship with the LLVM compiler 
infrastructure is explained. Following this, there are brief explanations on the Docker 
and the use of SQLite3 in the creation and management of databases. After the 
background work, the research problem of interest is presented and briefly discussed 
along with 3 examples. Moreover, a small explanation on how to defend against 
certain attacks is presented and the non-executable storage space is introduced with 
the ultimate purpose to evaluate the approach of randomization tools against ROP 
attacks. The first step to this approach is then discussed in chapter 4.1 “LLVM Pass and 
Basic Block Count” and it is accompanied by an explanation on function randomization 
using SQLite3 and the “objdump” command. Further, an insight is provided on the 
meaning and use of Virtual Functions and Virtual Tables and more examples are 
presented to further support this thesis’ idea. Naturally, the implementation of the 
research is presented with details on the LLVM Pass and a line-by-line explanation of 
the Bash script used. Following this, the Evaluation section, briefly explains the output 
of our approach and points out the vulnerability in the method. Finally, related work 
is presented that focuses on research around code randomization functions, code 
diversification and use of execute-only memory.  



 

8 | P a g e  

 

Chapter 2 
 
 

Background 
 

2.1 LLVM Compiler Infrastructure …………………………………………………………….. 9 

2.2 LLVM Pass …………………………………………………………………………………………… 9 

2.3 Clang …………………………………………………………………………………………………… 9 

2.4 Docker ………………………………………………………………………………………………… 9 

2.5 SQLite3 ……………………………………………………………………………………………….. 9 

  



 

9 | P a g e  

 

2.1 LLVM Compiler Infrastructure 

The LLVM compiler infrastructure project is a "collection of modular and reusable 
compiler and toolchain technologies" [18] used to develop compiler front ends and 
back ends. LLVM is written in C++ and is designed for compile-time, link-time, run-
time, and "idle-time" optimization of programs written in arbitrary programming 
languages. LLVM can provide the middle layers of a complete compiler system, taking 
Intermediate Representation (IR) code from a compiler and emitting an optimized IR. 
This new IR can then be converted and linked into machine-dependent assembly 
language code for a target platform. LLVM can accept the IR from the GNU Compiler 
Collection (GCC) toolchain, allowing it to be used with a wide array of extant compilers 
written for that project. 

2.2 LLVM Pass 

The LLVM Pass is an operation (procedure invocation) on a unit of LLVM IR code. The 
granularity of code operated on can vary from a Function to an entire program 
(Module in LLVM parlance). Passes may be run in sequence, allowing a successive pass 
to reuse information from (or work on a transformation carried out by) preceding 
passes. The LLVM pass framework provides APIs to tap into source-level meta-data in 
LLVM IR. 

2.3 Clang 

Clang is a compiler front end for the C, C++, Objective-C and Objective-C++ 
programming languages, as well as the OpenMP, OpenCL, RenderScript and CUDA 
frameworks. It uses the LLVM compiler infrastructure as its back end. It is designed to 
act as a drop-in replacement for the GNU Compiler Collection (GCC), supporting most 
of its compilation flags and unofficial language extensions. Clang is intended to work 
on top of LLVM. The combination of Clang and LLVM provides most of the toolchain, 
to allow replacing the full GCC stack. Because it is built with a library-based design, like 
the rest of LLVM, Clang is easy to embed into other applications. 

2.4 Docker 

The Docker is a computer program that performs operating-system-level 
virtualization, also known as "containerization". The Docker is developed primarily for 
Linux, where it uses the resource isolation features of the Linux kernel to allow 
independent "containers" to run within a single Linux instance, avoiding the overhead 
of starting and maintaining virtual machines (VMs) 

 
2.5 SQLite3 

A free to use database that gives you the ability to easily create and manage databases 
is SQLite3. Early learners of SQL as well as developers find SQLite3 ideal because it 
provides them with a simple database engine to port in their applications. It should be 
noted that even though SQLite3 is not a full-featured database, it has support for a 
large set of the commonly used SQL standard. 



 

10 | P a g e  

 

Chapter 3 
 
 

Research Problems 
 

3.1 Software Exploitation ……………………………………………………………………….. 11 
 
3.2 How to Defend ..……………………………………………………………………………….. 13 
 
3.3 Defending ROP ..……………………………………………………………………………….. 13 

3.4 This Thesis ..………………………………………………………………………………………. 14 

  



 

11 | P a g e  

 

3.1 Software Exploitation 
 
Many programs often have bugs in their codes. Some are small and unnoticeable while 
others can leave open doors to people with malicious intents. These malicious intents 
can be materialised using software exploitation. A software exploitation is when 
someone takes advantage of those bugs to gain read or write privileges in a specific 
programme. Moreover, a bug that gives read privileges, if used the right way, it can 
give a person the ability to extract information stored in the program’s storage space. 
If the information targeted is of personal character (e.g. password), it can have a big 
impact on the user. On the other hand, a bug that gives write privileges can be used 
to store information in the program’s storage space.  
 
An example of use of such bug is known as buffer overflow. As its name suggests, 
buffer overflow is when the value given to a specific variable in a program exceeds the 
predetermined length. If left unchecked, this can lead to the variable being saved over 
other nearby important values. 
 

 
Example 1: Program with buffer overflow bug 

 
In example 1 we see a program that takes a string as argument. It sends the string to 
the function ‘authenticate_root’ that checks if it is the same with the correct 



 

12 | P a g e  

 

password. If it is not the same the programme gives the “Access denied” as output 
and otherwise it gives “Welcome administrator”.  
 
We can see that (in example 1) the function ‘authenticate_root’ has a bug that gives 
write privileges. The function takes as an argument a string with unspecified length. 
Then it declares a table of characters and allocates to it space for 16 characters. Then 
it uses the function ‘strcpy’ to copy the argument into the table. By doing this the 
argument is saved into the stack but without checking if the given string has the right 
length. 
 

 
Example 2: Stack memory representation 

 
In example 2 we see the structure of the stack when we use the argument 
"AAAAAAAAAA" into the program from example 1. The character ‘A’ is translated into 
‘41’ in hexadecimal to be saved in the stack. The value marked with ‘ret’ is the return 
value that the function is going to use after it finishes, to return to the correct flow of 
the program. If we continue to add “A”s in our argument, we can overwrite all the 
values in the stack until we reach the return address. With this opportunity we can 
change the value of the return address and direct the flow of the program to the point 
where it benefits us. For the above example we can direct it to the point where our 
argument is accepted from the program instead of being rejected. This is also known 
as Control Flow attack. 
 
By taking this a step further we can do what is known as Code Injection. Just like 
Control flow, the Code Injection is based on changing the value of the return address. 
However, instead of directing the flow of the programme towards another line of code 
we direct it to the storage space. 
 

 
Example 3: Assembly code translated to hexadecimal form 

 
 



 

13 | P a g e  

 

In example 3 we took some lines of code that execute a specific process and we 
converted them into hexadecimal. Now we repeat the same process as example 2 but 
use these numbers as our input string. Then if we direct the return address to the 
address where our code is saved then the programme will start executing it. This way 
we forced the programme to execute code that was not pre-programmed to do, just 
by taking advantage of a bug and using a specific input string. 
 
3.2 How to Defend 
 
One of the ways that can be used to defend against these kinds of attacks is by making 
the storage space Non-Executable. If the programme is prevented from executing 
code that is forced into its memory, then the Code Injection attack can’t work. 
 
To overcome this obstacle, a new technique called Return Oriented Programming 
(ROP) Attack was invented. This kind of attack is based around the idea of code reuse. 
Instead of injecting the code that we need into the memory we instead force the 
programme to run its own lines of code, but in the order that benefits us. The first 
thing that is needed for this attack is to find the Gadgets within the lines of the 
programme. Gadgets are a small number of commands that are next to each other 
and always end with the command “return”.  Once we locate these Gadgets, we take 
note of the address of their first command. Next, we decide the order we want those 
Gadgets to be executed. Then we follow the same process we used in Control Flow 
attack and we insert the addresses we have in the programme’s memory in the order 
that executes our goal. Lastly, we overwrite the return address with the address of our 
first gadget. From that point on, every time the programme reaches the “return” 
command it will read our address and go to the next Gadget until we succeed on our 
goal. 
 
3.3 Defending ROP 
 
In order to counter this kind of threat the randomization tools were invented. The job 
of these tools is to take the code of a given programme, break it in pieces and put 
those pieces in different places in the memory. Every time the programme runs each 
of its parts have a different address in the memory. This makes the search for the 
Gadgets much harder since they have different address every time the programme is 
executed. 
 
One such tool is the Compiler-assisted code randomization (CCR). Relying on compiler-
rewriter cooperation, CCR can be described as a generic and highly efficient code 
transformation approach that aims for fast and robust diversification of binary 
executables on end-user systems. It uses a minimal set of metadata that can be 
embedded into executables to facilitate rapid fine-grained code randomization at the 
basic block level and maintain compatibility with existing mechanisms that rely on 
referencing the original code. The motivation behind this design is based on two ideas. 
First, taking into account the variable of practicality, the code diversification approach 
should allow existing models and features to run as initially planned. However, code 
randomization can be described as a highly intrusive technique. Which points to the 



 

14 | P a g e  

 

second idea behind its design that supports the importance of compatibility. To avoid 
potential conflict caused by code randomization with already set operations the 
compiled libraries are enhanced with metadata that allow their upcoming 
randomization to be executed during load time or installation. Randomization at load 
time is presented as a part of the loader’s modifications to code. It should be noted 
though that the longer rewriting time required for this method could result in user-
perceived delays. In order to avoid this issue, keeping a reserve of pre-randomized 
variants, for example a service generating them in the background could be a solution 
[18]. Further, most software is presented in the form of compiled binaries and during 
installation on each endpoint it is subjected to some customization (i.e. post-
processing). In this case the randomization can take the form of a post-processing task 
during installation [18]. 
 

3.4 This Thesis 

Our objective in this thesis is to explore and test the CCR-binary in order to find hidden 
weaknesses in the code randomization. We achieve this by measuring part of the code 
remain untouched by the randomization of the CCR. 
 
  



 

15 | P a g e  

 

Chapter 4 
 

Architecture 
 

4.1 LLVM Pass and Basic Block Count ……………………………………………….….. 16 

4.2 Function Randomization …………………………………………………………….….. 16 

4.3 Virtual Functions and Virtual Table ………………………………………….…….. 17 

  



 

16 | P a g e  

 

4.1 LLVM Pass and Basic Block Count 

The first step of our work begins by finding the Basic Blocks (BBs) in the functions of 

our target program. Basic blocks are a sequence of code that is executed one after the 

other and have no branches except from one entry and one exit point. During the 

compilation of the program the compiler creates those basic blocks by bundling 

together consecutive instructions until it reaches a ‘goto’ or a ‘jump’. The ‘goto/jump’ 

instruction is used to change the flow of the program in case of a loop or to call and 

return from a function. If the addresses of those basic blocks are known by an attacker, 

then they can be used as gadgets. 

Original Source Code Basic Blocks 

 

 

 

 

 

Example 4: Function broken down to basic blocks 

For this reason, the CCR creates metadata during the compilation that are then used 

to change the positions of those basics blocks within the function by shuffling them. 

With this, the address of the BBs in a function keeps changing every time the attacker 

runs the executable making it difficult for him to use them. However, this raised the 

question of what happens when a function has only one BB. 

To answer this question, we used the LLVM Infrastructure to create an LLVM Pass that 

is going to be used by the Clang compiler (point 2.3).  During the compilation of our 

target program, Clang will call our pass each time it encounters a function. The job of 

our LLVM Pass is to count the BBs that are created by the compiler within the function 

and give them to us as output together with the function’s name. 

4.2 Function Randomization 

Using SQLite3 we insert the final output of our pass in a temporary database in order 

to make them more manageable. SQLite3 gives us the option using a simple query to 



 

17 | P a g e  

 

search in our result for the functions that have only one BB. Now that we have 

identified which functions we need to focus on, we will use the command objdump. 

Objdump is a command line program that can be used as a disassembler on an 

executable and gives the user the ability to look at it in assembly form. This kind of 

view can be very useful because it shows various information about the content of an 

object that you can’t find in the actual code. In our case, we will use it to observe 

addresses of our specific functions in the memory to find out what happens after each 

randomization. 

After a couple of tests, we notice that the address of each function changes every time 

we run a new randomization. This means that CCR not only moves the BBs within the 

function but also moves the entire function within the executable’s memory making 

it even harder for someone that searches for gadgets. 

4.3 Virtual Functions and Virtual Table 

The next important part of the process are virtual functions. In languages were object-

oriented programming can be achieved (e.g. C++), the virtual functions or virtual 

methods are mainly used to achieve runtime polymorphism. Polymorphism is when 

an object or function is declared only once but has many different versions that are 

used for different purposes. For example, a “shape” can either be a triangle, a square 

or a circle. 

A virtual function is declared in the basic class of a program. Each derived class can 

then redefine this function and have its own version that works accordingly with the 

needs of the class. When a reference is used to an object of that derived class from 

the basic class then the virtual method makes sure that it invokes the version that is 

associated with that object’s class. 

 



 

18 | P a g e  

 

 
Example 5: Virtual Functions 

In Example 5 we see that the BaseClass declares and defines a virtual function. The 

classes InheritedClassA and InheritedClassB read the virtual function from the 

BaseClass and they redefine it. When an object from each class calls on that function 

then only the appropriate version of that function is called. 

In order to make sure that the right version of the virtual method is called, most 

compilers use a virtual table. Each time a virtual method is defined the compiler adds 

a hidden variable to it that points to a table of pointers for each individual virtual 

function. The reason behind this is that at compilation it is not clear if the function 

from the base class is called or if it is one of the implementations in the derived classes. 

This can only be known at run time and the virtual table helps in dynamically making 

the calls to the right function. These tables can be very common in languages such as 

C++. 

Class Vtable 

BaseClass 

0xfff0001 virtual f1(); 

0xfff0002 virtual f2(); 

 

Base vTable 

f1() 0xfff0001 

f2() 0xfff0002 
 

DerivedClassA 

0xfff00a1 virtual f1(); 
 

DerivedA vTable 

f1() 0xfff00a1 

f2() 0xfff0002 

 

DerivedClassB 

0xfff00b1 virtual f2(); 

 

DerivedB vTable 

f1() 0xfff0001 

f2() 0xfff00b2 

 
Example 6: Virtual Tables 

In example 6 we see 3 classes with their own virtual tables. The vTables save the 

address of the correct version of each function for each class. In case of DerivedClassA 



 

19 | P a g e  

 

when it needs to call the function f1() it will then execute its own version. But if it 

needs to call the function f2() then the version from BaseClass will be executed. The 

same logic applies to DerivedClassB. 

For the sake of our experiment we must also test how the CCR handles the virtual 

functions within a C++ program. And after a couple of tries we found that they are 

handled exactly the same as any other regular function. Even if they have 1 or more 

BBs the CCR changes their position during the randomization. 

We should note, however, that the virtual tables can’t be examined with the use of 

the objdump as we did with the functions. To check how the CCR behaves with the 

virtual table we must use the GNU Debugger (GDB). 

GDB’s purpose is to give to the user the ability to monitor a line by line execution of 

the wanted program. Among other services the GDB offers, the user can also examine 

and alter the values of the internal variables of the program as well as change its 

execution. For example, change call functions that are not in the program’s normal 

execution sequence. The GDB help a lot when it comes to solving questions about the 

output of a program or finding hidden mistakes made by developers. It can be used 

for debugging many programming languages like C or C++ and runs on many Unix-like 

systems. 

By using GDB for our experiment we were able to look on how the virtual table was 

handled by CCR. From our research we found that the vtable remains untouched by 

the randomization of CCR. This means that it can always be found at the same address 

in memory and the virtual functions addresses that it has always appear in the same 

order. This creates a vulnerability to CCR’s randomization because if someone knows 

where he can find all the addresses for the program’s gadgets then he can use them 

for his own gain.     



 

20 | P a g e  

 

Chapter 5 
 

Implementation 
 
5.1 LLVM Pass ………………………………………………………………………………………….. 21 
 
5.2 Bash Script …………………………………………………………………………………………. 21 
 

 



 

21 | P a g e  

 

5.1 LLVM Pass 

The first step for the implementation of our proof of the above conclusion is the 
creation of the LLVM pass that returns the Basic Block count of each function of our 
programme. The LLVM pass is created in the LLVM source folder under the path 
“../llvm/lib/Transforms”. There we create the folder that will host our pass. Inside the 
folder we create 3 files. A “Pass.cpp” file that our pass will be written and 2 files that 
are necessary for our pass to run. A “Pass.export” file that is always empty and a 
“CMakeList.txt” file that has a standard code for all the passes. The only difference in 
our CMakeList is that it needs the names of our “export” and “cpp” files. Its main use 
is to enable LLVM when it’ s built to create a vector to our pass. 

Inside the “Pass.cpp” file we create a function that is called every time our pass 
encounters a new function in the target programme during its execution. The function 
consists of a counter, 2 error messages that show the output to the terminal and a 
loop that increases the counter. The first message gives the name of the function we 
are working on. Then the loop starts from the 1st basic block of the function and ends 
at its last basic block and along the way it increases the counter. Lastly the second 
message gives the final value of the counter. 

 

Figure 1: LLVM Pass function 

 

5.2 Bash Script 

The script starts taking into consideration the fact that Unix systems have a path that 
includes the addresses of all the libraries needed for the execution of basic functions. 
The command “export PATH” is used to export the path and update the already 
existing path with the path of the libraries of LLVM. These are the libraries that are 
going to be used to execute the pass that was initially created. Then, the name of the 
file needed to run the pass is requested. It is hypothesized that given file name is 
written in C++, hence the extension .cpp is planted in the code. At this point, using the 
compiler “clang++” the given program is compiled and a .bc file is created which is an 
LLVM bitcode file format. Following this, the command “opt-load” runs the already 
created pass from the LLVM using as input the output file that was created in the 
previous step and saves the results in a .txt file. It is important to store our data in a 
compact way, that is why a command from SQLlite3 is used to read the .txt file and 



 

22 | P a g e  

 

use the data to create a table. The table has one column for the names of the functions 
and another for the basic blocks. 

 

Figure 2: Bash Script Code – SQLite3 call instruction 

Moreover, a viable keyword is created (“keyword =_shuffled”) to be used in the 
renaming process of the output files and a counter is set to keep track of the desired 
number of attempts. Following the instructions provided in Github [18] for CCR, a 
command is run within the docker (“sudo docker run”) that will in turn execute the 
CCR. It should be noted that within this command a path to a shared folder is included 
to allow our PC to communicate with the docker but also to provide CCR a path to 
store its results. This way, our command compiles the given program from the 
beginning along with the CCR and saves the executable within the “save” folder. 

 

Figure 3: Bash Script Code – Compile with CCR and randomizer loop  

However, the output obtained by the randomizer needs a place to store the name 
needed for the renaming process. That is why 2 variables are created to store the 
name and the renaming process can finally be executed, thus being able to move to 
the next step of creating a second counter. This counter will be used to track the 
number of the function that is being checked now and another variable is created to 
store the sum of the functions of the program. This number will later be used by 
executing an SQLite3 command that sends an SQL script to retrieve the specific 
number we need. Following this, the command “echo” is used to notify the user of the 
number of the current attempt in the program and then starts a second while-loop 
that will run for each function within the program. 



 

23 | P a g e  

 

 

Figure 4: Bash Script Code – Find specific functions with 1 BB 

The desired functions within the loop are those that have only one basic block and the 
command “objdump” searches the function within the randomized executable in 
order to return its address. Using the GDB, which is the C++ debugger a randomized 
executable is run that finds the addresses of the tables of the programme with the 
purpose to examine them after the execution of the script to prove that there is no 
change. At this point, the loop ends. Finally, the process used in the second while-loop 
is repeated with the exception that the CCR executable is used. This executable, which 
is not randomized, is responsible for getting the addresses of the functions of the 
original file with the higher purpose of comparing them with those of the functions 
from the previous randomized executables. 

 

Figure 5: Bash Script Code – Find Vtables addresses 

 

  



 

24 | P a g e  

 

 

Chapter 6 
 

Evaluation 
 
Initially, the script starts with requesting the name of the file. When you provide the 
name, it returns a table that includes the functions’ names and the basic block counts. 
In the example below, each function has one basic block due to the fact that there is 
no code input inside. Furthermore, the functions that have one basic block each are 
presented in detail along with the address in hexadecimal format. The name of the 
function is also presented next to this output. In sum, this process is repeated 10 times 
and depending on the requested shuffles the address change is visible to the user. 
Finally, after the 10th shuffle the addresses from the original file that was not 
subjected to CCR’s randomization are presented. 

 

Figure 6: Program’s functions and their addresses 



 

25 | P a g e  

 

Under the information section of each function there is a virtual table (vtable) that 
presents the 3 vtables of the code, as well as its addresses. Below you can find the 
detailed output one of the three vtables that presents the addresses of the virtual 
functions that are included in the table. It should be noted that across all 10 shuffles 
all vtable addresses never change, hence we have a vulnerability in the system. 

 

Figure 7: Program’s Vtables and their addresses 

 
  



 

26 | P a g e  

 

Chapter 7 

Related Work 
 

Following examples from other researchers we used disassembly to retrieve the 
addresses for the functions from the expendables. However, as it is argued that static 
disassembly is an “unsolved problem” [2] that is often misrepresented to seem overly 
pessimistic. In a study that evaluated nine “state-of-the-art” disassemblers on 981 
real-world compiler-generated binaries the authors presented the issue of mismatch 
between literature and expectations [2]. Meaning that one should proceed with 
caution when evaluating vulnerabilities in the retrieval of addresses, just as it was 
done in this paper. 

Additionally, it was aimed to identify the functions with one BB using the LLVM pass. 
From a reverse-engineering point of view, function identification is a common but 
rather important challenge in this process [6]. Research suggests that the initial 
assumption that functions can be identified by many binary programs can be 
misleading [6]. In line with previous research, in this paper function identification was 
challenging, however not as challenging as it would be if stripped binaries were used 
[6]. 

Binary code analysis is commonly adopted to support the process of information 
gathering about a program’s content and the way it is structured [15]. So, it can be 
described as an important pillar of many applications and underlies tools such as 
debugging [15]. Moreover, binary code analysis can be a complex process underlying 
the code randomization functions [6, 2] and the universality of this process as well as 
its accuracy are often doubted in research [15, 5, 8]. As researchers suggest, the type 
of information extracted by binary code analysis (e.g. BBs, functions, modules) are of 
vital importance in vulnerability testing and the quality and availability of the 
information may affect the outcome of our purpose [15]. 

In the mid-2000s, the popularity of the usage of buffer overflow attacks was peaking 
[4]. However, among the most commonly observed security vulnerabilities were 
unfortunate side effects of memory errors such as heap and integer overflows [4]. 
Moreover, even though there is a variety of defence mechanisms offered by the 
literature to deal with the above, they often come with shortcomings (e.g. high 
overheads) [4]. Just as Bhatkar S. [4] suggests, using code randomizations techniques 
such as the one his team of researchers tested (Address Space Randomization - ASR) 
can be employed to defend against these types of attacks. It should be noted though 
that such techniques are susceptible to information leakage and brute-force attacks. 

Recent researches took interest in the implementations during load-time and compile-
time [4, 1, 17] approaches. However, static binary rewriting of stripped binaries can 
be an option despite the challenges posed by its accuracy and universality by using 
methods such as dynamic binary instrumentation [16, 12, 21]. 



 

27 | P a g e  

 

As described in this paper, a common way to deal with code reuse attacks is to 
“disguise” the content of fractions of the code using randomization. However, this still 
allows an attacker to scan a process and potentially read executable memory [3]. As a 
result, an attacker can assemble exploits on the desired target. To combat such issues, 
a security measure discussed in the literature is “Execute-no-Read (XnR) [3] which 
allows the execution of code but does not allow the code to be read as data [3]. This 
suggestion “damages” the self-disassembly that is crucial in the use of attacks like JIT-
ROP [3]. It should be noted, however, that sometimes hardware support is a serious 
issue in the use of such defences [3]. 

It is suggested that the shift of focus on code diversification was the reason behind 
the interest in the use of ROP attacks [18] that eventually created the need of use of 
execute-only memory protections [3, 7]. The fine-grained randomization technique 
used in this thesis is presented as a necessity of the code diversification and execute-
only approaches [18] and as it is suggested by the research on the topic, code pointers 
can still be retrieved from other data sections and be used to pinpoint the desired 
addresses [9, 13, 22].  

However, recent practical techniques such as “Readactor” [10] are presented as 
resilient to both dynamic and static ROP attacks by giving attention to the direct and 
indirect memory disclosures that the attacker might use to put pointers on data pages 
or directly read code pages respectively [10]. 

Overall, there is a great deal of literature around known vulnerabilities in code 
randomization techniques, code reuse attacks and binary analysis and this paper 
aimed to draw from already existing work and evaluate already-tested hypotheses. 

 
   



 

28 | P a g e  

 

Chapter 8 
 

Conclusion 
 

The initial goal was to assess the reliability of CCR on defending against Control-flow 

attacks. Using an LLVM pass it was aimed to find the functions that have only one basic 

block in order to prove that CCR’s randomization method can discourage any attacker 

from attempting to reusing those functions as gadgets. In line with previous research 

it was found that vtables remain fixed in their respective addresses. Meaning that 

despite the popularity of code randomization technique used in this thesis, the danger 

of overwriting the addresses inside the vtables still remains.   



 

29 | P a g e  

 

Bibliography 

 

1. Anand, Kapil, Matthew Smithson, Khaled Elwazeer, Aparna Kotha, Jim Gruen, 
Nathan Giles, and Rajeev Barua. "A compiler-level intermediate representation 
based binary analysis and rewriting system." In Proceedings of the 8th ACM 
European Conference on Computer Systems, pp. 295-308. 2013. 
 

2. Andriesse, Dennis, Xi Chen, Victor Van Der Veen, Asia Slowinska, and Herbert 
Bos. "An in-depth analysis of disassembly on full-scale x86/x64 binaries." In 
25th {USENIX} Security Symposium ({USENIX} Security 16), pp. 583-600. 2016. 

 
3. Backes, Michael, Thorsten Holz, Benjamin Kollenda, Philipp Koppe, Stefan 

Nürnberger, and Jannik Pewny. "You can run but you can't read: Preventing 
disclosure exploits in executable code." In Proceedings of the 2014 ACM 
SIGSAC Conference on Computer and Communications Security, pp. 1342-
1353. 2014. 

 
4. Bhatkar, Sandeep, Daniel C. DuVarney, and R. Sekar. "Efficient Techniques for 

Comprehensive Protection from Memory Error Exploits." In USENIX Security 
Symposium, pp. 17-17. 2005. 

 
5. Balakrishnan, Gogul, Thomas Reps, David Melski, and Tim Teitelbaum. 

"Wysinwyx: What you see is not what you execute." In Working Conference on 
Verified Software: Theories, Tools, and Experiments, pp. 202-213. Springer, 
Berlin, Heidelberg, 2005. 

 
6. Bao, Tiffany, Jonathan Burket, Maverick Woo, Rafael Turner, and David 

Brumley. "{BYTEWEIGHT}: Learning to Recognize Functions in Binary Code." In 
23rd {USENIX} Security Symposium ({USENIX} Security 14), pp. 845-860. 2014. 

 
7. Chen, Yaohui, Dongli Zhang, Ruowen Wang, Rui Qiao, Ahmed M. Azab, Long 

Lu, Hayawardh Vijayakumar, and Wenbo Shen. "NORAX: Enabling execute-only 
memory for COTS binaries on AArch64." In 2017 IEEE Symposium on Security 
and Privacy (SP), pp. 304-319. IEEE, 2017. 

 
8. Cifuentes, Cristina, and Mike Van Emmerik. "Recovery of jump table case 

statements from binary code." Science of Computer Programming 40, no. 2-3 
(2001): 171-188. 

 
9. Conti, Mauro, Stephen Crane, Lucas Davi, Michael Franz, Per Larsen, Marco 

Negro, Christopher Liebchen, Mohaned Qunaibit, and Ahmad-Reza Sadeghi. 
"Losing control: On the effectiveness of control-flow integrity under stack 
attacks." In Proceedings of the 22nd ACM SIGSAC Conference on Computer 
and Communications Security, pp. 952-963. 2015. 

 



 

30 | P a g e  

 

10. Crane, Stephen, Christopher Liebchen, Andrei Homescu, Lucas Davi, Per 
Larsen, Ahmad-Reza Sadeghi, Stefan Brunthaler, and Michael Franz.  
 

11. "Readactor: Practical code randomization resilient to memory disclosure." In 
2015 IEEE Symposium on Security and Privacy, pp. 763-780. IEEE, 2015. 

 
12. Crane, Stephen, Andrei Homescu, and Per Larsen. "Code randomization: 

Haven’t we solved this problem yet?". In 2016 IEEE Cybersecurity 
Development (SecDev), pp. 124-129. IEEE, 2016. 

 
13. Davi, Lucas Vincenzo, Alexandra Dmitrienko, Stefan Nürnberger, and Ahmad-

Reza Sadeghi. "Gadge me if you can: secure and efficient ad-hoc instruction-
level randomization for x86 and ARM." In Proceedings of the 8th ACM SIGSAC 
symposium on Information, computer and communications security, pp. 299-
310. 2013. 

 
14. Davi, Lucas, Christopher Liebchen, Ahmad-Reza Sadeghi, Kevin Z. Snow, and 

Fabian Monrose. "Isomeron: Code randomization resilient to (just-in-time) 
return-oriented programming." In NDSS. 2015. 

 
15. Driesen, Karel, and Urs Hölzle. "The direct cost of virtual function calls in C++." 

In Proceedings of the 11th ACM SIGPLAN conference on Object-oriented 
programming, systems, languages, and applications, pp. 306-323. 1996. 

 
16. Harris, Laune C., and Barton P. Miller. "Practical analysis of stripped binary 

code." ACM SIGARCH Computer Architecture News 33, no. 5 (2005): 63-68. 
 

17. Hiser, Jason, Anh Nguyen-Tuong, Michele Co, Matthew Hall, and Jack W. 
Davidson. "ILR: Where'd my gadgets go?". In 2012 IEEE Symposium on Security 
and Privacy, pp. 571-585. IEEE, 2012. 

 
18. Homescu, Andrei, Steven Neisius, Per Larsen, Stefan Brunthaler, and Michael 

Franz. "Profile-guided automated software diversity." In Proceedings of the 
2013 IEEE/ACM International Symposium on Code Generation and 
Optimization (CGO), pp. 1-11. IEEE, 2013. 

 
19. Koo, Hyungjoon, Yaohui Chen, Long Lu, Vasileios P. Kemerlis, and Michalis 

Polychronakis. "Compiler-assisted code randomization." In 2018 IEEE 
Symposium on Security and Privacy (SP), pp. 461-477. IEEE, 2018. 

 
20. Pappas, Vasilis, Michalis Polychronakis, and Angelos D. Keromytis. "Dynamic 

reconstruction of relocation information for stripped binaries." In 
International Workshop on Recent Advances in Intrusion Detection, pp. 68-87. 
Springer, Cham, 2014. 

 
21. Shastry, Bhargava, Fabian Yamaguchi, Konrad Rieck, and Jean-Pierre Seifert. 

"Towards vulnerability discovery using staged program analysis." In 



 

31 | P a g e  

 

International Conference on Detection of Intrusions and Malware, and 
Vulnerability Assessment, pp. 78-97. Springer, Cham, 2016. 

 
22. Shioji, Eitaro, Yuhei Kawakoya, Makoto Iwamura, and Takeo Hariu. "Code 

shredding: byte-granular randomization of program layout for detecting code-
reuse attacks." In Proceedings of the 28th annual computer security 
applications conference, pp. 309-318. 2012. 

 
23. Schuster, Felix, Thomas Tendyck, Christopher Liebchen, Lucas Davi, Ahmad-

Reza Sadeghi, and Thorsten Holz. "Counterfeit object-oriented programming: 
On the difficulty of preventing code reuse attacks in C++ applications." In 2015 
IEEE Symposium on Security and Privacy, pp. 745-762. IEEE, 2015. 

 
24. Driesen, Karel, and Urs Hölzle. "The direct cost of virtual function calls in C++." 

In Proceedings of the 11th ACM SIGPLAN conference on Object-oriented 
programming, systems, languages, and applications, pp. 306-323. 1996. 

 
25. Xu, Jun, Pinyao Guo, Mingyi Zhao, Robert F. Erbacher, Minghui Zhu, and Peng 

Liu. "Comparing different moving target defense techniques." In Proceedings 
of the First ACM Workshop on Moving Target Defense, pp. 97-107. 2014. 

 
26. Bounov, Dimitar, Rami Gökhan Kici, and Sorin Lerner. "Protecting C++ Dynamic 

Dispatch Through VTable Interleaving." In NDSS. 2016. 
 

27. Cipresso, Teodoro, and Mark Stamp. "Software reverse engineering." In 
Handbook of Information and Communication Security, pp. 659-696. 
Springer, Berlin, Heidelberg, 2010. 

  



 

32 | P a g e  

 

Appendices 
1. Myscript 

 
#!/bin/bash 
 
clear 
export PATH=$PATH:/home/anronis/Diplom/build/bin 
echo "HELLO!!!" 
read -p "Please Enter name of doc: " name 
clang++ -S -emit-llvm labrats/$name.cpp -c -o labrats/$name.bc 
opt -load /home/anronis/Diplom/build/lib/BBCount.so -BBCount < 
labrats/$name.bc > /dev/null > out 2> labrats/$name.txt 
sqlite3 labrats/$name.db <<EOF 
create table BBCount(funcName TEXT, count INT); 
.separator " " 
.import labrats/$name.txt BBCount 
.header on 
.mode column BBCount 
select * from BBCount; 
.exit 
EOF 
echo "-------------------------------------------------" 
keyword=_shuffled 
counter=1 
sudo docker run  -v /home/anronis/Diplom/:/CCR/shareFolder --rm -it 
kevinkoo001/ccr:0.8 /bin/bash -c "ccr++ -o ./shareFolder/labrats/$name 
./shareFolder/labrats/$name.cpp" > out 
while [ $counter -le 10 ] 
do 
sudo docker run  -v /home/anronis/Diplom/:/CCR/shareFolder --rm -it 
kevinkoo001/ccr:0.8 /bin/bash -c "python ./randomizer/prander.py -s -b 
./shareFolder/labrats/$name" > out 
target1=$name$keyword 
target2=$target1$counter 
mv labrats/$target1 labrats/$target2 
counter2=1 
ftotal=$(sqlite3 labrats/$name.db "select COUNT(0) from BBCount where 
count=1;"); 
echo "Shuffle " $counter ":" 
 while [ $counter2 -le $ftotal ] 
 do 
 fname=$(sqlite3 labrats/$name.db "select funcName from (select 
(select COUNT(0) from BBCount t1 where t1.count=1 and t1.funcName <= 
t2.funcName) as RowNumber,funcName from BBCount t2 where 
t2.count=1 ORDER BY funcName) where RowNumber=$counter2;"); 
 objdump -d labrats/$name$keyword$counter | grep '<'$fname'>:' 



 

33 | P a g e  

 

 ((counter2++)) 
 done 
echo "-------------------VTables-----------------------" 
gdb ./labrats/$name$keyword$counter -ex 'info variable vtable' -ex 'x/10a 
0x0000000000401098' -ex 'q' 
echo "-------------------------------------------------" 
((counter++)) 
done 
 
counter2=1 
ftotal=$(sqlite3 labrats/$name.db "select COUNT(0) from BBCount where 
count=1;"); 
echo "Original:" 
while [ $counter2 -le $ftotal ] 
do 
fname=$(sqlite3 labrats/$name.db "select funcName from (select (select 
COUNT(0) from BBCount t1 where t1.count=1 and t1.funcName <= 
t2.funcName) as RowNumber,funcName from BBCount t2 where 
t2.count=1 ORDER BY funcName) where RowNumber=$counter2;"); 
objdump -d labrats/$name | grep '<'$fname'>:' 
((counter2++)) 
done 
  
sleep 2 
 

  



 

34 | P a g e  

 

2. OutputFile 
 
funcName               count      
---------------------  ---------- 
__cxx_global_var_init  1          
main                   1          
_ZN4BombC2Ev           1          
_ZN3GunC2Ev            1          
_ZN6Loader12loadFeatu  1          
_ZN6Loader13loadFeatu  1          
_ZN6Loader13loadFeatu  1          
_ZN6Loader13loadFeatu  1          
_ZN6WeaponC2Ev         1          
_ZN4Bomb8featuresEv    1          
_ZN4Bomb2f1Ev          1          
_ZN4Bomb2f2Ev          1          
_ZN4Bomb2f3Ev          1          
_ZN4Bomb2f4Ev          1          
_ZN6Weapon2f5Ev        1          
_ZN6Weapon8featuresEv  1          
_ZN6Weapon2f1Ev        1          
_ZN6Weapon2f2Ev        1          
_ZN6Weapon2f3Ev        1          
_ZN6Weapon2f4Ev        1          
_ZN3Gun8featuresEv     1          
_ZN3Gun2f1Ev           1          
_ZN3Gun2f2Ev           1          
_ZN3Gun2f3Ev           1          
_ZN3Gun2f4Ev           1          
_GLOBAL__sub_I_testV.  1          
------------------------------------------------- 
Shuffle  1 : 
0000000000400800 <_GLOBAL__sub_I_testV.cpp>: 
0000000000400910 <_ZN3Gun2f1Ev>: 
0000000000400990 <_ZN3Gun2f2Ev>: 
0000000000400b90 <_ZN3Gun2f3Ev>: 
0000000000400b50 <_ZN3Gun2f4Ev>: 
0000000000400e40 <_ZN3Gun8featuresEv>: 
00000000004009d0 <_ZN3GunC2Ev>: 
0000000000400d50 <_ZN4Bomb2f1Ev>: 
0000000000400f50 <_ZN4Bomb2f2Ev>: 
0000000000400a10 <_ZN4Bomb2f3Ev>: 
0000000000400a90 <_ZN4Bomb2f4Ev>: 
0000000000400a50 <_ZN4Bomb8featuresEv>: 
0000000000400e00 <_ZN4BombC2Ev>: 
0000000000400d90 <_ZN6Loader12loadFeaturesEP6Weapon>: 
0000000000400eb0 <_ZN6Loader13loadFeatures1EP6Weapon>: 



 

35 | P a g e  

 

0000000000400e80 <_ZN6Loader13loadFeatures2EP6Weapon>: 
0000000000400ee0 <_ZN6Loader13loadFeatures3EP6Weapon>: 
0000000000400dc0 <_ZN6Weapon2f1Ev>: 
0000000000400bd0 <_ZN6Weapon2f2Ev>: 
0000000000400ad0 <_ZN6Weapon2f3Ev>: 
0000000000400950 <_ZN6Weapon2f4Ev>: 
0000000000400b10 <_ZN6Weapon2f5Ev>: 
0000000000400f10 <_ZN6Weapon8featuresEv>: 
0000000000400c10 <_ZN6WeaponC2Ev>: 
00000000004007b0 <__cxx_global_var_init>: 
0000000000400c30 <main>: 
-------------------VTables----------------------- 
0x0000000000401018  vtable for Bomb 
0x0000000000401098  vtable for Weapon 
0x0000000000401270  vtable for Gun 
 
0x401098 <_ZTV6Weapon>: 0x0 0x401068 <_ZTI6Weapon> 
0x4010a8 <_ZTV6Weapon+16>: 0x400f10 <_ZN6Weapon8featuresEv>
 0x400dc0 <_ZN6Weapon2f1Ev> 
0x4010b8 <_ZTV6Weapon+32>: 0x400bd0 <_ZN6Weapon2f2Ev>
 0x400ad0 <_ZN6Weapon2f3Ev> 
0x4010c8 <_ZTV6Weapon+48>: 0x400950 <_ZN6Weapon2f4Ev>
 0x400b10 <_ZN6Weapon2f5Ev> 
0x4010d8: 0x20676e6964616f4c 0x66206e6f70616577 
------------------------------------------------- 
Shuffle  2 : 
0000000000400800 <_GLOBAL__sub_I_testV.cpp>: 
0000000000400f50 <_ZN3Gun2f1Ev>: 
0000000000400950 <_ZN3Gun2f2Ev>: 
0000000000400c30 <_ZN3Gun2f3Ev>: 
0000000000400910 <_ZN3Gun2f4Ev>: 
0000000000400bf0 <_ZN3Gun8featuresEv>: 
0000000000400ea0 <_ZN3GunC2Ev>: 
0000000000400d30 <_ZN4Bomb2f1Ev>: 
0000000000400cf0 <_ZN4Bomb2f2Ev>: 
0000000000400e60 <_ZN4Bomb2f3Ev>: 
0000000000400d70 <_ZN4Bomb2f4Ev>: 
0000000000400c70 <_ZN4Bomb8featuresEv>: 
0000000000400f10 <_ZN4BombC2Ev>: 
0000000000400aa0 <_ZN6Loader12loadFeaturesEP6Weapon>: 
0000000000400e30 <_ZN6Loader13loadFeatures1EP6Weapon>: 
0000000000400a10 <_ZN6Loader13loadFeatures2EP6Weapon>: 
0000000000400ee0 <_ZN6Loader13loadFeatures3EP6Weapon>: 
0000000000400db0 <_ZN6Weapon2f1Ev>: 
0000000000400df0 <_ZN6Weapon2f2Ev>: 
0000000000400a40 <_ZN6Weapon2f3Ev>: 
00000000004009d0 <_ZN6Weapon2f4Ev>: 



 

36 | P a g e  

 

0000000000400990 <_ZN6Weapon2f5Ev>: 
0000000000400cb0 <_ZN6Weapon8featuresEv>: 
0000000000400a80 <_ZN6WeaponC2Ev>: 
00000000004007b0 <__cxx_global_var_init>: 
0000000000400ad0 <main>: 
-------------------VTables----------------------- 
0x0000000000401018  vtable for Bomb 
0x0000000000401098  vtable for Weapon 
0x0000000000401270  vtable for Gun 
 
0x401098 <_ZTV6Weapon>: 0x0 0x401068 <_ZTI6Weapon> 
0x4010a8 <_ZTV6Weapon+16>: 0x400cb0 <_ZN6Weapon8featuresEv>
 0x400db0 <_ZN6Weapon2f1Ev> 
0x4010b8 <_ZTV6Weapon+32>: 0x400df0 <_ZN6Weapon2f2Ev>
 0x400a40 <_ZN6Weapon2f3Ev> 
0x4010c8 <_ZTV6Weapon+48>: 0x4009d0 <_ZN6Weapon2f4Ev>
 0x400990 <_ZN6Weapon2f5Ev> 
0x4010d8: 0x20676e6964616f4c 0x66206e6f70616577 
------------------------------------------------- 
Shuffle  3 : 
0000000000400800 <_GLOBAL__sub_I_testV.cpp>: 
0000000000400990 <_ZN3Gun2f1Ev>: 
0000000000400d00 <_ZN3Gun2f2Ev>: 
0000000000400ee0 <_ZN3Gun2f3Ev>: 
0000000000400c50 <_ZN3Gun2f4Ev>: 
0000000000400a50 <_ZN3Gun8featuresEv>: 
0000000000400f20 <_ZN3GunC2Ev>: 
0000000000400910 <_ZN4Bomb2f1Ev>: 
0000000000400c10 <_ZN4Bomb2f2Ev>: 
0000000000400ab0 <_ZN4Bomb2f3Ev>: 
00000000004009d0 <_ZN4Bomb2f4Ev>: 
0000000000400c90 <_ZN4Bomb8featuresEv>: 
0000000000400b30 <_ZN4BombC2Ev>: 
0000000000400cd0 <_ZN6Loader12loadFeaturesEP6Weapon>: 
0000000000400b70 <_ZN6Loader13loadFeatures1EP6Weapon>: 
0000000000400be0 <_ZN6Loader13loadFeatures2EP6Weapon>: 
0000000000400f60 <_ZN6Loader13loadFeatures3EP6Weapon>: 
0000000000400950 <_ZN6Weapon2f1Ev>: 
0000000000400ba0 <_ZN6Weapon2f2Ev>: 
0000000000400d40 <_ZN6Weapon2f3Ev>: 
0000000000400af0 <_ZN6Weapon2f4Ev>: 
0000000000400ea0 <_ZN6Weapon2f5Ev>: 
0000000000400a10 <_ZN6Weapon8featuresEv>: 
0000000000400a90 <_ZN6WeaponC2Ev>: 
00000000004007b0 <__cxx_global_var_init>: 
0000000000400d80 <main>: 
-------------------VTables----------------------- 



 

37 | P a g e  

 

0x0000000000401018  vtable for Bomb 
0x0000000000401098  vtable for Weapon 
0x0000000000401270  vtable for Gun 
 
0x401098 <_ZTV6Weapon>: 0x0 0x401068 <_ZTI6Weapon> 
0x4010a8 <_ZTV6Weapon+16>: 0x400a10 <_ZN6Weapon8featuresEv>
 0x400950 <_ZN6Weapon2f1Ev> 
0x4010b8 <_ZTV6Weapon+32>: 0x400ba0 <_ZN6Weapon2f2Ev>
 0x400d40 <_ZN6Weapon2f3Ev> 
0x4010c8 <_ZTV6Weapon+48>: 0x400af0 <_ZN6Weapon2f4Ev>
 0x400ea0 <_ZN6Weapon2f5Ev> 
0x4010d8: 0x20676e6964616f4c 0x66206e6f70616577 
------------------------------------------------- 
Shuffle  4 : 
0000000000400800 <_GLOBAL__sub_I_testV.cpp>: 
0000000000400b50 <_ZN3Gun2f1Ev>: 
0000000000400a60 <_ZN3Gun2f2Ev>: 
0000000000400e60 <_ZN3Gun2f3Ev>: 
0000000000400c10 <_ZN3Gun2f4Ev>: 
0000000000400ed0 <_ZN3Gun8featuresEv>: 
0000000000400db0 <_ZN3GunC2Ev>: 
0000000000400f50 <_ZN4Bomb2f1Ev>: 
0000000000400f10 <_ZN4Bomb2f2Ev>: 
0000000000400c50 <_ZN4Bomb2f3Ev>: 
0000000000400e20 <_ZN4Bomb2f4Ev>: 
0000000000400b10 <_ZN4Bomb8featuresEv>: 
0000000000400b90 <_ZN4BombC2Ev>: 
0000000000400ea0 <_ZN6Loader12loadFeaturesEP6Weapon>: 
0000000000400df0 <_ZN6Loader13loadFeatures1EP6Weapon>: 
0000000000400ae0 <_ZN6Loader13loadFeatures2EP6Weapon>: 
00000000004009b0 <_ZN6Loader13loadFeatures3EP6Weapon>: 
00000000004009e0 <_ZN6Weapon2f1Ev>: 
0000000000400970 <_ZN6Weapon2f2Ev>: 
0000000000400910 <_ZN6Weapon2f3Ev>: 
0000000000400aa0 <_ZN6Weapon2f4Ev>: 
0000000000400a20 <_ZN6Weapon2f5Ev>: 
0000000000400bd0 <_ZN6Weapon8featuresEv>: 
0000000000400950 <_ZN6WeaponC2Ev>: 
00000000004007b0 <__cxx_global_var_init>: 
0000000000400c90 <main>: 
-------------------VTables----------------------- 
0x0000000000401018  vtable for Bomb 
0x0000000000401098  vtable for Weapon 
0x0000000000401270  vtable for Gun 
 
0x401098 <_ZTV6Weapon>: 0x0 0x401068 <_ZTI6Weapon> 



 

38 | P a g e  

 

0x4010a8 <_ZTV6Weapon+16>: 0x400bd0 <_ZN6Weapon8featuresEv>
 0x4009e0 <_ZN6Weapon2f1Ev> 
0x4010b8 <_ZTV6Weapon+32>: 0x400970 <_ZN6Weapon2f2Ev>
 0x400910 <_ZN6Weapon2f3Ev> 
0x4010c8 <_ZTV6Weapon+48>: 0x400aa0 <_ZN6Weapon2f4Ev>
 0x400a20 <_ZN6Weapon2f5Ev> 
0x4010d8: 0x20676e6964616f4c 0x66206e6f70616577 
------------------------------------------------- 
Shuffle  5 : 
0000000000400800 <_GLOBAL__sub_I_testV.cpp>: 
0000000000400bf0 <_ZN3Gun2f1Ev>: 
0000000000400ce0 <_ZN3Gun2f2Ev>: 
0000000000400d20 <_ZN3Gun2f3Ev>: 
00000000004009c0 <_ZN3Gun2f4Ev>: 
0000000000400c30 <_ZN3Gun8featuresEv>: 
0000000000400a40 <_ZN3GunC2Ev>: 
0000000000400b70 <_ZN4Bomb2f1Ev>: 
0000000000400910 <_ZN4Bomb2f2Ev>: 
0000000000400af0 <_ZN4Bomb2f3Ev>: 
0000000000400f50 <_ZN4Bomb2f4Ev>: 
0000000000400d90 <_ZN4Bomb8featuresEv>: 
0000000000400b30 <_ZN4BombC2Ev>: 
0000000000400cb0 <_ZN6Loader12loadFeaturesEP6Weapon>: 
0000000000400ac0 <_ZN6Loader13loadFeatures1EP6Weapon>: 
0000000000400d60 <_ZN6Loader13loadFeatures2EP6Weapon>: 
0000000000400950 <_ZN6Loader13loadFeatures3EP6Weapon>: 
0000000000400f10 <_ZN6Weapon2f1Ev>: 
0000000000400980 <_ZN6Weapon2f2Ev>: 
0000000000400a00 <_ZN6Weapon2f3Ev>: 
0000000000400bb0 <_ZN6Weapon2f4Ev>: 
0000000000400a80 <_ZN6Weapon2f5Ev>: 
0000000000400c70 <_ZN6Weapon8featuresEv>: 
0000000000400ef0 <_ZN6WeaponC2Ev>: 
00000000004007b0 <__cxx_global_var_init>: 
0000000000400dd0 <main>: 
-------------------VTables----------------------- 
0x0000000000401018  vtable for Bomb 
0x0000000000401098  vtable for Weapon 
0x0000000000401270  vtable for Gun 
 
0x401098 <_ZTV6Weapon>: 0x0 0x401068 <_ZTI6Weapon> 
0x4010a8 <_ZTV6Weapon+16>: 0x400c70 <_ZN6Weapon8featuresEv>
 0x400f10 <_ZN6Weapon2f1Ev> 
0x4010b8 <_ZTV6Weapon+32>: 0x400980 <_ZN6Weapon2f2Ev>
 0x400a00 <_ZN6Weapon2f3Ev> 
0x4010c8 <_ZTV6Weapon+48>: 0x400bb0 <_ZN6Weapon2f4Ev>
 0x400a80 <_ZN6Weapon2f5Ev> 



 

39 | P a g e  

 

0x4010d8: 0x20676e6964616f4c 0x66206e6f70616577 
------------------------------------------------- 
Shuffle  6 : 
0000000000400800 <_GLOBAL__sub_I_testV.cpp>: 
0000000000400f10 <_ZN3Gun2f1Ev>: 
0000000000400910 <_ZN3Gun2f2Ev>: 
00000000004009d0 <_ZN3Gun2f3Ev>: 
0000000000400a90 <_ZN3Gun2f4Ev>: 
0000000000400a50 <_ZN3Gun8featuresEv>: 
0000000000400e20 <_ZN3GunC2Ev>: 
0000000000400e60 <_ZN4Bomb2f1Ev>: 
0000000000400d80 <_ZN4Bomb2f2Ev>: 
0000000000400950 <_ZN4Bomb2f3Ev>: 
0000000000400a10 <_ZN4Bomb2f4Ev>: 
0000000000400990 <_ZN4Bomb8featuresEv>: 
0000000000400d10 <_ZN4BombC2Ev>: 
0000000000400d50 <_ZN6Loader12loadFeaturesEP6Weapon>: 
0000000000400ce0 <_ZN6Loader13loadFeatures1EP6Weapon>: 
0000000000400ea0 <_ZN6Loader13loadFeatures2EP6Weapon>: 
0000000000400ad0 <_ZN6Loader13loadFeatures3EP6Weapon>: 
0000000000400ca0 <_ZN6Weapon2f1Ev>: 
0000000000400b00 <_ZN6Weapon2f2Ev>: 
0000000000400c60 <_ZN6Weapon2f3Ev>: 
0000000000400f50 <_ZN6Weapon2f4Ev>: 
0000000000400dc0 <_ZN6Weapon2f5Ev>: 
0000000000400ed0 <_ZN6Weapon8featuresEv>: 
0000000000400e00 <_ZN6WeaponC2Ev>: 
00000000004007b0 <__cxx_global_var_init>: 
0000000000400b40 <main>: 
-------------------VTables----------------------- 
0x0000000000401018  vtable for Bomb 
0x0000000000401098  vtable for Weapon 
0x0000000000401270  vtable for Gun 
 
0x401098 <_ZTV6Weapon>: 0x0 0x401068 <_ZTI6Weapon> 
0x4010a8 <_ZTV6Weapon+16>: 0x400ed0 <_ZN6Weapon8featuresEv>
 0x400ca0 <_ZN6Weapon2f1Ev> 
0x4010b8 <_ZTV6Weapon+32>: 0x400b00 <_ZN6Weapon2f2Ev>
 0x400c60 <_ZN6Weapon2f3Ev> 
0x4010c8 <_ZTV6Weapon+48>: 0x400f50 <_ZN6Weapon2f4Ev>
 0x400dc0 <_ZN6Weapon2f5Ev> 
0x4010d8: 0x20676e6964616f4c 0x66206e6f70616577 
------------------------------------------------- 
Shuffle  7 : 
0000000000400800 <_GLOBAL__sub_I_testV.cpp>: 
00000000004009d0 <_ZN3Gun2f1Ev>: 
0000000000400a90 <_ZN3Gun2f2Ev>: 



 

40 | P a g e  

 

0000000000400e40 <_ZN3Gun2f3Ev>: 
0000000000400ed0 <_ZN3Gun2f4Ev>: 
0000000000400d50 <_ZN3Gun8featuresEv>: 
0000000000400b00 <_ZN3GunC2Ev>: 
0000000000400950 <_ZN4Bomb2f1Ev>: 
0000000000400f10 <_ZN4Bomb2f2Ev>: 
0000000000400dc0 <_ZN4Bomb2f3Ev>: 
0000000000400a10 <_ZN4Bomb2f4Ev>: 
0000000000400d10 <_ZN4Bomb8featuresEv>: 
0000000000400cd0 <_ZN4BombC2Ev>: 
0000000000400e80 <_ZN6Loader12loadFeaturesEP6Weapon>: 
0000000000400d90 <_ZN6Loader13loadFeatures1EP6Weapon>: 
0000000000400ad0 <_ZN6Loader13loadFeatures2EP6Weapon>: 
0000000000400c60 <_ZN6Loader13loadFeatures3EP6Weapon>: 
0000000000400990 <_ZN6Weapon2f1Ev>: 
0000000000400a50 <_ZN6Weapon2f2Ev>: 
0000000000400910 <_ZN6Weapon2f3Ev>: 
0000000000400c90 <_ZN6Weapon2f4Ev>: 
0000000000400f50 <_ZN6Weapon2f5Ev>: 
0000000000400e00 <_ZN6Weapon8featuresEv>: 
0000000000400eb0 <_ZN6WeaponC2Ev>: 
00000000004007b0 <__cxx_global_var_init>: 
0000000000400b40 <main>: 
-------------------VTables----------------------- 
0x0000000000401018  vtable for Bomb 
0x0000000000401098  vtable for Weapon 
0x0000000000401270  vtable for Gun 
 
0x401098 <_ZTV6Weapon>: 0x0 0x401068 <_ZTI6Weapon> 
0x4010a8 <_ZTV6Weapon+16>: 0x400e00 <_ZN6Weapon8featuresEv>
 0x400990 <_ZN6Weapon2f1Ev> 
0x4010b8 <_ZTV6Weapon+32>: 0x400a50 <_ZN6Weapon2f2Ev>
 0x400910 <_ZN6Weapon2f3Ev> 
0x4010c8 <_ZTV6Weapon+48>: 0x400c90 <_ZN6Weapon2f4Ev>
 0x400f50 <_ZN6Weapon2f5Ev> 
0x4010d8: 0x20676e6964616f4c 0x66206e6f70616577 
------------------------------------------------- 
Shuffle  8 : 
0000000000400800 <_GLOBAL__sub_I_testV.cpp>: 
0000000000400c10 <_ZN3Gun2f1Ev>: 
0000000000400bd0 <_ZN3Gun2f2Ev>: 
0000000000400ed0 <_ZN3Gun2f3Ev>: 
0000000000400b90 <_ZN3Gun2f4Ev>: 
0000000000400a40 <_ZN3Gun8featuresEv>: 
0000000000400e10 <_ZN3GunC2Ev>: 
0000000000400da0 <_ZN4Bomb2f1Ev>: 
0000000000400a00 <_ZN4Bomb2f2Ev>: 



 

41 | P a g e  

 

0000000000400aa0 <_ZN4Bomb2f3Ev>: 
0000000000400f50 <_ZN4Bomb2f4Ev>: 
0000000000400e90 <_ZN4Bomb8featuresEv>: 
0000000000400980 <_ZN4BombC2Ev>: 
0000000000400910 <_ZN6Loader12loadFeaturesEP6Weapon>: 
0000000000400ae0 <_ZN6Loader13loadFeatures1EP6Weapon>: 
0000000000400c50 <_ZN6Loader13loadFeatures2EP6Weapon>: 
0000000000400de0 <_ZN6Loader13loadFeatures3EP6Weapon>: 
00000000004009c0 <_ZN6Weapon2f1Ev>: 
0000000000400b10 <_ZN6Weapon2f2Ev>: 
0000000000400940 <_ZN6Weapon2f3Ev>: 
0000000000400f10 <_ZN6Weapon2f4Ev>: 
0000000000400e50 <_ZN6Weapon2f5Ev>: 
0000000000400b50 <_ZN6Weapon8featuresEv>: 
0000000000400a80 <_ZN6WeaponC2Ev>: 
00000000004007b0 <__cxx_global_var_init>: 
0000000000400c80 <main>: 
-------------------VTables----------------------- 
 
0x0000000000401018  vtable for Bomb 
0x0000000000401098  vtable for Weapon 
0x0000000000401270  vtable for Gun 
 
0x401098 <_ZTV6Weapon>: 0x0 0x401068 <_ZTI6Weapon> 
0x4010a8 <_ZTV6Weapon+16>: 0x400b50 <_ZN6Weapon8featuresEv>
 0x4009c0 <_ZN6Weapon2f1Ev> 
0x4010b8 <_ZTV6Weapon+32>: 0x400b10 <_ZN6Weapon2f2Ev>
 0x400940 <_ZN6Weapon2f3Ev> 
0x4010c8 <_ZTV6Weapon+48>: 0x400f10 <_ZN6Weapon2f4Ev>
 0x400e50 <_ZN6Weapon2f5Ev> 
0x4010d8: 0x20676e6964616f4c 0x66206e6f70616577 
------------------------------------------------- 
Shuffle  9 : 
0000000000400800 <_GLOBAL__sub_I_testV.cpp>: 
0000000000400bd0 <_ZN3Gun2f1Ev>: 
0000000000400a50 <_ZN3Gun2f2Ev>: 
0000000000400ed0 <_ZN3Gun2f3Ev>: 
0000000000400cf0 <_ZN3Gun2f4Ev>: 
0000000000400910 <_ZN3Gun8featuresEv>: 
00000000004009a0 <_ZN3GunC2Ev>: 
0000000000400f50 <_ZN4Bomb2f1Ev>: 
0000000000400b50 <_ZN4Bomb2f2Ev>: 
0000000000400b90 <_ZN4Bomb2f3Ev>: 
0000000000400f10 <_ZN4Bomb2f4Ev>: 
0000000000400d70 <_ZN4Bomb8featuresEv>: 
0000000000400b10 <_ZN4BombC2Ev>: 
0000000000400c10 <_ZN6Loader12loadFeaturesEP6Weapon>: 



 

42 | P a g e  

 

0000000000400cc0 <_ZN6Loader13loadFeatures1EP6Weapon>: 
0000000000400a20 <_ZN6Loader13loadFeatures2EP6Weapon>: 
0000000000400950 <_ZN6Loader13loadFeatures3EP6Weapon>: 
0000000000400ad0 <_ZN6Weapon2f1Ev>: 
0000000000400d30 <_ZN6Weapon2f2Ev>: 
00000000004009e0 <_ZN6Weapon2f3Ev>: 
0000000000400a90 <_ZN6Weapon2f4Ev>: 
0000000000400c40 <_ZN6Weapon2f5Ev>: 
0000000000400c80 <_ZN6Weapon8featuresEv>: 
0000000000400980 <_ZN6WeaponC2Ev>: 
00000000004007b0 <__cxx_global_var_init>: 
0000000000400db0 <main>: 
-------------------VTables----------------------- 
0x0000000000401018  vtable for Bomb 
0x0000000000401098  vtable for Weapon 
0x0000000000401270  vtable for Gun 
 
0x401098 <_ZTV6Weapon>: 0x0 0x401068 <_ZTI6Weapon> 
0x4010a8 <_ZTV6Weapon+16>: 0x400c80 <_ZN6Weapon8featuresEv>
 0x400ad0 <_ZN6Weapon2f1Ev> 
0x4010b8 <_ZTV6Weapon+32>: 0x400d30 <_ZN6Weapon2f2Ev>
 0x4009e0 <_ZN6Weapon2f3Ev> 
0x4010c8 <_ZTV6Weapon+48>: 0x400a90 <_ZN6Weapon2f4Ev>
 0x400c40 <_ZN6Weapon2f5Ev> 
0x4010d8: 0x20676e6964616f4c 0x66206e6f70616577 
------------------------------------------------- 
Shuffle  10 : 
0000000000400800 <_GLOBAL__sub_I_testV.cpp>: 
0000000000400be0 <_ZN3Gun2f1Ev>: 
0000000000400de0 <_ZN3Gun2f2Ev>: 
00000000004009c0 <_ZN3Gun2f3Ev>: 
0000000000400910 <_ZN3Gun2f4Ev>: 
0000000000400c60 <_ZN3Gun8featuresEv>: 
0000000000400ca0 <_ZN3GunC2Ev>: 
0000000000400c20 <_ZN4Bomb2f1Ev>: 
0000000000400f10 <_ZN4Bomb2f2Ev>: 
0000000000400e20 <_ZN4Bomb2f3Ev>: 
0000000000400d10 <_ZN4Bomb2f4Ev>: 
0000000000400980 <_ZN4Bomb8featuresEv>: 
0000000000400ed0 <_ZN4BombC2Ev>: 
0000000000400ce0 <_ZN6Loader12loadFeaturesEP6Weapon>: 
0000000000400ea0 <_ZN6Loader13loadFeatures1EP6Weapon>: 
0000000000400950 <_ZN6Loader13loadFeatures2EP6Weapon>: 
0000000000400db0 <_ZN6Loader13loadFeatures3EP6Weapon>: 
0000000000400e60 <_ZN6Weapon2f1Ev>: 
0000000000400a40 <_ZN6Weapon2f2Ev>: 
0000000000400d70 <_ZN6Weapon2f3Ev>: 



 

43 | P a g e  

 

0000000000400ba0 <_ZN6Weapon2f4Ev>: 
0000000000400a00 <_ZN6Weapon2f5Ev>: 
0000000000400f50 <_ZN6Weapon8featuresEv>: 
0000000000400d50 <_ZN6WeaponC2Ev>: 
00000000004007b0 <__cxx_global_var_init>: 
0000000000400a80 <main>: 
-------------------VTables----------------------- 
0x0000000000401018  vtable for Bomb 
0x0000000000401098  vtable for Weapon 
0x0000000000401270  vtable for Gun 
 
0x401098 <_ZTV6Weapon>: 0x0 0x401068 <_ZTI6Weapon> 
0x4010a8 <_ZTV6Weapon+16>: 0x400f50 <_ZN6Weapon8featuresEv>
 0x400e60 <_ZN6Weapon2f1Ev> 
0x4010b8 <_ZTV6Weapon+32>: 0x400a40 <_ZN6Weapon2f2Ev>
 0x400d70 <_ZN6Weapon2f3Ev> 
0x4010c8 <_ZTV6Weapon+48>: 0x400ba0 <_ZN6Weapon2f4Ev>
 0x400a00 <_ZN6Weapon2f5Ev> 
0x4010d8: 0x20676e6964616f4c 0x66206e6f70616577 
------------------------------------------------- 
Original: 
0000000000400800 <_GLOBAL__sub_I_testV.cpp>: 
0000000000400e90 <_ZN3Gun2f1Ev>: 
0000000000400ed0 <_ZN3Gun2f2Ev>: 
0000000000400f10 <_ZN3Gun2f3Ev>: 
0000000000400f50 <_ZN3Gun2f4Ev>: 
0000000000400e50 <_ZN3Gun8featuresEv>: 
0000000000400a70 <_ZN3GunC2Ev>: 
0000000000400bd0 <_ZN4Bomb2f1Ev>: 
0000000000400c10 <_ZN4Bomb2f2Ev>: 
0000000000400c50 <_ZN4Bomb2f3Ev>: 
0000000000400c90 <_ZN4Bomb2f4Ev>: 
0000000000400b90 <_ZN4Bomb8featuresEv>: 
0000000000400a30 <_ZN4BombC2Ev>: 
0000000000400ab0 <_ZN6Loader12loadFeaturesEP6Weapon>: 
0000000000400ae0 <_ZN6Loader13loadFeatures1EP6Weapon>: 
0000000000400b10 <_ZN6Loader13loadFeatures2EP6Weapon>: 
0000000000400b40 <_ZN6Loader13loadFeatures3EP6Weapon>: 
0000000000400d50 <_ZN6Weapon2f1Ev>: 
0000000000400d90 <_ZN6Weapon2f2Ev>: 
0000000000400dd0 <_ZN6Weapon2f3Ev>: 
0000000000400e10 <_ZN6Weapon2f4Ev>: 
0000000000400cd0 <_ZN6Weapon2f5Ev>: 
0000000000400d10 <_ZN6Weapon8featuresEv>: 
0000000000400b70 <_ZN6WeaponC2Ev>: 
00000000004007b0 <__cxx_global_var_init>: 
0000000000400910 <main>: 



 

44 | P a g e  

 

 
 

 


