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Abstract 

 

The number of internet users has increased dramatically during the last decade going 

from 30% to 45% of the population of the world.  Technological solutions along with 

the fact that internet comes with services that optimize everyday procedures helped to 

this great expansion. This great demand though led many service providers to build 

datacenters in order to maintain high user experience and in parallel deliver their 

services to a global base client. But the building of datacenters comes with a lot of cost 

as a big number of devices have to be bought run and maintained. The greatest example 

of such a service is web search. Web search is one of the most known services with 

more than 5.6 billion searches per day. That along with the fact that the service must 

return relevant to the user queries results in a fraction of time automatically made the 

service, processing power expensive. For these reasons the specific service has been in 

the center of the research interests.  In this work we report the results of a performance 

characterization of Simultaneous Multi-Threading (SMT) and Index-Partitioning (IP) 

when executing an online document search application which has similar characteristics 

as a web search machine. We use an academically accepted web search application and 

evaluate the specific application on real hardware.  More specifically we start by 

explaining the background of the project which include the main components, the 

architecture of the benchmark, SMT, IP e.t.c Then we explain the way that we collect 

the data by introducing the four different system configurations each one representing a 

potential way of running the application. We continue doing an experimental 

evaluation. Our experimental evaluation shows that while SMT execution degrades 

single-thread execution latency, the multiple SMT contexts increase available 

throughput and can help decrease queuing latency. SMT is particularly effective in 

reducing the queueing induced by IP. Overall, we find that in every situation we have 

evaluated combining SMT and IP yields the best average and tail latency for the 

application, dataset and server type used in this study. This is true for both single and 

dual socket server configurations we have evaluated. Our analysis for the dual socket 

configuration reveals that IP is beneficial for both low and high utilization. The thesis 

also reports, among other, on the sensitivity (i) of tail latency to performance variability, 

and (ii) to the system configuration (c-states and pinning). 
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1.1  Motivation 

 

Simultaneous multi-threading (SMT) [32] is a common feature of modern server CPUs 

[16][30]. Broadly speaking, SMT increases CPU utilization and computational 

throughput by concurrently executing multiple threads in a physical core while sharing 

many of the core resources (such as physical registers, execution units, caches and 

predictors). On the down side, SMT is detrimental to single thread performance because 

the simultaneously executing threads often content for limited shared resources both 

inside and outside of a core [29]. For latency sensitive workloads, such as interactive 

online applications, SMT induced single-thread performance degradation seems 

undesirable because it can lead to higher execution latencies [34][33].  

Related work as well as anecdotal sources suggest that whilst most server CPUs support 

SMT, the datacenter and HPC operators often prefer to disable SMT or not utilize all 

available SMT contexts [34][33][19]; especially, for latency sensitive applications that 

need to respond quickly to incoming queries. This leaves the CPU hardware 

underutilized and inefficiently used in costly and power-constrained compute farms and 

centers. Previous work has attempted to identify latency-friendly ways to collocate 

batch and online workloads on SMT contexts to improve server utilization without 

violating QoS requirements (such as tail latency) [34][33]. Index-partitioning (IP) is a 

prevalent technique for increasing parallelization and reducing index search-time 

[17][18][31][7]. Across-server partitioning is essential when large working sets need to 

be searched [2][3]. This requires individual server tail latency to be much lower than the 

overall tail latency [8]. Intra-server IP, as the means to reduce a server tail latency, is the 

subject of several previous studies. Virtually all these works find that IP is beneficial to 
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average and tail latency at low utilization but has diminishing returns with higher load 

[17]. To leverage the benefit of IP at low-utilization some works propose dynamic 

adaptation of the degree of partitioning used according to a predicted load [17][7].  

As far as we know, no previous published work has investigated the latency 

ramifications of using all SMT contexts of a core in combination with intra-server IP, 

when executing an online sensitive application. What is more important, though, is that 

our study has led to new insights about how to use SMT and IP to improve latency of an 

online time sensitive application.  

The key finding of our study is that a CPU running an online application that has SMT 

enabled and uses IP provides the best average and tail latency for the application, input 

data, all query arrival rates and server configurations used in this study. This is in direct 

contrast to the commonly accepted view that SMT is not latency friendly for online 

applications and that IP provides latency benefits mainly at low arrival rates when CPU 

utilization is low. The key insights of our study, supported by both theoretical queuing 

analysis and empirical results, are:  

1. The doubling of execution contexts by enabling SMT can dramatically reduce the 

queueing time of queries waiting to be serviced.  

2. IP reduces the latency a CPU spends executing a query but it offers limited or no 

performance at high arrival rates due to large queueing delays.  

3. Combining SMT and IP provides best average and tail latency by leveraging both 

reduced query execution and queueing times.  

The CPU used in this study supports two-way SMT per core.  

The gains from combining SMT and IP are dependent on:  

a) the OS scheduler to be SMT-aware, which means that it will usually not schedule two 

threads to the same physical core when the number of runnable threads is less than or 

equal to the number of physical cores (which is true for most modern OS) [10],  

b) the average increase in execution time (performance degradation) due to SMT needs 

to be offset by a larger average reduction in queueing time due to the additional 

throughput offered by SMT contexts. This trade-off is workload dependent and for the 

online application we evaluated it holds. Specifically, the single-thread performance 

degradation caused by SMT is 1.5X and the doubling of the SMT contexts offsets it. 

c) The size of the partitions used by IP are balanced and enable a significant reduction 

in the execution time as compared to no partitioning. For our workload and index 
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dataset, 2-way IP reduces execution time by almost half indicating well-balanced 

partitions.  

 

1.2  Contributions  

 

The main contributions of this work are a characterization analysis and a number of 

conclusions that stem from investigating the implications of SMT and IP on the 

response-time of an online application. In particular, the main contributions of this work 

are:  

1. A characterization of the SMT and IP ramifications in terms of average and tail 

latencies of the popular Lucene search-engine, when running on a dual-socket NUMA 

x86 server with multi-core CPUs, with two-way SMT cores.  

2. A design space exploration of the implications among other of: (i) changing query 

inter-arrival rate, (ii) single and dual socket execution, (iii) CPU c-states configuration, 

(iv) execution with and without SMT, (v) execution with and without IP of the 

application’s index dataset, (vi) the mapping of multiple application instances to cores, 

and (vii) the mapping of the data set for the dual-socketed execution.  

3. An analysis based on queueing M/M/c model that provides the theoretical 

explanation for the observed average latency reduction due to SMT and IP.   

4. Showing that SMT can reduce both average and tail latency of the Lucene search-

engine at high utilization. This is when the query traffic is large enough so that the 

number of queued + serviced queries is larger than the number of physical cores. The 

analysis reveals that the SMT expected time degradation of a query is 1.5X. Therefore, 

the observed benefits come from the 2X throughput increase of SMT and the reduction 

in queuing times.  

5. Observing at low utilization that SMT provides the same average and tail latencies as 

with the SMT disabled. This is due to the default OS scheduling policy of our system 

that is SMT-aware. It typically assigns one job to all physical cores before assigning a 

second job to a physical core. This avoids performance degradation caused by naively 

scheduling two threads on a physical core when other physical cores are idle.  

6. Analysis of two-way IP across physical cores. The IP analysis across physical cores 

reveals that partitioning cuts execution time by half but its overall benefits diminish as 

query arrival rate increases because the query execution time speedup is offset by 
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queuing increase (similar to what prior work has shown [17][7]). This observation is 

true for single-socket runs. For dual-socket execution, the IP configuration provides the 

lowest latency across all utilization levels compared to a configuration without IP. This 

is the case because IP eliminates NUMA (Non-Uniform-Memory-Access) latency by 

restricting each search-server and its index-data to run on a dedicated socket and its 

local memory node.  

7. Finally, most importantly showing that the combination of SMT with intra-server IP 

provides the best average and tail latency for both single-socket and dual-socket 

configurations for all inter-arrival rates we have evaluated.  
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2.1  Definitions  

 

Term: A word that a web search user sends to a web search as a part of query 

Query: Query is an expression composed by one or more terms. The queries are 

relative to the type of documents the user is searching for. In our evaluation we only 

have conjunctive queries, which means that the resulting documents must have all the 

terms of the query. 

Index: Structure that contains the term and the relevant to the term documents. In more 

detail each term points to a list of all the documents that contain the term  along with the 

number of times the term is being mentioned at those documents (Frequency). The 

terms are alphabetically sorted. 

Posting List/ Document List: The list that the term points to. The list consists of pairs 

of document id and term frequency that are called posting. 

Tf.idf Scoring (term frequency-inverse document frequency):  It is a numerical 

statistic indicating the relevance between a word and a document. To do that it uses the 

frequency of the term in the document and the number of documents in a set that 

contains the term. 

Partition: A part of the index. We usually assign different part of the index (partitions) 

to different index servers to enable parallel index search. 

Intra Server Partition: All Index servers are in the same physical machines. 

Tail latency: It’s a metric used when evaluating the performance of a web search 

engine indicating the performance of the worst-case queries which are the one requiring 
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the most time. It is measured in various percentiles. For example, a 90th percentile 

equals to 250 ms means that the 90% of the executed queries are executed in less than 

250ms. 

Quality of Service: A set of thresholds for metrics need to be respected in order to have 

user satisfaction. In web search it is usually expressed using percentile of response time. 

Response Time: It is the time between the moment the client sends the query to the 

web engine until the moment the client receives the results. It is an important metric as 

it is being used to calculate the tail latency. 

Throughput: It is the number of queries the web service can serve per amount of time. 

From application to application the throughput differs. For example, in networks is the 

number of packets arrived at the destination per amount of time. In our case we measure 

throughput as queries/second. 

C-States: They are power states of the CPU. The first state is called C0 and it is the 

state where the CPU functions normal (no energy savings). The higher the C number the 

deeper the sleep mode and the higher the delay until the CPU “wakes up” again and is 

100% functional (go to C0 state). The idea of lower power states is to shut down or 

reduce the power going to the units of the CPU that are idle. This is being achieved by 

cutting clock signal or reduce voltage or both. 

NUMA effect (Non-Uniform Memory Access): We come across  this phenomenon on 

multi-socket architectures. At a multi-socket architecture we have multiple sockets 

(CPUS). Each CPU(socket) is nearer to a part of memory(called local memory). Ideally 

the CPU fetch data from it’s local memory but it can also fetch data from a “remote 

memory” (part of memory which is nearer to another CPU). At this case the CPU 

performs a remote memory access which cost more cycle delay than the local memory 

access. 

DVFS (Dynamic voltage scaling): Technique applied in modern microprocessors for 

power savings. Each modern microprocessor has predefined voltage, frequency states 

also called performance state. A user space process according to CPU utilization 

changes the cpu performance states. Usually on low utilization low power performance 

is preferred and on high utilization a high power high performance state is preferred. 
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2.2  Simultaneous Multithreading 

 

SMT is a characteristic of modern CPUs first appeared on intel Xeon processor family 

in 2002. The motivation for the development of this characteristic was to improve the 

overall performance of the CPU without increasing transistors (die area). So the idea of 

the technique is to increase the number of threads assign to one physical core (without 

increasing the number of all units per physical core) in order to increase the utilization 

and the throughput. Without the SMT, threads run sequentially, but the performance is 

not ideal as hazards prevent instructions from executing leaving underutilized some 

units. 

 

Microarchitectural a CPU that supports SMT has small differences from a CPU that 

doesn’t support SMT.  This is because the threads running on the same physical core, 

either share the structures of a single physical core or use them sequentially. The 

number of duplicated units that a single physical core has when support SMT is small. 

 

Figure 2.1 illustrates an abstract state of the pipeline when two threads A and B run on a 

core with and without SMT. When SMT is enabled we observe that the pipeline 

utilization is increased because the threads can use different core units simultaneously. 

Generally, the threads running on the same physical core don’t execute completely in 

parallel as they share some units and are executed sequentially in some other units of 

the pipeline. More specifically when SMT is enabled the instructions per cycle (IPC) is 

increased but the IPC per thread is reduced due to resource contention. With online 

services the response time of each query is important so SMT is considered detrimental 

for the latencies of the queries. 
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Most modern server CPUs offer two-way SMT [23][16][30], this means that up to two 

threads can simultaneously execute and share a core’s resources. The impact of SMT is 

not always beneficial, even for throughput-oriented batch workloads (e.g. HPC 

workloads). Previous work shows that some applications see performance improvement 

with SMT and others do not [29][4]. Generally, SMT is considered beneficial if its 

single-thread performance degradation is lower than the increase in the number of 

logical cores. 

 

We can perform several optimizations to improve the performance of SMT at 

application and OS level. Something that we came across in this work is the SMT – 

aware scheduler of the operating system. An SMT – aware scheduler first assigns 

threads to physical cores before start to assign to their SMT context. In this way in low 

utilization all threads of the system are running on different physical cores having all the 

resources available. 

 

 

 

 
Figure 2.1 Pipeline state with and without SMT. 
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2.3  Queuing Theory 

 

This subchapter uses the M/M/c queueing model [20] to evaluate analytically the 

average performance (e.g. the expected wait-time of a query in a server) of a server 

when it is used to service an incoming query stream. The model has three input 

parameters: the incoming query rate, λ, the expected number of queries a server core 

can service per second, μ, and the number of cores in the server, m. The model assumes 

that the arrivals follow a Poisson distribution and the service times are exponentially 

distributed. In our study, a Poisson process governs query arrivals, therefore, the model 

is a good match for what we evaluate. We make a simplifying assumption that service 

times are exponentially distributed. A more detail model of service times is beyond the 

scope of this work, but we like to point-out that the model provides a good basis for 

understanding the trade-offs and the sources of improvements from SMT and IP.  

We analyze the following four server configurations using different values for the 

model parameters:  

1. a server without SMT and without IP (noSMT-noPart or Baseline)  

2. a server with SMT and without IP (SMT-noPart)  

3. a server without SMT and with IP (noSMT-Part), and  

4. a server with both SMT and IP (SMT-Part).  

 

The noSMT-noPart server uses m cores each with expected service rate μ. The SMT-

noPart configuration use 2m cores, to resemble 2-way SMT core design like in the real 

hardware evaluation of our study, with service rate μ/d, where d represents the SMT 

single-thread degradation. The noSMT-Part configuration uses m/2 cores each with 2μ 

service rate. This is used to represent a server employing 2-way partitioning, each query 

serviced by two-threads, assuming perfectly balanced partitions. Finally, the SMT-Part 

server uses m cores each with 2μ/d service rate.  

 

Figure 2.2 shows a breakdown of average response time into wait and search times for 

the four server configuration assuming λ=150 and with the noSMT-noPart configuration 

using 8 cores, m=8, and each core capable of serving on average 20 queries per second, 

μ=20. Figure 2.2 represents a scenario where SMT is assumed to cause 1.5X single-
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thread degradation, d=1.5, which corresponds to the actual degradation we have 

observed in real hardware for the application we evaluate.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The analysis clearly shows that the Baseline, for the given configuration and arrival 

rate, suffers a lot of queueing delay (a query waits 80ms out of 130ms to be serviced). 

SMT-noPart virtually eliminates the queueing time of the baseline underlying the 

benefits of doubling the throughput in a queue-constrained situation while the search 

time suffers an increase due to SMT’s single-thread degradation. The noSMT-Part 

configuration reduces the search time, but this comes at the expense of an increase in 

wait-time. This indicates that when arrival rate is high a reduction in search time has 

diminishing returns (IP is more useful at low utilization). In fact, the queuing time of 

noSMT-Part is worse than in the Baseline, with the noSMT-Part scenario been the most 

constrained by queueing. Finally, the SMT-Part configuration provides the lowest 

overall response time since its extra cores, as compared to noSMT-Part, help remove 

essentially the queueing delay. The search time is worse, due to SMT single-thread 

degradation, but this is offset by the drastic reduction in queueing time.  

One other interesting observation from Figure 2.2 is that the SMT-Part configuration 

offers more latency reduction than the sum of the reductions by SMT-noPart and 

noSMT-Part (89ms vs 53+19=72ms. Put it another way the reduction of queueing delay 

by SMT is not a linear function of the extra cores used. This seemingly counterintuitive 

 
Figure 2.2 Search and Wait Time for different Configurations 

(λ=150, d=1.5X) 
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result can be understood by considering what the impact is on queueing time of 

increasing core count. These trends are shown in Figure 2.3 and 2.4 for the SMT-noPart 

and SMT-Part configurations. The graphs reveal that queueing delay, for the scenario 

analyzed, decreases exponentially with the number of cores and doubling the number 

cores can eliminate queuing delay.  

The SMT single-thread degradation in Figure 2.3 and 2.4 is a linear function of extra 

SMT cores ranging from d=1X, no degradation, when no SMT cores are used to a 

maximum of d=1.5X, when the number of cores is doubled. This corresponds to the 

actual degradation observed in the real evaluation on hardware.  

 

The model used in this chapter is quite useful in revealing the potential gains from 

combining SMT and IP and explain the sources of such improvements. But the model is 

an approximation of reality. For instance, real scheduling will be SMT-aware, not 

scheduled on same physical core two threads unless no physical core is available. 

Additionally, partitioning is not perfect and thread execution is asynchronous, implying 

some extra overheads from partitioning in realistic setups. Consequently, for the 

aforementioned and other model inaccuracies, to assess the potential benefits of SMT 

and IP we perform an evaluation using real hardware for a specific online application. 

 

 
Figure 2.3 Wait Time vs # of Cores SMT-noPart λ=150 
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2.4  Sources Of Variability 

 

Interactive applications often perform on many servers in order to take advantage of 

parallelism and maintain low latency. An example of this is web search which often 

performs index search across many servers in parallel. This is not necessarily good as 

slow down of a single server affects the tail latency of the whole query and indirectly 

the user satisfaction, diminishing the performance gains of parallelism. There are many 

sources of variability from the hardware, OS to application level that affect tail latency 

[tail of tales]. Web search providers search ways to reduce the impact of variability in 

order to guarantee a strict QOS usually 99% queries under 300ms. For these reasons at 

this chapter we are addressing the sources of performance variability and at a later 

chapter we introduce how we manage to reduce some of them in our experimental 

setup. 

     

Core migration and Non Uniform Memory Architecture: The architecture of 

modern blade servers is usually the Non Uniform Memory Architecture (NUMA). A 

typical server consists of two sockets and each socket has its own memory node. Of  

course both sockets can access data from both memory nodes but accessing the remote 

memory node adds some performance penalty. It is typical practice in data centres to 

 
Figure 2.4 Queueing Time vs # of Cores SMT-Part λ=150 
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run more than one application per server node or for QoS purposes do keep 

underutilized a server by not using all its cores . Both practices require core and 

memory pinning of an application otherwise a running process can migrate from core to 

core depending on the Linux scheduler policy. The migration can cause loss in 

performance due to the fact that the architectural structures like L2 and last level cache 

of the core that a process is migrating in, needs time to warm up. Also the migration 

may cause memory accesses to remote node which of course induces some performance 

penalty and performance variability. 

 

Power Management techniques (C- states, DFVS): Deep sleep states like core 

parking and DVFS may hurt performance for various reasons. For example executing a 

query on a core which was previously idle may add significant amount of time to the 

query execution if that core is waking up from deep sleep state. The same problems 

apply to DVFS. The default Linux DVFS governor scales the frequency accordingly to 

utilization. A core starting query execution from idle state probably will need some time 

to scale the frequency up to the max. This may cause a longer query processing time in 

comparison to running always at the highest frequency. 

 

Background jobs and interrupt processing: Background processes and services 

which are part of the Operating System as well as other user started background 

processes like for example monitoring processes may have performance impact on the 

web search performance. Our web search processes need to content with the 

background processes for CPU time. If a core is blocked by a background task for a 

long period of time, this greatly increases the latency of a query. Interrupt processing is 

also another variability source which is similar to background jobs as the CPU pre-

empts the user process for executing other code. Real time priority scheduling as well as 

forcing interrupts to execute on other cores are techniques that seem to alleviate the 

performance variability caused by background jobs and interrupt processing. 
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3.1  Benchmark Description  

 

3.1.1  Architecture – Functionality – Information Flow - Components Description  

 

In this chapter we describe the architecture and the functionality of the Nutch web 

search engine. The Nutch framework provides a lot of useful functionalities such as: a) 

crawl and build index, b) partition the index among multiple index servers, and c) 

coordinate index server execution with a frontend server that forwards the search 

requests to multiple index servers, collects their answers and sorts them. Fig. 3.1 shows 

the components and the overview of the search engine’s architecture. The Nutch search 

engine structure consists of the front-end and index and, it is similar to what is described 

[1] in as the Google query serving architecture. The Nutch index search is based on the 

Lucene search engine which is a well known search engine. For instance, the Twitter’s 

real-time [24] search is built upon Lucene. Therefore, this benchmark is representative 

as it has some real-world deployments. It must be noted though, that compared to the 

most widely used search-engines like Google or Bing, the search-engine used in this 

thesis has some differences mainly in document scoring and query processing .  
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Below we provide a description of the query-processing flow that is also illustrated in 

Fig. 3.1:  1) The client sends a query to the front-end server. 2) The front-end server 

receives the query and asks from each index server to return the most relevant to the 

query documents. 3) The index servers perform the search and respond to frontend with 

the document Ids and the relevance scores of the top-k relevant matching documents. 4) 

The front-end server collects the results, sorts the documents according to their 

relevance score, assembles an html response and sends it to the client.  

 

Having that in mind a query’s end-to-end latency is the sum of: 1) the time spent on the 

client – frontend communication (client sends request, frontend assembles the html 

response and sends it back to client), 2) the index search which is performed on the 

index server which includes the time frontend spends on sending the query to the index 

servers, gathering the responses and sorting the documents by relevance score. Figure 

3.2 shows on average how much time each query phase takes in relation to dataset size. 

This graph is obtained by executing sequentially 100K queries and calculating the 

average time spent at each phase. The sequential execution is enforced to isolate the 

latencies from the effects of queuing, contentions on shared resources, etc. The key 

takeaway from Figure 3.2 is that the client-frontend communication requires minimal 

 

 
Figure 3.1 The basic components of our search infrastructure. The arrows show the 

information flow and interactions between components during a query execution. 

The numbers show the order of the execution flow. 
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time and that index search time scales linearly with dataset. We provide next a more 

detailed component description.  

 

Index Server The index server is a Hadoop 0.2 IPC (Inter Process Communication) 

server process running Lucene 3.0.1 search engine. The Hadoop IPC server consists of: 

i) a listening thread which listens for incoming requests from the front-end server, ii) the 

handler threads, which perform the index search or retrieve the details of a document 

and iii) a responder thread, for sending the responses to the front-end.  

 

 

 

Front-end Server The front-end is a Tomcat web server running the Nutch application. 

Tomcat is multithreaded and spawns a new thread for handling a new query request. 

The front-end coordinates the entire query execution and it is the component which acts 

as a link between the client and the nodes which do the actual job: the index and the 

document servers.  

 

Client The Client is a process thread used for sending queries to the front-end. A client 

thread can send queries based on some inter-arrival time distribution (open-loop) or in a 

 
 

Figure 3.2  Time spent at client-frontend communication and search process of the 

benchmark in relation to dataset size. 
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stress test manner (closed-loop). In the stress test scenario a client thread sends a new 

query as soon as it receives the response for the previous query sent. Having discussed 

the architecture and the information flow of the search-engine we next describe its 

inputs, i.e. the queries. 

 

3.1.2  Index Structure 

 

Next let’s discuss the implementation of the index organization. The structure of the 

index is also illustrated in Figure 3.3. The index terms are stored in an array in 

alphabetical order. The alphabetical ordering enables binary search and fast term 

searching. A parallel array holds pointers to a byte stream; each pointer points to the 

position in the byte stream where the <documentId,termFrequency> pairs of a term 

start. The list of a term’s <documentId,termFrequency> pairs is called posting list. The 

documentId and termFrequency pairs are compressed using a variable integer format. 

The variable integer format enables saving space by using the first bit of each byte to 

show whether more bytes are remaining (if bit is equal to 1 more bytes are left 

otherwise no bytes are left to read). This way all numbers from 0-127 can be 

represented with one byte, all numbers from 128 to 16383 with two bytes, e.t.c. The 

posting list can be sorted by score, for example the PageRank. Sorting the docs by score 

is beneficial both for performance and for relevance of results. It provides quick access 

to the most popular documents which are most likely to fit the user’s information needs. 

In Nutch all posting lists are sorted by DocId which is useful for performing efficient 

merging of posting lists for conjunctive (AND) queries (posting list intersection). 

 

Term Document 

Frequency 

<Document id, Term Frequency> 

Characterization 30 <1,7>,<45,21>,<336,2> 

Thesis 200 <5,45>,<7,50>,<36,40>,<78,65> 

Workload 144 <4,44>,<89,25>,<100,25>,<120,25>,<400,25> 

 

Figure 3.3 High level view of Index structure 
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3.1.3  Index Search Procedure  

  

Now let’s discuss the index search procedure. Nutch uses conjunctive multi-term 

queries, vector space model (for representing documents) and tf.idf weighting scheme 

(for ranking documents). The actual search procedure goes like this: First binary search 

is performed to find the posting lists for all query terms. Then posting list intersection is 

performed to find the documents that contain all query terms. For each document found, 

a tf.idf score is calculated. The tf.idf weighting scheme gives high scores to documents 

that have many occurrences of the query terms and also to documents that contain many 

occurrences of rare terms. To decide the top-k (e.g. top-10) most relevant to the query 

documents, the index server sorts the documents based on their tf.idf score. To 

summarize, the index search time for a conjunctive query is determined by: 1) the 

binary search for finding each term’s posting list, 2) the merging of the term posting 

lists, 3) the ranking of the documents which come out of the intersection, and 4) the 

sorting of the documents by their relevance rank. 

 

The posting list intersection is generally considered the most time-consuming part of the 

index search procedure, not only for Lucene but for other search engines as well. In 

order to optimize this part many web search engines usually perform an early 

termination of the search procedure either by using a cut-off latency or when the quality 

of results is unlikely to improve with further searching. This strategy aims to avoid 

cases where index server is searching for too long. The Nutch provides an option to stop 

searching according to a cut-off latency. With enabled cut-off latency search, queries 

that are prematurely stopped may suffer from poor result quality (low relevance of the 

search results). For instance, this may happen when an index server is slowed down for 

some reason (see sources of variability) and does not have enough time to go through its 

posting list. In practical terms, it is not trivial to compare server performance in terms of 

relevance of query results. Given that optimizations that expedite search time can be 

beneficial to deployments with and without cut-off, we use for our evaluation the 

default configuration of Nutch benchmark which does not use any cut-off latency. 

Consequently, the various server configurations we assess, are compared using latency 

metrics (both average and percentile).  
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3.2  Metrics 

 

A web search engine must maintain low mean and high-percentiles response times. 

Service guarantees as tight as 99% of response times within 300ms are usually set to 

keep users satisfied. Such service guarantees must be preserved even at the highest 

(peak) loads. Relevance of the search results is also a crucial factor which contributes to 

user satisfaction and the eventual success of a search engine. The relevance of search 

results can be improved with more sophisticated ranking functions and larger web 

index. 

 

3.3  Index Partitioning 

 

As mentioned at a previous chapter the most time - consuming phase in our search 

procedure is the posting list intersection. For this reason, many techniques have been 

invented to optimize this phase. One of them is the partitioning. The partitioning 

improves the end to end latency of the query and not the relevance of the results. It is 

based on the observation that index search time scales linearly with dataset. The idea 

behind it is to have multiple index server processes search at a different part of the 

dataset. In this way each index server process searches a smaller part of the dataset 

(smaller time spent to posting list intersection) while at the same time taking advantage 

of the parallelism. We have two types of partitioning, term and document partitioning. 

 

With term partitioning each index server holds an index for a disjoint set of terms. A 

query is sent only to the nodes that contain a term of the query in their part of the index. 

In this way we are taking advantage of the concurrency as with different query terms we 

hit different nodes. The disadvantage of this is that if all the terms of the query are in the 

same index then only one node is being used and we lose the benefits of the 

concurrency. An example of term partitioning is shown in Figure 3.4. 
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With document partitioning each index server holds an index for a disjoint set of 

documents. Whatever the query is and the number of its terms the query will be sent to 

all of the nodes. According to theory, this document distribution results in a more 

uniform distribution of query processing time across index servers. We use document 

partitioning with our benchmark. An example of term partitioning is shown in Figure 

3.5.  

 

Ideally the more we increase the number of index servers and the degree of partitioning 

the less the response time. For example if with one partition we have a response time of 

88ms, ideally with two partitions we must have a response time around 44ms. This 

happens because each index server gets a smaller index part and, thus, needs less 

amount of time to respond to a query. For this to happen though we must have balanced 

posting lists across the partitions, otherwise, partitioning will not provide the expected 

performance benefit. Apart from that the execution of the query must start at the same 

time for all index server process. 

 

 

Partition 1 

 

Term Document 

Frequency 

<Document id, Term Frequency> 

Characterization 30 <1,7>,<45,21>,<336,2> 

Thesis 200 <5,45>,<7,50>,<36,40>,<78,65> 

 

 Partition 2 

 

Term Document 

Frequency 

<Document id, Term Frequency> 

Workload 144 <4,44>,<89,25>,<100,25>,<120,25>,<400,25> 

 

Figure 3.4 High level view of term partitioning 
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Index partitioning can be done across servers or inside the same server (intra server 

partitioning). Intra server partitioning is realized by running multiple index search 

contexts on the same server with each context working on a different index part. Intra 

server partitioning represents a trade-off between throughput and response time latency. 

Having many index searchers in a CPU socket can speed-up the execution of a query 

but reduces the number of available cores for handling in parallel multiple queries and 

can, thus, increase queueing time. In our evaluation we perform intra server partitioning. 

 

 

 

 

 

 

 

 

 

Partition 1 

 

Term Document 

Frequency 

<Document id, Term Frequency> 

Characterization 28 <1,7>,<45,21> 

Thesis 95 <5,45>,<7,50> 

Workload 69 <4,44>,<89,25> 

 

 Partition 2 

 

Term Document 

Frequency 

<Document id, Term Frequency> 

Characterization 2 <336,2> 

Thesis 105 <36,40>,<78,65> 

Workload 75 <100,25>,<120,25>,<400,25> 

 

Figure 3.5. High level view of document partitioning 
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4.1  Scenarios Description  

 

In order to test the impact of Index Partitioning and Simultaneous Multi-Threading on 

the performance of our benchmark we created and evaluate four configuration 

scenarios. In this chapter we are going to present these scenarios and justify our choices 

for the configuration.  The four configurations scenarios are: a) the NoSMTnoPart 

configuration in which both SMT and IP are disabled, b) the Part configuration in which 

IP and parallel search among physical cores for each query is enabled c) the SMT 

configuration in which SMT is enabled, and d) the SMTpart configuration in which 

SMT is enabled along with IP across SMT contexts. 

 

The physical representation of the four configurations for dual sockets architecture are 

illustrated in Figure 4.1 and 4.2. The NoSMTnoPart scenario is very similar with the 

SMT configuration with the difference that SMT configuration offers more contexts for 

serving independent queries (of-course at the expense of slower execution time per 

query). The idea of these scenarios is the same, each physical or logical core is serving 

one query. Similarly, the Part configuration is similar to SMTpart with the difference 

that the SMTpart uses all SMT contexts not just physical cores (in this way is serving 

more queries in parallel). The idea in these scenarios is each core serving half of the 

query in half of the time. SMT compared to NoSMTnoPart can help reduced queueing 

time since it can serve more independent queries at any given moment. As it is being 

observed and below in our case the extra contexts are more helpful in reducing queuing 

time than the single thread speedup that noSMT scenario has. On the other hand, 

partitioning increases queuing (As for each query we have double number of cores  
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SMT 

 
NOSMTnoPart 

 
 

Figure 4.1 Illustration for design space exploration for no partition configurations 
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SMTpart 

 
Part 

 
 

Figure 4.2 Illustration for design space exploration for  partition configurations 
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which means less parallelism), but with good load-balancing among partitions posting 

lists the pure search-time is reduced by up to 2X, which can be very beneficial at low-

utilization (scenarios where few queries per second arrive at the server). 

 

We evaluate each configuration scenario with single-socket and dual-socket execution. 

 Because our CPU is dual socket for the single socket experiments, we had to take a 

different approach. In single socket runs we restrict the index servers to use cores from 

only one socket and its local memory node. For dual-socket runs the index servers can 

use cores in both sockets. Our server is dual-socket and is NUMA, i.e. each socket has 

its own local-memory node. Accessing local memory node is faster. The other memory 

node (remote node) that belongs to the other socket has longer access latency.  

 

4.2  Optimizing Server Configuration 

 

Figure 4.3 shows the mapping of the index server process and memory organization for 

the non-partitioned (NoSMTnoPart, SMT) and partitioned (Part, SMTpart) 

configurations for the dual-socket setup. For illustration purposes the CPUs have only 

two execution contexts C0 and C1 (can be either SMT contexts or physical cores). For 

the non-partitioned configuration, a single index server process is launched. That 

process controls all available cores. Each incoming query is served by a search thread 

that is scheduled to run on any of the available cores (any socket). All the index data is 

distributed among both memory nodes. Since the query execution can be scheduled to 

any core (any socket) and the query related index data can reside on any memory node, 

non-partitioned configurations may incur costly remote memory accesses (RMA). 

Regarding the index-partitioned configurations, we deploy them by splitting the index-

dataset in two partitions and launching two index server processes. Each index server is 

working on a different index partition. We restrict each index server process to use only 

the resources of one socket and we mount the dataset of each process to the local 

memory of its socket. We find that the partitioned configurations can benefit 

considerably from assigning each index-server and its index-partition to a dedicated 

socket and its local memory node. Such approach removes the performance costly  
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No partition Configurations 

 
Partition Configurations 

 
Figure 4.3. Illustration of process and memory organization for dual-socket and non-

partitioned and index-partitioned configurations. 
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remote memory accesses and improves performance (this is clearly demonstrated in the 

experimental results). The reduction of remote memory accesses in the partitioned 

configuration is illustrated in Figure 4.3. 

 

Besides the effect of RMA accesses we also investigate how the C-states and thread 

assignment impact latencies. Regarding the latter, particularly for the SMTpart 

configuration, we find that it is beneficial to ensure that SMT contexts mapped on the 

same physical core will execute threads that belong to the same index server. This can 

be conducive to improve cache locality and result in faster query latencies.  

 

 

 
 

Figure 4.4 Optimizing Server Configuration for dual-socket SMTpart 
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Figure 4.4 illustrates on a dual-socket SMTpart configuration the latency overhead of C-

states, RMA and not ideal thread pinning. The figure shows the average latency and 

99th percentile of four situations: a) the ideal run where we disable c- states, perform 

memory-pinning to remove RMA and perform ideal thread pinning, b) same as ideal but 

with c-state enabled, c) same as ideal but without memory pinning, and d) same as ideal 

but without thread pinning. The figure clearly shows that the ideal configuration 

outperforms the rest and confirms prior work that characterized various sources of 

system and hardware latency variability (e.g. power management schemes etc) [21]. 

Consequently, for the rest of the paper the SMTpart dual-socket runs are performed with 

the ideal configuration. Also, for all other experiments we keep c-state disabled. 
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5.1  Experimental Details 

 

For the experimental analysis we use dual-socket NUMA blade servers based on Intel 

Xeon E5-2665@2.4 GHz CPU. Table 5.1 provides the details of the blade server 

hardware. The experiments are conducted with 3 blade servers: one client, one frontend 

server and one index server. The machines are connected through InfiniBand. Our blade 

server has two Sockets, each Socket has 8 physical cores, thereby, the total number of 

physical cores is sixteen. Each physical core supports two-way SMT. Therefore, the 

total number of available SMT contexts is 32. The server has in total 64GB of DRAM 

with each memory node having 32GB.  

For the index dataset, we are using a 28GB index crawled from various internet pages 

using the Nutch crawler [15]. The dataset is broken in 128 chunks of approximately 

220MBs each. This facilitates index-partitioning since these chunks can be combined to 

form larger index partitions. For instance, the partitioned configurations for the dual-

socket setup uses two index server processes on the index server machine. We use the 

first 64 chunks to form the first partition and the rest 64 chunks to form the second 

partition. Essentially, each index server works on 14GB of data (64 chunks of 

~220MB). For single-socket runs we use 20GB of index data and for the partitioned 

configuration we use two partitions of 10GB each. The reason we use 20GB index 

instead of 28GB for the single-socket runs, is to ensure that the index, along with OS 

and process data fits comfortably in one memory node of 32GB.  

For all single-socket runs, we use the numactl [13] command to restrict the index-server 

thread and memory affinity to one socket and its local memory node. Additionally, for 

the single-socket partitioned configurations we restrict each index server to utilize only 
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4 SMT contexts (4 physical cores). Whilst for dual-socket partitioned experiments we 

run one index-server on one CPU socket and the other index-server on the other CPU 

socket (as discussed previously). Thereby, for the dual-socket SMTpart configuration 

each index server utilizes 8 SMT contexts (8 physical cores).  

For all experiments, we also mount the index dataset in the appropriate memory nodes 

using the tmpfs [11] command. Explicitly, preloading index into memory instead of 

relying on the OS filesystem cache, improves performance and removes variability 

between runs. For single-socket experiments the index data is mapped to the memory 

node that is local to the active socket. For the dual-socket SMT and NoSMTnoPart 

configurations, the index is mapped to both memory nodes with OS controlling how 

much data will be mapped to each node (we empirically found that this provides the 

best performance). For dual-socket experiments with partitioning, since we use one 

index-server per socket, we load the index-data of each index-server to its local memory 

node (ideal configuration Figure 4.3).  

For query stream we use 100K real life queries taken from the AOL query log [25]. 

Queries are sent with interarrival time meaning that on average a query is being send 

every x ms based on a Poisson distribution. We use different inter-arrival times (or 

inter-arrival rates) to explore the SMT and IP implications for various levels of CPU 

utilization. We run each experiment 10 times and we report the average of 10 runs for 

each metric (CPU utilization, average latency, 99th percentile etc.).  

For performance counters measurements we use the perf Linux utility [14], and for 

measuring NUMA access the NUMATOP command [12]. For measuring CPU 

utilization, we rely on the mpstat command. 

 

Number of Sockets 2 

CPU Intel Xeon E5-2665 @2.4GHz 

Number of physical cores per Socket 8 

Number of logical cores(SMT contexts) 

per CPU 

2 

DRAM 8x8 GB DDRE 1600MHz 

NUMA Memory nodes 2 each has 32GB 

Ethernet speed InfiniBand 

OS Ubuntu 16, Kernel 4.4.0-63 

Table 5.1 Server Configuration 
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Experimental Evaluation 

 

 

6.1 Dropped Queries and CPU utilization                                                                       31 

6.2 Single – Socket Latency Results                                             33 

6.3 Dual Socket Latency Results                                                                                     36 

 

 

6.1  Dropped Queries and CPU utilization 

 

In our first part of our analysis, we determine at which query arrival-rate each 

configuration suffers dropped queries. We evaluate the scenarios we have mentioned 

above (NoSMTnoPart, Part, SMT and SMTpart) but for both single and dual socket 

runs. Figure 6.1 shows the number of dropped queries for all single-socket 

configurations and Figure 6.2 for all dual-socket configurations as a function of traffic 

rates. At traffic rates up to 125 queries/sec we do not observe any dropped queries. For 

single-socket runs, the minimum rate with dropped queries is at 150 queries/sec for the 

NoSMTnoPart and Part configuration. For dual-socket runs, again the NoSMTnoPart 

configuration is the first to suffer dropped queries at 200 queries/sec. The SMTpart 

scenario doesn’t suffer dropped queries for the dual socket runs that’s why there is no 

indication of it at the graph. This is interpreted as an indication that disabling SMT is 

counterproductive for the search application we evaluate.  

The goal of this analysis is to decide which arrival-rates to use for the latency analysis 

comparison. We pick traffic rates where none of the configurations suffers dropped 

queries. Consequently, for single-socket configurations we will compare latencies for 

traffic rates up to 125 queries/sec and for dual-socket traffic rates up to 175 queries/sec.  
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 Figure 6.3 shows the physical core CPU utilization for the baseline single-socket 

NoSMTnoPart configuration. We can observe that the selected arrival rates stress a 

wide spectrum of CPU utilization from low to high utilization level. Particularly, we 

observe a 36% utilization at 50 queries/sec and 80% utilization at 125 queries/sec. The 

80% utilization means that on average 6-7 physical cores from the total 8 cores that our 

CPU socket has are active (We use the 80% of 8 cores so : 80% * 8 = 6.4).  For dual-

socket runs Figure 6.4 shows that at 50 queries/sec we have 25% CPU utilization (4 

cores active out of total 16) and at 175 queries/sec 75% (75% * 16 = 12 12 cores 

active). 

 

 

 
Figure 6.1 Single Socket dropped queries characterization. 

 
Figure 6.2 Dual Socket dropped queries characterization 
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6.2  Single – Socket Latency Results 

 

Figure 6.5 compares the average latency and Figure 6.6 the 99th percentile latency for 

each configuration. The first observation is that Part configuration offers worse 99th 

than the baseline NoSMTnoPart configuration despite offering a slightly better average 

at all arrival rates. We explain this behavior with latency variability analysis. It is 

known that more parallelism suffers from higher probability a single server to slow 

down the whole query execution [9][8]. The STDEV results in Figure 6.8 support this. 
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Figure 6.3 Single Socket CPU utilization for baseline NoSMTnoPart Scenario. 
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Figure 6.4 Dual Socket CPU utilization for baseline NoSMTnoPart 

Scenario. 
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We observe that both SMT part and Part have higher STDEV latency than SMT and 

NoSMTnoPart respectively. The high STDEV of Part configuration indicates that it 

suffers from latency variability and while this doesn’t affect negatively the average it 

affects the 99th percentile.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Regarding, SMT and SMTpart configuration both configurations achieve lower 

latencies than the baseline. Particularly, the SMT behave similar to NoSMTnoPart in 

terms of average latency for traffic rates up to 75 queries/sec. This is because the SMT-

aware OS scheduling does not map two threads to the same physical core at low 

utilization (where the number of queries to be served is less or equal to the number of 

 
Figure 6.5 Single-Socket average latency 

 
Figure 6.6 Single-socket 99th percentile latency 
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physical cores). Still, in terms of 99th percentile latency the SMT provides lower 

latencies than NoSMTnoPart. This is attributed to cases where queries incur queue 

latency even at low utilization. For these situations, the SMT configuration clears up the 

queued queries faster providing lower latencies. This is supported by Figure 6.7 that 

shows the queueing times for all traffic rates. It is clearly shown that the SMT 

configuration provides the lowest queueing times at low traffic rates. At high traffic rate 

(100 queries/sec and more) SMT provides significantly faster latencies than 

NoSMTnoPart both for average and 99th percentile. SMT is beneficial for the average 

at high traffic rates because it provides 2x more throughput (execution contexts) while 

inducing 1.5x single thread degradation (calculated by measuring the single-thread IPC 

when two search threads run on the same physical core).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.7 Single Socket average queueing time. 

 
Figure 6.8 Single-socket STDEV results at 125 queries/sec. 
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Regarding SMTpart, this configuration provides the lowest average and 99th percentile 

latency at all arrival rates, which demonstrates the great synergy between SMT and IP. 

This improvement is credited to the good load-balancing among partitions. As shown in 

Figure 6.9, SMTpart compared to SMT provides nearly 2X faster average search time 

(pure index-search time without queueing time included).   

 

6.3  Dual Socket Latency Results 

 

Figure 6.10 compares the average latency and Figure 6.11 the 99th percentile for dual-

socket NoSMTnoPart, Part, SMT and SMTpart configurations. Similar to single-socket 

runs, the SMT outperforms NoSMTnoPart at higher traffic rates while providing equal 

latencies at lower traffic rates. Again, the clear winner for the dual-socket experiments 

is SMTpart both for average and 99th percentile but Part configuration also provides 

better latencies across all utilization levels compared to NoSMTnoPart. 

 
Figure 6.9 Single-socket index search time and speedup from partitioning. 
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 This behavior of Part stems from a reduction in RMA. In particular, as explained 

previously we dedicate one socket and its local memory node to each index server and 

its corresponding index partition. This eliminates the remote memory accesses (RMA) 

and results in the improved speedup. Figure 6.12 compares the RMA for SMT and 

SMTpart configurations. It clearly shows that SMT incurs RMA accesses while 

 
Figure 6.10 Dual-socket average latency.  

 

 
 

Figure 6.11 Dual Socket 99th percentile. 



 

38 

 

SMTpart effectively does not. Because of this, SMTpart has 10% higher single-thread 

IPC than SMT as shown in Figure 6.13. Moreover, the same figure shows other micro-

architectural metrics. None of them appears substantial to justify the IPC difference. 

Hence, we attribute the performance difference between the two configurations to the 

difference in the RMA behavior. 

 

 

 

 

 

 
Figure 6.12 RMA accesses per 1K instructions for dual-socket SMT and 

SMTpart. 

 
 

Figure 6.13 Performance counters for dual-socket SMT and SMTpart. 
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7.1  Related Work 

 

This chapter presents the related work and describes in what ways my thesis differs 

from it. The impact of SMT on the performance of HPC applications is examined in 

[29][4]. Also, the following works [22][35][28][26] examined the SMT impact on the 

performance of operating system, database and network workloads. Authors in [5] 

examined the impact of SMT on cloud workloads but only from the perspective of 

throughput not from the perspective of QoS. In [34][33] authors point out that SMT has 

detrimental effect to QoS of online cloud-workloads. They propose solutions for 

increasing server utilization with offline jobs to enable the use of SMT contexts without 

increasing the latencies of online jobs. Our work does not examine SMT colocation of 

offline and online applications but shows that using all SMT contexts for online search 

can improve latency. Authors in [27] use SMT to emulate the behavior of a 

heterogeneous CPU and demonstrate the benefits from heterogeneous aware task- 

scheduler. The analysis in [27] does not highlight the SMT latency improvement 

potential. In [17][31][7] the authors examined how web search can benefit from IP and 

parallel-execution across physical CPU cores. We extend these works by evaluating IP 

across SMT contexts. The importance of investigating the ramifications of SMT is 

highlighted by the fact that some previous work on online applications avoids the use of 

SMT to ease the analysis [6][7].  
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As far as we know, this is the only work to examine the ramifications of SMT and IP on 

the average and tail latency for an online workload. Table 7.1 highlights the differences 

of our work with prior work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Work SMT Online 

Workload 

Latency 

Analysis 

Index- 

Partitioning 

[29][4][22][35] 

[28] [26] 

X    

[5][27] X X   

[34][33] X  X  

[17][31][7]  X X X 

This work X X X X 

 

Table 7.1 Comparison with related work. 
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8.1  Conclusion 

 

The thesis evaluates the SMT and IP ramifications on the response latency of an online 

search application. Contrary to popular belief, we find that SMT can be latency-

friendly. Generally, if the single-thread degradation due to SMT contention is less than 

the increase in logical cores SMT provides, SMT can help reduce both average and tail 

latency. Our study also shows that even at low query traffic rates, when not all SMT 

contexts are utilized, SMT is not detrimental because of SMT-aware OS scheduling. 

Furthermore, we observe that given a workload amenable to partitioning, such as the 

online search we evaluate, SMT combined with IP across SMT contexts can provide the 

lowest latencies across all inter-arrival rates we have considered. We also demonstrate 

the generality of our conclusions with the help of a queuing model.  

This work points to several directions for future work. For one, there is a need for 

similar studies, as the one performed in this work, but for other applications. This is 

useful to investigate the generality of the observations we make. Another direction of 

work is to study the potential benefits with increasing number of SMT contexts and 

identify potential microarchitectural features that can moderate the SMT performance 

degradation with multiple SMT contexts. 

A big part of the current thesis is based on the journal “Comprehensive Characterization 

of an Open Source Document Search Engine” (Xi lab unpublished data) and 

“Characterization and Analysis of a websearch benchmark”[6]. 
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