

Dissertation

ARM: Adaptive Runtime Middleware

SAVVAS SAVVA

UNIVERSITY OF CYPRUS

DEPARTMENT OF COMPUTER SCIENCE

May 2018

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ARM: Adaptive Runtime Middleware

Savvas Savva

Supervisor

Dr. George Papadopoulos

Co -Supervisor

Dr. Achilleas Achilleos

The Individual Diploma Thesis was submitted towards partially meeting the

requirements for obtaining the degree of Computer Science of the Department of

Computer Science of the University of Cyprus

May 2018

Acknowledgments

 With the help of the Triune God and the Most Holy Theotokos, I managed to

complete this work. I would like to express my thanks to my Chief Professor George

Papadopoulo and my Co-Chief Professor Achillea Achilleos for the excellent

cooperation we have had throughout this diploma thesis. The tips, guidelines and their

advices, help me to complete this work. Special thanks to my Co-Chief Professor

Achillea Achilleos for their help and support to be able to accomplish this work

successfully. Also, thanks to Kyriaki Georgiou that create the middleware initially and

deliver it to us.

 I would like to dedicate my diplomatic work to my parents, grandparents, my two

sisters and brother for the love they have shown me, and the support they have given me

to encourage me to continue my work and achieve my goals.

Abstract

 Nowadays Internet of Things (IoT) becomes very interesting topic. More and more

people from various places in the World want to control devices from any place. Also

people aims to interconnect their devices and bring heterogeneous devices together.

That ecosystem will support software services as well. This logical devices can

located anywhere in the world. Many physical or logical objects from everyone

everyday life will be able to communicate with other devices or humans offering new

services and applications.

 To achieve this transition to the IoT World, a Middleware is a core element. A

Middleware can help, because from its architecture can support information flow on

connected systems in a network. Thus more complex heterogeneous systems can

connected each other either locally or either on Cloud and help developers to deploy

more easily solutions for users or business clients.

 This thesis primary goal is to expand the Adaptive Runtime Middleware (ARM),

which was building earlier in 2017 from Kyriaki Georgiou, to support Sensors.

Especially, the expansion of the Middleware System to support Server Sent Events to

manage Sensor Devices, so sensors can sent from it side all needed information when it

is mandatory, without floating the network with unnecessary information.

 Now the Middleware system it is self-configured and adopt automatically changes and

expose functionality of the bundles as REST calls & SSE when is applicable to

automatically generate Web-API. Also it expose the devices functionality by deploy

again the Middleware. The Middleware support interoperability among heterogeneous

devices and platforms.

 Another goal is to Create Sensors form Scratch using Development Boards and then

deploys its OSGi bundle to middleware. Through this process they have been created in

total three Sensors (Motion, Light and Distance Sensors).

 Our ultimate goal was to create a system that is auto-explanatory, easy-to-access,

creative, easy-to-use, easy to deploy and clustered to be friendly for Client Application

Developers (e.g. Android, iOS and Web Application Developers).

Table of Contents

Chapter 1 Introduction…………………………………………………………….1

 1.1 Project Motivation…………………………………………………...1

 1.2 Project Concept……………………………………………………...2

 1.3 Project Structure……………………………………………………..3

Chapter 2 Related Work…………………..………………………………….……4
 2.1 Internet of Things……………………………………………………4

2.2 Middleware for the Internet of Things………………………………5

2.3 REST and REST-full Web Services…………………………………6

2.4 Server Sent Events (SSE)……………………………………………8

2.5 REST-full & SSE Architectural Similarities……………………….10

2.6 Web Server Gateway Interface (WSGI)……………………………11

Chapter 3 Middleware Specification and Architecture ………………………..12

 3.1 Middleware Specifications………………………………………....12

3.1.1 OSGi Bundle Specifications……………………………...12

3.1.2 REST Specifications………………………………….......13

3.1.3 SSE Specifications………………………………………..14

3.2 Middleware Architecture…………………………………………...15

Chapter 4 Sensors & Middleware Implementation…….…….……….………..17
4.1 Development Board for Sensors Build………….………………….17

 4.1.1 Technologies………..…………………………………….19

 4.1.3 Flask Python Application ………………….…………….19

4.2 Adaptive Runtime Middleware (ARM)…………………………….21

 4.2.1 Technologies……………………………………………...21

4.2.2 Modifications to Support SSE……………………….…...23

 4.2.3 Sensors Bundles…………………………………………..25

Chapter 5 Use Case Demonstration……………………………………………...26

5.1 Use Case Scenario………………………………………………….26

5.2 Use Case Preparation Procedure…………………………………...26

5.2.1 OSGi Bundle……………………………………………...27

5.2.2 Addition of XML File………………………….…………28

5.2.3 Input of OSGi Bundle to Middleware……………………29

5.2.4 Automatically Configured and Generated URLs………...33

5.2.5 Communication with Middleware from Client…………..34

5.3 Demonstration of Use Case………………………………………...35

Chapter 6 Evaluation……………………….………….….……………..……….36

 6.1 Evaluation Method…………………………………………………36

 6.2 Evaluation Questionnaire…………………………………………..36

 6.3 Evaluation Results………………………………………………….38

Chapter 7 Conclusions and Future Work……………………...……………….44

 7.1 Conclusions………………………………………………………...44

 7.2 Future Work………………………………………………………..45

Bibliography ……….………………………………………………………………...4 6

Appendix Α – Flask Application Python Script ……………………………………..Α-1

Appendix B – OSGi Sensors Bundles………………………………………………..B-1

Appendix C – HTML5_Client3.html & Client_JS.js………………………………...C-1

1

Chapter 1

Introduction

1.1 Project Motivation ………….……………………………………………...………1

1.2 Project Concept …………………………………………………………………....2

1.3 Project Structure …………………………………………………………………...3

1.1 Project Motivation

 Internet of Things (IoT) was invented in previous decades; People want to have

“connected” devices. IoT went in many people lives slowly in less noticeable

applications in the previous years, but now over the years had become increasingly

popular and can be found it on more and more applications.

 Nowadays, a big amount of IoT devices and development boards appear every month.

Anyone can have everything connected. Big and Small Companies start to produce their

own IoT Devices. Many known and unknown Brands become popular for their IoT

Devices. Many of those devices invented for entertainment purposes, for health

purposes, for security purposes etc. Many of those IoT devices are heterogeneous to

each other. Those were happened because many of those Devices have different

architecture, have different communication protocols, have limited resources, had

developed when newer technology not existed and for other commercial and non-

commercial reasons. A Middleware come in to help to connect all those devices easily

and handle communication between components to manage simplify all that

complexity.

2

1.2 Project Concept

 The main purpose of my thesis is to expand an Adaptive Runtime Middleware system

for the Internet of Things, the ARM, to support Server Sent Events (SSE). Also, another

important purpose is the deployment of sensor modules on a Development Board, like

the Orange Pi.

 ARM is dynamic middleware, which is developed in previous year as a master thesis

in Computer Science. This middleware is self-configurable and self-adaptive to face the

IoT demands. Originally, the Middleware it can expose the functionalities provided by

the smart modules (OSGi bundles) through Representational State Transfer calls (REST

calls). When an OSGi Bundle is deployed, the middleware discover its capabilities and

subsequently expose them by re-generating and re-deploying the middleware Web

Application Programming Interface (WEB API). Mainly was supported Actuator

Plugins.

 Focusing to improve and expand the Middleware in the best possible way to support

SSE as well. So, using known technologies in the middleware, keep it simple and

friendly to developers.

 Now middleware is able to expose the functionalities provided by the OSGI bundles

through REST calls & SSE as well, when is applicable. It can also support sensors that

and actuators as well. Finally, it can bring even more devices together, that is

heterogeneous.

 Despite the changes that made in middleware, its core architecture is staying simple,

as you can see in in Figure 1.1.

Figure 1.1: New Middleware Architecture.

 For Sensors development, is used the Orange Pi Development Board, which hopefully

can support a lightweight Debian based Linux distribution, the Armbian. As a result, the

Middleware Bundle

Core Bundle(That support both SSE&REST) /API

Dynamic Bundle API (That can be SSE and/or REST)

3

creation of three motion Sensors (Distance, Motion & Light Sensor) is developed in the

same Orange Pi Development Board.

 The pyH3 python library is used to communicate with Orange Pi General-Purpose

Input/Output (GPIO). The Flask (Python) Application deployment is done using a Web

Server Gateway Interface server (WSGI server). Flask is a python micro framework.

WSGI is a simple calling convention for web servers to forward requests to web

applications or frameworks written in Python. The Flask application object is the actual

WSGI application. The usage of Gunicorn server, which is a Python WSGI HTTP

Server for UNIX, is important to serve successfully the Flask (Python) Application.

 You can find more information about system implementation in next chapters.

 Based on the above, the general scheme of the system is shown in Figure 1.2.

 Figure 1.2: General scheme of the system.

1.3 Project Structure

 This thesis is organized in the next 6 chapters as follows: Chapter 2 contains

information about the technologies, for the core existing technology and the new

technologies, which used to expand the middleware functionality. Chapter 3 describes

the current Middleware specifications and the current Middleware architecture. Chapter

4 describes the Sensors and Server Sent Events implementations, with extra detail.

Chapter 5 demonstrates a use case scenario that is based on sensors and actuators. In

Chapter 6 there are the evaluation Methodology, which is used to evaluate the

Middleware in this state, and a questionnaire, along with the evaluation results. Finally,

in Chapter 7 there are some conclusions and future work which can be done in

Middleware.

4

Chapter 2

Related Work

2.1 Internet of Things…………………………………………………………………..4

2.2 Middleware for the Internet of Things……………………………………………...5

2.3 REST and REST-full Web Services………………………………………………..6

2.4 Server Sent Events (SSE)…………………......……………………………….........8

2.5 REST-full & SSE Architectural Similarities…………………………………….....10

2.6 Web Server Gateway Interface (WSGI)…………………………………………...11

2.1 Internet of Things

 The concept behind Internet of Things was the need to have connected Devices in the

wide accessible Internet, like other humans was connect to Internet. Those Devices can

have Hardware and and/or Software Services. These devices must be small enough and

will not drain much power to operate. Also it must have high availability. That devises

can be embedded devices which meet the above criteria.

 Most enterprise projects are based on IoT solution cost-reduction to make IoT

scalable, applicable and accessible to much more humans. The number of IoT enterprise

employments is growing.

 IoT can be applied in almost all Industries like Smart Homes, Smart Cities, Connected

Buildings and Connected Cars. It can be also applied in healthcare and environment,

which is one of the more reasonable applications for Internet of Things. [1]

 For example, the distributed Sensors that is located all over the world and measures

data about and counting different values to eventually manage to adapt a good ambiance

and predict with more accuracy different weather phenomena that are being made and

inform us accordingly.

5

 Internet of things is very powerful, but if it will not be used as it should, it can become

a threat to human being. Known technologies (Blockchain, RFID) can convert human

Beings to pawns. Privacy in IoT must be utmost importance. [2]

2.2 Middleware for the Internet of Things

 There is a lot of Middleware Systems out there that is proposed by many researchers.

 Many of that are remarkable, other is too complex and other is not scale well.

 Many of that middleware have modular architecture (uses components) like OpenHab.

OpenHAB is an open-source automation software it cover a lot home automation

systems and technologies under the same umbrella, enabling the ability to the user to

define the interaction of things and devices through automation rules and uniform user

interfaces. This middleware is based on Java OSGi as well, like the ARM Middleware.

 Also many of that middleware become powerful have the ability to store information

in cloud like Tuya Smart and Eclipse Kura. Eclipse Kura [3] support communication

with Eclipse Kapua platform, that is for IoT cloud Services. Such a Model can support

device management and data management needed for tracking devices. This

middleware based on Java OSGi too.

 Also, another Middleware System, worth to mention, is the HomePort [4]. The

HomePort Middleware provides REST interface to heterogeneous sensor networks.

That Middleware use the Server Sent Events technology too.

 ARM Middleware is a dynamic middleware system for the Internet of Things. When a

smart module (sensor, actuator) is deployed, the system has the ability to discover it,

detect their functionality, self-reconfigure, self-regenerate the system Web API and re-

deploy the Middleware System. As a result new device capabilities/functionalities are

dynamically injected and new Web API functions are created.

 ARM goal is to enable interoperability among heterogeneous devices and platforms

and automate device discovery and management. Another goal is to have a simple

system for developers. ARM is not adding additional technologies and platforms that

are unknown and increase the complexity for a solution for the IoT, but reduce the

initial learning curve [5].

 The proposed expansion in the ARM middleware is to add Server Sent Events

functionality on the Middleware. Such an expansion will give the ability to install

6

Sensor Smart Modules (and not only support sensors by asking). ARM Middleware

detect automatically the Server Sent Events that is defined in a Smart Bundle / OSGi

Bundle (detect their functionalities) and self-reconfigure and self-regenerate the

middleware’s Web API and inject the new capabilities. SSE functionalities are exposed

in the Rest Web API Level, as Rest, and they are descriptive to help even more

developers. Server Sent Events can notify a Client application, a Reasoner plugin or a

clever Rule engine, based on application needs. The System automation philosophy is

kept to reduce learning curve and make a simpler system; which a developer can

interact with easily.

2.3 REST and REST-full Web Services

 REpresenational State Transfer (REST) is an architectural style. Rest is not defining a

standard, but its implementations (RESTful implementations) use some well-known and

accepted standards, like URI, HTTP (GET, POST, PUT, DELETE and PATCH), XML

and JSON.

 There is six formal architectural constrains, that define a RESTful system. A

constrain can restrict the process and reply form server side to a client request. In this

way the service will have some non-functional properties, that is simplicity,

modifiability, performance, portability, scalability, reliability and visibility.

 The First Architectural Constrain is Client-Server architecture. This Constrain is

created to separate two concerns, the user interface concerns from the data storage

concerns. Using this separation, results to improve the system scalability because it

introduces simplified user components. The separation of the two concerns enables

portability. This gives us the ability to have multiple platforms a uniform user interface.

Also, satisfying this constrain enables the ability to have multiple organizational

domains, which is a requirement for scalable internet.

 The Second Architectural Constrain is Statelessness. This constrained is declared to

define that must not save client side information in client server request interaction. The

session state must stay in the client and not in the server. All information needed by

client, to reply to server requests, must be kept in session.

 The Third Architectural Constrain is Cacheability. This constrain is created to satisfy

the caching need. There is the ability to cache the responses and get best application

7

performance is the same data that already retrieved before is used again. Also using this

technology can benefit also the network traffic. As a result the traffic will be less using

cache, and will not waste the network resources unnecessarily. The expiry flags must be

declared carefully to manage the cached contents and so the outdated data will not be

used. Also some type of data must be non-catchable, and this constrain satisfy this need.

 The Fourth Architectural Constrain is to have Layered System. Satisfying this

constrains enables a security level and give best application performance and response

times, because client cannot detect if it is connected to the original root rooter or if it is

connected to another intermediary (cache) server.

 The Fifth Architectural Constrain is to have Uniform Interface. This is mandatory to

destine REST services. To Satisfy this constrain, four smaller constrains must be

satisfied to cover it. The resource identification in requests constrain. This means that

other data format can be exists for communication outside of the system (like JSON,

XML etc.) and internally processes the data in other format. So, that introduces the

identification of a resource by its resource identifier. The resource manipulation through

representations constraint, mean that when the resource representation and any metadata

is known, then any Client Application Developer can use that to delete or modify that

resource. The Self-descriptive messages constraint, introduce the idea that must there

are enough information that describes the resource message and have complete

knowledge about message and can easily process the resource message. An example is

the MIME type. And finally, the hypermedia as the engine of application state

(HATEOAS) constrains introduce an analogy to human web browsing, that visit a web

page and from this point can travel like hypermedia system. The same concept applied

as a REST constraint, but it means that a REST client must have the ability to discover

all the available actions and resources by providing text that contains hyperlinks that

link to all other available actions.

 The Sixth Architectural Constrain is Code on Demand (that is an optional constrain).

Satisfying this constrain, the client have the ability to download code form RESTful

API’s and execute this code in client side (e.g. JavaScript, Flash SWF, Java Applets).

 If a Service violates any of the above non optional constrains can’t be considered as a

clear RESTful service.

 On the other hand the architectural design constrains is little elastic in some

applications but its API’s falsely tended to call clear RESTful. This APIs can be a

8

mixture of RESTful and another technology, that might violate a lot of or a little bit the

RESTful system architectural constrains. So if an API is not clearly RESTful is good to

mention it. ARM API at the moment is a mixture of REpresenational State Transfer

(REST) and Server Sent Events (SSE). In next subchapters you can find more

information about it.

2.4 Server Sent Events (SSE)

 Server Sent Event (SSE) is a technology that a Client (e.g. Browser) receives updates

from a Server using HTTP connection. SSE is an efficient real time streaming

technology of text-based event data. This technology stands on two axes the

EventSource API and MIME Type event-stream [6] [7] [8] [9]. In the SSE Client side,

there is an EventSource interface that subscribes to Server Sent Events source. The

EventSource interface resumes completely all the low level connection establishment

and message parsing behind a plain Client API. Server sent push notifications to a

registered Client as DOM events and MIME Type event-stream data, which is used to

deliver every single updates.

 The SSE technology can be an effective and necessary technology and can be done

such a technology, by handling the events and sending updates when required and when

an event exists. This technology sent real-time data in the Client effectively because it

doesn’t use any cache technology to store an event and Client receives it later. SSE use

single long lived HTTP connection to guarantee low latency to conveyance the event-

stream data. SSE has automatic functionality like tracking the last received message and

automatically reconnection in case of disconnection. If the Client is a Browser, then the

push notification data can be handled as DOM events.

 Internally SSE implementation is cross Client XHR streaming and as a result the

Client operates internally to do all the complex stuff like connection management and

message parsing. So, SSE is stay simple, efficient technology for unidirectional real-

time data flow using HTTP.

 SSE also has some great features like event ID, automatic reconnection and can sent

arbitrary events.

9

 The Event Stream Format (MIME type: text/event-stream) have a basic form as

follows: “data: notification_message\n\n”. The ability to add more fields to an event is

very interesting but is not a necessary as well as sending the event data in JSON Format.

 Here are some examples:

- Add Event name:

“event: user_logon\n

 data: notification_message\n\n”

- Add Event ID and Sent multiline data:

“id: 123\n

 data: notification_message_line_1\n

 data: notification_message_line_2\n\n”

- Retry to reconnect after 2 seconds:

“retry: 2000\n

 data: notification_message\n\n”

- Sent JSON Formatted data:

data: {\n

data: "message": "a line",\n

data: "Device_Id ": 12\n

data: }\n\n

10

2.5 REST-full & SSE Architectural Similarities

 There is no way to respect REST while use SSE on it. When a registration on an SSE

takes place, then no one knows how many events will get as replies.

 But, for comparison purposes, there is the ability to modify the SSE technology

architectural constrains to bring it very close to REST architectural constrains. The First

Architectural Constrain, Client-Server architecture can be satisfied, when the client

triggers while the server does the processing.

 The Second Architectural Constrain, Statelessness, can be satisfied, by storing client

state on the client (HTTP is a stateless protocol).

 The Third Architectural Constrain, Cacheability, can be satisfied, by not using cache

header. This can be achievable because SSE doesn’t use processing model and because

in the article about REST [6] there is the above:

"Cache constraints require that the data within a response to a request be implicitly or

explicitly labeled as cacheable or non-cacheable."

 The Fourth Architectural Constrain to have Layered System can be satisfied, by adding

another transform in the data stream layers (e.g. pipes and filters).

 The Fifth Architectural Constrain to have Uniform Interface, which can be satisfied

partially. Because can satisfy the identification of resources, by using URI’s. Can

satisfy, constrain manipulation of resources through representations, by using HTTP

methods with the same URI. Can satisfy, the self-descriptive messages partially and by

using content-type header and if add RDF to the data but, there is no standard which

describes that the data is RDF coded and need to define new MIME type text/event-

stream-rdf. Finally, can satisfy constrain hypermedia as the engine of application state,

by sending links in the data.

 The Sixth Architectural Constrain Code on Demand is satisfied anyway because that is

an optional constrain.

 If someone want to form SSE to be REST, then the SSE must comply with all the

REST Constrains and this mean extra complexity, a lot of modifications, extra work for

developers (on bundle creation), not a simple work for application developers and at the

end only a subset of compatible SSE Devices, that can work with that solution. ARM is

not such a middleware and has to include different technologies together because this is

11

the best solution and there is not such a rule, that you can’t use two different

technologies together in a WEB API [6], [10].

2.6 Web Server Gateway Interface (WSGI)

 The Web Server Gateway Interface (WSGI) written in Python programming language.

WSGI is a calling convention for Python web Servers to Forward Requests to

frameworks and cross platform client applications (e,g. iOS, Android, Web

Applications). WSGI tends to give simple implementation in application logic,

especially when use it with other Python Microframeworks. WSGI have two sides the

server (gateway) side and the application (framework) side. Between these two sides

can be exists Middleware components. In server side take place either a light software

defined webserver that can communicate with a full featured web server (e.g. Gunicorn)

or take place a full featured web server standalone (e.g. NGINX, Apache). In

application side can be found a Python Program (Script) that is callable (contains

sometimes that is callable, like method, functions, class or instance with __call__

method). This Script can be used with a combination with another Python Programs

(Script), frameworks and Libraries to enrich the application capabilities. Those

Middleware components might be more than one and can collaborate and communicate

with each other, with other WSGI middleware components or other separate WSGI

Middlewares or other WSGI applications. Those middleware components in fact, it

implements both sides of WSGI. This methodology fit best when the Orange Pi

Development board is used to build the Sensors, but its usage is not limited on

developments boards and in fact WSGI exists in many corporate applications [11].

12

Chapter 3

Middleware Specification and Architecture

3.1 Middleware Specifications…………………………………………………………12

 3.1.1 OSGi Bundle Specifications……………………………………………...12

 3.1.2 REST Specifications……………………………………….…………......13

 3.1.3 SSE Specifications……………………………………………………......14

3.2 Middleware Architecture……………………………………………………….......15

3.1 Middleware Specifications

 The ARM Middleware system stands on three main Specification axles. The first axle

is Server Sent Events (SSE) architecture, the second axle is the REST architecture and

the third axle is the OSGi bundles. These technologies can bring a dynamic middleware

to life. Middleware is relying on Java OSGi to implement the Middleware “business

logic”.

3.1.1 OSGi Bundle Specifications

 Any Developer including Third-Party company’s developers can create its own smart

OSGi bundle to attach it on ARM middleware and expose the functionality of a

hardware device or a software service as a REST or SSE callable URL. Developers can

include any amount of functions in that bundles for best user experience. Also

Developers must not require to have knowledge to implement the REST Architecture in

the bundles, but only need a very basic knowledge about Server Sent Events, to be able

to build is application correctly, without need to know SSE low level internal

13

functionality and implementation. So, using this architecture will reduce the learning

curve for new technologies in the lower possible amount.

 To make this middleware possible to exist there is only a small addition over the

traditional OSGi bundles, which is an extra XML file that is needed from middleware to

be able to adapt accordingly. That XML file will be simple and will need only the fully

qualified name of the implemented bundle class.

 Once the bundle is added in the middleware will automatically detect it and retrieve

all the available methods that developer declares in this bundle and create the internal

corresponding java file and install the bungle to the middleware. Also, after that, the

middleware will generate a new URL for each public method that have in that OSGi

bundle. It will also create another URL that have the /def extension and will contain all

the definition information that the developer insert while creating the bundle.

Especially, it will have the name of the web method, the parameters and their type, the

return type and all other additional information that the developer define in the Bundle.

In addition to the previous process, Middleware can support Server Sent Events along

with any additional information needed. Afterwards, when a URL is called and a web

method is invoked the related method on the OSGi will be called and the OSGi bundle

functionality will start.

 Finally, in the middleware API exists a URL call that shows all the OSGi bundles that

is available in the Middleware.

3.1.2 REST Specifications

 The REST design is used to be able to expose the Smart Modules (OSGi Bundles)

functionality to a bigger network, for example to the Internet. Middleware is an OSGi

bundle, which is dependable for the automatic functionalities that, the middleware will

provide, like self-configuration. In expansion, that bundle contains and runs a server,

which can be utilized for distributing the URLs. Each URL will be created for mapping

bundle functionality with a freely open URL, in conjunction with another URL which is

giving all the information, related to the first exposed URL. The details that is shown in

the second URL is the information that the bundle developer insert when create the

bundle. Doing this, any client application developer can create its application faster and

easily. Also some other URLs are used for navigation purposes.

14

 The methodology between this communication is take place when a Client

Application Developer wants to invoke a web method, from the middleware API, and if

this method needs any parameters will be inserts it and in the callable API URL. When

this URL is called, then it calls the web Method from the OSGi bundle, and then those

executes the functionality from the developer Bundle and return to the invoker any

result data. Then if there is any result data from the previous action, is returned to client

API invoker [5].

3.1.3 SSE Specifications

 The SSE architecture is used to enable the real-time updates to and from the

Middleware System, with unidirectional HTTP connections. Using the same

development methodology, that based on smart modules (Java OSGi bundles), the

bundle creation can be deployed by consuming or producing real-time server sent

events. Also by having bundles that can consume and produce at the same time real-

time server sent events. The input Bundles implementation is based on the Smart

Hardware Device or a Smart Software Service bundle Developer, which is very flexible

to mix up technologies and ideas to create the Bundle in a way that can communicate

correctly with its device or Service. Its work will be also simple because it has the

flexibility to combine a lot of technologies that needed from the devices or it use it more

and understand it well and use the already existed libraries that is now attached in the

middleware and handle server sent event data in the best possible way. The OSGi

Bundle functionality is exposed in the Middleware API level, like the other REST Calls,

and it is managed by the middleware bundle that contains runs the server, which will be

used for publishing the URLs. This approach is being used to have a Simple unify

Middleware system for the Client Application Developer.

 When invoking a web Server Sent Event method which is related to an OSGi Server

Sent Event, the web method that was generated before will invoke the actual server sent

event method from the installed bundle and register to that Server Sent Event and

execute its functionality that might be have internally. That internal functionality can be

connection to another SSE form a hardware device or a software service and create SSE

from that, can be a live creation of server sent event using another technology, or can be

a combination of technologies to create SSE. When a disconnection of SSE (Close) is

15

happened, then the appropriate Sensor can gets the appropriate disconnection message

from middleware based on the Sensor bundle implementation and can closes or keeps

alive the connection, based on the bundle implementation, which is declared by the

OSGi Bundle Application Developer (in any hardware device or any software service

system). SSE is flexible and functional, and can be used internally or externally in the

middleware in the future.

3.2 Middleware Architecture

 At the moment middleware have a very simple architecture that takes the OSGi

bundles and expose its functionality by creating REST and SSE calls from it. This calls

is well defined URLs that apart the Middleware API. The middleware can run from a

server that is located locally that can be connected to the Internet, a WAN, a LAN and

be able to handle all the connected devices in the LAN, which have their OSGi bundles.

So, the middleware is very flexible, and can create virtual device groups even in the

same LAN. The individual OSGi bundles can include all kind of functionality that the

developer declares. These bundles are act as input for the middleware, and while is

running have it installed is a part of it, because middleware automatically generate web

methods and publish the related URL from those bundles.

 In the Figure 3.1 is the graphic representation of ARM current architecture. In the

middleware bundle exists the application server, which handles the Internet

communication and the rest of the hardware device bundles in the LAN or the software

services inside in the WAN. The middleware bundle, in the LAN range for hardware

devices and in the WAN range for software services, communicates with the installed

bundles and creates the web methods to be available outside the local network. From

that web methods will be created the REST and SSE calls. These calls are URLs that

apart the Middleware API. Another important aspect to mention is that the middleware

support internal connections in Middleware, which gives the ability to create a powerful

rule engine in a “Reasoner” Java OSGi bundle in the future, as shown in the figure 3.2.

 This idea can be expanded furthermore and can be applied on both bigger and smaller

networks. This architecture is easy to setup and scale very well. It can be applied in

different locations for different applications and bundles without need to change

anything in the middleware bundle. The only need is to provide the correct OSGi

16

bundles and so the Middleware be able to detect correctly the devices that must be

attached to it and expose its functionalities each time. For example, installing the

middleware in a house and installing the same middleware in a school, will not interfere

with each other. And for example in the house bundle having a Philips hue light bundle,

a Temperature Sensor bundle and a heater Boiler bundle. In the school, having three

same type Philips hue light bundles, five Motion Sensor bundles and ten infrared which

bundles to turn on projectors. Now let’s guess that the house and School is located in

different cities and flights for another country and forgets a projector open in school and

in the house lefts a Philips hue bulb on. Using this middleware with a combination of a

good client application a Client/User can manage all that devices with ease from the

other country and turn them off. Another example let’s say having the same home and

same school and wanting to leave from school to go home and don’t know if at home

it’s colt. Using this middleware with a combination of a good client application to

manage all that devices, and set a rule that will enable the heater.

 Figure 3.1: General scheme of the system.

 ARM

 Figure 3.2: Possible Reasoner Plugin addition architecture.

Application Server Internal Rule Engine Bundle REST/
SSE Middleware Bundle

REST/
SSE

17

Chapter 4

Sensors & Middleware Implementation

4.1 Development Board for Sensors build……………………………………………...17

 4.1.1 Technologies………..…………………………………………………….19

 4.1.2 Flask Python Application ………………….…………………………….19

4.2 Adaptive Runtime Middleware (ARM)…………………………………………….21

 4.2.1 Technologies……………………………………………………………...21

4.2.2 Modifications to Support SSE……………………………………………23

 4.2.3 Sensors Bundles…………………………………………………………..25

4.1 Development Board

 There is a variety of development boards out there, to be able to build sensors. There

are a lot of common name expensive and cheap boards to choose from. The choice to

have something different from the traditional raspberry pi development board that is the

most common out there can’t be falsely. The best choice, for this scenario, is the Orange

Pi One1. That is a simple all in one open-source development board in the cheapest

category. These development boards have a great price tag, but the support from its

company is not the best. Fortunately, Armbian distribution is compatible with the

Orange Pi One [12]. Armbian is an Open Source Linux Operating System for ARM

development boards. It is based on Debian (for its server releases) and Ubuntu (for both

some server and Desktop releases). The Armbian Image is written on micro SD Card

using the open source tool etcher.io2. Also Orange Pi development board has built in

GPIO to circuit components and sensors from that without need to have extra

1 http://www.orangepi.org/orangepione/
2 https://etcher.io

18

development boards. This Board has Quad Core ARM_Cortex CPU, 512MB DDR3

Ram and plenty of connectivity ports, and is sufficient to deploy three sensors on it. The

lack of Wi-Fi in this board is not an issue, because there are a lot of other Wi-Fi USB

dongles available to attach on it.

 The three sensors are deployed on the same development board. One Motion Sensor,

which is digital Sensor unit. One Distance Sensor that is also a digital unit. And also,

one classic Light Sensor, that is analog.

 The Digital Sensors can be connected directly to GPIO.

 The Orange Pi and Raspberry pi GPIO of those devices is digital and not analog, but

for that application this is not an issue, because using a breadboard, a capacitor and a

modification in the Python script (discuss in later chapters about it), and enables the

measurement of the appropriate values for an analog Light Sensors with success.

 The figure 4.1 shows the Development Board and Sensors hardware connectivity.

 Figure 4.1: Development Board and Sensors hardware connectivity.

6V

19

4.1.1 Technologies

 The software technologies, that anyone can use to deploy sensors on Orange Pi, vary.

But, for this case it was preferable to go with Python Language, WSGI, Flask and the

pyA20 Python Library package. Finally, Gunicorn used to serve the Flask application to

the network, because the Flask build-in server is not scale very well. The WSGI was

discussed earlier in Chapter 2. In summary, WSGI is a calling convention for Python

web Servers to Forward Requests to Frameworks. WSGI simplicity can fit with Flask

very well. Flask is a Microframework. In this sensor implementation you can find out

that the WSGI application is the Flask application object. Also the pyA20 Library3, that

is used, is a package that is adapted for orangepi_PC_gpio_pyH3 and is fully

compatible with Orange Pi One. This package is not only control the GPIO, but also

control GPIO pins, I2C and SPI busses.

4.1.2 Flask Python Application

 The Flask Applications tends to be easy and can be built without have to write a lot of

code is. This Python Microframework is also lightweight. Is very flexible Solution and

in Deployment can be hosted not only Self hosted locally, but also hosted on Heroku,

OpenShift, Webfaction, Google App Engine, AWS Elastic Beanstalk, Local host Server

with Localtunnel, Azure (IIS) and PythonAnywhere.

 There is a procedure to prepare the Orange Pi sensor deployment environment to be

able to, run successfully the Flask 4 Application. First requirement is the Python

installation, then is the pyA20 installation then is the Flask installation (including Flask

CORS and Flask SSE) and finally the Gunicorn Installation. In this procedure there are

some dependencies that must be installed as well.

 The Flask Application Object is the WSGI application. This application is basically a

Python Script in its folder. This application is designed in a way to be able to serve it

multithreaded, using Gunicorn. The Flask Application Anatomy is simple. First there

are all the included libraries like the pyA20, sys, datetime, time, flask, flask_cors and

flask_sse. Afterwards, there is the initializing section which the orange pi GPIO ports

3 https://github.com/duxingkei33/orangepi_PC_gpio_pyH3/blob/master/README.txt
4 http://flask.pocoo.org

20

initialized. Following there is some Flask and CORS definition commands and then

there is the initialization of counters that is used in the code later. Following there is a

lot of functions that is called from the “actual API” functions that defines the Sensor

API.

 The rest of this Functions is strait forward it check the sensor corresponding return

value in GPIO and if there is a change with the previous state, it sent an SSE

notification message to inform for that change. But in the Light Sensor, there is another

extra function because that sensor is analog. There is no strait forward way in a digital

GPIO to be able to get the value from the light sensor. Instead, charging up the

capacitor and count the time it takes for it to send the input pin to high. Since the light

sensor is a resistor, in darker there is higher resistance meaning the capacitor will take

longer to charge and based on that measurement, the calculation of dark state or light

state is done. The threshold of this value is software variable in the script as well.

 The “actual API” functions defines each URL that can be an SSE call or be a REST

call or return data using other MIME type or just return plain HTML. This is defined

using the annotation @app.route(‘/name_of_route’). Using this technique the Sensor

API is ready. For more clarification, the script is also located in Appendix A. The

Sensor API hierarchical structure is located in the figure 4.2.

 Contains Informational HTML

 SSE for Motion Sensor

 SSE for Distance Sensor

 SSE for Light Sensor

 Figure 4.2: Sensor API hierarchical structure.

 /

 /smotion

 /sdist

 /slight

21

 Finally in the Python script, there is some other Flask Attributes to set the

multithreading behavior in the Flask Application.

 At the end having Gunicorn to serve the Flask application, delivers optimal service

experience. Gunicorn [13] means ‘Green Unicorn’ and is a Python WSGI HTTP Unix

Server. Gunicorn server is compatible with a lot of web frameworks. It is also a fairly

speedy and lightweight Server. It supports WSGI, Django, and Paster. It can offer easy

and automatic worker process management. It’s very extensible server, because have

various server hooks. It can handle multiple worker configurations [14], like gevent

worker class that is async workers and can fit in the application needs. It gives us the

ability to increase the gevent worker count for optimal performance. In figure 4.3 you

can find the command that used to run the server.

Figure 4.3: Command that used to run the server.

 The General Application structure was designed this way, because this is a common

kind of setup and to check if there is way to have SSE in both sides as well. There is

also other ways to build those Sensors that can work as well.

4.2 Adaptive Runtime Middleware (ARM)

 The Adaptive Runtime Middleware it was a REST Based Middleware before. A lot of

modifications are done to it to be able to handle SSE. The ARM API now is a mixture

of REST and SSE technology. These technologies can live together and there is no

restriction that can exclude each other.

4.2.1 Technologies

 In this Middleware are present many technologies. The Core OSGi Framework

Specification is deployed with OSGi Equinox [15]. The RESTful web services are

deployed based on JAX-RS community-driven standard and Jersey that is JAX-RS

Reference Implementation. All the previous is connected together (at the service level)

22

with using the OSGi-JAX-RS Connector [16]. So, having an OSGi service and

registering it as OSGi services, it will automatically be published as RESTful web

service too. Also, this work form the other direction and a REST service can consumed

as OSGi service as well.

 The use of OSGi definition XML, remains the same, and must have the same name in

all bundles (“osgi_plugin_def.xml”). This XML file is used for the middleware, because

it’s automatic detection and adaption and regeneration. An example of the structure of

this file is located in figure 4.4.

Figure 4.4: Structure of the XML file osgi_plugin_def.xml.

 Also, the same annotation for Bundles implementation is used as well. The annotation

for Bundles is used for the OSGi bundles Documentation, to let the Client Application

Developers know all the required information needed to create its application fast,

efficient and accurate, without need to learn new things. All that information is listed in

the API Level. The three different kinds of annotations: bundles annotations, methods

annotations and for parameters annotations [5]. In the Figure 4.5 there is an example of

it.

 Figure 4.5: Annotations from Motion Sensor Bundle.

23

 Furthermore, the core API REST Methods functionality remains the same and also the

Path Constriction Logic remain the same as well. So the Middleware base URL gives a

list with all the available bundles that its functionality URLs can be accessed through

REST calls and SSE calls. In the Figure 4.5 there is an example of it, that shows three

sensors (Motion, Distance, Light Sensors) and one actuator (Philips Hue Bundle).

 Figure 4.6: List with available OSGi bundles in middleware.

 In addition, to be able to work with SSE [9], it requires to include the jersey-media-

sse module and requires to have the javax.servlet API 3.x . SSE creates single

unidirectional connection between Server and Client (see Chapter 2).

 Finally, the middleware served using the Jetty Server that is embedded in eclipse, but

can also run as standalone server [17].

4.2.2 Modifications to Support SSE

 The old Middleware implementation wasn’t support SSE. To be able to support SSE,

some changes in the ARM OSGi Bundle are took place. Those changes are able to leave

SSE to pass from the Middleware. Modifications were take place mainly in the

ConnectionControl.java class file in the OSGi Bundle Middleware. The addition of

24

org.glassfish.jersey.media.sse.* in the created web (methods) class files and also the

modifications in the entire Algorithmic logic of that class, is done to be able to include

the SSE in the web (methods) class files that will be created, when the middleware run.

For example, the createRestMethod function is changed and an extra if else is inserted,

to connect SSE to correctly work as expected. Also from this point, the creation of

another function that will expose the SSE to the API Level is done successfully.

Furthermore modifications are done elsewhere need to make ARM include the SSE and

work again.

 Modifying the bundle wasn’t sufficient. The eclipse IDE configuration needs also to

be modified to support SSE. The final Target Platform Dependencies are in the figure

4.7.

 Despite those modifications, the old REST behavior and functionality are remains the

same. In addition, using this strategy and having bundles that can contains both

functionality (methods) that must be exposed as REST, and functionality (methods) that

must be exposed as SSE, all together in the same OSGi Bundle.

 Figure 4.7: Target Platform Dependencies.

25

4.2.3 Sensors Bundles

 The creation of Sensor Bundles that corresponds to the Sensor build that had

previously was proportionate to the SSE behavior. The bundle creation is very flexible

procedure. A bundle developer can combine technologies to fit in their Sensor Build.

But, for this Sensor build, the activator class is standard and contains two standard

functions - the start and stop function exact like the Philips Hue Bundle. But, in the

“core” method in each Sensor bundle there are two functions. The First function is

REST based function that returns the Sensor Type (e.g. 1: Motion sensor, 2: Distance

sensor, 3: Light Sensor e.c.t.). The Second Function is the “SSE function” that is

contains the SSE functionality and implementation in some cases, depending on where

it will be applied. For, this sensor build, the usage of retransmission logic took place, to

be able to create the bundle method. So, in the same method there is SSE consume and

SSE Produce at the same time. Also, this method is threaded internally, after a point, to

be able to serve SSE to more than one Client.

 For more explanation, the Appendix B contains the core class files that correspond to

the Sensors OSGi bundles (for the Motion Sensor, Distance Sensor and Light Sensor).

 As a result, the Sensor OSGi path general hierarchy is shown in the figure 4.8

 Figure 4.8: Sensor OSGi path general hierarchy.

 /SensorName

/getStype

/getServerSentEvents/def

 Base URL

/getStype/def

/getServerSentEvents

26

Chapter 5

Use Case Demonstration

5.1 Use Case Scenario………………………………………………………………….26

5.2 Use Case Preparation Procedure……………………………………………………26

5.2.1 OSGi Bundle……………………………………………………………27

5.2.2 Addition of XML File………………………….……………………….28

5.2.3 Input of OSGi Bundle to Middleware ………….………………………29

5.2.4 Automatically Configured and Generated URLs………………………33

5.2.5 Communication with Middleware from Client………………………...34

5.3 Demonstration of Use Case………………………………………………………...35

5.1 Use Case Scenario

 There are a lot of use case scenarios that are applicable, and check the ARM

functionality. For this thesis, any Local Area Network can be used, to let the devices to

communicate and let the Middleware API to expose the Smart Modules functionality.

Such a network can be connected to the Internet and expose the Smart Modules

functionality though Internet as well. The scenario demonstrated in the next section uses

a Philips Hue OSGi Bundle, a Motion Sensor OSGi Bundle, a Distance Sensor Motion

OSGi Bundle and a Light Motion OSGi bundle. The connection with middleware is

established using an HTML5 client, but any other Client Application can be used for the

demonstration. The HTML 5 client enables the functionality of Client JS, which

contains three static rules, for demonstration purposes.

27

5.2 Use Case Preparation Procedure

 In the demonstration presented in this chapter, the whole process will be followed,

from the implementation of a bundle providing functionality, up to the usage from the

HTML5_Client3 in this scenario. Two walkthrough videos 5 6 are also great

clarification tools for all the connecting parts of the successful usage and applicability

of the ARM.

5.2.1 OSGi Bundle

 The system testing is done using some bundles. These bundles can be implemented in

the same or other eclipse environment and workspace that the ARM is located. That

bundle can be any bundle packed in .jar file that is satisfy the ARM requirements. In

that OSGi Bundle exist the implementation of the functionality that must be exposed

form ARM. In the figure 5.1 exist the Code snippet from Motion Sensor. Also, all the

Bundles core Sensor class files that is used in the use case scenario can is located in the

Appendix B.

Figure 5.1: Code snippet from Motion Sensor.

5 https://www.youtube.com/watch?v=cEEjh0TPtVI
6 https://www.youtube.com/watch?v=Jb6cBs8qi60

https://www.youtube.com/watch?v=cEEjh0TPtVI
https://www.youtube.com/watch?v=Jb6cBs8qi60

28

 In this example, annotations exist in the bundle for documenting the bundle and for

the method implementing the functionality. Annotations exist on both SSE and REST

functionalities as well. Similarly, the other two Sensor main class file is annotated in

the same way as well.

 Finally, the bundle must be exported as “Deployable plug-ins and Fragments” and

saved as JAR file, for distribution.

5.2.2 Addition of XML File

 The XML file must be build form the Exported Package name and the Bundle

Symbolic name, as specified in the Bundle manifest file.

 In Figure 5.2, there are the XML files for each one Sensor bundles. Here, using the

names that have use while developing the bundle and those names that also exist in the

manifest file, that is created. Notice that the <fullname> encloses text, which has the

pattern “<Exported-Package>.<Bundle-Symbolic-Name>”.

 The XML file has to be included in the .jar file of the bundle that will be distributed.

Bundle Developer must include one XML for each Bundle.

29

 Figure 5.2: Sensors (Distance Light Motion Sensors) XML Files.

5.2.3 Input of OSGi Bundle to Middleware

 When a valid bundle file is deployed in the middleware, ARM detects its

functionalities of that bundle and automatically re-configure by creating the required

class files and redeploy the middleware Web API to include new REST and SSE calls

accordingly.

 Also, all the definition REST calls is created for each new web method, REST call

and SSE call, to let the Client Developer know all required information for the device.

ARM will inform fully the Client Developers and they don’t require communicating

with the IoT device itself. The Definition for each SSE and REST call is located under:

“<baseURL>/<BundleName>/<MethodName>/def”.The definitions of the web methods

is located under: “<baseURL>/<BundleName>”.

 Middleware empty list with available OSGi bundles is shown in the figure 5.3.

Figure 5.3: Middleware empty list with available OSGi bundles.

 Afterwards, the Installation of Philips Hue Light take place and once the Philips Hue

Light bundle is deployed in the middleware, the ARM finds and parses the XML file

containing the bundle’s full name. If the Philips Hue Light bundle is not already

installed as happen in this use case scenario, the middleware will automatically install

30

and start it. ARM detects all the available functionalities from the annotations defined

and re-configure the middleware by injecting the new Philips Hue Light functionalities

as REST web methods and publishing their paths. In the figure 5.4 is the middleware

updated list that include the Smart Philips Hue Light.

Figure 5.4: Middleware list with available OSGi bundles after Smart Philips Hue Light

Installation.

 Next, the Installation of Motion Sensor take place and once the Motion Sensor bundle

is deployed in the middleware, the ARM finds and parses the XML file containing the

bundle’s full name. If the Motion Sensor bundle is not already installed as happen in

this use case scenario, the middleware will automatically install and start it. ARM

detects all the available functionalities from the annotations defined and re-configure

the middleware by injecting the new Motion Sensor functionalities as REST & SSE web

methods and publishing their paths. In the figure 5.5 is the middleware updated list that

include the Motion Sensor. The Smart Philips Hue Bundle is not installed again.

31

Figure 5.5: Middleware list with available OSGi bundles after Motion Sensor install.

 Finaly, the Installation of Light and Distance Sensor take place and once the Light and

Distance Sensor bundles are deployed in the middleware, the ARM finds and parses the

XML file for each one bundle and containing the bundles’s full names. If the Light and

Distance Sensor bundle are not already installed as happen in this use case scenario, the

middleware will automatically install and start them. ARM detects all the available

functionalities from the annotations defined and re-configure the middleware by

injecting the new Light Sensor, Distance Sensor functionalities as REST & SSE web

methods and publishing their paths. In the figure 5.6 is the middleware updated list that

include the Light and Distance Sensor. The Smart Philips Hue and Motion Sensor

Bundle is not installed again.

Figure 5.6: Middleware list with available OSGi bundles after Light and Distance

Sensor Installation.

32

 Lastly, navigating in the Middleware list with available REST & SSE calls for all the

installed bundles, can be achived easily using Postman. For example, in figure 5.7 there

are all the available REST & SSE calls for Distance Sensor Bundle.

Figure 5.7: Middleware list with available REST & SSE calls for Distance Sensor

Bundle.

33

5.2.4 Automatically Configured and Generated URLs

 The Middleware behavior is automatic. So, a list with REST & SSE accessible web

methods will be configured and deployed, each time an OSGi bundle is given to the

middleware.

 As a result, the Sensor OSGi path general hierarchy is shown in the figure 5.8, which

list all the available REST & SSE web methods for Philips Hue Smart Light, Motion

Sensor, Light Sensor and Distance Sensor. All that Generated URLs together among

with the Base URL creates the final ARM API, for this use case scenario.

 Figure 5.8: List with all available web methods for this demonstration.

 /LightSensor

/getStype

/getServerSentEvents/def

 Base URL

/getStype/def

/getServerSentEvents

 /MotionSensor

/getStype

/getServerSentEvents/def

/getStype/def

/getServerSentEvents

 /SmartPhilipsHUELight

/TurnLightOn

/SetLightLevel

/DimLight

/DimLight/def

 /DistanceSensor

/getStype

/getServerSentEvents/def

/getStype/def

/getServerSentEvents

/TurnLightOn/def

/TurnLightOff

/TurnLightOff/def

/SetLightLevel/def

34

5.2.5 Communication with Middleware from Client

 To be able to complete a review for the ARM state a Client, that can consumes SSE,

is created. In this Use Case Senario, the Client is an HTML 5 Client that is working

alongside with Javascript (Client_JS.js), to create an event driven HTML 5 application

that can test the current Middleware state. Having the HTML 5 Client Version 3, can

check the SSE Functionality for all Sensors Modules together and seperatly. HTML 5

Client Version 3 source code and the Client.js source code is located in the Appendix C.

A Screnshot of the HTML 5 Client Version 3 is in the figure 5.9 .

 Figure 5.9: HTML 5 Client Version 3.

35

5.3 Demonstration of Use Case

 When the use case preparation is done, then the scenario can run. The Demonstration

procedure is recorded in two videos. The preparation of one short demonstration video7

and one extended video8 is done, through this this, to present with the best possible way

the system in action. For demonstration is declared three static rules, but this rules can

created automatic, maintained, stored and be dynamic, when the rule engine will take

place in the future. The API exploration is done using postman. Initially, is presented

the project Setup. The setup including the Orange Pi and Philips hue and the setup is

explained little bit. Then, the HTML 5 application server is started up and arranged to

present the system in four stages. Initially, in the in the use case scenario is presented

the Middleware “colt start” when no one OSGi Bundle (Smart Module) is installed yet.

Then, is presented the installation of Philips Hue Bundle and explore the Middleware

API and show the regenerated API with the Philips Hue exposed functionalities. In the

HTML 5 Client application is presented the on/off functionality for this Bundle (Smart

Module). Next, is presented the installation of Motion Sensor. Here is presented the

Middleware automatically regeneration of its API and presented the exploration of the

new functionalities that is exposed in its API. In the HTML 5 application is presented

the usage of the first static rule, which is when a motion is detected for the first time and

if the Philips Hue Light is not on, then turn on the Philips Hue Light and then

disconnect with the respective SSE and don’t make any other changes. Finally, is

presented the Light Sensor and Distance Sensor Bundles installation. Here is presented

the Middleware automatically regeneration of its API and presented the exploration of

the new functionalities that is exposed for that two new Bundles in ARM API. In the

HTML 5 application is presented the usage of the second and third static rules. First is

presented the third rule and if the light sensor detects light, then it set the light level to

match Blue and when is selected if it is dark set the light level to match Green. Finally,

is presented the second rule and if the Philips Hue Light is on and when is selected if

you get too close to the Distance Sensor then, the Philips Hue Light turn red and blink

one time. Else, if the Philips Hue Light is off and you come too close to distance sensor,

Philips Hue Light blink one time on it current color.

7 https://www.youtube.com/watch?v=cEEjh0TPtVI
8 https://www.youtube.com/watch?v=Jb6cBs8qi60

https://www.youtube.com/watch?v=cEEjh0TPtVI
https://www.youtube.com/watch?v=Jb6cBs8qi60

36

Chapter 6

Evaluation

6.1 Evaluation Method…………………………………………………………………36

6.2 Evaluation Questionnaire…………………………………………………………..36

6.3 Evaluation Results………………………………………………………………….38

 6.1 Evaluation Method

 The ideal evaluation method, for this work is the Opinion based evaluation method,

because a questionnaire is used in it. This technique, give the ability to collect feedback

for the system from users and current system state. Also this technique gives many

information and suggestions on possible ways to improve the system. The user’s

opinion matter, because gives measurements for system efficiency, adequate and

complete. Also measuring user’s satisfaction, user’s reaction and user’s acceptance,

creates a better opinion for the system. [18] [19]

6.2 Evaluation Questionnaire

 In the Questionnaire9 there is an introduction paragraph and a small video in the

beginning to get the responder in the context quickly. Afterwards, there are 8 Questions

and finally a place for comments and suggestions. The questions are about the user

acceptance (e.g. check difficulty, check reaction and acceptance) and user opinion (e.g.

what reviewee believes) about the system.

 The questionnaire is listed in the next page.

9 The questionnaire is located under the following link:
https://docs.google.com/forms/d/e/1FAIpQLScwmajWGSisxJHFTOm6nK8Nwl2gJukM__9TSeqd5k3Id
WWsEA/viewform

https://docs.google.com/forms/d/e/1FAIpQLScwmajWGSisxJHFTOm6nK8Nwl2gJukM__9TSeqd5k3IdWWsEA/viewform
https://docs.google.com/forms/d/e/1FAIpQLScwmajWGSisxJHFTOm6nK8Nwl2gJukM__9TSeqd5k3IdWWsEA/viewform

37

Questionnaire:

- How difficult do you find creating cross platform client applications (e.g. Android,

iOS, Web) using RESTful APIs?

Difficult 1 2 3 4 5 Easy

- How difficult do you find creating cross platform client applications (e.g. Android,

iOS, Web) using language Specific Libraries (.jar, .dll)?

Difficult 1 2 3 4 5 Easy

- Do you find it useful that the ARM can automatically generate the REST APIs &

Server Sent Events?

Yes No

- How difficult do you find to Communicate with IoT Devices using REST APIs &

Server Sent Events?

Difficult 1 2 3 4 5 Easy

- Do you believe is necessary to communicate both with Software Services and IoT

Devices using REST APIs & Server Sent Events?

 Not Necessary 1 2 3 4 5 Necessary

- Do you believe that the ARM enables developers to communicate and control IoT

Devices Easy?

 Not At All 1 2 3 4 5 Very Much

- Do you believe that the ARM enables developers to define & implement dependencies

(interaction) between heterogeneous IoT Devices easily?

 Not At All 1 2 3 4 5 Very Much

- Do you believe that the ARM functionality is useful?

Yes No

- Comments and/or Suggestions

38

6.3 Evaluation Results

 In this evaluation that is shown in the figures (Figure 6.1 – Figure 6.9), are collected

the results below:

- How difficult do you find creating cross platform client applications (e.g. Android,

iOS, Web) using RESTful APIs?

(Difficult 1 2 3 4 5 Easy)

Figure 6.1: First Question Results.

- How difficult do you find creating cross platform client applications (e.g. Android,

iOS, Web) using language Specific Libraries (.jar, .dll)?

(Difficult 1 2 3 4 5 Easy)

Figure 6.2: Second Question Results.

39

- Do you find it useful that the ARM can automatically generate the REST APIs &

Server Sent Events?

Figure 6.3: Third Question Results.

- How difficult do you find to Communicate with IoT Devices using REST APIs &

Server Sent Events?

(Difficult 1 2 3 4 5 Easy)

Figure 6.4: Fourth Question Results.

40

- Do you believe is necessary to communicate both with Software Services and IoT

Devices using REST APIs & Server Sent Events?

 (Not Necessary 1 2 3 4 5 Necessary)

Figure 6.5: Fifth Question Results.

- Do you believe that the ARM enables developers to communicate and control IoT

Devices Easy?

 (Not At All 1 2 3 4 5 Very Much)

Figure 6.6: Sixth Question Results.

41

- Do you believe that the ARM enables developers to define & implement dependencies

(interaction) between heterogeneous IoT Devices easily?

(Not At All 1 2 3 4 5 Very Much)

Figure 6.7: Seventh Question Results.

- Do you believe that the ARM functionality is useful?

Figure 6.8: Eighth Question Results.

42

- Comments and/or Suggestions

5 responses

ARM functionality is useful only for very specific cases where very complex scenario

requires it.

The beauty of IoT is to me, to simply interact with hardware rather than software.

Would be nice to have a web interface that can be used, maybe this has been done.

Points to consider: (1) security layer (2) swagger integration (popular framework in

order to define rest API’s) (3) auto discovery within a network? (Similar to apple's

bonjour).

Very Good, If you have a lot of Devices to communicate with.

 Figure 6.9: Comments and/or Suggestions.

 From the above results, the ARM system tends to be a useful tool for Client

Application Developers. Even though there are different values in the results, the

average results, for ARM, are positive. Especially, a big amount of reviewee supports

that is easier to create Client Application (e.g. Android, iOS, Web) using restful API’s

and SSE instead of using language specific libraries. As for the API automatic

regeneration, all of the reviewees responded that is a useful. Also, they claim that there

isn’t find difficulty to communicate with IoT devices using the REST API’s and SSE

and that is a necessary feature is such a middleware. The support that ARM is an easy to

use middleware, that let the developers communicate heterogeneous and non-

heterogeneous with IoT Devices easily. A big amount of reviewees find that the ARM

functionality is useful.

 Despite the positive responses, form the questionnaire results feedback about future

improvement that can be done in the system. For example, the swagger integration, the

addition of security features (this is able with com.eclipsesource.jaxrs.provider.security

[20]). They proposed also, the addition of Web Interface to create the connections on

the system (that is planned to do when the Rules engine will be created in the future).

Finally, it proposed the addition of an automatic discovery system of IoT devices in the

network, to make the Middleware super easy to use.

43

 Also, a small amount of the reviewees support that is best to communicate directly

with the IoT devices, and based on the responses expose rest APIs and SSE from that.

 Finally, an amount of the reviewees support that such a middleware can present only

when a lot of IoT Devices exists interconnected. But this is planned to happen in the

near future, because more and more companies will create more IoT devices that will

have the ability to be Smart and connected to the Internet.

 As every research on new technology has variations, ours also expected that would

have deviations, because this is based on the developer's acceptance of this new

technology. The fact that the programmer who took time to learn a technique as well

uses a philosophy is giving difficulty to have to re-start something new.

 What may have been enough is the fact that a Middleware can be considered a single

point of failure but because of the way OSGi works (e.g. an OSGi Smart Module or

device, but the rest of the Middleware will still work) and the fact that a backup system

can be used to redirect the Client Application requests, this can blunt the problem.

 On the other hand, all the answers are important, because is helpful for the system

improvement and so that will be even more friendly and acceptable System for

developers.

 All the above delivers the feeling that ARM is a useful Middleware. Especially now

when the IoT tends to grow and have more devices connected and a lot of new IoT

devices are appear every single day.

44

Chapter 7

Conclusions and Future Work

7.1 Conclusions ………..……….…………………………………………………….44

7.2 Future Work ….…………………………………………………………………...45

7.1 Conclusions

 Internet of Things tends to be more complex and demand. To be able to face this

demand a Middleware is essential. This thesis shows that ARM can bring heterogeneous

devices together. The Middleware stays a simplify solution and help Client application

developers to write easily its applications and reduce the learning curve. The

Middleware have the ability to handle a lot of OSGi components including those that

have SSE functionality inside. When the OSGi Bundles (smart modules) is deployed the

Middleware find out its available capabilities and reconfigure itself by re-generating and

re-deploying the middleware WEB API. Because It’s an auto adjustable system

automatically adapt this changes and expose the functionalities of the smart modules

through REST calls and/or SSE, when is applicable.

 Using such a system, there are a lot of advantages. There are a lot of automated tasks

in the system. The middleware now support various sensor types and expose them

functionalities using Server Sent Events. Also can support heterogeneous Sensor types,

Sensor that not support SSE de facto and even more software Services. ARM

Developers creating a correct bundle will lead the system to create SSE on the fly, at

Middleware runtime from the source of them choice.

 The Middleware functionality is beneficial for both Client application developers (e.g.

iOS developers, Android developers, WEB developers etc.) and ARM Developers as

well.

45

7.2 Future Work

 In this thesis, ARM is updated to make the functionalities of the bundles available

through SSE and/or REST calls, when is applicable. This Middleware can be upgraded

in many ways to be a powerful Middleware for the IoT.

 Initially, a long term storage solution for the rules must be implementing. One

approach is the Reasoner Plugins (see figure 3.2), which will store some rules in the

Middleware, so the functionality that each user want to be saved, can be saved and be

widely accessible. Another approach is to build that logic on node.js or PHP and store

the rules here. Also, building hybrid web applications compatible with mobile devices

can be done easily and lets the user be able to set long term rules and short term rules,

based on their needs. So user can set long term and short term associations between the

bundles. Also developer can set automatic associations and bundle triggers internally

inside the application, to satisfy the user needs. In both approaches including a dynamic

rule engine, that can do automatic a lot of functionality to simplify the Developer work,

will be a great addition to ARM.

 Also, another important aspect is the middleware’s expansion to support all REST

API Methods and be compatible with more complicated hardware and software making

the functionalities of those bundles available through REST natively.

 Finally, the security in the middleware must be considered. Some important security

features that can be added on the middleware are for example the possibility to

intergrade the Jersey/JAX-RS security features that is located in the bundle

com.eclipsesource.jaxrs.provider.security [20]. Also, adding CORS Filters in the

Middleware will let ARM to be friendlier to web browsers.

46

Βιβλιογραφία

[1] Padraig Scully, “IoT Analytics”, [Online]. Available:

https://iot-analytics.com/top-10-iot-segments-2018-real-iot-projects/

[2] Jan Henrik Ziegeldorf1, Oscar Garcia Morchon and Klaus Wehrle, “Privacy in the

Internet of Things: threats and challenges”. Available:

https://onlinelibrary.wiley.com/doi/pdf/10.1002/sec.795

[3] Eclipse, [Online]. Available:

http://eclipse.github.io/kura/

[4] Thibaut Le Guilly, Petur Olsen, Anders P. Ravn, Jesper Brix Rosenkilde, Arne

Skou, “HomePort: Middleware for Heterogeneous Home Automation Networks”.

Available:

http://people.cs.aau.dk/~thibaut/papers/HomePort.pdf

[5] Achilleas Achilleos, Kyriaki Georgiou, Christos Markides, Andreas Konstantinidis,

George A. Papadopoulos, “Adaptive Runtime Middleware: Everything as a Service”.

Available:

https://www.researchgate.net/publication/319572045_Adaptive_Runtime_Middleware_

Everything_as_a_Service

[6] “cs.uci.edu”, [Online]. Available:

http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

[4] Roy Fielding, “Economies of scale”, [Online]. Available:

http://roy.gbiv.com/untangled/2008/economies-of-scale

[5] Things every developer should know, “Twitter Inc.”, [Online]. Available:

 https://developer.twitter.com/en/docs/basics/things-every-developer-should-know

https://iot-analytics.com/top-10-iot-segments-2018-real-iot-projects/
https://onlinelibrary.wiley.com/doi/pdf/10.1002/sec.795
http://eclipse.github.io/kura/
http://people.cs.aau.dk/~thibaut/papers/HomePort.pdf
https://www.researchgate.net/publication/319572045_Adaptive_Runtime_Middleware_Everything_as_a_Service
https://www.researchgate.net/publication/319572045_Adaptive_Runtime_Middleware_Everything_as_a_Service
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://roy.gbiv.com/untangled/2008/economies-of-scale
https://developer.twitter.com/en/docs/basics/things-every-developer-should-know

47

[6] Ian Hickson, “Server-Sent Events”, [Online W3C Working Draft]. Available:

https://www.w3.org/TR/2009/WD-eventsource-20090421/

[7] “HTML Living Standard Event Source”, “WHATWG community”,

[Online Community Spec]. Available:

https://html.spec.whatwg.org/multipage/server-sent-events.html

[8] Mozilla, “MDN web docs”, “Server-sent events” [Online]. Available:

https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events

[9] Sunil Gulabani, “Developing RESTful Web Services with Jersey 2.0”, “Packt

Publishing Limited”. Available:

https://www.packtpub.com/application-development/developing-restful-web-services-

jersey-20

[10] R. T. Fielding, Architectural Styles and the Design of Network-based Software

Architectures, University of California, Irvine, 2000.

[11] P.J. Eby, “Python Software Foundation”, [Online PEP]. Available:

https://www.python.org/dev/peps/pep-3333/

[12] Armbian, [Online]. Available:

https://docs.armbian.com/

[13] Benoit Chesneau, “Gunicorn Org”, [Online]. Available:

http://docs.gunicorn.org/en/latest/design.html

[14] Spirula, “Gunicorn Worker Types”, “Spirulasystems” [Online]. Available:

https://www.spirulasystems.com/blog/2015/01/20/gunicorn-worker-types/

[15] Eclipse, [Online]. Available:

https://projects.eclipse.org/projects/rt.equinox/releases/3.9.0

https://www.w3.org/TR/2009/WD-eventsource-20090421/
https://html.spec.whatwg.org/multipage/server-sent-events.html
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
https://www.packtpub.com/application-development/developing-restful-web-services-jersey-20
https://www.packtpub.com/application-development/developing-restful-web-services-jersey-20
https://www.python.org/dev/peps/pep-3333/
https://docs.armbian.com/
http://docs.gunicorn.org/en/latest/design.html
https://www.spirulasystems.com/blog/2015/01/20/gunicorn-worker-types/
https://projects.eclipse.org/projects/rt.equinox/releases/3.9.0

48

[16] H. Staudacher, “GitHub, Inc,” [Online]. Available:

https://github.com/hstaudacher/osgi-jax-rs-connector

[17] Lars Vogel, Simon Scholz, “Vogella” [Online]. Available:

http://www.vogella.com/tutorials/OSGi/article.html#running-a-stand-alone-osgi-server

[18] Günther Gediga, Kai-Christoph Hamborg, Evaluation of Software Systems,

University of Ulster, Newtownabbey, BT 37 0QB, N.Ireland

[19] Barbara Ann Kitchenham, Evaluating Software Engineering Methods and Tool,

Part 1: The Evaluation Context and Evaluation Methods, “NCC Services Ltd”, National

Computing Center Oxford Road, Manchester, M1 7ED, England

[20] H. Staudacher, “GitHub, Inc,” [Online]. Available:

https://github.com/hstaudacher/osgi-jax-rs-connector/wiki/security

https://github.com/hstaudacher/osgi-jax-rs-connector
http://www.vogella.com/tutorials/OSGi/article.html#running-a-stand-alone-osgi-server
https://github.com/hstaudacher/osgi-jax-rs-connector/wiki/security

A-1

Appendix A

Desktop.py :

1. #imports
2. import sys, datetime, time, flask
3. from pyA20.gpio import gpio
4. from pyA20.gpio import port
5. from flask_cors import CORS, cross_origin
6. from flask_sse import sse
7.
8. #initializing
9. gpio.init()
10. gpio.setcfg(port.PA7,gpio.OUTPUT)
11. gpio.setcfg(port.PC4,gpio.INPUT)
12. gpio.setcfg(port.PC7,gpio.INPUT)
13.
14. #for flusk
15. app = flask.Flask(__name__)
16.
17. #for cors
18. cors = CORS(app)
19. app.config['CORS_HEADERS'] = 'Content-Type'
20.
21. #counters
22. flagMotion = 2
23. flagDistance = 2
24. flagLight = 2
25. connaliveM = 0
26. connaliveD = 0
27. connaliveL = 0
28.
29. #function rc_ctime
30. def rc_time():
31. count = 0
32. gpio.setcfg(port.PA6,gpio.OUTPUT)
33. gpio.output(port.PA6,gpio.LOW)
34. time.sleep(0.1)
35. gpio.setcfg(port.PA6,gpio.INPUT)
36. while(gpio.input(port.PA6) == gpio.LOW):
37. count += 1
38. return count
39.
40. #intitializing
41. time.sleep(3)

A-2

42.
43.
44. #Motion Check
45. def event_stream1():
46. try:
47.
48. global connaliveM
49. global flagMotion
50. #yielding "event: motion\n"
51. while True:
52. check = gpio.input(port.PC7)
53. if (check and not(flagMotion == 1)):
54. print("motion")
55. yield "event: motion\ndata: motion\n\n"
56. connaliveM = 0
57. time.sleep(1)
58. flagMotion = 1
59. elif (check and (flagMotion == 1)):
60. print ("--Double motion---")
61. connaliveM += 1
62. time.sleep(1)
63. elif (not(check) and not(flagMotion == 0)):
64. yield "event: motion\ndata: none\n\n"
65. connaliveM = 0
66. time.sleep(1)
67. flagMotion = 0
68. print("none motion")
69. elif (not(check) and (flagMotion == 0)):
70. connaliveM += 1
71. time.sleep(1)
72. print("--Dub none motion--")
73. else:
74. connaliveM += 1
75. time.sleep(1)
76.
77. if (connaliveM >= 15):
78. connaliveM = 0
79. print("/////Sync alive////")
80. yield "event: motion\ndata: s\n\n"
81. #time.sleep(1)
82.
83. except:
84. #gpio.close()
85. print("Motion Sensor Stoped!")
86.
87. #Distance Check
88. def event_stream2():
89. try:
90.

A-3

91. global connaliveD
92. global flagDistance
93. #yielding "event: distance\n"
94. while True:
95. checkb = not(gpio.input(port.PC4))
96. if (checkb and not(flagDistance == 1)):
97. print("close")
98. yield "event: distance\ndata: close\n\n"
99. connaliveD = 0
100. time.sleep(1)
101. flagDistance = 1
102. elif (checkb and (flagDistance == 1)):
103. print ("---Double close---")
104. connaliveD += 1
105. time.sleep(1)
106. elif (not(checkb) and not(flagDistance == 0)):
107. yield "event: distance\ndata: none\n\n"
108. connaliveD = 0
109. time.sleep(1)
110. flagDistance = 0
111. print("none close")
112. elif (not(checkb) and (flagDistance == 0)):
113. connaliveD += 1
114. time.sleep(1)
115. print("--Dub none close--")
116. else:
117. connaliveD += 1
118. time.sleep(1)
119.
120. if (connaliveD >= 15):
121. connaliveD = 0
122. print("/////Sync alive////")
123. yield "event: distance\ndata: s\n\n"
124. #time.sleep(1)
125.
126. except:
127. #gpio.close()
128. print("Distance Sensor Stoped!")
129.
130. #Light Check
131. def event_stream3():
132. try:
133.
134. global connaliveL
135. global flagLight
136. #yielding "event: light\n"
137. while True:
138. #print rc_time() #was 100000
139. checkc = True

A-4

140. if (rc_time() >= 10000):
141. checkc = True
142. else:
143. checkc = False
144.
145. #check
146. if (checkc and not(flagLight == 1)):
147. print("dark")
148. yield "event: light\ndata: dark\n\n"
149. connaliveL = 0
150. time.sleep(1)
151. flagLight = 1
152. elif (checkc and (flagLight == 1)):
153. print ("---Double dark---")
154. connaliveL +=1
155. time.sleep(1)
156. elif (not(checkc) and not(flagLight == 0)):
157. yield "event: light\ndata: none\n\n"
158. connaliveL = 0
159. time.sleep(1)
160. flagLight = 0
161. print("none dark")
162. elif (not(checkc) and (flagLight == 0)):
163. connaliveL +=1
164. time.sleep(1)
165. print("--dub none dark--")
166. else:
167. connaliveL +=1
168. time.sleep(1)
169.
170. if (connaliveL >= 15):
171. connaliveL = 0
172. print("/////Sync alive////")
173. yield "event: light\ndata: s\n\n"
174. #time.sleep(1)
175.
176. except:
177. #gpio.close()
178. print("Light Sensor Stoped!")
179.
180. @app.route('/smotion')
181. @cross_origin()
182. def smotion():
183. return flask.Response(event_stream1(), mimetype="text/event-

stream")
184.
185. @app.route('/sdist')
186. @cross_origin()
187. def sdist():

A-5

188. return flask.Response(event_stream2(), mimetype="text/event-
stream")

189.
190. @app.route('/slight')
191. @cross_origin()
192. def slight():
193. return flask.Response(event_stream3(), mimetype="text/event-

stream")
194.
195. @app.route("/")
196. @cross_origin()
197. def hello():
198. return """
199. <!doctype html>
200. <html>
201. <head>
202. <title>OPi Sensor SSE</title>
203. </head>
204. <body>
205. <h1>OPi Sensor<h1/>
206. <h3> Current sse routes is /smotion, /sdist, /slight </h3>
207. </body>
208. </html>
209. """
210.
211. #app multithreaded
212. #app.run(threaded=True)
213. if __name__ == "__main__":
214. app.run(host='0.0.0.0')
215. app.run(threaded=True)

B-1

Appendix B

LightSensor.java :

1. package osgi_LightSensor;
2.
3. import java.io.IOException;
4.
5. import javax.ws.rs.Consumes;
6. import javax.ws.rs.GET;
7. import javax.ws.rs.Produces;
8. import javax.ws.rs.client.Client;
9. import javax.ws.rs.client.ClientBuilder;
10. import javax.ws.rs.client.WebTarget;
11. import javax.ws.rs.core.MediaType;
12.
13. import org.glassfish.jersey.media.sse.EventInput;
14. import org.glassfish.jersey.media.sse.EventOutput;
15. import org.glassfish.jersey.media.sse.InboundEvent;
16. import org.glassfish.jersey.media.sse.OutboundEvent;
17. import org.glassfish.jersey.media.sse.SseFeature;
18. import org.glassfish.jersey.server.ResourceConfig;
19.
20. import osgi_annotations.interfaces.ClassDescription;
21. import osgi_annotations.interfaces.MethodDescription;
22.
23. @ClassDescription(value = "LightSensor is an osgi bundle that represent a light

sensor. This plugin provide SSE that feeded from the sensor and then serve it to
client.")

24. public class LightSensor extends ResourceConfig {
25. private static String sensorC = "slight";
26. private String LocalNetworkIP = "192.168.1.135";
27.
28. @MethodDescription(value = "Return the Sensor type. 1 : Motion sensor, 2:

Distance sensor 3: Light Sensor")
29. @GET
30. @Produces(MediaType.APPLICATION_JSON)
31. public int getStype() {
32. int stype = 3; /// motion sensor
33. return stype;
34. }
35.
36. @MethodDescription(value = "Return the Server Sent Event from the light se

nsor. The event name is 'light'. When is dark then a 'dark' data pass in else, it pas
s a 'none' data as message.")

37. @GET

B-2

38. @Consumes(SseFeature.SERVER_SENT_EVENTS)
39. @Produces(SseFeature.SERVER_SENT_EVENTS)
40. public EventOutput getServerSentEvents() {
41.
42. final EventOutput eventOutput = new EventOutput();
43. Client client = ClientBuilder.newBuilder().register(SseFeature.class).build(

);
44. WebTarget target = client.target("http://" + LocalNetworkIP + "/" + sensor

C);
45. final EventInput eventInput = target.request().get(EventInput.class);
46.
47. new Thread(new Runnable() {
48. @Override
49. public synchronized void run() {
50. try {
51. while (!eventInput.isClosed()) {
52. // If it is not sychronise well use:
53. // Thread.sleep(500);
54. InboundEvent inboundEvent = eventInput.read();
55.
56. if (inboundEvent == null) {
57. // connection has been closed
58. break;
59. }
60. try {
61. //Handle event and retransmit it. You can add event id if requir

ed.
62. //For Debug
63. //System.out.println(inboundEvent.readData(String.class));
64. OutboundEvent.Builder eventBuilder = new OutboundEvent.B

uilder();
65. eventBuilder.name(inboundEvent.getName());
66. eventBuilder.data(inboundEvent.readData(String.class));
67. OutboundEvent event = eventBuilder.build();
68. eventOutput.write(event);
69. } catch (IOException e) {
70. try {
71. eventOutput.close();
72. eventInput.close();
73. } catch (IOException ioClose) {
74. throw new RuntimeException("Error when closing the event

 output internal.", ioClose);
75. }
76. throw new RuntimeException("Error when writing or reading t

he event.", e);
77. } catch (Exception e) {
78. e.printStackTrace();
79. }
80. }

B-3

81.
82. } catch (Exception e) {
83. e.printStackTrace();
84. } finally {
85. try {
86. if (!eventOutput.isClosed()) {
87. eventOutput.close();
88. }
89. if (!eventInput.isClosed()) {
90. eventInput.close();
91. }
92. } catch (IOException ioClose) {
93. throw new RuntimeException("Error when closing the event outp

ut.", ioClose);
94. }
95. }
96. }
97. }).start();
98. return eventOutput;
99. }
100.
101. }

B-4

MotionSensor.java :

1. package osgi_MotionSensor;
2.
3. import java.io.IOException;
4.
5. import javax.ws.rs.Consumes;
6. import javax.ws.rs.GET;
7. import javax.ws.rs.Produces;
8. import javax.ws.rs.client.Client;
9. import javax.ws.rs.client.ClientBuilder;
10. import javax.ws.rs.client.WebTarget;
11. import javax.ws.rs.core.MediaType;
12.
13. import org.glassfish.jersey.media.sse.EventInput;
14. import org.glassfish.jersey.media.sse.EventOutput;
15. import org.glassfish.jersey.media.sse.InboundEvent;
16. import org.glassfish.jersey.media.sse.OutboundEvent;
17. import org.glassfish.jersey.media.sse.SseFeature;
18. import org.glassfish.jersey.server.ResourceConfig;
19.
20. import osgi_annotations.interfaces.ClassDescription;
21. import osgi_annotations.interfaces.MethodDescription;
22.
23. @ClassDescription(value = "MotionSensor is an osgi bundle that represent a mo

tion sensor. This plugin provide SSE that feeded from the sensor and then serve i
t to client.")

24. public class MotionSensor extends ResourceConfig {
25. private static String sensorA = "smotion";
26. private String LocalNetworkIP = "192.168.1.135"; // "192.168.31.161";
27.
28. @MethodDescription(value = "Return the Sensor type. 1 : Motion sensor, 2:

Distance sensor 3: Light Sensor")
29. @GET
30. @Produces(MediaType.APPLICATION_JSON)
31. public int getStype() {
32. int stype = 1; /// motion sensor
33. return stype;
34. }
35.
36. @MethodDescription(value = "Return the Server Sent Event from the motion

sensor. The event name is 'motion'. When motion is present then a 'motion' data
pass in else, it pass a 'none' data as message.")

37. @GET
38. @Consumes(SseFeature.SERVER_SENT_EVENTS)
39. @Produces(SseFeature.SERVER_SENT_EVENTS)
40. public EventOutput getServerSentEvents() {

B-5

41.
42. final EventOutput eventOutput = new EventOutput();
43. Client client = ClientBuilder.newBuilder().register(SseFeature.class).build(

);
44. WebTarget target = client.target("http://" + LocalNetworkIP + "/" + sensor

A);
45. final EventInput eventInput = target.request().get(EventInput.class);
46.
47. new Thread(new Runnable() {
48. @Override
49. public synchronized void run() {
50. try {
51. while (!eventInput.isClosed()) {
52. // If it is not sychronise well use:
53. // Thread.sleep(500);
54. InboundEvent inboundEvent = eventInput.read();
55.
56. if (inboundEvent == null) {
57. // connection has been closed
58. break;
59. }
60. try {
61. // Handle event and retransmit it. You can add event
62. // id if required.
63. // For Debug
64. // System.out.println(inboundEvent.readData(String.class));
65. OutboundEvent.Builder eventBuilder = new OutboundEvent.B

uilder();
66. eventBuilder.name(inboundEvent.getName());
67. eventBuilder.data(inboundEvent.readData(String.class));
68. OutboundEvent event = eventBuilder.build();
69. eventOutput.write(event);
70. } catch (IOException e) {
71. try {
72. eventOutput.close();
73. eventInput.close();
74. } catch (IOException ioClose) {
75. throw new RuntimeException("Error when closing the event

 output internal.", ioClose);
76. }
77. throw new RuntimeException("Error when writing or reading t

he event.", e);
78. } catch (Exception e) {
79. e.printStackTrace();
80. }
81. }
82.
83. } catch (Exception e) {
84. e.printStackTrace();

B-6

85. } finally {
86. try {
87. if (!eventOutput.isClosed()) {
88. eventOutput.close();
89. }
90. if (!eventInput.isClosed()) {
91. eventInput.close();
92. }
93. } catch (IOException ioClose) {
94. throw new RuntimeException("Error when closing the event outp

ut.", ioClose);
95. }
96. }
97. }
98. }).start();
99. return eventOutput;
100. }
101.
102. }

B-7

DistanceSensor.java

1. package osgi_DistanceSensor;
2.
3. import java.io.IOException;
4.
5. import javax.ws.rs.Consumes;
6. import javax.ws.rs.GET;
7. import javax.ws.rs.Produces;
8. import javax.ws.rs.client.Client;
9. import javax.ws.rs.client.ClientBuilder;
10. import javax.ws.rs.client.WebTarget;
11. import javax.ws.rs.core.MediaType;
12.
13. import org.glassfish.jersey.media.sse.EventInput;
14. import org.glassfish.jersey.media.sse.EventOutput;
15. import org.glassfish.jersey.media.sse.InboundEvent;
16. import org.glassfish.jersey.media.sse.OutboundEvent;
17. import org.glassfish.jersey.media.sse.SseFeature;
18. import org.glassfish.jersey.server.ResourceConfig;
19.
20. import osgi_annotations.interfaces.ClassDescription;
21. import osgi_annotations.interfaces.MethodDescription;
22.
23. @ClassDescription(value = "DistanceSensor is an osgi bundle that represent a D

istance sensor. This plugin provide SSE that feeded from the sensor and then ser
ve it to client")

24. public class DistanceSensor extends ResourceConfig {
25. private static String sensorB = "sdist";
26. private String LocalNetworkIP = "192.168.1.135";
27.
28. @MethodDescription(value = "Return the Sensor type. 1 : Motion sensor, 2:

Distance sensor 3: Light Sensor")
29. @GET
30. @Produces(MediaType.APPLICATION_JSON)
31. public int getStype() {
32. int stype = 2; /// motion sensor
33. return stype;
34. }
35.
36. @MethodDescription(value = "Return the Server Sent Event from the Distanc

e sensor. The event name is 'distance'. When someone is too close to distance se
nsor then a 'distance' data pass in else, it pass a 'none' data as message.")

37. @GET
38. @Consumes(SseFeature.SERVER_SENT_EVENTS)
39. @Produces(SseFeature.SERVER_SENT_EVENTS)
40. public EventOutput getServerSentEvents() {
41.

B-8

42. final EventOutput eventOutput = new EventOutput();
43. Client client = ClientBuilder.newBuilder().register(SseFeature.class).build(

);
44. WebTarget target = client.target("http://" + LocalNetworkIP + "/" + sensor

B);
45. final EventInput eventInput = target.request().get(EventInput.class);
46.
47. new Thread(new Runnable() {
48. @Override
49. public synchronized void run() {
50. try {
51. while (!eventInput.isClosed()) {
52. // If it is not sychronise well use:
53. // Thread.sleep(500);
54. InboundEvent inboundEvent = eventInput.read();
55.
56. if (inboundEvent == null) {
57. // connection has been closed
58. break;
59. }
60. try {
61. // Handle event and retransmit it. You can add event
62. // id if required.
63. // For Debug
64. // System.out.println(inboundEvent.readData(String.class));
65. OutboundEvent.Builder eventBuilder = new OutboundEvent.B

uilder();
66. eventBuilder.name(inboundEvent.getName());
67. eventBuilder.data(inboundEvent.readData(String.class));
68. OutboundEvent event = eventBuilder.build();
69. eventOutput.write(event);
70. } catch (IOException e) {
71. try {
72. eventOutput.close();
73. eventInput.close();
74. } catch (IOException ioClose) {
75. throw new RuntimeException("Error when closing the event

 output internal.", ioClose);
76. }
77. throw new RuntimeException("Error when writing or reading t

he event.", e);
78. } catch (Exception e) {
79. e.printStackTrace();
80. }
81. }
82.
83. } catch (Exception e) {
84. e.printStackTrace();
85. } finally {

B-9

86. try {
87. if (!eventOutput.isClosed()) {
88. eventOutput.close();
89. }
90. if (!eventInput.isClosed()) {
91. eventInput.close();
92. }
93. } catch (IOException ioClose) {
94. throw new RuntimeException("Error when closing the event outp

ut.", ioClose);
95. }
96. }
97. }
98. }).start();
99. return eventOutput;
100. }
101.
102. }

C-1

Appendix C

HTML5_Client3.html :

1. <!DOCTYPE html>
2. <html>
3. <head>
4. <meta charset="ISO-8859-1">
5. <meta content="text/html" http-equiv="Content-Type">
6. <meta content="utf-8" http-equiv="encoding">
7. <title>HTML5 Client for Philips HUE Smart Light</title>
8. <script type="text/javascript" src="Scripts/jquery-3.2.0.min.js"></script>
9. <script type="text/javascript" src="Scripts/Client_JS.js"></script>
10. <link type="text/css" rel="stylesheet" href="Style/Client_CSS.css" />
11.
12. <meta name="viewport" content="width=device-width, initial-scale=1">
13. </head>
14. <body>
15. <div class="container-fluid">
16. <div class="row">
17. <div class="col-xs-12 col-md-12">
18. <h1>HTML5 Client for Philips HUE Smart Light, Sensors and Rules<

/h1>
19. </div>
20. </div>
21. <div class="row">
22. <div class="col-xs-12 col-md-12">
23. <p class="text-

muted">SmartPhilipsHUELight is an OSGi bundle for
24. communicating with a Philips HUE Light.This OSGi bundle imple

ments
25. four basic functionalities for interacting with the smart light.</p>
26. <p class="text-

muted">The sensors OSGi bundles implements Server
27. Sent Events functionalities to handle the sensor states.</p>
28. </div>
29. </div>
30. <div class="row">
31. <div class="col-xs-12 col-md-6">
32. <div class="panel panel-info">
33. <div class="panel-heading">
34. <h2 class="panel-title">1. Turn Light On</h2>
35.
36. </div>
37. <div class="panel-body">
38. <p>

C-2

39. <i>Description:</i> Invoking this will turn the smart light ON.

40. </p>
41. <button type="button" id="TurnLightOnBtn" name="Turn Light

On"
42. onclick="Javascript:TurnLightOn('TurnLightOnResult')"
43. class="btn btn-

primary" role="button">Turn Light On</button>
44. </div>
45. <div class="panel-footer">
46. <label><i>Result: </i></label>

47. </div>
48. </div>
49. </div>
50. <div class="col-xs-12 col-md-6">
51. <div class="panel panel-info">
52. <div class="panel-heading">
53. <h2 class="panel-title">2. Turn Light Off</h2>
54. </div>
55. <div class="panel-body">
56. <p>
57. <i>Description:</i> Invoking this will turn the smart light Off.

58. </p>
59. <button type="button" id="TurnLightOffBtn" name="Turn Light

Off"
60. onclick="Javascript:TurnLightOff('TurnLightOffResult')"
61. class="btn btn-

primary" role="button">Turn Light Off</button>
62. </div>
63. <div class="panel-footer">
64. <label><i>Result: </i></label>

65. </div>
66. </div>
67. </div>
68. </div>
69. <div class="row">
70. <div class="col-xs-12 col-md-6">
71. <div class="panel panel-info">
72. <div class="panel-heading">
73. <h2 class="panel-title">3. Dim Light</h2>
74. </div>
75. <div class="panel-body">
76. <p>
77. <i>Description:</i> Invoking this will dim the smart light.
78. </p>
79. <button type="button" id="DimLightBtn" name="Dim Light"

C-3

80. onclick="Javascript:DimLight('DimLightResult')"
81. class="btn btn-primary" role="button">Dim Light</button>
82. </div>
83. <div class="panel-footer">
84. <label><i>Result: </i></label> </s

pan>
85. </div>
86. </div>
87. </div>
88. <div class="col-xs-12 col-md-6">
89. <div class="panel panel-info">
90. <div class="panel-heading">
91. <h2 class="panel-title">4. Set Light Level</h2>
92. </div>
93. <div class="panel-body">
94. <p>
95. <i>Description:</i> Invoking this will set the smart light level.

96. </p>
97. Light Level: <input type="text" id="lightLevelIn

put"
98. value="" style="width: 50px; height: 25px" />

99. <button type="button" id="SetLightLevelBtn" name="Set Light

Level"
100. onclick="Javascript:SetLightLevel('SetLightLevelResul

t', 'lightLevelInput')"
101. class="btn btn-

primary" role="button">Set Light Level</button>
102. </div>
103. <div class="panel-footer">
104. <label><i>Result: </i></label> <span id="SetLightLevel

Result">
105. </div>
106. </div>
107. </div>
108. </div>
109. <div class="row">
110. <div class="col-xs-12 col-md-6">
111. <div class="panel panel-info">
112. <div class="panel-heading">
113. <h2 class="panel-title">5. Set Light Color</h2>
114. </div>
115. <div class="panel-body">
116. <p>
117. <i>Description:</i> Invoking this will set the smart lig

ht color.
118.
This is a wrapping value between 0 and 65535. B

oth 0 and
119. 65535 are red, 25500 is green and 46920 is blue.

C-4

120. </p>
121. Light Color: <input type="text" id="light

ColorInput"
122. value="14956" style="width: 50px; height: 25px" />
123. <!-- disabled="disabled" -->
124.
 <input type="range" min="0" max="65535" value

="14956"
125. step="100" onchange="showValue(this.value, 'lightCol

orInput')" />
126. <button type="button" id="SetLightColorBtn" name="Di

m Light"
127. onclick="Javascript:SetLightColor('SetLightColorResul

t', 'lightColorInput')"
128. class="btn btn-

primary" role="button">Set Light Color</button>
129. </div>
130. <div class="panel-footer">
131. <label><i>Result: </i></label> <span id="SetLightColor

Result">
132. </div>
133. </div>
134. </div>
135. <div class="col-xs-12 col-md-6">
136. <div class="panel panel-info">
137. <div class="panel-heading">
138. <h2 class="panel-

title">6. Server Sent Event Case A</h2>
139. </div>
140. <div class="panel-body">
141. <p>
142. <i>Description:</i> If you move in front of Motion Sen

sor and if
143. the hue light is not on , then turn it on.

144. </p>
145. <button type="button" class="btn btn-primary"
146. onclick="Javascript:sse1()">Enable Motion Rule</butt

on>
147.
148. <!--

 -->
149. <button type="button" class="btn btn-primary"
150. onclick="Javascript:source1.close(); i=0;">Disable
151. Motion Rule</button>
152.
153. </div>
154. <div class="panel-footer">
155. <label><i>Log: </i></label>
156. </div>
157. </div>

C-5

158. </div>
159. </div>
160. <div class="row">
161. <div class="col-xs-12 col-md-6">
162. <div class="panel panel-info">
163. <div class="panel-heading">
164. <h2 class="panel-

title">7. Server Sent Event Case B</h2>
165. </div>
166. <div class="panel-body">
167. <p>
168. <i>Description:</i> If the Philips Hue Light is on and i

f you get
169. too close to the Distance Sensor then, the Philips Hue L

ight turn
170. red and blink one time. Else if the Philips Hue Light is

off, it
171. blink one time on it current color.

172. </p>
173. <button type="button" class="btn btn-primary"
174. onclick="Javascript:sse2()">Enable Distance Rule</but

ton>
175.
176. <!--

 -->
177. <button type="button" class="btn btn-primary"
178. onclick="Javascript:source2.close()">Disable Distance

179. Rule</button>
180.
181. </div>
182. <div class="panel-footer">
183. <label><i>Log: </i></label>
184. </div>
185. </div>
186. </div>
187. <div class="col-xs-12 col-md-6">
188. <div class="panel panel-info">
189. <div class="panel-heading">
190. <h2 class="panel-

title">8. Server Sent Event Case C</h2>
191. </div>
192. <div class="panel-body">
193. <p>
194. <i>Description:</i> If the light sensor detects light, the

n it
195. set the light level to match Blue and if it is dark set the l

ight
196. level to match Green.

C-6

197. </p>
198. <button type="button" class="btn btn-primary"
199. onclick="Javascript:sse3()">Enable Light Rule</button

>
200.
201.
202. <button type="button" class="btn btn-primary"
203. onclick="Javascript:source3.close()">Disable Light Rul

e</button>
204.
205. </div>
206. <div class="panel-footer">
207. <label><i>Log: </i></label>
208. </div>
209. </div>
210. </div>
211. </div>
212. </div>
213.
214. <script type="text/javascript">
215. function showValue(newValue, elementId) {
216. document.getElementById(elemendId).value = newValue;
217. }
218. </script>
219. </body>
220. </html>

C-7

Client_JS.js :

1. // Philips hue Middleware Address
2. var uriHue = "http://localhost:9050/services/SmartPhilipsHUELight/";
3. // Sensors Middleware Address
4. var uriMotion = 'http://localhost:9050/services/MotionSensor/getServerSentEve

nts';
5. var uriDistance = 'http://localhost:9050/services/DistanceSensor/getServerSentE

vents';
6. var uriLight = 'http://localhost:9050/services/LightSensor/getServerSentEvents';

7.
8. var source1;
9. var source2;
10. var source3;
11.
12. // Initialize sensor values
13. var temp1 = "none";
14. var temp2 = "none";
15. var temp3 = "none";
16.
17. var i = 0;
18. var dark = 1; // is day light not dark
19. // Rules Each rule is named as sse1 , sse2 ect.
20. function sse1() {
21. // optional
22. // TurnLightOff("out1");
23. source1 = new EventSource(uriMotion);
24. source1
25. .addEventListener(
26. 'motion',
27. function(e) {
28. // console.log('System status is now: ' + e.data);
29. // Rule Actions
30. console.log('System status is now: ' + e.data);
31. if (e.data == "motion") {
32. document.getElementById("out1").innerHTML = e.data;
33. if (i == 0) {
34. TurnLightOn("out1");
35. i = 1;
36. document.getElementById("out1").innerHTML = e.data;
37. // hue is on, ok all done
38. source1.close();
39. }
40. } else if (e.data == "none") {
41. document.getElementById("out1").innerHTML = e.data;
42.

C-8

43. } else if (e.data == "s") {
44.
45. } else {
46. document.getElementById("out1").innerHTML = "Invalid eve

nt inserted. Compromized";
47. }
48. });
49. }
50.
51. function sse2() {
52. source2 = new EventSource(uriDistance);
53. source2
54. .addEventListener(
55. 'distance',
56. function(e) {
57. console.log('System status is now: ' + e.data);
58.
59. // Rule Actions
60. if (e.data == "close") {
61. document.getElementById("out2").innerHTML = e.data;
62. // there is someone too close, turn light red and
63. // dim it.
64. DimLight("out2");
65.
66.
67. //lightLevelInput
68. document.getElementById("lightLevelInput").value = 245;
69. SetLightLevel("out2", "lightLevelInput");
70.
71. //lightColorInput
72. document.getElementById("lightColorInput").value = 65535;
73. SetLightColor("out2", "lightColorInput");
74. document.getElementById("out2").innerHTML = e.data;
75. } else if (e.data == "none") {
76. document.getElementById("out2").innerHTML = e.data;
77. if (dark == 1) {
78. document.getElementById("lightLevelInput").value = 125 ;

79. SetLightLevel("out2", "lightLevelInput");
80. document.getElementById("lightColorInput").value = 2550

0;
81. SetLightColor("out2", "lightColorInput");
82. document.getElementById("out2").innerHTML = e.data;
83. }
84.
85. else if (dark == 0) {
86. document.getElementById("lightLevelInput").value = 245;
87. SetLightLevel("out2", "lightLevelInput");

C-9

88. document.getElementById("lightColorInput").value = 4692
0;

89. SetLightColor("out2", "lightColorInput");
90. document.getElementById("out2").innerHTML = e.data;
91. } else {
92. document.getElementById("out2").innerHTML = "Invalid e

vent inserted. Compromized";
93. }
94.
95. } else if (e.data == "s") {
96.
97. } else {
98. document.getElementById("out2").innerHTML = "Invalid eve

nt inserted. Compromized";
99. }
100.
101. });
102. }
103.
104. function sse3() {
105. source3 = new EventSource(uriLight);
106. source3
107. .addEventListener(
108. 'light',
109. function(e) {
110. console.log('System status is now: ' + e.data);
111.
112. // Rule Actions
113. if (e.data == "none") {
114. document.getElementById("out3").innerHTML = e.dat

a;
115. // there is light, turn bulb strong blue
116. dark = 0;
117. document.getElementById("lightLevelInput").value =

245;
118. SetLightLevel("out3", "lightLevelInput");
119. document.getElementById("lightColorInput").value =

46920;
120. SetLightColor("out3", "lightColorInput");
121. document.getElementById("out3").innerHTML = e.dat

a;
122. } else if (e.data == "dark") {
123. document.getElementById("out3").innerHTML = e.dat

a;
124. // there is dark, turn bulb light green
125. dark = 1;
126. document.getElementById("lightLevelInput").value =

125;
127. SetLightLevel("out3", "lightLevelInput");

C-10

128. document.getElementById("lightColorInput").value =
25500;

129. SetLightColor("out3", "lightColorInput");
130. document.getElementById("out3").innerHTML = e.dat

a;
131.
132. } else if (e.data == "s") {
133.
134. } else {
135. document.getElementById("out3").innerHTML = "Inva

lid event inserted. Compromized";
136. }
137. });
138. }
139.
140. // Philips hue
141.
142. function TurnLightOn(resultId) {
143.
144. CallToMiddleware("TurnLightOn", "Turn Light On", resultId);
145. }
146.
147. function TurnLightOff(resultId) {
148.
149. CallToMiddleware("TurnLightOff", "Turn Light Off", resultId);
150. }
151.
152. function DimLight(resultId) {
153.
154. CallToMiddleware("DimLight", "Dim Light", resultId);
155. }
156.
157. function SetLightLevel(resultId, inputField) {
158.
159. var inputValue = document.getElementById(inputField).value;
160.
161. if (inputValue == null || inputValue == "") {
162. alert('Please enter the light level.');
163. return;
164. } else if (isNaN(inputValue)) {
165. alert('Please enter a positive whole number for light level, between

1 and 254.');
166. return;
167. }
168.
169. CallToMiddleware("SetLightLevel/" + inputValue, "Set Light Level",

resultId);
170. }
171.

C-11

172. function SetLightColor(resultId, inputField) {
173.
174. var inputValue = document.getElementById(inputField).value;
175.
176. if (inputValue == null || inputValue == "") {
177. alert('Please enter the light color.');
178. return;
179. } else if (isNaN(inputValue)) {
180. alert('Please enter a positive whole number for light level, between

0 and 65535.');
181. return;
182. }
183.
184. CallToMiddleware("SetLightColor/" + inputValue, "Set Light Color",

resultId);
185. }
186.
187. function CallToMiddleware(methodName, logicalActionName, resultId)

{
188. var url = uriHue + methodName;
189.
190. var xhr = new XMLHttpRequest();
191. xhr.open('GET', url, true);
192. xhr.send(null);
193. xhr.onreadystatechange = function() {
194.
195. if (xhr.readyState == 4) {
196. var resultTxt = "";
197. if (xhr.status == 200) {
198. if (xhr.response == true || xhr.response == "true") {
199. resultTxt = 'Success ' + logicalActionName + '!';
200. } else {
201. resultTxt = 'Error ' + logicalActionName + ': '
202. + xhr.status + ' - ' + xhr.statusText;
203. }
204.
205. } else {
206. var resultTxt = 'Error ' + logicalActionName + ': '
207. + xhr.status + ' - ' + xhr.statusText;
208. }
209.
210. document.getElementById(resultId).innerHTML = resultTxt;
211. }
212. };
213. }

