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ABSTRACT

Event detection techniques in social networks have proposed as a way to sense and

understand what is happening in the offline and online world. Despite being a

challenging task, event detection has utilized in applications that target critical

aspects of peoples’ lives, like health, natural hazards, and sports events like football

matches. In this thesis, we look into the different techniques of event detection in

micro-blogs. Specifically, we focus on the Twitter platform due to the popularity it,

as well as the ease-of-access to vast amounts of data, through their API. Therefore,

to do so, we gather a large data-set, and we process in order to detect the events. In

other words, by collecting our data-set, we clean our data using Natural Language

Processing methods. After data preprocessing, we vectorize our data, creating a

bag of words vocabulary for each time series and extracting features from them.

The next step is to use our feature extraction to generate clusters and set them as

candidate events. After collecting events, we need to process, organize, and make

sense of them. We need to use algorithms that identify the topic of the event, where

it happened, and whether it is newsworthy. Finally, we summarize each event that

we detected.
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Chapter One

Introduction

Contents
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . 3

1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Outline Contents . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1 Motivation

It is a common fact that we live in a world where every single person globally, has

the right to use social media platforms to express his feelings, emotions and even

describe actions that happened all over the world. These actions in platforms often

lead to an abnormal situation when something happens at a specific time and place.

More specifically, Twitter is a platform that presents the above features and allows

users to "See what’s happening in the world right now.". Twitter’s reputation for

detecting events has surged over the years, evolved it from being an entertainment

blog discussion to a primary source of news content.

Nowadays, big companies and organizations try to take advantage of the abilities

that Twitter has to offer. Sometimes, by tracking a known event that it will occur

at a particular time and location, and other times using tools to extract breaking

news in real-time. Figure 1.1 indicates the number of tweets that were posted and
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Introduction

Figure 1.1 The frequency of tweets during the FIFA World Cup 2018

talked about the tournament FIFA World Cup 2018 over 17 days from 29/06/2018

to 15/06/2018. What stands out from this graph is the occurrence of spikes, which

point out an anomaly on the track. Hence, it could reflect a high probability of an

event occurring. Another interesting point is the peak of 15/07/2018, where it was

the day when the final of World Cup 2018 conducted. As a result, the trend of the

figure witnessed a rapid incline, which helps us to understand how Twitter users

usually react to an event appearance.

Despite being an essential tool for event detection, the usage of Twitter should

manage appropriately to extract features and make sense of them. Surely, in a real-

time platform like Twitter, where users can share whatever they want, there is a high

probability of many risks for anyone who wants to present events to the audience

that are newsworthy. In this research, we focus on how Information Retrieval and

Clustering techniques which will help us recognize candidate events.

In general, we can define events as real-world occurrences that unfold over space

and time [4],[29]. Moreover, they can be divided into planned or unplanned events.

2



Introduction

Planned events are the kind of events that are predefined with already known con-

tent, location, specific date and time, and with a group of people related to their

preferences. On the other hand, an unplanned event occurs without any prior in-

formation about when, where, and what happened. Furthermore, event detection

techniques can be classified into specified and unspecified techniques. Unspecified

techniques are utilized by events that occur in real-time by focusing on the volume

and the temporal signals of Twitter Streaming. In contrast, specified techniques rely

on specific information about a predetermined event like location, type of event, and

a particular time. Last but not least, taking advantage of the unique characteristics

of a tweet like hashtags, mentions, and keywords in the text can extract useful fea-

tures to track events.

1.1.1 Problem Formulation

We define the following terms in order to formulate the problem of event detection:

Message: A tweet message is consisted of id, user id, content, entities, times-

tamp and location. Each message has its unique id and a user who shared it in the

Twitter platform at a specific timestamp. Moreover, the message contains content

which, in our case, is a text in a tweet format. Also, a tweet can provide a plethora

of entities, like hashtags, mentions, likes, etc. Besides that, each message can pro-

vide the location where was posted with different ways like coordinates(longitude,

latitude).

Stream: Twitter platform can provide a Streaming API, which contains N mes-

sages for each time-window i. Moreover there are I time-windows. Therefore, a

stream can be formalized as Si = [m1,m2,...,mN] where i ε1, 2, ..., I.

Event: An Event can be formalized as E = [T,M,C], with T defined by t0 which

3



Introduction

is the time of the first message shared in the event E occurrence, and t1 the time of

the final message related to the current event E. Furthermore, M is defined by the

set of messages that represents the event E. Finally, C is defined by the representa-

tive content that can be used to summarize a specific event E.

Problem Statement: Given a stream S of messages for each time-window i,

detect all possible events Ei within S.

1.2 Challenges

By definition, the ability to automatically detect and track ongoing real-world events

has surely attracted big organizations’ interests. Nevertheless, it is a challenging task

from every perspective. For every journalist, it is tough to recognize the useful in-

formation on Twitter without being overwhelmed by an endless stream of irrelevant

tweets. Another issue that a journalist has to face is the reliability of the information

that will retrieve from Twitter. Sometimes, for companies like BBC, Reuters, and

CNN exporting breaking news as fast as possible, they usually faced the challenge

to prevent being fallen into the trap of non-reliable happenings.

Furthermore, using natural language processing tools, we can read, decipher,

understand, and make sense of the human languages in a valuable manner. Despite

all the comforts, NLP methods may fail in many circumstances, and sometimes

we might not be precise as we wanted at the outcome. Specifically, NLP requires

structured sentences for processing and extracting useful entities efficiently. The

challenge that we need to face in our research is how we are going to process tweets

that are not structured sentences with lots of spelling mistakes and with different

disciplines. We had to study how to manipulate tweets features and use them as an

advantage to our clustering system.
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Another challenging part of our research was the difficulties of the data-set that

we utilized due to many reasons. Firstly, 48% of tweets deleted, with the result

being unable for some events to be detected from our system. Another problem is

the variety of languages of the tweets that we managed and overcoming this obstacle

by focusing specifically on English tweets. The large scale of noise tweets in our

data-set was another restriction for our event detection. Because our focus was to

generate clusters with high purity and not for noise filtering, we concentrate on

how to use clustering methods that can recognize the noise with a high probability.

Lastly, collecting data was another part of the research that was challenging due to

the difficulty of finding data with labeled tweets that have classified into an event.

In the majority of studies, the data-set was not available publicly, and we need much

investigation to find something relevant.

1.3 Contributions

The ultimate goal of our research is to examine how different features from a Twitter

corpus can be utilized with the combination of natural language processing tools,

to investigate the new age problem called Event Detection in Micro-blogs. Initially,

we needed an appropriate data-set of tweets that can represent real-time data with

a large amount of noise. Therefore, we collected large-scale tweets which contain a

certain number of the relevant and large number of irrelevant tweets.

Moreover, we decided to focus on three primary features for our feature ex-

traction; Textual features, Social features, and N-gram analysis. For textual feature

extraction, we needed to clean our data by utilizing a variety of natural language pro-

cessing tools. For social feature extraction, we needed to gather specific attributes

for each tweet, such as hashtags, mentions, URLs. Finally, we utilized those two

features to create n-gram keywords. Because by extracting the appropriate features

5
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is one of the main contributions in our study, we examined each combination of

n-gram analysis to find the best possible outcome.

Furthermore, we examined which is the most appropriate clustering approach

regarding our requirements. We needed to generate pure clusters with arbitrary

schemes that are related to a specific relevant topic and also minimize as much as

we can the clustering of irrelevant tweets. After lots of experiments, we deduced

that DBSCAN (Density-Based Clustering Algorithm) algorithm is the clustering

approach that managed to provide the best possible outcome. We also present a

visual representation of our experiment results and a table with specific values of

each metric for every combination.

Last but not least, we decided to make a summarization of each cluster and de-

rived the most characteristic and common features for every cluster. On this step,

we managed to extract the most representative title for each cluster, including the

most common social features. Therefore, this step will help us for further studies

on this research, like merging clusters and monitoring detected events.

1.4 Outline Contents

Chapter 1: Introduction

Chapter 1 introduces the importance of social media platforms regarding the detec-

tion and tracking of real-time events. It also defines and formulates the problem

of Event Detection from Twitter. Furthermore, it describes the challenges that we

faced through the research and the contribution of this particular work.

Chapter 2: Literature review and related work

Chapter 2 focuses on an analytical review of the literature, which consists of work

6
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related to Event Detection on Twitter. More specifically, we examine previous stud-

ies on event definition, topic detection and tracking, and feature extraction.

Chapter 3: Methodology

The methodology chapter defines our methodology and explains each step that we

made in detail. We describe the collection of each data-set that we utilized and its

role in our study. Moreover, we analyze how we process our data to extract them

for our clustering method. Besides that, we describe how our chosen clustering algo-

rithm works and the reason we select it. Finally, we analyzed the structure of how

we summarized each cluster.

Chapter 4: Evaluation

Chapter 4 describes the metrics for our evaluation and focuses on presenting the

results for each combination that we made. We present a visual comparison of our

results, and we provide a table with specific values for each experiment. Moreover,

we analyzed the tracking of a particular detected event and irrelevant clusters to

draw some important conclusions. In the end, we summarize our findings from the

evaluation metrics and give some insights and thought through the experiments we

took.

Chapter 5: Conclusion

Chapter 5 defines our overall conclusions and summarizes them to provide a brief

outcome for the reader. Finally, we propose some future works that will help in our

system’s improvement.

7



Chapter Two

Related work

Contents
2.1 Defining an Event . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Event detection on Twitter . . . . . . . . . . . . . . . . . . . . 10

2.3 Topic Detection and Tracking . . . . . . . . . . . . . . . . . . 12

2.3.1 Clustering Detection . . . . . . . . . . . . . . . . . . . . . 12

2.3.2 Anomaly Detection . . . . . . . . . . . . . . . . . . . . . 12

2.3.3 First Story Detection . . . . . . . . . . . . . . . . . . . . 13

2.3.4 Topic-Specific Detection . . . . . . . . . . . . . . . . . . . 13

2.4 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Textual features . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.2 N-gram features . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.3 Parsing & Tagging Features . . . . . . . . . . . . . . . . 15

2.4.4 Social Features . . . . . . . . . . . . . . . . . . . . . . . 15

2.1 Defining an Event

Digging into many articles, we realize that there was a variety of definitions about

the term Event. Panagiotou et al. 2016 [23] investigated a series of definitions, ac-

cording to event detection or similar problems. Beginning with the TDT project [3],

they define an event as "something that happens at a specific time and place with

consequences.". They explain the consequences of peoples’ activities as reactions

that will flash in the network activity. This definition is the foundation of the terms

that were stated in the following years, especially events in social media. Hence,
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Aggarwal et al. [2] defined the event as "something that happens at a specific time

and place but is also of interest to the news media", which introduced the affection

of social media platforms in the investigation of news events.

A similar explanation of event was stated by McMinn et al. 2013[20], where

they focused on the influence of news media. They directed into the meaning that

if something discussed in media, then undoubtedly is an event. Furthermore, they

declared that the representation of the events is the entities that occurred during

the detection and tracking of them. In other words, names of people, locations, and

organizations describe a specific event.

Another interesting perception of the term event, and specifically in social media,

is the observation by Hasan et al. 2018 [11]. They define an event as an appearance

of topics that attract the attention of people in the real world, to discuss and express

their opinion before, after, and during the occurrence of them. Dou et al. 2012 [7]

declared a similar definition of ’event’ as a situation that changes the volume of text

data for a special topic at a specific time. Thus, this pair represented by entities

like people and location with the result of generating an event.

Panagiotou et al. 2016 [23] concluded that there are a plethora of types ex-

plaining the term "event," and each one requires a different path for investigation.

More particularly, they defined five different types of events; Planned, Unplanned,

Breaking News, Local, and Entity related. Firstly, "Planned’ are events that their

time and location are predefined(e.g., a football game). Secondly, "Unplanned" are

events that could happen at any time anywhere without being planned (e.g., disas-

ters). Thirdly, "Breaking News," which are the type of events that are presented

mainly in news media (e.g., the result of elections). "Local" are events that occurred

in a specific geographical location. Finally, "Entity Related" is a type of event that

talks about a specific entity (e.g., famous actors or the president).

9
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All of the above definitions have a specific investigation and impact on the dec-

laration of an event, though I am focusing on Unplanned detection of Events in this

study as we mentioned in the section 1.1.

2.2 Event detection on Twitter

With the majority of benefits that social platforms have to offer, Event Detection

on Twitter held the attention not only for researchers but also for international

news organizations such as Reuters Tracer. [16] implemented a system to help their

journalists discovering breaking news, verifying them, and informing the public be-

fore other news agencies. They divided their implementation strategies into two

key system components, machine learning and data processing architecture. The

system starts by pipelining real-time tweets to process large scale data. At next,

it uses machine learning techniques by keeping English texts only and filtering the

data from noises. Their hybrid approach of noise filtering is to categorize tweets

into seven types; Spam, Advertisements, Mundane/everyday conversations, General

information, Events, News, and Breaking News. After getting rid of noises, the

system generates clusters based on the similarity of their content. Focusing on news

discovery, they have to use FSD so that the system will be able to detect stories

that are not breaking on social media. Subsequently, the system summarizes each

cluster with its representative sentence so that users understand the description of

it. Once the clusters being summarized, Reuter Traces use a classification model to

categorize each of them into several topics. After being classified, Reuters wanted

to recognize if a particular cluster is newsworthy. Hence, they have built a newswor-

thiness ranking model in order to understand if the cluster worth it as an event or

not. Finally, they have used a prediction model in order to avoid rumors, fake news,

and other misinformation. With this significant implementation, they managed to

10
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discover real-time news faster than any traditional media.

Saravanou et al. 2018 [24], were concerned with the event delineation problem.

It is an unsupervised technique that identifies the main event and captures the high-

lights of it at the same time. They construct a dynamic, heterogeneous network with

graphs with both user and content nodes. The links between nodes are "user-user"

edges, "user-content" edges and "content-content" edges. A graph in a particular

time window contains several connected components that illustrate a discussion over

a topic. Thus, the model creates a snapshot network, and if there is a sub-graph

that contains a large number of connected components, then it shows a candidate

event due to the majority of interest. Another similar model is by Meladianos et

al. 2015 [21] and bases on a graph-of-words network. This network constructs a

graph by the input set of tweets, and the detection is based on the tweeting rate.

As long as each term weighting is becoming higher, the more representative is for

the event detection on each time window. Thus, every 60 seconds, the system builds

a weighted graph-of-words using the tweets posted during that period. Finally, a

threshold value is set for every period, and when the number of tweets overcomes

it, the graph is considering as a candidate event.

The usage of aggressive tweets and term filtering is another remarkable research

that was introduced by the paper Ifirim et al. 2014 [12]. They combine an aggressive

data preprocessing to eliminate tweets that were not aggressive under their investi-

gation requirements; the number of hashtags, the number of words in the text, the

appearance of n-gram words and the rank of resulting clusters. Following that, the

model generates clusters of tweets by the hierarchical method using the value 0.5

as the predefined threshold. Their approach, although simple, shows encouraging

results. However, they processed specific topics for their evaluation of the model

focusing on the US presidential elections in 2012 and recent events that related the

disasters in Ukraine and Syria in February 2014.

11
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2.3 Topic Detection and Tracking

The TDT project began in 1997, and their motivation was to build a system that

would be able to monitor news and could produce a signal when a new event ap-

peared [3]. The project was organized by four methods, according to the technique

they utilize.

2.3.1 Clustering Detection

Clustering Detection is an unsupervised technique that systems used at least in a

first stage, as a Stream clustering task [23]. Grouping the texts based on topics

they discuss, the system is cable of separate the clusters between "event clusters"

and "non-event clusters". This kind of detection firstly adopted by the EventTweet

system [1], which is base on location and keywords for each tweet. Keywords get

a score according to their burstiness, which is measured to decide if a cluster is

an event. At the end of each timestamp, clusters with high scores are marked as

candidate events, while the other clusters filtered out as noise. A similar approach

is in [22], where the authors utilize the semantic relationships of terms during the

clustering procedure by using TF-IDF vectors. Cosine similarity is used as a dis-

tance metric in order to group tweets that discuss the same topic. [5] and [6] extend

this approach by using density-based clustering methods OPTICS and DBSCAN,

respectively. They also vectorize their terms for each tweet as N-gram sentences.

2.3.2 Anomaly Detection

Anomaly Based Event Detection focuses and tracks on abnormal observations [23].

In other words, if a group of unexpected terms or emotions demonstrates increased
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usage in the last time window, then an anomaly is observed. According to [26] and

[27] an event occurred when it affects the emotional state of a group of people that

are close to the event.

2.3.3 First Story Detection

Another strategy of topic detection is First Story Detection. Systems using FSD,

detect events when new texts that are similarly linked together to create "event

threads", otherwise it is considered as a new event. A hashing technique such as

LSH [25] is used in order to provide the approximate nearest neighbor in constant

time. FSD is also called News Event Detection(NED), which targets at events from

live streams in real-time. This approach is chosen by Reuters Tracer [16] so that the

system will be able to detect stories that are not breaking on social media.

2.3.4 Topic-Specific Detection

Some other systems, follow the path of specific topic detection, by tracking events

that are predefined such as disasters, music bands, football games, etc. After a topic

is identified, systems are tracking the trend and try to detect anomalies of it. Take

as an example in [30], where the authors monitored the events that are detected in

the NFL 2010-2011 games. Although this type of method is not sufficient for real-

time detection, it might be helpful for tools that are identifying real-time events and

wanted to track the trend of them by using common terms such as hashtags, URLs,

content words, etc.

All of the above techniques have a unique impact on topic detection and tracking.

However, in this report, I am focusing on clustering processing.

13
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2.4 Feature Extraction

Feature extraction constitutes one of the most crucial parts of the machine learning

process because it reduces the data into more manageable groups of processing. In

other words, it is cable of taking a set of data and convert it into vital and non-

redundant information. Except for machine learning processing, feature extraction

is also useful for other related fields in Artificial Intelligence such as pattern recogni-

tion and image processing alike, which is used mainly for dimensionality reduction.

More specifically, there are a plethora of approaches to extract the features from a

set of tweets from textual processing to social features.

2.4.1 Textual features

Textual features are based on similar words that users posted, but in order to ex-

tract them, we need to apply some data cleaning methods. According to TDT

project [3], filtering out stopwords, stemming and tokenization techniques need to

be subjected to be cable of extracting features of them. Tokenization is the process

where a sentence or a paragraph of text is split into tokens of individual words or

sentences. Stop words removal is the process where commonly used words (e.g we,

these, your, his, through, me, were, her, more, himself, this, down, should, our,

while, above, both) are eliminated from a list of tokens which is taken after the

tokenization method. Stemming is the action of transforming every token into its

root word by changing the form into its base. For instance, the words "Consultant",

"Consulting" and "Consultative" will be reduced to the word "Consult".

2.4.2 N-gram features

An extending approach of textual extraction is the procession of N-gram sentences.

N-gram analysis is a popular feature identification, especially for Twitter, where

14



Related work

each user can use a variety of text structures for a tweet. TwEvent and EventRadar

are systems that implement this idea by using tweet segments(N-grams) instead of

unigrams for their creation of bag-of-words [14], [6]. Then, features are extracted

by the TF-IDF procedure, and tweets are considered as event candidates if they are

close in space and time.

2.4.3 Parsing & Tagging Features

The recognition of name entities for a tweet is another challenging task that many

researchers willing to investigate. Initially, by using the POSTagger in the NLP li-

brary, we can extract specific tags for certain words. As a result, we can manipulate

specific tags such as verbs and nouns to provide more accurate results. Further-

more, the NER is another subtask that is used to extract and classify named entity

mentions like person names, location, companies, percentages, dates, etc. With the

above two methods from NLP, systems like [19] can extract all nouns, verbs and

named entities from each tweet. A challenge of an entity-based approach is finding

systems that identify entities from tweets precisely. Besides that, the authors from

[15] examined the performance of NER on Twitter, and their results show that out-

of-the-box solutions, such as the Stanford NER, perform adequately for most tasks.

2.4.4 Social Features

Another beneficial feature extraction is Twitter’s features, which are included by

all tweets. Common hashtags, mentions, RTs, and URLs can help systems generate

clusters that related to candidate events more effectively. A lot of systems rely on

these features, especially at the beginning of their event detection methods. For

example, in Reuters Tracers [17], they start their clustering algorithm by grouping

tweets that being retweeted between each other or having common hashtags. More-
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over in [24], their purpose was to create a snapshot network with connected tweets

related to Twitter’s features.

Table 2.1 concludes the techniques for Event Detection from different papers that

we mentioned above.

No Author name Ev.Detection Techniques Description

1 Liu et.al. 2016 [16]
Real-time processing, Noise

Filtering, FSD

Breaking and validated

news

2
Saravanou et. al.

2018 [24]

Snapshot Network

contained by related tweets

Identification of the

main events and their

highlights

3
Meladianos et. al.

2015 [21]

Graph-of-words network,

Term weighting

Identification of main

events and their

highlights

4
Ifirim et. al. 2014

[12]

Aggressive data

preprocessing, Hierarchical

Clustering

Usage of twitter features

combined with text

processing

5
Abdelhaq et. al.

2013 [1]
Burstiness detection

Clustering based on

location and keywords

6
Ozdikis et. al.

2012 [22]

Clustering procedure by

using TF-IDF vectors

Cosine similarity as

distance metric

7
Boettcher et. al.

2012 [6]
DBSCAN Clustering

Feature Extraction by

TF-IDF vectorization,

N-gram analysis
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8 Ankerst et. al. [5] OPTICS clustering

Feature Extraction by

TF-IDF vectorization,

N-gram analysis

9
Valkanas et. al.

2013 [26]
Anomaly-Based Detection

Affects the emotional

state of a group of

people that are close to

the event

10
Mcminn et. al.

2015 [19]

Entity-based Event

Detection

Usage of POS Tagging

and NER tools

11
Zhao et. al. 2011

[30]

Topic-Specific Detection,

Predefined Event analysis

Not efficient for

real-time event detection

Table 2.1 An overview of different Event detection systems
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Methodology
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3.1 Methodology Overview

Our methodology is based on four major pillars: Data Collection, Features Extrac-

tion, Event Clustering, and Event Summarization. First of all, we are bound to

collect our data either by Twitter Streaming or within a corpus that includes la-

beled tweets for further evaluation of our model. Consequently, we have to clean

our data in order to extract features from them. Then, we need to use these features

and group our data by using the appropriate clustering method, which in this case

is the DBSCAN algorithm. After tweets being grouped, the next step is to sum-

marize each cluster by finding the most representative tweet, and also make some

conclusions like the most common hashtags, mentions or URLs. An overview of our

architecture depicted in Figure 3.1.
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Figure 3.1 An overview of our methodology

In this research, we are not focusing exactly on detecting the events from the

corpus. However, we want to create clusters that have purity, homogeneity, and

completeness related to their topics that are talked about. Another challenging

part that we focused on was to diminish as much as we can the possibility of noise

clustering. Achieving these steps, we will give access to further investigations in the

future like cluster classification, newsworthiness and velocity rating.

3.2 Data Collection

The first step in our methodology is the Data Collection, which means finding the

best data-set for our preprocessing and experimentation. Finding the appropriate

data-set is tough due to the nature of the problem. We need to process data in

real-time with labeled tweets that are related to a particular event. We searched

from different sources, and we conclude on the data-sets mention in Table 3.1.

At first, we used the data set of FIFA World Cup 2018 mainly to understand the

tracking of a real predefined event. By analyzing tweets of a specific event, with-

out noise tweets interrupting our procedure, we were able to witness the features

that define it, the upwards and downwards of the trend, its peaks, its bottoms, the
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burstiness of tweets when something remarkable had happened, etc. Although we

got the factors of what an event represents, the data-set was not the appropriate

one for our evaluations since it is lack of noise data, which plays a crucial role in

assessing our approach with real-time data.

Index Name Rows Download

1

FIFA World

Cup 2018

Tweets

503,001
https://www.kaggle.com/rgupta09/world-

cup-2018-tweets

2
Relevant tweets

- Event 2012
152,951 http://mir.dcs.gla.ac.uk/resources/ [20]

3
Irrelevant tweets

- Event 2012 121,747,031
http://mir.dcs.gla.ac.uk/resources/ [20]

4

Event

Description -

Event 2012

506 http://mir.dcs.gla.ac.uk/resources/ [20]

5

Event

Categories -

Event 2012

506 http://mir.dcs.gla.ac.uk/resources/ [20]

Table 3.1 Data sets we used in the research

For that reason, we turn our focus on the data-set that Mcminn et al. 2013

[20] created. They built a large corpus of tweets, starting on the 10th of October

2012 and ending on the 7th of November, for evaluating event detection on Twitter.

They collected 121,747,031 tweets, with a large scale of noise tweets (e.g., spam

tweets, ads, chi-chat tweets) and only 152,951 of them being labeled into 506 events.

Moreover, the events are also categorized into eight general topics: Armed Conflicts

Attacks, Arts, Culture Entertainment, Business Economy, Disasters Accidents, Law,
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Politics Scandals, Miscellaneous, Science Technology, and Sports. (Figure 3.2) That

Figure 3.2 The percentage of tweets for each category in our dataset

twitter corpora was the most representative data set that we were able to utilize.

[20] made available their data-set in public with only their tweet_id. In order to

make use of these tweets, we used the Hydrator Framework and extracted them as

JSON. Hydrator is an Electron-based desktop application for hydrating Twitter ID

data-sets, which helps you turn tweet_ids back into JSON. Even though only 52%

of tweet_ids, we were able to download because the other tweets were being deleted.

To make fair evaluations in our research, we get rid of specific events from our data-

set because they were harmed from the issues that we faced, such as deleting events

that consist of 15 tweets at maximum or events that do not witness any anomaly or

burstiness. In this research, we collect 501,657 tweets from the corpus, containing

only 97,754 relevant tweets and 403,903 irrelevant tweets.
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(a) Track of a non-crushed event which
was included to dataset

(b) Track of a crushed event which was
eliminated from dataset

Figure 3.3 Trend of a crushed and non-crushed events from dataset

3.3 Feature Extraction

Feature Extraction is the most challenging part of this research due to the variety of

features that we able to derive from the literature that we found. Hence, we desired

to manage almost all the characteristics that a tweet consists such as text, hashtags,

mentions, RTs, and URLs. Unfortunately, due to the unavailability of libraries to

recognize name-entities efficiently from tweets, we directed on extract features like

n-grams, tweet features, and TF-IDF vectorization.

3.3.1 Data Preprocessing

Before extracting and processing features, it is essential to make data preprocessing

steps for each timestamp when we collect our data in order to make sense of them.

These steps will help our system utilize the incoming data more efficiently by using

cleaning_data for the NLP methods. First things first, we get rid of non-English

tweets for being able to use NLP functions from the NLTK library (Figure 3.4). After

language filtering, for each tweet, we preprocess the text as follows. We normalize

the text by separating it from URLs, user mentions, hashtags, retweet mentions

and also removing digits and other punctuations(e.g. !"$%&(́)*+,- ). Afterward, we

tokenize the remaining clean text by white space and also remove the stoping_words.
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Figure 3.4

The next stage for our data preprocessing is stemming each token from the clean

text, which will help us convert every word to its root. In the end, in order to

prepare the data set for the TF-IDF vectorization, we append back to the clean text

the tweet_features that we separated before. Figure 3.5 shows an example of how

a tweet is prepossessed and prepared for the Information Retrieval function.

Figure 3.5 The stages for data preprocessing

3.3.2 Information Retrieval

The next step in our implementation after the data cleaning is the vectorization

of data. In other words, the system converts each tweet into a vector with one

dimension per word and fill the dimension with the word count.

23



Methodology

3.3.2.1 Bag-of-words construction

In our case, we implement the idea of utilizing tweet segments and, more specific the

combination of uni-grams, bi-grams, and tri-grams instead of only uni-gram tokens.

The n-gram model that we used is helpful for the detection of frequent key-phrases

among a large number of event-related messages, and it is much better than try-

ing to find them with one-word relations. Thus, our system creates a bag-of-words

vocabulary for each time_window, consists of 1-3gram phrases. We then normalize

each vector in our vocabulary by document word frequency (TF-IDF). The rea-

son for this action is due to machine learning algorithms that cannot work with the

raw text directly, so we should convert our BOW vocabulary into vectors of numbers.

3.3.2.2 TF-IDF

TF-IDF, known as the Frequency-Inverse Document Frequency model, is one of the

most common ways of computing the weight of a term in the BOW vocabulary. In

other words, it tries to estimate the importance of each term regarded to the whole

collection and its document. TF is concerned as the number of times a term ap-

pears in a document divided by the total number of terms in the document. Every

document has a term frequency. On the other hand, the IDF component estimates

the weight of the term across all documents in the corpus. It is computed by the log

of the number of documents divided by the number of documents that contain the

specific term (Equation 3.1). Lastly, the TF-IDF is measured by the multiplication

between TF and IDF. The formula is shown in Equation 3.2.

idf(t,D) = log
| D |

1 + | {d ∈ D : t ∈ d} |
(3.1)

tfidf(t, d,D) = tf(t, d)× idf(t,D) (3.2)
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For our research, the collection is the whole data-set of tweets presented on a

specific time_window i, which in our case has 10-minute length. The document is

every tweet m contained in the data-set, and the term is every word, which in our

case is key_phrase, included in the BOW vocabulary.

3.4 Event Clustering

Event Clustering is the part of the methodology where we are bound to use the

features we extracted to create clusters. These clusters will consider as candidate

events since tweets that contain on each cluster consist of common elements. The

first thing we do, after feature extraction, is to get rid tweets from the Vector Space

Model that do not contain any term from BOW vocabulary. This step helps us

removing out-of-vocabulary tweets that are not meaningfully grouped into a cluster.

After eliminating non-relevant tweets and modified the vectorized features, we

needed to find the most appropriate clustering method for our system. Because

in our research, we focus on identifying events without any pre-trained data, we

followed unsupervised clustering methods. Getting tweets from the real-time pro-

cedure, without knowing the exact number of tweets and events, we wanted to

emphasize finding a clustering approach that is advantageous dealing with outnum-

bered noise-data and manage to extract clusters consisted of relevant tweets with a

common topic. Under an in-depth investigation, we decided on our model to utilize

the DBSCAN algorithm, known as the Density-based spatial clustering of applica-

tions with noise [31].

The DBSCAN algorithm relies on a density-based concept of clusters, which is based

on creating clusters with arbitrary shapes without also setting the number of groups.
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According to [8], it is also efficient on large spatial data-sets. The main idea of the

DBSCAN algorithm is to view clusters as regions of high density that are sepa-

rated by areas of low density. Therefore, two parameters required to measure the

frequency of a region:

• The number of points within a circle of Radius Eps (ε) from point P.

• The minimum number of points (MinPts), the circle with radius ε, at least

contains.

Figure 3.6 Core and Border Points in a Database D. Red data point is
Noise.

Moreover, DBSCAN algorithm divides its objects into three exclusive groups:

1. Core Points: Points that are at the interior of a cluster.

2. Border Points: Points that have fewer than MinPts within Eps, but is in

the neighborhood of a core point.

3. Outlier Points: Any point that is not a core point nor a border point.

Hence, the DBSCAN algorithm will help us not only group relevant topics in an

arbitrary shape but also detect and get rid of outliers in the data-set.

cos(A,B) =
AB

‖A‖‖B‖
=

∑n
i=1 AiBi√∑n

i=1 (Ai)2
√∑n

i=1 (Bi)2
(3.3)
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Another parameter in the DBSCAN algorithm that we considered was the type

of metric to use when calculating the distance between points in a feature array. We

decided to measure the distances with the cosine similarity measure. Because our

features were extracted as binaries and are set as vectors, we followed a nonEuclidean

distance to detect similar topics more efficiently. Mathematically, Cosine s used to

measure the cosine of the angle between two vectors projected in a multi-dimensional

space (shown in Equation 3.3). As shown below in Figure 3.7, the smaller that angle,

the more similar are the two vectors, which are arrays containing the term counts

(in BOW vocabulary) of two documents (tweets).

Figure 3.7 Vector representation of tweets.The more θ is small,the more
similar are the tweets.

Besides that, we managed to cluster our features with other clustering methods

like Hierarchical clustering [12], K-means clustering, HDBSCAN clustering (OP-

TICS), and Affinity propagating clustering, in order to compare our result with

these and draw some conclusion. In any case, from the problem’s theory, we decided

to follow the DBSCAN approach due to the reasons we said above.
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3.5 Event Summarization

The final step in our implementation is to conclude the details about clusters that

have created. We need to determine the most representative tweet for the cluster,

which will present accurate and useful information. At first, we concerned the idea

of recognizing the name entities for each cluster and show the tweet with the highest

score of entities. Hence, we experimented with the Stanford NLP and the SpaCy

libraries. However, we found that in the majority of cases, these methods failed to

recognize entities due to the specific language of words like arbitrary capitalization

and short names, or the sentence structure of tweets. Therefore, we decided to sim-

plify our process and summarize each cluster related to the most common words in

the text. At this time, we desire to extract a useful and straightforward tweet for

every group, which will also be readable for the viewer in the outcome. Moreover,

except for the title of the cluster, we can extract some other pieces of information

for the cluster, like the most common hashtags, mentions, and URLs alike. These

types of information will help us in further investigations about Event Detection,

like tracking a specific event that occurred in real-time.

To find most content words for a cluster, we need to do some critical steps.

Repeatedly, we need to clean every tweet as we said in chapter 3.3.1; tokenizing, re-

moving stop-words, and stemming. However, at this time, we are bound to use only

the stemming words from the text of each tweet and discard tweet_features. After

cleaning our data, we need to find the tweet with the highest density of information.

Therefore, we score words using a metric known as CountVectorizer from the sklearn

library. CountVectorizer is a function that converts a collection of text documents

to a matrix of token counts. Moreover, we defined our features from CountVec-

torizer extracted as binaries. Thus, the Vector Space Model separated as non-zero

counts, which are set as 1, and zero counts which are set as 0. This is helpful for

discrete probabilistic models that model binary events rather than integer counts.
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Figure 3.8 Example of how our model detects an Event and concludes
the most representative tweet along with other useful information such as
the Time the Event detected, the Top-3 Hashtags, the Top-3 User Men-
tions, the Top-3 URLs, the number of tweets where clustered and the BOW
vocabulary.

After extracting our features as binaries, we are ready to find the particular tweet

that maximizes the density of content words. Figure 3.8 shows an example of how

our model summarized an event detected and what pieces of information extracts.
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4.1 Evaluation Metrics

There are various ways to measure the performance of a cluster, analyze similarity

and the difference from it. We decided to utilize six metrics that provide us a com-

plete view for each clustering approach that we followed; Purity, AMI, Homogeneity,

Completeness, Fowlkes-Mallows scores and the percentage of Events Detected.

Purity is an external evaluation criterion for cluster quality and is a measure of

the extent to which clusters contain a single class. It requires labeled data to assess

a clustering concerning ground truth. Therefore, to calculate purity, each cluster is

assigned to the label where it is the most frequent. Consequently, the sum for every

cluster is taken and divided by the total number of data points which in our case
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are the tweets.

Purity =
1

N

k∑
i=1

maxj|ci ∩ tj| (4.1)

Equation 4.1 shows the calculation of the Purity, where N = The total number of

tweets(data points), k = number of clusters, ci is a generated cluster, and tj is the

label which has the maximum number for cluster ci.

In AMI (Adjusted Mutual Information), we need to given the knowledge

of the ground truth assignments, which in our case is the event that each relevant

tweet belongs to, and our clustering algorithm assignments of the same samples.

Therefore, the AMI score assesses the agreement of the two assignments, ignoring

permutations [28]. The AMI score is close to 1 when the labels included in the two

clusters are similar (when the score is 1, then the two clusters are identical). In

contrast, if the score is close to zero, then the two clusters are expected to be more

independent with each other.

AMI =
MI− E[MI]

mean(H(U), H(V ))− E[MI]
(4.2)

Equation 4.2 shows the calculation of the AMI score, where MI(Equation B.5) is the

mutual information score between two label assignments U and V, H(U)(Equation

B.2) and H(V)(Equation B.4) is the entropy of each assignment and E[MI] is the

calculation of expected value for the mutual information.

Homogeneity score evaluates whether each cluster contains only members of a

single class on each time window that we generate clusters (Equation 4.3). On the

other hand, Completeness score evaluates whether all members of a single class

are assigned to the same cluster on each time window (Equation 4.4).

Homogeneity = 1− H(C|K)

H(C)
(4.3)
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Completeness = 1− H(K|C)
H(K)

(4.4)

Fowlkes-Mallows (FMI) score measures the similarity of two clusters of a set of

points. The higher the value of the Fowlkes–Mallows score, the more similar the

clusters and the benchmark classifications are. Before calculating this measure, we

need to clarify some essential definitions.

1. True Positive (TP): The number of pairs of points that belong to the same

clusters in both the true labels and the predicted labels [10]. In our example,

this is the total number of correctly predicting tweets in a particular event.

2. False Positive (FP): The number of pairs of points that belong to the same

clusters in the true labels and not in the predicted labels [10]. In our example,

the total number of tweets that clustered in a different cluster while they are

relevant to each other.

3. False Negative (FN): The number of pairs of points that belong to the

same clusters in the predicted labels and not in the true labels [10]. In our

example, the total number of tweets that clustered and are irrelevant to each

other.

FMI =
TP√

(TP+ FP)(TP+ FN)
(4.5)

Explaining these metrics leads to the explanation of the formula that calculates the

Fowlkes-Mallows score in Equation 4.5. The score ranges from 0 to 1. A high value

points out a functional similarity between two clusters. More specifically, values

that are close to zero demonstrate two largely independent label assignments, while

values close to one indicate significant agreement. Furthermore, when values are

precisely 0 means that the two label assignments are purely independent, and when
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the score of FMI is 1, it means that the assignments are equal.

Finally, we measured the percentage of events that our system detected overall,

and we presented it as Events Clustered. It is essential to mention that this met-

ric does not indicate any performance of any clustering method because it does not

take into account the creation of clusters that contain irrelevant tweets. Therefore,

the results of this ratio help us to be aware only about the number of real events

that were detected within our system.

We used these metrics for evaluating our model with different clustering ap-

proaches. In other words, we utilized a combination of parameters and features in

order to assessed which is the best combination. Therefore, we executed our model

with each combination of parameters, and we calculate these metrics to draw a

variety of conclusions.

4.2 Comparisons

4.2.1 Experiment Setup

Comparing different types of parameters in our clustering approach is one of our

main contributions, which will help us adjust the appropriate inputs in our system.

Therefore, our first experiment was to analyze each combination of parameters for

the clustering algorithm that we decided to use, known as the DBSCAN algorithm.

Setting the appropriate n-gram structure for our creation of Bag-Of-Words vocab-

ulary for each time window and also the value of epsilon, which is the most critical

DBSCAN parameter in order to generate clusters, where the two parts that we

needed to consider first. Consequently, we compare our results from the clustering

metric that we made with other clustering methods, such as HDBSCAN, Hierarchi-

cal, Kmeans, Affinity, and made the most important observations. Furthermore, we

have to mention that every experiment takes place at my personal computer, which
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is composed of 2-cores and 4-threads CPU clocked in 2.3 GHz, 10 Gb RAM, and

Windows 10 Operating system. From the software implementation, we used Jupyter

Notebook, which helps us to write Python programming language. Moreover, we

used the sklearn library, which contains all the clustering methods that we utilized

and also the metrics for measuring and evaluating each combination.

4.2.2 Results

This section presents the results of our study and provides four summary tables,

one for every n-gram analysis that we made. These tables contain the AMI, Ho-

mogeneity, Completeness, FMI, Purity score, and the ratio of detected events for

each combination of parameters we tried. Moreover, observing the results on each

table, we managed to draw some important conclusions and considerations about

our clustering approach. Furthermore, we create a visual comparison of each com-

bination model to give a better understanding of the appropriate feature’s impact

on the outcome.

Epsilon AMI Homog. Compl. FMI Ev.Clustered Purity

0.4 0.783 0.887 0.862 0.936 0.780 0.980

0.5 0.752 0.858 0.852 0.926 0.825 0.975

0.6 0.710 0.800 0.845 0.915 0.884 0.964

0.7 0.652 0.689 0.895 0.907 0.924 0.922

0.8 0.658 0.736 0.876 0.896 0.963 0.858

0.9 0.459 0.633 0.708 0.825 0.915 0.847

Table 4.1 Comparison of metrics for 1-gram DBSCAN Clustering

Epsilon AMI Homog. Compl. FMI Ev.Clustered Purity

0.4 0.815 0.919 0.882 0.946 0.671 0.982
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0.5 0.803 0.904 0.880 0.943 0.747 0.981

0.6 0.788 0.889 0.870 0.940 0.808 0.981

0.7 0.749 0.839 0.862 0.928 0.867 0.975

0.8 0.660 0.709 0.887 0.903 0.918 0.942

0.9 0.540 0.638 0.837 0.840 0.971 0.843

Table 4.2 Comparison of metrics for 1-2gram DBSCAN Clustering

Epsilon AMI Homog. Compl. FMI Ev.Clustered Purity

0.4 0.818 0.921 0.885 0.947 0.637 0.982

0.5 0.809 0.920375865 0.876 0.942 0.699 0.983

0.6 0.796 0.907 0.869 0.942 0.766 0.983

0.7 0.767 0.880 0.858 0.933 0.820 0.981

0.8 0.721 0.807 0.863 0.919 0.882 0.969

0.9 0.541 0.580 0.900 0.850 0.963 0.879

Table 4.3 Comparison of metrics for 1-3grams DBSCAN Clustering

Epsilon AMI Homog. Compl. FMI Ev.Clustered Purity

0.4 0.827 0.934 0.884 0.947 0.609 0.983

0.5 0.807 0.925 0.868 0.939 0.679 0.984

0.6 0.793 0.914 0.860 0.939 0.721 0.984

0.7 0.767 0.899 0.840 0.929 0.778 0.983

0.8 0.737 0.862 0.833 0.922 0.823 0.980

0.9 0.591 0.645 0.893 0.866 0.918 0.931

Table 4.4 Comparison of metrics for 2-3grams DBSCAN Clustering
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Overall, what stands out from these tables is that there are general and specific

conclusions derived from them. Let’s start with general observations. Initially, AMI

reaches a higher score when the epsilon value is lower. That means each cluster of

tweets contains the highest similarity compared to their labeled data. Therefore,

Homogeneity and Purity score reach higher scores too. FMI also has a higher rat-

ing when the epsilon value is lower, which means that our system generates pure

clusters. On the other hand, creating purer and more valid groups does not mean

that our model detects a higher number of events. When the epsilon value is lower,

the ratio of events that are detected and clustered is low. By setting more up-

per epsilon, the detection of events getting a higher percentage, while our system

also generates irrelevant clusters. With these observations, we decided to find the

appropriate epsilon value and n-gram parameters in order to have a high ratio of

detected events and also creating clusters that have a high amount of purity and

even high FMI scores. Processing uni-grams, bi-grams, and tri-grams phrases and

setting the epsilon value at 0.8, was the optimal decision for our requirements and

future purposes. This combination of parameters reaches FMI and Purity score at

0.919 and 0.969, respectively, and finds the 88% of the Events. Again, the selection

of parameters depends on our research purposes. At this time, we concerned about

creating clusters with high purity scores and also detect a good percentage of Events.
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(a) (b)

(c) (d)

Figure 4.1 Visual Comparison for each n-gram analysis

Besides that, we compare our optimal method with other clustering approaches,

like Affinity, HDBSCAN, Kmeans, and Hierarchical clustering. We observed that

the DBSCAN method is better for real-time clustering than the other methods.

Having the ability to create clusters with arbitrary shape and also get rid of noise

data, is one of the reasons that reach higher scores related to the other clustering

methods. Table 4.5 presents the score for each metric that we measure by utilizing

the 1-3gram analysis for BOG vocabulary creation for feature extraction.

Method AMI Homog. Compl. FMI Ev.Clustered Purity

Affinity 0.359 0.875 0.472 0.313 0.985 0.961

Hdbscan 0.153 0.423 0.252 0.671 0.654 0.920

Kmeans 0.324 0.933 0.420 0.349 0.997 0.946

Hierachical 0.519 0.782 0.611 0.523 0.994 0.953

Dbscan 0.721 0.807 0.863 0.919 0.882 0.969

37



Evaluation

Table 4.5 Comparison of metrics for 1-3grams Clustering

(a) (b)

(c) (d)

Figure 4.2 DBSCAN vs Other Clustering methods (1-3gram Analysis)

4.3 Data Analysis with the Optimal Method

As we mention in the previous section, we needed to decide what combination is the

appropriate one in order to make further investigations, particularly in the clusters

that our model generated. In our study, we decided that the combination of 1-3gram

feature extraction, eps = 0.8, and the clustering algorithm of DBSCAN, is the per-

fect one by detecting 83% of events and also reach 92% FMI score, which means that

we generate pure clusters with low noise. Therefore, in subsection 4.3.1, we decided

to analyze a specific event by tracking its clusters and also in paragraph 4.3.2 an-

alyze the irrelevant groups which were created and draw some important conclusions.
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4.3.1 Event Tracking

For this experiment, we took a specific event from the Twitter corpora, with its

description. As you can see in Figure 4.4, except for the title of the event, it

indicates the time of the first and last posted tweets of the specific event. Most

importantly, it shows the peak times were Twitter users post tweets in the related

topic. In other words, in peak times, our model needs to identify that there is a

burst of tweets and generate clusters associated with this topic. Moreover, in Figure

4.3, it shows the frequency of tweets for the specific event that we track, and also

the points of when the event hit a peak on tweets.

Figure 4.3 The frequency of tweets for a particular event in the corpus

Figure 4.4 The Description of the tracking event in Figure 4.1

Table 4.6shows the summarized clusters for the current event, which contains a

representative title, keywords, the number of tweets that were clustered, and the

time where the cluster was generated. As you can see in the table, the first sum-

marized cluster was detected at 20:08, 3 minutes after the first peek of the event.
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That means our model can detect an event that occurred at a proper time. In the

following clusters, we observed that each title related to the same topic, with similar

keywords. That means, our topic detection was validated by the continuous mention

on the same topic.

id Time Topic Headline Topic Keywords Length

778
2012-10-15

20:08:00

Ray Lewis out for the

year... #heartbroken

’done’, ’lewi’,

’ray’, ’year’
21

779
2012-10-15

20:12:00

Ray lewis out for the

year

’career’, ’lewi’,

’mayb’, ’ray’,

’season’, ’torn’,

’tricep’, ’year’

187

780
2012-10-15

20:16:00

@AdamSchefter: Ray

Lewis torn tricep - out

for year and maybe

career. @tgillionaire

’career’, ’lewi’,

’mayb’, ’ray’,

’season’, ’torn’,

’tricep’, ’year’

98

781
2012-10-15

20:20:00

Ray Lewis out for the

season with torn tricep

’career’, ’lewi’,

’mayb’, ’ray’,

’season’, ’torn’,

’tricep’, ’year’

144

782
2012-10-15

20:24:00

Ray Lewis out for

season with torn triceps

#timetoretire

’career’, ’lewi’,

’ray’, ’season’,

’torn’, ’tricep’

62

783
2012-10-15

20:28:00

So Ray Lewis is out for

the season with a torn

tricep

’career’, ’lewi’,

’ray’, ’season’,

’torn’, ’tricep’,

’webb’, ’year’

24

... ... ... ... ...
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794
2012-10-15

21:01:00

Ravens lose Ray Lewis

for season with torn

triceps

http://t.co/iSi43gZe

’career’,

’lewi’,’lose’,

’make’,’raven’,

’ray’, ’season’,

’torn’, ’tricep’,

’year’

7

796
2012-10-15

21:05:00

@SportsCenter:

BREAKING: RT

@AdamSchefter Ray

Lewis torn tricep - out

for year and maybe

career.

’break’,’career’,

’lewi’,’news’,

’ray’, ’sad’,’torn’,

’tricep’,’year’

6

Table 4.6 Event Tracking - Topic Headline

Another interesting part of the tracking of a specific event is the extraction of

standard social features, like hashtags, mentions, and URLs. As you can see from

the Table 4.7, all summarized clusters shared similar characteristics, which means

that every event can be tracked and validated by them.

id Top_Hashtags Top_Mentions Top_URLs

778
[’#heartbroken’,

’#fuck’]
- -

779
[’#ravens’, ’#nfl’,

’#wamp’]

[’@AdamSchefter’,

’@SportsCenter’,

’@Ravens’]

-

780

[’#ravens’,

’#whatsgoingon’,

’#footballfan-

tasy’]

[’@AdamSchefter’,

’@SportsCenter’,

’@tgillionaire’]

-

781

[’#ravens’,

’#fuck’,

’#gotdamn’]

[’@AdamSchefter’,

’@SportsCenter’,

’@TheRealBTB25′]

[’http://t.co/mcSHvRVK’,

’http://t.co/4CYTjdVV’,

’http://t.co/ttun0Efy’]
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782

[’#smh’,

’#timetoretire’,

’#sadtweet’]

[’@AdamSchefter’,

’@SportsCenter’,

’@christianertel’]

-

783

[’#depressing’,

’#fuckthis’,

’#ravennation’]

[’@AdamSchefter’,

’@SportsCenter’,

’@DonJulio822’]

-

... ... ... ...

794 [’#outforseason’]
[’@AdamSchefter’,

’@theScore’]

[’http://t.co/iSi43gZe’,

’http://t.co/sLfIdqzZ’]

795 - - -

796 -
[’@AdamSchefter’,

’@SportsCenter’]
-

Table 4.7 Event Tracking - Social Features

4.3.2 Irrelevant Clusters Analysis

Taking irrelevant clusters under consideration is also another vital part that we

needed to analyze, mainly for future studies that include Noise filtering or Cluster

Classification. Figure 4.5 demonstrates the number of clusters generated for each

length of tweets. Overall, the majority of irrelevant clusters have as length six and

below, which means that unrelated clusters contain a small number of related tweets.

Afterward, we analyzed the frequency of words for these irrelevant clusters and cre-

ated a graph that includes the 50-most frequent words (shown in Figure 4.6). In

this figure, we observed that many clusters contained hate comments about popular

names like Obama or Romney, who related to politics. Furthermore, a group of

advertisements and spam messages also clustered into our model. Finally, a remark-

able group of tweets that contain daily conversations also directed into clusters in

our model.
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Figure 4.5 The number of clusters generated for each length of tweets

Figure 4.6 Word-frequency from irrelevant clusters
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4.4 Lessons learned

Through our investigation about the Event Detection techniques combined with the

evaluation metrics that we used, we summarize into fundamental knowledge. The

lessons learned that we received from this work through different viewpoints, will

help us dig into more research about this work with much more success.

First of all, we managed to utilize the most appropriate clustering method re-

garding our formulation of the problem. We wanted to get rid of irrelevant data to

the fullest extent for each time window, and also to generate relevant clusters in an

arbitrary shape. Therefore, the determination of the DBSCAN algorithm for our

system was the most successful choice compared to the other clustering algorithms.

Furthermore, the selection of cosine similarity as a metric in the DBSCAN algo-

rithm to estimate the distance between tweets in a feature array was crucial for the

succeed clustering. Because each tweet converted into feature vectors, the perfect

comparison for these modified features was cosine similarity measurement.

Regarding the evaluation metrics that we have taken, we achieved to learn how

the system works into a different combination of parameters. By using a combi-

nation that will generate clusters that provide high purity of relevant tweets and a

low amount of noisy tweets, will also decline considerably the percentage of events,

which means that our system lacks complex features clustering. In contrast, when

the system generates a little lower purity clusters, we observe that it also produces

a high ratio of events and irrelevant clusters. Through evaluation metrics, we con-

cluded that by extracting 1-3gram features and setting the Epsilon value to 0.8,

our system gets a high score from any perspective, with 96,9% Purity and 88.2%

Detection of Events.

Tracking a specific event from the data-set that detected from our system was
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an experiment to draw some helpful conclusions, especially for the TDT part of the

research. Firstly, we realized how important is the volume of tweets and their spikes

into a time-window for the topic to be detected by the system. We also perceived

that specific keywords, hashtags, and mentions that represent a cluster within a

particular time-window had occurred continuously during the detection of events

into different time-window and clusters. In my viewpoint, this observation will en-

courage us to measure the newsworthy and veracity score regarding a detected topic

in further investigations.

Last but not least, we analyzed the noise clusters that our system generated,

and we collected remarkable observations. In contrast with the relevant detected

clusters, noise clusters are suffered from the stability to generate relevant clusters in

time. In the majority of cases, the features of irrelevant clusters do not repeatedly

occur in continuous time-windows. Another interesting observation is that most

of the irrelevant clusters, provide hate-of-speech content regarding a popular event

or person. With that in knowledge, we recognize that by eliminating clusters that

contain hate-of-speech content, we successfully improve the outcome of our system

detection. Finally, we perceive from our experiments that irrelevant clusters are

generated with a low number of tweets. Thus, we can consider these kinds of clus-

ters as outliers and eliminate them from our system.
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Chapter Five

Conclusion

Contents
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1 Conclusion

Taking all into consideration, the goal of this research is to generate clusters with

a high quality of purity that also related to a relevant topic. We strongly believe

that we achieve the object, and we offer some valuable information that will help re-

searchers digging into more investigation on this very tough problem. The plethora

of information that we retrieved from every tweet and also the amount of our data,

gives us a state-to-the-art outcome, which can also represent the processing of real-

time data. The experiments we covered, suggest that by using a combination of text

and twitter features combined with n-gram analysis, will help us extract the most

appropriate feature for high-quality clustering. Besides that, we figured out that

the DBSCAN algorithm has a remarkable impact on our clustering approach, more

specifically by recognizing and eliminating the noisy data from the creation of our

clusters, and the best possible outcome. Consequently, we also managed to sum-

marize each cluster generated by finding the most common words, hashtags, URLs,

the number of tweets contained on each cluster, and mainly the most representative

title. This stage of summarizing each cluster Conclusion that we created in our
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model, helped us to draw some conclusions and compare the differences between

relevant and irrelevant clusters. Finally, we claim that the decision of our clustering

method DBSCAN, which we concluded to utilize in our system, is one of the most

critical keys to overcoming this challenging issue of Event Detection in Micro-blogs,

and especially overcome the issue of noise data.

5.2 Future Work

The investigation of Event Detection in Micro-blogs can be extended into a wide

range of further works in the future. Our study focuses mainly on clustering methods

that will group tweets related to a particular topic. However, there are also plenty

of tasks that are essential for system’s better performance. First of all, great future

work in our study is the implementation of noise filtering before the feature extrac-

tion. In other words, the implementation of a system that will classify the tweets

into spam messages, chit-chat dialogue, advertisements, and regular messages is a

crucial part of our research. The evolution of our model by appending this function

will result in more precise the outcome.

Moreover, interesting work in the future would be the analysis of location from

each topic that was detected by our system. An investigation on where precisely

each topic was detected is another tough but also an attractive part of our case. For

instance, our system would be able to define which topics are local events and which

are global. This goal would achieve by digging further into the social features pro-

vided by tweets. Unfortunately, only 2% of tweets globally contain the geographical

coordinates of where they posted, although there are other interesting features from

tweets that are also considered for this part. Extracting data from shared URLs

and getting the location of each user who posted the tweet are examples of features

that would be interested in this work.

Besides that, great future work will be the calculation of the Newsworthiness
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Conclusion score for each candidate event that is clustered by our system. News-

worthiness, in our case, is depended on the content of each cluster. This part of

the research can be implemented after the Event Summarization, where our model

consumes the most common words of tweets, the most common hashtags, and also

the most representative title for the cluster. Using POS libraries and Named Entity

Recognition tools maybe acted as a trigger to tackle this future part of work.
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Appendix A

Abbreviations

AMI Adjusted Mutual Information

API Application programming interface

BBC British Broadcasting Corporation

BOG Bag of Words

CNN Cable News Network

CPU Central Processing Unit

DBSCAN Density-based spatial clustering of applications with noise [9]

FIFA Fédération Internationale de Football Association

FMI Fowlkes-Mallows Index

FN False Negative

FP False Positive

FSD First Story Detection

HDBSCAN Hierarchical Density-based spatial clustering of applications with

noise [18]

IDF Inverse Document Frequency

JSON JavaScript Object Notation

LSH Locality-sensitive hashing
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Abbreviations

MI Mutual Information

NED New Event Detection

NER Named Entity Recognition

NFL National Football League

NLP Neuro-linguistic programming

NLTK Natural Language Toolkit

OPTICS Ordering Points To Identify the Clustering Structure [13]

POS Part-of-speech tagging

RAM Random-access memory

RT ReTweet

TDT Topic Detection and Tracking

TF Term Frequency

TP True Positive

URL Uniform Resource Locator
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Equations

P (i) = |Ui|/N (B.1)

H(U) = −
|U |∑
i=1

P (i) log(P (i)) (B.2)

P ′(j) = |Vj|/N (B.3)

H(V ) = −
|V |∑
j=1

P ′(j) log(P ′(j)) (B.4)

Equations B.2 and B.4 are the calculation of the entropy of the two set of label

assignments U and V. Equations B.1 and B.3 represent the calculation of the prob-

ability of U and V are picked at random respectively.

MI(U, V ) =

|U |∑
i=1

|V |∑
j=1

P (i, j) log

(
P (i, j)

P (i)P ′(j)

)
(B.5)

Equation B.5 is the calculation of the mutual information score between two label

assignments U and V.

H(C|K) = −
|C|∑
c=1

|K|∑
k=1

nc,k

n
· log

(
nc,k

nk

)
(B.6)

Equation B.6 is the calculation of conditional entropy of the classes given the cluster

assignments.

H(C) = −
|C|∑
c=1

nc

n
· log

(nc

n

)
(B.7)

Equation B.7 is the calculation of the entropy of the classes.
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Dictionary Features

adjusted_mutual_info_score

bi-gram: n-gram of size 2

chit-chat Small talk

cleaning_data: The data after the preprocessing.

completeness_score

content-content: A relation between two contents

dataset: A set of data

Detected_Events

entity-based: Based on entities

Eps: epsilon

fowlkes_mallows_score

graph-of-words: A graph that contains words

hashtag: Symbol "#" that occur in a tweet content

homogeneity_score

key_phrase keywords that create a phrase.

mention: Symbol "@" that occur in a tweet content
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micro-blogs: Social Media platforms that allow users exchange content with each

other.

MinPts: Minimum number of points.

multi-dimensional

n-gram: A sequence of n words from a given content of text.

non-zero Not equal to zero

out-of-the-box

outliers Noise data

preprocessing: An important step that includes data modifications in order to

be processed at the next step.

pre-trained: Data that are trained before.

stoping_words: Commonly used words.

time_window: A predefined duration of time.

tweet_features: All entities that includes in a tweet(mentions, hashtags, RTs,

URLs)

tri-gram: n-gram of size 3

tweet_id: The unique id of tweet.

uni-gram: n-gram of size 1

user-content: A relation between a user and content
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