
1

University of Cyprus

Computer Science Department

PRESENTATION PLAN

INDIVIDUAL DISSERTATION

May 2019

2

INDIVIDUAL DISSERTATION

Monitoring System for Photovoltaic Plants

Stefanos Ioannou

University of Cyprus

Computer Science Department

May 2019

3

University Of Cyprus
Computer Science Department

Monitoring System for Photovoltaic Plants

Supervisor

Marios D. Dikaiakos

Stefanos Ioannou

May 2019

4

Summary

Chapter 1 Purpose & System Architecture 5

1.1 Project Purpose

1.2 ENEDI Project Correlation

1.3 General Structure

1.4 PV Technology & Characteristics

Chapter 2 Microcontroller Collector 17

2.1 Arduino Uno Rev3

2.2 Xbee Transmitter Module

2.3 Sensors

2.4 Software on the Microcontroller Collector

2.5 Power Supply

Chapter 3 Single Board Computer Coordinator 24

3.1 Raspberry Pi Model 3+

3.2 Xbee Receiver Module

3.3 Software on the SBC Coordinator

Chapter 4 Cloud Virtual Machine 31

4.1 Virtual Machine Characteristics

4.2 Grafana Framework

Chapter 5 Prometheus Monitoring System 32

5.1 Prometheus Concepts

5.2 SBC Coordinator Prometheus

5.3 Hierarchical Federation Prometheus

5.4 Prometheus Instrumenting

Chapter 6 Architecture Justification 35

6.1 Architecture Justification

6.2 Architecture Information

Chapter 7 Optimization 37

7.1 Alternative Infrastructure Architecture

7.2 Possible Add-Ons

References 41

Appendix 43

5

Chapter 1
Purpose & System Architecture

1.1 Purpose of Project
Monitoring a photovoltaic system is considered a big challenge nowadays as the solar

PV energy generation is growing. The increasing cost of thermal power generation has

resulted in a shift to renewables. Many research centers as well as firms seek to possess

a powerful monitoring structure to check the generated electricity from the solar

modules in order to compute expenses and return-on-investments. Furthermore by

maintaining an observation on performance metrics on various solar panel modules we

can build an efficient PV module to increase the efficiency on solar power collection.

Another use of this structure is to monitor home solar panels for personal usage. The

implementation of the system is simple, by following the steps on the later sections, an

engineer can easily build the infrastructure for home monitoring.

1.2 ENEDI Project Correlation
This project focuses on to build a fully functional cheap monitoring structure using

microcontrollers and sensors that can gather photovoltaic metric. The proposed system

is an alternative approach to the one that is used in ENEDI. The monitoring system

designed in ENEDI project is quite expensive because the machines that are used have

low observational error [N. Louloudis, page 33] and the Data Loggers are scientific

expensive components. Particularly the Campbell Scientific CR3000 costs up to

3000$ [Radwell International].

The modules that are used in the ENEDI project are DC Power & DC current & DC

voltage Sensors, PV temperature sensor, Wind Speed Sensor, DataLogger, Ambient

Temperature & Humidity Sensor, HTTP module, Global Pane of Array Irradiance

[N.Louloudis ,page 34]. The proposed systemmust keep close to having the same

functionality as that in the ENEDI with reduced expenditure. Moreover, the proposed

alternative infrastructure has embedded microcontrollers and single board computers

that can provide even more abilities to the researchers when monitoring the PV

modules. Microcontrollers working together with single board computers make a very

good combination of an error-resistant infrastructure and allows the organization that

uses the system to maintain a high, consistent standard of data quality.

6

1.3 High Level Reference System Architecture
GUI layer

Figure 1.3.1: The GUI layer is divided into metrics visualization and event logs table.

Component Description

Metrics
Visualization

A graphical representation of the metrics that are gathered from
the PV module using time plot charts. Visualization must be UI
friendly and the user must be able to observe multiple charts in
one window.

Event Logs A text table with each record containing a timestamp with an event
that happened regarding the status of the system. [ex. failure of a
particular component at a particular time]. The event logs must be
visualized in an elegant manner using the latest internet software
technology.

The components of GUI layer use the following software and network protocols:

Component Software / Programming
Languages

Communication Protocols (Sorted
following Internet protocol suite
model)

Metrics
Visualization

Grafana Dashboard MAC / IPv4 / TCP / HTTP - 1.1 or 2.0

Event Logs HTML/ CSS/ Javascript /
Python 2.7

MAC / IPv4 / TCP / HTTP - 1.1 or 2.0

Figure 1.3.2: Visualizing data using Grafana Dashboard.

7

API layer

Figure 1.3.3: API layer is divided to the database layer, one system and two services.

The API layer demonstrates the organization of the components behind the system. The

main component is the API monitoring system and secondary components are the

configuration service and the delivery service.

All the subroutines of the API are seen in the Appendix Code section.

Component Description

API Monitoring System Subroutine definitions:
● Microcontroller Collector Script
● Database handler Script
● Python Pyramid Server Script
● SBC Coordinator Script

API is divided into the above modules for properly execution
of the monitoring process. All the script modules are defined
in the sections below.

Configuration Service Configuration service is responsible to configure onsite park
collector modules, single board computer coordinators and
multiple parts of the monitoring system. Configuration
Service does not provide the capability of updating the
modules on runtime.

Discovery Service The service for discovering all the modules during runtime.
A simple ping by this service, will list all the module services
with a corresponding health status. For the microcontroller
collector modules, the Discovery Service cannot ping,
because the microcontroller does not have any API
endpoints and does not receives any request. Therefore the
microcontroller must constantly feed with data the
discovery service.

8

Metrics DB & Event
Logs DB

The metrics database store all the metrics that are gathered
from each collector module and the event log database any
event logs that are produced from the discovery service.

The components of API layer use the following software and network protocols:

Component Software / Programming
Languages

Communication Protocols

API Monitoring
System

Python 2.7 / JavaScript MAC / IPv4 / TCP / HTTP - 1.1
or 2.0

Configuration Service Python 2.7 / JavaScript ZigBee Protocol & MAC / IPv4
/ TCP / HTTP - 1.1 or 2.0

Discovery Service Python 2.7 / JavaScript ZigBee Protocol & MAC / IPv4
/ TCP / HTTP - 1.1 or 2.0

9

Infrastructure Layer

Figure 1.3.4: Infrastructure Layer Diagram that is consisted of Level and Layers

The infrastructure layer is composed by levels and zones. Level 1 has multiple zone

networks. Each zone represents a network tree that the root is the single board

computer (SBC) coordinator and the microcontroller collectors are leafs. The

infrastructure is capable of having as many zones as possible [N zones]. The

microcontroller collectors are sending information to the SBCs. Only one Coordinator

and one or multiple (up to 40) end devices can exist inside the zone network. The

reason is explained on the protocols section and it is because of a limitation of the

ZigBee protocol. This literally means a zone is equivalent to a closed network cluster.

Level 2 components are the SBC coordinators and the cloud storage. The coordinators

that gather data from the collectors, communicate to an external server storage. The

limitation on this network model is that it only allows up to forty collectors per SBC.

This restriction is applied for several reasons. First for scraping reasons, if for every one

minute a scrape happens then all the microcontroller collectors in the network zone

must send their data without collisions.

10

High-speed high-bandwidth isochronous is subject to data loss. So if a SBC has many

radio receiving modules on its USB ports, there is a vulnerability to lose information.

Microcontroller Collector

Figure 1.3.5: Microcontroller Collector Layer

The microcontroller has an embedded trace antenna on a regulator board. The

prototype is consisted of a breadboard that the sensors rely on. The apparatus has an

ambient temperature sensor for measuring the temperature, a humidity sensor for the

measuring humidity, a direct current and voltage sensor for measuring current and

voltage of the solar PV. A microcontroller does not have any other means for

transmitting data except of the trace antenna. A microcontroller typically is a computer

on a single monolithic integrated circuit. Microcontroller’s program must be stored in

the available on-chip memory. Compilers and assemblers are used to convert both high-

level and assembly language codes into compressed machine code. Usually, they contain

11

several to dozens of general purpose input/output pins (GPIO). GPIO pins are software

configurable to either an input or an output state. Configured GPIO pins to an input

state are often used to read sensors or external signals, in our case the four sensors.

Configured to the output state, GPIO pins can drive external devices through outer

power electronics such as the trace antenna.

Single Board Computer

Coordinator

This simple implementation is

enough to make a single board

computer behave as a

coordinator to

microcontrollers. These

computers are portable and

can run a wide range of

platforms including Linux

distributions, UNIX, Microsoft

Windows & Android. The

computer is connected to the

trace antenna via a USB board

that allow the trace antenna to

exchange data using USB

standard with the computer.

Figure 1.3.6: Single Board

A huge factor for choosing over Computer Coordinator Layer to use a SBC over other

modules is the power cost and the computational needs of the problem. “While SBC-

based clusters are energy efficient overall, the operation cost to performance ratio can

vary based on the workload.”, “The low cost benefit of using SBCs is an attractive

opportunity in green computing. These computers are increasingly becoming powerful

and may help improve the energy efficiency in data centers.” [Basit Qureshi and Anis

Koubaa]

12

For collecting data from the micro controllers and sending them to a server, a SBC

covers the computational needs without much utilization. The time complexity of the

problem is ,(ༀࠀ� where N is the length of the metrics.

Upon the next chapters there will be an excessive discussion on the implementation of

each layer and the chosen products that assemble the components and a justification

followed by financial cost of this model for proving our purpose.

13

14

Communication Protocols

Figure 1.3.7: Network Protocols involved in the infrastructure.

Description of the Communication Protocols

HTTP Protocol

The HTTP is an application protocol and the foundation of the World Wide Web.

It is simple, extensible and stateless. The proposed system follows the HTTP

communication between client requests and server responses. These messages will be

exchanged from the single board computer Coordinator to a virtual machine [figure

1.3.8]. The proposed solution follows transmission control protocol (TCP) for transport

layer, internet protocol version 4 (IPv4) for internet layer and medium access control

(MAC) for link layer for the network part between the SBC Coordinator and the Virtual

Machine.

ZigBee Protocol

ZigBee is a higher latency, lower bandwidth, asynchronous protocol that uses the

802.15.4 standard as a baseline and adds additional routing and networking

functionality.

ZigBee can be best described as a mobile ad hoc network because it does not rely on a

pre-existing infrastructure, such as routers in wired networks or access points in

https://en.wikipedia.org/wiki/Router_(computing)
https://en.wikipedia.org/wiki/Wireless_access_point

15

managed wireless networks [C. Siva RamMurthy & B. S. Manoj] but is a self-configuring

network of mobile devices connected wirelessly [Morteza M. Zanjireh & Hadi Larijani].

The ZigBee protocol supports three operating modes: a) Coordinator b) Router c) End

Device. The Coordinator forms the root of the network tree and might bridge to other

networks. There is only one ZigBee Coordinator for a network of end devices and it is

capable of: a) establishing a ZigBee network, b) permit other devices to join c) leave the

network, d) assign 16-bit network addresses and route network packets. ZigBee Router

acts an intermediate router for forwarding data. All the operating modes receive or

send network packets, can join or leave the ad hoc network or entering sleep mode

[Ankur Tomar, page 15]. End Device main functionality is to keep communicate with

the parent node which is a Coordinator node.

Routers and Coordinators maintain a table of all child devices that have joined called the

child table which has finite size and determines the number of children that can join the

particular Router or Coordinator. The initial release of software on this platform (Digi

Xbee) supports up to 40 devices when configured as a coordinator or a router. [Digi

Documentation, End Device Capacity]

IEEE 802.15.4

The IEEE 802.15.4 physical layer transmits data using a) a certain radio channels b)

spreading techniques c) specific modulation. To implement these techniques it offers

these characteristics: multiple channels from 868 to 868.6 MHz, 902 to 928 MHz and 2.4

to 2.4835 GHz. The spreading techniques is Direct Sequence Spectrum which the

message signal is used to modulate a bit sequence much shorter than the original

message signal also known as Pseudo Noise code which it will greatly increase the

occupied frequency bandwidth of the signal energy around the carrier. It’s vital to

discuss how this protocol ensures data integrity over network collisions. For packet

collisions, the IEEE 802.15.4 evaluates the medium activity state with the clear channel

assessment (CCA) task. CCA does can be performed in three different ways: a) Energy

Direction: If there is a detection of a signal that is above an ED threshold. The threshold

based on the bandwidth of the IEEE 802.15.4 channel. b) Carrier Sense Mode (CSM):

The detection of a signal with similar spreading characteristics of a signal of IEEE

802.15.4. c) The combination of both a) and b). The CSMAmechanism that ensures to

avoid collisions in the network is based on CCA task. Each time the CCA returns a busy

channel the CSMAmechanism increases the NB (Number of back offs; failed attempts)

else it decreases the ContentionWindow, which is a variable that represents the

16

number of back off periods that must be clear before starting transmission. When

ContentionWindow variable reaches 0, the message is transmitted.

No device is assign router mode for this implementation. This network model can

advance by adding modules that implement ZigBee routing operation.

1.4 PV Technology & Characteristics
The power output of a solar panel depends on the intensity of solar radiation, the

amount of aggregated area of solar cells and the solar cell power efficiency of the

modules.

� ࠀ �ܸ�̴�̴ܽ ݎ �ܸ�ܽ�����ܽༀ�� ݎ �ༀ�ܽༀ݁���
[Page 8, F. Kong and X. Liu]

Solar cell power efficiency refers as the amount of energy in the form of sunlight that

can be converted via PV modules into direct current. The proposed systemmust be able

to provide all these parameters in real time to the observer. Other environmental

factors such as humidity and temperature are necessary for measuring the performance

of the modules. For example power output degrades when ambient temperature is

getting higher”. According to estimation for every degree rise in temperature, efficiency

of PV module decreases 0.5 percent” [Rizwan Arshad, Salman Tariq, Muhammad Umair

Niaz, Mohsin Jamil].

Solar irradiance can be measured using an analog to digital pyranometer. Pyranometers

are very expensive in the market. A pyranometer that can be integrated on a

microcontroller can cost up to $200 -$800.[Scientific Campbell]

The following performance parameters are proposed by the ENEDI engineers to be

continuously sampled at a 1-minute resolution and accumulated as 15-minute averages

for the

number of selected PV modules (i.e. 2 PV modules): 1) Module temperature 2) DC

current 3)DC voltage 4)Solar Intensity [FOSS Engineers, page 1]. The proposed system

measure all these metrics except solar intensity due to the cost of the pyranometer

sensor.

17

Chapter 2
Microcontroller Collector

2.1 Arduino Uno Rev3
Arduino Uno is a microcontroller board based on the ATMEGA328 next generation

microchip. ATMEGA328 is based on an advanced RISC architecture with 32x8 general

purpose working registers. The Arduino clock rate is up to 16MHz resonator with a

crystal oscillator for dealing with time issues. Inside Arduino there is a self-

programmable flash program memory where developers can upload a script that will

keep executing without any human intervention. Also it is capable of working between

temperatures of - 40°C to 85°C [Arduino Datasheet]. On waking stage at 25°C and 1.8 V

as operating voltage, its consumption is 50 mA, but by using power saving techniques

such as lowering the voltage, reducing the clock speed and saving power with software

the consumption can fall by to up to 13.4mA [Spark fun, page 2]. The Arduino Uno Rev3

board is connected to a computer via USB, where it connects with the Arduino

development environment (IDE). The user writes the Arduino code in the IDE, then

uploads it to the microcontroller which executes the code, interacting with input and

output modules such as sensors. With all these diverse features Arduino is definitely a

neat embedded computer platform choice for monitoring purpose projects. The internet

community has published thousands of projects that can be done using Arduino.

2.2 Xbee Transmitter module for Microcontroller Collector

Module Model Data Rate Antenna Power
Consumption

Range

Xbee 1mw
Trace
Antenna

Trace
Antenna-
Series 1

250kbps Printed
circuit board

50mA@ 3.3v 300 ft

Figure 2.2.1 Xbee Module Table Description

Xbee 1mw Trace Antenna is a radio module that communicates using the protocol

802.15.4 / ZigBee standard protocol. The main mechanism of the module is to perform

frequency modulation. The power output of Xbee is about 1 mW and outdoor range is

up to 300 ft. Radio frequency data rate can be up to 250 Kbps. Today Xbee is the de facto

https://https//www.circuito.io/blog/arduino-sensors-explained/

18

solution for internet of things for point to point communication and multi-point

networks. [Xbee Datasheet]

Xbee Configuration

Digi International Inc, the company that produces Xbee modules, provides a platform

application to enable developers to configure and interact with Xbee modules, the XCTU.

XCTU is very simple to use and has friendly GUI. Through the platform, the Xbee

transmitter must be configured to act as an end device, as the proposed architecture is

indicating. The parameters for the Xbee to behave as an end device and transmit data to

a parent node (coordinator SBC) is the channel, Baud Rate and operation mode. Direct

addressing requires the sending device to know three kinds of information regarding

the receiving device:

However, the Xbee module has to be integrated with a specialized regulator board on

the breadboard. The board is populated with 3.3V regulator and carries a FT231X

microchip which offers a compact bridge to full handshakes UART interfaces. UART is a

common protocol used for duplex serial communication. Xbee modules use UART for

serial communication. Sensor values pass through the digital port and then are exposed

to a serial port which is used for communication between the Arduino and the Xbee.

Module Microchip Function Compatible

Xbee Explorer

Regulated Board

FT231X Handles 3.3V regulation,
signal conditioning, and
basic activity indicators

Xbee Series
1/2

Figure 2.2.2 Xbee Regulator Board Table Description [Sparkfun Xbee Documentation]

2.3 Sensors

Sensor Model Metric Type Accuracy (Error Value OR
Rate)

Ambient Temperature DHT22 Celcius (°C) ±2℃

Relative humidity DHT22 RH (Percentage) ±5％RH

Direct Current ACS712 Amperes (A) 1.5% at TA = 25°C

Direct Voltage HCMODU0047 Voltage (V) 1%

Figure 2.3.1 Sensors used with the Microcontroller Collector

[DHT22 Technical Sheet, ACS712 technical sheet, HCMODU0047 technical sheet]

19

All the sensors listed above demand voltage supply of about 3-5.5V and are connected

on a breadboard. For monitoring temperature, DHT22 is selected as it has a very high

humidity and temperature measuring accuracy. Measurement range for relative

humidity is between 0-100% and -40°C to 125°C for ambient temperature. It uses an 8-

bit chip for controlling a polymer humidity capacitor and DA18B20 is used for detecting

temperature. Furthermore for monitoring electric current, ACS712 is a fully integrated,

low resistance current sensor. The device has a precise linear Hall circuit with a copper

conduction path. When current flows through this copper conduction path, a magnetic

field is generated which the Hall integrated circuit converts into a proportional voltage.

An average sensing period is 2 seconds with full interchangeability. In the market is

typically addressed as a very good economical solution for DC sensing using a

microcontroller. The HCMODU0047 is simple and very useful sensor which uses a

potential divider to reduce any input voltage by a factor of 5. It has the capability to

measure up to 25V. This allows the analogue input of a microcontroller to monitor

voltages much higher than it is capable of sensing. For example Arduino Uno by itself is

only capable of sensing between 0V to 5V. [Arduino Datasheet]. The sensor also

includes screw terminals for easy and secure connection of a wire.

20

Figure 2.3.2: Proposed Microcontroller Collector apparatus on a breadboard.

Arduino has about 28 pins, 14 digital I/O pins, which 6 provide pulse width modulation

output [Arduino Datasheet]. As in figure 2.3.2, the apparatus takes advantage of pin

No.7 for digital input values of temperature and humidity and pin No.A0 with pin No.A1

for analog input current and voltage respectively. Pin No.7 is connected with the second

data pin of DHT22 which requires a usual 4.7K pull up resistor.

Pin A0 & A1 are an analog pins and are connected with the second analog pins of

ACS712 and HCMODU0047 sensors. The pins can read signals from the analog sensors

and convert them into a digital value for the microprocessor. Pin 1 TX which is used for

serial receiving from the Xbee. When operating, the TX led flashes with baud speed

while sending the serial data and RX led flashes during the receiving process. The other

two pins that are shown in figure 2.3.2 are used for voltage and ground. Through

breadboard as a constructor base, sensors operate at 5V. Each sensor must be

connected to the ground and the voltage at the two sides of the breadboard.

21

2.4 Software on the Microcontroller Collector
Arduino Script

The collector script [collector.ino] is uploaded to Arduino. The script writes the values

that gathers from the four sensors to the serial port as human-readable ASCII text.

Each collector has a unique ID from 0 to 4. Remember by the system architecture that

every SBC Coordinator has a limit of coordinating forty microcontrollers collectors. For

example if we have 3 microcontrollers inside the adhoc network, the IDs are : 0,1,2. The

predefined ID has a type of signed integer and is configured as a constant in the script.

Message Structure

The microcontroller creates and exports a message that contains sensor values and is

transmitted via the Xbee module. Now the critical part is that the microcontroller

collector must send data in a sophisticated manner. A message must be concise and

comprehensive for transmitting with less delay and demanding less packet buffer. A

possible tuple that can represent a microcontroller message can be indicated as:

� �� �݄ܽ�ܽ � �݁ �݄ܽ ݎܽ݁�̴� � �݁ �݄ܽ �ܽ���� ��hܽ ̴ༀh � �݁ �݄ܽ �� �� �݄ܽ �������ༀ�����ܽ� ����ܽ�����

A single message is consisted of 2 integer and 1 characters. That is about 7 bytes that

propagate from the Xbee transmitter. The four metrics abbreviations are the follow: T

for temperature, H for relative humidity, C for current and V for voltage. The values are

integers because there is no interest for precision metrics due to the nature of the

problem. Precisions metrics such as floats or doubles need more memory when stored.

To sum up, each row represents a message:

Value Metric Identification

Integer C Short Integer

Integer H Short Integer

Integer T Short Integer

Integer V Short Integer

Figure 2.4.1: Microcontroller message types

For example the message 13T0 means that the microcontroller collector with ID 0 has

measured the temperature: 13 °C.

22

2.5 Power Regulation & Battery

The apparatus will have as main

power supply a 12V Battery.

Because of the minuscule energy

consumption of Arduino on working

stage, every microcontroller

collector will be powered up from a

12V/22Ah battery outside in the

solar park. A typical 12V battery has

a capacity about 7 Ah to 10 Ah. That

means if we draw 7A with 12V, the

battery will last an hour. Arduino

needs about 50mA for normal

operation. For making sure Arduino

will draw correct voltage, a high

frequency step down generator

must be inserted in the apparatus.

By forcing the current to pass

from two input and output

wires, the voltage

Figure 2.5.1 Microcontroller Collector Voltage regulation

can be safely converted from 12V to 5V with the module MP1584 [MPS1584 Datasheet].

Another adjustable potentiometer to use is the ECO SUN simple pulse charge regulator

24V to 12V. This is the main regulator that connects the solar panel to the battery.

Direct current from the solar panel modules pass through the regulator and is stored

inside the battery. The flow of electricity follows the order as shown in figure 2.4.1.

Every component of the collector has different voltage demands. This complex

regulation might be unpleasant but it is necessary.

23

Power Cut Scenario

With this model there are multiple possible scenarios to be consider of. For instance

direct sunlight might be deficient as a result of an overcast. Suppose that battery is fully

charged and contains up to 10A. The sustainability of the collector without direct

sunlight is 20 Days:

� ࠀ � ݎ ܸ

��amm�i� ࠀ �� ܸ ݎ �t a ࠀ ��t �耀䁣

A battery 12V 10A ensures a power output of 120 Watts/Hour. Arduino draws 0.05A at

working stage as mentioned before, with 5V operating voltage.

But there is also another component that consumes energy at around 50 mA and that is

the Xbee. Therefore Arduino with Xbee module attached can last on the particular

battery for about 240 hours or about 10 days.

a�h݁�ༀ� ���݄ �tܽܽ 䁣�݁�݁ ࠀ t�m耀��t ࠀ �tt ݄�݁�݁

A practical solution is an engineer working for the solar park to recharge the batteries

every 10 days. The discovery service can do the following:

1. If those days pass and the Arduino die, the discovery service has to

mention the failure of the component.

2. An even better solution is for the discovery service to report the overcast

and take responsibility to preserve the power supply to the apparatus.

In conclusion, the theoretical span for the microcontroller collector to have fully

functionality is 10 days, after any termination of green power supply.

The discovery service furthermore will commit frequent checks and monitor the supply

for the credibility of the power system using other sensors.

24

Chapter 3
Single Board Computer Coordinator

3.1 Raspberry Pi 3 Model B+
Raspberry Pi 3 Model B+ is a single board computer and functions with the operating

system Raspbian. It uses the processor Broadcom BCM2837B0 SoC with a 1.4 GHz 64-

bit quad-core ARM Cortex-A53. It supports Ethernet up to a gigabit (1000Mbps,

1000Base-T) and the radio supports 802.11ac WiFi networks running on the 2.4GHz

and 5GHz frequency bands, Bluetooth 4.2, and Bluetooth Low Energy (BLE) connections.

Raspberry Pi is selected as the core module of the single computer coordinator because

it has the capabilities of a mini-computer and covers the computational needs for this

assignment. Therefore it demands much greater energy than Arduino Uno R3.

Raspberries are required to have a standard alternating-current (AC) electric power

supply. [Raspberry Pi Documentation]

Setting the Raspberry Pi

First the RP must be configured with Raspbian operating system. The installation of

Raspbian Image must be done on the SD card without the module, a headless install.

1. Format the SD card

2. Download and Extract NOOBS software from raspberry foundation on SD card

After this step, the RP is ready to start. Also the configuration for the Secure Shell is vital

for connecting to the RP later. SSH can be enabled by placing a file named ssh, without

any extension, onto the boot partition of the SD card from another computer. When the

RP boots, it looks for the ssh file. [Raspberry Pi Documentation]

3.2 Xbee Receiver module on SBC Coordinator

Module Model Data
Rate

Antenna Power
Consumptio
n

Range

Xbee 1mw
Trace
Antenna

Trace
Antenna-
Series 1

250kbps Printed
circuit board

50mA@
3.3v

300 ft

25

Figure 3.2.1 Xbee Module Table Description

Module Microchip Function Compatible

Xbee Explorer USB FT231X USB to serial base unit
for the XBee line.

Xbee Series
1/2

Figure 3.2.2 Xbee USB Board Table Description [Sparkfun Xbee Documentation]

Figure 3.2.3 Single Board Computer Coordinator apparatus

The Coordinator forms the root of the network tree and might bridge to other networks.

There is precisely one Zigbee Coordinator in each ad hoc network in level 1 as it is

indicated by the system’s architecture. The Xbee module is connected to an Xbee USB

board. Thus the coordinator has a simple implementation. The raspberry Pi is plugged

via a RP compatible power cable to a standard wall power and via a USB cable with the

Xbee Explorer USB board via the No.1 USB port. The Xbee Explorer USB board connects

the Xbee module to the SBC, allows data exchange and access the serial and

programming pins of the Xbee module. Its main embed component is an FT231X USB-

to-Serial converter chip that translates data between the computer and the Xbee, same

as the Xbee receiver module regulator board.

26

3.3 Software on the SBC Coordinator
8-N-1 Protocol & Python Library

Before the software implementation is discussed, it is important to mention the 8-N-1

shorthand abbreviation. 8-N-1 Protocol is a physical layer protocol that is used by

universal asynchronous receiver-transmitter (UART) hardware such as the Xbee

module. "8-None-1" is a common shorthand notation for a serial port parameter setting

or configuration in asynchronous mode, in which there are eight (8) data bits, no (N)

parity bit, and one (1) stop bit [Faranak Heidarian]. It refers to the standard breakdown

of data words in the serial format. As referred before, Xbee modules use UART to

communicate with USB and baud rate, which is the serial communication speed

between the modules (9600). It is essential to find the correct configuration on how to

read bits coming from the Xbee module.

Data gathering from Xbee module

In python library “pyserial”, which is a specialized library for reading data from serial

ports, there is a command to open a port at “9600,8,N,1” with no timeout which is to

follow the 8-N-1 concept and have the baud rate of 9600 bps.

To open a serial port and fetch data from Xbee module using pyserial, a listener is

implemented:

1.By calling the function pyserial.Serial() and setting as a parameter the string

(‘dev/ttyUSB0’), the listener is commanded to follow the 8-N-1 concept.

2. Inside a forever loop, a read line command will keep reading data from the

serial port where the XBEE is connected.

Coordinator python script [coordinator.py] in the code appendix illustrates this

scenario.

Remote Accessing Raspberry

SSH Protocol

Communication with Raspberry Pi can be done via SSH protocol. PUTTY is an excellent

SSH and telnet client that provides a graphical user interface for setting any option of

the SSH. For accessing the RP via SSH, hostname and port must be given. Hostname is

the local IP address of the Raspberry Pi, which is dynamic if not configure static via the

DHCP configuration file. The port used for SSH is 22.

27

Remote Frame Buffer Protocol

Another program used was RealVNC which offers a secure ready to use remote access

with graphical desktop sharing (Virtual Network Computing). It uses the Remote

FrameBuffer protocol (RFB) to remotely control the targeted Raspberry Pi. For

accessing via RealVNC a hostname of the RP and port number (usually port No.1) is

needed.

IP Address of SBC

A problem occurs with the IP addresses of the SBC Coordinators. Initially inside the

local network, each Coordinator has a local IPv4 address that ranges from 192.168.0.0

to 192.168.255.255. All the SBCs are connected via an Ethernet cable to a router, for

getting a connection over the internet. In other words the network is composed of the

SBCs and a router. In this case, the default gateway that uses the internet protocol suite

that serves as the forwarding host is the router. The only external IP that is known is the

router’s.

Figure 3.3.1: Example of assigned IP addresses in the network

Port Forwarding

In order to remote access a SBC, port forwarding must be done. Port Forwarding is the

process of forwarding data to a node inside a local network with the address of gateway

node and the port that much to the target node. Port forwarding can become

complicated when there are many instances we want to access with specific ports inside

our network. For secure port forwarding Remote.it services were used [Remote IT].

28

Remote.it assigns an external ip address to the module using secure proxies. For

example a SBC is assigned the network address “proxy50.rt3.io.” as an external IP

address.

Configuring Remote.It

To install Remote.it services, the SBC must have the weavedconnectd linux package and

an account to the Remote.It Company.

For a SBC Coordinator the following services were configured:

1) SSH for remote access via command line, 2) Generic TCP (port 9090) and 3)VNC for

remote access with graphical desktop sharing. An example of new address for SSH

application was proxy51.rt3.io with port 30805.

Figure 3.3.2 :Remote.it device services on a SBC

Message Decomposition

In python, for decomposing the message the regular expression, the library “py.re” is

used. For example the code line re.search(r'(\d*)'+_CURRENT,incoming,re.I) finds the

value of current inside an incoming microcontroller message. Each message has three

parameters as mentioned before. After decomposing and collecting the three

parameters from the message, a request is initiated to the local server of each SBC

Coordinator:

Target Url Request : localhost:8000/store_metrics

All these processes are done inside the Coordinator script [cordinator.py].

29

Figure 3.3.3: SBC Coordinator Jobs for storing metrics

Synopsis of the coordinator script module:

1. Open the serial port following 8-N-1 concept.

2. Set up a listener for capturing the incoming microcontroller message.

3. Decompose the microcontroller message to metric, value and ID.

4. Create & send a request to the local server with the above parameters.

Local Server
Pyramid Web Framework is used for implementing the local server on the SBC

coordinator [Pyramid Documentation]. To start the server a special server bash script

[server.sh] calls the function serve() inside the server script [server.py]. Before starting

the server a configuration has to take place. A configuration is a special class

configurator that the Pyramid Web Framework offers, that has many properties. For the

current implementation each server has two accessible paths: 1) /store_metrics and 2)

/expose_ metrics. By adding a route to them, each time a request appears, a special

function that is configured to that route initiates. Routes are added manually on the

properties of the configurator class.

The store_metrics() function that routes to store_metrics path has to safely store the

request parameters from Coordinator script in a MySql Database. First it extracts the

parameters from the request and then another MySql behaviour script creates an insert

query. [databaseHandler.py]

The expose_metrics() function that routes to expose_metrics path has to fetch from the

SBC Coordinator MySQL Database the most recently record of each microcontroller

using ID with the four metrics. For example if there are three microcontroller collectors

in the MySQL Database a response from the expose_metrics function should encode

30

twelve most recent records, that is, four metrics (T, H, C,V) times three IDs with the

latest timestamp.

Figure 3.3.4: SBC Coordinator exposing metrics

MYSQL Database
Every coordinator SBC has a simple MySQL database installed on localhost. The

database is managed by the database handling script [databaseHandler.py]. This script

is provides the functionality for insertion, selection and deletion along with a database

connector. As mentioned before the server script calls the database handling module for

storing data. When insertion happens, the database handling module adds a timestamp

with the exact time of the insertion on the tuple. On the other hand, when exposing the

values, the selection of the freshest tuples is done by the selector script using a select

query. Delete module is a basic MySQL event that triggers every 14 days and delete the

metrics according to the oldest timestamp.

31

Chapter 4
Cloud Virtual Machine

4.1 Virtual Machine Characteristics
The virtual machine (VM) is the final end point of the infrastructure layer. A VMwill

have the role of cloud storage as indicated by the system architecture. For choosing a

VM it is essential to choose the correct amount of CPU cores, RAM, disk space and

bandwidth according the computational and memory needs and search for a good

company with a reasonable monthly rent. The most important aspect although, is the

disk space. All the SBC Coordinators are exposing their metrics to the VM and then, are

stored in TSDB format. [TSDB Repository]

Disk Space & API calls

Disk space is affected by the number of PV modules inside the park, the metrics that are

gathered from each one and the scrape interval. For example a one day total memory

equation would be:

���ܽ݁h̴� ࠀ ���ܽ݁�������ༀ�����ܽ��̴ܽ݁݁iܽ ݎ �ܸ݁ ݎ ���̴hܽ�ༀ�ܽ��̴�
Suppose a solar park has 200 PV modules and each minute a scrape from the

microcontroller collectors takes place. Also as mentioned before, each microcontroller

message is 8 bytes and each microcontroller on the PV module has to give 4 metrics:

200*7*4*24*60 = 8 MB per day, that is 2,92 GB per year. An average disk space for

renting cheap VM is about 25 GB.

API calls must be also calculated for every scenario. For the given scenario there are

about 1152000 incoming requests from the SBCs per day or 800 API calls per minute.

An average VM with 8GB RAM and a CPU with 4 cores can easily handle that.

4.2 Grafana Framework

For data visualization, a leading open source software for time series analytics is

Grafana Framework. It combines a friendly graphical user interface with a powerful

dashboard for any database. Workflow integration includes authentication and a variety

of themes to choose. It also provides a build in monitoring system support with a query

editor integrated with a metric name lookup and template queries for dashboard and

discover pattern of series.

32

Chapter 5
Prometheus Monitoring System

5.1 Prometheus Concepts
Prometheus is a state of the art open source monitoring and alerting toolkit. It provides

client libraries that allow easy instrumentation of many services. All the data that the

Prometheus gather are stored as time-series.

HTTP Endpoint

A very important concept is that Prometheus collects metrics from monitored targets by

scraping metrics HTTP endpoints on these targets. An HTTP endpoint is where the

timestamp values are available for scraping. An instance is an HTTP endpoint

(hostname and port). Each scrape job can target multiple instances. Jobs and instances

are configured inside the Prometheus configuration yml file. [sbc_configuration.yml]

Example of a job with multiple instances:

job: api-server

instance 1: 230.157.60.4:5670

instance 2: 230.157.60.4:5671

Prometheus Metric Type

Each value that is collected, is followed by a timestamp. The client library offers a

variety of metric types. Particularly since the monitor parameters are temperature,

humidity, current and voltage, the chosen metric is gauge, which is a metric that

represents a numerical value that can arbitrary go up or down.

5.2 SBC Coordinator Prometheus
Each SBC coordinator has Prometheus installed and listens on localhost:9090. The

instance that the SBC is scraping is the local web pyramid server. Inside the yml

configuration file, the host and port of the instance are those of the pyramid web server

(localhost:8000) and scraping is by default every 15 seconds. Scraping can change if the

needs of the center for scraping is much less aggressive (ex. FOSS, 60 seconds). The job

of each SBC coordinator has the name coordinator(ID) where ID is the ID of the

coordinator. [sbc_configuration.yml]

33

Figure 5.2.1: Local Prometheus interacting with Local Pyramid Server

5.3 Hierarchical Federation Prometheus
Prometheus system offers hierarchical federation which allows a high level Prometheus

to scrape data from another Prometheus. Prometheus exposes data in the same manner

as HTTP endpoint (localhost:9090/metrics). The Virtual Machine has Prometheus

installed and is referred as global. The SBCs Coordinators Prometheus belong to the low

levels of hierarchy. The configuration for the global Prometheus is the

following:

Figure 5.3.1: Global Prometheus scrapes Prometheus Coordinators

34

5.4 Prometheus Instrumenting
Client Library

In order to monitor services, a Prometheus client library must be chosen. The chosen

library is Prometheus Python Client [python client repository]. When instrumenting,

there must be a web server that uses the selected library for exposing the Prometheus

registry. The Prometheus registry is a set of metrics collectors, in our case gauge metric

type. These two steps where implemented in order for the Prometheus to scrape from

SBC Coordinator Pyramid server:

1) Using Prometheus python library a registry is created with four gauges. (4

Metrics)

2) Expose the registry using the Pyramid server for the Prometheus to scrape it.

Instrumentation - Best Practices

When instrumenting we should be sure that is an internal part of code. Each time a new

metric appears, a new gauge metric class must be instantiated. A gauge class

constructor takes the arguments of the name of the gauge metric, its description and the

registry to be assign. Example: gT = Gauge("Temperature", "Temperature Of Solar Panel

0", registry=registry). After that the gauge takes the value of the metric, example

gT.set(temp).When implementing the registry collector, it is prohibited to use the usual

direct instrumentation approach, which is to set each time the same gauge class with a

different value on each scrape. Instead each time we must instantiate a new class gauge

and add it to the registry.

This client-server model implementation makes the Prometheus to act as a scraper, not

a pusher. Prometheus, every time lapse collects data from a specific endpoint

(/expose_metrics). Another different implementation was to set a Prometheus as an

endpoint and push json files from the local pyramid web server. Local Prometheus with

only one scrape collects the metrics that the local pyramid web server expose with the

expose_metric handler.

35

Chapter 6
Architecture Justification

6.1 Architecture Principles
a) Maximum benefits at the lowest costs and risks: Due to the modularity of the

current architecture there is a maximum benefit at the lowest risk because of the

absence of an expensive component.

b) Compliance with policies of the system running under a solar park business or

research center.

c) Shared Information: The time plots & TSDB databases can be accessed by anyone

that has correct API credentials. This is less expensive to have the database to be

maintained in a single unit of hardware and multiple backups.

d) Technology Independence: The API system does not depend on specific

technological platform and can function on a different operating system when

To implement these ideas and deliver a real working prototype, there must be enough

justification of the hierarchy of this model. The main qualities that the proposed system

have, are derived from the architecture hierarchy. These qualities are sustainability,

modularity and flexibility.

Sustainability & Modularity

From top to bottom, each node must be interchangeable. This means that if a fault come

across, it needs to be changed without dissipate a lot of time and money. Beginning from

the metric gathering nodes, the apparatus must be inexpensive and efficient. Moving on,

each Coordinator node must be again an inexpensive microcontroller that can handle

many requests per second. Because of the absence of many computations, a virtual

machine is able to withstand the storage phase. The virtual machine is basically the last

level architecture. To be further precise sustainability is basically affected by a lot of

factors:

36

6.2 Architecture Information
Electricity Drawing

As mentioned before, the power supply of raspberry Pi is about 2.5A and has a voltage

of 5V. It takes roughly 80 hours of operation to peak the consumption to about 1kw.

Assuming that there are 8765 hours in a year the consumption aggregation is 110 KW.

The single domestic use tariff of AHK is about 9, 46 cents. Therefore a router node will

consume about 10,40 € per year. Arduino however have much lower consumption.

0.05A and voltage 5V it will take about 4000 hours to consume 1 KW. Therefore a node

gathering node will consume about 2, 20 € per year. A desktop computer uses about

45-250 W but most laptops about 15W-60W. Let’s suppose that a VMmight

theoretically use 20 W. It might need about 16, 5 € per year.

Data Volume

Data that is generated costs to store. Sophistication on data collecting is shrinking the

data to the point only to gather them without any unnecessary text characters,

timestamps. Unnecessary junk data are dispatched. When gathering, a set of rules is

applied to decrease data volume as mentioned before.

Environmental Protection Actions

To protect the apparatus from the environment, a shield for each node is compulsory.

Water from storms, heat waves, wandering animals or even a misdoer can damage the

machines. A basic shield can be 120 * 120 cm box made from wood and metal,

integrated with a locker.

Interchangeability

Each component that is found on the node can be cheaply purchased in case of any

malfunction. The most costly component is the Raspberry Pi, which costs about 40$. The

time needed to change any component is very slight because all the sensors and

modules are not embedded.

37

Chapter 7
Optimization

7.1 Alternative Infrastructure Architecture
There is a limitation on scraping, only 40 microcontroller collectors are allowed to

communicate with a coordinator as we have seen before. The current implementation is

similar to a star topology. This different architecture is proposed as a more economical

solution for many factors:

Figure 7.1.1: ZigBee Star Topology Figure 7.1.2: ZigBee Mesh Topology

The communication in a ZigBee network following star topology is simple. Every

collector (end device) is sending data to unique Coordinator, a root node. Thus star

topology is follows a centralized controlling approach with one node controlling others.

This might be adequate for several reasons 1) the sensor selected in as ZC will drain out

its battery resources in a fast pace. The second reason is that the IEEE 802.15.4 ZigBee

cluster has a limited addressing. That means on a large scale WSN there will be a

scalability problem. Resolving this problem is essential and the only way is to follow a

different network topology. By following a different network topology means that some

ZigBee modules must have router operation inside our ad hoc network.

Mesh topology is a better alternative solution as it enables better scalability and

network flexibility but adds a routing protocol overhead. This model is way more power

efficient for the Coordinator since the communication rely on many nodes. In order for

the protocol to be functional, a ZigBee Router must participate by sending multi hop

routing messages in the mesh network and associate with ZigBee Coordinator or

another ZigBee router.

38

Figure 7.1.3 : Proposed Network Topology

Scaling for Xbee communication

Suppose there are N Solar Panels inside a clean energy park. For every solar panel there

is a demand for an onsite gather node, an end-point. The number of

routers/coordinators is N & M, where N > M. A big issue is to find the optimum number

for which one coordinator will handle. The objective is to minimize errors, report

without delays failing modules and most importantly create a sustainable time schedule

for the propagation of information so that all modules acquiesce with each other. A good

scraping configuration and an observer for reporting the failing modules are the keys

for implementing the previous monitoring structure on large scale basis.

The Xbee modules are defined by IEEE 802.15.4 standard which specifies carrier sense

multiple access with collision avoidance. So the modules have already a build in

mechanism that avoid network collision.

Scheduling Microcontrollers

For successful scheduling, a very important value to set is a timeout threshold. A

timeout threshold defines the length of time where all the end nodes transmit their data

to the selected

router.

Therefore the time threshold is mathematically defined as follows:

39

��ܽༀi�݄ ࠀ � ࠀ t
ༀ� �� � � � ࠀ �tݎ���ݎ��

X denotes each end device delay that sends the information for the specific router and C

is add up idle time for spacing the propagations. Endpoint delay is consisted of

processing delay, transmission delay, queuing delay and propagation delay.

7.2 Possible Add-ons
Discovery Service on Microcontrollers

ZigBee Parent Nodes (Coordinator or Routers) receives poll request messages from the

end device. When it gets the poll request it check its packet queue to see if there are

packet data buffered for the end device. After that it sends a MAC acknowledgement

back to the end device. If an end device receives the acknowledgment and finds that the

parent has no data for it, the end device can return to idle or sleep. Therefore this

polling mechanism enables the end node to remain on sleep mode and conceive battery

life. A simple discovery service to check the communication between the Xbee is to open

a serial connection to the Coordinator Xbee and send the following commands:

send +++

send ATID 1...N (for each ID of the Xbee)

By sending the message “+++” into the serial port, an acknowledgement from the

coordinator module is received. For normal operation there must be an “OK” text

response from the Coordinator. After that, each Xbee that has paths that through the

Coordinator is sensed by the AT command : ATID (ID). Also the NC command can help

us determine how many additional end devices can join the router or coordinator.

Microcontroller Power Optimization

A policy on the working time schedule of the microcontroller must be applied. There is

no solar energy output from the PVs during night. So at night Arduino electricity

consumption must be less than 50 mA. AtMega provides a variety of power profiles and

sleep modes such as: 1) Idle, 2) ADC Noise Reduction, 3) Power Down, 4) Power-save, 5)

Standby and 6) Extended Standby.

40

Figure 7.2.1: AtMega Modules in Different Sleep Modes.

Every mode has different active clock domains, oscillators and wake up resources. As

one can see, putting microcontroller into power down state is the lowest current

consumption state. Since there is no demand for the microcontroller to gather or output

anything, the power-down sleep mode is the optimum to apply. To set this mode, there

are specific registers that must be written to logic one or zero.

Sleep mode Control Register contains 4 control bits for power management [AtMega

Datasheet, page 39]. For power-down sleep mode bits : SM2, SM1, SM0 must have the

corresponding values: 0 1 1. A lightweight low power library for Arduino that

configures these modes by just calling some functions is freely provided by the Rocket

Stream Electronics company. [Low Power Library]

Photoresistor to Predict Overcast

A photoresistor is a light controlled variable resistor that decreases with the increasing

incident light intensity. Connecting the photoresistor through the analog ports of

Arduino, can easily sense the output values of the resistor and if it is below a threshold,

a signal can be transmitted on the discovery service for an incoming overcast.

41

References

1. Δρ. Νικόλας Λουλούδης (2018) Σχεδιασμος Συστηματος Εξυπνης Διαχειρισης Φορτιων Κεντρων
Δεδομενων, 4.0 edn.

2. Radwell International (2019) DataLogger CR3000 , Available
at https://www.radwell.co.uk/en-GB/Search/?q=CR3000+ (Accessed: May 2019).

3. C. Siva Ram Murthy and B. S. Manoj (2004) Ad hoc Wireless Networks: Architectures and
Protocols: Pearson Education, Inc.

4. Morteza M. Zanjireh and Hadi Larijani (May 2015) A Survey on Centralised and Distributed
Clustering Routing Algorithms for WSNs: IEEE

5. Ankur Tomar (July 2011) Introduction to Zigbee Technology , Volume 1(), Global Technology
Centre

6. Raspberry Pi (Trading) Ltd (January 2019) Documentation Raspberry Pi 3+ ,Available
at https://www.raspberrypi.org/documentation/hardware/raspberrypi (Accessed: May

2019).

7. Basit Qureshi and Anis Koubaa (January 2019) On Energy Efficiency and Performance Evaluation
of Single Board Computer Based Clusters: A Hadoop Case Study, 4 February 2019:

Electronics 2019.

8. Rizwan Arshad, Salman Tariq ,Muhammad Umair Niaz, Mohsin Jamil (April 2014) 'Improvement in
Solar Panel Efficiency Using Solar Concentration by Simple Mirrors and by Cooling', IEEE,

pp. 292-295.

9. SparkFun Company (2019) Reducing Arduino Power Consumption, Available at:
https://learn.sparkfun.com/tutorials/reducing-arduino-power-consumption/all (Accessed:

May 2019).

10. Allegro, Microsystems Inc (n.d.) ACS712 Fully Integrated, Hall Effect-Based Linear Current Sensor
with 2.1 kVRMS Voltage Isolation and a Low-Resistance Current Conductor

11. Aosong Electronics Co.,Ltd (n.d.) Digital-output relative humidity & temperature sensor/module
DHT22

12. EKT, Ltd (n.d.) Arduino Voltage Sensor Module , HCMODU0047, Technical Sheet

13. Arduino ,RS, Radiospares, Radionics (n.d.) A000066 / Arduino / datasheet-38879526., Datasheet.

14. Digi International Inc. (n.d.) XBee®/XBee-PRO® RF Modules, : Product Manual v1.xEx - 802.15.4
Protocol.

15. MPS (2011) MP1584 ,3A, 1.5MHz, 28V Step-Down Converter

16. Faranak Heidarian (2011) Modeling 8N1 Protocol with Uppaal.

https://www.researchgate.net/profile/Morteza_Mohammadi_Zanjireh/publication/274638337_A_Survey_on_Centralised_and_Distributed_Clustering_Routing_Algorithms_for_WSNs/links/552444b80cf2b123c5173968/A-Survey-on-Centralised-and-Distributed-Clustering-Routing-Algorithms-for-WSNs.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi

42

17. SparkFun (2019) Xbee Guide, Available at:
https://learn.sparkfun.com/tutorials/exploring-xbees-and-xctu/all (Accessed: May 2019).

18. Pyramid Web Framework (2019) Support and Development, Available at:
https://docs.pylonsproject.org/projects/pyramid/en/latest/#support-and-

development(Accessed: May 2019).

19. Prometheus (2019) TSDB Format Repository, Available at:
https://github.com/prometheus/tsdb/blob/master/docs/format/README.md (Accessed:

May 2019).

20. FOSS Engineers (n.d.) Proposed Design of Data Logging.

21. Prometheus Engineers, Prometheus Python Client, and Available at:
https://github.com/prometheus/client_python (Accessed: May 2019).

22. Fanxin Kong and Xue Liu. 2014. A Survey on Green-Energy-Aware Power Management for
Datacenters. ACM Comput. Surv. 47, 2, Article 30 (November 2014), 38 pages. DOI:

https://doi.org/10.1145/2642708

23. Jean-Philippe Vasseur, Adam Dunkels, (2010) 'Chapter 19 - Non-IP Smart Object Technologies',
in (ed.) Interconnecting Smart Objects with IP, pp. Pages 295-302.

24. RocketScream. Lightweight low power library for Arduino.
https://github.com/rocketscream/Low-Power (accessed May 2019).

25. Campbell Scientific () CS301 pyranometer, Available at: https://www.campbellsci.com/ (Accessed:
May 2019).

26. Digi Company () End Device Capacity, Available
at: https://www.digi.com/resources/documentation/Digidocs/90002002/Content/Reference/

r_zb_en
d_device_capacity.htm?TocPath=zigbee%20networks%7CEnd%20device%20operation%

7C____ _3 (Accessed: May 2019).

The four scientific papers that guided me with the architecture:

1. Sheikh Ferdoush, Xinrong Li,Wireless Sensor Network System Design Using Raspberry Pi and

Arduino for Environmental Monitoring Applications,Procedia Computer Science,Volume

34,2014,Pages 103-110,ISSN 1877-0509,https://doi.org/10.1016/j.procs.2014.07.059.

2. Gaurav Jadhav, Kunal Jadhav, Kavita Nadlamani (Apr -2016) 'Environment Monitoring System

using Raspberry-Pi', International Research Journal of Engineering and Technology, 03(04).

3. Fanxin Kong and Xue Liu. 2014. A Survey on Green-Energy-Aware Power Management for

Datacenters. ACM Comput. Surv. 47, 2, Article 30 (November 2014), 38 pages. DOI:

https://doi.org/10.1145/2642708

4. Lizhe Wang, Samee U. Khan (March 2013) 'The Journal of Supercomputing', Review of

performance metrics for green data centers: a taxonomy study, 63(3), pp. 639-656.

https://doi.org/10.1145/2642708
https://www.digi.com/resources/documentation/Digidocs/90002002/Content/Reference/r_zb_en
https://www.digi.com/resources/documentation/Digidocs/90002002/Content/Reference/r_zb_en
https://www.digi.com/resources/documentation/Digidocs/90002002/Content/Reference/r_zb_en

43

Appendix

1. Definitions

IOT: Abbreviation for internet of things.
Baud Rate: Serial communication speed between modules
Serial Bus: Serial bus is consisted of a transmitter wire and the receiver

Wire (RX & TX)
Hall Effect: The production of a potential difference across an electrical

conductor when a magnetic field is applied in a direction
perpendicular to that of the flow of current

PWM: Pulse Width Modulation

Port forwarding: Forwarding data to a node inside a local network with the address
of gateway node and the port that much to the target node

SBC: Single Board Computer
Microcontroller: Control device which incorporates a microprocessor.

2. Financial Analysis

Cost of microcontroller: Cost of SBC coordinator:

Component Average
Selling Price
[SparkFun]

Raspberry Pi 3 B+
$39.5

Xbee Trace Antenna
Module

$22.95

Xbee Explorer USB

Board

$25.95

Total Amount: 88.40 US$

Component Average
Selling
Price
[SparkFun]

Arduino Uno REV 3 $22.95

Xbee Trace Antenna
Module

$22.95

Xbee Explorer

Regulated Board

$10.95

Sensor DHT22 $9.95

Sensor ACS712 $3.95

Sensor HCMODU0047 $3.95

Total Amount: 51.75 US$

44

3. Scripts

server.sh

Call the serve function of python server
#!/bin/bash
kill -9 $(lsof -t -i:8000) ;python -c 'import server; server.serve()'

collector.py

This is the collector module as described in the ADE

This module collects the message coming from the microcontroller

decompose it and creates a request to the local pyramid web server.

import time

import datetime

import server

import request

import serial

import re

import time

from prometheus_client import generate_latest, CONTENT_TYPE_LATEST

from prometheus_client import CollectorRegistry, Gauge

#These are the metric characters

_CURRENT = "C"

_TEMPERATURE = "T"

_HUMIDITY = "H"

_VOLTAGE = "V"

#Enable USB Communication

ser = serial.Serial('/dev/ttyUSB0', 9600,timeout=.5);

#Keep reading from the serial port

while True:

incoming = ser.readline().strip()

searchID =re.search(r'ID(\d*)',incoming,re.I)

searchC = re.search(r'(\d*)'+_CURRENT,incoming,re.I)

searchT = re.search(r'(\d*)'+_TEMPERATURE,incoming,re.I)

searchH = re.search(r'(\d*)'+_HUMIDITY,incoming,re.I)

searchV = re.search(r'(\d*)'+_VOLTAGE,incoming,re.I)

#If its a valid message and holds an ID

if searchID is not None:

ID = int(str(searchID.group(1)))

45

print incoming

if searchT is not None:

request.createRequest(int(str(searchT.group(1))),_TEMPERATURE, ID)

elif searchH is not None:

request.createRequest(int(str(searchH.group(1))),_HUMIDITY, ID)

elif searchC is not None:

request.createRequest(int(str(searchC.group(1))),_CURRENT, ID)

elif searchV is not None:

request.createRequest(int(str(searchV.group(1))),_VOLTAGE, ID)

time.sleep(3) # Set time sleep for scraping

database.py

#Create the connection inside the database

import mysql.connector
from mysql.connector import Error
from mysql.connector import errorcode

_DatabaseName = # Enter Database Name
_UserName = # Enter username database
_Password = # Enter password Database
_host = #Enter host
def createConn():

connection = mysql.connector.connect(host = _host,
database= _DatabaseName,
user= _UserName,
password= _PassWord)

return connection

MySql Create Statements

Create the four tables

This instructions must be inserted inside MySql:

CREATE TABLE IF NOT EXISTS temperature(ID SMALLINT,value INT,time TIMESTAMP);

CREATE TABLE IF NOT EXISTS voltage(ID SMALLINT,value INT,time TIMESTAMP);

CREATE TABLE IF NOT EXISTS current(ID SMALLINT,value INT,time TIMESTAMP);

CREATE TABLE IF NOT EXISTS humidity(ID SMALLINT,value INT,time TIMESTAMP);

MySql Insert Statements

#This is the insert python MySql where the values are push to the MySql.

#Called from the python server.

46

import database

import time

import datetime

def insert(value, metric, id):

conn = database.createConn()

cur = conn.cursor()

ts = time.time()

timestamp = datetime.datetime.fromtimestamp(ts).strftime('%Y-%m-%d %H:%M:%S')

if metric == 'C':

sql = "INSERT INTO current (ID,value,time) VALUES (%s, %s, %s)"

elif metric == 'H':

sql = "INSERT INTO humidity (ID,value,time) VALUES (%s, %s, %s)"

elif metric == 'T':

sql = "INSERT INTO temperature (ID,value,time) VALUES (%s, %s, %s)"

elif metric == 'V':

sql = "INSERT INTO voltage (ID,value,time) VALUES (%s, %s, %s)"

value = (id,value,timestamp)

cur.execute(sql,value)

conn.commit()

print(cur.rowcount, "record inserted.")

microcollector.ino (Arduino Script)

//This code is uploaded to the Arduino
//You have to also import the Adafruit Sensor Library & DHT
//Arduino Environment ->Manage Libraries
#include <Adafruit_Sensor.h>
#include <DHT.h>
#include <DHT_U.h>
#define DHTTYPE DHT11 // DHT 11
#define DHTPIN 4 // Pin which is connected to the DHT sensor.
#define ID 0 //ID of current arduino this script will be uploaded
DHT_Unified dht(DHTPIN, DHTTYPE);
void setup() {
//Dht Sensor Configuratation
dht.begin();
sensor_t sensor;
dht.temperature().getSensor(&sensor);
Serial.begin(9600);
}

void loop() {
String srtID = String(ID);

47

//Voltage sensor
int voltage = analogRead(1);
float temp = voltage/4.092;
float voltage2=(temp/10);
voltage2 = voltage2*10;
Serial.print(voltage2,4);
Serial.println("VID"+ srtID);

//Current Sensor
int RawValue = analogRead(A0);
double Voltage = (RawValue / 1024.0) * 5000; // Becomes mV
double Amps = ((Voltage - 2500) / 66);
Serial.print(Amps,0);
Serial.println("CID"+srtID);

//Temperature Sensor
sensors_event_t event;
dht.temperature().getEvent(&event);
Serial.print(event.temperature,0);
Serial.println("TID"+srtID);

//Humidity Sensor
dht.humidity().getEvent(&event);
Serial.print(event.relative_humidity,0);
Serial.println("HID"+srtID);
delay(2000); // Delays 2 seconds, as the DHT22 sampling rate is 0.5Hz

}

request.py

#This is for sending a request to the local Pyramid web Server
import requests
__URL= #"http://localhost:80/store_metrics"
def createRequest(value,metric,ID):

_PARAMS = {'value':value,'metric':metric,'ID':ID}
r = requests.get(url = __URL, params = _PARAMS)

server.py

from wsgiref.simple_server import make_server
from pyramid.config import Configurator
from pyramid.response import Response
from prometheus_client import generate_latest, CONTENT_TYPE_LATEST
from prometheus_client import CollectorRegistry, Gauge
from pyramid.view import view_config
import insert
import database
import selectQ

#This function returns a registry to the prometheus
#Each time a gauge is created the gauge are setted to the metrics
def __initRegistry(T,C,H,V):

48

registry = CollectorRegistry()
for temps in T:

gT = Gauge("Temperature", "Temperature Of Solar Panel: ", registry=registry)
gT.set(temps[1])

for currents in C:
gC = Gauge("Current", "Current Of Solar Panel", registry=registry)
gC.set(currents[1])

for humidities in H:
gH = Gauge("Humidity", "Temperature Of Solar Panel", registry=registry)
gH.set(humidities[1])

for voltages in V:
gV = Gauge("Voltage", "Voltage of the Solar Panel",registry= registry)
gV.set(voltages[1])

return registry
#This path "/expose", when it receives a get requests
#it returns a registry to the prometheus
@view_config(

route_name = "expose"
)
def expose_metrics(request):

T,C,H,V = selectQ.select()
registry = __initRegistry(T,C,H,V)
return Response(generate_latest(registry),
content_type=CONTENT_TYPE_LATEST)

#This path "/store", when it receives a get requests
#it stores the metrics to the MySql database
@view_config(

route_name = 'store'
)
def store_metrics(request):

if 'metric' in request.params and 'value' in request.params and 'ID' in request.params:
print request.params['metric']
print request.params['value']
print request.params['ID']
metric = request.params['metric']

value = int(request.params['value'])
ID = int(request.params['ID'])
insert.insert(value,metric,ID)
return Response(body = "Stored to database",

content_type=CONTENT_TYPE_LATEST)
else:

return Response(body = "Not stored to database")

For the configuration of the web pyramid server please refer to the
https://docs.pylonsproject.org/projects/pyramid/en/latest/api/config.html
def config():

config = Configurator()
config.add_route('expose','/expose_metrics')
config.add_route('store','/store_metrics')
config.scan()
app = config.make_wsgi_app()
server = make_server('127.0.0.1', 80, app)

49

return server
#Open the server forever & ever
#Server.sh calls this function
def serve():

config().serve_forever()

selectQ.py

#Select Database Query for gathering from everytable most recent timestamp
import database

def select():
conn = database.createConn()
cur = conn.cursor()

#Queries
sqlCurrent = 'SELECT * FROM current INNER JOIN(SELECT id, MAX(time) AS Maxtime FROM

current GROUP BY id) toptime ON current.id = toptime.id AND current.time = toptime.maxtime'
sqlTemp = 'SELECT * FROM temperature INNER JOIN(SELECT id, MAX(time) AS Maxtime FROM

temperature GROUP BY id) toptime ON temperature.id = toptime.id AND temperature.time =
toptime.maxtime;'

sqlHumidity = 'SELECT * FROM humidity INNER JOIN(SELECT id, MAX(time) AS Maxtime FROM
humidity GROUP BY id) toptime ON humidity.id = toptime.id AND humidity.time = toptime.maxtime;'

sqlVoltage = 'SELECT * FROM voltage INNER JOIN(SELECT id, MAX(time) AS Maxtime FROM
voltage GROUP BY id) toptime ON voltage.id = toptime.id AND voltage.time = toptime.maxtime;'
#Execute the select query for the current table

cur.execute(sqlCurrent)
current = cur.fetchall()

#Execute the select query for the temperature table
cur.execute(sqlTemp)
temp = cur.fetchall()

#Execute the select query for the humidity table
cur.execute(sqlHumidity)
humidity = cur.fetchall()

#Execute the select query for the voltage table
cur.execute(sqlVoltage)
voltage = cur.fetchall()

return temp,current,humidity,voltage

insert.py

#This is the insert python MySql where the values are push to the MySql.
#Called from the python server.
import database
import time
import datetime
def insert(value, metric, id):

conn = database.createConn()
cur = conn.cursor()
ts = time.time()

timestamp = datetime.datetime.fromtimestamp(ts).strftime('%Y-%m-%d %H:%M:%S')
if metric == 'C':

50

sql = "INSERT INTO current (ID,value,time) VALUES (%s, %s, %s)"
elif metric == 'H':

sql = "INSERT INTO humidity (ID,value,time) VALUES (%s, %s, %s)"
elif metric == 'T':

sql = "INSERT INTO temperature (ID,value,time) VALUES (%s, %s, %s)"
elif metric == 'V':

sql = "INSERT INTO voltage (ID,value,time) VALUES (%s, %s, %s)"
value = (id,value,timestamp)
cur.execute(sql,value)
conn.commit()
print(cur.rowcount, "record inserted.")

Discovery Service

These commands are for the discovery service between the Xbee's.
The +++ finds the coordinator.
Every AT with ID sends a request to the end device Xbee.
You should get a response acknowledgement of 'ok' for every node.
This is describe in the Digi Documentation:
https://www.digi.com/resources/documentation/Digidocs/90001496/tasks/t_use_at_commands.htm?T
ocPath=XBee%20transparent%20mode%7CCommand%20mode%7C_____2

send +++;
send AT(ID);

prometheus.yml (Configuration File)

Local Prometheus for configurations for the SBC
global:
scrape_interval: 5s
evaluation_interval: 5s

Alertmanager configuration
alerting:
alertmanagers:
- static_configs:
- targets:

rule_files:
scrape_configs:
The job name is added as a label `job=<job_name>` to any timeseries scraped from this config.
- job_name: 'prometheus'
metrics_path defaults to '/metrics'
metrics_path: /expose_metrics
static_configs:
- targets: ['localhost:80']

51

Photographs of Implementation - Proof of work

Image 1: Implementation of the apparatus at Foss Research Center. Data Logger can be
seen inside the upper left white box.

52

Image 2: Dr Makrides cutted a black cable and used it to merge it with the direct current
output of the solar panel.

53

Image 3: The HCMODU0047 sensor is used for sensing the voltage from the black wired
that comes directly from the solar panel.

54

Image 4: Implementation of the Apparatus at Foss Research Center. Power Regulation
can be seen as described.

Image 5: Data fetch from the apparatus being visualized using four different timeplot
graphs.

55

Image 6: The solar panel from which the data collecting happened. Dr Makrides
indicated that it was the uppermost right.

	Raspberry Pi 3 B+

