Thesis Diploma

A SIMULATOR FOR REVERSING PETRI NETS

Pantelina loannou

UNIVERSITY OF CYPRUS

DEPARTMENT OF COMPUTER SCIENCE

May 2019

UNIVERSITY OF CYPRUS
DEPARTMENT OF COMPUTER SCIENCE

A Simulator for Reversing Petri Nets

Pantelina loannou

Supervisor

Dr. Anna Philippou

Thesis submitted in partial fulfilment of the requirements for the award of degree of

Bachelor in Computer Science at University of Cyprus

May 2019

Acknowledgments

Foremost | would like to express my gratitude to my supervisor Dr. Anna Philippou for
the continuous support of my Diploma thesis study and research, for her patience,
motivation and the excellent cooperation we have had throughout this project. | want to
thank her for all the knowledge she provided to me, which will be very lucrative for my
future career, and the opportunity to explore new intriguing areas of Computer Science

through my Diploma Thesis.

Besides my supervisor, | would like to thank the PhD student, Kyriaki Psara for her
continuous help and support during my Diploma thesis. She was always available for
me for any technical issues and for providing me with further knowledge about the
topic.

I would also want to thank many of my fellow students and friends, for their help and

support at every step of the way, and for making this experience more creative.

Last but not least, | would like to thank my family, because they were next to me and

were supporting me all this time, at any problem that | had to deal with.

Abstract

This diploma thesis deals with the issue of reversible computation and the application of
it in Petri Nets. Reversible computation is a different form of computation, where any
executed sequence of operations can be executed in reverse at any point during
computation. Thus, this form of computation has the ability to retrieve any previous
visited states or even attain new states, which are not reachable with any forward
execution. Reversibility is embedded in various natural or artificial processes, such as
biological processes, reliable systems, and quantum computations. Petri Nets, on the
other hand, are a graphical mathematical language, that can be used for specification

and analysis of discrete event systems, like those mentioned before.

Petri Nets have been used broadly to modelling and reasoning about a wide range of
applications. A property studied in the context of Petri Nets is reversibility, and there
are three methodologies of reversibility in the framework of Petri Nets, besides the
Forward execution. The reversible mechanisms are Backtracking, Causal reversibility,

and Out-of-Causal reversibility.

The definition and semantics of the four mechanisms have been used for the
implementation of a Simulator for Reversible Petri Nets. The simulator gives the
opportunity to the user to import the initial marking of a Reversible Petri Net, and then
analyze the possible forward or backward executions that the Petri Net can reach. The
user can select which forward or backward enabled transition, he/she desires to execute,
and then watch how the marking of the net evolves in a computation. Furthermore, the
simulator has the ability to represent the Petri Net graphically, through the Obeo
designer software, which constitutes an Eclipse plug-in software. The simulator has
been implemented in the Java programming language, and when the user selects to use
graphical representation, the simulator opens the environment of the Obeo designer.
Through the Obeo designer environment the user can directly watch the changes at the

Petri Net, when an action is caused from the simulator.

Table of Contents

(@4 gF- T 0] (=] il SRR 1
18 o To 18 [od o] ISR 1
1.1 MOTIVATION. ...ttt bbbt 1

1.2 WOTK PUIPOSE ...ttt 2

1.3 WOrk MethodOlOgyccueiieieiiisie st 2

1.4 TRESIS SEIUCKUIE ..ottt ettt neenre s 3

(@4 gF- 0] (=] oSS ORORRTR 5
Scientific Background and Related WOrKccocooveiiiii i 5
2.1 Reversible COMPULATIONcooiiiiiieieeee s 5

2.2 FOrms Of ReVErSIDIILYccooiviiieccecce e 7

P B 1 I 1 £SO 9

2.4 ReVErSiNg PELri INELSccveiieiiccecc et 12

(@4 gF- T 0] £=] b TSR 20
Requiremnts specification and Software usedccoccvvveviiiiiienienie e 20
3.1 Requirements SPECITICAtION...........ccveiiiieie e 20

3.2 The Java programming lanNQUAGEccveruerrereireriiniisieeereee e 22

3.3 Obeo DeSIgNer SOtWAIE.........cc.ciieiieie et 24

3.4 Unified Modeling Language (UML)cccooiiiiiiiiiiieeeee e 24
CRAPLEE 4. e 30
SIMUIBLOT ..ttt bbb e e nes 30
4.1 Representation of DasiC COMPONENTS..........coeiiriiiiiiieieeee e 30

4.2 AIQOIITNMS ...t ere s 35

4.3 Graphical USer INTErfaCeccoiiiiiiiieiee et 45

4.4 Graphical representation t00l............ccccovveiiiie i 54
CRAPTLEE 5. e 61
CASE STUAY ...t bbbt 61
5.1 Causal order eXample.........cocooiiiiiiicc e 61

5.2 ERK-pathway example in RPNS.......cccoooiiiiiiiieee e, 67
CRAPTEE B e 72
(0] 0 [od [T] [o] o - USRS PRRURTRRRR 72
6.1 SUMIMANY ...ttt ettt b et e nne s 72

6.2 ChallENgES.....c..veeiie s 73

6.3 FULUIE WOTKottt ettt e e nte e e e neeneeeneenreas 74
RETEIEINCES ... s 75
APPENAIX A bbb A-1
Structures for main COMPONENTS IN JAVAccccoeiiriiiiieieeee e A-1
PIACE ...ttt nes A-1

LI U8 ST 1€ o USROS A-1

AATC e e e e e rne e A-2
TOKEN/BONG ... bbb A-2

Cell (History repreSENtation)cceoeeierieiierie e A-2
PREIT NMEL ...ttt bbbt A-3
APPENIX B e B-1

Algorithms’ implementation in Java................ccccviiiiiii B-1

Forward algorithm fUNCLIONScoviiiiiic e B-1
Backtrack algorithm funCtions............cccceveiieie i, B-13
Causal algorithm FUNCHIONScoviiiiiiiee e B-20

Out of causal algorithm fUNCLIONS..........ccceiiiiiiic e, B-28
APPENAIX C oot nre e C-1
Simulator interface FUNCLIONSc.cooviiiiiie s C-1
APPENAIX D .ot D-1
Parser’s COAEoooiiiiiiiiiiiii et D-1
Reverse Parser’s COde ..o D-11
APPENIX E....ooe e E-1
SIMUIATOT MANUAL ... e E-1

Table of Figures

Figure 2. 1: Backtrack reversibility [9].......c.ccooviiiiiiic e 7
Figure 2. 2 : Causal reversibility [9]coeiioiiieee e 8
Figure 2. 3: Out of causal reversibility [9].......cccooeveiiiiiiic 8
Figure 2. 4: Catalysis reaction [9]......ccccieiiiiiiiise e 9
Figure 2. 5: Components Of & Petri NEL ..o 10
Figure 2. 6: An example of a Petri net diagram..........ccccoovevveieciiesiece e 11
Figure 2. 7: A Petri Net example where t; is an enabled transition..............cccccceveenen. 11
Figure 2. 8 : A Petri Net example after transition t; is executedccccvvevvviveieennnnn, 11
Figure 2. 9: Catalysis example in classic Petri Nets. ... 14
Figure 2. 10: Catalysis example in Reversing Petri Nets.c.ccccovevviveiieie e, 14
Figure 2. 11: An example of Forward and Backtracking execution............cc.ccocveeveinene, 17
Figure 2. 12: An example of Causal-order eXeCUtion...........c.ccceevvevieieiieiieve e, 18
Figure 2. 13: An example of Out-of-causal-order eXecution............cccoceverirennnicnienn, 19
Figure 3. 1: UML Diagrams OVEIVIEW..........ccurieierieriesiesiesieseseeneeseesieseessesiessessesseesens 25
Figure 3. 2: Component diagram for Simulator for RPNS...........cccooeiviiniiene e, 26
Figure 3. 3: Class diagram for Simulator for RPNS...........cccooviiiiiienc e 28
Figure 4. 1: Place representation iN JAVAcccceieieiineninisceeeeee e 31
Figure 4. 2: Transition representation iN JaVa..........c.ccccviveeieeneciieseese e 32
Figure 4. 3: Arc representation iN JAVAccceieieierinenise et 33
Figure 4. 4: Token representation iN JAVA..........ccccoveieiieieeie e 34
Figure 4. 5: Cell structure in Java, which represents history for each transition............ 34
Figure 4. 6: Petri net representation iN JAVA...........c.ccceeieiieiieie e 35
Figure 4. 7: Forward-enabled method written in pseudocode.ccccvevvevrirennnnn. 36
Figure 4. 8: Forward-execution method written in pseudocode..............ccccvveveeieireenenn, 38
Figure 4. 9: Backtrack-enabled method written in pseudocode............ccocevvriivnicnennn, 39
Figure 4. 10: Backtrack execution method written in pseudocode.ccccceeveiveennen. 40
Figure 4. 11: Causal-enabled method written in pseudocode.ccocoerervninnnieniennn, 41
Figure 4. 12: Causal-order execution method written in pseudocodecccccvevuvennee. 42
Figure 4. 13: Out-of-causal-enabled method written in pseudocode.c.ccovevenenne, 43
Figure 4. 14: Out-of-causal execution method written in pseudocode[13] 44
Figure 4. 15: Screen with user’s choices about the input methodc.cccoeiiiiienn, 45
Figure 4. 16: Window for importing the input filecooo oo, 46
Figure 4. 17: File format and ordering of initial marking............ccccceoeeviiiniinininicnenn, 46
Figure 4. 18: Screen for the creation of a new Petri net through the GUI 47
Figure 4. 19: Explanation screen to connect with the Graphical Representation tool.... 48
Figure 4. 20: Graphical representation tool’s €nVIrONMENtccevverrerererirenieeniennes 49
Figure 4. 21: Screen representing all execution options tO USETccccocervrvivnineennns 50
Figure 4. 22: Representation of screen after selecting “Find forward-enabled transitions”
and “Find reversed enabled transitions” buttonscocceeviiiiiiiiniiiesniie e 51
Figure 4. 23: Alterations in screen after eXeCUtIONccvvvereiienienie e 51
Figure 4. 24: Warning message appeared after the selection of two transitions for

L2 CCTol U1 {0 o TR RPRRTPRTS 52
Figure 4. 25: Screenshot from tool at the point of updating the xml file........................ 53

Vi

file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598418
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598419
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598420
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598421
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598422
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598423
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598424
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598425
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598426
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598427
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598428
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598429
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598430
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598459
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598460
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598461
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598484
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598485
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598486
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598487
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598488
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598489
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598490
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598491
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598492
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598493
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598494
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598495
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598496
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598497
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598498
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598499
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598500
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598501
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598502
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598503
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598504
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598505
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598505
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598506
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598507
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598507
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598508

Figure 4. 26: Representation of arc in the Graphical representation tool 56

Figure 4. 27: Representation of tokens, bonds, negative tokens/bonds in the tool......... 56
Figure 4. 28: Place semantics in the Graphical representation tool...............ccccceeveenen. 57
Figure 4. 29: Arc semantics in the Graphical representation toolc.ccocoevvivenenn, 57
Figure 4. 30: Token semantics in the Graphical representation toolc..ccccveeneen. 57
Figure 4. 31: : Bond semantics in the Graphical representation tool.............cc.ccccennee, 57
Figure 4. 32: Palette sections of Graphical representation toolcccccevviiieieennnnn, 58
Figure 4. 33: Functions supported by the Parser ..o 59
Figure 4. 34: Transformation of the xml through Java............c.ccccovviiiiiiiicicc e, 60
Figure 5. 1: Definition 0F RPN ..o 61
Figure 5. 2: Choice of the file we have Createdccccooiiiiiiiiiicie e 62
Figure 5. 3: Simulator’s results for enableness.........ccovvveiiiiiiieiiienese s 62
Figure 5. 4: After the execution of tranSItioN t1coccoviiiiiniiicie e 63
Figure 5. 5: After the execution of transition t2cccooeiiiiiiiiie s, 63
Figure 5. 6: After the execution of tranSition t3 ..o 64
Figure 5. 7: After the user has clicked to the buttons that find forward and reversed

ENADIEA TFANSITIONS .. .eviieiee et sre et e reesreeeeeneenreas 64
Figure 5. 8: The new marking after the execution of the transition t3 reversiby............ 65
Figure 5. 9: Results of simulator for enableness after the causal execution of t3 66

Figure 5. 10: Results after the execution of the transition t1 with causal reversibility .. 66
Figure 5. 11: Results after the executin of the transition t2 with causal reversibility 67

Figure 5. 12: ERK-pathway example in RPNS [13]ccocoviieiiiicieece e, 67
Figure 5. 13: RPN diagram of ERK-pathway example that has been created from

graphical representation t00............ccoiiciiiii i 68
Figure 5. 14: Results of the simulator for the enableness............ccccceveiiiiiiiiiicien, 68
Figure 5. 15: The new marking after the execution of the transition t2 69
Figure 5. 16: The new marking after the execution of the transition t3ccccoc... 69
Figure 5. 17: The new marking after the reverse of the transition t2c.c......... 70
Figure 5. 18: The new marking after the execution of the transition t4cccc...... 70
Figure 5. 19: The changes that appeared on the diagramcccccevviveiiicveccc e, 71

vii

file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598509
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598510
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598511
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598512
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598513
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598514
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598515
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598516
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598517
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598518
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598519
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598520
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598521
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598522
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598523
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598524
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598524
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598525
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598526
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598527
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598528
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598529
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598530
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598530
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598531
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598532
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598533
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598534
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598535
file:///C:/Users/Pantelina/Desktop/EPL/EPL%20semester%207/diplomatiki/Thesis%20document/BachelorThesis.doc%23_Toc9598536

Chapter 1

Introduction

1.1 Motivation

1.2 Work Purpose

1.3 Work Methodology
1.4 Thesis Structure

1.1 Motivation
Petri Nets are capable to model parallel and distributed systems, in order to assist users

and developers to better understand what a system is supposed to do, and how it can be
implemented, used, varied, and improved. Moreover they help the user to analyze such
systems via model checking.

Reversible Computation, on the other hand, it is a concept that has studied in the context
of Petri Nets. This form of computation enables systems to perform actions in reverse,
with the same effort as performing forward-only actions. Generally, reversibility is
inherent in various applications and sciences, such as Biology, Mathematics and
Physics. Thus, the notion of reversibility in Petri nets gives the opportunity to return to
the initial state from any reachable state, by reversing the effects of already, executed
transitions.

Although, the modelling of a system using Reversible Petri Nets may be too
complicated, for systems with a lot of components and possible actions. The model
checking process of these systems , it is difficult even without reversibility. So, it can be
more complicated with the addition of reversibility and without an automated tool. So, a
tool that will be able to simulate the actions of a given Reversible Petri Net is necessary.
It is important that the tool will simulate the behavior of these systems, and be able to

capture all the mechanisms of reversibility.

In addition with the need of a simulator for Reversible Petri Nets, there is also the need
for a graphical representation of the model, both in the creation and update process of

the Petri Net, so the user can see the changes visually in the model.

1.2 Work Purpose
The main aim of this diploma thesis is the creation of an Object Oriented approach to

Reversible Petri Nets [8], and the implementation of this approach in a simulator. The
simulator supports four mechanisms of reversible computation as defined in [8], the
forward execution, and the three main strategies of reversible computation, namely
backtracking, causal, and out-of-causal execution.

Furthermore the simulator contains a component that gives to the user the opportunity to
create the initial marking with a graphical representation, and then during the execution
should watch the changes that occur in the Petri Net.

1.3 Work Methodology
At the first part of the thesis, a theoretical research was conducted, about Petri Nets,

Reversible Computation, the Forms of Reversibility, and Reversible Petri Nets, in order
to fully understand the appropriate knowledge about the semantics of the topic. In order
to achieve the mentioned above knowledge, an extensive study took place in various
scientific papers, related to the field.

When the necessary knowledge was gained, the first step was the specification of
requirements and the design of the simulator. At the design phase of the simulator two
diagrams have created, a component diagram and a class diagram.

Then, based on the diagrams an object oriented approach of Reversible Petri Nets has
been created. Initially, the necessary objects of the representation were found, and then
the attributes of each object. Thereafter, the connections and relationships between the
objects were decided. So, at this phase the object of a RPN was built.

The next phase of the thesis was the creation of code for the simulator. The
implementation of the algorithms and the graphical user interface were done in Java
programming language. Each Java Class is an Object, which consists of the appropriate

attributes, and then a Petri Net is a Java Class which consists of all other Classes, as

attributes, and some extra fields. Afterwards, the algorithms were split to four classes,
and each class contains the different functions of each algorithm.

After the implementation of the algorithms, the form of input that the user has to give to
the simulator in order to do actions was studied. The final decision was to give to the
user three choices: give a file as input, give the input manually, or draw the petri net.

At the last part of the thesis, a research about tools that can help with the development
of Petri Nets’ graphical representation was done. The extensive research ended up with
the use of Obeo Designer software. Obeo Designer software helped with the formation
of the metamodel and the code generation of the representation. The next step was to
create the components of the palette, based on the metamodel relationships. Finally,
when all the components were completed, there was a need for a Parser. Thus, a Parser
that was done with Java programming language was developed, in order to parse the
xml output of Obeo designer, and convert it to the appropriate input for the simulator.
At a later phase a Reverse Parser, which updates the xml file when a change occurs to
the model, was developed. The last step was to connect the graphical user interface with
the graphical representation environment.

When all the necessary components of the simulator had been developed, some testings
took place. The simulator has been tested for simple examples at first, and then for more

complicated in order to ensure the correctness on its results and its effectiveness.

1.4 Thesis Structure
This thesis document is composed of another four chapters.

More specifically Chapter 2 contains the scientific background. There are subchapters
explaining Reversible Computation, Forms of Reversibility, Petri Nets, and Reversible
Petri Nets. Afterwards, there are the forms of reversibility on reversible Petri Nets.

Chapter 3 presents tools, software, and programming languages used for the completion
of all components of the simulator. Specifically, there are subchapters for Java
Programming language, and afterwards the reasons of using it and how the object
oriented approach created for Petri Nets. Afterwards there is a subchapter that contains
UML language and it follows a subchapter for Obeo Designer Software. The last

element of this chapter is the Requirements specification that is an introduction to the

simulator.

Chapter 4 analyses the main components of the simulator. Initially, there is an
architecture diagram of the tool, which explains the structure of the simulator and how
components are connected with each other. Afterwards, subchapters for each
component exist, namely Simulator functions, Graphical representation. Each
subchapter consists of its own sections that explain the implementation of the
algorithms and user interface, and the graphical representation of Petri Nets, as well as,

the connection between them.

Finally, in Chapter 5 a general conclusion is drawn. That chapter mentions the problems
encountered and how we deal with them, some limitations that exist, along with future
extensions that can be done in the simulator, in a later research, to upgrade it.

Pseudocode for each algorithm can be found in Chapter 4, below the description of each
algorithm. The complete Java code implementations of the algorithms are listed in
Appendix A. Moreover the Java code of Simulator’s Graphical User Interface and for
parsers, which connects the simulator’s environment with the graphical representation
tool, is listed in Appendix B and Appendix C, respectively. Appendix E contains the

Simulator’s Manual for users.

Chapter 2

Scientific Background and Related Work

2.1 Reversible Computation

2.2 Forms of Reversibility

2.3 Petri nets

2.4 Reversing Petri nets
2.4.1 Forward execution
2.4.2 Backtrack execution
2.4.3 Causal execution

2.4.4 Out-of-Causal execution

2.1 Reversible Computation
Reversible computation [8] [7] is a fundamental concept in sciences that extends the

standard forward-only mode of computation. It is the study of computation models that
exhibit both forward and backward determinism. Reversibility is the ability to execute
sequences of operations in reverse at any point during the computation. With this form
of computation individual operations can be carried out reversibly, as effortlessly as
they can be executed in the standard forward direction. Thus, this form of computation
has the ability to retrieve any previous visited states or even attain new states, which are
not reachable with any forward execution. It is possible to attain new states because
reversibility enables the undoing of an event before its effects have been undone.

The concept of reversibility [9] is inherent in many other sciences apart for Computer
Science, such as Mathematics, Physics, and Biology. In many biological processes, for
instance, computation may be carried out in forward or backward direction, to have the
expected reaction. Furthermore reversible computing attracts interest in a burgeoning
number of application areas, namely cellular automata, software architectures,
reversible programming languages, digital circuit design, and quantum computing.
Reversible computation [9] integrates thermodynamics and information theory, in order
to reflect one of the dominant physical properties of Nature. The motivation for

reversible computing began with Landauer’s principle, in 1961 [9]. Rolf Landauer was

the first to argue the relation between thermodynamics and the irreversible character of
conventional computers. Specifically, Landauer observed that only irreversible
computation generates heat and he noted that, while all of the fundamental laws of
physical dynamics are reversible, such as classical and quantum mechanics, then
conceptually any machine should be capable to run backwards, as well as forwards.
Thus, Landauer’s principle says that in order for a computational process to be
physically reversible, it must also be logically reversible.

After Landauer’s discovery, Lecerf in 1963 [9] was the first to explain reversible
computations executed on reversible Turing Machines, but he was unaware of
Landauer’s thermodynamic applications, and his machines did not save their outputs. A
decade after, Bennet reconceived Lecerf’s reversible Turing machines based on
Landauer’s principle, and proved that it is achievable to build fully reversible Turing
machines.[9]

There is still ongoing research for Reversible computation, as it promises the design
implementation of reversible circuits and logic gates [12], which will increase the speed
and capacity of circuits. Moreover reversible computation has lower-energy
consumption, and indicates low-power computation.

Reversibility should also be used for the development of reliable systems. The reason is
because backward recovery is an instance of reversible computation. When errors occur,
it means that the behavior of the system is different than the expected one, and fault
tolerance has to eliminate the presence of faults and provide the required level of
service. This can be achieved with reversible computing because it gives the ability to
return to previous states, which are safe, if a problem occurs after an action. This will
give the opportunity to the system to find a new direction, and avoid the problematic
actions [9].

Another area that reversibility has been applied is Robotics. Robotics represents a real-
world application area where computational reversibility has a physical counterpart.
Several kinds of actions performed by robots can be physically reversed, as for instance
the change of direction in which a mobile robot is driving, or the reverse of an industrial
assembly process [5].

Comprehensively, reversible computation adds an entirely new, “orthogonal” dimension

to almost all aspects of traditional computing [2].

2.2 Forms of Reversibility
As mentioned above, a computation is called reversible when it has the ability to

execute in reverse, and thus it can go back to previously visited states, or even reach
new states, that were not reachable with the forward-only computation. In order for
reversible computation to be applied to models, there are three forms of reversibility,

which are backtracking, causal and out-of-causal reversibility.

Backtracking is the simplest form of reversibility as it is the process of undoing
computational steps in the exact inverse order that they have occurred, as shown in
Figure 2.1. This form of reversibility assures that at any state of computation there is at
most one predecessor state and in, the context of concurrent systems, this phenomenon
can cause fake dependencies on backward sequences of actions. Thus, backtracking
reversing can be thought of as an overly restrictive form due to the fake dependencies
they may cause on the backward sequences of actions, an action that could be reversed
in any order, is forced to be undone in the precise order that are occurred.

Considering the Figure below (2.1) we can observe that the only choice in backtracking
is to execute the events in the same order as they have occurred in the forward

execution.

t1

= =
- &

Figure 2. 1: Backtrack reversibility [9]

The second approach of reversibility is causal reversing and it allows a more flexible
form of reversibility. Causal reversibility allows events to reverse in any order,
assuming that they are independent. Thus, in causal reversing it is not necessary to
reverse actions in the same order as they have occurred. Thereafter, as long as caused
actions are reversed before the actions that have caused them, causal reversibility can

undo actions in any order and be legitimate.

t1

13 1

2 =
&

3 .t 2

-l

Figure 2. 2 : Causal reversibility [9]

Considering the figure above (Figure 2.2), since t1 occurs independently of action t2 we
can reverse t1 and t2 in any order we want, although we can never reverse them before
t3.

Both forms of backtracking and causal reversibility are cause-respecting, meaning that
they respect the causal dependencies that exist between the events of a model. However,
in many real-life examples, actions are reversed before their effects are undone. This is
inherent in many real-life applications, such as biochemical reactions and long-running
transactions. In such applications, the third form of reversibility that is called out-of-
causal reversibility is used. Out-of-causal reversibility allows actions to be reversed
before the actions that caused them are reversed. The main advantage of out-of-causal
reversibility over the other forms of reversibility is that it gives the opportunity to reach
new states that were formerly inaccessible by any forward-only execution path, or even
with a backtrack or causal execution path. This happens because the causally-respecting
forms of reversibility give only the chance to move backward and forward, through
previously visited states only.

The figure below (Figure 2.3) depicts the possible out-of-causal executions for the same
forward execution as in the previous Figures (2.1, 2.2). However with out-of-causal
reversibility every possible sequence of executions is legitimate, because does not

respect the causal dependencies between the events.

t1

= =
& -

= - -
11 hl..?hlz‘."l- l1htﬂ-#l2

Figure 2. 3: Out of causal reversibility [9]

A standard example from biochemistry where out-of-causal reversibility is
indispensable is the catalysis process.

.. -4 ' C-4E ' oa “
—_— —_
e e Sl

Figure 2. 4: Catalysis reaction [9]

The Figure above (2.4) shows the catalysis process where a catalyst ¢ helps the
otherwise inactive modules a and b to bond. So, initially element ¢ bonds with a which
enables the bonding between a and b. Then, the catalyst is no longer needed and its
bond to the other two molecules is released. It can be observed that the last step of

releasing catalyst c is an out-of-causal reversing action.

2.3 Petri nets
Petri nets [10] are a graphical mathematical language that is used for the specification

and analysis of parallel and distributed systems, which were developed by Carl Adam
Petri in 1962 as the subject of his dissertation. It is a class of discrete event dynamic
system, which supports both action-based and state-based modelling, where the basic
idea is to describe state changes in a system with transitions.

A Petri net model [4] is a structure that contains two kinds of elements. The first kind of
elements is the node. A node can be either a place, or a transition. A place p, always
models a passive component of the system, which should be the states, conditions, or
resources that are necessary before an action can be carried out. Transitions always
model an active component of the system, which is a certain action that may occur. The
second element of a Petri Net model is arcs, which connect places and transitions to
each other, and indicate the relation between the components, such as logical
connections, access rights, or immediate linkings. The arcs addressed from a place to a
transition describe that the places connected in that arc are pre-conditions for the
corresponding transition, and are called incoming arcs. The arcs addressed from a
transition to a place describe that the places connected in that arc are post-conditions of

the corresponding transition, and are called outgoing arcs. Furthermore, arcs never run

https://en.wikipedia.org/wiki/Discrete_event_dynamic_system
https://en.wikipedia.org/wiki/Discrete_event_dynamic_system

between transitions or between places. Places are graphically represented by a circle;
transitions are represented by a square/bar and arcs are represented by a directed arrow.
Places may contain tokens that may move to other places by executing actions. A token
on a place indicates the current state of the execution and the overall distribution of
tokens across places is known as the marking M. The input state is indicated by the
initial marking M.

The figure below (Figure 2.5) represents the graphical representation of the components

that compose a Petri net.

Transition

Token

O Place
®

/ Are

Figure 2. 5: Components of a Petri net

A transition is enabled for execution only when the number of tokens in each of its
input places is at least equal to the number of arcs going to the transition. When a
transition is fired, tokens from its pre-places are distributed to its output places, and a
new marking of the net is created, where the transition that has been executed is no

longer enabled, while others become enabled in that marking.

Thus, a net structure [9] is a directed, finite, weighted, — bipartite diagram specified as:
N=(, T, F)
Where:
1. Pisa finite set of places
2. T isafinite set of transitions such that P N T= @.
3. Fisasetofarcs Fc (PxT) U (TxP).

10

P2

1 Tl T2

@

Figure 2. 6: An example of a Petri net diagram

Let us for instance consider the Petri net in Figure 2.6. It is composed of four places
(P1, P2, P3, P4), and two transitions (T1, T2). Place P1 is filled with a token, as well as
P4, while P3 is filled with two tokens. In this Petri net we have seven arcs from which
the three of them are incoming arcs, and the other four are outgoing arcs. Moreover, T1
is an enabled transition, as all its input places are filled with tokens, while transition T2
is not enabled for firing because place P2, that is one of its input places is not filled with
tokens.

The weight is graphically represented on the arcs as a label, and indicates the number of
tokens that will be transferred through that arc.

Below there is an example of when a transition is enabled, and then the representation
of the marking after the firing of the enabled-transition, showing how the tokens are

distributed from the input places to the output places.

p1 11 3
@\ :

: Q
, @/’

Figure 2. 7: A Petri Net example where t; is an enabled transition

p1 1 1 p3
2 (ee)
1 v
pZ
Figure 2. 8 : A Petri Net example after transition t; is executed

11

Petri nets can be applied to any area or system consisting of parallel or concurrent
activities, as well as systems that can be described graphically like flow charts, due to
their simple user interface, and generalit. Petri nets is an interesting conception because
they can automatically determine a lot of information about a concurrent system, and
this is the reason that they have been extensively used for modelling and reasoning in a
wide range of applications.

2.4 Reversing Petri Nets
An approach that has been studied for Petri nets it is the reversibility in Petri Nets. This

approach [8] introduces the concept of reversibility in the context of Petri Nets.
Reversing Petri nets is an alternative model of the traditional Petri nets that deals with
the three forms of reversibility, namely backtracking, causal and out-of-causal
reversibility. Adding reversibility in Petri nets means that at any reverse execution,
some tokens may return to the places that came from, while others not. So this property
created the need to distinguish each token with an identity. In the context of reversing
PNs there are two types of tokens, namely base and bond . A base is a persistent type of
token which cannot be consumed, while a bond is a coalition of two bases. Specifically,
the effect of a transition is the creation of new bonds between tokens or the transfer of
already existing bonds/tokens along the places of a Petri net. Another feature of
Reversing Petri nets is that incoming arcs are labeled in order to indicate the necessary
tokens/bonds needed to fire the transition. If tokens/bonds exist in a place beyond those
denoted to the incoming arcs, they do not necessarily need to exist to fire the transition.
Reversing Petri Nets also introduce the notion of history in transitions, which is

increased every time a transition is executed.

Thus, a Reversing Petri net (RPN) is defined as a tuple [8]:
N=(A,P,B, T, F)
Where:

1. Ais a finite set of bases or tokens ranged over by a,b,...and A ={ a |a € A}

contains a “negative” instance for each token and we write #=A UA .

2. P is a finite set of places.

12

3. B €A x A is a set of bonds ranged over by B, y... We use the notation a—b for a

bond (a, b) € B. B = {F | B € B} contains a “negative” instance for each bond

and we write =B U B .

4. T is a finite set of transitions.
5. FF(PXTUTxP)—2 7Y isaset of directed arcs.
Places and transitions have the standard meaning as in Petri Nets, and they are

graphically represented by circles and squares respectively. Bases are indicated by @

and bonds by lines between tokens. Furthermore arcs 7= F (p, t) or /= F (t, p), which

could be addressed from place to transition, or from transition to place, contain each

token at most once, either the positive or the negative one. If a bond (a, b) € /thena, b e

/ and for /= F (t, p) then the following holds /N (A U B) = @. Thus, the labels placed

on incoming arcs are expressing the requirements to fire a transition, and in the
outgoing arcs are expressing the effects of the transition. Fort € T we write °t={x € P |
F(x, t) # @} and t°={x € P | F (t, x) # @} for the incoming and outgoing places of
transition t, respectively. Furthermore, we write pre (t) =U xep F(X, t) for the union of
all labels on the incoming arcs of transition t, and post (t) =U xep F (t, X) for the union
of all labels on the outgoing arcs of transition t.
In the model of Reversing Petri nets a marking is a distribution of tokens and bonds
across places, M: P — A U B where if a-b € M(x), for some x € P, then a, b € M(x). As
mentioned above a history is assigned to each transition, H: T — ¢ U N. If a history of
a transition is €, it means that the transition has not been executed yet, or it has been
reversed, otherwise any other value, n € I, indicates that the transition has been
executed and not reversed yet, where n shows the order of execution among non-
reversed actions. The initial history of a transition is denoted by Hp and is equal to ¢ for
all transitions of the initial marking. A state of a Petri net is described as a pair of a
marking and a history <M, H>.
Any Reversing Petri net is called well-formed if it satisfies the following conditions for
every transitiont € T:

1. A N pre(t)=A N post(t)

2. Ifa—b € pre(t), then a—b € post(t),

13

3. F(t,x)NF(t,y)=0 forallx,y €P,x #y.
The above conditions define that the transitions:
1. Do not erase tokens,
2. Do not destroy bonds, for instance if a-b exists in an input place of a transition,
then after the execution of the transition it is maintained in some output place,

3. Tokens/bonds cannot be cloned into more than one outgoing places.

The last piece that is completing the definition of Reversing Petri nets machinery is

con (a, C), where a is base and C € A U B is the set of tokens and bonds connected

with a.
con (a, C) = ({a} N C)U{P, b, c | Iw s.t. path(a, w, C),p € w, and p= (b ,c)}

Where path (a, w, C) if w=<;..., pn>,and forall 1L <i<n, fi=(ai;,a) € CNB,a € C
N A, and ap=a.

Figure 2. 10: Catalysis example in Reversing Petri Nets.

The figures above (Figure 2.9, 2.10) depicts the same example of catalysis from
biochemistry in traditional Petri nets and in RPNs, respectively. We can observe the

14

changes from that have occurred in the RPN diagram. Firstly, in the cases that a token
has represented a connection between two tokens, like for example ca in the first
diagram, has been replaces in the second diagram with the insertion of bonds. Thus, any
token that represented a connected components, now is represented with a bond.
Moreover, in the RPN example the arcs are labelled, and there are no arcs with inverse
direction, because in RPNs there is always feasible to execute transitions in reverse.
Thus, the reverse execution of the transitions covers all possible arcs with inverse

direction.

2.4.1 Forward execution
Considering a reversing Petri net (A, P, B, T, F), a transition t, and a state <M, H>, we

say that t is forward enabled in <M, H> if the following hold:
1. Ifae F(x,t), for some x € °t, thena € M(x), and if a € F(x, t) for some x € ot,
then a € M(x),
2. If B € F(x,t), for some x € ot, then B € M(x), and if F € F(x, t) for some x €-t,

then § € M(x),
3. Ifae F(t, y1) and b € F(t,y2) where y,#y,then b ¢ con(a, M(x)) where X € °t,
and

4. IfB €F (t,x) for some x € te and p € M(y) for some y € t then B € F(y, t).

So, a transition t, is forward enabled in state <M, H> if all tokens and bonds labelled on
incoming arcs are available in the incoming places of t, and none of the tokens/bonds
whose absence is required exists in any of the incoming places of t. Moreover, forks do
not duplicate tokens and if a pre-existing bond appears in an outgoing arc of a

transition, then it is also a precondition of the transition to fire.

Given a reversing Petri Net (A, P, B, T, F), a state <M, H>, and a transition t which is

forward-enabled in <M, H>, we write (M, H) L (M’, H') where:

M(X) — U aerx 1 con (a, M(x)), if X € ot
M'(x) = M(X) UF (t, X) U Uaer 1, %), y et CON (2, M(Y)), if X €to
M(x), otherwise

15

and

max {k | k=H (t"), t" € T} +1, if t'=t
H(1) = H (1), otherwise

According to the definition, when a transition t is executed, all tokens, and bonds
existing in its incoming arcs are transferred from the input places to the output places
along with their connected components. Furthermore, history function H is extended to

H’ by assigning to transition t the next available integer key. [8]

2.4.2 Backtracking execution
Considering a reversing Petri net N = (A, P, B, T, F), a state <M, H> and a transition t €

T, we say that t is bt-enabled if it is the last executed transition, namely it has the
highest H value.

When we reverse a transition with a backtracking fashion in a reversing Petri net, the
effect is as follows:

Given a reversing Petri Net (A, P, B, T, F), a state <M, H>, and a transition t which is b-

t
enabled in <M, H>, we write {M, H) > (M’, H') where:
b

M(X) U Uyete a € F(x) N E(t,y) CoN(@, M(y)—eff(t)), if xeet

M'(x) = M(X) — Uaer(t,x) con(a, M(x)), if X €to
M(x), otherwise
and
g, if t'=t
H'(t) = H (1), otherwise

16

So, after reversing transition t, all tokens, and bonds in the outgoing places of t, as well
as their connected components will be transferred to the incoming places of the
transition. In addition any newly-created bonds will be broken and the history of t will
be refined to 0. [8]

Figure 2. 11: An example of Forward and Backtracking execution
The figure above (Figure 2.11) represents a sequence of forward executions in the
following order: t1 -> t2 -> t3, and then the backtrack execution of these transitions,
which is the inverse execution of the forward execution, according to the backracking
rules.

2.4.3 Causal execution
Consider a reversing Petri net N= (A, P, B, T, F), a state <M, H> of N, and a transition t

€ T, we say that t is co-enabled in <M, H> if all its effects are reversed, or not executed
yet, i.e. all tokens labelled in the outgoing arcs of the transition, are available in the
output places of it.

After reversing a transition t, with causal-order fashion, the effects are exactly the same

as in backtracking.

17

Figure 2. 12: An example of Causal-order execution

The figure above (Figure 2.12) shows one possible causal execution, after the forward
execution with the following order: t1 -> t2 -> t3. We can observe that the transitions t2
and t1 are independent because there are no dependencies for their executions, and we
can reverse them with any order, but not before the transition t3. We have to reverse the
transition t3 first, because t3 is depended on the t1’s ans t2°s execution, so the
transitions t1 and t2 need the reversed effects of t3 to be able to reversed.

2.4.4 Out-of-causal-order execution
Consider a reversing Petri net N= (A, P, B, T, F), a state <M, H> of N, and a transition t

€ T, we say that t is o-enabled in <M, H> if it has been executed before. So, all
transitions with history H (t) # € are o-enabled.

The effect of reversing a transition in an out-of-causal fashion is that all bonds created
by the transition are destroyed. If the destruction of a bond divides a component into
smaller components, then those components should flow back, as far back as possible,
to the last transition in which they participated.

The notion “as far back as possible” is defined below:

Given RPN N= (A, P, B, T, F), an initial marking My, a current marking M, a history H,
and a set of bases and bonds C we write:

last (C, H) = t, If 3 post(t)NC+#@,H(t)eN
Ay post (1) N C£ @, H(t) €N, H(t)>H (t)
1, otherwise
Thus, last(C, H) is defined as follows: If the component C has been manipulated by
some previously-executed transition, then last(C, H) is the last executed such transition.
Otherwise, if no such transition exists (e.g. because all transitions involving C have
been reversed), then last(C, H) is undefined (L). Transition reversal in an out-of-causal

order can thus be defined as follows:

18

Given a RPN (A, P, B, T, F), an initial marking Mo, a state {M, H) and a transition

that | so-enabled in (M, H) , we write (M, H) “’E‘% (M’, H"> where H 'is defined as
in backtracking execution and we have:
M'(x)= M(x)—eff(t)—{C ax [3a € M(X), X € t', t' # last(C 4, x, H')}
U{C 4 y|3a,y, a € M(y), last (Ca, y, H) =t/ F (', X) N C 5 y# @}
U{C .y [Fa,y,a€M(y), last (Ca,y, H) = L, Cy y EMo(X)}

where we use the shorthand C , ;= con (b, M (z) —eff (t)) forb € A, z € P, and eff(t) for
the effects that has been created from the execution of transition t.

Thus, according to the above definitions, if the destruction of a bond divides a
component into smaller connected components then each of these components should
be relocated back to the outgoing places of their last transition, i.e. to the places that

should exist if transition t never took place, or to the places in their initial marking.[8]

Figure 2. 13: An example of Out-of-causal-order execution

The figure above (Figure 2.13) depicts an out-of-causal execution, after a forward
execution with the following order: t1-> t2 -> t3. We can observe that in out-of-causal
reversibility it is possible to reverse a transition before we reverse the effects of this

transition. For instance in the figure above the transition t1 is reversed before its effects.

19

Chapter 3

Requiremnts specification and Software used

3.1 Requirements specification
3.4.1Aims
3.4.2 Objectives
3.4.3 Specifications
3.1 The Java programming language
3.1.1 Object-oriented approach of Reversible Petri Nets
3.3 Obeo Designer software
3.4 Unified Modeling Language (UML)
3.4.1 Component Diagram
3.4.2 Component Diagram for Reversing Petri nets
3.4.3 Class Diagram

3.4.4 Class diagram for Reversing Petri nets

Since there is no software that simulates the behavior of Reversing Petri nets, after the
requirements specification, the software and programming languages that would be used
for the implementation of that simulator should be decided.

3.1 Requirements specification

The first phase of this project was the specification of the requirements.

The requirements specification is a key process of any well organized and coherent
project, because requirements will drive the software design and implementation
process. The software requirements specification lays out functional and non-functional
requirements, which will define the functions that the software is supposed to provide

and the behavior of the software in several situations.

3.1.1 Aims
The aim of this Diploma thesis project is the development of a tool that will simulate

the theoretical semantics of Reversing Petri nets, in order to find practical application in

20

user-friendly software. The software will give the opportunity to users to give a
reversing Petri net as text file for input or define it from the interface, as well as to draw
a diagram for textual RPN representation. In addition it will provide choices for finding
enabled transitions, and execute them, based on user choices and on the implemented
algorithms. Then users will be able to see the changes in the marking, after the
execution, and if the graphical representation was chosen, the changes will be available

at the diagram as well.

3.1.2 Objectives
In order to apply the principles of Reversing Petri nets in practice and give to users the

opportunity to simulate their behavior on software, the following objectives have to be
met:

i. To create an Object Oriented approach which will translate the Reversing
Petri nets’ information, and then from that form into the corresponding
algorithms.

ii. To prepare the steps of the software development by identifying the
technical and engineering background of the simulator.

iii. Toimplement the algorithms in the Java programming language

iv. To construct a Graphical User Interface that will allow users to interact with
the system to understand Reversing Petri nets and observe forward and
reverse execution of a chosen transition. Then, connect the Graphical User
Interface with the algorithms implementation to simulate the behavior of the
algorithms in a marking.

v. To develop a Graphical representation tool for Reversing Petri nets to model
them and give to users to choice to create a RPN diagram and give it as input
in the simulator.

vi. To translate the Petri net’s information from the Graphical representation
tool into Java code, and be able to give it as input for the algorithms.

vii. To connect the Graphical representation tool with the Graphical User
Interface, so users can see the changes in a marking, after the execution of a

transition directly on the diagram, as well as on the GUI.

21

3.1.3 Specifications
The project objectives must be achieved by the implementation of specific steps. Firstly,

a way to express Reversing Petri net information in an Object oriented approach in the
simulator environment has to be set. Thence, the four mechanisms that have been
defined for RPNs must be implemented, based on the object oriented approach that has
been defined before. The key consideration of the implementations at first will be
correctness, and at a subsequent stage memory resources and efficiency will be under
consideration.

Generally, we have to find the most efficient structure for the Reversing petri nets
representation, in order to easily change tokens or bonds within a set, with the minimum
memory resources and time.

Moreover, the graphical representation tool has to be simple in use for any user, and
easily accessible from the simulator environment. Thus, a way to connect directly the

simulator environment with the graphical representation tool has to be set.

3.2 The Java programming language
The developed software system simulates both forward and reverse direction execution

in Reversing Petri nets, in the Java programming language. Java is a Class-based, object
oriented language that allows programmers to develop user friendly interfaces, with the
use of Swing API. In addition Java has designed to have as few implementation
dependencies as possible, and thus Java code runs on all platforms that support Java
without the need for recompilation. Moreover Java [6] provides some features that
manage automatically memory space, so temporary results, and variables are not a
concern for the programmer anymore. After a comparison with other programming
languages, Java was considered the most appropriate, because of the features that it
provides, and alongside the opportunity to develop a friendly user interface, with the use
of Swing API, which would facilitate users to understand the functions of the simulator
quickly and use it without much effort. Moreover, Java’s object oriented feature, is

appropriate, in order to create a flexible, space-free approach, for Reversible Petri Nets.

22

3.2.1 Object-oriented approach of Reversible Petri Nets
Having in mind that the simulator must execute commands rapidly, and use as less as

space possible, the design of an Object-oriented approach of RPNs was necessary, at the
first steps of this diploma thesis.

Every element of a RPN had to be represented by an object, in order to be independent
and relationships could be described between the objects. So, transition, place,
token/bond, and arcs are represented by an object in Java, respectively.

Each of these objects includes features that compose each element of a RPN. Every
object is characterized of a unique number, the ID, which defines the identity of the
object. Further field of each object are the name, a list of tokens/bonds in the case of
places and arcs, a variable that determines whether a transition is forward-enabled, bt-
enabled, co-enabled or 0-enabled.

Some objects have to have a relationship with other objects, such as arcs. Arcs must
contain fields that determine the place and the transition that make up the arc. Also
further fields that are essential for the arc-object are fields that define the direction of
the arc (‘from’, ‘to’).

At that stage we had the representation of the basic elements that compose a RPN in
Java, and the relationships between them. The next step was to consider how all these
elements would be connected and synthesize the object of the RPN. Another object had
to be added in our approach, the object of the Petri net. Petri net’s object contains a list
for each item, namely places, transitions, arcs, and tokens/bonds. Furthermore there is
an instance of the last executed transition. Another element that had to take into account
was the History. In order to represent the history in Java, an extra object was created.
This object, named “Cell’, includes two fields, an instance of a transition and the history
value of each transition. Thus, Petri net object comprises a list of ‘Cells’, with size
equal to the number of transitions in the RPN, and it represents the history of each
transition in the RPN.

Then, we had a complete object-oriented approach for RPNs, and we could continue

with the implementation of that approach in Java, in order to simulate the algorithms.

23

3.3 Obeo Designer software
Obeo Designer software has been used for the development of the graphical

representation tool for Reversible Petri nets, because it has features that were needed,
according to the requirements of graphical representation tool.

Obeo Designer [1] is plug-in software of Eclipse Foundation, which provides a way to
designers to create and edit a domain model first, corresponding to their needs, and then
gradually creates a modelling workbench, which will handle the actions for the
representations of the domain model. After the completion of all steps, a modelling tool
will be developed.

In order to create the modelling tool, there is a need of a class diagram, which will
define how data of the domain model will be saved. That class diagram, is an Ecore
model at Obeo Designer, and works like the metamodel of the project.

The next step is to use the Ecore model that has been created, in order to generate the
code of the project, which is generated automated by the tool. Afterwards, there is the
development of a design approach of the domain model, and a workbench to give the
opportunity to users to create and/or edit their representations.

Generally, the developer defines the architecture of the model, and the software
generates the code automatically.

Obeo Designer uses Eclipse Sirius [1], to enable users graphically design complex
systems, while keeping the corresponding data consistent. Eclipse Sirius is an Open
Source Eclipse software project, which is integrated into annual versions on the Eclipse
platform. Sirius technology allows users to create custom graphical modelling
workbenches by leveraging the Eclipse Modelling technologies of EMF and GMF. The
modeling workbench that will be created will be composed of a set of Eclipse editors,

such as diagrams, trees, and tables.

3.4 Unified Modeling Language (UML)
Before the implementation of the algorithms began in Java, a Component diagram had

to be designed, in order to create a clear picture of the functions of the simulator and the
connections with the Graphical representation tool. Furthermore, in order to develop the
tool for the graphical representation of the Petri net, it was essential a Class diagram, as
a metamodel of the system. The most appropriate language to create these diagrams is

Unified Modeling Language, known as UML. UML is a general-purpose language for

24

specifying, visualizing, constructing and documenting the artifacts of software systems.
It is adapted as standard by Object Management Group (OMG), and constitutes an
approved ISO standard. UML provides different types of diagrams, so they can
visualize a system’s architectural blueprints, such as any activities of the system,
individual components and how they can interact with the system, how entities of the
system interact with each other, the design of user interface, and how the system will
run. Most of the times, in order to have a complete view of a system several diagrams
are needed, in the design phase. UML diagrams are divided in two groups based on the
view of the system model that they are representing.

The first category of UML diagrams [11] is static or structural diagrams, which they
emphasize in the static structure of a system, and not model any dynamic behavior of
the system. Since they are representing the structure, they are used extensively in
documenting the software architecture of software systems. This kind of diagrams is
composed of objects, attributes, operations, and relationships. Secondly, there are the
dynamic or behavioral diagrams [11], which they emphasize in the dynamic behavior of
a system, by showing collaborations among objects and the changes to internal states of

objects. They are used to describe the functionality of software systems

Diagram
[|
Behaviour Structure
Diagram Diagram
Ja) /i
| [| [
Activity State Class Component Object
Diagram Machine Diagram Diagram Diagram
Diagram
Interaction Use Case Composite Deployment Package Profile
Diagram Diagram Structure Diagram Diagram Diagram
) Diagram
| | |
Communication Interaction Sequence Timing
Ciagram Overview Ciagram Diagram Hotation: UML
Ciagram

Figure 3. 1: UML Diagrams overview

25

The figure above (Figure 3.1) displays the overview of UML diagrams, separated in the
two main categories, and then in subcategories.

For the needs of this diploma thesis, two structure diagrams were necessary; a
component diagram and a class diagram. The component diagram was created to
describe the components of the system and the dependencies among them. Afterwards,
in the development of the graphical representation tool a Class diagram was essential, to

operate as a metamodel of the tool.

3.4.1 Component diagram
Component diagrams [11] are used to depict how components of a system are wired

together to form larger components or software systems, and they are used to illustrate
the general architecture of arbitrary complex systems. These diagrams consist of
squares, which represents the components, half and whole circles which represent the
required and provided interfaces for components respectively, and interrupted lines that
represent dependencies between components.

3.4.2 Component diagram for Reversing Petri nets

K_‘J Userinput

|’ --------------------------- > Al th < ------------------------ ‘.

zAlgorithmss Use
Use Component |
i |
| |
\OUserchoce i
O User choice :

«Graphical representation tools | N zGraphical User Interface=

F
k.

Component Component

Draw Petri net ? C<5xecution of algorithms

zDesign of Petri nets «zDirect changes on Petri nets
Component Component

Figure 3. 2: Component diagram for Simulator for RPNs

26

The diagram above (Figure 3.2) represents the Component diagram of the Simulator for
Reversible Petri nets system. There are three main components in the systems, namely
Algorithms, Graphical User interface, and Graphical representation tool. “Algorithms”
component indicates the part of the software that simulates the behavior of the four
algorithms. “Graphical representation tool” component represents the graphical
representation software of the simulator, which is connected with the algorithms part,
and finally “Graphical User Interface” represents the interface of the simulator, that is
connected with the “Algorithms” component too.

Algorithms need the user input, in order to function, according to the diagram.
Moreover, “Graphical User Interface” and “Graphical representation tool” are provided
interfaces of the “Algorithms” component, because when algorithms have the user
input, they can give the opportunity to user to choose graphical representation as input
or give the input from the graphical user interface.

Based on the user choice either Graphical User Interface” or “Graphical representation
tool” component can function. “Graphical representation tool” component has two more
provided interfaces, namely “Design of Petri net” and “Direct changes on Petri net.”
“Design of Petri net” component indicates the function of tool that allows the user to
draw the Petri net diagram. In addition “Direct changes on Petri net” component
represents the function of the tool that shows to the user the changes on the Petri net
diagram, based on the execution of the algorithms.

The Graphical User Interface” and the “Graphical representation tool” are associated
with each other because the user executes the desired transition from GUI and the

changes can be shown on the graphical representation directly.

3.4.3 Class diagram
A Class diagram [11] is a type of static structure diagram which depicts the structure of

a system, by showing the system classes. Classes consist of attributes and methods,
which represents the possible operation of the class. In a class diagram classes have

relationships among them.

27

3.4.4 Class diagram for Reversing Petri nets
At the first steps of the development of the graphical representation tool there was a

need for a class diagram. Class diagram indicates the components of a reversible petri

net and the relationships among them, so when a user draws the petri net only

permissible relationships would be available. Moreover, class diagram will determine

the components of a RPN, and the attributes of each component, based on the

relationships of the diagram.

£ Negative_token

= token_id : Elnt
o token name::
EString

[0.#] bond
PR .
H petrinet
[0.*] negative_bond
[0.*] token
[0.*] negative_token . [0.*] place
f [}
[0.] transition
Transition _
0. arc | o Q - H Flace S token_jd: Elnt
g transition id : Ent :
e . & place_id : EInt o foken_name:
o transition_name :) [0.#] token EString
%% EString a place _name: _
o, forward_enabled : e | oM
EBoolean = false o empty_place
bt enabled : EBoolean = false
o b
EBoolean = false
— Causal_enabled :
EBoolean = false
o ofc_enabled :
EBoolean = false
[0f.%] arg
[0.1] transition [0.1] place
B A [0.4] bond H 8ond [2..2] token
g arcid: Eint
= from : EChar = bond_id : Elnt
= to: EChar 10.%] bond —, bond_name :
[0..#] negative_token o, arcname EString
EString
[0.*] token

[0.¥] negative_bond

H Negative_bond

= bond_id : EInt
o, bond_name:
EString

Figure 3. 3: Class diagram for Simulator for RPNs

F4e)

The Class diagram above (Figure 3.3) shows the class diagram for the Reversible Petri
net model. There is a central class that represents the Petri net class, which is composed
of all other components of a reversing Petri net, namely place, transition, arc, token,
bond, negative token, and negative bond. An arc consists of a place and a transition, and
can be either from a place to transition or from a transition to place. It can be observed
that a place can have several tokens and/or several bonds, while a bond consists of
exactly two tokens. An arc can be labeled with a set of bonds, and/or a set of tokens,
and/or a set of negative tokens, and/or a set of negative bonds, and there are two fields
that indicate whether the arc comes from a transiton or a place. Moreover all elements
can be identified from a name and an id number that are unique for its instance.
Transition class consists of four boolean fields that indicate if a transition is forward-
enabled, backtracking-enabled, causal-enabled and/or out-of-causal enabled,

respectively.

29

Chapter 4

Simulator

4.1 Representation of basic components
4.1.1 Place
4.1.2 Transition
4.1.3 Arc
4.1.4 Token
4.1.5 History
4.1.6 PetriNet
4.2 Algorithms
4.2.1 Forward execution algorithm
4.2.2 Backtrack execution algorithm
4.2.3 Causal execution algorithm
4.2.4 Out-of-causal execution algorithm
4.3 Graphical User Interface
4.3.1 Read input from file
4.3.2 Create new Petri net from GUI
4.3.3 Read input from graphical representation tool
4.3.4 Simulator execution choices screen
4.3.5 Visual changes on Petri net diagram
4.4 Graphical representation tool
4.4.1 Domain model for the Reversing Petri nets
4.4.2 Design specifications for the Reversing Petri nets workbench
4.4.3 Obeo Designer’s output processing
4.4.3.1 Parser from xml to Java representation

4.4.3.2 Parser from Java representation to xml

4.1 Representation of basic components
After defining the most appropriate programming language for the implementation of

the simulator, a research on UML and the creation of the necessary diagrams for the

project, which are a component and a class diagram, as well as the specification of the

30

project requirements, the next phase was to begin the actual implementation of the
simulator, in the Java programming language.

The initial step of the implementation was the representation of all basic components
that constitute the Reversing Petri nets, in the programming language environment.
Thus, based on the object oriented approach described in subchapter 3.1.1, each

component is depicted from a Java object, with its own fields.

4.1.1 Place
Places is one of the main components in Reversing Petri nets, and based on the object

oriented approach that has been created, it will be composed of the following fields:
place id, place name , which are unique for each place, a list with the possible tokens
and a list with the possible bonds held in the place. Moreover it will have a field that
will indicate if the place is empty, and a list that will indicate with which arcs the place
Is connected. The ArrayList structure was selected for the representation of lists in Java.
The figure below (Figure 4.1) shows what a Place object contains in Java and how these

fields are initialized, when a Place object is created.

public class Place {
S5tring place name:
int place_ 1id;
ArrayLi=st<Token> tokens=:
ArrayList<Token>bonds;
ArrayList<Integer> arc id;
boolean empty:

Placei() {
this.place name="";
this.place id=0;
this.tokens=new aArrayList<Token>|():
this.bonds=new ArrayList<Token>{():
this.enpcy=~fal=se;
this.arc id=new ArraylList<Integer>():’

Figure 4. 1: Place representation in Java

31

4.1.2 Transition
The other type of node in Reversing Petri nets are transitions, which describe the actions

either in forward or reverse order that can take place in a Petri net. Transition is another
object in Java representation, which consists of transition id and transition name, which
are unique for each instance, four Boolean variables which indicate whether a transition
iIs forward enabled, bt-enabled, co-enabled and/or o-enabled. Furthermore, the
transition’s object has a list with the arc ids that a transition is connected with, and two
variables that tells the number of input arcs and the number of output arcs for that
transition.

The figure below (Figure 4.2) shows the fields that compose a transition object and how

they are initialized, when a transition object is created.

public class Transition {
String transition name;

int transition id:

boolean enabled for execution;
boolean backtrack enable;
boolean co_enabled:

boolean o enabled;

int num of input;

int num of cutput;
ArrayList<Integer> arc_id;

Transition() {
this.transition name="";
this.tcransition id=0;
this.enabled for execution=false;
this.backtrack enable=false;
this.co_snabled=fal=e;
this.num of input=0;
this.num of output=0;
this.o_ enakbkled=false;
this.arc id=new Arravlist<Integer>();

Figure 4. 2: Transition representation in Java

32

4.1.3 Arc
An arc is the connection between a place and a transition, or a transition and a place in a

reversing Petri net, and describes the transfer of tokens and/or bonds through places,
when a transition is fired. An arc object contains an instance of the place and of the
transition that are connected and two variables that point out if it is an arc from place to
transition, or an arc from transition to place. In addition it includes four lists which
comprise the tokens and/or bonds required for that arc, in order to fire the transition,
and/or the absence of tokens/bonds, in order to fire the corresponding transition (pre-
conditions), if it is an arc from place to transition. On the other hand, if it is an arc from
transition to place these lists comprise the tokens and/or bonds that the transition has as
effect after its execution (post-conditions).

The figure below (Figure 4.3) shows the elements of an arc object in Java, and how

these elements are initialized when an Arc object is created.

public class Connection {
int connection id;
Place place;
Transition transition:;
ArraylList <Token>tokens;
ArraylList <Token>» bonds;
LrraylList<Token> negative tokens;
LrraylList«<Token> negative bonds:
char from;
char to;

Connection(){
this.connection id=0;
this.place=new Place|():
this.transition=new Transition():
thi=.tokens=new LrrayList<Token> () :
this.from="%0":
this.to="%0";
this.bonds=new ArrayLisc<Token>():
this.negative bonds=new ArraylList<Token>()}:
this.negative tokens=new ArraylList<Token>():

Figure 4. 3: Arc representation in Java

4.1.4 Token
Tokens are the elements that are distributed in places on a reversing Petri net, and

indicate the pre- and post-conditions of a transition. A token can be a base or bond,
which is a connection between two bases. So, in the Java representation, the token

33

structure describes either a base or a bond, and contains token id and token name fields,
which are unique for each token.
The figure below (Figure 4.4) shows the token’s fields in Java and their initialization,

when an instance of that object is created.

public class Token {
String name;
int id=0;
public =static int ==0;

Token() {
this.name="";
=++;

id=e;

Figure 4. 4: Token representation in Java

4.1.5 History
History is a piece of data for each transition that indicates whether the corresponding

transition has been reversed, or has been forwardly executed and in what order. Thus, in
order to represent the history for each transition a new structure had been created in
Java composed of the transition and the history value. The new structure is called Cell,
and there is a Cell instance for each transition in the given Reversing Petri net, saved in
an ArrayList.

The figure below (Figure 4.5) shows the Cell structure in Java and its fields.

public class Cell {
Tranzition tr:
int history;

Cell() 4
thi=.hi=story = 0;

Figure 4. 5: Cell structure in Java, which represents history for each transition

34

4.1.6 Petri net
After the creation of all basic components of RPNs in Java, the next step was to create

an object, which contains all other elements and represents the reversing Petri net. So,
the PetriNet structure was created that is composed of ArrayLists for places, transitions,

tokens, arcs, and history of the reversing Petri net. In addition it contains an instance of
the last executed transition.

The figure below (Figure 4.6) shows the Petri net structure in Java, and the fields from
which it is composed.

pubklic class PetriMet {
ArrayvList<Place» places:
ArrayList«<Transition> transitions;
LrrayLiszt«<Connection> arcs;
ArrayList<Token> tokens:
ArrayList<Cell> history:
Transition last_executed;

Petrillet ()} {
places = new ArrayList<Place>():
transitions = new ArravList<Transition>|():
arcs = new ArravyList«<Connection>|();
tokens = new LrrayList<Token>|():
history = new ArrayList<Cell>{():
last executed = new Transition();

Figure 4. 6: Petri net representation in Java

4.2 Algorithms
Since all structures were created in Java, the four algorithms that can take place in

Reversing Petri nets, namely Forward, Backtrack, Causal-order, and Out-of-causal-

order, had to be implemented in Java, using the structures mentioned above.

35

4.2.1 Forward algorithm
Forward execution can take place when all pre-conditions of a transition are met,

namely all tokens and/or bonds exist in the required places and all the tokens, and/or
bonds whose absence is necessary do not exist in any corresponding place. When all
pre-conditions are met, the transition is forward-enabled and can be fired. After the
execution of the transition tokens and/or bonds are distributed to the corresponding
output places of the transition, or new bonds are created and then distributed to the
output places. Thus, for the forward algorithm of RPNs, there were implemented two

methods, and specifically the forward_enabled and forward_execution method.

Forward-enabled method

Algorithm 1: Forward-enabled method
Input: The method takes a Reversible Peini net as attribute
Result: Find all forward-enabled transitions for a given Petri net
imitialization;
foreach rransition t- Petrinet do
foreach arc o, Petrinet do
if ¢ dtransition and a.to "t" then
| toTransitionArcs add a;
end
end
end
foreach arc a-toTransition Arcs do
if a has bonds ar pre Conditions then
foreach place p. Input AresO fTransition do
| check if preCondition bonds exist;
end
end
if @ fhas okens as preCondirions then
foreach place pe Input AresO f Transition do
| check if preCondition tokens exist in the comesponding input places ;
end
end
if @ has negarive rokens as preConditions then
foreach place p- Input ArcsO fTransition do
check if preCondition negative tokens do not exist in the comesponding input
places;

end

end

if a has negative bonds as preConditions then

foreach place p. Input AresO fTransition do

check if preCondition negative bonds do not exist in the comesponding input
places;

end
end

if all preConditions are met then
| atransition. forwardEnabled=true;

end
end

Figure 4. 7: Forward-enabled method written in pseudocode.

36

The figure above (Figure 4.7) represents the actions that the forward-enabled method
does. Firstly, for a given RPN it finds all the arcs of the transition, which they are arcs
from place to transition and it saves them in a list. The list in Java is represented by
ArrayList structure, so toTransitionArc is an ArrayList that contains <Arc> instances.
Thereafter, it takes each of these arcs and checks its pre-conditions. If pre-conditions
consist of tokens, it checks all input places of that arcs, and find out if the required
tokens hold in the corresponding places. Similarly, behaves if pre-conditions contain
bonds. In the case that pre-conditions contain negative tokens or bonds, it means that
the absence of these tokens/bonds is required in the corresponding places, so a for loop
is done in the input places of the arcs, and checks if these tokens/bonds do not exist in
the input places, respectively. Finally, if all conditions are met, namely all tokens/bonds
that must exist are in the right input places, and all token/bonds that must not exist are

not in any input place, the transition of that arc is identified as forward-enabled.

37

Forward execution method

Algorithm 2 Forward-execution method
Input: The method takes a specific transition t of a Potri net as attribute.
Result: If the transition is forward enabled. it is executed.

find inputArcs for transition t and save them to a list]);
find cutputAres for transition t and save them to a list();
find inputPlaces for transition © and save them to a hist();

find outputPlaces for transition t and save them to a list();

if ¢ is forwardEnabled then
foreach ouwtdre outa-out Arcs do
foreach element ecouta do
if ¢ iz token then
tranfer ¢ from corresponding inputPlace to corressponding outputPlace();
else
if ¢ is bond and eristz in an mputPlace then
| tranfer ¢ to corressponding outputPlace();
else

if ¢ is bomd and does not erist to an inputPloce then

create TheBond b();
tranfer b to corressponding outputPlace();

end
end
end
if ¢ iz a token and there is a bond or connected component ¢ in mputPloce then
con=create TheBond b() between e and the right base of ¢
transfer con to corresponding outputPlace();

end
emd

end
t hstory Value=last Executed Transition istoryValue+1;
end

Figure 4. 8: Forward-execution method written in pseudocode

The figure above (Figure 4.8) displays the forward-execution method, written in
pseudocode. The idea is to first find all input and output places of the transition we
desire to execute, as well as all input and output arcs of it. Then, we check if the
transition is forward_enabled, and in case it is, we pass one by one all output arcs. For
each output arc we check its label, and if it is a token, we transfer the token to the
corresponding output place, or if it is a bond, and does not exist to an input place we
create the bond and transfer it to the corresponding output place. Otherwise, if the label
of the output arc is a bond, which exists in an input place, we just transfer to the output
place. If the element is a token, and has to be connected with a component, which is
already connected, a bond will be created between e and the right base of the
component. Finally, we assign the history value of the transition to the history value of

previous last executed transition plus 1.

38

4.2.2 Backtrack algorithm
Backtrack-order execution can take place, only to the transition in the Petri net that has

the biggest history value, that is the one that has been executed last, and the history
value is not ¢. If a bt-enabled transition exists in the Petri net, then backtrack execution
can happen. When backtrack execution takes place the tokens labeled in output arcs are
relocated back from output places to their corresponding input places, and any newly
created bonds break, and then their bases are relocated back to their corresponding input

places.

Backtrack-enabled method

Algorithm 3 Backtrack-enabled method

Input: The method takes a Reversible Petri net as attribute

Result: Find the backtrack-enabled transition for a given Petri net,because at any time we can have
only one bt-enabled transition, the one with the biggest history value.

int max=C0;
Cell maxCell=new Cell();
foreach hisrorvinstance hPetrilNet do
if iuhisrorvValue = max then
max=h. history Value:
maxCell=h:

end
end
f maxCell '= null then
foreach rransition t _ PetriNei do
if r==maxCell.fr then
| t.btEnabled=true;
end
end
end

Figure 4. 9: Backtrack-enabled method written in pseudocode

The figure above (Figure 4.9) represents the backtrack-enabled method written in
pseudocode. Firstly, for a given Reversible Petri net, and for each history instance in
that Petri net, it finds the bigger history value, and saves it to a variable, as well as and
the Cell instance that holds this value, with its transition instance. Afterwards, if a
maximum value is found, it passes from all the transitions in the Reversible Petri net,
and compare it with the transition of the maxCell. When it finds the transition that
matches, it means that this is the transition with the biggest history value, and it assigns
its bt_enabled field to true.

39

Backtrack execution method

Algorithm 4 Backtrack-execution method

Imput: The method takes a Reversible Petn net as attribute.

Result: If there is transition t that is backtrack-enabled it is executed in reverse order, using
hacktracking algorithm’s rules.

find mputArcs for transition t and save them to a list();
find cutputArcs for transition © and save them to a list();
find inputPlaces for transition © and save them to a hst();

find outputPlaces for transition ¢ and save them to a list();

if t is bhtEnabled then
foreach ouwtAre outa-out Ares do
foreach element e-outa do
if ¢ iz token then
| tranfer e from corresponding outputPlace to corressponding input Place ();
ond
if ¢ iz newly ereated bond b then
break TheBond b
relocate elements of b oin corresponding inputPlaces(); /Felements of b, can
be either tokens or other bonds */
if ¢ is bond, and bases from that bond are connected with other bases then
break TheConnectionof{e); if there are connected components that they an
consists of a base of ¢ then
relocate connected component in the corresponding inputPlaces(); re-
locate the base left from e in corresponding inputPlaces();
end
end
e

end

end

t_history Value=0:
end

Figure 4. 10: Backtrack execution method written in pseudocode.

The figure above (Figure 4.10) shows the backtrack execution method, written in
pseudocode. Firstly, it finds all input and output places and input and output arcs of
transition t, and they are saved in four tables respectively. Then for each output arc, and
for each element of that output arc, it relocates the elements from the output places to
their corresponding input places, if the element is token. If the element is a newly
created bond, it breaks the connection between the bases, and then relocates its elements
back to their corresponding input places. The elements of a bond can be either bases or
other tokens, and in both cases they are transferred back to their input places. Finally, it

sets history value of the transition to 0, because it has been reversed.

40

4.2.3 Causal-order algorithm
Causal-order reversibility enables the execution of a transition in different order than it

was forward executed, a feature that backtracking reversibility does not have. Although,
in order for a transition to be co-enabled, its history must be any value different than ¢
that is any number bigger than zero, and all tokens and/or bonds identified in its output

arcs, are present in its output places.

Causal-enabled method

Algorithm 5 Causal-enabled method
Input: The method takes a Reversible Petri net as attribute
Result: Find all causal-enabled transitions for a given Petri net

find all executed Transitions() and save them in a list named executed;
boolean flag=false;
foreach transition t-executed do
find all inputArcs for t);
find all outArcs for);

foreach arc a-out Arcs do

foreach element eca do
foreach arc incinput Ares do
if in.place contains ¢ then
| fag=true;
end
end
end

end

if flag==rrue then

| executed.coEnabled=true;
end

end

Figure 4. 11: Causal-enabled method written in pseudocode.

The figure above (Figure 4.11) shows the causal-enabled method written in pseudocode.
Firstly, it finds all the executed transitions, for a given Reversible Petri net, and it saves
them to a list, named executed. Then, for each executed transition it finds all its input
and output arcs and saves them to two lists. Afterwards, for each output arc a and for
each element of a , it passes all places of input arcs and checks if the element is present
in any of them. If is presented, it assigns the value true to a boolean variable. Finally, if

that boolean value is true, it assigns the co_enabled field of that transition to true.

41

Causal execution method

Algorithm 6 Cansal-cxecution method

Input: The method takes a transition © as parameter.

Result: If transition t is co-enabled it is executed in reverse order, using cansal algorithm’s
rules.

find mputArcs for transition t and save them to a liso]);
find outputArcs for transition t and save them to a list();
find inputPlaces for transition © and save them to a lisc();

find ontputPlaces for transition ¢ and save them wo a liso();

if t is coFnabled then
foreach outdre outa-out Ares do
foreach element e-oute do
if ¢ iz token then

| tranfer e from corresponding outputPlace to corressponding inputPlace ();
else
if ¢ is newly created bond & then
breakTheBond b;

relocate elements of b in corresponding input Places();

J*elements of b, can be either tokens or other bonds */
end
if ¢ is bond, and bases from that bond are connected with other bases then
break TheConnectionof{e); if there are connected components that they ary
consists of a base of ¢ then

relocate connected component in the corresponding inputPlaces(); re-
locate the base left from e in corresponding inputPlaces();

end
enid
end

enid

end

t_hisvory Value={;
end

Figure 4. 12: Causal-order execution method written in pseudocode

The figure above (Figure 4.12) represents the causal-order execution method written in
pseudocode. It can be observed that the effects of the execution in causal-order are

exactly the same as backtracking execution.

4.2.4 Out-of-causal algorithm
Out-of-causal reversibility can take place whenever a transition is executed before, i.e. it

has a history value bigger than zero. When a transition is executed in reverse, using out-
of-causal reversibility, it can be reversed before its effects are undone, and this makes
possible the creation of new states, which they cannot even be reached with forward,
backtracking, or causal-order execution paths. Thus, for out-of-causal-order algorithm

42

they have been implemented two methods, one for the o-enableness, and one for the
out-of-causal execution.

Out-of-causal-enabled method

Algorithm 7 Causal-enabled method
Input: The method takes a Reversible Petri net as parameter
Result: Find all out-of-causal-enabled transitions [or a given Pelri net

foreach rransition t-PetriNet do
if 7. historyValue > 0 then
| t.oEnabled=true;
end
end

Figure 4. 13: Out-of-causal-enabled method written in pseudocode.

The figure above (Figure 4.13) shows the o-enabled method written in pseudocode.
Since, a transition is executed, is identified as o-enabled, so the method above just
checks the history value of each transition, and if it greater than zero, it assigns to its

boolean variable o0_enabled the value true.

43

Out-of-causal execution method

Algorithm 8 Reversal of transition t in out-of-causal order
I: reverse ransiion t by seting H, (1) =0
2: for all p = Pdo
3 M, pl =Mulp| —effect(r)

4 foralla = Bdo

5z C = con{a.M,[p|)

i t' = last ransition in peah(Mg, M)
7: while ((Cripost (i) =0 or Hy(t") = 0) and 1 # ¢ do
i ' = one transition back

o end while

10 if '~ ¢ then

11: for all p' = Fdo

12: if C C Mo|p'| and p # p then
13: p=p—-C

14: PF=p+C

15: end if

16: end for

17: else

18: for all p' = Fdo

19: if CrF(",p")# Band p# p' then
20: p=p-C

21: F=pF+C

22 end if

23 end for

24: end if

25: end for

26: end for

Figure 4. 14: Out-of-causal execution method written in pseudocode[13]

The figure above (Figure 4.14) [13] represents, in pseudocode the out-of-causal
execution. Firstly, it resets the history of the transition to zero, and then it finds the
effect (t), which is the bond that transition t, had created, and breaks it. Afterwards, for
each place p of the Petri net, and for each bond a of place p, it saves bond a in the
current marking, in a variable. Then, it also saves the last transition of the marking,
before place p, in a variable named t’. Thereafter, while bond a does not belong to the
output arc of transition t or history value of t’ is equal to zero, it changes the value of t’,
to a transition back in the marking, and this action implements the idea of going as back
as possible in the marking for that specific bond. After that, if t” is not null, i.e. there is a
transition in the marking where bond a, has used before, for each place p’ in places, if
bond a in the current marking belongs to it and is not the same as place p, it relocates

bond a, from place p, to place p’. On the other hand, if t” equals to null, it means that in

44

the current marking there is not a transition, which has used bond a, so it finds the place
that the bond belonged in the initial marking and relocates it to that place.

4.3 Graphical User Interface
The simulator runs through a graphical user interface, in order to be easier for the user

to use the simulator and execute the main commands. The graphical user interface was
implemented simultaneously with the algorithms’ implementation. The GUI initially
gives to the user the opportunity to choose the method by which the input will be
inserted, through the following figure (Figure 4.15). Depending on the user’s choice a
different set of screens will appear to the user, for the input of the initial marking.

2 Simulator for Reversible Petri Nets = =

Please select the method you want to give the input:

FEADFROMFILE CREATE NEW PETRINET DEAW INITIAL PETRINET

IpX

b

>

Figure 4. 15: Screen with user’s choices about the input method

4.3.1 Read input from file
If the user selects the first choice, it means that the input will be imported to the

simulator from a file. When the user press the button for “Read from file” the following

window will appear:

45

] Open
Look In: |[C] Documents ‘V| E

] Avatar] Integration Services Script Task

3 CyberLink 5] My Data Sources

] GitHub] My Shapes

(-5 hp.applications.package.appdata 3 Prolog

3 hp.system.package.metadata 1 SQL Server Management Studio

[Integration Services Script Component([_] Visual Studio 2005

1 I | IC

File Name: || |

Files of Type: ‘AII Files |v|
| Open | ‘ Cancel |

Figure 4. 16: Window for importing the input file

The figure above (Figure 4.16) shows the window that allows the user to choose a file,
from its computer, for giving the initial marking to the simulator. The file has to be a
.xt file, otherwise the simulator will show an error message, and then the user can try
again to select a different file with the correct extension. In order for the simulator to
read the file and create all the necessary objects and fields for the initial marking of the

Reversible Petri net, the format of the file has to be as follows:

Tokens:
[a,b,c]
Places:
[pl,p2,p3,p4,p5]
Transitions:
[t1,t2]

Arcs:

[

(pl,tl)={a}
(p2,t1)={b}
(t1,p3)={a-b}
(p3,t2)={b}
(p4,t2)={c}
5t2,p5}={b—c}
Initial marking:
[

pl-»a

p2->»b

p3->@

pd-»c

p5->8

1

Figure 4. 17: File format and ordering of initial marking

46

The figure above (Figure 4.17) shows the correct format of the file, in order for the
simulator to create correctly the initial marking. As is shown, firstly the set of tokens is
declared using the ‘[]” symbols to represent the beginning and the ending of the set.
Then, places and transitions are defined similarly to tokens. The arcs are declared with
the use of parentheses to indicate which place and transition are connected to that arc,
and then after the equation mark inside the curly braces (‘{}’) the label of the arc is
defined. Finally, the last part of the file must be the initial marking, which will indicate
the distribution of tokens in the places. It is important that each file given to the
simulator as input, has this format, with the same headings, symbols, and structure, in
order for the simulator to work correctly.

When the user selects a file with the correct extension the simulator will read the file,
create all objects for the object oriented approach of that initial marking, and continue to

the next screen.

4.3.2 Create new Petri net from GUI
If the user selects the second choice, a different screen will appear, in which he/she will

have to opportunity to create a new Petri net from the Graphical User Interface.

3 Simulator for Reversible Petri Nets = =
_ BACK | Create new Petri net:
Declare the places of your marking : Insert token/bond in a place: Places
3 Place name Token/Bond
Place name: Flease press enter before
Q creating the object .
Declare the transitions of your marking : Transitions
Transition name
T iti . Please press enter before
ransition name Q creating the object .
Declare the tokens of your marking : Declare the negative tokens of vour marking : Tokens Negative tokens
= Token name Token name
Tolen name: Please press enter before ’7 Please ter befo
i b Tok . ase press enter before
Q creating the object . oen name creating the object .
Declare the bonds of your marking : | | | Bonds Negative bonds
Bond name Bond name
Declare the arcs of vour marking : l:l Arcs
Place | Transition| From To Label

]

Figure 4. 18: Screen for the creation of a new Petri net through the GUI
47

The figure above (Figure 4.18) shows the screen that appears when the user chooses to
create a new Petri net from the GUI. The user has to define all elements of the initial
marking, and then click to “Create Petri Net” button to create the marking. The user has
to define places, transitions, tokens and any negative tokens and/or bonds before
defining arcs, because of the dependence between them. Furthermore, before the user
creates a bond or a negative bond all tokens have to be defined, because bonds are
consisting of exactly two tokens. All these checks are done from the simulator and the
corresponding messages appear when it is necessary. All messages are in Appendix E —
A Simulator manual for user. When a user creates an element successfully it will appear

in the corresponding table at the right side of the screen.

4.3.3 Read input from graphical representation tool
In this case the user desires to give the initial marking of the Petri net through the

graphical representation tool. Thus, the simulator is connected with the graphical
representation tool, and this happens through an explanation screen, which explains to
the user the steps that have to be taken, in order to create a reversing Petri net
graphically. Unfortunately, the Obeo Designer software does not provide a way to make
the project executable and can be accessible from Java code, so the simulator has a
button that redirects the user to the environment of Obeo Designer, and then there are
some further steps to create the reversing Petri net through the tool.

[£ Simulator for Reversible Petri Nets - O

|:| How to draw vour Petri Net

1.Be sure that the Folder Obeo designer-Community is saved
at the location CUsers/Your folder.

2_Click to button 'Open Obeo designer' and then when a window
will appear click on 'Launch' button

3 From the Obeo designer environment Click Run from the toolbar. O -
4.Go to representation tab. &, representation &
5. ¥ou can now draw the petri net from paletie. . Palette

6 When you will finish. save your Petri net
diagram and click 'Finish' button.

& @

Figure 4. 19: Explanation screen to connect with the Graphical Representation tool
48

The figure above (Figure 4.19) represents the explanation screen that is mentioned
before. The first step for the user is to ensure that the folder which contains all the
necessary files and folders for Obeo Designer are stored at the location C:
Users/User’s_name on their personal computer. Then, the user has to click on the left
button of the screen, named “Open Obeo Designer,” and a window will appear where
the user has to select “Launch” option and then Obeo Designer’s environment will
open. Therefore, from the Obeo Designer’s environment the user has to click at the run
button, in order to create a new runtime configuration for the reversing Petri nets
domain model. When the new runtime configuration is created, a representation task is
visible, and from there the user can create any valid Reversing Petri net marking.

& My.petrinets {£] petrinets.odesign & “representation £3 =&

BrBiv| S| Ovwrmet & B & w% v 7 Palette b
RN
(= CreateModes]

4 createTransition
4 createPlace

4 Token

4 Bond

4 NegativeToken

4 NegativeBond
v [ﬂ] (= Createhrc 0

4 ArcRequirements

™\, PlaceToArc
™\, ArcToPlace
\ TransitionToArc
\ ArcToTransition

Figure 4. 20: Graphical representation tool’s environment

The figure above (Figure 4.20) represents the Graphical representation tool’s
environment after the execution of the steps 1 until 4. There the user can create the
desirable initial marking and when it is complete, the “Save” button has to be clicked, in
order for the changes to be saved in the xml file. Since the initial marking has been
created and be saved, the user has to click “Finish” button from Simulator’s explanation
window to continue.

When the user clicks the “Finish” button, the simulator calls the Parser’s code, in order
to read and process the xml file and create the object of the Petri net in an

understandable way for the simulator.

49

4.4.4 Simulator execution choices screen
Independently of the import method of the initial marking, since the initial marking has

been read, the simulator is ready to find forward and/or reverse enabled transitions and
execute any of them. Thus, after the import of the initial marking the user will be

redirected to a screen showing all options.

(£ Simulator for Reversible Petri Nets = =
Forward-enabled -
transitions are:
Backtrack-enabled -

transitions are:

Causal-enabled
transitions are:

Out of
causal-enabled
transitions are: i

Place Marking

Figure 4. 21: Screen representing all execution options to user

The figure above (Figure 4.21) shows the simulator’s screen which shows all the
available choices for execution. Firstly the user has to select one of the buttons named
“Find forward-enabled transitions” and/or “Find reversed enabled transitions.” If the
user selects the button “Find forward-enabled transitions,” the simulator will call the
forward_enabled function which is mentioned in chapter 4.2.1.1, and the corresponding
combo box will be filled with all forward enabled transitions of the current marking. In
addition when the user selects the button “Find reversed enabled transitions” the
simulator will call bt_enabled, causal _enabled and out of causal enabled functions,

which are mentioned in chapters 4.2.2.1, 4.2.3.1, and 4.2.4.1 respectively.

50

Simulator for Reversible Petri Nets =

Forward-enabled
transitions are:

Backtrack-enabled
transitions are:

Causal-enabled
transitions are:

Out of
causal-enabled
transitions are:

There i 1 forwand enzhbled
transition

Mo backtrack enzble
transitions.

No causzl ensbled
transiotions,

Mo out_of causz| enzbled
transiotions,

Find forward- enabled
transitions

Find reversed
enabled transitions

o e

Place Marking

Figure 4. 22: Representation of screen after selecting “Find forward-
enabled transitions” and “Find reversed enabled transitions” buttons

The figure above (Figure 4.22) shows how the screen changes when “Find forward-
enabled transitions” and “Find reversed enabled transitions” buttons are clicked. Since
the simulator identified the enabled transitions, the user can select any transition from
this set, and by clicking the “Next move” button, the corresponding algorithm will be
called from the simulator, based on the combo box that has a selected item. The
alternations shown in the screen after the execution of a transition are shown in the

following figure (Figure 4.23).

o NE

Simulator for Reversible Petri Nets -

t4 There i5 1 forward enzbled

- .
transhon

Find forward- enabled

Forward-enabled
transitions are:

transitions are:

Causal-enabled
transitions are:

Out of
causal-enabled
transitions are:

Backtrack-enabled

No backtrack enzble
wansitions. .

=remans Find reversed
enabled transitions

Mo causzl enzbled
transiotions,

Mo out_of caussl enshled L

TrEnsotions,

Place Marking

pa m-p m-e

-

Figure 4. 23: Alterations in screen after execution

o1

As shown above (Figure 4.23) after the execution of a transition the table at the down
side of the window, is filled with the places of the marking and the distribution of
tokens/bonds in it.

The simulator does some checks about the execution of the transitions as well. Firstly, it
confirms that the user has selected only one transition for execution, i.e. a forward-
enabled transition or a backtrack-enabled transition, and not both. If the user selects two
enabled transitions for execution the simulator will show a warning message, as
represented in the Figure 4.24.

[E] Simulator for Reversible Petri Nets = B
Forward-enabled t2 - _ff ;_1 forviard enablad
transitions are:
Backtrack-enabled 1 | There s 1 backuack enabled
transitions are: FEREmEn.
Causal-enabled There i 1 causal enabled
transitions are: - ¥ | twansition,
Qut of »
causal-enabled -
transitions are:

=
'\‘l_/) You have to select only one move to execute at a time!

oy b

= o ==

Figure 4. 24: Warning message appeared after the selection of two transitions
for execution

4.3.5 Visual changes on Reversing Petri net diagram
In case that the user chooses to import the initial marking through the graphical

representation tool, an extra feature is available for the user, which is to observe the
changes on the graphical model as well. This feature is provided by the simulator
because of the parser that converts the java representation to xml, and has been
mentioned above, is responsible for modifying the xml file, when a transition is
executed either in forward or reverse order. When the user executes a transition and the
choice of the use of importing initial marking through the graphical representation tool
have been selected, the xml file is changed, and the user can return to the tool to see the

changes. Before the user can see the changes, the xml file has to be updated, and be read

52

again from the Obeo Designer software, so the last version is presented on the screen. In
order for the xml to Dbe updated, the user has to extend the package
org.eclipse.sample.petrinets.sample and find the file My.petrinets. Then the user clicks
on that file, the xml file will be updated, and the new marking will be available on the

screen. The following figure (Figure 4.25) shows how the user can update the xml file.

B Model Explorer 53 -1 %5 ¥ = 0
re filter text

412 org.eclipse.sample.petrinets.sample
- B, Project Dependencies
& My - Copy.petrinets
4 @
. ¢ Petrinet
- |9 representations.aird
= org.eclipse.sirius.sample.petrinets.design

Figure 4. 25: Screenshot from tool at the point of
updating the xml file

53

4.4 Graphical representation tool
The graphical representation tool has been implemented with Obeo Designer software,

with the completion of a series of actions. Generally, the graphical representation tool is
aimed to give the opportunity to user of drawing easily the initial marking of the Petri
net, using shapes from an interactive palette, and define all the necessary information
through the tool visually. The tool is connected with the main Graphical User Interface
of the simulator. Moreover, when the user gives the initial marking to the simulator, and
informs the simulator that the Petri net is ready to be processed, the user has the
opportunity to find forward, backtrack, causal and out-of-causal-enabled transitions of
the marking, and execute any enabled transition in forward or reverse order, from the
main interface of the simulator. Thereupon, after each transition execution, the user has
the chance to watch the changes on the marking directly from the graphical

representation tool, besides the simulator’s interface.

4.4.1 Domain model for the Reversing Petri nets
Foremost, as it mentioned above, a Class diagram was designed, in order to behave as

the Domain model for the Reversing Petri nets, in Obeo Designer’s project. The domain
model of the project defines the main components of the model, for which an interactive
workbench is desired. Since all components had been declared, including their
attributes, the relationships between them had to be set. In case of Reversing Petri nets,
the main components are place, transition, arc, token, bond, negative token, and
negative bond. All these components are connected to a central component named Petri
net. Petri net component is the element that uses all other elements of the model, in
order to define a Reversing Petri net marking. The relationships between the items,
determine which components can be connected with other specific components. In case
of the Reversing Petri nets there are relationships between place and arc classes, and
between transition and arc classes, to declare the relationship between place and
transition. The presence of the Arc class, is to define the direction of the relationship
(from place to transition or from transition to place), and to give the opportunity to user
add the desired label on the arc. Thus, in order to add a label on arc, there is a
relationship between arc and tokens, bonds, negative tokens and negative bonds.
Moreover the user must have the chance to insert tokens and/or bonds in places, so a

relationship exists between these elements and places. The last relationship that

54

completes the definition of the domain model is the relationship between tokens and
bonds, which indicates that a bond consists of exactly two tokens from the marking. The
domain model that was created for the Reversing Petri nets used in a subsequent stage
of the graphical representation tool, in order to define which components of the palette
can be connected with others, and which ones cannot be connected with which. Thus, it
sets the rules for the creation of any Reversing Petri net, using the graphical

representation tool.

4.4.2 Design specifications for the Reversing Petri nets workbench
Since the domain model for the Reversing Petri nets was constructed, and it could be

used as the metamodel of the graphical representation tool, the next step was the
creation of design specifications, in order to guide the user’s choices. The creation of
the design specifications was done through the Run —time configuration window of
Obeo Designer software, which automatically generates the code that is needed, using
the metamodel for the reversing Petri nets

Firstly, all main components of reversing Petri nets had to be defined at the design
specifications and for each component a unique shape had to be assigned. Thus, for
place a circle was chosen, for transition a square was chosen and for arcs a directed
arrow was chosen, as they are in the definition. However, because the design
specifications are based on the Class diagram and its relationships between its classes,
in order to create the arcs in the right way, and the output would be efficient, the arc
had to be defined separately if it is from place to transition, or if it is from transition to
place. In addition because Arc is an independent class in the Class diagram, the only
way for the software to identify the relationship between arc, place, and transition is the
creation of an arc object before the creation of the arc. So, in the design specifications
for the palette options, an arc object was created, which is identified by a small
rectangle shape, and can be connected with an arc from place or from an arc from
transition. Then, it can connect the first component with the corresponding component

with similar arcs.

55

[e]
% [p1] 1 .

Figure 4. 26: Representation of arc in the Graphical representation tool

The figure above (Figure 4.26) shows how the arc is represented in the Graphical
representation tool. It can be observed that the small rectangle, which indicates the
presence of an arc, acts like the requirements field of arcs. The existence of this object
is to allow the user to add tokens, bonds, negative tokens and/or negative bonds for an
arc. Moreover, for tokens and bonds a shape had to be assigned too, so a small diamond
was assigned for them, with a different color for each type. If the user creates a token
the diamond color is light blue, while if a bond is created the diamond color is light
green. However, if a negative token or a negative bond is created the diamond color is
red, to indicate that the absence of this token/bond is necessary.

Figure 4. 27: Representation of tokens, bonds, negative
tokens/bonds in the tool

The figure above (Figure 4.27) shows how tokens, bonds, negative tokens/bonds are
defined to be represented in the Graphical representation tool.

So, after the definition of all components for their design representation, a definition
about the relationships between them had to be declared. The next step was to define
which components can contain other components, based on the relationships of the
Class diagram. Hence, some rules were created, in order to allow the user adding tokens

and/or bonds in places, and requirements in arcs.

56

Property Value

| a Place false

Are < Arcarc
Bend

Ermnpty place L% false
Place id g

Place name 1= pl
Token

Figure 4. 28: Place semantics in the Graphical representation tool

Property Value

a Arcarcl
Arcid 11
Arc name '=arcl
Bond
From LA 112
Megative bond
Megative token
Place
To LA 116
Token 4 Tokenr
Transiticn < Transition false

Figure 4. 29: Arc semantics in the Graphical representation tool
The figures above (Figure 4.28 and Figure 4.29) show that the rules from the design
specifications allow the users to add tokens and/or bonds into places, and to add tokens,
bonds, negative tokens and/or negative bonds as arc requirements. Through these rules
the user can declare the token/bond name as well. The formats of the token/bond’s
semantics are shown in the figures below (Figure 4.30 and Figure 4.31). Similarly, they

are the semantics of negative tokens and negative bonds.

Property Value
a Tokenr
Token id L1 1

ifi
=

Token name

Figure 4. 30: Token semantics in the Graphical representation tool

Property Value
a Bond r-f
Bond id L1 201
Bond name = r-f

Figure 4. 31: : Bond semantics in the Graphical representation tool

57

The final step left for the completion of the design specifications was to create the
palette’s sections, and to divide them. Thus, two sections were created, one for the

nodes of the model, and one for the edges of the model.

¢ Palette [
h&eT-*-
= CreateModes £

< createTransition

< createPlace

4+ Token

<+ Bond

<~ NegativeToken

4 NegativeBond
[-= Createhrc <0

<+ ArcRequirements

™\, PlaceToArc

\\ ArcToPlace

™, TransitionToArc

™\, ArcToTransition

Figure 4. 32: Palette sections of Graphical
representation tool

As it can be observed in Figure 4.32 the palette is divided in two sections, namely
createNodes and createArc. The first part contains all choices for the user to create a
node, such as place, transition, token, bond, negative token and/or negative bond, while
the second section includes the creation of the arc object, which will contain the arc
requirements (pre or post-conditions), and the edges that the user can create from and to
the arc. Thus, with the completion of this step, the design specifications for the

reversing Petri nets are done, and a workbench is ready for use.

4.4.3 Obeo Designer’s output processing

After the completion of the design specifications, the graphical representation tool was
ready for use, and the users could draw a Petri net. However, in order for the simulator
to process the user’s model as an input, some actions had to be done. Initially, the Obeo
Designer software creates an xml file, while the user creates the Petri net model. The

xml file contains all the necessary information about the initial marking, so this output

58

had to be processed from the simulator in order to create the corresponding object-
oriented approach of that marking. Thus, a Parser for xml files was created in Java to
parse the output from the Obeo Designer and create the object oriented approach for the
simulator. In addition, in order to change the initial graphical representation of the Petri
net through the simulator, while the user executes transitions, a Reverse Parser was

created to change the xml file.

4.4.3.1 Parser from xml to Java representation
The parser is a separate program written in Java that is connected to the simulator.

Firstly, the parser finds the xml file created from Obeo Designer and opens it as a
Document Builder object, which is the Class provided by Java for xml files. Then it has
a function for each element of the Reverse Petri net, and each function it reads the
corresponding element.

The figure below (Figure 4.33) shows the functions that are supported by the Parser.
Each function reads a specific set of elements for the Reversing Petri net initial
marking. The order in which the elements are read is not random. Tokens and bonds are
read first, in order to compare them with the negative tokens and negative bonds
subsequently and confirm that negative tokens and negative bonds that are defined,;
they are in the tokens, or in the bonds set, respectively. Therefore, places and
transitions are read, in order to be added in the arcs, which is the last set of elements to
be read. Moreover, tokens, bonds, negative tokens and negative bonds are read before
places and arcs, so they can be added to places or arcs subsequently. If a set of elements
does not exist, it is not a problem because in each function the program firstly checks if

that set is contained in the xml file.

DocumentBuilderFactory dbFactory = DocumentBuilderFactory.nevInstance():;
DocumentBuilder dBuilder = dbFactory.newDocumentBuilder () :;
Document doc = dBuilder.parse(file);
doc.getDocumentElement () .normalize () ;

readTokens (doc) ;

readBonds (doc)

readNTokens (doc) ;

readNBonds (doc) ;

readPlaces (doc) ;

readTransitions (doc) ;

readires (doc) ;

Figure 4. 33: Functions supported by the Parser

59

In each function, while the elements are read the respective objects and their fields are
created, and at the end a Petri net object is created, and is given to the simulator, as

input.

4.4.3.2 Parser form Java representation to xml
The reverse parser is also a separate program written in Java, and its aim is to alternate

the xml file, when a transition’s execution occurs. Thus, when a transition is executed,
all tokens or bonds that have relocated to another place with these places are stored in
an ArrayList. Before the end of the transition’s execution the reverse parser function is
called, which reads the xml file. Afterwards, it changes the format of the xml file
according to the places and tokens and\or bonds stored in the ArrayL.ist.

TranaformerFactory transformerFactory = TransformerFactory.nevinstance();
Tranaformer transformer = transformerFactory.newIransformer():

DCMSource source = new DOMSource (doc):

StreamResult result = new StreamBesult (new File (Parser.file.getAbsoluteFath{))):
transformer.transform(source, result);

Figure 4. 34: Transformation of the xml through Java

In the figure above (Figure 4.34) is shown how the xml file change, when the reverse
parser’s function has made all the necessary changes. As is shown a Transformer object
is created, which is a Class provided by Java, which enables editing in xml files.
Therefore, a DOMSource object is created, which is also a Java Class that will store the
initial xml file and then a StreamResult object will be created in order to hold the
changes made in the xml file. Finally through the transformer object, all changes are
made to the xml file, and can be visible on the diagram from the graphical

representation tool.

60

Chapter 5

Case study

5.1 Causal order example

5.2 ERK -pathway example in RPNs

In this chapter we are going to examine the correctness and the effectiveness of the
simulator, by executing two examples. The first example is an application, which
represents the causal reversing behavior, while the second example is the ERK-pathway
example from biochemistry in RPNs.

5.1 Causal order example

This case study checks the correctness of the simulator when the initial marking is the
reversing Petri net in Figure 2. 12. This example represents the behavior of a reversing
Petri net, when two transitions are independent, and they can use causal rules of
reversibility to be reversed. Thus, with this case study our aim is to ensure that causal
reversibility is executed correctly from the simulator.

The first step was the creation of an input for the simulator. Thus,we created the input in
the form of a text file, in order to give it to the tool directly.

The input file is shown in the figure below:

Fokens:

[a,b]

Places:
[pl,p2,p3,p4,p5]
Transitions:
[t1,t2,t3]
Arcs:

[

(pl,tl)={a}
(p2,t2)={b}
(t1,p3)={a}
(t2,p4)={b}
(p3,t3)={a}
(p4,t3)={b}
(t3,p5)={a-b}
1

Initial marking:

pl-»a
p2->b
p3->8
pd->8
p5->8

Figure 5. 1: Definition of RPN

61

Therefore, we launched the simulator in order to check its behavior and compare it with

the expected one.

(£ Simulator for Reversible Petri Nets =
|
E Open
Look In: |[_] BachelorThesis

o-0-
o-oO-

NET

p

R] .settings |D ﬁgureE_{:ausaI.txt|
=7 bin [y figure6_ofc.txt
rI] src D jooodies-forms-1.8.0.jar
[} .classpath [simple.txt
— D Jproject
— |[) erkitxt
— |[) figured.txt
E File Name: [figure5_causalbd |
~| Files of Type: |AIIFiIes |v|
CA—
' Open H Cancel |

Figure 5. 2: Choice of the file we have created

The figure above (Figure 5.2) shows the first step of the process, which is to give the
input file to the simulator. Then, the simulator redirects the user to the next screen,
because the format of the file was correct, and the simulator was able to process it
correctly. So, the next step is to check if the simulator can find correctly the forward-

enabled and reversed-enabled transitions.

|| Simulator for Reversible Petri Nets

_—]

There are 2 forward enabled
transitions

Forward-enabled
transitions are:

Backtrack-enabled No backtrack ensble

L. transitions,
transitions are:

Causal-enabled

Mo zzussl enshled

transitions are: transiotions,

Out of
causal-enahled

ol Mo out_of causzl ensbled
transitions are:

transiotions,

il L LI

Marking

Figure 5. 3: Simulator’s results for enableness

62

From the figure above (Figure 5.3) we can observe that the simulator has found two
forward enabled transitions only, and no reverse-enabled transitions, correctly.

Then let us assume that we want to execute transition t1 first, and then t2 and t3.

The expected results are that after the execution of t3, the bond a-b will be created and
located in place p5.

Let us now see the actual results of the simulator:

Simulator for Reversible Petri Nets = =
Forward-enabled EB LANNETSWMPNWRN 11\ forward- enabled
transitions are: pEnswRn transitions
Backirack-enabled I:B No backtrack enable
transitions are: EnSRES Find reversed

enabled transitions
Causal-enabled Mo causal enabled
transitions are: rEnSiotions,
Out of
clun:l-_mlbled |:|z| No out.of causal enabled Next move
transitions are: ransiotions,
Place Marking

p1l

p2 b

p3 a

pa

pa

Figure 5. 4: After the execution of transition t1

Simulator for Reversible Petri Nets = =
Forward-enahled 2 w | Thereis 1 forward enabled Find forward- enabled
transitions are: FrEnsmen transitions

Backtrack-enabled
transitions are:

Causal-enabled
transitions are:

There i 1 backwack enzbled
transition,

There i 1 causs| ensbled
transition,

Find reversed
enabled transitions

Out of
clun:l—.mubled There i 1 out of ! Next move
transitions are: hd enzbled transition,
Place Marking

p1

p2

p3 a

pd b

pa

Figure 5. 5: After the execution of transition t2

63

Simulator for Reversible Petri Nets = B

Forward-enabled t3 w | There is 1 forward ensbled Find forward- enabled
transitions are: Fensmen transitions
Backtrack-enabled _ - ::rz_;_c:;ack enzble
transitions are: ' Find reversed
enabled transitions
Causal-enabled Mo causzl enabled
transitions are: - ¥ | wansiotions,
Qut of w
cluSI:l-_enlbled Mo out_of I enzhled ext move
transitions are: - ha transiotons.
Place Marking

p1

p2

p3

p4

p5 a-b

Figure 5. 6: After the execution of transition t3

Considering the figures above (Figure 5.4, 5.5, 5.6) we can observe that at each
execution the simulator creates a new marking, where the distribution of tokens and
bonds is the same as the expected one.

Lets us now check the reversible actions as well.

Simulator for Reversible Petri Nets - O
Forward-enabled _ - Then_a_ae no forward enabled Find forward- enabled
transitions are: s transitions
Backtrack-enabled B - These s 1 backirack enabled
transitions are: AT, Find reversed

enabled transitions
Causal-enabled There is 1 causal enabled
transitions are: - | transition,
QOut of ~
cluSI:l—.enlbled There s 3 out of | ext move
transitions are: - - enzbled transitions,
Place Marking

p1

p2

p3

pd

ph a-b

Figure 5. 7: After the user has clicked to the buttons that find forward and reversed enabled
transitions

64

Firstly, from the figure above (Figure 5.7) we can observe that after the execution of
transition t3, there are no more forward enabled transitions, but there are reversed
enabled transitions. More specifically, there is one backtrack enabled and the one causal
enabled transition, which is at both cases transition t3, and three out-of-causal enabled
transitions. The results are correct, because only t3 is bt- and co-enabled at this stage of
the execution, and all of them are o-enabled because they have been executed.

The next step is to execute t3, in reverse using causal reversibility, and expecting to
break the connection between a-b, and relocate a to place p3 and b to place p4.

|| Simulator for Reversible Petri Nets = =
[
1 There are ro forward enshled
Fumgn}i—enabled - Y| e,
tramsitions are:
Backtrack-enabled _ - There is 1 backtrack enabled

. ansition.
framsiflons are:

Causal-enabled

There is 1 causzl enabled

transitions are: 13 ¥ | transition,
Qut of
causall—lenabled Thers 2re T out of causal
tramsitions are: - hd znzhled Tansitions,
Flace Marking
p1
p2
p3 3
pd D
p5

Figure 5. 8: The new marking after the execution of the transition t3 reversiby

The figure above (Figure 5.8) shows that the simulator has the expected results, after
the execution of the transition t3, using causal reversibility.

Now, we are going to execute t2 and t1 using causal reversibility but not in the same
order as they occur before. So, we want to check if the simulator finds two causal
enabled transitions now.

65

Simulator for Reversible Petri Nets =
Forward-enabled _ | Trerm st forwand ensbled Find forward- enabled
transitions are: rEnsen transitions
Backtrack-enabled There is 1 hacktrack enzhled

s - | transtion, -
transitions are: Find reversed
enabled transitions

Causal-enabled There are 2 caussl enabked
transitions are: - ¥ | transitions,
Out of -

- e
cmSI:l-_enlbled hare e 3 out of I ext move
transitions are: - ¥ enzbled wransitions,

Place Marking
pl
p2
p3 a
pd b
ps

Figure 5. 9: Results of simulator for enableness after the causal execution of t3

The figure above (Figure 5.9) shows that the results are correct and we now can execute
any of the causal enabled transitions.

Let us now assume that we want to execute the transition t1 first, and then the transition
t2.

Simulator for Reversible Petri Nets = =
Forward-enabled - | There i 1 forward ensbled Find forward- enabled
transitions are: FransmEn transitions
Backtrack-enabled | There i 1 backirack ensbled

an - transition, -
transitions are: Find reversed
enabled transitions
Causal-enabled There ane ? causal enabled
transitions are: t ¥ | transitions,
Out of N
causal-enabled ext move
transitions are: - b mﬁ:&ilﬂm'
Flace Marking

pi a

p2

p3

pd b

[1la]

Figure 5. 10: Results after the execution of the transition t1 with causal reversibility

66

|| Simulator for Reversible Petri Nets = =

Thers is 1 forward enzbled
Funr?rld—euabled - ¥ | wansition
transitions are:
Backtrack-enabled - - ;'_"E'i.is 1 backack enabied
transitions are: Ereman.
Causal-enabled There is 1 causal enshled
transitions are: 2 | transition,
Out of
causall—lenabled. - There is 1 cut of causal
transitions are: - enabled transition.
Place Marking

p1 d

p2 b

p3

pd

pa

Figure 5. 11: Results after the executin of the transition t2 with causal reversibility

The figures above (Figure 5.10, 5.11) show the results of the simulator after execution
of the transition t1 and then of the transition t2, using causl reversibility. We can
observe that the markings that have been created are correct, and the tokens have been
distributed correctly to the places. Moreover, the response time of the simulator is very
good, as there are not idle time spaces.

This execution was the end of the case study, because we have checked the causal
reversibility and the simulator has the expected results in an accepted time limit.

5.2 ERK-pathway example in RPNs

The second example that has been tested , is the ERK-pathway example from
biochemistry.
The ERK-pathway example in RPNs is represented in the following Figure (5.12):

Figure 5. 12: ERK-pathway example in RPNs [13]

67

This example is ideal to check out-of-causal reversibility, because some states are not
reachable with forward, backtrack and/or causal execution.

Thus, we can draw the ERK-pathway example in RPNs through the graphical
representation tool, in order to check its correctness as well.

Firstly, we choose to give the initial marking through the graphical representation tool
and after we have done all the necessary action we are able to draw it.

When we have drawn the initial marking it looked like that:

& o e Fop.A ja
] E— I o 5 e e @
(==
: -
—
® 5 = @
5 = o) s
® = RO R C
‘ ‘ ,.
2}
&
Ipl

—

Figure 5. 13: RPN diagram of ERK-pathway example that has been created from graphical
representation tool

Since, we have the diagram ready we can give it to the simulator, in order to process it.
So, after we gave the input to the simulator, the user is redirected to the next screen, and
this means that the diagram was defined correctly.

| Simulator for Reversible Petri Nets = =
Thers zre 2 forward enzhled

Fumilmld—enabled - ¥ | netione
transitions are:
Backtrack-enabled - - | o backmack enzble

aia transitions.
transitions are:
Causal-enabled Mo causal enzbled
transitions are: - | tarsiotions.
Out of
causall—lenabled. - No out_of causal ensbled
transitions are: - wansiotions,

Place Marking

Figure 5. 14: Results of the simulator for the enableness

The figure above (Figure 5.14) shows that the simulator correctly found only two
forward enabled transitions.

68

Let us now assume that we want to execute the transitions with the following order:

t2: in forward direction
t3: in forward direction

t2: in reverse direction, out-of-causal

t4: in forward direction

This sequence of executions, reaches some states that are not reachable through

forward, backtrack and/or causal paths. For instance the transition t4 is not reachable, if

we do not reverse t2 first, with out-of-causal reversibility.
Thus, we will execute the transitions, through the simulator to observe the results.

Simulator for Reversible Petri Nets = =
Forward-enabled H There zr= 2 forward enabled Find forward- enabled
transitions are: FEnsens transitions
Backtrack-enabled |:|E| Mo backirack enabie
transitions are: fransmans. i roosed

enabled transitions
Causal-enabled Mo causal enzbled
transitions are: transiotions,
Out of
clusl:l—_enlbled No ot of causal encbled Next move
transitions are: transiofions,
Place Marking

pi r a

p2

p3

o4

[p5 F-m

pb p =

p7

pa e

pa

p10

11

Figure 5. 15: The new marking after the execution of the transition t2

- cEEN

Find forward- enabled
transitions

Find reversed

enabled transitions

Next move

Marking

Simulator for Reversible Petri Nets
There are 2 forwand enzbled
Forwf:_d—enlbled 13 - nans'rﬁoare\s =nE
transitions are:
Blck‘l.:r.lck-enlbled - I!ar‘is?ﬁi:nl.- backwrack enzbled
transitions are:
Causal-enabled There is 1 causzl enzbled
transitions are: ¥ | twansition,
Out of
causal-enahled .
transitions are: hd I:::; ;:;t-gn. :
Place
pl r
p2
p3
p4d
ps
pé
p7 f-m m-p
pa e
pa
p10
pil

-

Figure 5. 16: The new marking after the execution of the transition t3

69

Simulator for Reversible Petri Nets

Forward-enabled
transitions are:

There are 2 forward enzsbled
ransiions

- I]

There is 1 backtrack enzbled

S ol

Find forward- enabled

Blck'.]..l‘:k-mlbled |:|E| transition,
transitions are: Find reversed
enabled transitions
Causal-enabled I:B Thers i 1 causzl enzbled
transitions are: wansition.
Out of
causal-enabled There e 7 out of caussl Next move
transitions are: H enzbled transitions,
Place Marking
p1 r o
p2 f
p3
pd
pa
pé 3
p7 m-p
pa [
p9
p10
pi1 |

Figure 5. 17: The new marking after the reverse of the transition t2

Simulator for Reversible Petri Nets

- o N

Forward-enabled
transitions are:

Backtrack-enabled
transitions are:

Causal-enabled
transitions are:

Out of
causal-enabled
transitions are:

4 - :::!_amat; 2 forward enabled Find forward- enabled
transitions
- I::?ﬁiosnl backtrack enzbled
' Find reversed
enabled transitions
- Thag_':s 1 caussl ensbled
transition.
enabled transition,
Place Marking
pi r -
p2 f
p3
pd
11]
p6 3
p7
pé
pd m-p m-e
p10

-

Figure 5. 18: The new marking after the execution of the transition t4

From the figures above (Figure 5.15, 5.16, 5.17, 5.18) we can observe that the
simulator’s output is correct, and after we had reversed the transition t2, we can also
observe that the transition t4 is now forward-enabled and we can execute it.

We can also watch the changes that have occurred in the marking through the graphical
representation tool. So, in order to check the correctness of the graphical representation
tool, we return to its environment to find out if the changes have appeared to the

diagram.

70

ir] - ir]
® s :

| (f-m] [
; | = —_—
fm] . [m, -f]
I \ [m-p] —
W ® |
I | [m-g]) e, -p]_
- > [t4] — —
:E]///
(—=

‘]

=

o]
=

Figure 5. 19: The changes that appeared on the diagram

From the figure above (Figure 5.19) we can observe that the diagram is updated and the
marking is the same as the one in the simulator.

Thus, with this case study we have checked the correctness of the out-of-causal
algorithms and the correctness of the graphical representation tool. Moreover, the
simulator’s response time was the same as in the previous example. This example was
much larger than the previous one, but there was not a change in the response time.

To conclude, the simulator can support large RPNs as effortlessly as small RPNs,
without a change in its response time. However, the graphical representation tool is a
little bit slow when the user launches it. So, there is some idle time when the user opens
the graphical representation tool, but since it opens there are no more delays in its
functions.

71

Chapter 6

Conclusions

6.1 Summary
6.2 Challenges
6.3 Future Work

6.1 Summary

In this bachelor thesis an integrated environment has been developed for simulating
reversing Petri nets and visualizing their behavior. Firstly an approach was created and
then used to implement the mechanisms, namely forward, backtracking, causal-order
reversibility, and out-of-causal-order reversibility, in the Java programming language.
In order to check the correctness of the algorithms’ implementation, many examples
have tested, before proceeding to the next steps. Subsequently, a Graphical User
Interface was developed for the simulator, in order to give the user the opportunity to
easily interact with it and have a better user experience. The simulator enables the user
to give the information of a reversing Petri net, with three different ways. The user can
choose to give the initial marking of the Petri net either from a file of a specific form, or
to create a new Petri net through the simulator environment, or by connecting to the
graphical representation tool through the simulator and create a Petri net diagram there.
The graphical representation tool has been developed with the Obeo Designer software,
which is an Eclipse plugin software. Since the input required has been imported, the
user can execute any enabled transition indicated by the simulator step-by-step in both
the forward and the reversed direction, and at each step the graphical user interface
displays the new marking of the model in the form of a matrix. Furthermore, if the user
selects to give the initial marking from the graphical representation tool, an additional
feature is available. While the user executes transitions, the diagram definition in the
graphical representation tool change too, thus the user can keep track of new created

markings. Moreover, the user can start the simulation of an already existing Petri net,

72

which has been executed before, by importing it from a file or from the graphical
representation tool.

6.2 Challenges

Through the whole procedure of this diploma thesis | faced some challenges, due to
either problems that occurred, or decisions that had to be made, or just because it was
my first major research and I was not aware of some basic concepts.

Initially, 1 had to devote time to fully understand the basic concepts of the subject and
ensure that I am ready to continue with the implementation. In this introductory step a
lot of articles have been studied related to the subject, which have been selected
carefully, and they helped me to comprehend reversing Petri nets and their main
features.

There were also difficulties in selecting the right structures to represent the Reversing
Petri net’s elements, and after consideration, it was decided to represent each element
by a Java object, and their relationships between them are represented with lists of
elements where needed. The lists are implemented with ArrayList structure, provided by
Java, with the corresponding type of element each time. In addition when | had to
transfer the algorithms from their mathematical definition to code in the Java
programming language, some difficulties occurred that were overcome.

At a subsequent phase of the project, when the graphical representation tool had to be
designed and implemented, two significant challenges have encountered. Firstly, after
the creation of the Class diagram, in the design specifications of the model, due to the
fact that the software used the relationships defined in the Class diagram, there was no
way to represent arcs with a continuous directed arrow, and be identified from the
software as an object. Thus, after a thorough research for a solution, the most suitable
was to create the Arc object individually, to be able for the software to identify it as an
element, and then from there create the relationships between places and transitions.
Another difficulty | faced with the development of the graphical representation tool was
that after its creation, it was realized that there was not an option to make the project
executable, and can be run from the simulator environment as a Runnable API from the

simulator. The solution found was to add a button on the Graphical User Interface,

73

which launch the Reversing Petri net’s project in Obeo Designer software, and with the
execution of a few steps, the user can create the diagram of the initial marking.

Generally, the tool thas has been created meets the requirements that were specified at
the first phase of the project. The simulator simulates the behavior of the reversing Petri
nets, with an automated way and there is no need for the user to make any calculations.
Moreover it is efficient, because even for large examples, its response time does not
exceed 10-15 seconds. The graphical user interface is simple and friendly, so the user
can remember its functions easily, and feel comfortable when she/he uses it. However,
due to the difficulties that have been mentioned above, the simulator has some
weakenesses as well. The first weakness is that there is not a direct connection with the
graphical representation tool, and the user needs to do some actions before he/she will
be able to draw the initial marking. The necessary actions may confuse the user and take
him/her time to accomplish the desired action. Furthermore, the representation of the
arcs in the graphical representation tool is different from the one which is know, so

maybe the users do not understand how to create an arc through the tool.

6.3 Future work

Reversing Petri nets are an appealing and interesting concept, which is now developing
and can be used in many applications because they are easily be mechanized. Although
a simulator has been developed with a graphical representation tool, in this Bachelor
thesis, some limitations have occurred. Due to these limitations, mainly with the
representation of the arc in the graphical representation tool, in a subsequent research
another software to be used may be found for the development of the tool, or a solution
to the problem that did not came across in this project may mitigate this limitation.

Furthermore, the simulator can be expanded and be able to support some extended
forms of Reversing Petri nets, such as Coloured Petri nets [3], or Cyclic Petri nets,

which is a concept that will appear in [14].

74

References

[1] (2019). Obeo Designer : The Professional Solution to Deploy Sirius . Available:
https://www.obeodesigner.com/en/product/key-features.

[2] H. B. Axelsen and R. Gluck, "What do reversible programs compute?" in International
Conference on Foundations of Software Science and Computational Structures, pp.42-56,
2011.

[3] K. Barylska et al, "Reversing computations modelled by coloured petri nets." in ATAED@
Petri Nets/ACSD, pp.91-111, 2018 .

[4] J. Desel and W. Reisig, "Place/transition petri nets," in Advanced Course on Petri Nets,
pp.122-173,1996.

[5] J. Krivine and J. Stefani, "Reversible computation,” in Anonymous Conference, pp.113-
115, 2015.

[6] Java documentation. Available: https://docs.oracle.com/en/java/,2018.

[7] K. S. Perumalla, "Introduction to reversible computing," in Anonymous Conference, pp.3-
7, 2013.

[8] A. Philippou and K. Psara, "Reversible computation in Petri nets," in International
Conference on Reversible Computation,pp.84-101 , 2018.

[9] K. Psara, "Reversible Computation in Formal Models of Concurrency,"unpublished.

[10] W. Reisig, Understanding Petri Nets: Modeling Techniques, Analysis Methods, Case
Studies. 2013.

[11] All You Need to Know About UML Diagrams. Available: https://tallyfy.com/uml-
diagram/, 2019.

[12] C. Thachuk, "Logically and physically reversible natural computing: A tutorial," in
International Conference on Reversible Computation,pp.247-262, 2013.

[13] K. Psara and A. Philippou, "Out-of-causal Order," unpublished.

[14] K. Psara and A. Philippou, "Reversible Computation in Cyclic Petri nets," unpublished.

75

https://www.obeodesigner.com/en/product/key-features
https://docs.oracle.com/en/java/
https://tallyfy.com/uml-diagram/
https://tallyfy.com/uml-diagram/

Appendix A

Structures

Place

for main components in Java

import java.util.ArrayList;

public class Place {
String place name;
int place id;
ArrayList<Token> tokens;
ArrayList<Token>bonds;
ArrayList<Integer> arc_ id;
boolean empty;

Place () {
this.
this.
this.
this.
this.
this.

Transition

place name="";

place id=0;

tokens=new ArrayList<Token>();
bonds=new ArrayList<Token> () ;
empty=false;

arc_id=new ArrayList<Integer>();

import java.util.ArrayList;

public class Transition ({
String transition name;

int transition id;

boolean enabled for execution;
boolean backtrack enable;

boolean co

enabled;

boolean o enabled;

int num of
int num of

input;
output;

ArrayList<Integer> arc_id;

Transition () {

this.
this.
this.
this.
this.
this.
this.
this.
this.

transition name="";

transition id=0;
enabled for execution=false;
backtrack enable=false;
co_enabled=false;

num_of input=0;

num_of output=0;
o_enabled=false;

arc_id=new ArrayList<Integer>();

Arc

import java.util.ArrayList;

public class Connection {
int connection id;
Place place;
Transition transition;
ArrayList <Token>tokens;
ArraylList <Token> bonds;
ArrayList<Token> negative tokens;
ArrayList<Token> negative bonds;
char from;
char to;

Connection () {
this.connection 1d=0;
this.place=new Place();
this.transition=new Transition{();
this.tokens=new ArrayList<Token>();
this.from="\0";
this.to="'\0";
this.bonds=new ArrayList<Token>();
this.negative bonds=new ArrayList<Token>();
this.negative tokens=new ArrayList<Token>();

Token/Bond

public class Token {
String name;
int id=0;
public static int e=0;

Token () {
this.name="";
e++;

id=e;

}
}

Cell (History representation)

public class Cell {
Transition tr;
int history;

Cell () {
this.history = 0;
}

Petri net

import java.util.ArrayList;

public class PetriNet ({
ArrayList<Place> places;
ArrayList<Transition> transitions;
ArrayList<Connection> arcs;
ArrayList<Token> tokens;
ArrayList<Cell> history;
Transition last executed;

PetriNet () {
places = new ArrayList<Place>();
transitions = new ArrayList<Transition>();
arcs = new ArrayList<Connection> () ;
tokens = new ArrayList<Token>();
history = new ArrayList<Cell>();
last executed = new Transition();

’

A-3

Appendix B

Algorithms’ implementation in Java

Forward algorithm functions

import java.io.IOException;
import java.util.ArrayList;

import javax.xml.parsers.ParserConfigurationException;
import javax.xml.transform.TransformerException;
import javax.xml.xpath.XPathExpressionException;

import org.xml.sax.SAXException;
public class Forward algorithm {
public static PetriNet initial petrinet;

public static ArraylList<PetriNet> forward moves = new
ArrayList<PetriNet> () ;

/**

* This function indicates by which of the three methods the
* user has imported the input, and depends on the method, it
* initializes the initial marking.

* @throws [OException

*

@throws ParserConfigurationException

* @throws SAXException

*/
public static void find choice () throws IOException,
ParserConfigurationException, SAXException {

if (MainWindow.choice == 1) {
initial petrinet = MainWindow.petri;
} else if (MainWindow.choice == 2) {
initial petrinet = readUserZ2.petri;
} else if (MainWindow.choice == 3) {
Parser.mainkF () ;
initial petrinet = Parser.initial petrinet;
}

PetriNet newpetri = initial petrinet;

forward moves.add (newpetri);

This method takes as parameter a Petri net structure,
and finds out which transitions of the given Petri net
are forward-enabled.

@param petri

B-1

public static void forward enabled(PetriNet petri) {

ArrayList<Connection> to transition = new ArrayList<Connection>();

for (int i = 0; i < petri.transitions.size(); i++) {
petri.transitions.get (i) .enabled for execution = false;
}
for (int i = 0; i < petri.transitions.size(); i++) {
boolean checker = false;
boolean f = false;
boolean nc = false;
for (int j = 0; j < petri.arcs.size(); J++) {
if (petri.arcs.get(j) .transition.transition name.
compareTo (petri.transitions.get (i) .transition name)== 0 &&
(petri.arcs.get(j).to == "t')) {

to transition.add(petri.arcs.get(J));
}
}

for (int k = 0; k < to transition.size(); k++) {
if (to transition.get(k).bonds.size() == 0) {
if (to transition.size() == 1) {
f = false;
if (to transition.get(k).place.empty == true) ({
checker = false;

}

for (int h = 0; h < to transition.get(k).place.tokens.size(); h++) {
for (int s = 0; s < to transition.get(k).tokens.size(); s++) {

if (to transition.get(k).place.tokens.get (h).name

.compareTo (to transition.get (k) .tokens.get(s).name) == 0) {
checker = true;
}
}
}
if (to transition.get (k) .negative tokens.size() > 0) {

for (int h = 0; h < to transition.get(k).place.tokens.size(); h++) {

for (int s 0; s < to _transition.get (k) .negative tokens.size(); s++)

{

if (to transition.get(k).place.tokens.get (h).name

.compareTo (to transition.get (k) .negative tokens.get(s) .name) == 0) {
checker = false;

}

}

} else if (to transition.size() > 1) {
f = true;
boolean check[] = new boolean[to transition.size()];

for (int g = 0; g < check.length; gt++) {
check[g] = false;
}

for (int h = 0; h < to transition.size(); h++) {
nc = true;
if (to transition.get (h).place.bonds.size() == 0) {

for (int j = 0; j < to_transition.get (h).tokens.size(); Jj++) {

B-2

for (int y = 0;y <to transition.get (h).place.tokens.size();y++)
{
if (to transition.get(h).tokens.size()!=
to transition.get (h) .place.tokens.size()) {
nc = false;
break;
} else if (to transition.get(h).tokens.get (j) .name
.compareTo (to_ transition.get (h).place.tokens.get(y).name) == 0)

check[h] = true;
}
}
}
if (to transition.get(h).negative tokens.size() > 0) {
for (int g = 0; g < to transition.get(h).place.tokens.size(); g++) {
for (int j = 0; J < to transition.get(h).negative tokens.size(); J++)

{
if (to transition.get(h).negative tokens.get(j).name
.compareTo (to transition.get (h).place.tokens.get(g) .name) == 0)

nc = false;
break;

}

}

if (nc != false && h == to transition.size() - 1) {
for (int r = 0; r < check.length; r++) {
if (check[r] != true) {
nc = false;

}
}
} else if (to transition.get(h).place.bonds.size() != 0) {
for (int j = 0; Jj < to transition.get(h).tokens.size(); Jj++) {
if (to transition.get(h).place.bonds.get (j) .name
.contains (to transition.get (h).tokens.get (j) .name))

check[h] = true;

}
}
if (to transition.get (h).negative bonds.size() > 0) {
for (int g = 0; g < to transition.get (h).place.bonds.size(); g++) {
for (int j = 0; J < to transition.get(h).negative bonds.size(); J++) {
if (to transition.get(j).place.bonds.get (h).name.
compareTo (to transition.get (h).negative bonds.get (g) .name) == 0) {

nc = false;
break;

if (to transition.get(h).negative tokens.size() > 0) {

for (int g = 0; g < to transition.get(h).place.tokens.size(); g++) {
for (int j = 0; J < to _transition.get(h).negative tokens.size(); J++)
{

if (to transition.get(j) .place.tokens.get (h).name

.compareTo (to transition.get (h).negative tokens.get(g) .name) == 0) {
nc = false;
break;
}
}
}
}
if (nc != false && h < to transition.size() - 1) {
for (int r = 0; r < check.length; r++) {
if (check[r] != true) {
nc = false;
}
}
}
}
}
}
} else if (to transition.get(k).bonds.size() != 0 &&
to transition.get (k) .place.bonds.size() != 0) {
nc = true;
for (int h = 0; h < to transition.get(k).place.bonds.size(); h++) {
for (int s = 0; s < to transition.get(k).bonds.size(); s++) {
if (to transition.get(k).place.bonds.get (h).name
.compareTo (to transition.get (k) .bonds.get (s).name) == 0) {
checker = true;
}
}
}
if (to transition.get(k).bonds.size() != 0 &&
to transition.get (k) .place.bonds.size() == 0) {

checker = false;

}

if (to transition.get (k) .negative bonds.size() > 0) {
for (int g = 0; g < to transition.get(k).place.bonds.size(); g++) |

for (int j = 0; J < to transition.get(k).negative bonds.size(); J++) {
if (to transition.get(j) .place.bonds.get (k) .name
.compareTo (to transition.get (k) .negative bonds.get (g) .name) == 0) {
nc false;
break;

}

if (to transition.get(k).negative tokens.size() > 0) {

for (int j = 0; J < to transition.get(k).negative tokens.size(); J++)
{

if (to transition.get(j) .place.tokens.get (k) .name

.compareTo (to transition.get (k) .negative tokens.get (j) .name) == 0) {

nc = false;
break;

to transition.clear();

if (checker == true && f == false) {
petri.transitions.get (i) .enabled for execution = true;
} else if (f == true) {
if (nc == false) {
petri.transitions.get (i) .enabled for execution = false;
} else {
petri.transitions.get (i) .enabled for execution = true;

}

}
/‘k‘k

* This function takes as parameter a String value, from the GUI,
which

* indicates the transition name of the transition that the user wants
to

* execute, and then executes this transition, by distribute the
tokens or

* bonds in the output places of the transition.

* @param sel

* @return

* @throws ParserConfigurationException

* @throws TransformerException

*/
public static ArraylList<PetriNet> forward execution(String sel)

throws ParserConfigurationException, TransformerException

{

ArrayList<Place> input places = new ArrayList<Place>();
ArrayList<Place> output places new ArrayList<Place>();
ArrayList<Connection> out arcs = new ArrayList<Connection>();
ArrayList<Connection> in arcs = new ArrayList<Connection>();

ArraylList<String[]> addl = new ArrayList<String[]>();
ArraylList<String[]> removel = new ArrayList<String[]>();

B-5

for (int i
for (int j

0; 1 < forward moves.size(); it++) |
0; J < forward moves.get (i) .transitions.size(); Jj++) {

if (forward moves.get(i).transitions.get(j).enabled for execution ==
true && forward moves.get (i) .transitions.get(j).transition name.

compareTo (sel) == 0) {
for (int k = 0; k < forward moves.get(i).arcs.size(); k++) {
if (forward moves.get (i) .arcs.get(k).to == 't' &&
forward moves.get (i) .arcs.get (k) .transition
.equals (forward moves.get (i) .transitions.get(3j))) {

input places.add(forward moves.get (i) .arcs.get (k) .place);

in arcs.add(forward moves.get (i) .arcs.get (k));

} else if (forward moves.get(i).arcs.get(k).to == 'p'
&& forward moves.get (i) .arcs.get (k) .transition
.equals (forward moves.get (i) .transitions.get(j))) {

output places.add(forward moves.get (i) .arcs.get (k) .place);

out arcs.add(forward moves.get (i) .arcs.get (k));
}
}

for (int w = 0; w < out arcs.size(); w++) {
if (out arcs.get(w).tokens.size() != 0 &&
out arcs.get(w).bonds.size() == 0) {

for (int d = 0; d < out arcs.get (w).tokens.size(); d++) {

for (int g 0; g < input places.size(); g++) {

for (int s 0; s < input places.get(q) .tokens.size(); s++) {
if (out arcs.get (w).tokens.get (d) .name

.compareTo (input places.get(qg) .tokens.get (s).name) == 0) {
String sl[] = new String[2];

s1[0] = out arcs.get(w).place.place name;

s1[1] = input places.get (g).tokens.get (s).name;

addl.add(sl);

out arcs.get (w).place.tokens.add(input places.get (g).tokens.get(s));

String s2[] = new String[2];
s2[0] = input places.get(qg).place name;
s2[1] = input places.get(q).tokens.get (s).name;

removel.add (s2) ;

input places.get(qg) .tokens.remove (input places.get (q) .tokens.get(s));

B-6

}

} else if(out arcs.get(w).bonds.size() != 0 && input places.size()> 1)
{
boolean checkl = false;
boolean sw = true;
for (int y = 0; y < out arcs.get(w) .bonds.size(); y++) {
for (int d = 0; d < input places.size(); d++) {

for (int x = 0; x < input places.size(); x++) {
if (input places.get(x) .bonds.size() != 0) {
sw = false;

}
}

if (input places.get(d) .bonds.size() == 0 && sw == true) {

for (int h = 0; h < input places.get (d).tokens.size(); h++) {
for (int s = 0; s < in arcs.size(); s++) {

for (int r = 0; r < in arcs.get(s).tokens.size(); r++) {

if (input places.get (d) .tokens.get (h) .name

.compareTo (in_arcs.get (s) .tokens.get (r) .name) == 0) {
checkl = true;
} else {

checkl = false;

}
}

if (checkl == true) {

String sl[] = new String[2];

s1[0] = out arcs.get(w).place.place name;
s1[1] = out arcs.get (w).bonds.get (y).name;

addl.add(sl) ;
out arcs.get (w).place.bonds.add(out arcs.get(w) .bonds.get(y));

for (int r = 0; r < input places.size(); r++) {
for (int h = 0; h < input places.get (r).tokens.size(); h++) {

String s2[] = new String[2];

s2[0] = input places.get(r).place name;

B-7

s2[1] = input places.get (r).tokens.get (h).name;
removel.add (s2) ;
input places.get(r).tokens.remove (input places.get (r).tokens.get(h));
}
}

} else if (input places.get (d) .bonds.size() != 0 && sw == false) {
String name = "";

ArrayList<Token> hold = new ArrayList<Token>();

for (int s = 0; s < in arcs.size(); s++) {
if (in arcs.get(s) .bonds.size() == 0 &&
in arcs.get(s).tokens.size() != 0) {

boolean check = false;
String equal = "";
String equall = "";

for (int h

0; h < input places.get(d) .bonds.size(); h++) {

name input places.get (d) .bonds.get (h) .name;

String splitted[] = name.split("-");

String left = splitted[0];

String right = splitted[1l];

equal = left;

equall = right;

for (int r = 0; r < in arcs.get(s).tokens.size(); r++) {
if (left.compareTo(in arcs.get(s).tokens.get(r).name) == 0) {

check = true;
} else if (right.compareTo(in arcs.get (s).tokens.get (r) .name)
== 0) {

check = true;

if (check == true) {

for (int u = 0; u < input places.size(); u++) {
for (int r = 0; r < input places.get (u) .bonds.size(); r++)
{

if (input places.get (u) .bonds.get (r).name.contains (equal)

|| input places.get (u) .bonds.get (r).name.contains (equall)) {

hold.add (input places.get (u) .bonds.get (r));

for (int u = 0; u < hold.size(); u++) {
String sl[] = new String[2];

s1[0]

out arcs.get (w).place.place name;
sl1[1l] = hold.get (u) .name;

addl.add(sl) ;

out arcs.get (w).place.bonds.add (hold.get (u));

}

hold.clear();

if (!out arcs.get(w).place.bonds

.contains (out arcs.get (w) .bonds.get (y))) {

String sl[] = new String[2];

s1[0] = out arcs.get(w).place.place name;

s1[1] out arcs.get (w) .bonds.get (y) .name;

addl.add(sl);

out arcs.get (w).place.bonds.add(out arcs.get(w) .bonds.get (y));
}

}

} else if (in arcs.get(s) .bonds.size() != 0

B-9

&& in arcs.get (s).tokens.size() == 0) {
boolean check2 = false;
for (int h = 0; h < input places.get(d).bonds.size(); h++) {
for (int r = 0; r < in arcs.get(s).bonds.size(); r++) {

if (input places.get (d) .bonds.get (d) .name

.compareTo (in arcs.get(s) .bonds.get (r) .name) == 0) {
check2 = true;
}
}
}
if (check2 == true) {
String sl[] = new String[2];
s1[0] = out arcs.get(w).place.place name;
s1[1] = out arcs.get (w).bonds.get (y).name;

addl.add(sl) ;

out arcs.get (w).place.bonds.add(out arcs.get(w) .bonds.get(y));

for (int 1 = 0; 1 < input places.size(); 1++) {
for (int h = 0; h < input places.get(l).bonds.size(); 1++)
{

String s2[] = new String[2];

s2[0] input places.get(l).place name;
s2[1] = input places.get (l) .bonds.get (h) .name;
removel.add(s2);

input places.get(l) .bonds.remove (input places.get(l).bonds.get (h));

}

B-10

for (int 1 = 0; 1 < input places.size(); 1++) {
for (int g = 0; g < input places.get (l).bonds.size(); g++) {

String f[] = new String[2];
f[0] = input places.get(l).place name;
f[1] = input places.get (l) .bonds.get (g) .name;

removel.add (f) ;

}
input places.get(l) .bonds.removeAll (input places.get(l) .bonds);

for (int g = 0; g < input places.get (l).tokens.size(); g++) {

String f[] = new String[2];
f[0] = input places.get (l).place name;
f[1] = input places.get (l).tokens.get (g) .name;

removel.add (f) ;

}

input places.get(l).tokens.removeAll (input places.get(l).tokens);
}
}

// 1if out arc contains bonds but it has only one input place

}else if (out arcs.get(w) .bonds.size() != 0&& input places.size()== 1)
{
for (int d = 0; d < out arcs.get(w) .bonds.size(); d++) |
for (int s = 0; s < input places.get(0).bonds.size(); s++)
{
if (input places.get (0) .bonds.get (0) .name
.compareTo (out arcs.get (w) .bonds.get (d) .name) == 0)

String s2[] = new String[2];
s2[0] = out arcs.get(w).place.place name;
s2[1] = input places.get(0) .bonds.get (d) .name;

addl.add (s2);

out arcs.get (w).place.bonds.add (input places.get (0) .bonds.get (d));

String s3[] = new String[2];
s3[0] = input places.get(0).place name;
s3[1] = input places.get (0) .bonds.get (d) .name;

removel.add (s3) ;
input places.get (0) .bonds.remove (input places.get (0).bonds.get (d)):;

}

}
// history update

B-11

forward moves.get (i) .last executed=forward moves.get (1)
.transitions.get (J);

forward moves.get (i) .transitions.get(J) .enabled for execution = false;
if (3 > 0) {
forward moves.get (i) .history.get(Jj) .history =
forward moves.get (i) .history.get(j - 1).history
+ 1;

} else if (j == 0) {
forward moves.get (i) .history.get(j).history = 1;

}
}
input places.clear();
output places.clear();
out arcs.clear();
in arcs.clear();

if (MainWindow.choice == 3) {
try {

ReverseParser.update xml(forward moves.get (0), addl,
} catch (SAXException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace () ;
}
}

}

return forward moves;

B-12

removel) ;

Backtrack algorithm functions

import java.io.IOException;
import java.util.ArrayList;

import javax.xml.parsers.ParserConfigurationException;
import javax.xml.transform.TransformerException;
import javax.xml.xpath.XPathExpressionException;

import org.xml.sax.SAXException;
public class Backtracking algorithm {
public static Transition bt enabled = new Transition();

/**

This function takes as parameter a Petri net and finds which
transition is bt-enabled, if there is one. Then it returns the
maximum history,which belongs to the bt-enabled transition. If there
is not a bt-enabled transition the function returns -1.

* @param petri

* @return int max

*

*

*

*/
public static int backtracking enabled(PetriNet petri) ({
int max = 0;
Cell max cell = new Cell();

for (int i1i=0;i<petri.transitions.size();i++) {
petri.transitions.get (i) .backtrack enable=false;

}

for (int i = 0; i < petri.history.size(); i++) {
if (petri.history.get (i) .history > max) {
max = petri.history.get(i).history;
max cell = petri.history.get(i);

}

if (max cell.tr != null) {
for (int i = 0; 1 < petri.transitions.size(); 1i++) {
if (petri.transitions.get (i) .transition name.
compareTo (max cell.tr.transition name) == 0) {
petri.transitions.get (i) .backtrack enable = true;
break;
}
}
} else {
max = 0;

return max;

}
/**

B-13

This function takes as parameter a String value, from the
GUI, which indicates the transition name of the transition
that the user wants to execute, and then executes this
transition in a backtracking fashion.

@param sel

@return Petri net

/

public static ArraylList<PetriNet> backtrack execution(String sel) {

N .

ArrayList<Connection> in arcs = new ArrayList<Connection>();
ArrayList<Connection> out arcs = new ArrayList<Connection>();
ArrayList<Place> input places = new ArrayList<Place>();
ArrayList<Place> out places = new ArrayList<Place>();

ArrayList<String[]>addl=new ArrayList<Stringl[]>();
ArrayList<String[]>removel=new ArrayList<String[]>();

for (int i = 0; i1 < Forward algorithm. forward moves.size(); i++) {

for (int 0; J < Forward algorithm. forward moves.get (1)

.transitions.size(); Jj++) {
if (Forward algorithm. forward moves.get (i) .transitions
.get (j) .backtrack enable == true
&& (Forward algorithm. forward moves.get (i) .transitions.get(j).
transition name.compareTo (sel)==0)) {

bt enabled = Forward algorithm. forward moves.get (1) .
transitions.get (J);
break;

}

for (int j = 0; Jj <Forward algorithm.forward moves.get (i) .arcs.size();
J++) |

if ((Forward algorithm.forward moves.get (i) .arcs.get(j).
transition.transition name.compareTo (bt enabled.transition name) == 0)
&& Forward algorithm.forward moves.get (i) .arcs.get(j).to == 't') {

in arcs.add(Forward algorithm.forward moves.get (i) .arcs.get(3j));

input places.add(Forward algorithm.forward moves.get (i) .arcs.get
(j) .place);
} else if ((Forward algorithm.forward moves.get (i) .arcs.get(j).
transition.transition name.compareTo (bt enabled.transition name) == 0)
&& Forward algorithm.forward moves.get (i) .arcs.get(J).from == 't') {

out arcs.add(Forward algorithm.forward moves.get (i) .arcs.get(j));
out places.add(Forward algorithm.forward moves.get (i) .arcs.get(J) .plac
e);
}
}

for (int k = 0; k < out arcs.size(); k++) {
if (out arcs.get (k) .bonds.size() != 0 && out arcs.get(k).tokens.size()
== 0) |

ArrayList<Token> bond = new ArrayList<Token>();

boolean mode=false;

for (int w = 0; w < out arcs.get(k) .bonds.size(); wt+) {

for (int j = 0; j < out arcs.get(k).place.bonds.size(); Jj++) {

B-14

if (out arcs.get (k) .place.bonds.get (j) .name
.compareTo (out arcs.get (k) .bonds.get (w) .name) == 0) {
String breakb[] = out arcs.get (k) .place.bonds.get (J) .name.split("-");
String left = breakb[0];
String right = breakb[l];
if (out arcs.get(k).place.bonds.size() > 1) {
mode=true;
for (int o = 0; o < out arcs.get (k).place.bonds.size(); o++) {

if (out arcs.get (k) .place.bonds.get (o) .name.contains (left) &&
out arcs.get (k) .place.bonds.get (o) .name.compareTo (out arcs.get (k) .bond
s.get (w) .name) !'=0) {

bond.add (out arcs.get (k) .place.bonds.get(0));

String s[]=new String[2];

s[0]=out arcs.get (k) .place.place name;

s[1l]=out arcs.get (k) .place.bonds.get (o) .name;

removel.add(s);

out arcs.get (k) .place.bonds.remove (out arcs.get (k) .place.bonds.get (o))
} else if (out arcs.get (k) .place.bonds.get (o) .name.contains (right) &&
out arcs.get (k) .place.bonds.get (o) .name.compareTo (out arcs.get (k) .bond
s.get (w) .name) !'=0) {

bond.add (out arcs.get (k) .place.bonds.get (0));

String s[]=new String[2];

s[0]=out arcs.get (k) .place.place name;

s[l]=out arcs.get (k) .place.bonds.get (0) .name;

removel.add(s) ;
out arcs.get (k) .place.bonds.remove (out arcs.get (k) .place.bonds.get (o))

}
}

String sl[]=new String[2];

sl[0]=out arcs.get (k) .place.place name;

sl[1l]=out arcs.get (k) .bonds.get (w) .name;

removel.add(sl);

out arcs.get (k) .place.bonds.remove (out arcs.get (k) .bonds.get (w));

for (int g = 0; g < bond.size(); g++) {
for (int o = 0; o < out arcs.get (k).place.bonds.size(); o++) {

B-15

String gg[] = bond.get(g) .name.split("-");

if (out arcs.get (k) .place.bonds.get (o) .name.contains(gg[0])) {
bond.add(out arcs.get (k) .place.bonds.get (0));
String s2[]=new String[2];
s2[0]=out arcs.get (k) .place.place name;
s2[1l]=out arcs.get (k) .place.bonds.get (o) .name;
removel.add (s2) ;

out arcs.get (k) .place.bonds.remove (out arcs.get (k) .place.bonds.get (o))

} else if (out arcs.get (k) .place.bonds.get (o) .name.contains(gg[l])) {
bond.add (out arcs.get (k) .place.bonds.get (o))
String s3[]=new String[2];
s3[0]=out arcs.get (k) .place.place name;
s3[1l]=out arcs.get (k) .place.bonds.get (o) .name;
removel.add (s3);

out arcs.get (k) .place.bonds.remove (out arcs.get (k) .place.bonds.get (o))

I

}
}
}//end of >1 bonds in the place
else if (out arcs.get (k) .place.bonds.size() ==1) {

mode=false;

bond.clear () ;

}

}

if (mode==true) {
for (int z = 0; z < in arcs.size(); z++) {
boolean check = false;
for (int g = 0; g < bond.size(); g++) {

for (int £ = 0; £ < in arcs.get(z).tokens.size();
f++) |
if (bond.get(g) .name.contains (in arcs.get (z).
tokens.get (f) .name)) {

check = true;
break;
} else {

B-16

check = false;
}
}

if (check==true) {
break;
}
}
if (check == true) {
for (int g = 0; g < bond.size(); g++) {
String s[]l=new Stringl[2];

s[0]=in arcs.get(z) .place.place name;

s[1l]=bond.get (g) .name;
addl.add(s) ;

in arcs.get(z) .place.bonds.add(bond.get(g)):;
}
} else {
for (int £ = 0; £ < in arcs.get(z).tokens.size(); f++) {
String s[]=new String[2];

s[0]=in arcs.get(z) .place.place name;

s[1l]=in arcs.get(z) .tokens.get (f) .name;
addl.add(s) ;

in arcs.get(z) .place.tokens.add(in arcs.get(z) .tokens.get (f));
}
}

}

else(
for (int z = 0; z < in arcs.size(); z++) {
for (int £ = 0; £ < in arcs.get(z).tokens.size();
f++) {
String s[]=new String[2];

s[0]=in arcs.get(z) .place.place name;
s[1l]=in arcs.get(z) .tokens.get (f) .name;
addl.add(s) ;

in arcs.get(z).place.tokens.add(in arcs.get(z) .tokens.get (f));

}
}

for (int d=0;d<out arcs.get (k) .place.bonds.size () ;d++) {
String s[]=new Stringl[2];
s[0]=out arcs.get (k) .place.place name;

s[1l]=out arcs.get (k) .place.bonds.get (d) .name;
removel.add (s) ;

B-17

out arcs.get (k) .place.bonds.removeAll (out arcs.get (k) .place.bonds);

}

} else if (out arcs.get (k) .bonds.size() == 0 &&
out arcs.get (k).tokens.size() != 0) {
for (int w = 0; w < out _arcs.get (k) .tokens.size(); wt++) {

for (int j 0; J < out_arcs.get (k) .place.tokens.size(); j++) {

String[]s6=new String[2];
s6[0]=out arcs.get (k) .place.place name;
s6[1l]=out arcs.get (k) .tokens.get (w) .name;

removel .add (s6) ;

out arcs.get (k) .place.tokens.remove (out arcs.get (k) .tokens.get (w));

}
}

for (int z = 0; z < in arcs.size(); z++) |
for (int r = 0; r < in arcs.get(z).tokens.size(); r++) {

String[]s8=new String[2];
s8[0]=in_arcs.get(z) .place.place name;
s8[1l]=in arcs.get(z) .tokens.get (r).name;
addl.add(s8) ;

in arcs.get(z) .place.tokens.add(in arcs.get(z) .tokens.get(r));
}
}

}

bt enabled.backtrack enable = false;
out arcs.clear();

in arcs.clear();

input places.clear();

out places.clear();

for (int j = 0; j < Forward algorithm.forward moves.
get (i) .history.size(); Jj++)
{

if (Forward algorithm. forward moves.get (i) .
history.get(j) .tr.transition name.
compareTo (bt enabled.transition name) == 0) {

Forward algorithm.forward moves.get (i) .history.get(j) .history = 0;

break;

}

B-18

bt enabled = null;
if (MainWindow.choice==3) {
try f
ReverseParser.update xml (Forward algorithm.forward moves.get (0),
addl, removel);
} catch (ParserConfigurationException e) ({
// TODO Auto-generated catch block
e.printStackTrace () ;
} catch (SAXException e) {
// TODO Auto-generated catch block
e.printStackTrace () ;
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace() ;
} catch (TransformerException e) {
// TODO Auto-generated catch block
e.printStackTrace() ;
}
}

}

return Forward algorithm. forward moves;

B-19

Causal algorithm functions

import java.io.IOException;
import java.util.ArrayList;

import javax.xml.parsers.ParserConfigurationException;
import javax.xml.transform.TransformerException;
import javax.xml.xpath.XPathExpressionException;

import org.xml.sax.SAXException;

public class Causal reversing {

/**

* This method takes as parameter a Petri net structure,
and finds out which transitions of the given Petri net
are co-enabled.

@param petri

@return

*/

public static int co enabled(PetriNet petri) {

* ok X %

ArrayList<Transition> executed = new ArrayList<Transition>();
int counter = 0;

// check which transitions have been executed (history!=0) and
// store them in an ArrayList

for (int i = 0; i < petri.transitions.size(); i++) {
petri.transitions.get(i).co enabled = false;

}

for (int i = 0; 1 < petri.history.size(); i++) {
if (petri.history.get (i) .history != 0) {
executed.add (petri.history.get (i) .tr);

}

for (int 1 = 0; i1 < executed.size(); 1i++) {

ArrayList<Connection> in arcs = new ArrayList<Connection>();

ArrayList<Connection> out arcs = new ArrayList<Connection>();

boolean can = false;

for (int j = 0; j < petri.arcs.size(); J++) {

if ((petri.arcs.get(j).transition.transition name.

compareTo (executed.get (i) .transition name) == 0)
&& petri.arcs.get(j).to == 't') {

in arcs.add(petri.arcs.get(j));
} else if ((petri.arcs.get(j).transition.transition name
.compareTo (executed.get (i) .transition name) ==

0) && petri.arcs.get(j).to == "p') {

out arcs.add(petri.arcs.get(j));

B-20

for (int j = 0; j < out arcs.size(); j++) {
(

if (out arcs.get(Jj) .tokens.size() != 0 &&
out arcs.get(j) .bonds.size() == 0) {
for (int k = 0; k < out _arcs.get(J).tokens.size(); k++) {
for (int z = 0; z < out arcs.get(j) .place.tokens.size(); z++) |
if (out arcs.get(j) .place.tokens.size() == 0) {
can = false;
break;

} else if (out arcs.get(j).tokens.get (k) .name
.compareTo (out arcs.get (j).place.tokens.get(z).name) == 0)

{

can = true;
}
}
}
} else if (out arcs.get(Jj) .bonds.size() != 0 &&
out arcs.get(j).tokens.size() == 0) {

for (int k = 0; k < out _arcs.get(Jj) .bonds.size(); k++) {

for (int z = 0; z < out _arcs.get(Jj).place.bonds.size();
z++) |
if (out arcs.get(j).place.bonds.size() == 0) {
can = false;
break;

} else if (out arcs.get(j).place.bonds.get (z) .name
.contains (out arcs.get (j) .bonds.get (k) .name))

can = true;
}
}
}
}
}
if (can == true) ({
executed.get (i) .co_enabled = true;
counter++;
} else {

executed.get (i) .co_enabled false;

}
}

return counter;

/**

* This function takes as parameter a String value, from the GUI,

* which indicates the transition name of the transition that the user
* wants to execute, and then executes this transition in a causal

* order fashion.

* @param sel

* @return

*/

B-21

public static ArrayList<PetriNet> causal execution(String sel) {

ArrayList<Connection> in arcs = new ArrayList<Connection>();
ArrayList<Connection> out arcs = new ArrayList<Connection>();
ArrayList<Place> input places = new ArrayList<Place>();

)

’

ArrayList<Place> out places = new ArrayList<Place>(
ArraylList<String[]>addl=new ArrayList<String[]>();
ArrayList<String[]>removel=new ArrayList<String[]>();

for (int i = 0; i1 < Forward algorithm. forward moves.size(); i++) {
for (int g = 0; g < Forward algorithm. forward moves.get (i) .
transitions.size(); g++) {

if (Forward algorithm. forward moves.get (i) .transitions.get (g).

co_enabled == true && Forward algorithm.forward moves.get (i) .

transitions.get (g) .transition name.compareTo (sel) == 0) {

for (int j = 0; J < Forward algorithm. forward moves
.get (i) .arcs.size(); J++) {

if ((Forward algorithm.forward moves.get (i)

.arcs.get(j) .transition.transition name.compareTo (Forward
algorithm. forward moves.get (i) .transitions.get(g).
transition name) == 0) && Forward algorithm.forward moves.
get (i) .arcs.get(J) .to == '"t'") {

in arcs.add(Forward algorithm.forward moves.get (i) .arcs.get(j));

input places.add(Forward algorithm. forward moves.get (i) .arcs.get

(7) .place);

} else if ((Forward algorithm.forward moves.get (i) .arcs.get (J)
.transition.transition name.compareTo (Forward algorithm. fo
rward moves.get (i) .transitions.get (g).transition name) ==
0) && Forward algorithm. forward moves.get (i) .arcs

.get(j).from == "t') {
out arcs.add(Forward algorithm.forward moves.get (i) .arcs.get(j))
out places.add(Forward algorithm.forward moves.get (i) .arcs.get (]

) .place) ;
}
}
for (int k = 0; k < out arcs.size(); k++) {
if (out arcs.get (k) .bonds.size() != 0 && out arcs.get(k).tokens.size()
== 0) {

ArrayList<Token> bond = new ArrayList<Token>();

boolean mode = false;

for (int w = 0; w < out arcs.get (k) .bonds.size(); wt++) |

for (int j = 0; j < out arcs.get(k).place.bonds.size(); J++) {

if (out arcs.get (k) .place.bonds.get (j) .name

.compareTo (out arcs.get (k) .bonds.get (w) .name) == 0) {

String breakb[] = out arcs.get (k) .place.bonds.get(J) .name.split("-");

String left = breakb[0];
String right = breakb[1l];

B-22

if (out arcs.get (k) .place.bonds.size() > 1) {
mode = true;

for (int o = 0; o < out arcs.get (k) .place.bonds.size(); o++) {
if (out arcs.get (k) .place.bonds.get (o) .name.contains (left)
&& out arcs.get (k) .place.bonds.get (0) .name
.compareTo (out arcs.get (k) .bonds.get (w) .name) != 0)
bond.add (out arcs.get (k) .place.bonds.get (o))
String s[]=new String[2];
s[0]=out arcs.get (k) .place.place name;
s[l]=out arcs.get (k) .place.bonds.get (o) .name;

removel.add(s);

out arcs.get (k) .place.bonds.remove (out arcs.get (k) .place.bonds.get (0))

’

} else if (out arcs.get (k) .place.bonds.get (o).
name.contains (right) &&

out arcs.get (k) .place.bonds.get (o) .name.compareTo (out arcs
.get (k) .bonds.get (w) .name) != 0)

bond.add (out arcs.get (k) .place.bonds.get (o))

String s[]=new String[2];

s[0]=out arcs.get (k) .place.place name;

s[1l]=out arcs.get (k) .place.bonds.get (o) .name;

removel.add (s) ;

out arcs.get (k) .place.bonds.remove (out arcs.get (k) .place.bonds.get (o))

’

}

out arcs.get (k) .place.bonds.remove (out arcs.get (k) .bonds.get (w));

for (int t

0; t < bond.size(); t++) {

for (int o = 0; o < out arcs.get (k).place.bonds.size(); o++) {
String gg[] = bond.get(t) .name.split("-");
if (out arcs.get (k) .place.bonds.get (o) .name.contains(gg[0])) {

bond.add (out arcs.get (k) .place.bonds.get (o))

B-23

String s[]=new String[2];
s[0]=out arcs.get (k) .place.place name;
s[1l]=out arcs.get (k) .place.bonds.get (0) .name;
removel.add(s);
out arcs.get (k) .place.bonds.remove (out arcs.get (k) .place.bonds.get (0))
} else if (out arcs.get (k) .place.bonds.get (o) .name.contains(gg[l])) {
bond.add (out arcs.get (k) .place.bonds.get(0));
String s[]=new String[2];
s[0]=out arcs.get (k) .place.place name;
s[1l]=out arcs.get (k) .place.bonds.get (o) .name;

removel.add(s);

out arcs.get (k) .place.bonds.remove (out arcs.get (k) .place.bonds.get (o))

’

}
}
} // end of >1 bonds in the place

else if (out arcs.get(k).place.bonds.size() == 1) {
mode = false;

bond.clear () ;

}

if (mode == true) {
for (int z = 0; z < in arcs.size(); z++) {
boolean check = false;

for (int t 0
for (int £ = 0
if (bond.get (t

; t < bond.size(); t++) {

; £ < in arcs.get(z).tokens.size(); f++) {

) .name.contains (in_arcs.get(z) .tokens.get (f) .name)) {
check = true;

break;

} else {

B-24

check = false;
}
}
if (check == true) {
break;
}
}
if (check == true) {
for (int t = 0; t < bond.size(); t++) {
String s[]l=new String[2];
s[0]=in arcs.get(z) .place.place name;
s[l]=bond.get (t) .name;
addl.add(s) ;
in arcs.get(z) .place.bonds.add(bond.get (t)):;
} else {
for (int £ = 0; £ < in arcs.get(z).tokens.size();
String s[]=new String[2];
s[0]=in _arcs.get(z) .place.place name;
s[1l]=in arcs.get(z) .tokens.get (f) .name;
addl.add(s);
in _arcs.get(z) .place.tokens.add(in_arcs.get (z)
£)):
}
}
}
} else {
for (int z = 0; z < in arcs.size(); z++) {
for (int £ = 0; £ < in arcs.get(z).tokens.size();

String s[]=new Stringl[2];
s[0]=in arcs.get(z) .place.place name;
s[1l]=in arcs.get(z) .tokens.get (f) .name;

addl.add(s) ;

f++) {

.tokens.get (

f++) |

in arcs.get(z).place.tokens.add(in arcs.get(z) .tokens.get (f));

}
}

for (int d=0;d<out arcs.get (k) .place.bonds.size () ;d++) {
String s[]=new Stringl[2];

s[0]=out arcs.get (k) .place.place name;

B-25

s[1l]=out arcs.get (k) .place.bonds.get (d) .name;

removel.add(s);

}

out arcs.get (k) .place.bonds.removeAll (out arcs.get (k) .place.bonds);

}

} else if (out arcs.get (k) .bonds.size() == 0 &&
out arcs.get (k) .tokens.size() != 0) {

for (int w 0; w < out _arcs.get (k) .tokens.size(); wt++) {
for (int j = 0; J < out arcs.get (k) .place.tokens.size(); j++) {

String[]s6=new String[2];
s6[0]=out arcs.get (k) .place.place name;
s6[1l]=out arcs.get (k) .tokens.get (w) .name;
removel.add (s6) ;
out arcs.get (k) .place.tokens.remove (out arcs.get (k) .tokens.get (w));

}
}

for (int z = 0; z < in arcs.size(); z++) {
for (int r = 0; r < in arcs.get(z).tokens.size(); r++) {

String[]s8=new String[2];
s8[0]=in _arcs.get(z) .place.place name;
s8[1l]=in arcs.get(z) .tokens.get (r).name;
addl.add (s8) ;
in arcs.get(z) .place.tokens.add(in arcs.get(z).tokens.get(r));

}
}

}

out arcs.clear();

in arcs.clear();
input places.clear();
out places.clear();

// history update and make transition not co enabled

for (int y = 0; y < Forward algorithm. forward moves.get (i) .
history.size(); y++) {

if (Forward algorithm.forward moves.get (i) .history.

B-26

get (y) .tr.transition name.compareTo (Forward algorithm. forward mo
ves.get (i) .transitions.get(g).transition name) == 0) {

Forward algorithm.forward moves.get (i) .history.get(y).history = 0;

Forward algorithm. forward moves.get (i) .transitions.get (g)
.co_enabled = false;
break;

}
if (MainWindow.choice==3) {

try {
ReverseParser.update xml (Forward algorithm.forward moves.get (0),
addl, removel);
} catch (ParserConfigurationException e) ({
// TODO Auto-generated catch block
e.printStackTrace();
} catch (SAXException e) {
// TODO Auto-generated catch block
e.printStackTrace () ;
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace () ;
} catch (TransformerException e) {
// TODO Auto-generated catch block
e.printStackTrace () ;
}
}

}

return Forward algorithm.forward moves;

B-27

Out of causal algorithm functions

import java.io.IOException;
import java.util.ArrayList;

import javax.xml.parsers.ParserConfigurationException;
import javax.xml.transform.TransformerException;

import org.xml.sax.SAXException;

public class Out of causal {
public static PetriNet initial marking = new PetriNet ();
/**
* This function indicates by which of the three methods the
* user has imported the input, and depends on the method, it
* initializes the initial marking.

*/
public static void find initial() {
if (MainWindow.choice == 1) {
initial marking = MainWindow.initial marking;
} else if (MainWindow.choice == 2) {
initial marking = readUser2.initial marking;
}
else if (MainWindow.choice==3) {
initial marking=Parser.initial marking;
}
}
/**
* /**
* This method takes as parameter a Petri net structure,
* and finds out which transitions of the given Petri net
* are o-enabled.
* @param petri
*

/

public static void o enabled(PetriNet petri) {

// any executed transition can be reversed at any time

// check which transitions have history!=0, then they are
// o_enabled

for (int i = 0; i < petri.transitions.size(); i++) {
for (int 7 = 0; j < petri.history.size(); Jj++) {
if (petri.history.get(j).tr.transition name.
compareTo (petri.transitions.get (i) .transition name)

== 0) {

if (petri.history.get(j) .history != 0) {
petri.transitions.get (i) .o enabled = true;
} else {

petri.transitions.get (i) .o _enabled false;

}
}

B-28

}

} // end of function o _enabled

/**

* This function takes as parameter a String value, from the
* GUI, which

* indicates the transition name of the transition that the
* user wants to execute, and then executes

* this transition, in an out-of-causal-order fashion.

* @param sel

* @return Petri net

* @throws ParserConfigurationException

* @throws TransformerException

*/

public static void out of causal execution(String tl) {
find initial();
Transition t = null;

for (int i = 0; i1 < Forward algorithm. forward moves.get (0) .
transitions.size(); i++) {
if (Forward algorithm. forward moves.get (0).transitions.
get (i) .transition name.compareTo (tl) == 0) {
t = Forward algorithm.forward moves.get (0).transitions.get(i);
break;
}
}
// H(t)=0
for (int i = 0; i < Forward algorithm. forward moves.get (0)
.history.size(); i++) {

if (Forward algorithm. forward moves.get (0)
.history.get (i) .tr.transition name.compareTo (t.trans
ition name) == 0) {

Forward algorithm.forward moves.get (0) .history.get (i) .history = 0;
}
}

Connection goes = null;
ArrayList<Connection> comes = new ArrayList<Connection>();
for (int 1 = 0; 1 < Forward algorithm.forward moves.

get (0) .arcs.size(); i++) {

if ((Forward algorithm.forward moves.get (0).arcs.get (i) .transition.
transition name.compareTo (t.transition name) == 0)
&& (Forward algorithm. forward moves.get (0) .arcs.get (i) .from ==
't')) |
goes = Forward algorithm.forward moves.get (0) .arcs.get(i);
} else if ((Forward algorithm.forward moves.get (0).arcs.get (1i).
transition.transition name.compareTo (t.transition name) ==

0) && (Forward algorithm. forward moves.get (0) .arcs.get (i) .fr
om == 'p")) {

B-29

comes.add (Forward algorithm. forward moves.get (0) .arcs.get (i));
}
}

ArrayList<String[]> removel = new ArrayList<String[]>();
ArrayList<String[]> addl = new ArrayList<String[]>();

// the effect of the transition is a token

if (goes.tokens.size() != 0 && goes.bonds.size() == 0) {
for (int j = 0; j < goes.tokens.size(); J++) {
for (int i = 0; i < goes.place.tokens.size(); i++) {

if (goes.place.tokens.get (i) .name.
compareTo (goes.tokens.get (j) .name) == 0) {

for (int k
for (int g

0; k < comes.size(); k++) {
0; g < comes.get (k).tokens.size(); g++) {

if (comes.get (k) .tokens.get (g) .name.
compareTo (goes.tokens.get (J) .name) == 0) {

comes.get (k) .place.tokens.add(goes.place.tokens.get (1)) ;

String s[] = new String[3];
s[0] = comes.get (k) .place.place name;
s[l] = goes.place.tokens.get (i) .name;

addl.add(s) ;
}
}
}

goes.place.tokens.remove (goes.place.tokens.get (1))

String s8[] = new String[3];
s8[0] = goes.place.place name;
s8[1] = goes.place.tokens.get (i) .name;

removel.add (s8) ;
}
}

}

// the effect of the transition is a bond
else if (goes.bonds.size() != 0 && goes.tokens.size() == 0) {

ArraylList<Place> clear = new ArrayList<Place>();
for (int 1 = 0; 1 < Forward algorithm.forward moves.
get (0) .places.size(); i++) {
for (int j = 0; J < Forward algorithm. forward moves
.get (0) .places.get (i) .bonds.size(); Jj++) {
for (int k = 0; k < goes.bonds.size(); k++) {
if (Forward algorithm.forward moves.get (0) .places.get
bonds.get (j) .name.compareTo (goes.bonds.get (k) .name)

== 0) {

Token breakl new Token () ;
Token break2 = new Token();
String breaked[] = Forward algorithm.forward moves.get (0) .

B-30

places.get (i) .bonds.get (j) .name.split ("-");
breakl.name = breaked[0];
break2.name = breaked[1l];
boolean containl = false;
boolean contain?2 = false;

String[]s=new String[3];
s[0]=Forward algorithm. forward moves.get (0).places.get (i) .place name;
s[1l]=Forward algorithm. forward moves.get (0).places.get (i) .bonds.get (J)
.name;
removel.add (s) ;
Forward algorithm.forward moves.get (0).places.get (i) .bonds
.remove (Forward algorithm. forward moves.get (0)
.places.get (i) .bonds.get (7)) ;
for (int h = 0; h < Forward algorithm. forward moves.get (0) .

places.get (i) .bonds.size(); h++) {

if (Forward algorithm. forward moves.get (0) .places.get (i)
.bonds.get (h) .name.contains (breakl.name)) {

containl = true;
} else if (Forward algorithm. forward moves.get (0) .places.

get (i) .bonds.get (h) .name.contains (break2.name)) {
contain? = true;
}

}

if (containl == false && contain2 == false) {

String[] sl = new String[2];

s1[0] = Forward algorithm.forward moves.get (0).
places.get (i) .place name;
sl[1l] = breakl.name;

String s9[]=new String[2];

s9[0] = Forward algorithm.forward moves.get (0) .
places.get (i) .place name;
s9[1] = break2.name;

Forward algorithm. forward moves.get (0) .places.get (i) .tokens.add(
breakl) ;

Forward algorithm. forward moves.get (0) .places.get (i) .tokens.add(

break?2) ;

} else if (containl == false && contain?2 == true) {
String sll1l[] = new String[2];
s11[0] = Forward algorithm.forward moves.get (0)

B-31

.places.get (i) .place name;
s11[1] = breakl.name;

Forward algorithm. forward moves.get (0).
places.get (i) .tokens.add (breakl) ;

} else if (containl == true && contain?2 == false) {
String s2[] = new String[2];
s2[0] =

Forward algorithm. forward moves.get (0)

.places.get (i) .place name;
s2[1] = break2.name;

Forward algorithm. forward moves.get (0).
places.get (i) .tokens.add (break?2);

}

ArrayList<Connection> input arcs = new ArrayList<Connection>();

for (int g = 0; g < Forward algorithm. forward moves.get (0)
.arcs.size(); gt+) |

((Forward algorithm. forward moves.get (0) .arcs.get (g) .place

.place name.compareTo (Forward algorithm. forward moves.get (0) .

places.get (i) .place name) ==0)&&Forward algorithm. forward moves
get (0) .arcs.get (g) .to == "p') {

if

input arcs.add(Forward algorithm. forward moves.get (0)
.arcs.get(qg));

}
}

boolean exists b = false;

for (int h = 0; h < Forward algorithm.forward moves.get (0) .places
.get (i) .bonds.size(); h+t+) {
exists b = false;
Connection save = null;
for (int y = 0; y < input arcs.size(); y++) {
for (int u = 0; u < input arcs.get(y) .bonds.size(); ut+) {
if (Forward algorithm. forward moves.get (0)
.places.get (i) .bonds.get (h) .name.compareTo (inp
ut arcs.get(y) .bonds.get (u) .name) == 0) {
exists b = true;
}
}
}
if (exists b == false) {
for (int r = Forward algorithm.forward moves.get (0)
.arcs.size() - 1; r >= 0; r—--) {

int history = 0;
boolean same = false;

for (int p = 0; p < Forward algorithm.forward moves.get (0)

.arcs.get (r) .bonds.size(); pt+t+) {

B-32

if (Forward algorithm. forward moves.get (0) .arcs.get (r)
.bonds.get (p) .name.compareTo (Forward algorithm.
forward moves.get (0) .places.get (i) .bonds.get (h) .name) ==

0) {

if (Forward algorithm. forward moves.get (0) .arcs
.get (r).transition.transition name
.compareTo (t.transition name) == 0) {

same = true;

}

for (int w = 0; w < Forward algorithm. forward moves.get (0) .history
.size(); wtt) |

if (Forward algorithm. forward moves.get (0) .history
.get (w) .tr.transition name.compareTo (

Forward algorithm. forward moves.get (0) .arcs
.get(r) .transition.transition name) == 0) {

history = Forward algorithm. forward moves.get (0) .history
.get (w) .history;

}

}
}

if (history != 0 && same == false) ({
save = Forward algorithm. forward moves.get (0).arcs.get (r);
}
}
if (save != null) {
boolean ff = true;
for (int rr = 0; rr < Forward algorithm.forward moves.get (0) .places
.get (i) .bonds.size(); rr++) {
String f[] = Forward algorithm.forward moves.get (0)

.places.get (i) .bonds.get (rr) .name.split ("-");

if ((Forward algorithm.forward moves.get (0) .places.get (1)
.bonds.get (h) .name.contains (£[0])
| | Forward algorithm.forward moves.get (0) .places.get (i)
.bonds.get (h) .name.contains (£[1]))
&& (Forward algorithm.forward moves.get (0) .places.get (i)
.bonds.get (rr) .name.compareTo (Forward algorithm
. forward moves.get (0) .places.get (i) .bonds.get (h) .name) !=

0)) {

ff = false;

}

if (ff == true) {

B-33

String[] s3 = new String[2];

s3[0] save.place.place name;

s3[1] Forward algorithm. forward moves.get (0) .places.

get (1) .bonds.get (h) .name;
addl.add(s3);
save.place.bonds.add(
Forward algorithm. forward moves.get (0) .places.get (1)
.bonds.get (h));
String s4[]=new String[3];

s4[0] = Forward algorithm.forward moves.get (0)
.places.get (i) .place name;

s4[1] = Forward algorithm.forward moves.get (0) .places.
get (i) .bonds.get (h) .name;

s4[2]=Integer.toString(Forward algorithm.forward moves.
get (0) .places.get (i) .bonds.get (h) .id) ;

removel .add (s4) ;

Forward algorithm.forward moves.get (0) .places.get (i) .bonds.
remove (Forward algorithm. forward moves.get (0) .places.get (i)

.bonds.get (h)) ;

}

boolean exists t = false;
for (int h = 0; h < Forward algorithm. forward moves.get (0) .
places.get (i) .tokens.size(); h++) {
exists t = false;
Connection save = null;
for (int y = 0; y < input arcs.size(); y++) {
for (int u = 0; u < input arcs.get(y).tokens.size();
u++) |

if (Forward algorithm. forward moves.get (0) .
places.get (i) .tokens.get (h) .name.compareTo (input arc
s.get (y) .tokens.get (u) .name) == 0) {

exists t = true;

if (exists t == false) ({
for (int r = Forward algorithm.forward moves.get (0).arcs.size()

B-34

- 1; r > 0; r—--) {
for (int p = 0; p < Forward algorithm.forward moves.get (0)
.arcs.get (r) .tokens.size(); pt+) {

if (Forward algorithm. forward moves.get (0) .arcs.get (r)
.tokens.get (p) .name.compareTo (Forward algorithm. forward mo
ves.get (0) .places.get (i) .tokens.get (h) .name) == 0) {

int history = 0;

boolean same = false;
for (int w = 0; w < Forward algorithm.forward moves.
get (0) .history.size(); wt++) {

if (Forward algorithm. forward moves.get (0)
.arcs.get(r).transition.transition name.compareTo (t.
transition name) == 0) {

same = true;

}

if (Forward algorithm. forward moves.get (0) .history.get (w).
tr.transition name.compareTo (Forward algorithm. forwa
rd moves.

get (0) .arcs.get (r) .transition.transition name) == 0) {

history = Forward algorithm.forward moves
.get (0) .history.get (w) .history;

if (history != 0 && same == false) ({
save = Forward algorithm. forward moves.get (0).arcs.get (r);
} else if (same == true && history == 0) {

Place init = null;

for (int o = 0; o < initial marking.places.size(); o++) {
for (int £ = 0; £ < initial marking.places.get (o) .tokens
.size(); f++) |

if (initial marking.places.get (o)
.tokens.get (f) .name.compareTo (Forward algorith
m. forward moves.get (0) .places.get (i) .tokens.
get (h) .name) == 0) {

init = initial marking.places.get (o);

B-35

for (int 1 = 0; 1 < Forward algorithm. forward moves.get (0)
.places.size(); 1++) {

if (init.place name.compareTo (Forward algorithm.
forward moves.get (0) .places.get (1) .place name) == 0) {

String[] s5 = new String[2];

s5[0] = Forward algorithm.forward moves.get (0) .places
.get (1) .place _name;
s5[1] = Forward algorithm.forward moves.get (0) .places

.get (1) .tokens.get (h) .name;

addl.add(s5);

Forward algorithm. forward moves.get (0) .places.get (1).
tokens.add (Forward algorithm. forward moves.get (0) .
places.get (i) .tokens.get (h));

clear.add(Forward algorithm. forward moves.get (0) .places.get (i));

}

}

if (save != null) {
String[] s6 = new String[2];
s6[0] = save.place.place name;
s6[1l] = Forward algorithm.forward moves.get (0)

.places.get (i) .tokens.get (h) .name;

addl.add(s6) ;
boolean omg=false;

for (int d=0;d<save.place.tokens.size () ;d++) {

if (save.place.tokens.get (d) .name

B-36

.compareTo (Forward algorithm. forward moves.get (0)
.places.get (i) .tokens.get (h) .name)==0) {

omg=true;

}
}
if (omg==false) {
save.place.tokens.add (Forward algorithm. forward moves.get (0)
.places.get (i) .tokens.get (h));
}

String[] s7 = new String[3];

s7[0] = Forward algorithm.forward moves.get (0).
places.get (i) .place name;
s7[1] = Forward algorithm.forward moves.get (0) .places.get (i) .

tokens.get (h) .name;

s7[2]=Integer.toString(Forward algorithm.forward moves.get (0)
.places.get (i) .tokens.get (h) .1id);

removel.add (s7);

}

for (int j = 0; J < Forward algorithm. forward moves.get (0).
places.size(); j++) {
for (int i = 0; i1 < clear.size(); i++) {

if (Forward algorithm.forward moves.get (0) .places.get (J)

.place name.compareTo (clear.get (i) .place name) == 0) {
for (int k = 0; k < Forward algorithm.forward moves.
get (0) .places.get (J) .tokens.size(); k++) {

String[] s66 = new String[3];

s66[0] = Forward algorithm.forward moves.
get (0) .places.get (j) .place name;
s66[1] = Forward algorithm.forward moves.

get (0) .places.get (J) .tokens.get (k) .name;

s66[2]=Integer.toString(Forward algorithm. forward moves.get (0)
.places.get (j) .tokens.get (k) .id);

removel.add (s66) ;

Forward algorithm. forward moves.get (0) .places.get (j) .tokens

B-37

.remove (Forward algorithm. forward moves.get (0) .places.get(J)

.tokens.get (k));

if (MainWindow.choice == 3) {
try {

ReverseParser.update xml (Forward algorithm.forward moves.get (0),

removel) ;

} catch (ParserConfigurationException e)

// TODO Auto-generated catch block
e.printStackTrace();

} catch (SAXException e) {

// TODO Auto-generated catch block
e.printStackTrace();

} catch (IOException e) {

// TODO Auto-generated catch block
e.printStackTrace();

} catch (TransformerException e) {
// TODO Auto-generated catch block
e.printStackTrace () ;

B-38

{

addl,

Appendi

x C

Simulator interface functions

import java.
import javax
import java.
import java.

awt.EventQueue;
.swing.JFrame;
awt.Color;
awt.Desktop;

import java.

awt .Panel;

import java.

awt.BorderLayout;

import javax

.swing.JTextField;

import java.
import java.

awt.Font;
awt.Image;

import javax
import javax
import java.

.swing.JLabel;
.swing.JOptionPane;
awt.SystemColor;

import javax.
import javax.
import javax.

swing.JButton;
swing.JFileChooser;
imageio.ImagelIO;

import javax.
import javax.
import javax.

import org.x
import java.
import java.
import java.
import java.
import java.
import java.

swing.Imagelcon;

swing.SwingConstants;
xml.parsers.ParserConfigurationException;
ml.sax.SAXException;
awt.event.ActionListener;

io.File;

io.FileNotFoundException;

io.IOException;

util.Scanner;

util.regex.Pattern;

import java.
import javax
import java.

awt.event.ActionEvent;
.swing.JPanel;
awt.Graphics;

public class
privat
public
privat
public
public
public
public

/**
* Launch th
*/
public stati
EventQ

MainWindow {

e JFrame frame;
static PetriNet petri
e Screen?2 secondS;
static int choice;
static PetriNet initial marking = new PetriNet ();
static JPanel panel new JPanel () ;
JLabel lblNewLabel;

new PetriNet () ;

e application.

c void main (String[] args) {
ueue.invokelLater (new Runnable ()
public void run() {
try {
MainWindow window new MainWindow () ;
window.frame.setVisible (true) ;

{

C-1

} catch (Exception e) {
e.printStackTrace () ;

}

/**
* Create the application.
*/
public MainWindow () {
initialize();

}
/**

* Initialize the contents of the frame.
*

* @return

*/
private void read file(Scanner scan) {
int count = 0;
while (scan.hasNext ()) {
String line = scan.nextLine();
if (line.compareTo ("Tokens:") == 0) {
String £ = scan.nextLine();
String[] t = f.split ("\\[");
String[] comma = t[1l].split(",");
String[] fs = comma[comma.length - 1].split ("\\1");
for (int i = 0; i < comma.length - 1; i++) {

Token tok = new Token();

tok.name = commal[i];
petri.tokens.add (tok);

Token newt = new Token ()
newt.name = commali];

initial marking.tokens.add(newt);

}

Token tok = new Token();

tok.name = fs[0];
petri.tokens.add (tok);

Token newt = new Token ()
newt.name = fs[0];

initial marking.tokens.add(newt);

}

if (line.compareTo("Places:") == 0) {
count = 1;
String f = scan.nextLine();

String[] t = f.split ("\\[");

String[] comma = t[l].split(",");

String[] fs = comma[comma.length - 1].split ("\\1");

for (int i = 0; i < comma.length - 1; i++) {

Place place = new Place();
place.place name = commal[i];
place.place _id = count;
petri.places.add(place);

C-2

Place newp = new Place();
newp.place name = commal[i];
newp.place_id = count;

initial marking.places.add (newp);
count++;

}

Place tok = new Place();
tok.place name = fs[0];
tok.place id = count;
petri.places.add (tok);

Place newp = new Place();
newp.place name = fs[0];
newp.place_id = count;

initial marking.places.add (newp);

count++;
}
if (line.compareTo ("Transitions:") == 0) {
count = 1;
String £ = scan.nextLine();
String[] t = f.split ("\\[");
String[] comma = t[l].split(",");

[
[

String[] fs = comma[comma.length - 1].split ("\\1");
for (int i = 0; i < comma.length - 1; i++) {

Transition tr = new Transition();
tr.transition name = commal[i];
tr.transition id = count;

petri.transitions.add(tr);

Transition newt = new Transition();
newt.transition name = commal[i];
newt.transition id = count;

initial marking.transitions.add(newt);

Cell cell = new Cell();
cell.tr = tr;
petri.history.add(cell);

Cell newc = new Cell();

newc.tr = newt;
initial marking.history.add (newc);
count++;
}
Transition tr = new Transition();
tr.transition name = fs[0];
tr.transition id = count;
Cell cell = new Cell();
cell.tr = tr;
petri.transitions.add(tr);
petri.history.add(cell);

Transition newt = new Transition();
newt.transition name = fs[0];
newt.transition id = count;

initial marking.transitions.add (newt);
Cell newc = new Cell();

C-3

newc.tr = newt;
initial marking.history.add (newc);

count++;
}
if (line.compareTo ("Arcs:") == 0) {
count = 1;
String £ = scan.nextLine();

while ((f.compareTo("]") != 0)) {
Connection con = new Connection();
Connection newc = new Connection();

f = scan.nextLine();

if (f.compareTo("]") == 0) {
break;

}

String[] t = f.split("=");

String left = t[0];
String right = t[1];
String[] 1 = left.split(","

)I

String[] tl1 = 1[0]. spllt("\\(")
String 11[] = 1[1].split("\\)");
String[] rl = right.split ("\\{")
String[] rn = r1[1].split ("\\}")
String[] r = null;

if (rn[O].contains(",")) {

0

r = rn[0].split (", ")
for (1nt i =0; 1 < r.length; i++) {

if (r[i].contains("-") && r[i].contains("not")) {
Token neg bond = new Token () ;
Token negb = new Token();

String bb[] = r[i].split("not");

String vI[] = bb[1l].split(" ");
neg bond.name = v[1];
negb.name = v[1l];

con.negative bonds.add(neg bond) ;
newc.negative bonds.add (negb);
break;

} else if (!r[i].contains("not") && r[i].contains("-")) {
Token bond = new Token () ;
Token nbond = new Token () ;
bond.name = r[i];
nbond.name = r[i];
con.bonds.add (bond) ;
newc.bonds.add (nbond) ;

}

else if (!r[i].contains("-")) {
if (!r[i].contains ("not")) {

for (int j = 0; j < petri.tokens.size(); J++) {
if (r[i].compareTo(petri.tokens.get(j) .name) == 0) {
con.tokens.add(petri.tokens.get (j));
Token nt = new Token();
nt.name = petri.tokens.get(j) .name;

C-4

nt.id = petri.tokens.get (j).id;
newc.tokens.add (nt) ;
break;
}
}

} else if (r[i].contains("not")) {

String bb[] = r[i].split("not");

String v[] = bb[1l].split (" ");

for (int j = 0; j < petri.tokens.size(); J++) {

if (v[1l].compareTo (petri.tokens.get(j) .name) == 0) {
con.negative tokens.add(petri.tokens.get(j));

Token nt = new Token () ;

nt.name = petri.tokens.get (j) .name;
nt.id = petri.tokens.get (7j).id;
newc.negative tokens.add(nt);

break;
}
}
}

}
}
} else {

if (rn[0].compareTo(" ") == 0) {
// con.empty token = true;
} else {

=1 || rn[0].length() == 3) {
j < petri.tokens.size(); Jj++) {
.c

ompareTo (petri.tokens.get (j) .name) == 0)

if (rn[0].length() =
for (int 7 = 0;
if (rn[0]
con.tokens.add (petri.tokens.get (3));
Token nt = new Token () ;
nt.name = petri.tokens.get (j) .name;
nt.id = petri.tokens.get(j).1id;
newc.tokens.add (nt) ;
break;
} else if (rn[0].contains("-")) {
Token bond = new Token () ;
Token nb = new Token () ;
bond.name = rn[0];
nb.name = rn[0];
con.bonds.add (bond) ;
newc.bonds.add (nb) ;

break;
}
}
}
}
}
if (tl[1l].startsWith("p") == true) ({
for (int i = 0; i < petri.places.size(); i++) {
if (petri.places.get (i) .place name.compareTo(tl[1l]) == 0) {
con.place = petri.places.get(i);
con.from = 'p';
con.to = 't';
newc.from = 'p';
newc.to = 't';
break;

C-5

}
}
for (int i = 0; i < petri.transitions.size(); i++) {
if (petri.transitions.get(i).transition name.compareTo(11[0]) ==

0) |
con.transition = petri.transitions.get (1i);
con.transition.num of input = con.transition.num of input
+ 1; - -
break;
}
}
} else if (tl[l].startsWith("t") == true) {
for (int i = 0; i < petri.transitions.size(); i++) {
if (petri.transitions.get(i).transition name.compareTo(tl[1l]) == 0) {
con.transition = petri.transitions.get (i);
con.from = 't';
con.to = 'p';
newc.from = 't';
newc.to = 'p';
}
}
for (int i = 0; 1 < petri.places.size(); 1i++) {
if (petri.places.get (i) .place name.compareTo (11[0]) == 0) {
con.place = petri.places.get(i);
con.transition.num of output = con.transition.num of output + 1;
break;
}
}
}
con.connection id = count;
newc.connection id = count;
count++;

petri.arcs.add(con);
initial marking.arcs.add(newc);

}

if (line.compareTo ("Initial marking:") == 0) {

String £ = scan.nextLine();

while ((f.compareTo("]") != 0)) {

f = scan.nextLine();

String[] p = f.split("->");

if (f.compareTo("]") == 0) {
break;

}

for (int i = 0; i < petri.places.size(); i++) {
if (petri.places.get (i) .place name.compareTo(p[0]) == 0) {

if (p[l].compareTo("0") == 0) {

petri.places.get (i) .empty = true;

} else {
if (p[l].contains("-")) {
Token bond = new Token();
Token nb = new Token () ;

C-6

bond.name = p[1l];

nb.name = p[l];
petri.places.get (i) .bonds.add (bond) ;

initial marking.places.get (i) .bonds.add (nb);

} else {
for (int j = 0; j < petri.tokens.size(); Jj++) {
if (petri.tokens.get (j) .name.compareTo(p[l]) == 0) {

Token nb = new Token();

nb.name = p[l];
petri.places.get (i) .tokens.add(petri.tokens.get(j));
initial marking.places.get (i) .tokens.add(nb);

break;
}
}
}
}
}
}
}
}
}

}
private void initialize() {
frame = new JFrame () ;

frame.setResizable (false) ;

frame.setTitle ("Simulator for Reversible Petri Nets");
frame.setBounds (100, 100, 633, 440);

panel.setBackground (Color.WHITE) ;

panel.setlLayout (null) ;

panel.setBounds (100, 100, 633, 440);
frame.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;
1blNewLabel = new JLabel ("Please select the method you want to give
the input:");

1lblNewLabel.setBounds (86, 11, 478, 20);
1blNewLabel.setHorizontalAlignment (SwingConstants.CENTER) ;
1blNewLabel.setForeground (Color.BLACK) ;

1lblNewLabel.setFont (new Font ("Times New Roman", Font.BOLD, 17));
1blNewLabel.setVisible (true) ;

panel.add (1lblNewLabel) ;

JButton btnuser = new JButton ("CREATE NEW PETRI NET",

new Imagelcon (MainWindow.class.getResource ("/images/user.png")));
btnuser.setBounds (217, 85, 184, 271);

panel.add (btnuser) ;

btnuser.setHorizontalTextPosition (SwingConstants.CENTER) ;
btnuser.setOpaque (false) ;

btnuser.setContentAreaFilled (false);

btnuser.setFont (new Font ("Times New Roman", Font.PLAIN, 12));
btnuser.setVerticalAlignment (SwingConstants. TOP) ;
btnuser.setVerticalTextPosition (SwingConstants.TOP) ;

JButton btnread = new JButton ("READ FROM FILE",

new Imagelcon (MainWindow.class.getResource ("/images/file.png"))):;
btnread.setBounds (10, 85, 184, 271);

C-7

panel.add (btnread) ;
btnread.setVerticalTextPosition (SwingConstants. TOP) ;
btnread.setHorizontalTextPosition (SwingConstants.CENTER) ;
btnread.setOpaque (false) ;
btnread.setContentAreaFilled (false) ;
btnread.setFont (new Font ("Times New Roman", Font.PLAIN, 12));
btnread.setVerticalAlignment (SwingConstants. TOP) ;
btnread.setText ("READ FROM FILE\r\n");
btnread.addActionlListener (new ActionListener () {

public void actionPerformed (ActionEvent arg0) {

choice = 1;
JFileChooser fc = new JFileChooser();
File file;
String filename = "";
int returnval = fc.showOpenDialog(fc);
if (returnval == JFileChooser.APPROVE_OPTION) {

fc.setCurrentDirectory (new File (System.getProperty ("user.home")));
file = fc.getSelectedFile();

filename = file.getAbsolutePath();

Scanner scan=null;

try {
scan = new Scanner (file);
} catch (FileNotFoundException el) {
// TODO Auto-generated catch block
el.printStackTrace () ;
}
String path = file.getAbsolutePath();
if (!path.endsWith(".txt")) {
JOptionPane.showMessageDialog
(panel, "The file type is incorrect. It has to be a .txt file.",
null, JOptionPane.INFORMATION MESSAGE) ;
} else {
read file(scan);
panel.setVisible (false) ;
try {
secondS = new Screen2 () ;
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace() ;
} catch (ParserConfigurationException e) ({
// TODO Auto-generated catch block
e.printStackTrace () ;
} catch (SAXException e) {
// TODO Auto-generated catch block
e.printStackTrace () ;
}
secondS.setVisible (true) ;
frame.getContentPane () .add (secondS) ;
}
} else if (returnval == JFileChooser.ERROR _OPTION) ({
frame.setBounds (100, 100, 633, 440);
MainWindow.panel.setVisible (true) ;

)

btnuser.addActionListener (new ActionListener () {
public void actionPerformed (ActionEvent arg0) {

C-8

choice = 2;

frame

.setBounds (100, 100, 761, 680);

readUser?2 rf=new readUser?2 (frame);

panel

.setVisible (false);

rf.setVisible (true) ;

1)

JButton btnDrawTheInitial = new JButton ("DRAW INITIAL PETRINET") ;

btnDrawTheInitial
btnDrawTheInitial
btnDrawTheInitial
btnDrawTheInitial

.setVerticalAlignment (SwingConstants. TOP) ;
.setBackground (Color.WHITE) ;
.setToolTipText ("");

.setIcon (new

ImagelIcon (MainWindow.class.getResource ("/images/images.png")));

btnDrawTheInitial
12));

btnDrawTheInitial.
btnDrawTheInitial.
btnDrawTheInitial.
btnDrawTheInitial.

public void

.setFont (new Font ("Times New Roman", Font.PLAIN,

setBounds (423, 85, 194, 271);
setVerticalTextPosition (SwingConstants. TOP) ;
setHorizontalTextPosition (SwingConstants.CENTER) ;
addActionlListener (new ActionlListener () {

actionPerformed (ActionEvent arg0) {

choice = 3;

panel

.setVisible (false);

Explanation exp = new Explanation (frame) ;

frame

.getContentPane () .add (exp) ;

exp.setVisible (true);

}
1)

panel.add (btnDrawTheInitial);

frame.getContentPane () .add (panel) ;

import java.awt.Color;
import java.awt.Font;

import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JList;

import javax.swing.JOptionPane;

import javax.swing.JPanel;

import javax.swing.JScrollPane;

import javax.swing.JTable;

import javax.swing.table.DefaultTableModel;

import javax.xml.parsers.ParserConfigurationException;

import org.xml.sax.SAXException;

import javax.swing.SwingConstants;
import javax.swing.JTextField;

import javax.swing.JButton;

import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;
import java.awt.event.KeyAdapter;

C-9

import java.awt.event.KeyEvent;
import java.io.IOException;
import java.util.ArrayList;

import javax.swing.JComboBox;

import javax.swing.UIManager;

import java.awt.SystemColor;

import javax.swing.DefaultComboBoxModel;
import javax.swing.DefaultListModel;
import java.awt.Panel;

public class readUser2 extends JPanel {

private static final long serialVersionUID = 1L;
public static Object[] columns = { "Place name", "Token/Bond" };

[
public static Object[] columnsl = { "Transition name" };
public static Object[] columns2 = { "Token name"};
public static Object[] columns3 = { "Bond name"};
public static Object[] columns4 = { "Place", "Transition", "From",
"To" ,"Label"};
public static Object[] columns5 = { "Bond name"};
public static Object[] columnsé = { "Token name"};

private JTextField textField;

private JTextField textField 1;

private JTextField textField 2;

public static PetriNet initial marking = new PetriNet ();
public static PetriNet petri = new PetriNet ();

private JTextField textField 3;

public JTextField textField 4;

public ArraylList<String[]>arc label=new ArrayList<String[]>();
private Screen2 secondS;

public readUser2 (JFrame frame) {

JPanel panel = new JPanel ()

setBackground (Color.WHITE) ;

setLayout (null) ;

frame.setBounds (130, 130, 992, 720);

panel.setBounds (20, 20, 990, 717);

panel.setBackground (Color.WHITE) ;

panel.setLayout (null) ;

frame.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;

JLabel 1blReadInputFrom = new JLabel ("Create new Petri net:");
1blReadInputFrom.setForeground (Color.BLACK) ;
1blReadInputFrom.setHorizontalAlignment (SwingConstants.CENTER) ;
1blReadInputFrom.setBounds (400, 0, 233, 32);
1blReadInputFrom.setFont (new Font ("Times New Roman", Font.BOLD, 23));
panel.add (lblReadInputFrom) ;

DefaultTableModel model = new DefaultTableModel () ;
JTable table = new JTable();

JScrollPane scroll = new JScrollPane();
panel.add(scroll);

scroll.setViewportView (table);
model.setColumnIdentifiers (columns) ;
table.setModel (model) ;

table.setVisible (true) ;

scroll.setBounds (753, 77, 194, 78);

C-10

JLabel 1lblDeclareThePlaces = new JLabel ("Declare the places of your
marking :");

lblDeclareThePlaces.setFont (new Font ("Times New Roman", Font.BOLD,
13));

lblDeclareThePlaces.setBounds (22, 54, 261, 32);

panel.add (lblDeclareThePlaces);

JLabel 1blPlaces = new JLabel ("Places");

lblPlaces.setFont (new Font ("Times New Roman", Font.BOLD, 13));
1blPlaces.setHorizontalAlignment (SwingConstants.CENTER) ;
1lblPlaces.setBounds (822, 54, 65, 25);

panel.add (lblPlaces);

DefaultTableModel model transitions = new DefaultTableModel () ;
JTable tablel = new JTable();

JScrollPane scrolll = new JScrollPane();

panel.add(scrolll);

scrolll.setViewportView (tablel);

model transitions.setColumnlIdentifiers(columnsl);
tablel.setModel (model transitions);

tablel.setVisible (true) ;

scrolll.setBounds (824, 193, 122, 78);

DefaultTableModel model negt = new DefaultTableModel () ;
JTable tablenegt = new JTable();

JScrollPane scrollnt = new JScrollPane();
panel.add(scrollnt);

scrollnt.setViewportView (tablenegt) ;

model negt.setColumnIdentifiers(columnsé);
tablenegt.setModel (model negt);
tablenegt.setVisible (true) ;

scrollnt.setBounds (847, 315, 97, 78);

DefaultTableModel model negb = new DefaultTableModel () ;
JTable tablenegb = new JTable();

JScrollPane scrollnb = new JScrollPane();
panel.add(scrollnb);

scrollnb.setViewportView (tablenegb) ;

model negb.setColumnIdentifiers(columns)b);
tablenegb.setModel (model negb);
tablenegb.setVisible (true) ;

scrollnb.setBounds (847, 446, 97, 78);

JLabel 1blTransitions = new JLabel ("Transitions");
lblTransitions.setHorizontalAlignment (SwingConstants.CENTER) ;
lblTransitions.setFont (new Font ("Times New Roman", Font.BOLD, 13));
lblTransitions.setBounds (861, 169, 65, 25);
panel.add(lblTransitions);

DefaultTableModel model tokens = new DefaultTableModel () ;
JTable table? = new JTable();

JScrollPane scroll?2 = new JScrollPane();
panel.add(scroll?2);

scroll?.setViewportView (table?2);

model tokens.setColumnIdentifiers (columnsZ);
table2.setModel (model tokens);

table?2.setVisible (true) ;

scroll2.setBounds (703, 315, 102, 78);

JLabel 1blTokens = new JLabel ("Tokens");

C-11

1blTokens.setHorizontalAlignment (SwingConstants.CENTER) ;
1lblTokens.setFont (new Font ("Times New Roman", Font.BOLD, 13));
1blTokens.setBounds (703, 292, 65, 25);

panel.add (1lblTokens) ;

JLabel lblDeclareTheTransitions = new JLabel ("Declare the transitions
of your marking :");

lblDeclareTheTransitions.setFont (new Font ("Times New Roman",
Font.BOLD, 13));

lblDeclareTheTransitions.setBounds (22, 169, 261, 32);

panel.add (lblDeclareTheTransitions);

JLabel lblDeclareTheTokens = new JLabel ("Declare the tokens of your
marking :");

lblDeclareTheTokens.setFont (new Font ("Times New Roman", Font.BOLD,
13));

1lblDeclareTheTokens.setBounds (22, 292, 261, 32);

panel.add (lblDeclareTheTokens) ;

JLabel 1blPlaceName = new JLabel ("Place name:");
lblPlaceName.setFont (new Font ("Times New Roman'", Font.BOLD, 13));
1blPlaceName.setHorizontalAlignment (SwingConstants.CENTER) ;
1blPlaceName.setBounds (45, 89, 71, 14);

panel.add (lblPlaceName) ;

JLabel 1lblPleasePressEnter = new JLabel

("<html> Please press enter before creating the object .</html>");
lblPleasePressEnter.setFont (new Font ("Tahoma", Font.PLAIN, 11));
1lblPleasePressEnter.setVerticalAlignment (SwingConstants. TOP) ;
1blPleasePresskEnter.setForeground (Color.RED) ;
1blPleasePressEnter.setBounds (214, 85, 147, 37);

panel.add (lblPleasePressEnter);

JButton btnCreate = new JButton ("CREATE") ;
btnCreate.addActionListener (new ActionListener () {
public void actionPerformed (ActionEvent arg0) {
boolean flag=false;
for (int i=0;i<model.getRowCount () ;i++) {

if (model.getValueAt (i,

0) .toString () .compareTo (textField.getText ())==0) {
flag=true;
}
}
if(!flag) {
Object[] name = new Object[l];
name [0] = textField.getText();
model.addRow (name) ;
textField.setText ("");
1blPleasePresskEnter.setForeground (Color. red) ;
} else {

JOptionPane.showMessageDialog(panel,

"The places are unique, you have to create a place with a different
name.", null,

JOptionPane.INFORMATION MESSAGE) ;

textField.setText ("");
1blPleasePressEnter.setForeground (Color.RED) ;

}

}

C-12

) ;

btnCreate.setBackground (new Color (50, 205, 50));
btnCreate.setFont (new Font ("Times New Roman", Font.BOLD, 13));
btnCreate.setForeground (Color.WHITE) ;

btnCreate.setBounds (121, 122, 89, 23);

panel.add (btnCreate);

textField = new JTextField();

textField.addKeyListener (new KeyAdapter () {

@Override
public void keyPressed(java.awt.event.KeyEvent evt) {
if (evt.getKeyCode () == KeyEvent.VK ENTER) {

1blPleasePresskEnter.setForeground (Color.GREEN) ;

1)

textField.setBounds (139, 86, 71, 25);
panel.add(textField) ;
textField.setColumns (10) ;

frame.getContentPane () .add (panel) ;

JLabel lblTransitionName = new JLabel ("Transition name:");
1blTransitionName.setHorizontalAlignment (SwingConstants.CENTER) ;
1lblTransitionName.setFont (new Font ("Times New Roman", Font.BOLD, 13));
1blTransitionName.setBounds (44, 217, 94, 14);
panel.add(lblTransitionName) ;

JLabel label 1 = new JLabel

("<html> Please press enter before creating the object .</html>");
label 1.setVerticalAlignment (SwingConstants.TOP) ;

label 1.setForeground(Color.RED);

label 1.setFont (new Font ("Tahoma", Font.PLAIN, 11));

label 1.setBounds (226, 212, 147, 37);

panel.add(label 1);

textField 1 = new JTextField();
textField 1.addKeyListener (new KeyAdapter () {

@Override
public void keyPressed(java.awt.event.KeyEvent evt) {
if (evt.getKeyCode () == KeyEvent.VK ENTER) ({

label 1.setForeground(Color.GREEN) ;

1)

textField 1.setColumns (10);

textField 1.setBounds (151, 212, 71, 25);
panel.add(textField 1);

JButton button = new JButton ("CREATE") ;
button.addActionListener (new ActionListener () {
public void actionPerformed (ActionEvent e) {
boolean flag=false;

for (int i=0;i<model transitions.getRowCount ();it++) {
if (model transitions.getValueAt (i,

0) .toString () .compareTo (textField 1l.getText ())==0) {

C-13

flag=true;

}
}
if(!'flag){
Object[] name = new Object[1l];
name [0] = textField 1l.getText();
model transitions.addRow (name);
textField 1.setText ("");
label 1l.setForeground(Color.red);

}
else(

JOptionPane. showMessageDialog (panel,

"The transitions are unique, you have to create a transition
with a different name."

, null, JOptionPane.INFORMATION MESSAGE) ;

textField 1.setText("");

label 1.setForeground(Color.red);

}

}
1) ;
button.setForeground (Color.WHITE) ;
button.setFont (new Font ("Times New Roman", Font.BOLD, 13));
button.setBackground (new Color (50, 205, 50));
button.setBounds (121, 248, 89, 23);
panel.add (button) ;

JLabel 1blTokenName = new JLabel ("Token name:");
1blTokenName.setHorizontalAlignment (SwingConstants.CENTER) ;
1lblTokenName.setFont (new Font ("Times New Roman", Font.BOLD, 13));:
1blTokenName.setBounds (44, 329, 94, 14);

panel.add (lblTokenName) ;

JLabel label 2 = new JLabel

("<html> Please press enter before creating the object .</html>");
label 2.setVerticalAlignment (SwingConstants.TOP) ;

label 2.setForeground(Color.RED);

label 2.setFont (new Font ("Tahoma", Font.PLAIN, 11));

label 2.setBounds (226, 324, 147, 37);

panel.add(label 2);

textField 2 = new JTextField();
textField 2.addKeyListener (new KeyAdapter () {

@Override
public void keyPressed(java.awt.event.KeyEvent evt) {
if (evt.getKeyCode () == KeyEvent.VK ENTER) ({

label 2.setForeground(Color.GREEN) ;

1)

textField 2.setColumns(10);

textField 2.setBounds (151, 324, 71, 25);
panel.add (textField 2);

JButton button 1 = new JButton ("CREATE");
button 1.addActionListener (new ActionListener () {
public void actionPerformed (ActionEvent e) {

boolean flag=false;

for (int i=0;i<model tokens.getRowCount ();i++) {

C-14

if (model tokens.getValueAt (i,
0) .toString () .compareTo (textField 2.getText ())==0) {
flag=true;
}
}
if(!'flag){
Object[] name = new Object[l];
name [0] = textField 2.getText();
model tokens.addRow (name) ;
textField 2.setText ("");
label 2.setForeground(Color.red);
}
else/{
JOptionPane. showMessageDialog (panel,
"The tokens are unique, you have to create a token with a different
name."
, null,JOptionPane.INFORMATION MESSAGE) ;
textField 2.setText ("");
label 2.setForeground(Color.red);
}
}
)
button 1.setForeground(Color.WHITE) ;
button 1.setFont (new Font ("Times New Roman", Font.BOLD, 13));
button 1.setBackground(new Color (50, 205, 50));
button 1.setBounds (121, 360, 89, 23);
panel.add (button 1);

JLabel 1lblDeclareTheBonds = new JLabel ("Declare the bonds of your
marking :");

lblDeclareTheBonds.setFont (new Font ("Times New Roman", Font.BOLD,
13));

lblDeclareTheBonds.setBounds (22, 417, 261, 32);

panel.add (lblDeclareTheBonds) ;

JComboBox<String> comboBox = new JComboBox<String>();
comboBox.setBounds (221, 482, 54, 20);

comboBox.setVisible (false) ;
panel.add (comboBox) ;

JLabel 1lblNewLabel = new JLabel ("Token 1:");
1lblNewLabel.setFont (new Font ("Tahoma", Font.BOLD, 11));
1blNewLabel.setBounds (218, 460, 60, 14);

panel.add (lblNewLabel) ;

lblNewLabel.setVisible (false) ;

JLabel 1blToken = new JLabel ("Token 2:");

1lblToken.setFont (new Font ("Tahoma", Font.BOLD, 11));
1blToken.setBounds (313, 460, 60, 14);
panel.add (1lblToken) ;
1blToken.setVisible (false) ;

JComboBox<String> comboBox 1 = new JComboBox<String>();
comboBox 1.setBounds (310, 482, 59, 20);

panel.add (comboBox 1);

comboBox 1.setVisible (false);

DefaultTableModel model bonds = new DefaultTableModel () ;

C-15

JTable table3 = new JTable();

JScrollPane scroll3 = new JScrollPane();
panel.add(scroll3);

scroll3.setViewportView (table3);

model bonds.setColumnlIdentifiers (columns3);
table3.setModel (model bonds) ;
table3.setVisible (true) ;
scroll3.setBounds (703, 446, 102, 78);

DefaultTableModel model arcs = new DefaultTableModel () ;
JTable tabled = new JTable();

JScrollPane scrolld = new JScrollPane();
panel.add(scrolld);

scrolld.setViewportView (tabled) ;

model arcs.setColumnIdentifiers (columnsd);
tabled.setModel (model arcs);

tabled.setVisible (true) ;

scrolld.setBounds (657, 571, 323, 78);

JButton button 2 = new JButton ("CREATE");
button 2.addActionListener (new ActionListener () {
public void actionPerformed (ActionEvent arg0) {
String cl = comboBox.getSelectedItem() .toString();
String c2 = comboBox l.getSelectedItem().toString();
if (cl.compareTo (c2)==0) {
JOptionPane.showMessageDialog (panel,
"The bond has to be composed from two different
tokens.Please try again"
, null, JOptionPane.INFORMATION MESSAGE) ;
comboBox.setSelectedIndex (-1);
comboBox 1.setSelectedIndex(-1);
}

else/(
Object[] ¢ = new Object[l];
c[0] = cl + "=-" + c2;

model bonds.addRow (c) ;
comboBox.setSelectedIndex (-1);
comboBox 1.setSelectedIndex(-1);
}
}
)
button 2.setForeground(Color.WHITE) ;
button 2.setFont (new Font ("Times New Roman", Font.BOLD, 13));
button 2.setBackground(new Color (50, 205, 50));
button 2.setBounds (250, 513, 89, 23);
panel.add(button 2);
button 2.setVisible (false);
JButton btnCreateBond = new JButton ("CREATE BOND") ;
btnCreateBond.addActionListener (new ActionListener () {
public void actionPerformed (ActionEvent arg0) {
if (model tokens.getRowCount () > 1) {
1blToken.setVisible (true) ;
1blNewLabel.setVisible (true) ;
comboBox.setVisible (true) ;
comboBox 1.setVisible (true);
button 2.setVisible (true);
Object f = null;

for (int i = 0; i < table2Z2.getRowCount(); i++) {

C-16

f = model tokens.getValueAt (i, 0);
comboBox.insertItemAt (f.toString (), 1i);

}

for (int i = 0; i < table2.getRowCount(); i++) {
f = model tokens.getValueAt (i, 0);
comboBox l.insertItemAt (f.toString(), 1i);

}

compoBox.setSelectedIndex (-1);
comboBox 1.setSelectedIndex(-1);

} else {
JOptionPane.showMessageDialog (panel,
"You have to define the tokens of the marking before
creating the bonds."
, null, JOptionPane.INFORMATION MESSAGE) ;
}
}
1)
btnCreateBond.setBackground (SystemColor.inactiveCaption) ;
btnCreateBond.setForeground (Color.WHITE) ;
btnCreateBond.setFont (new Font ("Tahoma", Font.BOLD, 12));
btnCreateBond.setBounds (230, 421, 131, 23);
panel.add (btnCreateBond) ;

JLabel 1blBonds = new JLabel ("Bonds");
1blBonds.setVerticalAlignment (SwingConstants. TOP) ;
1blBonds.setHorizontalAlignment (SwingConstants.CENTER) ;
1lblBonds.setFont (new Font ("Times New Roman", Font.BOLD, 13));
1blBonds.setBounds (703, 421, 65, 25);

panel.add (1lblBonds) ;

JLabel 1lblDeclareTheArcs = new JLabel ("Declare the arcs of your
marking :");

1blDeclareTheArcs.setHorizontalAlignment (SwingConstants.LEFT) ;
lblDeclareTheArcs.setFont (new Font ("Times New Roman", Font.BOLD, 13));
lblDeclareTheArcs.setBounds (22, 548, 208, 32);

panel.add (lblDeclareTheArcs) ;

JComboBox<String> comboBox 2 = new JComboBox<String>();
comboBox 2.setBounds (22, 608, 54, 20);

panel.add (comboBox 2);

comboBox 2.setVisible (false);

JComboBox<String> comboBox 3 = new JComboBox<String>();
comboBox 3.setBounds (104, 608, 54, 20);

panel.add (comboBox 3);

comboBox 3.setVisible (false);

JLabel 1blNewLabel 1 = new JLabel ("Place:");

1blNewLabel 1.setFont (new Font ("Tahoma", Font.BOLD, 11));
1blNewLabel 1.setBounds (22, 586, 46, 14);

panel.add (lblNewLabel 1);

lblNewLabel 1.setVisible (false);

JLabel 1lblNewLabel 2 = new JLabel ("Transition:");

1blNewLabel 2.setFont (new Font ("Tahoma", Font.BOLD, 11));
lblNewLabel 2.setBounds (104, 586, 71, 14);

C-17

panel.add (lblNewLabel 2);
lblNewLabel 2.setVisible (false);

JComboBox<String> comboBox 4 = new JComboBox<String>();

comboBox 4.setModel (new DefaultComboBoxModel (new String[] { "Place",

"Transition" }));

comboBox 4.setBounds (22, 654, 87, 20);
panel.add (comboBox 4);

comboBox 4.setVisible (false);

JButton button 3 = new JButton ("CREATE");
button 3.addActionListener (new ActionListener () {
public void actionPerformed (ActionEvent e) {

String cl = comboBox 2.getSelectedItem().toString();
String c2 = comboBox 3.getSelectedItem().toString();
String c3 = comboBox 4.getSelectedItem().toString();
String céd=textField 4.getText();
Object[] ¢ = new Object[5];

c[0] = cl;
cl[l] = c2;
String from = c3.substring (0, 1);
from = from.toLowerCase();
c[2] = from;
if (from.compareTo ("p") == 0) {
c[3] = "t";
} else {
c[3] = "p";
}
if(c4.contains (", ")) {

String split[]=cd4.split(",");
String s[]=new String[split.length];
for (int i=0;i<split.length;i++) {
s[il=splitl[il];
}
arc_label.add(s);
boolean check[]=new boolean[split.length];
for (int i=0;i<split.length;i++) {
for (int 7=0;j<table2.getRowCount ();j++) {
if (split[i].compareTo (table2.getValuelAt (j,
0) .toString())==0) {
check[i]=true;
}
}
for (int j=0;j<table3.getRowCount ();j++) {
if (split[i].compareTo (table3.getValueAt (j,
0) .toString())==0) {
check[i]=true;
}

}
for (int j=0; j<tablenegt.getRowCount ();j++) {

if (split[i].compareTo (tablenegt.getValueAt (j,0).toString())==0) {

check[i]=true;
}
}
for (int j=0;j<tablenegb.getRowCount () ;j++) {
if (split[i].compareTo (tablenegb.getValueAt (7j,
0) .toString())==0) {
check[i]=true;

C-18

}
}
boolean cf=true;
for (int i=0;i<check.length;i++) {
if (check[i] !=true) {
cf=false;
}
}
if (cf==true) {
cl4]=c4;
model arcs.addRow (c) ;
}
else(
JOptionPane. showMessageDialog(panel,
"You have to define the tokens/bonds before assign them to an
arc as label.",
null, JOptionPane.INFORMATION MESSAGE) ;
}
}
else(
String s[]=new String[l];
s[0]=c4;
arc_label.add(s);
boolean check=false;
for (int i=0;i<table2.getRowCount () ;i++) {
if (c4.compareTo (table2.getValueAt (i, 0).toString())==0) {
check=true;
}

}
for (int i=0;i<table3.getRowCount () ;i++

)
if (c4.compareTo (table3.getValueAt
check=true;

{
(i

i, 0).toString())==0) {

}
}
for (int i1i=0;i<tablenegt.getRowCount () ;i++)
if (c4.compareTo (tablenegt.getValueAt
0) .toString())==0) {
check=true;

1,

{
(

}

}
for (int i=0;i<tablenegb.getRowCount () ;i++

)
if (c4.compareTo (tablenegb.getValueAt
0) .toString())==0) {
check=true;

1y

{
(

}
}
if (check==true) {
cld4]=c4;
model arcs.addRow (c) ;
}
}

comboBox 2.setSelectedIndex(-1);
comboBox 3.setSelectedIndex(-1);
comboBox 4.setSelectedIndex(-1);
textField 4.setText ("");

}
1)

C-19

button 3.setForeground(Color.WHITE) ;

button 3.setFont (new Font ("Times New Roman", Font.BOLD, 13));
button 3.setBackground(new Color (50, 205, 50));

button 3.setBounds (155, 657, 89, 23);

panel.add (button_ 3);

button 3.setVisible (false);

JLabel 1blFrom = new JLabel ("From:");
1blFrom.setFont (new Font ("Tahoma", Font.BOLD, 11));
1blFrom.setBounds (22, 635, 46, 14);

panel.add (lblFrom) ;

1blFrom.setVisible (false) ;

JLabel 1blArcLabel = new JLabel ("Arc label:");
1blArcLabel.setFont (new Font ("Tahoma", Font.BOLD, 11));
1blArcLabel.setBounds (176, 586, 54, 14);

panel.add (lblArcLabel);

1blArcLabel.setVisible (false) ;

textField 4 = new JTextField();
textField 4.setBounds (168, 608, 157, 20);
panel.add (textField 4);
textField 4.setColumns(10);
(

textField 4.setVisible (false);

JLabel lbluseCommas = new JLabel

("<html>Use commas (\",\") for each different token/bond and
\"not\" "

+ "for each negative token and/or bond.</html>");
1bluseCommas.setVerticalAlignment (SwingConstants. TOP) ;
1lbluseCommas.setFont (new Font ("Tahoma", Font.PLAIN, 10));
lbluseCommas.setBounds (168, 626, 250, 37);

panel.add (lbluseCommas) ;

lbluseCommas.setVisible (false) ;

JButton btnCreateArc = new JButton ("CREATE ARC");
btnCreateArc.addActionListener (new ActionListener () ({
public void actionPerformed (ActionEvent e) {
if (model.getRowCount () >= 1 &&
model transitions.getRowCount () >= 1
&& model tokens.getRowCount ()>=1) {
lblNewLabel 2.setVisible (true);
lblNewLabel 1.setVisible (true);
comboBox 3.setVisible (true);
comboBox 2.setVisible (true);
button 3.setVisible (true);
comboBox 4.setVisible (true);
1blArcLabel.setVisible (true) ;
textField 4.setVisible (true);
lbluseCommas.setVisible (true) ;
1blFrom.setVisible (true) ;
Object f = null;
for (int i = 0; i < table.getRowCount(); i++) {
f = model.getValueAt (i, 0);
comboBox 2.insertItemAt (f.toString(), 1i);
}
for (int i = 0; i < tablel.getRowCount(); i++) {
f = model transitions.getValueAt(i, 0);
comboBox 3.insertItemAt (f.toString(), 1i);

C-20

transtions o

}
)

btnCreateArc.
btnCreateArc.
btnCreateArc.
btnCreateArc.

panel.add (bt

JLabel 1blAr
1blArcs.setV
1blArcs.setH
1blArcs.setF
1blArcs.setB
panel.add (1lb

JLabel 1blIn
place:");
1lblInsertTok
1lblInsertTok
13));
lblInsertTok
panel.add(lb
JLabel 1blPl1
1lblPlace.set
1blPlace.set
panel.add (1b

comboBox 2.setSelectedIndex(0);
comboBox 3.setSelectedIndex(0);

} else {
JOptionPane.showMessageDialog (panel,
"You have to define the places ,tokens,and
f the"
+ " marking before creating the arcs.",
null, JOptionPane.INFORMATION MESSAGE) ;

setForeground (Color.WHITE) ;

setFont (new Font ("Tahoma", Font.BOLD, 12));
setBackground (SystemColor. inactiveCaption) ;
setBounds (230, 552, 131, 23);

nCreateArc) ;

cs = new JLabel ("Arcs");

erticalAlignment (SwingConstants. TOP) ;
orizontalAlignment (SwingConstants.CENTER) ;

ont (new Font ("Times New Roman", Font.BOLD, 13));
ounds (802, 552, 65, 25);

1Arcs);

sertTokenbondIn = new JLabel ("Insert token/bond in a

enbondIn.setHorizontalAlignment (SwingConstants.LEFT) ;
enbondIn.setFont (new Font ("Times New Roman", Font.BOLD,

enbondIn.setBounds (428, 54, 163, 32);
lInsertTokenbondIn);

ace = new JLabel ("Place:");

Font (new Font ("Tahoma", Font.BOLD, 11));
Bounds (428, 110, 46, 14);

1Place);

lblPlace.setVisible (false);

JComboBox<St
comboBox 6.s

ring> comboBox 6 = new JComboBox<String>();
etBounds (428, 132, 54, 25);

panel.add (comboBox 6);

comboBox 6.s

JLabel 1blTo
1b1lTokenbond
1b1lTokenbond
panel.add(lb
1blTokenbond

JComboBox <S
comboBox 7.s

etVisible (false) ;

kenbond = new JLabel ("Token/Bond:") ;
.setFont (new Font ("Tahoma", Font.BOLD, 11));
.setBounds (516, 110, 79, 14);

1Tokenbond) ;

.setVisible (false) ;

tring>comboBox 7 = new JComboBox<String>();
etBounds (526, 132, 54, 24);

panel.add (comboBox 7);

comboBox 7.s
JButton butt

etVisible (false) ;
on 4 = new JButton ("CREATE") ;

button 4.addActionListener (new ActionListener () {

public

void actionPerformed (ActionEvent e) {

String cl = comboBox 6.getSelectedItem() .toString();
String c2 = comboBox 7.getSelectedItem() .toString();
Object[] ¢ = new Object[1l];

C-21

int d=Integer.parselInt(cl.substring(l, 2));
cl[0] = c2;
String before="";
if (model.getValueAt (d-1, 1) !=null) {
before=model.getValueAt (d-1, 1).toString()+","+c2;
model.setValueAt (before,d-1, 1);
}

else(
model.setValueAt (c2,d-1, 1);

}
comboBox 6.setSelectedIndex(-1);
comboBox 7.setSelectedIndex(-1);

}
1) ;
button 4.setForeground(Color.WHITE) ;
button 4.setFont (new Font ("Times New Roman", Font.BOLD, 13));
button 4.setBackground(new Color (50, 205, 50));
button 4.setBounds (605, 118, 89, 23);
panel.add (button 4);
button 4.setVisible (false);

JButton btnInsertTokenbondTo = new JButton ("INSERT TOKEN TO PLACE");
btnInsertTokenbondTo.addActionListener (new ActionListener () {
public void actionPerformed (ActionEvent e) {
if (model.getRowCount () >=1 &&
model tokens.getRowCount ()>=1) {
comboBox 7.setVisible (true);
comboBox 6.setVisible (true);
1blTokenbond.setVisible (true) ;
lblPlace.setVisible (true) ;
button 4.setVisible (true);
Object f = null;
for (int i=0; i<model.getRowCount () ;i++) {
f = model.getValueAt (i, 0);
comboBox 6.insertItemAt (f.toString(),

i);
}
for (int i = 0; i < table2.getRowCount(); i++) {
f = model tokens.getValueAt (i, 0);
comboBox 7.insertItemAt (f.toString(), 1);
}
for (int i = 0; i < table3.getRowCount(); i++) {
f = model bonds.getValueAt (i, 0);
comboBox 7.insertItemAt (f.toString(), 1i);
}
comboBox 6.setSelectedIndex(0);
comboBox 7.setSelectedIndex(0);
}
else {

JOptionPane.showMessageDialog (panel,

"You have to define the places and tokens of the marking before
define tokens to a place.",

null, JOptionPane.INFORMATION MESSAGE) ;

C-22

btnInsertTokenbondTo.setForeground (Color.WHITE) ;
btnInsertTokenbondTo.setFont (new Font ("Tahoma", Font.BOLD, 12));
btnInsertTokenbondTo.setBackground (SystemColor.inactiveCaption) ;
btnInsertTokenbondTo.setBounds (417, 85, 186, 22);

panel.add (btnInsertTokenbondTo) ;

JButton btnCreatePetriNet = new JButton ("CREATE PETRI NET");
btnCreatePetriNet.addActionlListener (new ActionListener () {
public void actionPerformed (ActionEvent arg0) {

ArraylList<String[]>places=new ArrayList<String[]>();
ArrayList<String>transitions=new ArrayList<String>();
ArrayList<String>tokens=new ArrayList<String>();
ArrayList<String>bonds=new ArrayList<String>();
ArrayList<String[]>arcs=new ArrayList<String[]>();
ArrayList<String>neg bonds=new ArrayList<String>();
ArrayList<String>neg tokens=new ArrayList<String>();

for (int i1i=0; i<model.getRowCount () ;i++) {
String contents[]=new String[2];
contents[0]=model.getValueAt (i, 0).toString();
if (model.getValueAt (i, 1) !'=null) {
contents[l]=model.getValueAt (i, 1).toString();
}
else(
contents[1l]="";
}
places.add(contents);
}
for (int i=0;i<model transitions.getRowCount();i++)
transitions.add(model transitions.getValueAt

{
(i, 0).toString());

}
for (int i=0;i<model tokens.getRowCount ();i++) {
tokens.add (model tokens.getValueAt (i, 0).toString());
}
for (int i=0;i<model bonds.getRowCount () ;i++) {
bonds.add (model bonds.getValueAt (i, 0).toString());
}
for (int i=0;i<model negb.getRowCount ();i++) {
neg bonds.add(model negb.getValueAt (i, 0).toString());
}
for (int i1=0;i<model negt.getRowCount ();i++) {
neg tokens.add(model negt.getValueAt (i, 0).toString());
}
for (int i=0;i<model arcs.getRowCount ();i++) {
String contents[]=new String[5];

contents[0]=model arcs.getValueAt (i, 0).toString();
contents[l]=model arcs.getValueAt (i, 1).toString();
contents[2]=model arcs.getValueAt (i, 2).toString();
contents[3]=model arcs.getValueAt (i, 3).toString();
contents[4]=model arcs.getValueAt (i, 3).toString();
arcs.add (contents) ;

}

for (int i=0;i<places.size () ;i++) {
Place p=new Place();
Place initp=new Place();
p.place name=places.get (i) [0];
p.place id=i;

C-23

}

initp.place id=i;

initp.place name=places.get (i) [0];
petri.places.add (p);

initial marking.places.add(initp);

for (int i=0;i<transitions.size();i++) {

}

Transition t=new Transition();
Transition initt=new Transition|();

Cell cell=new Cell();

Cell newc=new Cell () ;

t.transition id=i;

t.transition name=transitions.get(i);
cell.tr=t;

initt.transition id=i;

initt.transition name=transitions.get (i);
newc.tr=initt;
petri.transitions.add(t);
petri.history.add(cell);

initial marking.transitions.add(initt);
initial marking.history.add (newc);

for (int i=0;i<tokens.size () ;i++) {

}

Token t=new Token () ;

Token initt=new Token () ;

t.id=i;

t.name=tokens.get (1) ;

initt.id=i;
initt.name=tokens.get (i) ;
petri.tokens.add(t);

initial marking.tokens.add(initt);

int count=0;
for (int i1i=0;i<arcs.size () ;i++) {

Connection arc=new Connection () ;
Connection arcl=new Connection();
Transition tl=new Transition();
Place pl=new Place();

String from="";

String to="";

arc.connection id=count;
arcl.connection id=count;

count++;

for (int j=0; j<petri.places.size();Jj++){

}

if (petri.places.get (j) .place name.compareTo (arcs.get (i) [0])==0) {
arc.place=petri.places.get (j);
pl.place id=petri.places.get(j).place id;
pl.place name=petri.places.get(j).place name;
arcl.place=pl;

}

for (int j=0; j<petri.transitions.size();j++) {

if (petri.transitions.get (J) .transition name.compareTo (arcs.get (i

) [11)==0){

arc.transition=petri.transitions.get(j);
tl.transition id=petri.transitions.get(Jj).transition id;

tl.transition name=petri.transitions.get (j).transition name;

arcl.transition=t1l;

}

C-24

from=arcs.get (i) [2];
to=arcs.get (i) [3];
arc.from=from.charAt (0) ;
arcl.from=from.charAt (0) ;
arc.to=to.charAt (0);
arcl.to=to.charAt (0);

for (int c=0;c<arc_label.get (i) .length;c++) {

if (arc_label.get (i) [c].contains ("not")) {

if (arc_label.get (i) [c].contains ("-")) {

Token t=new Token ()

Token tinit=new Token|();

String d[]l=arc_label.get (i) [c].split ("not");
t.name=d[1l];
tinit.name=d[1l];
arc.negative bonds.add(t);
arcl.negative bonds.add(tinit);

else/(

Token t=new Token () ;

Token tinit=new Token () ;

String d[]l=arc label.get (i) [c].split ("not");
t.name=d[1l];
tinit.name=d[1l];
arc.negative tokens.add(t);
arcl.negative tokens.add(tinit);

else/(
if (arc label.get (i) [c].contains("-")) {

Token t=new Token () ;
Token tinit=new Token () ;
t.name=arc_ label.get (1) [c];
tinit.name=arc_ label.get (i) [c];
arcl.bonds.add (tinit);
arc.bonds.add(t) ;

}

else(
for (int g=0;g<petri.tokens.size();gt++) {

if (petri.tokens.get (q) .name.compareTo (arc_ label.get (i) [c])==0) {
Token tinit=new Token|();
tinit.name=arc label.get (i) [c];
arcl.tokens.add (tinit);
arc.tokens.add (petri.tokens.get (q));

}
}

petri.arcs.add(arc);
initial marking.arcs.add(arcl);

for (int i1i=0;i<places.size () ;i++) {
for (int j=0; j<petri.places.size();Jj++){

C-25

if (petri.places.get(j) .place name.compareTo (places.get (i) [0])==
&& !places.get (i) [1].isEmpty()) {
if (places.get (i) [1].contains (", ")) {
String[] split=places.get (i) [1].split(",");
for (int y=0;y<split.length;y++)
)

{
if (split[y].contains("-")) {
Token bond=new Token () ;
Token bl=new Token() ;
bond.name=split[y];
bl.name=split[vy];
petri.places.get (i) .bonds.add (bond) ;
initial marking.places.get (i) .bonds.add(bl);
}
else(

for (int h=0;h<petri.tokens.size () ;h++) {
if (petri.tokens.get (h) .name.compareTo (split[y])==0) {

petri.places.get (i) .tokens.add(petri.tokens.get (h));
Token t=new Token () ;
t.name=petri.tokens.get (h) .name;
initial marking.places.get (i) .tokens.add(t):;

if (places.get (i) [1].contains ("-")) {

Token bond=new Token () ;
Token bl=new Token() ;
bond.name=places.get (i) [1];
bl.name=places.get (i) [1];
petri.places.get (i) .bonds.add (bond) ;
initial marking.places.get (i) .bonds.add(bl);

}

else(
for (int h=0;h<petri.tokens.size();h++) {

if (petri.tokens.get (h) .name.compareTo (places.get (i) [1])==0) {

petri.places.get (i) .tokens.add(petri.tokens.get (h));
Token t=new Token () ;
t.name=petri.tokens.get (h) .name;

initial marking.places.get (i) .tokens.add(t);
}
}

}

panel.setVisible (false) ;

try |
secondS = new Screen?2 () ;

} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace () ;

C-26

} catch (ParserConfigurationException e) ({
// TODO Auto-generated catch block
e.printStackTrace () ;
} catch (SAXException e) {
// TODO Auto-generated catch block
e.printStackTrace () ;
}
frame.setBounds (100, 100, 600, 447);
secondS.setVisible (true) ;
frame.getContentPane () .add (secondS) ;

}
1)
btnCreatePetriNet.setBackground (Color.ORANGE) ;
btnCreatePetriNet.setForeground (Color.WHITE) ;
btnCreatePetriNet.setFont (new Font ("Tahoma", Font.BOLD, 11)):;
btnCreatePetriNet.setBounds (441, 649, 143, 31);
panel.add (btnCreatePetriNet) ;

JLabel 1blDeclareTheNegative = new JLabel ("Declare the negative tokens
of your marking :");

lblDeclareTheNegative.setFont (new Font ("Times New Roman", Font.BOLD,
13)):

lblDeclareTheNegative.setBounds (417, 292, 261, 32);

panel.add (lblDeclareTheNegative) ;

JLabel label 3 = new JLabel ("Token name:");

label 3.setHorizontalAlignment (SwingConstants.CENTER) ;

label 3.setFont (new Font ("Times New Roman", Font.BOLD, 13));
label 3.setBounds (383, 336, 94, 14);

panel.add(label 3);

JLabel label 4 = new JLabel ("<html> Please press enter before
creating the object .</html>");

label 4.setVerticalAlignment (SwingConstants.TOP) ;

label 4.setForeground(Color.RED);

label 4.setFont (new Font ("Tahoma", Font.PLAIN, 11));

label 4.setBounds (565, 331, 147, 37);

panel.add(label 4);

textField 3 = new JTextField () ;

textField 3.addKeyListener (new KeyAdapter () {

@Override
public void keyPressed(java.awt.event.KeyEvent evt) {
if (evt.getKeyCode () == KeyEvent.VK ENTER) ({

label 4.setForeground(Color.GREEN) ;

1)

textField 3.setColumns (10);

textField 3.setBounds (490, 331, 71, 25);
panel.add(textField 3);

JButton button 5 = new JButton ("CREATE");
button 5.addActionListener (new ActionListener () {
public void actionPerformed (ActionEvent arg0) {
boolean flag=false;
boolean flagl=false;
for (int i=0;i<model negt.getRowCount ();i++) {

C-27

if (model negt.getValueAt (i,
0) .toString () .compareTo (textField 3.getText ())==0) {
flag=true;
}
}
for (int i=0;i<model tokens.getRowCount ();i++) {
if (model tokens.getValueAt (i,
0) .toString () .compareTo (textField 3.getText ())==0) {
flagl=true;
}
}
if(!flag && flagl) {
Object[] name = new Object[1l];

name [0] = textField 3.getText();
model negt.addRow (name) ;
textField 3.setText ("");

label 4.setForeground(Color.red);

else if(flagl && flag){
JOptionPane. showMessageDialog (panel,
"The tokens are unique, you have to create a token with a
different name."
, null, JOptionPane.INFORMATION MESSAGE) ;
textField 3.setText ("");
}
else if(!flagl && !'flag){
JOptionPane.showMessageDialog (panel,
"The tokens that it will be declared as negative they have to be
declared to the tokens set.”
, null, JOptionPane.INFORMATION MESSAGE) ;
textField 3.setText ("");
}
}

)

button 5.setForeground(Color.WHITE) ;

button 5.setFont (new Font ("Times New Roman", Font.BOLD, 13));
button 5.setBackground(new Color (50, 205, 50));

button 5.setBounds (484, 365, 89, 23);

panel.add (button 5);

JLabel 1blToken 1 = new JLabel ("Token 1:");

1blToken 1.setFont (new Font ("Tahoma", Font.BOLD, 11));
1blToken 1.setBounds (453, 460, 65, 14);

panel.add (1blToken 1);

1blToken 1l.setVisible (false);

JLabel 1blToken 2 = new JLabel ("Token 2:");

1blToken 2.setFont (new Font ("Tahoma", Font.BOLD, 11));
1blToken 2.setBounds (560, 460, 60, 14);
panel.add(1lblToken 2);

1blToken 2.setVisible (false);

JComboBox <String>comboBox 8 = new JComboBox<String>();
comboBox 8.setBounds (453, 482, 46, 20);

panel.add (comboBox 8);

comboBox 8.setVisible (false);

JComboBox <String>comboBox 9 = new JComboBox<String>();
comboBox 9.setBounds (560, 482, 46, 20);

C-28

panel.add (comboBox 9);
comboBox 9.setVisible (false);

JButton button 6 = new JButton ("CREATE");
button 6.addActionListener (new ActionListener () {
public void actionPerformed (ActionEvent e) {
String cl = comboBox 8.getSelectedItem().toString();
String c2 = comboBox 9.getSelectedItem().toString();

if (cl.compareTo (c2)==0) {
JOptionPane.showMessageDialog (panel,
"The bond has to be composed from two different
tokens.Please try again"
, null,JOptionPane.INFORMATION MESSAGE) ;
comboBox 8.setSelectedIndex(-1);
comboBox 9.setSelectedIndex(-1);
}

else/(
Object[] ¢ = new Object[l];
c[0] =cl + "=-" + c2;

model negb.addRow (c) ;
comboBox 8.setSelectedIndex(-1);
comboBox 9.setSelectedIndex(-1);
}
}
1) ;
button 6.setForeground (Color.WHITE) ;
button 6.setFont (new Font ("Times New Roman", Font.BOLD, 13));
button 6.setBackground(new Color (50, 205, 50));
button 6.setBounds (478, 514, 89, 23);
panel.add (button 6);
button 6.setVisible (false);

JButton btnCreateNegativeBond = new JButton ("CREATE NEGATIVE BOND") ;
btnCreateNegativeBond.addActionListener (new ActionListener () {
public void actionPerformed (ActionEvent arg0) {
if (model tokens.getRowCount () > 1) {
1blToken 2.setVisible (true
1blToken 1.setVisible (true
comboBox 8.setVisible (true
comboBox 9.setVisible (true
button 6.setVisible (true);

’

’

’

—_— — — —

Object f = null;
for (int i = 0; 1 < model tokens.getRowCount(); i++)

f = model tokens.getValueAt (i, 0);
comboBox 8.insertItemAt (f.toString(), 1);

}

for (int i = 0; i1 < model tokens.getRowCount(); i++)

f = model tokens.getValueAt (i, 0);
comboBox 9.insertItemAt (f.toString(), 1i);

comboBox 8.setSelectedIndex (-1);

C-29

comboBox 9.setSelectedIndex(-1);

} else {
JOptionPane.showMessageDialog (panel,
"You have to define the tokens of the marking before
creating the bonds."
, null,JOptionPane.INFORMATION MESSAGE) ;
}
}
}):
btnCreateNegativeBond.setForeground (Color.WHITE) ;
btnCreateNegativeBond.setFont (new Font ("Tahoma", Font.BOLD, 12));
btnCreateNegativeBond.setBackground (SystemColor.inactiveCaption) ;
btnCreateNegativeBond.setBounds (431, 422, 202, 23);
panel.add (btnCreateNegativeBond) ;

JLabel 1blNegativeTokens = new JLabel ("Negative tokens");
1blNegativeTokens.setHorizontalAlignment (SwingConstants.CENTER) ;
1blNegativeTokens.setFont (new Font ("Times New Roman", Font.BOLD, 13));
1blNegativeTokens.setBounds (837, 292, 107, 25);

panel.add (1lblNegativeTokens) ;

JLabel 1blNegativeBonds = new JLabel ("Negative bonds");
1blNegativeBonds.setVerticalAlignment (SwingConstants. TOP) ;
1blNegativeBonds.setHorizontalAlignment (SwingConstants.CENTER) ;
1blNegativeBonds.setFont (new Font ("Times New Roman", Font.BOLD, 13));
1blNegativeBonds.setBounds (849, 421, 97, 25);

panel.add (lblNegativeBonds) ;

label.setBounds (0, 151, 990, 14);
panel.add(label);

+ L ”"

+ VY e e e e e e e e "

+ W o "

+ o
\r\n");

label 5.setBounds (0, 271, 990, 14);

panel.add(label 5);

oM ___ "
+ W e "

+ W o e e e "

+ Mo \r\n");
label 6.setBounds (0, 394, 990, 14);

panel.add(label 6);

JLabel label 7 = new JLabel ("---——-------""-—""-"--—-——————————————————

C-30

label 7.setVerticalAlignment (SwingConstants.TOP) ;
label 7.setBounds (0, 533, 990, 14);
panel.add (label 7);

JButton button 7 = new JButton ("BACK");
button 7.addActionListener (new ActionListener () {
public void actionPerformed (ActionEvent arg0) {
setVisible (false) ;
frame.setBounds (100, 100, 633, 440);
MainWindow.panel.setVisible (true) ;
}
1)
button 7.setForeground(Color.WHITE) ;
button 7.setFont (new Font ("Times New Roman", Font.BOLD, 12));
button 7.setBackground(SystemColor.activeCaption) ;
button 7.setBounds (0, 0, 89, 23);
panel.add (button 7);

import java.awt.Color;
import java.awt.Desktop;
import java.awt.Font;

import javax.swing.JButton;

import javax.swing.JFrame;

import javax.swing.JLabel;

import javax.swing.JPanel;

import javax.swing.JTextArea;

import javax.swing.SwingConstants;

import javax.swing.UIManager;

import javax.swing.border.EmptyBorder;

import javax.xml.parsers.ParserConfigurationException;

import org.xml.sax.SAXException;

import javax.swing.ImageIcon;

import java.awt.event.ActionListener;
import java.io.File;

import java.io.IOException;

import java.awt.event.ActionEvent;
import java.awt.SystemColor;

public class Explanation extends JPanel {

/**
* Create the panel.
*/
public Explanation (JFrame frame) {
setBounds (100, 100, 566, 399);
setBackground (Color.WHITE) ;

C-31

setBorder (new EmptyBorder (5, 5, 5, 5));
setLayout (null) ;

JTextArea textArea = new JTextArea();

textArea.setFont (new Font ("Times New Roman", Font.PLAIN, 15));
textArea.setBackground (Color.WHITE) ;
textArea.setEditable (false) ;
textArea.setBounds (37, 39, 405, 262);
String directions=" 1.Be sure that the Folder Obeo designer-Community
is saved \n at the location C:Users/Your folder. \n\n 2.Click to
button 'Open Obeo designer' and then when a window \n will appear
click on 'Launch' button. \n\n 3.From the Obeo designer environment
Click Run from the toolbar. \n\n 4.Go to representation tab. \n\n
5.You can now draw the petri net from palette. \n\n 6.When you will
finish, save your Petri net \n diagram and click 'Finish' button.";

textArea.setText (directions);
add (textArea) ;

JLabel 1blHowToDraw = new JLabel ("How to draw your Petri Net");
1blHowToDraw.setHorizontalAlignment (SwingConstants.CENTER) ;
lblHowToDraw.setForeground (new Color (0, 0, 0));
IblHowToDraw.setBackground (UIManager.getColor ("Separator.foreground"))
lblHowToDraw.setFont (new Font ("Times New Roman", Font.BOLD, 18));
lblHowToDraw.setBounds (115, 0, 387, 28);

add (1lblHowToDraw) ;

JButton btnNewButton = new JButton ("Open Obeo Designer");
btnNewButton.addActionListener (new ActionListener () ({
public void actionPerformed (ActionEvent arg0) {
File exec=new File ("C:\\Users\\"
+ "Pantelina\\Downloads\\ObeoDesigner-
Community\\obeodesigner.exe");
try {
Desktop.getDesktop () .open (exec) ;
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
1)
btnNewButton.setFont (new Font ("Times New Roman", Font.BOLD, 12));
btnNewButton.setBackground (new Color (175, 238, 238));
btnNewButton.setBounds (117, 323, 159, 34);
add (btnNewButton) ;

JButton btnNewButton 1 = new JButton ("Finish");

btnNewButton 1.addActionListener (new ActionListener() {
public void actionPerformed (ActionEvent e) {

try {

Screen?2 s2=new Screen2();

setVisible (false) ;

frame.getContentPane () .add (s2) ;

s?2.setVisible (true) ;

} catch (IOException el) {

// TODO Auto-generated catch block

el.printStackTrace();

} catch (ParserConfigurationException el) {

C-32

// TODO Auto-generated catch block
el.printStackTrace();
} catch (SAXException el) {
// TODO Auto-generated catch block
el.printStackTrace () ;

}

}
1)
btnNewButton 1.setBackground(new Color (50, 205, 50));
btnNewButton 1.setFont (new Font ("Times New Roman", Font.BOLD, 13));
btnNewButton 1.setBounds (374, 323, 103, 34);
add (btnNewButton 1);

JLabel label = new JLabel ("");
label.setIcon (new
ImageIcon (Explanation.class.getResource ("/images/hhhhh.png")));

label.setBounds (459, 137, 39, 34);
add (label) ;

JLabel label 1 = new JLabel ("");

label 1.setBounds (184, 175, 372, 32);

add(label 1);

label 1.setIcon (new

Imagelcon (Explanation.class.getResource ("/images/representation.png"))

) ;

JLabel label 2 = new JLabel("");
label 2.setIcon (new
ImagelIcon (Explanation.class.getResource ("/images/palette.png")));

label 2.setBounds (456, 218, 74, 25);
add (label 2);

JButton button = new JButton ("BACK");
button.addActionListener (new ActionListener () {
public void actionPerformed (ActionEvent arg0) {
setVisible (false) ;
frame.setBounds (100, 100, 633, 440);
MainWindow.panel.setVisible (true) ;

)

button.setForeground (Color.WHITE) ;

button.setFont (new Font ("Times New Roman", Font.BOLD, 12));
button.setBackground (SystemColor.activeCaption) ;
button.setBounds (0, 0, 89, 23);

add (button) ;

JLabel label 3 = new JLabel("");
label 3.setIcon (new
ImageIcon (Explanation.class.getResource ("/images/save.png™)));

label 3.setBounds (452, 265, 46, 25);
add (label 3);

C-33

import javax.swing.JPanel;
import javax.swing.JScrollPane;
import javax.swing.JTable;

import java.awt.Color;

import javax.swing.JButton;

import java.awt.event.ActionListener;

import java.io.IOException;

import java.util.ArrayList;

import java.awt.event.ActionEvent;

import javax.swing.SwingConstants;

import javax.swing.table.DefaultTableModel;
import javax.swing.text.SimpleAttributeSet;
import javax.swing.text.StyleConstants;

import javax.swing.text.StyledDocument;

import javax.xml.parsers.ParserConfigurationException;
import javax.xml.transform.TransformerException;

import org.xml.sax.SAXException;

import java.awt.SystemColor;
import java.awt.Font;

import javax.swing.JLabel;

import javax.swing.JOptionPane;
import javax.swing.JComboBox;
import javax.swing.JTextArea;
import javax.swing.JTextPane;
import javax.swing.ComboBoxModel;
import javax.swing.DropMode;

public class Screen2 extends JPanel {

public static boolean first=true;

public static Object[] columns={"Place","Marking"};
public static int sum=0;

/**
* Create the panel.
* @throws SAXException
* @throws ParserConfigurationException
* @throws IOException
*/
public Screen2 () throws IOException, ParserConfigurationException,
SAXException {
setBackground (new Color (255, 255, 255));
setLayout (null) ;
setBounds (100, 100, 709, 447);
JLabel 1blForwardEnabledTransitions = new JLabel
("<html>Forward-enabled transitions
are:</html>");
lblForwardEnabledTransitions.setHorizontalAlignment (SwingConstants.CEN
TER) ;
lblForwardEnabledTransitions.setFont (new Font ("Times New Roman",
Font.BOLD, 12));
lblForwardEnabledTransitions.setBounds (10, 0, 107, 55);
add (1lblForwardEnabledTransitions) ;

C-34

DefaultTableModel model=new DefaultTableModel () ;
JTable table=new JTable();

table.setBackground (Color.WHITE) ;

JScrollPane scroll=new JScrollPane();

add (scroll);

scroll.setViewportView (table) ;
model.setColumnIdentifiers (columns) ;
table.setModel (model) ;

table.setVisible (true) ;

scroll.setBounds (113, 200, 385, 204);

/**JTextPane textArea = new JTextPane();
textArea.setForeground (Color.BLACK) ;

textArea.setBackground (SystemColor.control) ;
textArea.setFont (new Font ("Times New Roman", Font.PLAIN, 12));
textArea.setEditable (false) ;

textArea.setBounds (104, 203, 385, 244);

textArea.setAlignmentX (CENTER_ALIGNMENT) ;

add (textArea) ; *

JButton btnNewButton = new JButton ("<html> Find forward- enabled
transitions </html>");

btnNewButton.setVerticalAlignment (SwingConstants. TOP) ;
btnNewButton.setFont (new Font ("Times New Roman", Font.BOLD, 14));
btnNewButton.setForeground (Color.WHITE) ;

btnNewButton.setBackground (SystemColor.activeCaption) ;

JComboBox <String>forward enabled tr = new JComboBox<String>();
forward enabled tr.setBackground(Color.WHITE) ;
forward enabled tr.setBounds (164, 4, 59, 32);

JLabel forward 1bl = new JLabel ("");

forward 1bl.setFont (new Font ("Tahoma", Font.PLAIN, 9));
forward 1bl.setBounds (233, 5, 126, 31);

add (forward 1bl);

JLabel backtrack 1bl = new JLabel ("");

backtrack 1bl.setFont (new Font ("Tahoma", Font.PLAIN, 9));
backtrack 1bl.setBounds (233, 51, 126, 31);

add (backtrack 1bl);

JLabel causal 1bl = new JLabel ("");

causal 1lbl.setFont (new Font ("Tahoma", Font.PLAIN, 9));
causal 1bl.setBounds (233, 100, 126, 31);

add (causal 1bl);

JLabel ofc 1bl = new JLabel ("");

ofc 1bl.setFont (new Font ("Tahoma", Font.PLAIN, 9));
ofc 1bl.setBounds (245, 161, 114, 31);

add (ofc_1bl);

add (forward enabled tr);

if (first==true) {
Forward algorithm.find choice();
first=false;
}

C-35

ArraylList<String>choices=new ArrayList<String>();
btnNewButton.addActionListener (new ActionListener () {
public void actionPerformed (ActionEvent arg0) {
forward enabled tr.removeAllItems();
choices.clear () ;

Forward algorithm. forward enabled(Forward algorithm.forward move
s.get (0));
for (int i1=0;i<Forward algorithm. forward moves.get (0) .
transitions.size () ;i++) {

if (Forward algorithm.forward moves.get (0) .transitions.
get (i) .enabled for execution==true) {

choices.add (Forward algorithm. forward moves.get (0) .
transitions.get (i) .transition name);

}
}

forward enabled tr.insertItemAt ("--", 0);
forward enabled tr.setSelectedIndex(0);
if (choices.size ()==0) {

forward 1bl.setText ("<html>There are no forward enabled
transitions.</html>");

}

else if(choices.size()==1) {
forward 1bl.setText ("<html>There is "+choices.size()
+" forward enabled transition</html>");

}
else/{
forward 1lbl.setText ("<html>There are "+choices.size()
+" forward enabled transitions</html>");
}
for (int i1=0;i<choices.size () ;i++){
forward enabled tr.addItem(choices.get(i));

1)

btnNewButton.setBounds (369, 0, 172, 49);
add (btnNewButton) ;

JLabel lblBacktrackenabledTransitionsAre = new JLabel
("<html>Backtrack-enabled transitions are:</html>");

1blBacktrackenabledTransitionsAre.setHorizontalAlignment (SwingConstant
s .CENTER) ;

lblBacktrackenabledTransitionsAre.setFont (new Font ("Times New Roman",
Font.BOLD, 12));

lblBacktrackenabledTransitionsAre.setBounds (10, 51, 107, 41);

add (1lblBacktrackenabledTransitionsAre) ;

JLabel lblcausalenabledTransitionsAre = new JLabel
("<html>Causal-enabled transitions are:</html>");

C-36

lblcausalenabledTransitionsAre.setHorizontalAlignment (SwingConstants.C
ENTER) ;

lblcausalenabledTransitionsAre.setFont (new Font ("Times New Roman",
Font.BOLD, 12));

lblcausalenabledTransitionsAre.setBounds (10, 90, 107, 49);

add (lblcausalenabledTransitionsAre) ;

JLabel lbloutOfCausalenabled = new JLabel

("<html>Out of causal-enabled transitions are:</html>");
lbloutOfCausalenabled.setHorizontalAlignment (SwingConstants.CENTER) ;
lbloutOfCausalenabled.setFont (new Font ("Times New Roman", Font.BOLD,
12));

lbloutOfCausalenabled.setBounds (10, 137, 107, 55);

add (1lbloutOfCausalenabled) ;

JComboBox<String> backtrack comboBox = new JComboBox<String>();
backtrack comboBox.setBackground (Color.WHITE) ;

backtrack comboBox.setBounds (164, 51, 59, 32);

add (backtrack comboBox) ;

JComboBox<String> causal comboBox 1 = new JComboBox<String>();
causal comboBox 1.setBackground(Color.WHITE) ;

causal comboBox 1.setBounds (164, 101, 59, 32);

add (causal comboBox 1);

JComboBox<String> ofc comboBox 2 = new JComboBox<String>();
ofc comboBox 2.setBackground(Color.WHITE) ;

ofc _comboBox 2.setBounds (164, 160, 59, 32);

add (ofc_comboBox 2);

JButton btnFindReversedEnabled = new JButton

("<html> Find reversed enabled transitions </html>");
ArrayList<String> backtrack=new ArrayList<String>();
ArrayList<String> causal=new ArrayList<String>();
ArrayList<String>out of causal=new ArrayList<String>();

btnFindReversedEnabled.addActionListener (new ActionListener () {
public void actionPerformed(ActionEvent arg0) {

backtrack comboBox.removeAllItems();

causal comboBox 1.removeAllItems();

ofc comboBox 2.removeAllItems();

backtrack.clear () ;

causal.clear();

out of causal.clear():

int
max=Backtracking algorithm.backtracking enabled(Forward algorithm.forw
ard moves.get (0));

Causal reversing.co enabled(Forward algorithm.forward moves.get (

0));
Out of causal.o enabled(Forward algorithm.forward moves.get (0));
for (int
i=0;i<Forward algorithm. forward moves.get (0) .history.size();i++) {

if (Forward algorithm.forward moves.get (0) .history.get (i) .history
'=max) {
Forward algorithm.forward moves.get (0).

C-37

history.get(i).tr.backtrack enable=false;
}
}

for (int
i=0;i<Forward algorithm.forward moves.get (0) .transitions.size();i++) {

if (Forward algorithm. forward moves.get (0) .transitions.get (i) .bac
ktrack enable==true) {

backtrack.add (Forward algorithm.forward moves.get (0)

.transitions.get (i) .transition name);

}

if (Forward algorithm. forward moves.get (0) .transitions.get (i) .co
enabled==true) {

causal.add (Forward algorithm. forward moves.get (0) .

transitions.get (i) .transition name);

}

if (Forward algorithm.forward moves.get (0) .transitions.get (i) .o e
nabled==true) {

out of causal.add(Forward algorithm. forward moves.get (0)

.transitions.get (i) .transition name);
}
}

backtrack comboBox.insertItemAt ("--", 0);
backtrack comboBox.setSelectedIndex (0);
causal comboBox 1l.insertItemAt ("--", 0);
causal comboBox 1.setSelectedIndex (0);
ofc comboBox 2.insertItemAt("--", 0);
ofc comboBox 2.setSelectedIndex(0);

if (backtrack.size ()==0) {

backtrack 1bl.setText ("<html>No backtrack enable
transitions.</html>");
}
else if (backtrack.size()==1) {

backtrack 1bl.setText ("<html>There is "+backtrack.size()+

" backtrack enabled transition.</html>");

}

else/{
backtrack 1bl.setText ("<html>There are "+backtrack.size()+
" backtrack enabled transitions.</html>");
}
if (causal.size ()==0) {

causal 1bl.setText ("<html>No causal enabled
transiotions.</html>");
}
else if(causal.size()==1) {
causal 1bl.setText ("<html>There is "+causal.size()+
" causal enabled transition.</html>");

else(

C-38

causal 1bl.setText ("<html>There are "+causal.size()+
" causal enabled transitions.</html>");

}

if (out of causal.size()==0) {
ofc 1bl.setText ("<html>No out of causal enabled
transiotions.</html>");
}
else if (out of causal.size()==1) {
ofc 1bl.setText ("<html>There is "+out of causal.size()
+" out of causal enabled transition.</html>");

}
else/(
ofc _1bl.setText ("<html>There are "+out of causal.size()+
" out of causal enabled transitions.</html>");

}

for (int i1i=0;i<backtrack.size();i++) {
backtrack comboBox.addItem(backtrack.get(i));

}

for (int i=0;i<causal.size () ;i++) {
causal comboBox 1l.addItem(causal.get(i));

}

for (int i1=0;i<out of causal.size();i++) {
ofc_comboBox 2.addItem(out of causal.get(i));

}

) ;

JButton btnNewButton 1 = new JButton ("Next move");

btnNewButton 1.addActionListener (new ActionListener() f{
public void actionPerformed(ActionEvent arg0) {
model .getDataVector () .removeAllElements () ;

table.removeAll () ;
String sel="";
String get="--";
String getl="--";
String get2="--"

String get3="--"

sum=0;
if (forward enabled tr.getSelectedItem() !=null) {
get=forward enabled tr.getSelectedItem().toString();
if (forward enabled tr.getSelectedIndex () !=0) {
sumt++;
}
}
if (backtrack comboBox.getSelectedItem() !=null) {
getl=backtrack comboBox.getSelectedItem().toString();
if (backtrack comboBox.getSelectedIndex () !=0) {
sumt++;
}
}
if (causal comboBox 1l.getSelectedItem() !=null) {
get2=causal comboBox 1l.getSelectedItem().toString();
if (causal comboBox 1l.getSelectedIndex () !=0) {

C-39

sumt+;

}

if (ofc_comboBox 2.getSelectedItem() !=null) {
get3=ofc comboBox 2.getSelectedItem().toString();
if (ofc comboBox 2.getSelectedIndex () !=0) {

sumt++;

}

}
//System.out.println (sum) ;

if (sum>1) {
JOptionPane.showMessageDialog(Screen?. this,
"You have to select only one move to execute at a time!",null,

JOptionPane.INFORMATION MESSAGE) ;
}

else if (get.compareTo ("--")!=0) {
sel=forward enabled tr.getSelectedItem().toString();
try {

Forward algorithm. forward execution(sel);
} catch (ParserConfigurationException e) ({
// TODO Auto-generated catch block
e.printStackTrace () ;
} catch (TransformerException e) {
// TODO Auto-generated catch block
e.printStackTrace();

for (int i = 0; i <Forward algorithm.forward moves.size(); i++)

for (int j = 0; Jj <Forward algorithm.
forward moves.get (i) .places.size(); Jj++) {
Object[]table=new Object[2];
String print="";
table[0]=Forward algorithm.forward moves.get (i) .places.get(]j).place na
me ;
if (Forward algorithm. forward moves.get (i) .places.get (j) .bonds.size()
'=0) {
for (int k = 0; k <
Forward algorithm. forward moves.get (i) .places.
get (J) .bonds.size(); kt+t+) {
print+=Forward algorithm.forward moves.get (i) .places.get (j)
.bonds.get (k) .name + " ";

}

} else {
for (int k = 0; k <Forward algorithm. forward moves.get (1) .
places.get (j) .tokens.size(); k++) {
print+=Forward algorithm. forward moves.get (i).
places.get (j) .tokens.get (k) .name + " ";
}

}

table[l]=print;
model .addRow (table) ;

C-40

}

else if (getl.compareTo ("--") !=0) {

sel=backtrack comboBox.getSelectedItem().toString();

Backtracking algorithm.backtrack execution(sel);

for (int i = 0; i <Forward algorithm.forward moves.size(); i++) |

for (int j = 0; J < Forward algorithm. forward moves.get (1) .
places.size(); J++) {
Object[]table=new Object[2];
String print="";
table[0]=Forward algorithm.forward moves.get (i) .places.get(]j).place na
me;
if (Forward algorithm. forward moves.get (i) .places.get (j) .bonds.size()

= 0) {
for (int k = 0; k <Forward algorithm.forward moves.get (i)
.places.get (j) .bonds.size(); k++) {
print+=Forward algorithm.forward moves.get (i) .places.
get (j) .bonds.get (k) .name + " ";
}
} else {
for (int k = 0; k < Forward algorithm.forward moves.get (i) .

places.get (j) .tokens.size(); k++) {
print+=Forward algorithm.forward moves.get (i).
places.get (j) .tokens.get (k) .name + " ";
}
}

table[l]=print;
model.addRow (table) ;
}
}
}
else if (get2.compareTo ("--")!=0) {
sel=causal comboBox 1l.getSelectedItem().toString();
Causal reversing.causal execution(sel);

for (int i = 0; i <Forward algorithm.forward moves.size(); i++) {

for (int 7 = 0; j <
Forward algorithm.forward moves.get (i) .places.size(); J++) {
Object[]table=new Object[2];
String print="";
table[0]=Forward algorithm.forward moves.get (i) .places.get (j).place na
me;
if (Forward algorithm.forward moves.get (i) .places.get(J) .bonds.size()

= 0) {
for (int k = 0; k < Forward algorithm.forward moves.get (i) .
places.get (j) .bonds.size(); k++) {
print+=Forward algorithm.forward moves.get (i) .places.
get (j) .bonds.get (k) .name + " ";
}
} else {
for (int k = 0; k < Forward algorithm.forward moves.get (i).

places.get (j) .tokens.size(); k++) {
print+=Forward algorithm. forward moves.get (i).
places.get (j) .tokens.get (k) .name + " ";
}

C-41

table[l]=print;
model .addRow (table) ;
}

}

}
else if (get3.compareTo ("--") !=0) {

sel=ofc_comboBox 2.getSelectedItem().toString();
Out of causal.out of causal execution(sel);
for (int i = 0; 1 <Forward algorithm.forward moves.size(); i++) {

for (int 7 = 0; j <
Forward algorithm. forward moves.get (i) .places.size(); J++) {
Object[]table=new Object[2];
String print="";
table[0]=Forward algorithm.forward moves.get (i) .places.get(]j).place na
me;
if (Forward algorithm. forward moves.get (i) .places.get (j) .bonds.size()
= 0) {
for (int k = 0; k <
Forward algorithm. forward moves.get (i) .places.get (J)
.bonds.size(); k++) {

print+=Forward algorithm. forward moves.get (i) .places.get (J)
.bonds.get (k) .name + " ";

}

} else {
for (int k = 0; k <
Forward algorithm.forward moves.get (i) .places.get (J)
.tokens.size (); k++) {

print+=Forward algorithm.forward moves.get (i) .places.get (J)
.tokens.get (k) .name + " ";

}
}

table[l]=print;
model .addRow (table) ;
}

1)

btnNewButton 1.setFont (new Font ("Times New Roman", Font.BOLD, 14));
btnNewButton 1.setForeground(Color.WHITE) ;

btnNewButton 1.setBackground(SystemColor.activeCaption)
btnNewButton 1.setBounds (369, 137, 172, 49);

add (btnNewButton 1);

btnFindReversedEnabled.setVerticalAlignment (SwingConstants.TOP) ;
btnFindReversedEnabled.setForeground (Color.WHITE) ;
btnFindReversedEnabled.setFont (new Font ("Times New Roman", Font.BOLD,
14));

btnFindReversedEnabled.setBackground (SystemColor.activeCaption) ;

C-42

btnFindReversedEnabled.setBounds (369, 65, 172, 49);
add (btnFindReversedEnabled) ;

}
}

C-43

Appendix D

Parser’s code

import java.io.BufferedReader;
import java.io.File;

import java.io.FileReader;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;

import java.io.FileNotFoundException;
import java.io.FileReader;

import java.util.Iterator;

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.ParserConfigurationException;
import javax.xml.stream.XMLEventReader;

import javax.xml.stream.XMLInputFactory;

import javax.xml.stream.XMLStreamConstants;
import javax.xml.stream.XMLStreamException;
import javax.xml.stream.events.Attribute;

import javax.xml.stream.events.Characters;
import javax.xml.stream.events.EndElement;
import javax.xml.stream.events.StartElement;
import javax.xml.stream.events.XMLEvent;

import org.w3c.dom.Document;
import org.w3c.dom.Element;
import org.w3c.dom.Node;

import org.w3c.dom.NodelList;
import org.xml.sax.SAXException;

public class Parser {
public static PetriNet initial petrinet = new PetriNet ()
public static PetriNet initial marking=new PetriNet ();
public static ArraylList<Token> bonds = new ArrayList<Token>();
public static ArraylList<Token> neg tokens = new
ArrayList<Token> () ;
public static ArraylList<Token> neg bonds = new
ArrayList<Token>();
public static ArraylList<Object[]>use=new ArrayList<Object[]>();
public static File file;

public static void readArcs (Document doc) {
String token = "";
String bond = "";
String ntoken = "";
String nbond = "";
int from;
int to;
String place = "";
String transition = "";
String arc name = "";

D-1

int arc id;

NodeList nList = doc.getElementsByTagName ("arc");

for (int temp = 0; temp < nList.getLength(); temp++) {
Node nNode = nList.item(temp);
Connection arc=new Connection|();
Connection init=new Connection () ;

try {
if (nNode.getNodeType () == Node.ELEMENT NODE) {
Element eElement = (Element) nNode;
if (eElement.hasAttribute ("token")) {

token = eElement.getAttribute ("token");

int id=Integer.parselnt(token);

for (int i1=0;i<initial petrinet.tokens.size();i++) {

if(initial petrinet.tokens.get (i) .id==1id) {

arc.tokens.add(initial petrinet.tokens.get (i));
Token n=new Token ()
n.id=initial petrinet.tokens.get (i) .id;
n.name=initial petrinet.tokens.get (i) .name;
init.tokens.add (n);

}

}

if (eElement.hasAttribute ("bond")) {
ArrayList<Integer> bond list=new ArrayList<Integer>();
bond = eElement.getAttribute ("bond") ;

if (bond.contains (" ")) {
String[]split=bond.split (" ");
int 1d=0;

for (int h=0;h<split.length;h++) {
id=Integer.parselInt(split[h])-200;
bond list.add(id);
}
for (int i=0;i<bonds.size () ;i++){
for (int g=0;g<bond list.size();g++)
if (bonds.get (i) .id==bond list.get (g
arc.bonds.add (bonds.get (1)) ;
init.bonds.add (bonds.get (i));

{
)) Ao

else{
bond = eElement.getAttribute ("bond") ;
int id=Integer.parselInt (bond)-200;
for (int i=0;i<bonds.size () ;i++) {
if (bonds.get (i) .id==id) {
arc.bonds.add (bonds.get (1)) ;
init.bonds.add (bonds.get (i));
}
}
}
}
if (eElement.hasAttribute("negative token")) {

ArrayList<Integer>ntokens=new ArrayList<Integer>();
ntoken = eElement.getAttribute ("negative token");
if (ntoken.contains (" ")) {
String[]split=ntoken.split (" ");

D-2

int i1d=0;
for (int h=0;h<split.length;h++) {
id=Integer.parselInt(split[h])-300;
ntokens.add (id) ;
}
for (int i1=0;i<neg tokens.size();i++) {
for (int k=0; k<ntokens.size () ;k++) {
if (neg tokens.get (i) .id==ntokens.get (k)) {
arc.negative tokens.add(neg tokens.get (i));
init.negative tokens.add(neg tokens.get(i)):;

else/(
ntoken = eElement.getAttribute ("negative token");
int id=Integer.parselnt (bond)-300;
for (int i1=0;i<neg tokens.size () ;i++) {
if (neg tokens.get (i) .id==id) {
arc.negative tokens.add(neg tokens.get (i
init.negative tokens.add(neg tokens.get (

))
i)

}

}

}
if (eElement.hasAttribute("negative bond")) {

ArrayList<Integer>nbonds=new ArrayList<Integer>();

nbond = eElement.getAttribute ("negative bond");

if (nbond.contains (" ")) {
String[]lsplit=ntoken.split (" ");
int 1d=0;

for (int h=0;h<split.length;h++) {
id=Integer.parselInt(split[h])-400;
nbonds.add (id) ;

}

for (int i1=0;i<neg bonds.size();i++) {
for (int k=0; k<nbonds.size () ;k++) {
if (neg bonds.get (i) .id==nbonds.get (k)) {
arc.negative bonds.add(neg bonds.get (i));
init.negative bonds.add(neg bonds.get (1)) ;

else(
nbond = eElement.getAttribute ("negative bond");
int id=Integer.parselInt (bond)-400;
for (int i1=0;i<neg bonds.size();i++) {
if (neg bonds.get (i) .id==id) {
arc.negative bonds.add(neg bonds.get (i));
init.negative bonds.add(neg bonds.get (1)) ;

}

}

from = Integer.parselInt(eElement.getAttribute ("from"));

D-3

to = Integer.parselnt(eElement.getAttribute("to"));

char fromc = (char) from;
char toc = (char) to;

arc.from=fromc;
arc.to=toc;
init.from=fromc;
init.to=toc;

if (eElement.hasAttribute("transition")) {

transition = eElement.getAttribute ("transition");

String cut[]=transition.split ("\\[10");

cut=cut[1].split ("\\1");

int id=Integer.parselInt(cut[0]);

for (int i1=0;i<initial petrinet.transitions.size();i++) {

if (initial petrinet.transitions.get(i).transition id==id) {

arc.transition=initial petrinet.transitions.get (1i);
Transition t=new Transition();

t.transition id=initial petrinet.transitions.get(i).transition i
d;

t.transition name=initial petrinet.transitions.get(i).transition
_name;
init.transition=t;

}

}
if (eElement.hasAttribute ("place")) {

place = eElement.getAttribute ("place");
String cut[l=place.split ("\\[");
cut=cut[1].split ("\\1");

int id=Integer.parselInt(cut[0]);

for (int i1=0;i<initial petrinet.places.size();i++) {
if (initial petrinet.places.get (i) .place id==id) {
arc.place=initial petrinet.places.get(i);
Place t=new Place();
t.place id=initial petrinet.places.get (i) .place id;

t.place name=initial petrinet.places.get (i) .place name;
init.place=t;

}
arc _name = eElement.getAttribute("arc name");
arc _id = Integer.parselnt(eElement.getElementsByTagName ("arc id").
item (0) .getTextContent ()) ;
arc.connection id=arc id;
init.connection id=arc_ id;
initial petrinet.arcs.add(arc);
initial marking.arcs.add(init);

}

} catch (Exception e) {
e.printStackTrace () ;

D-4

}

public static void readPlaces (Document doc) {

NodeList nList = doc.getElementsByTagName ("place");

String token = "";
String bond = "";
String arc id;

String place name = "";

int place id;

for (int temp = 0; temp < nList.getLength(); temp++) {
Node nNode = nList.item(temp);
Place newp = new Place();
Place init=new Place();

try |
if (nNode.getNodeType () == Node.ELEMENT NODE) {
Element eElement = (Element) nNode;
if (eElement.hasAttribute ("token")) {

ArrayList<Integer>tokens=new ArrayList<Integer>();
token = eElement.getAttribute ("token");
int id=0;
if (token.contains (" ")) {
String g[]=token.split(" ");
for (int k=0;k<g.length; k++) {
id = Integer.parseInt(glkl);
tokens.add (id) ;
}

for (int i = 0; 1 < initial petrinet.tokens.size(); i++) |
for (int 7=0;j<tokens.size();j++){
if (initial petrinet.tokens.get(i).id == tokens.get(j)) {

’

J
newp.tokens.add(initial petrinet.tokens.get (i));
init.tokens.add(initial petrinet.tokens.get (i))

}
}

else/{
id = Integer.parselInt(token);

for (int 1 = 0; 1 < initial petrinet.tokens.size(); i++) {

if (initial petrinet.tokens.get(i).id == id) {
newp.tokens.add(initial petrinet.tokens.get (i));
init.tokens.add(initial petrinet.tokens.get(i));

}
}
if (eElement.hasAttribute ("bond")) {

bond = eElement.getAttribute ("bond") ;

if (!bond.contains (" ")) {

int id = Integer.parselInt (bond)-200;

for (int 1 = 0; i < bonds.size(); i++) {
if (bonds.get(i).id == id) {

D-5

newp.bonds.add (bonds.get (1)) ;
init.bonds.add (bonds.get (i));

else(
int id=0;
ArrayList<Integer>bondsl=new ArrayList<Integer>();
String f[]l=bond.split ("™ ");
for (int k=0;k<f.length; k++) {
id = Integer.parseInt(flk]);
bondsl.add (id) ;
}
for (int 1 = 0; 1 < bonds.size(); 1i++) {
for (int j=0;j<bondsl.size () ;j++) {
if (bonds.get (i) .id==bondsl.get (7)) {
newp.bonds.add (bonds.get (1)) ;
init.bonds.add (bonds.get (i));
}
}
}
}
}
if (eElement.hasAttribute ("arc")) {

arc_id = eElement.getAttribute ("arc");
String cl[];
if (arc_id.contains (" ")) {
cl=arc_id.split (" ");
for (int j=0;7j<cl.length;j++) {
String cut[]=cl[]J].split("//@");
cut=cut[l].split ("arc.");
int arcid=Integer.parselInt(cut[l])+1;
newp.arc_ id.add(arcid);
init.arc id.add(arcid);
}
}
else(
String cut[l=arc id.split("//@");
cut=cut[1l].split("arc.");
int arcid=Integer.parselnt(cut[1l])+1;
newp.arc id.add(arcid);
init.arc_id.add(arcid);
}
}
place name = eElement.getElementsByTagName ("place name") .item(0)
.getTextContent () ;
newp.place name=place name;
place id = Integer.parselnt(eElement.getElementsByTagName ("place id")
.item(0) .getTextContent ()) ;
newp.place id=place id;
initial petrinet.places.add (newp);
init.place id=place id;
init.place name=place name;
initial marking.places.add(init);

}

} catch (Exception e) {
e.printStackTrace () ;

D-6

}

public static void readTokens (Document doc) {

NodeList nList = doc.getElementsByTagName ("token");
String name = "";

int id;
for (int temp = 0; temp < nList.getLength(); temp++) {
Node nNode = nlList.item(temp)
Token tokenl = new Token();
try {
if (nNode.getNodeType () == Node.ELEMENT NODE) {
Element eElement = (Element) nNode;
id =

Integer.parselnt(eElement.getAttribute ("token id"));
tokenl.id = id;

name = eElement.getAttribute ("token name");
tokenl.name = name;
initial petrinet.tokens.add(tokenl);
Token newt = new Token () ;
newt.name = name;
initial marking.tokens.add (newt) ;
Object[]newe=new Object[2];
newe [0]=1id;
newe [l]=name;
use.add (newe) ;

}

} catch (Exception e) {
e.printStackTrace () ;

}

public static void readBonds (Document doc) {

NodeList nList = doc.getElementsByTagName ("bond") ;
String name = "";
int id;
for (int temp = 0; temp < nlList.getLength(); temp++) {
Node nNode = nList.item(temp);
Token bond = new Token () ;

try {
if (nNode.getNodeType () == Node.ELEMENT NODE) ({
Element eElement = (Element) nNode;
id =

Integer.parselnt (eElement.getAttribute ("bond id"));
bond.id = 1d-200;
name = eElement.getAttribute ("bond name");
bond.name = name;
bonds.add (bond) ;

}

} catch (Exception e) {

D-7

e.printStackTrace() ;

}

public static void readNTokens (Document doc) {
NodeList nList = doc.getElementsByTagName ("negative token");

String name = "";
int id;

for (int temp = 0; temp < nList.getLength(); temp++) {
Node nNode = nlList.item(temp)
Token neg = new Token()

try {
if (nNode.getNodeType () == Node.ELEMENT NODE) {
Element eElement = (Element) nNode;
id =
Integer.parselnt(eElement.getAttribute ("token id"))-300;

neg.id = id;
String pl[l=eElement.getAttribute ("token name").split("-");
name =p[1l];
neg.name =name;
neg tokens.add(neg);
}

} catch (Exception e) {
e.printStackTrace () ;

}
}

public static void readNBonds (Document doc) {
NodeList nList = doc.getElementsByTagName ("negative bond");
String name = "";
int id;
for (int temp = 0; temp < nList.getLength(); temp++) {
Node nNode = nList.item(temp);
Token neg bond = new Token () ;

System.out.println ("\nCurrent Element :" + nNode.getNodeName ());
try {
if (nNode.getNodeType () == Node.ELEMENT NODE) {
Element eElement = (Element) nNode;
id = Integer.parselnt(eElement.getAttribute ("bond id"))-
400;

neg bond.id = id;
String[]lp=eElement.getAttribute ("bond name") .split("-");
name = pl[l];
neg bond.name = name;
neg bonds.add (neg_bond) ;
}

} catch (Exception e) {
e.printStackTrace () ;

}
}
public static void readTransitions (Document doc) {

NodeList nList = doc.getElementsByTagName ("transition™);
String name = "";

int id;
String arc =

wn o,
’

for (int temp = 0; temp < nList.getLength(); temp++) {
Node nNode = nList.item(temp);

Transi

tion tr=new Transition|();

Transition init=new Transition|();

try {

String
arc_id
String
if (arc
cl=arc
for (in
String
cut=cu
int ar
tr.arc
init.a
}

}

else/(

}
String id2=e

String split

tr.transitio
init.transit

if (nNode.getNodeType () == Node.ELEMENT NODE) {

Element eElement = (Element) nNode;

if (eElement.hasAttribute("arc")) {
arc _id = eElement.getAttribute ("arc");
= eElement.getAttribute ("arc");
clll;

_id.contains (" ")) {
_id.split (" ") ;

t j=0;J<cl.length;j++) {
cut[]l=cl[j].split("//@™);
t[l].split ("axrc.");
cid=Integer.parseInt(cut[1l])+1;

_id.add(arcid);

rc_id.add(arcid);

String cut[]l=arc id.split("//@");
cut=cut[l].split("arc.");

int arcid=Integer.parselInt(cut[l])+1;
tr.arc_id.add(arcid);

init.arc _id.add(arcid);

Element.getElementsByTagName ("transition id")
.item(0) .getTextContent () ;
[1=1d2.split ("10");

n_id=Integer.parselnt(split[1]);
ion_ id=Integer.parselnt(split([1l]);;

name = eElement.getElementsByTagName ("transition name")

.item(0) .getTextContent () ;
tr.transition name=name;
init.transition name=name;

Cell cell=new Cell();

Cell celll=new Cell();

cell.tr=tr;

celll.tr=init;

initial petrinet.transitions.add(tr);
initial petrinet.history.add(cell);
initial marking.transitions.add(init);
initial marking.history.add(celll);

}

} catch (Exception e) {
e.printStackTrace () ;

public static void fillArcs() {
for (int i1=0;i<initial petrinet.places.size();i++) {

for (int
k=0;k<initial petrinet.places.get(i).arc id.size () ;k++) {
if (initial petrinet.places.get (i).arc _id.get (k) !=0) {

for (int j=0;J<initial petrinet.arcs.size();Jj++) {

if(initial petrinet.arcs.get (j).connection id==initial petrinet.
places
.get (i) .arc_id.get (k)) {

initial petrinet.arcs.get (J) .place=initial petrinet.places.get (i

initial marking.arcs.get(j) .place=initial marking.places.get (i);
break;

}

}
}

for (int i=0;i<initial petrinet.transitions.size();i++){

for (int
k=0;k<initial petrinet.transitions.get(i).arc_id.size () ;k++) {
if (initial petrinet.transitions.get (i) .arc_id.get (k) !=0) {

for (int j=0;J<initial petrinet.arcs.size();Jj++) {

if(initial petrinet.arcs.get (j).connection id==initial petrinet.
transitions.
get (i) .arc_id.get (k)) {

initial petrinet.arcs.get (J).transition=initial petrinet.transit
ions.get (i) ;

initial marking.arcs.get(j).transition=initial marking.transitio
ns.get (i) ;
break;

}

public static void readFile(File file) throws IOException,
ParserConfigurationException, SAXException {
DocumentBuilderFactory dbFactory =
DocumentBuilderFactory.newInstance();

DocumentBuilder dBuilder = dbFactory.newDocumentBuilder () ;
Document doc = dBuilder.parse(file);
doc.getDocumentElement () .normalize () ;

readTokens (doc) ;

readBonds (doc) ;

readNTokens (doc) ;

readNBonds (doc) ;

readPlaces (doc) ;

readTransitions (doc) ;

readArcs (doc) ;

fillArcs();

D-10

}

public static void mainF ()throws IOException,
ParserConfigurationException, SAXException {
file = new File ("C:\\Users\\Pantelina\\Downloads\\"
+ "ObeoDesigner-Community\\runtime-
New configuration\\org.eclipse.sample.petrinets.sample\\My.petrinets")

readFile(file);

Reverse parser’s code

import java.io.File;
import java.io.IOException;
import java.util.ArrayList;

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.ParserConfigurationException;
import javax.xml.transform.Transformer;

import javax.xml.transform.TransformerConfigurationException;
import javax.xml.transform.TransformerException;
import javax.xml.transform.TransformerFactory;

import javax.xml.transform.dom.DOMSource;

import javax.xml.transform.stream.StreamResult;

import javax.xml.xpath.XPath;

import javax.xml.xpath.XPathConstants;

import javax.xml.xpath.XPathExpression;

import javax.xml.xpath.XPathExpressionException;
import javax.xml.xpath.XPathFactory;

import org.w3c.dom.Attr;

import org.w3c.dom.Document;
import org.w3c.dom.Element;
import org.w3c.dom.NamedNodeMap;
import org.w3c.dom.Node;

import org.w3c.dom.Nodelist;
import org.xml.sax.SAXException;

public class ReverseParser {

public static void update xml (PetriNet p, ArrayList<String[]> add,
ArrayList<String[]> remove)

throws ParserConfigurationException, SAXException, IOException,
TransformerException {

DocumentBuilderFactory docFactory =
DocumentBuilderFactory.newInstance() ;

DocumentBuilder docBuilder = docFactory.newDocumentBuilder () ;
Document doc = docBuilder.parse(Parser.file);

ArrayList<String[]> check = new ArrayList<String[]>();
for (int j = 0; j < p.places.size(); Jj++) {

String[] s = new String[2];

S[l] — llll;

D-11

S[O] — llll;
for (int i = 0; i < add.size(); i++) {

s[0] = p.places.get (j).place_name;
if (p.places.get(j).place name.compareTo (add.get (i) [0]) == 0) {
S[l] += add.get(l) []_] +omom,

}

}

if (s !'= null) {
check.add (s) ;

}

for (int 1 = 0; 1 < check.size(); 1i++) {
if (check.get (i) [1l].compareTo("") !'= 0 && !check.get (i) [1]
.contains ("-")) {

Node place = doc.getElementsByTagName ("place") .item (i) ;

String split[] = check.get (i) [1].split ("™ ");
for (int j = 0; j < split.length; j++) {
for (int k = 0; k < Parser.use.size(); k++) {

if (split[]j].compareTo (Parser.use.get (k) [1l].toString()) ==
0) {
check.get (1) [0] = Parser.use.get (k) [0].toString();

}

Attr token = doc.createAttribute ("token");
String h = check.get (1) [0];
token.setValue (h);

((Element) place) .setAttributeNode (token) ;

} else if (check.get (i) [1].compareTo("") != 0 &&
check.get (i) [1].contains("-")) {

Node place = doc.getElementsByTagName ("place").item(1i);
String[] split = check.get (i) [1].split (™ ");

String in = "";

int k = 0;

for (int j = 0; j < split.length; Jj++) {
for (int h = 0; h < Parser.bonds.size(); h++) {

if (split[j].compareTo (Parser.bonds.get (h).name) == 0) {
k = Parser.bonds.get (h).id + 200;
in += Integer.toString(k) + " ";

}

Attr token = doc.createAttribute ("bond");
in = in.substring (0, in.length() - 1);
token.setValue (in) ;
((Element) place) .setAttributeNode (token);

}

for (int 1 = 0; 1 < remove.size(); 1++) {
for (int j = 0; j < p.places.size(); Jj++) {
if (p.places.get(j) .place name.compareTo (remove.get (i) [0]) == 0)

{

D-12

Node placel = doc.getElementsByTagName ("place")
.item(p.places.get (j) .place id - 1);

NamedNodeMap nodes = placel.getAttributes();

for (int k = 0; k < nodes.getLength(); k++) {
String 1id = nodes.item (k) .getNodeName () ;
if (id.equals ("bond")) {

String r = "";

for (int y = 0; y < p.places.get(]J).bonds.size(); y++) {
int rep = p.places.get(j) .bonds.get(y).id + 200;
r += Integer.toString(rep);

}

if (r.compareTo("") != 0) {

nodes.item (k) .setNodeValue (
nodes.item (k) .getNodeValue () .
replace (nodes.item (k) .getNodeValue (), r));
} else {

Element el = ((Attr) nodes.item(k)) .getOwnerElement () ;
el.removeAttribute (id) ;

}

} else if (id.equals("token")) {

String r = "";

for (int v = 0; v < p.places.get(j).tokens.size(); y++) {
int rep = p.places.get(j) .tokens.get (y) .1d;
r += Integer.toString(rep);

}

if (r.compareTo("") != 0) {
nodes.item (k) .setNodeValue (
nodes.item (k) .getNodeValue () .replace (nodes.item (k)
.getNodeValue (), r));
} else {
Element el = ((Attr) nodes.item(k)) .getOwnerElement () ;

el.removeAttribute (id) ;

}

}

TransformerFactory transformerFactory =
TransformerFactory.newInstance();

Transformer transformer = transformerFactory.newTransformer();
DOMSource source = new DOMSource (doc);

StreamResult result = new StreamResult (new

File (Parser.file.getAbsolutePath()));
transformer.transform(source, result);

}

D-13

Appendix E

Simulator manual

When the program starts the user has to choose by which method the input for the
simulator is going to be imported. The program provides three methods by which the
user can import the input.

& Simulator for Reversible Petri Nets = B

Please select the method you want to give the input:

READFROMFILE CREATE NEW PETRINET DEAW INITIAL PETRINET

IpX

[N

If the user chooses the first option, then another window will appear, which will ask the
user to give a text file as the input.

First method — Import file:

£ Simulator for Reversible Petri Nets = =
Please select the method vou want to give the input:
3 Open =
— | LookIn: |3 Documents |V| E I
PETRINET
=3 Avatar] Integration Services Script Task
[CyberLink [My Data Sources
3 GitHub 3 my Shapes
3 hp.applications.package.appdata 3 Prolog
3 hp.system.package.metadata 3 sal Server Management Studio
=T Integration Services Script Component—] Visual Studio 2005
4] Il | [
File Name: || |
|| Files of Type: [AllFiles v

| Open || Cancel |

E-1

Since the user inserts the text file, and its type is correct, the program will continue to
the next screen. If a file that is not at the correct form, a warning message will appear
and then the user will have the opportunity to try again.

| Simulator for Reversible Petri Nets - B
Please select the method you want to give the input:

READ FROMFILE ‘ ‘ CREATE NEW PETRINET ‘ ‘ DEAW INITIAL PETRINET

TEX
N

(1) Thefile type is incorrect. It has to be a .txt file. .

.\

In order for the simulator to be able to read the file and create the appropriate Petri net
structure, the text file has to look like the following example:

Tokens:
[a,b,c]
Places:
[p1,p2,p3,p4,p5]
Transitions:
[t1,t2]

Arcs:

[

(p1,t1)={a}
(p2,t1)={b}
(t1,p3)={a-b}
(p3,t2)={b}
(p4,t2)={c}
5t2,p5}={b—c}
Initial marking:
[

pl-»a

p2-»b

p3->8

pd-»c

p5-»8

1

Second method- Create new Petri net:

If the user wants to create a new Petri net structure through the program, instead of
importing a file, the second choice must selected, namely “Create new Petri net”.
Since it has been selected, the next screen will appear.

& Simulator for Reversible Petri Nets = =
== Create new Petri net:
Declare the places of your marking : Insert token/bond in a place: Places

Place name Token/Bond
4 creating the object .

Declare the transitions of your marking : Transitions
Transition name
™ Please press enter before
Transition name:
creating the object .
CREATE
Declare the tokens of your marking : Declare the negative tokens of your marking : Tokens Negative tokens

Token name Token name
Tolen name: Please press enter before
creating the object . Token name: Please press enter before

creating the abject .

Declare the bonds of your marking : | ‘ ‘ Bonds Negative bonds

Bond name Bond name

Declare the arcs of vour marking : l:l Arcs

Place | Transition| From To Label

[

Through this window the user can create all the necessary elements of the initial
marking. Firstly the user has to create places and transitions. When the user wants to

create a component, after typing its name, enter key from keyboard has to be entered,
before clicking “CREATE”.

B3 Simulator for Reversible Petri Nets = =
A fter enter has been pressecCreate new Petri net:

Declare the places of your marking—+

Insert token/bond in a place: Places

[mSERT 10KEN 10 pLACE Feesname | foensons

Place name:

Declare the transitions of your marking : Transitions
Transition name: Please press enter before
creating the object .

Declare the tokens of your marking : Declare the negative tokens of your marking : Tokens Negative tokens

Token name Token name
Tolen name: Please press enter befare
creating the object . Token name: Please press enter before

creating the ohject .

Transition name

Declare the bonds of your marking : | | | Bonds Negative bonds

Bond name Bond name

Declare the arcs of your marking : l:l Arcs

Place | Transition From To Label

E-3

Since the user has pressed “enter” and then “CREATE” button, the element will appear
at the table, on the right side of the window, accordingly.

Simulator for Reversible Petri Nets = &

B
: Create new Petri net:

Declare the places of your marking : Insert token/bond in a place:

Place name: Please press enter before
creating the object .

Places

Place name | Token/Bnd

pi

Declare the transitions of your marking : T ititns
Transition name: Please press enter before
creating the object .

Declare the tokens of your marking : Declare the negative tokens of your marking : Tokens Negative tokens

" Please press enter before _ Token name Token name
Token name: reating the ohject Token name: ’7 Please press enter before

creating the object .

Declare the bonds of your marking : l:l | | Bonds Negative bonds

Bond name Bond name

Transition name

Declare the arcs of your marking : l:l Arcs

Place Transition From To Label

I

After the creation of places and transitions, the user has to define tokens and bonds
appearing in the initial marking. Tokens must be defined first, and then bonds, so bonds
will contain exactly two tokens. If the user tries to define a bond when no tokens have
been defined, or a bond with two identical tokens, a warning message will appear.
Negative tokens and negative bonds can be defined in the same way. A negative token
has to refer to a defined token to be legitimate.

E-4

Simulator for Reversible Petri Nets = =

Create new Petri net:

Declare the places of your marking : Insert token/bond in a place: Places
Place name | Token/Band
Place name: Please press enter before
Q creating the object . | p1 |
CREATE

Declare the transitions of your marking :

Transitions
Transition name
T ition name: Pleaze press enter before
ransiton © Q cresting the object .
CREATE

Declare the tokens of your marking : ens Negative tokens
xen name Token name

Tok : Pleas @ . .

-eM name ezt You have to define the tokens of the marking before creating the bonds.

Declare the bonds of your marking : | Bonds Negative bonds

Bond name Bond name

Declare the arcs of your marking : l:l Ares

Place | Transition| From To Label
Simulator for Reversible Petri Nets = [=
Create new Petri net:
Declare the places of your marking : Insert token/bond in a place: Places
,— Placaname | TakenBond
Place name: Flease press enter before
4 creating the object . | p1 ‘
CREATE
Declare the transitions of your marking : Transitions
Transition name
T ition name: Flease press enter before
ransition © 4 creating the object .
CREATE
Declare the tokens of your marki Negative tokens
2 Token name
Token name: The tokens that it will be declared as negative they have to be declared to the tokens set.
1
Declare the bonds of your marking : | | Bonds Negative bonds
Bond name Bond name
Declare the arcs of your marking : l:l Ares
Place | Transition From To Label

Simulator for Reversible Petri Nets = =

Create new Petri net:

Declare the places of your marking : Insert token/bond in a place: Places
Place name | Token/Bond
Place name: Flease press enter before
Q creating the object . | p1 |
CREATE
Declare the transitions of your marking : Transitions
Transition name
T ition name: FPlease press enter before
ransition & Q creating the object .
CREATE
Declare the tokens of your marking : Declare the negative tokens of your marking : Tokens Negative tokens

Token name Token name

Token name: FPlease press enter before
creating the object . Token name: Please press enter before a a
b

creating the object .

CREATE CREATE

Declare the bonds of your marking : l:l ‘ | Bonds Negative bonds

Bond name Bond name
Token 1: Token 2: =B
‘CREATE
Declare the ares of your marking : l:l Ares
Place | Transition From To Label
5 Simulator for Reversible Petri Nets = =
BACK i .
| BACK Create new Petri net:
Declare the places of your marking : Insert token/bond in a place: Places

Place name: Please press enter before | Place name | Token/Bond
creating the object . pl |

Declare the transitions of your marking : Transitions

Transition name
Transition name: Flease press enter before
creating the object .

Declare the tokens of your marking : ens Negative tokens

en name Token name
Token name: E:EE: ® The bond has to be composed from two different tokens.Please try again a

Declare the bonds of your marking : | Bonds Negative honds

Bond name Bond name
a-b

Token 1: Token 2:

Declare the arcs of your marking : I:I Arcs

Place | Transition From To Label

E-6

Since the desired tokens, bonds, negative tokens, and negative bonds have been
created, the user can create arcs for the initial marking. In order to create arcs, the users
has to ensure that both places and transitions needed have been defined. Morever, all
tokens, bonds, negative tokens and/or negative bonds needed have been declared too.

) Simulator for Reversible Petri Nets

|:| Create new Petri net:

Declare the places of your marking : Insert token/bond in a place:
Place name: Please press enter before
4 creating the object .
CREATE

- B0

Places

pl

Place name | Token/Bond

Declare the transitions of your marking :

Transition name: Please press enter before
creating the object .

Transitions

Transition name

CREATE
Declare the tokens of your ma Negative tokens
Token name
Token name: You have to define the places ,tokens,and transtions of the marking before creating the arcs.
Declare the bonds of your marking : l:l | Bonds Negative bonds
Bond name Bond name
Declare the ares of your marking : |:| Ares
Place | Transition| From To Label
£ Simulator for Reversible Petri Nets = 1=
| BACK | Create new Petri net:
Declare the places of your marking : Insert token/bond in a place: Places
l— Place name | Token/Bond
Place name: Please press enter before
Q creating the object . p1 ‘
CREATE
Declare the transitions of your marking : Transitions
Transition name
T it . Flease press enter before t1
ransition name; 4 creating the object .
CREATE
Declare the tokens of your marking : Declare the negative tokens of your marking : Tokens Negative tokens
Token name Token name
Tolzen name: Please press enter before ,7 Please ter befo
Tok . press enter before
4 areating the object . oNEn name: creating the object . g
S
Declare the bonds of your marking : I:I ‘ | Bonds Negative bonds
Bond name Bond name
Token 1: Token 2:
a-b
CREATE
Declare the arcs of your marking : |:| Arcs
Place | Transition| From To Label
Place: Transition: Arc label:

Pt I=] [[=]]
Us= commas (-] for each diferent token/bond and
"nat" for each negative token andfor band.

From:

Place

=] ST

The user in order to create an arc, has to choose the place and the transition which this
arc connects, if the arc is from place or from transition, and define the label of this arc

(pre-condition or post-condition.

£ Simulator for Reversible Petri Nets = =
| BACK | Create new Petri net:
Declare the places of your marking : Insert token/bond in a place: Places
Place name | Token/Bond
Place name: Please press enter before
Q creating the object . pi
Declare the transitions of your marking : Transitions
Transition name
T iti . Please press enter before 1
ransiiion name Q creating the object .
CREATE
Declare the tokens of your marking : Declare the negative tokens of your marking : Tokens Negative tokens
Token name Token name
Tolen name: Flease press enter before ,7 Please ter befo
- N Tok: . press enter berore
Q creating the object . oken name creating the object . E
e e |
Declare the bonds of your marking : | | | | Bonds Negative bonds
Bond name Bond name
Token 1: Token Z: b
CREATE
Declare the arcs of vour marking : l:l Ares
I . label Place | Transiti0n| From | To | Label
Place: Transition: Arc label: p |t1 |t |p |a—b
L= [:
Us= commas (") for e=ch different token/bond and
From: "net” for each negstive token and/or bond.

C = s

]

When the user has defined all the necessary components of the initial marking, he/she

can click on “CREATE PETRI NET” button to complete the process.
Third method — Draw a Petri net diagram

The last method to insert an input to the simulator is by draw the Petri net diagram
visually. The first step of the process is to select “Draw initial Petri net” option from the
initial screen. Then an explanation window will appear.

E-8

Simulator for Reversible Petri Nets = =

|£]
I:l How to draw your Petri Net

1 Be sure that the Folder Obeo designer-Community is saved
at the location C:Users/Your folder.

2.Click to button 'Open Obeo designer' and then when a window
will appear click on 'Launch’' button.

3 From the Obeo designer environment Click Run from the toolbar. O~
4 Go to representation tab. £ representation &
5.You can now draw the petri net from paletie. .7 Palette

6.When vou will finish, save vour Petri net -
diagram and click 'Finish' button. =l &

The user has to follow the instructions appeared in the window, to be able to draw the
initial marking. The diagram will be created, through another software, Obeo Designer,
so there are some steps to go there. Firstly, the user has to ensure that the Obeo
Designer’s folder, which has been downloaded with the simulator, is at the inidicated
location. Therefore, the user can select “Open Obeo Designer” to launch the software.
Now, the user must see the following screen:

- org.eclipse.sirius.petrinets/model/} 1odel - Obeo Designer Community -8
File Edit Navigate ch Project Generator Run Window Help

(= i Qrig il flot roviE B Quick Access @H
B Model Explorer 53 = O & petrinets | [petrinets.genmadel 52

0% v o[f e

type filter text

5= Outline 31 = 8

An outline is not available.

2 slems B Console 12
No consoles to display at this time.

~EMv=0

There, the user has to click on Run button, without closing the current window.
Afterwards, the user is going to redirected in another window. On the next screen the

user has to go at the representation task, where she/he will be able to draw the initial
marking, through the palette.

E-9

aird/rep ion - Obeo Designer Community - o IEm

[+ runtime-New_configuration - platform:/resource/org.eclipse.sample.petrinets.sample/rep
File Edit Diagram Navigate Search Project Run Window Help
MR e O~ ig il ~Fl- L= Quick Access |
& Model Brplorer 52 % ¥ = O | Mypetrinet) petrinet ="
type filter text -S|l O~ i Palette 3
L2 org e.sample.petrinets.sample R - -
» 24 org.eclipse.sirius.sample.petrinets.design & CreateNodes o
4 createTransition
4 createPlace
4 Token
4 Bond
4 NegativeToken
4 NegativeBond
(= Createhre o
4 ArcRequirements
\ PlaceToArc
\ ArcToPlace
\ TransitionToArc
\ ArcToTransition
2 Outline 32 8= B8
IR R
[Properties & " v=n
4+ Petrinet

Synchronized diagram

@ My.petrinets] petrinets.odesign &y “representation &3

“E-|¢l0-w-lwela-l8-]aalos | m

1]
oo

Now, the user can define the initial marking, by creating all the necessary elements. For
the creation of an arc the user has to create the arc object at first, and then define the

necessary edges from and to the corresponding place/transition.

L 4

4 [p1] 1

The braces above the arc object indicate the arc label (pre-condition/post-condition). So,
in order to insert tokens/bonds into places or tokens/bonds/negative tokens/negative
bonds to the arc label, the user has to find the sematics area of the corresponding

element.

E-10

o runtime-New_configuration - platform:/resource/org.eclipse.sample.petrinets.sample/rep! ions.aird/repl ion - Obeo Designer Community - g
File Edit Diagram Navigate Search Project Run Window Help

H-H@i%i%-0-Q-ig-if~-H-ve-o- Quick Access| || g | 21 []
&5 Model Explorer 53 ES ¥ = 0 [Mypet 5 & “representation 53 =8
type filter text BN M- PR & B a3 X% B 7 A-n|H- s @Y H|E & Palett

» (2 org.eclipse.sample petrinets.sample
» (2 org.eclipse.sirius.sample.petrinets. design

©

% [1]

@

[Properties 53 |[2] Problems <> Ini
4+ Arc arcl

= Outline 53

[E- o

roperty
Arcid
Arc name
Bond
From

Appedrance
Negative bond
Negative token
Place

Te

Token
Transition

Arc arcl

i

= arcl

a2

LA116

% Transition false

At the semantic area, the user can define possible tokens/bonds into places or
tokens/bonds/negative tokens/negative bonds to the arc label, by just press on “...”
option at the right side of the desired object, and then all options will appear.

(= CreateNodes o
4 createTransition
4 createPlace
4 Token
4 Bond
[CreateArc o
4 ArcRequirements
™\, PlaceToArc
™, ArcToPlace
™\ TransitionToArc
™, ArcToTransition

[runtime-New_configuration - platform:/resource/org.eclipse.sample.petrinets.sample/representations.aird/representation - Obeo Designer Community - a
File Edit Diagram Navigate Search Project Run Window Help
Nl @it it-QO - id-il -1+ Token -- Arc arcl - olEN| Quick Access| §| g | &[5
- & v o= =
& Model Explorer 57 B2 = Filter Available Choices "
type filter text 587 ChoicePattern ("or) [| | 4
> &Y org.eclipse.sample.petrinets.sample
+ 22 org.eclipse sirius.sample. petrinets.design Choices e (= CreateNodes <
4 Tokena Add 4 createTransition
Remove 4 createPlace
<4 Token
Bond
Up Bor
|__<» NeoativeToken
Down (= CreateAre @
4 ArcRequirements
| PlaceToArc
\, ArcToPlace
| TransitionToArc
. ArcTaTrznsition
=L
+ 4
C= Outline 52 =] = g Mair -
Semanuc
B Arc name = arcl
& Stylel Bond
o ® Appearance From EA112
Negative bond
Negative token
Place
To L& 116
| Token
Transition < Transition false =

The Token of the Arc

E-11

& runtime-New_configuration - platform:/resource/org.eclipse.sample.petrinets.sample/representations.aird/representation - Obeo Designer Community - g

File Edit Diagram Navigate Search Project Run Window Help
M- HRieiF-0-Q-ig-il-]e Token - Arc arcl - o lEN
- G v = 3 M
B Mode Bxplorer 52 = B B ML Fiter Available Choices
a o
typefilter text | 557 Choice Patter (" or 7} | | i Palette 3
b Y org.eclipse sample.petrinets sample PEEEEAEE
1 12 org.eclipse sirius.sample petrinets.design e Fim & CreateNodes =
iSdToFens 4 createTransition
4 createPlace
4 Token
o 4 Bond
| <& Neoativeloken
Down [CreateAre «
<4 ArcRequirements
™\ PlaceToArc
™\ ArcToPlace
| TransitionToArc
™\ ArcTaTransition
o sE*»E =8
+ 4
RS
0= Outline 52 Mair ~
Semanuc
= Are name
oble Bond
Appearance From 112
Negative bond
Megative token
Place
To LA116
[Token []
Transition % Transition false -
The Token of the Arc ;
Ly runtime-New_configuration - platform:/resource/org.eclipse.sample. le/repi ions.aird/ ion - Obeo Designer Community
File Edit Diagram Navigate Search Project Run Window Help
i E Rt O i Bl Gy

8%

[type filter text |

- Model Explorer 53 ¥ = B & Mypetrinets
]

2 org.eclipse.sample.petrinets.sample
1 2 org.eclipse.sirius.sample. petrinets.design

i) petrinets.odesign

< el

& “representation £1
-t | A B AR KK BT AE[S A B

&

[a]

Nl

[l Properties 52 [£] Problems <> Interpreter o References

+ Arc arcl

O Outline 52 Main
Semantic
Style

Appearance

Synchronized diagram

Property

4 Arcarcl
Arcid
Arc name
Bond
From
Negative bond
Negative token
Place
To
Token

| & g5
(= CreateNodes @

4 createTransition

4 createPlace

4 Token

4 Bond

NematisaT
(= CreateArc ©
<+ [t1] < ArcRequirements

\\ PlaceToArc

\ ArcToPlace

™\, TransitionToArc

“\ ArcToTrapsition

B ==8

Value ®
=3
= arcl
La112
TA116
% Tokena v

E-12

From the semantics area the user can also define token/bond/negative token/negative
bond’s name respectively.

1 > < [t1]
roperty Value
1 Token a

Token id [y q

Token name =3

When the initial marking is ready, the user has to save it and then return to the
simulator. There he/she must click “Finish” button.

SO GOO VO

DOOOHG D

@ @ =
3l

o

Il Jal Im-gl I, A1
-l [m-gl

pl

E-13

Simulator for Reversible Petri Nets - O

e How to draw your Petri Net

1 Be sure that the Folder Obeo designer-Community is saved
at the location C:Users/Your folder.

2.Click to button 'Open Obeo designer' and then when a window
will appear click on 'Launch' button.

3.From the Obeo designer environment Click Run from the toolbar. O~
4 Go to representation tab. [,E'a representation &

3.You can now draw the petri net from palette. o3 Palette

6 When you will finish, save your Petri net =
diagram and click Finish' button. @

Open Obeo Designer

1

Execution of transitions:

Since the input has been imported the user is going to redirected to the next screen,
where the user can execute transtions, either in forward or in reverse order.

Simulator for Reversible Petri Nets -
Formard_enabled _E Find forward- enabled
transitions are: transitions
Backirack-enabled -
transitions are: Find reversed

enabled transitions
Causal-enabled
transitions are: i
QOut of
causal-enabled Next move
transitions are: -
Place Marking

E-14

The user can select to search for the forwars-enabled and/or the reversed enabled

transitions, according to the given marking. Then the user can choose a transition and a

form of execution (forward, backtrack, causal, out-of-causal), one at a time to be

o

i

executed.

Simulator for Reversible Petri Nets =
Forward-enabled _E There are 2forward encbled [RITRRCTS L LR LT
transitions are: pansmans transitions
Backtrack-enabled | Mo backuack ensble
transitions are: pansmans. Find reversed

enabled transitions
Causal-enabled No causal enabled
transitions are: | transiotions,
Out of -
:::us:_l-_en:bled - No out_of | enabled ext move
ansitions are: Tansiotons.
FPlace Marking

Then the user can press “Next move” button to execute the transition. After the
execution the new marking will appear to the table below.

Simulator for Reversible Petri Nets -

o

Find forward- enabled

transitions

Find reversed
enabled transitions

Next move

i

Marking

Forward-enabled t1 o | There are 2 forwand enabled
transitions are: ransmans
Backtrack-enabled - ::;;F;t;xk enzble
transitions are: '
Causal-enabled Mo | ensbled
transitions are: - s——
Out of
causal-enabled
transitions are: - ::::EO"LM| enzbled
Place
p1
p2
p3 m
pd r-f
pa
pé p
p7
pa o
pa
p10
p11

]

E-15

Additional feature for third Method:

If the user has chosen the third method to insert the input, another feature is available.
The user can observe the changes happening on the marking, on the diagram too, from
the graphical representation tool. In order to achieve this the user has to keep open the
Obeo Designer’s windows open, and then after each execution update the source file of
the diagram. To update the source file, the user has to just click on the file
“My.petrinet”, which is at the toolbar located in the left side of the window. Afterwards,
the changes will be available on the screen.

B Model Bxplorer 33| B 5, ¥ = O &, *new petrinets diagram 3
type filter text of ~ &y '| o | < '| | & '| = '| @ &
4122 org.eclipsesample.petrinets sample
> B, Project Dependencies

Ll Ay epy.petrinets

. 4y Petrinet
4 |4 representations.aird
P .
4 += petrninets
4 g petrinets diagram
& new petrinets diagram

representation

. 22 org.eclipse.sirius.sample.petrinets.design

E-16

	Chapter 1
	Introduction
	1.1 Motivation
	1.2 Work Purpose
	1.3 Work Methodology
	1.4 Thesis Structure

	Chapter 2
	Scientific Background and Related Work
	2.1 Reversible Computation
	2.2 Forms of Reversibility
	2.3 Petri nets
	2.4 Reversing Petri Nets
	2.4.1 Forward execution
	2.4.2 Backtracking execution
	2.4.3 Causal execution
	2.4.4 Out-of-causal-order execution

	Chapter 3
	Requiremnts specification and Software used
	3.1 Requirements specification
	3.1.1 Aims
	3.1.2 Objectives
	3.1.3 Specifications

	3.2 The Java programming language
	3.2.1 Object-oriented approach of Reversible Petri Nets

	3.3 Obeo Designer software
	3.4 Unified Modeling Language (UML)
	3.4.1 Component diagram
	3.4.2 Component diagram for Reversing Petri nets
	3.4.3 Class diagram
	3.4.4 Class diagram for Reversing Petri nets

	Chapter 4
	Simulator
	4.1 Representation of basic components
	4.1.1 Place
	4.1.2 Transition
	4.1.3 Arc
	4.1.4 Token
	4.1.5 History
	4.1.6 Petri net

	4.2 Algorithms
	4.2.1 Forward algorithm
	4.2.2 Backtrack algorithm
	4.2.3 Causal-order algorithm
	4.2.4 Out-of-causal algorithm

	4.3 Graphical User Interface
	4.3.1 Read input from file
	4.3.2 Create new Petri net from GUI
	4.3.3 Read input from graphical representation tool
	4.4.4 Simulator execution choices screen
	4.3.5 Visual changes on Reversing Petri net diagram

	4.4 Graphical representation tool
	4.4.1 Domain model for the Reversing Petri nets
	4.4.2 Design specifications for the Reversing Petri nets workbench
	4.4.3 Obeo Designer’s output processing
	4.4.3.1 Parser from xml to Java representation
	4.4.3.2 Parser form Java representation to xml

	Chapter 5
	Case study
	5.1 Causal order example
	5.2 ERK-pathway example in RPNs

	Chapter 6
	Conclusions
	6.1 Summary
	6.2 Challenges
	6.3 Future work

	References
	Appendix A
	Structures for main components in Java
	Place
	Transition
	Arc
	Token/Bond
	Cell (History representation)
	Petri net

	Appendix B
	Algorithms’ implementation in Java
	Forward algorithm functions
	Backtrack algorithm functions
	Causal algorithm functions
	Out of causal algorithm functions

	Appendix C
	Simulator interface functions

	Appendix D
	Parser’s code
	Reverse parser’s code

	Appendix E
	Simulator manual

