
Thesis Dissertation

AUTH.JS: ADVANCED AUTHENTICATION
FOR THE WEB

Neophytos Christou

UNIVERSITY OF CYPRUS

COMPUTER SCIENCE DEPARTMENT

May 2020

UNIVERSITY OF CYPRUS
COMPUTER SCIENCE DEPARTMENT

auth.js: Advanced Authentication
for the Web

Neophytos Christou

Supervisor

Dr. Elias Athanasopoulos

Thesis submitted in partial fulfilment of the requirements for the award of

degree of Bachelor in Computer Science at University of Cyprus

May 2020

Acknowledgments

I would like to express my gratitude to my diploma project supervisor, Dr. Elias Athana-

sopoulos, for his guidance and help for the completion of this diploma project. He offered

all the support necessary for my to successfully overcome any obstacles and complete this

research.

1

Summary

Several research works attempt to replace simple authentication schemes, where the cryp-

tographic digest of a plaintext password is stored at the server. Those proposals are based

on more elaborate schemes, such as PAKE-based protocols. However, in practice, only

a very limited amount of applications in the web use such schemes. The reason for this

limited deployment is perhaps their complexity as far as the cryptography involved is

concerned. Today, even the most successful web applications use text-based passwords,

which are simply hashed and stored at the server. This has broad implications for both the

service and the user. Essentially, the users are forced to reveal their plain passwords for

both registering and authenticating with a service.

In this thesis, we attempt to make it easier for any web service to a) enable easily

advanced authentication schemes, and b) switch from one scheme to another. More pre-

cisely, we design and realize auth.js, a framework that allows a web application to offer

advanced authentication that leverages sophisticated techniques compared to typical cryp-

tographically hashed text-based passwords. In fact, auth.js can be easily enabled in all

web applications and supports traditional passwords – however, once enabled, switching

to a more elaborate scheme is straight forward. auth.js leverages advanced crypto-

graphic primitives, which can be used for implementing strong authentication, such as

PAKE and similar solutions, by ensuring that all cryptographic primitives are trusted and

executed using the browser’s engine. For this, we extend Mozilla Crypto with more cryp-

tographic primitives, such as scrypt and the edwards25519 elliptic curve. Finally, we

evaluate auth.js with real web applications, such as WordPress.

2

Contents

1 Introduction 7
1.1 Overview . 7

1.2 Contributions . 8

2 Background 10
2.1 Overview . 10

2.2 Cryptographic hash functions . 10

2.3 The scrypt cryptographic hash function 11

2.4 Elliptic curve cryptography and the edwards25519 elliptic curve 12

2.5 Conventional password authentication 13

2.6 Public key authentication . 13

2.7 Keybase authentication . 13

3 Architecture 15
3.1 Overview . 15

3.2 auth.js API . 16

3.2.1 Usage . 16

3.2.2 Example . 17

4 Implementation 19
4.1 Overview . 19

4.2 Extending Mozilla’s Network Security Services 20

4.2.1 Adding the scrypt cryptographic hash function 20

4.2.2 Adding the Ed25519 EdDSA signature scheme 20

4.3 Extending Mozilla’s Web Crypto API 21

4.4 WordPress . 22

4.4.1 Using auth.js with the current WordPress authentication system 22

4.4.2 Using auth.js with the public key authentication scheme 23

3

5 Evaluation 28
5.1 Overview . 28

5.2 Setup . 28

5.3 Average time for posting credentials on the server and getting a reply . . . 28

5.4 Average time for key pair and signature generation 29

6 Related Work 31
6.1 Advanced authentication schemes . 31

6.2 Cryptographic primitives . 32

6.3 Cryptography frameworks . 32

7 Conclusion 33
7.1 Overview . 33

Appendix A auth.js implementation A-1

Appendix B Signature verification B-1

Appendix C Mozilla Firefox extension C-1

Appendix D Using the EdDSA signature scheme through the WebCrypto API D-1

4

List of Figures

3.1 Overview of the architecture of auth.js. 16

3.2 Web application html file. 18

3.3 Web application JavaScript file. 18

4.1 sha512.c in Mozilla’s NSS implementation 20

4.2 scrypt hash function called from Firefox using Mozilla’s Web Crypto API. 21

4.3 Using the login_enqueue_scripts hook to enqueue auth.js. 23

4.4 JavaScript code that uses auth.js API to generate the credential and

submit the reset password form . 24

4.5 Add a nonce as a cookie, as well as in the log in form as a hidden field . . 25

4.6 wp_authenticate_username_password, one of the default authentication

functions used in WordPress . 26

4.7 The authjs_authenticate function which is used in place of the de-

fault authentication function of WordPress 26

4.8 The check_public_key function that verifies the submitted signature us-

ing the user’s stored public key . 27

A.1 JavaScript implementation of the authenticate API call A-1

A.2 JavaScript implementation of the register API call A-2

B.1 Python script which checks the validity of the signature B-1

C.1 Adding new cryptographic primitives in the WebCrypto API C-1

C.2 Adding new cryptographic primitives in various files in the NSS library . C-2

D.1 Calling the ED25519SIGN and CURVE25519 digest functions in the auth.js

implementation . D-1

5

List of Tables

5.1 Average time for posting key pairs and signatures. 29

5.2 Average time for generating key pairs and signatures. 29

6

Chapter 1

Introduction

Contents
1.1 Overview . 7

1.2 Contributions . 8

1.1 Overview

Authentication is vital for the majority of on-line web applications. Through the process

of authentication, services can distinguish their users and offer dynamically generated and

personalised content. Unfortunately, the authentication process is often an attractive target

for attackers. The goal of attackers is to impersonate users by stealing their credentials

and therefore gain access to their data. Notice that, beyond accessing sensitive data, the

attacker can also generate information on behalf of the compromised user [20] [6].

Several attacks exist depending on the way authentication is implemented. In the case

of text-based passwords, it is common to salt, cryptographically hash, and store them

at the server. The mechanics of the password protection, which is based on storing the

password hashed at the server, coerces the user to reveal their plain password to the server

each time they log in, which is very likely to already be used in other services, as well. A

malicious server could then use the user’s plain password to try to take control of another

account of the same user in another service. This can be dramatically augmented due to

password reuse [14], where users recycle passwords among different services.

On the other hand, advances in cryptography have developed all necessary tools for

realizing protocols that do more than simply sending a string to be salted and hashed.

For instance, several protocols for Password Authentication Key Agreement (PAKE) [10]

permit a password to act as a seed for generating cryptographic keys. Regardless of

the actual implementation, such schemes allow users to send a secret to the server for

authenticating instead of the password in plain. The secret is cryptographically connected

7

with the password and, therefore, even non-trusted servers must perform cracking attacks

for revealing a user’s password.

Despite the availability of such protocols, most services continue to base their authen-

tication on hashing plain passwords. An exception to this rule is Keybase [1], a service

which offers cryptographic functions to users (for instance encrypted chat, filesystem and

version control). Keybase assumes that the password (or passphrase, as they call it) of the

user serves as a seed for generating a pair of keys that belong to an elliptic curve [11]. The

private key is generated on the fly by the browser and allows the user to sign a message

that is validated using the public key stored at the Keybase server. Thus, the password of

the user is never revealed to Keybase, while complex handling of cryptographic keys is

not an issue; the keys can be re-generated from the passphrase every time the user logs in

(from any device).

Unfortunately, Keybase implements all this functionality, including the cryptographic

operations, using its own code and does not use the browser’s engine to do so. A web site

may advertise that it supports a Keybase-like authentication process, where the password

of the user is never revealed to the server, in order to convince users to register with it.

However, unless the cryptographic primitives are executed in a secure context, it is unclear

whether the aforementioned web site implements the authentication algorithm correctly

or deliberately violates it in order to read the user’s password.

In this thesis, we build a framework for allowing any web site to offer advanced au-

thentication, where plain passwords are used but are never exposed to any server. In par-

ticular, we design, implement and evaluate auth.js, an authentication framework with a

JavaScript interface, which allows developers to enable any PAKE-like protocol in their

apps. As a proof-of-concept, we use auth.js to enable Keybase-like authentication to

WordPress with just a few code modifications. auth.js can be used through JavaScript,

however, all cryptographic primitives are enforced by the browser engine, which we as-

sume trusted. For this, we extend Mozilla Crypto with more cryptographic primitives,

such as scrypt and the edwards25519 elliptic curve. As long as the browser can be ex-

tended to support all the cryptographic primitives required for an authentication scheme,

auth.js can be extended to support the use of such a scheme.

1.2 Contributions

To summarize, this thesis contributes:

• we extend Mozilla Crypto with more cryptographic primitives, such as scrypt and

the edwards25519 elliptic curve –although this is a solely engineering task, we con-

sider it important for enabling new cryptographic capabilities for web applications;

8

• we design and realize auth.js, a framework that allows a web application to offer

advanced authentication that leverages sophisticated techniques compared to typical

cryptographically hashed text-based passwords;

• auth.js can be easily enabled in all web applications and supports traditional pass-

words – however, once enabled, switching to a more elaborate scheme is straight

forward;

• we evaluate auth.js with real web applications, such as WordPress. Enabling

auth.js in WordPress requires modifying about 50 LoCs of the main authentication

code and adding 50 LoCs for enabling password recovery and signature validation.

9

Chapter 2

Background

Contents
2.1 Overview . 10

2.2 Cryptographic hash functions . 10

2.3 The scrypt cryptographic hash function 11

2.4 Elliptic curve cryptography and the edwards25519 elliptic curve . . 12

2.5 Conventional password authentication 13

2.6 Public key authentication . 13

2.7 Keybase authentication . 13

2.1 Overview

In this section, we briefly discuss some basic crytographic primitives which are required

for implementing the Keybase-like authentication scheme. We also mention some com-

mon authentication schemes supported by most web applications. auth.js can easily sup-

port all mentioned schemes, as well as more elaborate ones, such as PAKE protocols [10].

2.2 Cryptographic hash functions

A hash function is defined as a function which takes as input some data of any size and

maps the data to some fixed-size output, called the hash of the data. Given the same data

as input, the hash function will produce the same hash. Cryptographic hash functions are

a special category of hash functions, which have the extra required property of being one-

way functions, which means it is not possible to guess what the input data of the function

was by only observing the output hash. Cryptographic hash functions are widely used in

10

cryptography. One of the most common uses of cryptographic hash functions is password

storing. A server which stores users’ password in a database, does not typically store the

passwords in plain text. Instead, it calculates the cryptographic hash of a user’s password

and stores that instead of the actual password. This offers an extra layer of protection in

case the contents of the database are leaked, since an attacker cannot guess the original

users’ passwords by only having the hashes.

2.3 The scrypt cryptographic hash function

Depending on the use case of a cryptographic hash function, we may require the function

to have some extra properties. For example, when the hash function is used to create

HMACs for packets in a TLS connection, we would like that to be done as fast as possible.

However, fast computation is not always desired. As mentioned above, when a hash

function is used to store a user’s password in a database, we want it to be as difficult

as possible for an attacker with access to the database to find the original value of the

password. Even though the attacker does not directly know the password, he can try

to brute force it, which means he can try to hash all possible passwords until he gets a

hash that matches the stored hash of the user’s password. In order to make this process

as slow as possible for the attacker, the cryptographic hash function used for storing the

passwords should ideally be relatively slow to compute. A way of doing that is by using

a CPU-intensive or memory intensive hash function, which is a function that needs a lot

of CPU or memory resources to compute the hash.

One memory intensive hash function is the scrypt [8] cryptographic hash function.

Specifically, scrypt is a key derivation function and its purpose is to derive secret keys

given a password as input, and can make the process of deriving the hash more memory-

intensive and difficult to compute by tuning some input parameters. Apart from the user’s

password and a salt, scrypt also takes the following parameters, which help increase the

expense of generating the hash:

• N: the CPU/memory cost parameter

• P: the parallelization parameter

• r: the blocksize parameter, which configures the size of a memory read

These three parameters determine how costly it will be to compute the hash of the given

password. Apart from these parameters, scrypt also takes some other parameters which

can determine other features of the hash (for example its length, etc.).

11

2.4 Elliptic curve cryptography and the edwards25519
elliptic curve

Elliptic curve cryptography (ECC) is a form of public key cryptography, which makes

use of elliptic curves over finite fields to create several cryptographic protocols used for

key exchange, signing, etc. ECC algorithms are considered to be more secure than their

non-ECC counterparts, as a small ECC key provides the same level of security as a long

non-ECC key. For example, a 256-bit ECC key provides as much security as a 3072-bit

RSA key.1

In traditional public key cryptographic schemes, such as RSA, the security of the

scheme lies in the difficulty of factoring a very large number which is composed of two

large prime numbers. The keys used in such schemes are calculated using these prime

numbers. For ECC, the difficulty lies in the fact that, given a starting point on an elliptic

curve and multiplying that point with itself many times, it is very difficult to compute the

multipicand given the starting and resulting point. In particular, an overview of what ECC

public and private keys represent is the following. For an ECC cryptographic scheme, a

particular elliptic curve must be chosen. The parameters of the curve, along with a special

point G, called the generator point are made public. An ECC private key is a randomly

generated number k. The corresponding public key, A, is the point on the curve which is

calculated by multiplying the private key k with the generator point G. The calculation

of A when knowing k can be computed in polynomial time. However, when the elliptic

curve parameters are carefully chosen, there are no known algorithms that can calculate k

efficiently using only A and G.

Many cryptographic algorithms are designed based on elliptic curve cryptography.

One of them is the EdDSA signature scheme, which makes use of a particular family of

elliptic curves, named twisted Edwards curves, and is designed to be faster than other

commonly used signature schemes, such as DSA, without sacrificing security. The most

common elliptic curve used for EdDSA is the ed25519 twisted Edwards curve, which is

birationally equivalent to a curve named Curve25519 [11]. For short, the version of Ed-

DSA which uses this particular curve is called Ed25519. A simplistic description of how

an EdDSA signature of a message M with a private key A is calculated is the following.

Firstly, a secret r is calculated by performing several cryptographic operations, such as

hashing, on the private key and the message. This secret is then used to generate a new

public point R, by performing scalar multiplication on a generator point G of the curve

using the secret r as the scalar. Finally, another public number, s, is calculated by per-

forming cryptographic operations involving the point R, the original public and private

1In this context, security means the time that would be required for an attacker to derive the secret using
brute force techniques.

12

keys and the message m. The final signature is the resulting pair {R,s}. The signature can

then be verified using the public key.

2.5 Conventional password authentication

The most common authentication scheme used in the web is text-based passwords. A

general overview of how this scheme works is the following. Firstly, when a user registers

a new account, they send their password over a (usually encrypted) channel to the web

server. The web server uses a cryptographic hash function to compute the hash of the

user’s password and stores the hash, along with other information about the user, such as

their username.

When the client wants to authenticate itself to the server, the user is prompted for

their password and the password is sent back to the server. At the server, the hash of

the password is computed again and compared against the stored hash. If the two hashes

match, the authentication is successful and the user is logged in. For storing different

cryptographic digests for identical passwords, the server often concatenates a random,

non secret, salt to the plain password before hashing it.

2.6 Public key authentication

An alternative authentication method is public-key authentication. This form is often

combined with keys that are derived from a password, in order to simulate the typical

text-based password experience. For this authentication scheme, the client does not send

their password to the server that it wants to register to. Instead, it generates a key pair

consisting of a public key, which is sent to the server, and a private key, which the client

stores locally.

For authentication, the client informs the server that it wants to authenticate. The

server then sends a message to the client and the client uses their stored private key to

sign the message, in order to prove ownership of the private key. The signed message is

sent back to the server, and the server verifies the signature using the stored public key of

the user. If the verification is successful, the user is logged in.

2.7 Keybase authentication

Keybase [1] is a service which offers to its users the ability to prove their identity on social

media platforms by mapping their profiles to generated encryption keys. It also offers

end-to-end encrypted messaging between its users, an encrypted cloud storage system

13

and other services. Keybase uses a public key authentication system which works as

follows. When a new user tries to sign up [3], they firstly type in a password. However,

the password is not directly submitted to the server. Keybase uses its signup API call to

generate a random salt value and an scrypt hash is generated using the password and the

salt. Some bytes of the generated hash value are interpreted as an EdDSA private key,

which is then used as a seed to another function to generate the corresponding EdDSA

public key. This public key is sent to the Keybase server and is stored as the user’s

credential. At the login phase [2], the EdDSA private key is recomputed similarly to the

signup phase. In order to prove ownership of the key, the client recomputes the private

key by prompting the user to re-type their password. Using this key, the client creates a

signature which is verified by the server using the stored public key of the user.

14

Chapter 3

Architecture

Contents
3.1 Overview . 15

3.2 auth.js API . 16

3.2.1 Usage . 16

3.2.2 Example . 17

3.1 Overview

In this chapter we provide an overview of the architecture of auth.js, as well as the

steps needed to be taken by the web application programmer in order to use the frame-

work. We also provide an example of a use case where a server chooses to use an ad-

vanced authentication scheme based on public-key cryptography, and specifically based

on the authentication scheme of Keybase described in Chapter 2, to register and authen-

ticate its users. This scheme is referenced as scrypt_seed_ed25519_keypair by the

auth.js API. The cryptographic primitives required to be performed for authentication

and registration are handled on the client side by the auth.js framework, which uses

the client’s browser engine to ensure that the cryptographic operations are performed in a

secure context.

auth.js provides simple API calls for the programmer that wants to use advanced

authentication techniques in their web application, without needing to worry about the

underlying implementation. This is especially important for the various cryptographic

elements, which may be leveraged during authentication. First, the programmer does

not need to re-implement any cryptographic primitives and, second, all primitives are

enforced by the web browser, which we consider trusted.

When a client requests a web application, the web server will direct the client to

15

retrieve a copy of auth.js. The library can be provided to the client either by the web

server directly, or via a trusted third party such as a Content Distribution Network, as

seen in Figure 3.1. After retrieving the library, the client is able to start the registration or

authentication process. In particular, our library provides two API calls, authenticate

and register that, when called, will use the client’s browser Web Crypto API to perform

the correct cryptographic operations depending on the chosen authentication scheme. For

example, in the case of the scrypt_seed_ed25519_keypair scheme, the library will use

the implemented scrypt hash function and the Ed25519 key generation to create a key

pair using the user’s password. For authentication, it will use the generated private key to

sign a nonce sent by the server using the Ed25519 signature scheme, to prove ownership

of the private key. The implementation of the two API calls is presented in Appendix A.

Our library currently supports traditional plain password authentication, as well as the

more advanced public key authentication scheme based on the Keybase authentication. It

can be extended to support any authentication scheme, as long as the browser supports

the corresponding cryptographic primitives.

(5)

register(username,password)

Web Server
(WordPress) Client

Trusted third
party (e.g CDN)

(1)	GET	mysite.html

(2)

(3)	GET	auth.js

(4)	auth.js

	mysite.html
....

<script	src="https://trusted.com/auth.js"></script>
...

myjs.js
....

initializeCredentialType({
passwordMinLength:	8,

passwordProccessMethod:	"scrypt_seed_ed25519_keypair"
})
...

(6)	POST	{username,	public_key,}

Figure 3.1: Overview of the architecture of auth.js.

3.2 auth.js API

3.2.1 Usage

Our JavaScript library provides an easy-to-use API that can be used by the web application

programmer with minimal effort. The library will be used as follows:

• The server that wants to use our library includes auth.js in the web application’s

source.

16

• The desired authentication options must be initialized by the web programmer us-

ing the initializeCredentialType API call in the main web application (e.g.

in the JavaScript file served by the web server), as depicted in Figure 3.3. This

call takes as an argument a JSON object describing the authentication options. The

library currently supports two options. First, the passwordMinLength option al-

lows the server to choose the minimum password length it can accept. The sec-

ond option, passwordProcessMethod, enforces the use of one of the supported

authentication schemes. The currently supported schemes are plain, which is

the traditional text-based password and scrypt_seed_ed25519_keypair. If the

initializeCredentialType call is not used, the library will use the default val-

ues of no minimum password length and the plain authentication scheme.

• After initializing the options, the authenticate and register calls can be used.

Those calls are placed in the web application’s JavaScript source by the web pro-

grammer, to be called when the user tries to perform a authentication or registration

action. The register function takes as an argument the password which the user

typed and returns the corresponding credential based on the chosen authentication

scheme, to be sent to the server. The authenticate function also takes as an ar-

gument the user’s password and, in the case where an advanced public-key based

authentication scheme is used, the optional message argument, which is the nonce

that should be signed using the user’s private key. The function generates the pri-

vate key based on the password, signs the message if needed, and returns the signed

message. In the case of the plain authentication scheme, the two functions simply

return the user’s password.

• The web application sends the generated credential to the server. If the authentica-

tion or registration is successful, the user can continue using the web application as

usual.

3.2.2 Example

In the following example, we depict how a server chooses to use the auth.js API to

perform registration and authentication using the scrypt_seed_ed25519_keypair au-

thentication scheme, with a minimum of 8 characters for the password. The web appli-

cation HTML code directs the user to retrieve auth.js from a trusted source, as seen in

Figure 3.2. The API calls register and authenticate, are then used to generate the

correct credentials that the web application can now send to the server. In this particular

case, for the registration process, the credential will be the user’s public key, generated

using the user’s password as a seed. For the authentication process, the credential will

17

again be the user’s public key, concatenated with an Ed25519 signature over the nonce

attached on the page.

Figure 3.2: Web application html file.

1 <html >
2 <head >
3 . . .
4 < s c r i p t t y p e = " t e x t / j a v a s c r i p t " s r c = " h t t p s : / / t r u s t e d . com / a u t h . j s " > </ s c r i p t >
5 < s c r i p t t y p e = " t e x t / j a v a s c r i p t " s r c = " myjs . j s " > </ s c r i p t >
6 . . .
7 </ head >
8 <body >
9 /* Registration and login form */

10 </ body >
11 </ html >

Figure 3.3: Web application JavaScript file.

1 . . .
2 i n i t i a l i z e C r e d e n t i a l T y p e ({
3 passwordMinLength : 8 ,
4 pas swordProcces sMethod : " s c r y p t _ s e e d _ e d 2 5 5 1 9 _ k e y p a i r " ,
5 }) ;
6 . . .
7 l e t password = document . ge tE lemen tById (" password ") ;
8 . . .
9 /* On registration action */

10 l e t c r e d e n t i a l = r e g i s t e r (password) ;
11 . . .
12 /* On login action */

13 l e t message = document . ge tE lemen tById (" nonce ") ;
14 l e t c r e d e n t i a l = a u t h e n t i c a t e (password , message) ;
15 . . .
16 /* Send credential and other necessary information to the server */

18

Chapter 4

Implementation

Contents
4.1 Overview . 19

4.2 Extending Mozilla’s Network Security Services 20

4.2.1 Adding the scrypt cryptographic hash function 20

4.2.2 Adding the Ed25519 EdDSA signature scheme 20

4.3 Extending Mozilla’s Web Crypto API 21

4.4 WordPress . 22

4.4.1 Using auth.js with the current WordPress authentication system 22

4.4.2 Using auth.js with the public key authentication scheme . . . 23

4.1 Overview

Since modern web browsers do not yet provide support for the cryptographic primitives

needed for offering advanced cryptographic capabilities, we extended Mozilla’s Network

Security Services, which is the set of cryptographic libraries used by Mozilla, to support

the use of the scrypt cryptographic hash function, the creation of Ed25519 public and

private keys and the use of the Ed25519 signature scheme. Firefox’s Web Crypto API

also needed to be extended, so as to enable the option to make use of the new crypto-

graphic primitives through the browser. By adding those capabilities, the client does not

need to rely on untrusted external sources to perform the aforementioned cryptographic

operations, since their own browser’s engine executes the cryptographic primitives in a

secure context.

19

Figure 4.1: sha512.c in Mozilla’s NSS implementation

1 . . .
2 void
3 SHA256_End (SHA256Context ∗ c tx , unsigned char ∗ d i g e s t ,
4 unsigned i n t ∗ d i g e s t L e n , unsigned i n t maxDigestLen)
5 {
6 unsigned i n t i nBuf = c tx−>s i z e L o & 0 x3f ;
7 unsigned i n t padLen = (inBuf < 56) ? (56 − i nBuf) : (56 + 64 − i nBuf) ;
8 . . .
9 /* SHA256 implementation */

10 . . .
11 }
12 . . .
13 void
14 SCRYPT_End (SCRYPTContext ∗ c tx , unsigned char ∗ d i g e s t ,
15 unsigned i n t ∗ d i g e s t L e n , unsigned i n t maxDigestLen)
16 {
17 /* Set scrypt parameters */

18 . . .
19 _ c r y p t o _ s c r y p t (. . .) ;
20 }
21 . . .

4.2 Extending Mozilla’s Network Security Services

4.2.1 Adding the scrypt cryptographic hash function

We added a new cryptographic hash function based on the implementation of scrypt

taken from Tarsnap [5] into the NSS. The new function is added in NSS similarly to

other existing cryptographic hash functions, such as the implementation of SHA256. An

example of how the new scrypt works, along with the existing SHA256, is depicted in

Figure 4.1.

4.2.2 Adding the Ed25519 EdDSA signature scheme

In a similar fashion, we added support for the Ed25519 signature scheme. In particular,

we added the functionality to create a public-private key pair based on a given seed, as

well as the signing functionality of the scheme. For this cryptographic primitive, we used

parts of the SUPERCOP benchmarking tool’s implementation of Ed25519 [4].

Adding the whole functionality of the Ed25519 signature scheme proved to be a rather

complicated process and, since we only wanted the functionality as a proof-of-concept for

the auth.js API, we decided to only add the necessary functionalities (create a keypair

based on a seed and sign a message using a private key). Firefox already supports the

X25519 key exchange scheme, which uses a curve which is birationally equivalent to the

one used in Ed25519 scheme, but we could not find an Ed25519 implementation in the

20

NSS library.

We decided to add these two functionalities of the Ed25519 scheme as two different

digest functions. Note that this is merely a proof-of-concept and should not be used in

an official browser release. Rather, we expect that, at some point, new cryptographic

primitives such as the scrypt hash function and the Ed25519 signature scheme will be

correctly implemented in browsers.

Since the Ed25519 scheme needs more than one argument to produce a signature (the

private key and the message to be signed) but digest functions only take one argument

(the text to hash), we modified the function to take a single argument and then parse it to

get both the private key and the message to be signed. Specifically, the function takes the

keypair concatenated with the message, and splits it to get both the private key and the

message.

4.3 Extending Mozilla’s Web Crypto API

Apart from extending the NSS library, we also needed to extend Mozilla’s Web Crypto

API, in order to enable the use of the newly added cryptographic primitives through

JavaScript API calls. Similarly to the NSS extension, we located the files containing

the calls to other cryptographic primitives and extended them to also provide calls to the

newly added operations. With this addition, the client’s browser can use the Web Crypto

API to perform password hashing using the scrypt hash function, as shown in Figure 4.2,

generate Ed25519 keys and sign messages using those keys.

Figure 4.2: scrypt hash function called from Firefox using Mozilla’s Web Crypto API.

1 c o n s t e n c o d e r = new Tex tEncoder () ;
2 //Get scrypt hash of password

3 c o n s t passwordEncoded = e n c o d e r . encode (password) ;
4 c o n s t h a s h S c r y p t = c r y p t o . s u b t l e . d i g e s t ("SCRYPT" , passwordEncoded) ;

As mentioned in the previous subsection, the two latter functionalities were added in

the form of hash functions. Specifically, we added the functionality to create an Ed25519

keypair as a hash function called CURVE25519, and the functionality to sign a message us-

ing a private key as a hash function called ED25519SIGN. The first function, CURVE25519,

takes as an argument the seed produced by the SCRYPT hash function in the form of an

Ed25519 private key, and outputs the corresponding public key in the form of a digest.

The ED25519SIGN function takes as an argument the keypair to be used for signing, con-

catenated with the message to be signed, and returns the signed message.

Both functions can be called using the crypto.subtle.digest method of the Web

Crypto API. Parts of the auth.js implementation where the functions are called can be

21

found in Appendix D.

More code samples of the Mozilla Firefox code extension are presented in Appendix C.

4.4 WordPress

WordPress is one of the most popular open-source web management systems. It is writ-

ten in PHP and is widely used for building various websites, ranging from simple blog

spots to professional websites. Since it is open-source, we modified the source code to in-

corporate our authentication and registration system, by extending the current WordPress

functionality.

The current default login and registration system of WordPress works as follows.

When users wish to register to the website, they provide their user name and email. The

user then receives an email with what is essentially link to a reset password form, where

they can set their first password. After the user chooses a password, it is sent to the server,

where it is salted and hashed with the MD5 hash function and stored.

At the login phase, the user fills in their user name or email and their password in the

login form, which is submitted to the server. There, the hash of the submitted password is

checked against the stored hashed password and, if they match, the user is logged in.

A web developer that wishes to use auth.js in a WordPress site can do so by making

minor tweaks to the WordPress source code. The number of changes needed to be made

depend on the authentication scheme that is chosen to be used. Simply adding auth.js

in a WordPress website that wishes to continue using its current authentication system is

as simple as adding a few lines of code, while switching to the public key authentication

scheme requires some extra steps, such as the addition of a few more functions using the

hooks provided by WordPress, in order to extend the functionality of the authentication

system. Both of the aforementioned additions are demonstrated below.

4.4.1 Using auth.js with the current WordPress authentication sys-
tem

A web developer can choose to add auth.js to a WordPress website without wishing to

change the default authentication scheme. To do so, the following steps are required:

• Include auth.js in the list of the scripts which are loaded along the log in and

reset password pages. Note that as discussed in Chapter 3, this could also be done

by loading the file from a trusted third party, such as a CDN.

• Modify the log in and reset password form to make auth.js intervene before the

form submission, in order to change the typed user password to the corresponding

22

Figure 4.3: Using the login_enqueue_scripts hook to enqueue auth.js.

1 a d d _ a c t i o n (’ l o g i n _ e n q u e u e _ s c r i p t s ’ , ’ e n q u e u e _ a u t h j s ’) ;
2
3 f u n c t i o n e n q u e u e _ a u t h j s ($page) {
4 w p _ e n q u e u e _ s c r i p t (’ a u t h ’ , home_ur l () . ’ / wp−i n c l u d e s / j s / a u t h . j s ’ , n u l l , n u l l ,

t rue) ;
5 }
6 d o _ a c t i o n (’ l o g i n _ e n q u e u e _ s c r i p t s ’) ;

credential for the chosen authentication method. Even though no modification will

be made on the password field when the plain (default) authentication scheme is

chosen, adding this will make it easier to switch between authentication schemes in

case the web developer wishes to change to a more advanced authentication scheme

in the future.

Adding the auth.js file can easily be done using the login_enqueue_scripts

hook provided by WordPress, as shown in Figure 4.3. This should be added in the

wp-login.php file, which handles the login, reset password and registration forms. This

hook allows us to load any script during the loading of the log in page.

To modify the reset password form, a script that temporarily stops the form submis-

sion must be added. We demonstrate how this can be done using JQuery in Figure 4.4.

The minimum password length and authentication scheme must be initialized using the

initializeCredentialType call. Before eventually submitting the form, the script

uses the auth.js API to generate the correct credential and change the credential value

which will be submitted. Similarly to the reset password form, a script can be added to

change the submitted password value on the login form. In the case of the plain authen-

tication scheme, the typed password length is checked and the password is submitted as

is.

Both the reset password and log in form scripts can be saved in the site’s resources in

the wp-includes/js folder and enqueued in the same way the auth.js file is enqueued,

using the login_enqueue_scripts hook in the wp-login.php file.

4.4.2 Using auth.js with the public key authentication scheme

In order to switch to the more advanced public key authentication scheme, the following

additional steps must be taken, apart from the steps described above:

• Whenever the initializeCredentialType API call is used to set the options for

the credential generation, use scrypt_seed_ed25519_keypair as the value for

the passwordProccessMethod field.

23

Figure 4.4: JavaScript code that uses auth.js API to generate the credential and submit

the reset password form

1 jQuery (" # r e s e t p a s s f o r m ") . on (" subm i t " , f u n c t i o n (e) {
2 e . p r e v e n t D e f a u l t () ; //Stop form submission

3 l e t s e l f = jQuery (t h i s) ;
4 i n i t i a l i z e C r e d e n t i a l T y p e ({
5 passwordMinLength : 8 ,
6 pas swordProcces sMethod : " p l a i n " ,
7 }) ;
8 l e t password = jQuery (" # p a s s 1 ") . v a l () ;
9 l e t p u b l i c _ k e y = r e g i s t e r (password) ; //Generate the credential using auth.js

10 p u b l i c _ k e y . t h e n ((pk) => {
11 c o n s o l e . l o g (pk) ;
12 jQuery (" # p a s s 1 ") . v a l (pk) ; //Set the new credential value to be submitted

13 jQuery (" # p a s s 2 ") . v a l (pk) ;
14 jQuery (" # r e s e t p a s s f o r m ") . o f f (" subm i t ") ;
15 s e l f . s ubm i t () ; //Submit the form

16 })
17 }) ;

• Modify the login form to include a random token that will be utilized as a nonce

and get signed with the user’s private key in order to perform authentication.

• Add the same nonce as a cookie that will be submitted along with the form, in

order for the server to have the original value of the nonce and be able to verify the

signature.

• Modify the default authentication check of WordPress to make it verify the submit-

ted signed nonce using the stored public key.

As mentioned above, to use the public key authentication scheme in the log in and

reset password forms, the passwordProccessMethod field seen in Figure 4.4 needs to

be changed to scrypt_seed_ed25519_keypair. When this authentication scheme is

chosen, the register API call of auth.js will use the browser’s Web Crypto API and

perform the necessary cryptographic operations to change the value of the typed password

to the correspoding Ed25519 public key, which is generated using the scrypt hash of

the password as a seed. The log in script will use the authenticate API call to sign

the nonce placed in the login form using the private key correspoding to the public key

mentioned earlier. The submitted value will be the public key concatenated with the

generated signature. Note that the server must have a way to get the original value of the

cookie, in order to be able to verify the signature.

Next, the nonce that will be utilized as a message and get signed using the user’s

private key needs to be added. A simple way to do so is to generate a nonce on the server

and attach this nonce in a hidden field in the login form and also add the same value as

24

a cookie. This way, the server does not need to keep the state of each session, since the

original value of the nonce before it was signed can be retrieved from the cookie. This

addition is demonstrated in Figure 4.5 and should again be made in the wp-login.php

file. Adding a random nonce could be implemented in a number of different ways, but

most of them would need to keep a state of each connection, so we decided to implement

it in a way that would not require the server to do so. WordPress also provides certain

functions which generate and verify random nonces, but they could not be used for our

purpose, since they do not provide direct access to the value of the nonce, which would

be necessary in order to verify the signature.

Figure 4.5: Add a nonce as a cookie, as well as in the log in form as a hidden field

1 # C r e a t e nonce and s e t i t a s a c o o k i e
2 $ to ke n = b in2hex (o p e n s s l _ r a n d o m _ p s e u d o _ b y t e s (1 6)) ;
3 s e t c o o k i e (" nonce−message " , $ token , t ime () + 60 ∗ 60 ∗ 24) ;
4 . . .
5 # Add t h e nonce as a h i dd en f i e l d i n t h e l o g i n form
6 < i n p u t t y p e =" h id de n " i d =" nonce−message " name=" nonce−message " v a l u e =" <?= $ t ok en ?> " / >

Finally, the authentication check in the WordPress server side needs to be extended

to support authenticating users using their public keys. To do this, the authenticate

hook can be used to add a new function to authenticate the user. This hook should be

added in the default-filters.php file, in the wp-includes folder. We added the

new user authentication function, called authjs_authenticate, in the user.php file.

authjs_authenticate functions similarly to the default authentication functions1 used

by WordPress, except that, for checking the user’s credentials, it does not call the de-

fault wp_authenticate_email_password function. Instead, it calls a new function

called check_public_key. The differences between the two functions can be seen in

Figures 4.6 and 4.7.

The check_public_key function is added in the pluggable.php file. Figure 4.8

shows how check_public_key verifies that the submitted signature is correct. In par-

ticular, it parses the received credentials to get the public key and signature values and

checks if the hash of the public key submitted by the user matches the stored public key

hash. Then, it uses the submitted signature along with the Ed25519 public key and the

original nonce value to verify the signature. We implemented this signature verification

as an external Python script, which uses the PyNaCl library to verify that the given sig-

nature is correct. The script is presented in Appendix B. After the signature is verified,

the user is successfully logged in. Note that the signature verification does not need to

implemented externally, but could also be implemented in PHP, in the pluggable.php

1To be precise, WordPress has three default authentication methods: one using username and password,
one using email and password and one using a cookie.

25

Figure 4.6: wp_authenticate_username_password, one of the default authentication func-

tions used in WordPress

1 f u n c t i o n w p _ a u t h e n t i c a t e _ u s e r n a m e _ p a s s w o r d ($use r , $username , $password) {
2
3 i f (! wp_check_password ($password , $use r−>u s e r _ p a s s , $use r−>ID)) {
4 r e t u r n new WP_Error (
5 ’ i n c o r r e c t _ p a s s w o r d ’ ,
6 s p r i n t f (
7 /* translators: %s: User name. */

8 __ (’< s t r o n g >ERROR</ s t r o n g >: The password you e n t e r e d f o r t h e username %s i s
i n c o r r e c t . ’) ,

9 ’< s t r o n g > ’ . $username . ’ </ s t r o n g > ’))
10 . . .
11 }
12 . . .
13 }

Figure 4.7: The authjs_authenticate function which is used in place of the default

authentication function of WordPress

1 f u n c t i o n a u t h j s _ a u t h e n t i c a t e ($use r , $username , $password) {
2 . . .
3
4 i f (! c h e c k _ p u b l i c _ k e y ($password , $use r−>u s e r _ p a s s , $use r−>ID)) {
5 r e t u r n new WP_Error (
6 ’ i n c o r r e c t _ p u b l i c _ k e y ’ ,
7 s p r i n t f (
8 /* translators: %s: User name. */

9 __ (’< s t r o n g >ERROR</ s t r o n g >: Wrong p u b l i c key ’) ,
10))
11 . . .
12 }
13 . . .
14 }

file itself, as is the case for the rest of the authentication functions. The only requirement

for this would be a PHP module which supports the necessary cryptographic operations

for verifying EdDSA signatures.

If a web developer wishes to switch back to the old WordPress authentication sys-

tem or to another potentially supported authentication system, he can do so easily. To

change the server side authentication he can simply change the authenticate hook to

point to another authentication function. To change the value which is submitted dur-

ing login or registration, he can change the value of passwordProccessMethod in the

initializeCredentialType API call to the corresponding authentication scheme. Of

course, the users of the web application would then need to reset their credentials to match

the new authentication scheme. For example, switching from the current WordPress au-

thentication scheme to the public key scheme would require the credentials to be changed

26

Figure 4.8: The check_public_key function that verifies the submitted signature using

the user’s stored public key

1 // Get the original value of the nonce from the cookie, so we can verify the

signature

2 $message = $_COOKIE [" nonce−message "] ;
3 // Extract the public key an signature

4 $ p u b l i c _ k e y = s u b s t r ($ c r e d e n t i a l s , 0 , 64) ;
5 $ s i g n a t u r e = s u b s t r ($ c r e d e n t i a l s , 64) ;
6 . . .
7 // Check if the hash of the sent public key matches the stored hash

8 $check = h a s h _ e q u a l s ($ s t o r e d _ p k , md5 ($ p u b l i c _ k e y)) ;
9 . . .

10 // Run python script to verify signature //

11 . . .
12 r e t u r n a p p l y _ f i l t e r s (’ check_password ’ , $check , $ c r e d e n t i a l s , $ s t o r e d _ p k ,

$ u s e r _ i d) ;
13 }

from plain passwords to public keys.

27

Chapter 5

Evaluation

Contents
5.1 Overview . 28

5.2 Setup . 28

5.3 Average time for posting credentials on the server and getting a reply 28

5.4 Average time for key pair and signature generation 29

5.1 Overview

In this chapter we evaluate the performance of auth.js and particularly the overhead that

the public key authentication system adds over the traditional password authentication

method.

5.2 Setup

For the following measurements, we used two Linux machines running Ubuntu 18.04

LTS. The first machine run a dummy server with minimal functionality. The second

machine run a fork of Mozilla Firefox Nightly 73.0a1, compiled with the disable opti-

mizations and enable debug options.

5.3 Average time for posting credentials on the server
and getting a reply

We measured the average time for generating and posting a user’s credentials using the

two authentication methods, traditional password authentication and public key authen-

28

tication, from the machine running Firefox to the machine running the dummy server.

For checking the password, the dummy server simply checked if the posted password

matched the user’s stored password in its database. For checking the posted signature, the

server run the Python script mentioned in Chapter 4, which uses the PyNaCl library to

verify the signature. Table 5.3 presents the average time for 1,000 repetitions. The timing

includes the time needed for the client to receive the reply from the server that either the

authentication is successful or not, which varies due to network latencies. The signature

was produced on the same message, with the same key pair for all 1,000 repetitions.

Table 5.1: Average time for posting key pairs and signatures.
Credential posted Average time

Password 260 ms

Signature 328 ms

5.4 Average time for key pair and signature generation

We measured the performance of auth.js for creating Ed25519 key pairs and signing

messages using the private key of the pair. We split the measurement in 3 parts: the time

for only generating key pairs with a given password, the time for only signing a given

message with a given key pair, and the time for both generating a key pair using a given

password and signing a given message with the generated private key. Table 5.4 presents

the average time for these three measurements for 10 thousand repetitions. For these

measurements we used a fixed seed for the key pair generation and a fixed key pair and

message for the signing process.

Table 5.2: Average time for generating key pairs and signatures.

Average time

Generate key pair 30.9 ms

Sign message 29.5 ms

Generate key pair + sign message 59.3 ms

As can be seen from the evaluation, switching to the public key authentication scheme

would add around 60 ms of overhead compared to simply submitting the user’s password

as is. These timings were taken on the browser which was compiled without optimizations

for debugging reasons, resulting in its performance being several times worse than an

average browser. As a result, the 60 ms of overhead would translate to much less in an

29

average user’s browser, so it would be unnoticeable. Also, the time needed for the server

to verify the signature is not significantly more than the current time needed to verify a

password.

30

Chapter 6

Related Work

Contents
6.1 Advanced authentication schemes 31

6.2 Cryptographic primitives . 32

6.3 Cryptography frameworks . 32

6.1 Advanced authentication schemes

Apart from the public key authentication scheme we presented, various more authentica-

tion methods exist. PAKE protocols such as SRP [21] allow clients to authenticate them-

selves to a server and exchange a secret securely, without needing to send their actual

password. Even though certain PAKE protocols have seen some adoption, many of them

have not been successfully deployed yet. Other password-based authentication mecha-

nisms which are based on PAKE protocols, such as [22], are also starting to get proposed.

auth.js can serve as a single framework from which such protocols can be deployed. As

long as the cryptographic primitives needed for a protocol are implemented in the client’s

browser, auth.js can securely enforce their usage, assuming of course that the browser

is not compromised. A web programmer who wishes to use another scheme for authenti-

cating users can do so simply by changing the passwordProccessMethod field in their

forms to the authentication scheme of their choosing and transparently switch to a new au-

thentication method, assuming that the server also supports the use of a chosen protocol.

The autentication scheme mentioned in this thesis is based on the authentication scheme

used by Keybase [1]. The major difference is that Keybase uses its own source code to

perform the cryptographic operations, while auth.js uses the cryptographic primitives

that are built in the user’s browser, ensuring that the operations will be performed securely.

31

6.2 Cryptographic primitives

In the recent years, many improvements have been made and many new cryptographic

primitives have been introduced, which are not yet implemented by the major web browsers.

For our work, we added the scrypt [17] hash function as well as the Curve25519 elliptic

curve [11] to Mozilla Firefox and specifically in the Web Crypto API, in order to use

them for our authentication scheme. We expect that those cryptographic primitives, as

well as more primitives such as the bcrypt [18], Argon2 [12] and blake2 [9] hash func-

tions or new elliptic curves such as the FourQ curve [13] will eventually be implemented

in the major web browsers and will be available to use. As more and more cryptographic

primitives are added, auth.js can be modified to support the usage of these primitives

to create new authentication schemes. Other projects have also explored the extension of

the Web Crypto API functionality to add support for other operations, such as document

signing [15]. New types of cryptographic primitives are also starting to get implemented.

For example, Microsoft’s SEAL [19] provides an API that can be used to perform homo-

morphic encryption.

6.3 Cryptography frameworks

Other frameworks have also tried making advanced cryptography more accessible and

easier to use. For example, Let’s Encrypt [7], [16] makes it easy to obtain a TLS certifi-

cate without the need of human intervention. Keybase is another web service that offers

advanced cryptography to simple users, such as an advanced authentication scheme, end-

to-end encryption, public identity verification and encrypted storage.

32

Chapter 7

Conclusion

Contents
7.1 Overview . 33

7.1 Overview

In this thesis we designed, implemented and evaluated auth.js, a framework that allows

web developers to integrate any authentication scheme in their applications. auth.js al-

lows a developer to express the authentication policy in JavaScript and realize complex

schemes, that leverage modern cryptographic primitives, in the browser environment.

Moreover, the framework makes sure that cryptographic operations are not implemented

in JavaScript, but are instead carried out using the browser’s internal engine, which is

considered trusted. For this, we extended Mozilla Crypto with the scrypt hash function

and the edwards25519 elliptic curve in order to easily implement the authentication used

in Keybase. In the same fashion, auth.js can support other cryptographic-based authenti-

cation schemes, such as PAKE. Enabling auth.js in existing web application is trivial and,

once the framework is in place, switching from one authentication to another is straight

forward. For demonstrating this, we enabled auth.js in a popular open-source web appli-

cation, namely WordPress. Our modifications do not exceed 50 LoCs for the main au-

thentication code in WordPress and require additionally 50 LoCs for enabling password

recovery and signature validation.

33

Bibliography

[1] Keybase.io. https://keybase.io/.

[2] Keybase.io login api documentation. https://keybase.io/docs/api/1.0/

call/login.

[3] Keybase.io signup api documentation. https://keybase.io/docs/api/1.0/

call/signup.

[4] Supercop benchmarking tool. https://bench.cr.yp.to/supercop.html.

[5] Tarsnap scrypt 1.3.0. https://www.tarsnap.com/scrypt/scrypt-1.3.0.tgz.

[6] S. Abu-Nimeh, T. Chen, and O. Alzubi. Malicious and spam posts in online social

networks. Computer, 44(9):23–28, 2011.

[7] M. Aertsen et al. How to bring https to the masses? measuring issuance in the first

year of let’s encrypt. 2017.

[8] J. Alwen, B. Chen, K. Pietrzak, L. Reyzin, and S. Tessaro. Scrypt is maximally

memory-hard. In Annual International Conference on the Theory and Applications

of Cryptographic Techniques, pages 33–62. Springer, 2017.

[9] J.-P. Aumasson, S. Neves, Z. Wilcox-O’Hearn, and C. Winnerlein. Blake2: simpler,

smaller, fast as md5. pages 119–135, 06 2013.

[10] S. M. Bellovin and M. Merritt. Encrypted key exchange: Password-based proto-

cols secure against dictionary attacks. In Proceedings 1992 IEEE Computer Society

Symposium on Research in Security and Privacy, pages 72–84. IEEE, 1992.

[11] D. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang. High-speed high-

security signatures. volume 2, pages 124–142, 09 2011.

[12] A. Biryukov, D. Dinu, and D. Khovratovich. Argon2: New generation of memory-

hard functions for password hashing and other applications. In 2016 IEEE European

Symposium on Security and Privacy (EuroS P), pages 292–302, 2016.

34

https://keybase.io/
https://keybase.io/docs/api/1.0/call/login
https://keybase.io/docs/api/1.0/call/login
https://keybase.io/docs/api/1.0/call/signup
https://keybase.io/docs/api/1.0/call/signup
https://bench.cr.yp.to/supercop.html
https://www.tarsnap.com/scrypt/scrypt-1.3.0.tgz

[13] C. Costello and P. Longa. Fourq: four-dimensional decompositions on a q-curve

over the mersenne prime. 06 2015.

[14] S. Gaw and E. W. Felten. Password management strategies for online accounts. In

Proceedings of the Symposium on Usable Privacy and Security, SOUPS, 2006.

[15] N. Hofstede and N. V. D. Bleeken. Using the w3c webcrypto api for document

signing, 2013.

[16] A. Manousis, R. Ragsdale, B. Draffin, A. Agrawal, and V. Sekar. Shedding light on

the adoption of let’s encrypt. CoRR, abs/1611.00469, 2016.

[17] C. PERCIVAL. Stronger key derivation via sequential memory-hard functions. 01

2009.

[18] N. Provos and D. Mazieres. A future-adaptable password scheme. In USENIX

Annual Technical Conference, FREENIX Track, pages 81–91, 1999.

[19] Microsoft SEAL (release 3.4). https://github.com/Microsoft/SEAL, Oct.

2019. Microsoft Research, Redmond, WA.

[20] K. Thomas, C. Grier, D. Song, and V. Paxson. Suspended accounts in retrospect: An

analysis of twitter spam. In Proceedings of the 2011 ACM SIGCOMM Conference on

Internet Measurement Conference, IMC ’11, page 243–258, New York, NY, USA,

2011. Association for Computing Machinery.

[21] T. D. Wu et al. The secure remote password protocol. In NDSS, volume 98, pages

97–111. Citeseer, 1998.

[22] Z. Zhang, Y. Wang, and K. Yang. Strong authentication without temper-resistant

hardware and application to federated identities. 01 2020.

35

https://github.com/Microsoft/SEAL

Appendix A

auth.js implementation

Figure A.1: JavaScript implementation of the authenticate API call

1 async f u n c t i o n a u t h e n t i c a t e (password , message = " ") {
2 l e t r e t V a l ;
3 // Get the chosen authentication method

4 i f (C r e d e n t i a l T y p e . pas swordProcces sMethod === " p l a i n ") {
5 // If the plain scheme is used, simply return the password

6 r e t V a l = password ;
7 } e l s e i f (C r e d e n t i a l T y p e . pas swordProcces sMethod === " s c r y p t _ s e e d _ e d 2 5 5 1 9 _ k e y p a i r ") {
8 // If scrypt_seed_ed25519_keypair is used create the keypair using the password

as a seed

9 l e t k e y p a i r = a w a i t c r e a t e K e y P a i r F r o m P a s s w o r d (password) ;
10 // Get the public key part of the key pair

11 l e t p u b l i c _ k e y = k e y p a i r . s u b s t r (6 4 , 128) ;
12 // Sign the message

13 l e t s i g n e d M e s s a g e B y t e s = a w a i t s ignMessage (k e y p a i r , message) ;
14 l e t s i gnedMessageAr ray = Array . from (new U i n t 8 A r r a y (s i g n e d M e s s a g e B y t e s)) ;
15 l e t s i g n a t u r e = s ignedMessageAr ray . map ((b) => b . t o S t r i n g (1 6) . p a d S t a r t (2 , " 0 ")) .

j o i n (" ") ;
16 // Return the public key concatenated with the signature

17 r e t V a l = p u b l i c _ k e y . c o n c a t (s i g n a t u r e) ;
18 }
19 re turn Promise . r e s o l v e (r e t V a l) ;
20 }

A-1

Figure A.2: JavaScript implementation of the register API call

1 async f u n c t i o n r e g i s t e r (password) {
2 l e t r e t V a l ;
3 // Check that the password is longer than passwordMinLength

4 i f (! (C r e d e n t i a l T y p e . passwordMinLength === n u l l)) {
5 i f (password . l e n g t h < C r e d e n t i a l T y p e . passwordMinLength) {
6 l e t e r r o r M e s s a g e = " Password must be a t l e a s t " + C r e d e n t i a l T y p e .

passwordMinLength + " c h a r a c t e r s long " ;
7 throw e r r o r M e s s a g e ;
8 }
9 }

10 i f (C r e d e n t i a l T y p e . pas swordProcces sMethod === " p l a i n ") {
11 // If the plain scheme is used, simply return the password

12 r e t V a l = password ;
13 } e l s e i f (C r e d e n t i a l T y p e . pas swordProcces sMethod === " s c r y p t _ s e e d _ e d 2 5 5 1 9 _ k e y p a i r ") {
14 // If scrypt_seed_ed25519_keypair is used create the keypair using the password

as a seed and return the public key

15 l e t k e y p a i r = a w a i t c r e a t e K e y P a i r F r o m P a s s w o r d (password) ;
16 l e t p u b l i c _ k e y = k e y p a i r . s u b s t r (6 4 , 128) ;
17 r e t V a l = p u b l i c _ k e y ;
18 }
19 re turn Promise . r e s o l v e (r e t V a l) ;
20 }

A-2

Appendix B

Signature verification

Figure B.1: Python script which checks the validity of the signature

1 . . .
2 SIGNATURE = b y t e a r r a y . fromhex (SIGNATURE_STR)
3 MESSAGE = b y t e a r r a y . fromhex (MESSAGE_STR)
4 # C r e a t e a Ver i fyKey o b j e c t from a hex s e r i a l i z e d p u b l i c key
5 VERIFY_KEY = n a c l . s i g n i n g . Ver i fyKey (PUBLIC_KEY_STR , e n c o d e r = n a c l . e n c o d i n g . HexEncoder)
6 # Check t h e v a l i d i t y o f a message ’ s s i g n a t u r e
7 t r y :
8 VERIFIED = VERIFY_KEY . v e r i f y (MESSAGE_STR, SIGNATURE_STR , e n c o d e r = n a c l . e n c o d i n g .

HexEncoder)
9 p r i n t (" 1 ")

10 # p r i n t (" " . j o i n (" { : 0 2 x} " . f o r m a t (o rd (c)) f o r c i n v e r i f i e d))
11 e x c e p t n a c l . e x c e p t i o n s . B a d S i g n a t u r e E r r o r :
12 p r i n t (" 0 ")

B-1

Appendix C

Mozilla Firefox extension

Figure C.1: Adding new cryptographic primitives in the WebCrypto API

1 . . .
2 i f (algName . E q u a l s L i t e r a l (WEBCRYPTO_ALG_SHA1) | |
3 algName . E q u a l s L i t e r a l (WEBCRYPTO_ALG_SHA256) | |
4 algName . E q u a l s L i t e r a l (WEBCRYPTO_ALG_SHA384) | |
5 algName . E q u a l s L i t e r a l (WEBCRYPTO_ALG_SCRYPT) | |
6 algName . E q u a l s L i t e r a l (WEBCRYPTO_ALG_CURVE25519) | |
7 algName . E q u a l s L i t e r a l (WEBCRYPTO_ALG_ED25519SIGN) | |
8 . . .
9 re turn new D i g e s t T a s k (aCx , aAlgor i thm , aData) ;

10 }
11 re turn new F a i l u r e T a s k (NS_ERROR_DOM_NOT_SUPPORTED_ERR) ;

C-1

Figure C.2: Adding new cryptographic primitives in various files in the NSS library

1 /* secoidt.h */

2 . . .
3 t y p e d e f enum {
4 SEC_OID_UNKNOWN = 0 ,
5 SEC_OID_MD2 = 1 ,
6 SEC_OID_MD4 = 2 ,
7 SEC_OID_MD5 = 3 ,
8 SEC_OID_SHA1 = 4 ,
9 . . .

10 SEC_OID_SCRYPT = 364 ,
11 . . .
12 SEC_OID_ED25519SIGN = 367 ,
13
14 /* utilmodt.h */

15 # d e f i n e SECMOD_SHA256_FLAG 0 x00004000L /* also for SHA224 */

16 # d e f i n e SECMOD_SHA512_FLAG 0 x00008000L /* also for SHA384 */

17 . . .
18 # d e f i n e SECMOD_SCRYPT_FLAG 0 x00080000L
19 # d e f i n e SECMOD_CURVE25519_FLAG 0 x00200000L
20 # d e f i n e SECMOD_ED25519SIGN_FLAG 0 x00400000L
21 . . .
22
23 /* secdig.c */

24 . . .
25 SGNDiges t Info ∗
26 SGN_Crea t eDiges t In fo (SECOidTag a l g o r i t h m , c o n s t unsigned char ∗ s i g ,
27 unsigned l e n)
28 {
29 . . .
30 sw i t ch (a l g o r i t h m) {
31 . . .
32 case SEC_OID_SHA256 :
33 case SEC_OID_SHA384 :
34 case SEC_OID_SHA512 :
35 case SEC_OID_SCRYPT :
36 case SEC_OID_CURVE25519 :
37 case SEC_OID_ED25519SIGN :
38 . . .
39 break ;
40 . . .

C-2

Appendix D

Using the EdDSA signature scheme
through the WebCrypto API

Figure D.1: Calling the ED25519SIGN and CURVE25519 digest functions in the auth.js

implementation

1 . . .
2 c o n s t p r i v a t e K e y E n c = hexToBytes (p r i v a t e K e y) ;
3 c o n s t p r i v a t e K e y B y t e s = new U i n t 8 A r r a y (p r i v a t e K e y E n c) ;
4 //Curve25519 scalar mult lower 32 bytes of scrypt hash to get public key

5 c o n s t p u b l i c K e y P r o m i s e = a w a i t c r y p t o . s u b t l e . d i g e s t ("CURVE25519" , p r i v a t e K e y B y t e s) ;
6 c o n s t p u b l i c K e y B y t e A r r a y = Array . from (new U i n t 8 A r r a y (p u b l i c K e y P r o m i s e)) ; // convert

buffer to byte array

7 c o n s t pub l i cKey = p u b l i c K e y B y t e A r r a y . map ((b) => b . t o S t r i n g (1 6) . p a d S t a r t (2 , " 0 ")) . j o i n
(" ") ;

8 re turn p r i v a t e K e y . c o n c a t (pub l i cKey) ;
9 } ;

10 . . .
11 l e t s ignMessage = async f u n c t i o n (k e y p a i r , message) {
12 c o n s t i n p u t = k e y p a i r . c o n c a t (message) ;
13 c o n s t i n p u t B u f = hexToBytes (i n p u t) ;
14 c o n s t i n p u t A r r a y = new U i n t 8 A r r a y (i n p u t B u f) ;
15 re turn c r y p t o . s u b t l e . d i g e s t (" ED25519SIGN " , i n p u t A r r a y) ;
16 } ;
17 . . .

D-1

	Introduction
	Overview
	Contributions

	Background
	Overview
	Cryptographic hash functions
	The scrypt cryptographic hash function
	Elliptic curve cryptography and the edwards25519 elliptic curve
	Conventional password authentication
	Public key authentication
	Keybase authentication

	Architecture
	Overview
	auth.js API
	Usage
	Example

	Implementation
	Overview
	Extending Mozilla's Network Security Services
	Adding the scrypt cryptographic hash function
	Adding the Ed25519 EdDSA signature scheme

	Extending Mozilla's Web Crypto API
	WordPress
	Using auth.js with the current WordPress authentication system
	Using auth.js with the public key authentication scheme

	Evaluation
	Overview
	Setup
	Average time for posting credentials on the server and getting a reply
	Average time for key pair and signature generation

	Related Work
	Advanced authentication schemes
	Cryptographic primitives
	Cryptography frameworks

	Conclusion
	Overview

	Appendix auth.js implementation
	Appendix Signature verification
	Appendix Mozilla Firefox extension
	Appendix Using the EdDSA signature scheme through the WebCrypto API

