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Abstract 

 

This thesis discusses the steps taken into the creation of a framework that is responsible 

for type checking a system, regarding its privacy integrity. The framework follows the 

principles of formal methods and the Privacy calculus, as to how a system can combine 

those two in order to process private data. The concept of the framework has lead to the 

creation of a new language called π-val, which allows the consideration of the previous 

principles into high-level programming. The grammar and the compiler of π-val are both 

worth of explanation in this thesis and thus described extensively, along with a case study 

scenario.  
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1.1.  Thesis motivation 

Nowadays, privacy holds an enormous role in modern societies. There is a lot of debate 

on whether or not something is considered a violation of privacy for an individual. 

Moreover, for different cultures, ages and ways of life, people seem to perceive the 

concept of privacy differently. What is more, things get even more complicated when 

technology itself, along with people’s interaction through technology is introduced to 

societies.  

 

On the one hand, focusing on the technological nature of privacy, services that exist 

throughout the globe, find personal information collections valuable for their own growth 

and maturity. Having an enormous database of such data, makes it possible to analyze the 

behavior of their clients in order to enhance their experience. Therefore, it is truly 

understandable that the more information a service collects, the better for that service’s 

development.   

 

On the other hand, when speaking about services and clients, usually a physical person is 

involved on that equation. This means that the unreasonable collection of personal 

information of any individual, might have an impact on their integrity. The anonymized 

collection of a single information of a person, say for example their age, is not something 

challenging for that individual. Moreover, a series of information might be collected 
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without, again, disturbing the privacy of that particular person. Although this does not 

form any problem yet, there will be a point where that collection of information has 

enough knowledge in order to finally match and identify the individual. This is where 

things become complicated and the question “How many is too many?” arises. 

 

Furthermore, a collaboration between services can also be possible into the real world. 

This means that the information gained by an office can automatically become a part of 

the collection of another business. This, again, brings back the previous question, as the 

data held in a database may not inflict any problem, but combined with another collection, 

might give enough knowledge to violate the privacy of a person. 

 

As a result, many societies and organizations have come to the point of realizing that a 

structural policy that ensures the integrity of private data should be introduced to their 

official documents. An example of such policy is the General Data Protection Regulation, 

GDPR [2, 14], which is a regulation on data protection and privacy for all individuals 

within the European Union and the European Economic Area. This law ensures that data 

may be collected or stored only when users have accepted the reasons of that data 

collection and when data are indeed necessary for those purposes. As a result, companies 

are faced with an extra burden to ensure that their work respects privacy requirements. 

This expands to the use of computer systems industrially and thus interests this thesis. 

 

Finally, similarly to GDPR’s formation, by defining formally what privacy is, computer 

systems can be used, in order to satisfy the urgency of protecting private data. Therefore, 

a framework based on formal definitions for privacy violations, should be able to locate 

such breaches in computer systems and report the issue, before even the systems begin 

the execution of their services.   

 

1.2.  Thesis purpose 

The purpose of this thesis is the development of a programming framework, capable of 

static type-checking the validity of a given system’s privacy integrity. This goal can be 

achieved by using formal methods for privacy [13]. Based on those, privacy policies can 

be split into some basic abstract categories, which are going to be described in Section 
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2.1. Therefore, the framework can be implemented with the concepts of such categories, 

in order to be able to inspect the structure of the policy of a given system. 

 

Furthermore, the framework must also be following the principles of Privacy calculus [8], 

as it introduces the concept of private data. The Privacy calculus is based on the π-calculus 

[11] with groups [3], which is extended via a privacy model that allows to consider private 

data. More on these calculi will be discussed on Section 2.2. While further trying to 

implement the operations of Privacy calculus throughout the framework, static type-

checking for the purposes of privacy policy validation can become possible.  

 

The presence of this framework will allow system developers to change the way a 

program is developed, while keeping the traditional software development 

methodologies. This means that software can be written in a language similar to an 

existing one, while the programmer takes into consideration the privacy policy validation 

scheme. The latter can be a set of rules, derived by any law enforcement document 

regarding privacy in systems. As a result, this assures the abstraction of the framework in 

terms of policy declaration and thus allowing the same program to be checked for 

validation by different privacy policies, depending on the needs of the validator. 

 

In more detail, the framework will allow programmers to write code in an environment 

similar to Java [1]. The programmer will be able to declare classes, variables, methods 

and constructors, using Java’s conventional types or even perform logical and 

arithmetical expressions upon them. Branches and loops will also be allowed in the 

language. At that point, the programmer can define which classes should be considered 

as private data, by also declaring a specific policy for each one. 

 

Furthermore, any private information exchanging between classes should be made only 

by a specific process. This process follows the same principles as the channels [8] of the 

Privacy calculus, which allow communication along themselves, describing in such way 

concurrent computations. Therefore, developers should have in mind that, upon the 

construction of a program, classes should include instances of such channels, as well as 

parallel methods, in order to achieve private data exchanging. 
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The above limitation makes this framework a link between the Privacy calculus and a 

high level programming language. As a result, operations on the language can easily be 

categorized into formal methods of privacy and thus be checked for validity.  

  

Finally, with the success of this framework, the theoretical part of the above concept takes 

shape into real-world implementations. Of course, this will be just a proof of concept, 

leaving great room for further research and extension of its original capabilities. 

 

1.3.  Outline of document 

This document will cover the steps taken in creating the framework discussed in the 

previous sections. Firstly, in Chapter 2, previous work will be discussed, including formal 

methods for privacy, privacy policies, all calculi that were involved in this thesis concept, 

as well as the meta-compilation [16] system that made the creation of this framework 

possible. Moreover, in Chapter 3, there will be explained some more aspects of the idea 

of the framework and its functional demands. What is more, in Chapter 4, all steps for the 

language’s compilation will be explained thoroughly. Chapter 5 will cover a scenario that 

can take advantage of the framework’s abilities. Finally, Chapter 6 will give an overview 

on what is the framework, what are its limitations and how it can be used in the future. 
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Previous Work 

 

 

2.1. Formal methods for privacy .............................................................5 

2.2. Privacy Policies and Calculi ............................................................6 

2.2.1. π-calculus ..........................................................................7 

2.2.2. π-calculus with groups ......................................................7 

2.2.3. Privacy calculus ................................................................8 

2.3. Static Type Checking.......................................................................9 

2.4. Using a meta-compilation system .................................................. 10 

2.4.1. General Compiler Design ................................................ 10 

2.4.2. Introduction to JastAdd ................................................... 12 

  

 

2.1.  Formal methods for privacy 

As mentioned before, privacy is a controversial topic. However, in order to understand 

and reason privacy-related requirements, it is mandatory to define what privacy is. There 

exist different types of reasoning regarding the definition and the concept of privacy. One 

of them is an analysis by the scholar Daniel J. Solove [12], which categorizes the 

taxonomy of privacy violations into four groups, called Invasion, Collection, Processing 

and Dissemination. This discrimination of privacy is the one used by the Privacy calculus 

[8], as well as the one that will concern this thesis.  

 

The first group, Invasion, is irrelevant for this thesis, as it has nothing to do with 

information. Its notion is about physical abuse or personal influence and therefore cannot 

be measured in computer systems. 
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The second group, Collection, has to do with the gathering of personal information of a 

subject. This can apply when either the subject is unaware of such an assemblage, or is 

unwilling to contribute to that. 

 

The third group, Processing, is about the handling of critical information. This category 

can be partitioned into some subcategories, but for the purposes of this thesis only two 

are being used, the Aggregation and the Identification. As mentioned in Chapter 1, a 

single piece of private information regarding an individual may not be challenging for 

their privacy’s integrity, while a vast collection of information might become a threat for 

them. This forms the first subcategory, called Aggregation. An example of why 

Aggregation can be dangerous, is when gathering information about an individual’s 

address, along with the hours that they are away from home. These information alone 

cannot harm the individual, but their combination can give a motive to potential burglars. 

What is more is the second subcategory of Processing violation, called Identification, 

which describes the possibility that some private information might be matched against 

other data, resulting in identifying the owner of those private Information. 

 

The final group is Dissemination, where again, it can be partitioned into more 

subcategories, but for the purposes of this thesis, only its general idea will be used and 

explained. This category has to do with the propagation of private information into 

different agents in the system. If the owner of those information does not consent, then 

there is a breach of Dissemination. 

 

2.2.  Privacy Policies and Calculi 

Depending on how policy is defined and categorized, various approaches exist on forming 

privacy policies. These are described by a set of rules for handling private data, while 

their purpose is to restrict any misuse of personal information regarding individuals or 

other entities. Moreover, the expressiveness of the model of privacy policies, specifies 

what aspects of privacy can be covered by those policies. As a result, a rigorous, yet 

flexible model is necessary for the purposes of this thesis, able to describe a typical 

computer system. This can be achieved by following and expanding the already existing 

rules of some computer science calculi. 
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2.2.1.  π-calculus  

In theoretical computer science, the π-calculus [11] is defined as a process calculus. As 

seen in Figure 2.1, it has a small syntax. However, this syntax gives great expressiveness, 

as it can describe any functional program. The calculus itself is based on two principles, 

processes and names. The former are a consecutive set of names’ operations and other 

processes, while the latter are just entities, able to perform some operations. Its main 

characteristic is the concept of channels, where names can be used as such, in order to 

exchange information between parallel processes. What is more is that the information 

exchanged through channels can be channels themselves, giving further access to various 

processes. 

 

The syntax in Figure 2.1, refers to P and Q as processes, while to x and y as names. It 

shows that a process can be one of the following operations. 

 

P,Q  ::= x(y).P Channel x waits to receive the name y and bind 

it. When the channel receives, the P process 

can carry on its execution. 

| x <y>.P Channel x waits to send the name y. When the 

channel sends, the P process can carry on its 

execution. 

| P|Q P and Q run simultaneously. 

| (vx)P Create a new channel x and immediately run P. 

| !P Repeatedly run copies of P. 

| 0 Process termination. 

 

 

Figure 2.1: π-calculus syntax 

 

2.2.2.  π-calculus with groups  

This extension of π-calculus [11], introduces the concept of groups [3]. In detail, groups 

consist of a hierarchical notion of entities, where no participant of a group can leak 

information to entities in other groups without permission. This is a step closer to the 
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purpose of this thesis, as it gives the ability to monitor the transition of information 

between entities and therefore deny any illegal move. 

 

2.2.3.  Privacy calculus 

Having in mind the formal methods mentioned in Section 2.1, a Privacy Model for 

Information Systems was introduced, called the Privacy calculus [8]. It is based on π-

calculus [11], extended by the π-calculus with groups [3], which both were discussed in 

Section 2.2.1 and Section 2.2.2, respectively.  

 

In this model, private data are part of the Privacy calculus. Such data must be declared to 

belong to individual entities, in order to differ from ordinary data. Therefore, an id must 

be declared for every piece of private data. Furthermore, they must be held by agents [18], 

which can perform various operations on each other’s private data, such as store, send, 

receive or process them. These agents must be noted into a group hierarchy, therefore 

following the idea behind π-calculus with groups. Depending on the operations they 

perform, a series of permissions may be invoked and thus potential violations. For each 

pair of entities and private data, these permissions can include some of the categories of 

the taxonomy of privacy violations mentioned in Section 2.1. However, the same 

operations on regular data can never trigger an action. The permissions in Privacy 

calculus will be briefly explained on Table 2.1, regarding their relation with private data 

under the policy declaration of a specific group.  

 

Moreover, the Privacy calculus is based on two axes. The first one is the definition of the 

program itself, which similarly to the π-calculus, it shows what operations its processes 

will make during the runtime. The other axis is the definition of a policy statement, which 

gives the set of permissions that the processes, depending on their group hierarchy are 

allowed to perform on certain private data. An example of a privacy policy statement and 

a program, based on the Privacy calculus can be found on Chapter 5. 
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Permission Explanation 

read 
Private data may be read by processes belonging to their corresponding 

group. 

update Stored private data can be updated with a new piece of private data. 

reference Allows to gain access on a reference of the private data. 

disseminate Private data can be disseminated to processes that belong to the group G. 

store Allows to store private data. 

readid Allows to read the id of private data. 

usage P 
Allows to compare but not check equality of the private data with the 

specified constant P. 

identify T 
Allows to check equality of the private data with the specified private 

data type T. 

aggregate 
Allows the gathering of more than one information from the same data 

subject. 

 

Table 2.1: Permission table 

 

2.3.  Static Type Checking 

Static type checking is a technique for validating the integrity of a computer program. It 

applies in some programming languages such as Java [1] and is responsible for 

recognizing errors that are avoidable before the execution of the program. This allows the 

programmer to get informed early and thus change their development approach, in order 

to compile a program with no errors.  

 

This technique is mostly used in order to ensure that the correct types of variables are 

being used throughout a program. Any action between incompatible types should be 

easily found. Therefore, by defining private data as types inside a language, any operation 

upon them can be tracked. As a result, if the permissions invoked by the processes that 

handle those private data are considered illegal, they can be reported. 

 

What is more, the Privacy calculus [8], illustrates such operations by Labelled Transition 

Semantics, which give a mathematical notation about how data can travel between groups 

and what permissions from Table 2.1 are being triggered by their transitions.  
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2.4.  Using a meta-compilation system 

Meta-compilation systems [16] through various computations are responsible of 

transforming a computing machine into a meta-machine, which can control, analyze and 

imitate the work of the former. In order to achieve that, these systems use various 

approaches based on semantics, which enhance the initial machine.  

 

The steps for using such a system follow the general compiler design process which will 

be expanded in Section 2.4.1. Based on those principles, the meta-compilation system 

JastAdd [4] can be used in order to fulfil the purposes of this thesis. As a result, it is the 

pillar of this thesis’ framework and thus explained on Section 2.4.2. 

 

2.4.1.  General Compiler Design 

A compiler design follows a series of phases in order to read, analyze and finally compile 

a program into an executable code. For the purposes of this thesis, some phases were 

skipped, as there is no need to perform some operations such as optimization of the input 

program. The stages that were followed and are going to be explained in the next 

paragraphs are the Lexical Analysis, the Syntax Analysis, the Semantic Analysis and the 

Code Generator [10]. All these stages make use of the same symbol table and are subjects 

to the same error handler, as seen in Figure 2.2. 
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Figure 2.2 Compiler phases 

 

The first part of the compiler for this framework, is the Lexical Analysis. This analysis is 

responsible for scanning a series of words that represent a program. These words are then 

translated into keywords, called tokens, making it possible to be considered later as a part 

of the grammar of a programming language. 

 

The second part is the Syntax Analysis. In this stage (parsing stage), the tokens produced 

in the previous part, are coming together to form various groups, stated in a series of rules, 

called the grammar. If a series of tokens cannot be matched into a rule, then the program 

is rejected as it does not follow the correct grammar. These groups of tokens form the 

Syntax Tree, which is the tree to be traversed in order to gather information about the 

program as a whole. 

 

The third part is the Semantic Analysis. Semantics are used in order to enhance the 

grammar, with rules that could not be expressed by its structure. This is where all the 
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type-checking takes place, as well as the static policy checking for the purposes of this 

thesis. In order to achieve that, the compiler will have to traverse the Syntax Tree. 

 

Finally, the last part of the compiler, which concerns this thesis, is the Code Generation. 

In this part, the Syntax Tree is being traversed for the final time, while it gets printed into 

a file, in such a way that it can be run by a computer. For the purposes of this thesis, the 

Code Generation transforms the input program into a runnable Java program, instead of 

machine code. 

 

2.4.2.  Introduction to JastAdd  

JastAdd is a meta-compilation system [4]. It is based on Reference Attribute Grammars 

[4, 6] which means that inside the Syntax Tree, a node can reference another node, in a 

complete different place of the Syntax Tree. Moreover, the major advantage of this system 

is that it allows the developer of a compiler, analyzer or any other type of implementation 

tool to extend their work with minimal transfiguration of the original project. 

 

This means that given a complete project on JastAdd, someone can just add some new 

modules called aspects [4, 7] in the project’s grammar as separate files and the project 

will be extended immediately to those new rules. In order to achieve this modularity, 

JastAdd uses four types of files, each for a different purpose of the compiler design 

phases.  

 

The first one is .flex type, which is used to make the Lexical Analysis of the program. Is 

uses the open-source software Flex, which is a lexical analyzer generator [9] and it gives 

the ability to use regular expressions in order to match lexical tokens. 

 

The second type of files is .ast, which are responsible for creating all the Java Classes that 

can form the Abstract Syntax Tree. This is ensured by the system, as the Abstract Syntax 

Tree can only be made out of classes that extend a specific class, the ASTNode Class. 

These files also hold information about the Class Inheritance between those Classes in 

Java, as well as the Classes of their Children under the Abstract Syntax Tree. Although 
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its necessity, this hierarchy is somewhat unrelated to the grammar itself, as it exists just 

to denote the types of children that are applicable under each class.  

 

The third type is .parser files, which are responsible for the Syntax Analysis and basically 

hold the Grammar that is valid for the language being created, while using the Classes 

stated in the .ast files and the tokens stated in the .flex file.  

 

Finally, the last type of files is either .jrag or .jadd, where both extensions are called aspect 

files [4, 7] and JastAdd does not differ between those two types. They are responsible for 

creating aspects (the former for declarative i.e. attributes and equations and the latter for 

imperative i.e. ordinary fields and methods). This is where the Semantics Analysis 

happens, as well as for the framework of this thesis the translation from the given 

language into pure Java happens. 

 

In order to form those aspects throughout the classes that make up the Abstract Syntax 

Tree, JastAdd gives the ability to declare Synthesized and Inherited attributes that work 

very similar to Java methods. On the one hand, a Synthesized attribute of an ASTNode is 

computed by traversing some, or all of the children of that particular ASTNode. This 

gives the ability to declare the type, name and other aspects of the ASTNode. On the other 

hand, an Inherited attribute works in a similar way, but on the other way round. More 

specifically, instead of traversing the children of an ASTNode, it traverses their parents, 

in order to “inherit” information. JastAdd’s documentation notes that this is a different 

meaning for the word “inherit” than the one used in object-orientation. This means that 

in order to declare an inherited attribute for a particular ASTNode, JastAdd needs to know 

how to compute it in all the possible parents of that node.  

 

What is more, if an attribute is known to be unchanged throughout the whole process, 

then it can be declared as “lazy”. This means that the attribute will be computed only the 

first time that it is being accessed and its value will be saved. Therefore, any other 

reference to that attribute will not have it re-calculated, but instead it will use the already 

calculated value.  
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Finally, JastAdd gives the ability to the developer to add ordinary Java fields and methods 

on ASTNode classes. These of course will reduce the extensibility of an ASTNode as 

they are not handled as attributes, but they can be very helpful for side computations. 
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Framework  

 

 

3.1. A Framework for Static Type-Checking on Policy Validations ...... 15 

3.2. The need for a new language ......................................................... 16 

  

 

3.1.  A Framework for Static Type-Checking on Policy Validations 

For the purposes of this thesis, as discussed in Chapter 1 and having in mind previous 

work from Chapter 2, a framework for Static Type-Checking regarding Policy Validation 

had to be created. This framework, which acts as a compiler, given a standalone program 

written in a specific language that the framework can understand, should be able to verify 

the program’s policy integrity using another input, called the policy statement. What is 

more, the program should be independent of any policy and thus the framework could 

check its policy integrity between different policy statements. The program and the policy 

statement can be two different or even more files, which follow the principles of the 

Privacy calculus as stated in Section 2.2.3. Such process can be visualized in Figure 3.1. 

 

 

Figure 3.1: Policy validation process 
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As a result, this allows the programmers that are going to validate their work through this 

framework, to program in a similar to the traditional programming methodology, without 

fearing about interferences with the policy statement. Of course, each policy statement 

will give guidelines of what is permitted in each program. Therefore the policy statement 

should be adapted to the program’s architecture rather than the other way around. The 

only thing the programmer needs to have in mind is the permissions that must not be 

breached, depending on the particular policy statement that their program would be 

validated against.  

 

The goal of this framework is that, after the validation of the program through a policy 

statement, it should be transformed into a normal Java program. Therefore, knowing that 

the initial program is valid in terms of grammar and policy regulations, its exported Java 

version should be run directly by a Java compiler. 

 

3.2.  The need for a new language  

In order to be able to create such a framework, a language that interprets the concepts of 

basic programming languages infused with channels, threaded methods and policies 

needed to be created. Therefore, it would be more practical to create such a language, in 

order to adapt it to the needs of the framework, rather than finding an existing one which 

might be limited in some aspects that are crucial to the framework. As a result, using the 

meta-compilation system JastAdd, which is explained in Section 2.4.2, the language π-

val was built. It was named after a combination of its own theoretical principle and 

purpose. The former part of the name comes from the first letter of π-calculus [11], whose 

extension, the Privacy calculus [8] bases the functionality of the language, while the latter 

is a short for its goal which is the validation of privacy policies. 

 

What is more, π-val gives the ability to the developer to keep the traditional software 

development methodologies, as it follows very similar grammar to the conventional 

programming language Java [1]. Moreover, the program is independent of any Privacy 

Policy scheme, therefore π-val developers can each time try to validate their projects with 

various Privacy Policy declarations, based on different law specifications.  
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The characteristic of π-val is that it is split in three abstractions, “Backbone”, “Channels” 

and “Policies”. Each part has its own grammar, Abstract Syntax Tree, class hierarchy and 

attributes. All of these were fused together in some key-points of the grammar, making it 

possible for the language to fulfil its original purpose.  

 

Firstly, although the “Backbone” of π-val is independent of any privacy policy and can 

be a sole standalone program (even when it is fused with channels), the other way round 

does not hold. Therefore, the “Backbone” can describe alone any conventional program, 

while the other two parts need the presence of the former in order to operate as expected. 

 

Secondly, the “Channels” part is the addition of the concepts of π-calculus in the 

language. It introduces a new type which gives the ability to transport information 

between classes in parallel processes. As a result, it brings the framework one step closer, 

but not there yet, to fulfilling its purpose of following the rules of the Privacy calculus. 

 

Finally, the “Policies” part sets the hierarchy and the permissions of the classes of the 

program. In order to do so, it needs its policy declarations to follow the structure of the 

main program (the “Backbone”). Its concept is fully based on the Privacy calculus and 

thus completes this thesis’ goal. Although this part is independent from the “Channels” 

part, Privacy calculus is partially based on channels and parallel processes, therefore their 

usage is mandatory for giving purpose to the “Policies” part. 

 

More about the structure of π-val will be discussed in Chapter 4. 
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4.1.  Introduction 

As discussed in Chapter 3, π-val, the language needed for this framework interprets the 

concepts of basic programming languages infused with channels, threaded methods and 

policies. Therefore it is split in three abstractions, “Backbone”, “Channels” and 

“Policies”. The “Backbone” is a standalone part, whilst the “Channels” and “Policies” 

parts are expanding and thus depending on the “Backbone”. This concept can be 

illustrated, as seen in Figure 4.1. 
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Figure 4.1: The framework’s concept 

 

The “Backbone” part is the main trunk of the language. It is based on a Java BNF [15] 

grammar which was reduced and changed to the needs of this thesis. Moreover, it is able 

to describe basic programming procedures such as declarations of variables and methods, 

branching, looping, casting, expressions, as well as more complex concepts such as 

objects and arrays, thus it has a fair expressiveness. It does not allow inheritance except 

that every class is an extension of the Object class. Finally, it is split into six parts, 

“Program”, “Declarations”, “Types”, “Blocks and Commands”, “Expressions” and 

“Primaries”, which are going to be discussed in the next subsections.  

 

The “Channels” part is the first extension of π-val. It introduces to the language a new 

type of Objects called Channels. This type will represent a communication line for 

asynchronous data transfer between parallel processes, similarly to the π-calculus [11]. In 

order to achieve that, threaded method calls are also introduced and handled by the 

framework in this part, in order to allow sending data to a channel or receiving data from 

it via parallel methods. The data that a channel can transfer must be of a private data type, 

which will be discussed in the next paragraph.  

 

The “Policies” part is another addendum to the backbone of the language. While the 

“Backbone” can describe a standalone language, the addition of policies makes the 

purpose of this thesis possible. Nevertheless, “Policies” cannot exist without the 

“Backbone”. Each policy affects one particular class that has already been declared in the 

backbone as a normal class, transforming it into a private data class. For that private data 

class, the policy provides a set of permissions, for each group of classes that might use it. 
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This means that each class of each group invokes different permission rules varying on 

the use of that particular private data class. After that, these rules will be matched to the 

policy and if there are any violations, the framework will reject the input program-policy 

pair. 

4.2.  Lexical Analysis 

The Lexical Analysis part consists of a .flex file containing a set of regular expressions, 

responsible for recognizing various symbols and keywords called tokens that are 

necessary for the language. These tokens will be used throughout the grammar and are 

shown in Table 4.1, where their corresponding symbol or word is also displayed. This 

allows JastAdd to recognize these symbols, in order to split an input program into tokens. 

 

Symbol Token Symbol Token Symbol Token 

[] LRSBR |  BOR while WHILE 

<=  LE +  PLUS Channel CHANNEL 

>=  GE -  MINUS <- REC 

<<  SL * MUL @ AT 

>>  SR /  DIV policy POLICY 

>>>  SRR %  MOD STORE STORE 

<  LT  = EQUALS READ READ 

>  GT null NULL READID READID 

==  EQCHECK boolean  BOOLEAN AGGREGATE AGGREGATE 

!=  NEQCHECK break  BREAK REFERENCE REFERENCE 

&& AND char  CHAR UPDATE UPDATE 

||  OR class  CLASS IDENTIFY IDENTIFY 

(  LPAREN continue  CONTINUE USAGE USAGE 

)  RPAREN double  DOUBLE DISSEMINATE DISSEMINATE 

{  LBRACE else  ELSE {Identifier} IDENTIFIER 

}  RBRACE final  FINAL {Filename} FILENAME 

[  LSBRACE float  FLOAT "true"|"false" BOOLEANLITERAL 

]  RSBRACE if  IF {Integer} INTEGERLITERAL 

;  SEMICOLON int INT {Float} FLOATLITERAL 

,  COMMA new  NEW {Character} CHARACTERLITERAL 

.  DOT return  RETURN {String} STRINGLITERAL 

^ XOR this  THIS   
& BAND void  VOID   

 

 

Table 4.1: Lexical Analysis tokens 
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What is more, as seen on Table 4.2, there are aliases for regular expressions in order to 

make Lexical Analysis more modular. These rules are put at the very end of the .flex file, 

thus any combination of letters and digits that start with a letter and is not matched with 

previous rules is considered to be an identifier. Identifiers will be used for class types and 

variable declarations throughout the language. Furthermore, there are regular expressions 

for integer, floats, strings and characters. Finally, both line and block comments are being 

recognized in the Lexical Analysis and are being ignored. 

 

ALIAS REGEX 

{LineTerminator} \r|\n|\r\n 

{Letter} [a-zA-Z_$] 

{Comment} ("/*"( [^*] | (\*+[^*/]) )*\*+\/)|("//".*) 

{WhiteSpace}  {LineTerminator} | [ \t\f] 

{Non_zero_digit} [1-9] 

{Digit} 0|{Non_zero_digit} 

{Digits} {Digit}{Digit}* 

{Integer_type_suffix} [lL] 

{Decimal_numeral} "0"|{Non_zero_digit}{Digits}? 

{Dec} {Decimal_numeral}{Integer_type_suffix}? 

{Integer} {Dec} 

{Signed_integer} [+-]?{Digits} 

{Exponent_part} [eE]{Signed_integer} 

{Float_suffix} [fFdD] 
{Float} {Digits}[.]{Digits}?{Exponent_part}?{Float_suffix}? 

  {Digits}{Exponent_part}?{Float_suffix}? 

{Single_character } [^\'\\] 

{Escape_sequence} [\b\n\t\r\f\'\"\\] 

{Character} \'({Single_character}|{Escape_sequence})\' 

{String} \"(\\.|[^\"\\])*\" 

{Idenifier} [a-zA-Z$]({Letter}|{Digit})* 

{Filename} "~"{Identifier}"."{Identifier} 

 
 

Table 4.2: Lexical Analysis regular expressions 

4.3.  Syntax Analysis 

The Syntax Analysis of the language, consists of some .parser files. These files describe 

the exact grammar of the language. This is the part where the language starts to split up 

into the 3 abstractions that were discussed previously. In the following paragraphs, these 

abstractions’ grammars will be thoroughly explained, while they will be using the tokens 

shown in the Lexical Analysis (Section 4.2).  
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The notation can also be visualized in diagrams which can give a top-eye view of the 

Abstract Syntax Tree that will be created based on the grammar. These diagrams can be 

found in Appendix A.  

 

The BNF [15] grammar that will be shown in the next pages, is a notation for context-

free grammars where the symbol “::=” denotes that the nonterminal on its left side must 

be replaced with the expression on the right of the symbol. Wherever a “|” symbol exists, 

it means that there are more than one choices for the substitution of the left nonterminal. 

For this representation, let us assume four things: 

1) Any phrase with small letters, inside <angle brackets> is a nonterminal. 

2) Any phrase with CAPITAL letters, inside <angle brackets> is a terminal 

token. 

3) Any word with CAPITAL letters that stands alone is a keyword. 

4) Any nonterminal that ends in a question mark (?) is an optional token. 

 

4.3.1.  Backbone 

The “Backbone” of the language is the main abstraction. It consists of 6 more splits, as 

mentioned in Section 4.1, the “Program”, “Declarations”, “Types”, “Blocks and 

Commands”, “Expressions” and “Primaries” in order to make the grammar more readable 

and understandable. 

  

4.3.1.1.  Program 

The “Program” part is the goal of the grammar. All expressions must finally be substituted 

into the goal nonterminal. In order to achieve this, the compiler is responsible for 

combining all the files that were read into a single file, with a separating token denoting 

the file’s name. This way, as stated in the grammar section below, each goal can include 

many files, each called my file, where each on of them can include various type 

declarations, discussed in the next subsection.  
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<goal>   ::= <my files> 

<my files>   ::= <my file>  

   | <my files> <my file> 

<my file>   ::= <FILENAME> <type declarations>? 

<type declarations>  ::= <type declaration>  

   | <type declarations> <type declaration> 
 

Figure 4.2: Program grammar 

 

4.3.1.2.  Declarations 

The “Declarations” part is where all possible declarations of the backbone are created. 

These include class, fields, constructors, methods, formal parameters and variable 

declarations. Note that the grammar is similar to Java, while it’s missing the access and 

static modifiers. Moreover, there is only one option for final declarations, which is for 

fields. This will be used by the policy semantics analysis.  

 

In more detail, for the “Backbone” part of the language, type declaration can only be 

either empty or have a class declaration. This will be enhanced and discussed later, under 

the “Policies” part of the language. A class declaration, defines a class similarly to how 

it is defined in Java, which can also be used as an Object type. The identifier denotes the 

name of the class, while the class body consists of various class body declarations. 

Finally, a class body declaration can either be a class member declaration, or a 

constructor declaration, where the former can be one of a final field, a field or a method 

declaration. 

 

<type declaration>   ::= <class declaration> | SEMICOLON 

<class declaration>   ::= CLASS <IDENTIFIER> <class body> 

<class body>    ::= LBRACE <class body declarations>? RBRACE 

<class body declarations>  ::= <class body declaration>  

    | <class body declarations> <class body  declaration> 

<class body declaration>  ::= <class member declaration>  

    | <constructor declaration> 

<class member declaration>  ::= <field declaration>  

    | <final field declaration> 

    | <method declaration> 
 

Figure 4.3: Declaration grammar part 1 of 4 
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As we go further down the grammar, constructor declaration consists of a constructor 

declarator and a constructor body. The former gives the identifier of the constructor and 

a list of formal parameters, while the latter is a list of block statements that might be lead 

by an explicit constructor invocation. The latter can only exist in the first line of a 

constructor body. Formal parameters, similarly to Java, are declared by a type and a 

variable declarator id, which will be both discussed in the next paragraphs. Finally, an 

explicit constructor invocation consists of the keyword “THIS” and an argument list 

which consists of expressions which again will be discusses in the next subsections. 

 

<constructor declaration>  ::= <constructor declarator> <constructor body> 

<constructor declarator>   ::= <IDENTIFIER> LPAREN <formal parameters>? RPAREN 

<formal parameters>    ::= <formal parameter>  

     | <formal parameters> COMMA <formal parameter> 

<formal parameter>   ::= <type> <variable declarator id>  

<constructor body>    ::= LBRACE  <block statements>? RBRACE  

     | LBRACE <explicit constructor invocation> 

       <block statement list>? RBRACE 

<explicit constructor invocation> ::= THIS LPAREN <argument list>? RPAREN 

 

Figure 4.4: Declaration grammar part 2 of 4 

 

 

Similarly to a constructor declaration in the previous paragraph, a method declaration 

consists of a header and a body. The method header is declared by a type or a void type 

and a method declarator. The method body on the other hand, consists only by one block 

which will be discussed later. The method declarator follows the exact same principles 

as the constructor declarator. 

 

<method declaration>    ::= <method header> <method body>  

<method header>    ::= <type> <method declarator>  

     | <void type> <method declarator> 

<method declarator>    ::= <IDENTIFIER> LPAREN <formal parameters>? RPAREN 

<method body>    ::= <block> 

 

Figure 4.5: Declaration grammar part 3 of 4 
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Finally, each field declaration can be either normal or final. It consists of a type and a list 

of variable declarators. Each variable declarator can either be a variable declarator id, 

or a variable declarator id with an initializer depending on the type of that variable (this 

will be checked under the Semantics Analysis (Section 4.5). Again, initializers will be 

discussed in the next subsections. Finally, a variable declarator id consists of an 

identifier, identifying the name of the variable. 

<field declaration>    ::= <type> <variable declarators> SEMICOLON  

<final field declaration>   ::= FINAL <type> <variable declarators> SEMICOLON  

<variable declarators>    ::= <variable declarator>  

     | <variable declarators> COMMA <variable declarator> 

<variable declarator>    ::= <variable declarator id>   

     | <variable declarator id> EQUALS <variable initializer>  

     | <variable declarator id> EQUALS <array initializer> 

<variable declarator id>   ::= <IDENTIFIER>   

 

Figure 4.6: Declaration grammar part 4 of 4 

 

4.3.1.3.  Types 

The “Types” part is responsible for all the types that are valid in the language. Similarly 

to Java, there exist the primitive types boolean, int, char, float, double, as well as the 

custom class types (Objects), which include by default the String type. For all these types, 

their corresponding array type can be matched in a recursive way, so that there can be 

multidimensional arrays. The cast type exist only to be matched under the cast 

expressions, while the void type exists only for method declarations. 
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<type>    ::= <primitive type>  

   | <array type>  

   | <class type> 

<primitive type>  ::= <numeric type>  

   | STRING  

   | BOOLEAN 

<numeric type>  ::= <integral type>  

   | <floating point type> 

<integral type>  ::= INT  

   | CHAR 

<floating-point type>  ::= FLOAT  

   | DOUBLE  

<array type>   ::= <type> LRSBR  

<class type>   ::= <IDENTIFIER> 

<cast type>   ::= LPAREN <IDENTIFIER> RPAREN  

<void type>   ::= VOID 
 

Figure 4.7: Types grammar 

 

 

4.3.1.4.  Blocks and Commands 

The “Blocks and Commands” part is where each block is matched. A block can implement 

the body of a method, a constructor, a branch or a loop. Each block consists of various 

block statements, which can either be a local variable declaration statement or a 

statement. The former is formed by a type and a variable declarator list. 

 

<block>       ::= LBRACE <block statements>? RBRACE 

<block statements>     ::= <block statement>  

      | <block statements> <block statement> 

<block statement>     ::= <local variable declaration statement>  

      | <statement> 

<local variable declaration statement>  ::= <local variable declaration> SEMICOLON 

<local variable declaration>    ::= <type> <variable declarators> 
 

Figure 4.8: Blocks and Commands grammar part 1 of 4 

 

 

A statement, can be an if then statement, an if then else statement, a while statement or a 

statement without trailing substatement. The latter consists of statements that have no 

continuity. These can be a single block, the empty statement, the expression statement, 
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the break statement, the continue statement, or the return statement. Moreover, there is 

another category of statements, the statement no short if, which can either be a statement 

without trailing substatement, an if then else statement no short if or a while statement no 

short if. This category is the key to ensure that there is no ambiguity in the grammar, as 

this is a very common problem in programming grammars. 

 

<statement>      ::= <statement without trailing substatement>  

      | <if then statement>  

      | <if then else statement>  

      | <while statement> 

<statement no short if>    ::= <statement without trailing substatement>  

      | <if then else statement no short if>  

      | <while statement no short if> 

<statement without trailing substatement>  ::= <block>  

      | <empty statement>  

      | <expression statement>  

      | <break statement>  

      | <continue statement>  

      | <return statement> 

 

Figure 4.9: Blocks and Commands grammar part 2 of 4 

 
 

Furthermore, while the statements under the statement without trailing substatement are 

self-explanatory, the statement expression can be one of the three non terminals, 

assignment, method invocation, or class instance creation expression, which are all going 

to be discussed under the next subsections. 

 

<break statement>   ::= BREAK SEMICOLON 

<continue statement>   ::= CONTINUE SEMICOLON 

<return statement>   ::= RETURN <expression>? SEMICOLON 

<empty statement>   ::= SEMICOLON 

<expression statement>  ::= <statement expression> SEMICOLON 

<statement expression>  ::= <assignment>  

    | <method invocation>  

    | <class instance creation expression> 
 

Figure 4.10: Blocks and Commands grammar part 3 of 4 
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Finally, the if then statement and the while statement, both need to be expressed by an 

expression and a statement. Moreover, in order to take advantage of the statement no 

short if rule, the if then else statement needs an expression, a statement no short if and 

another statement, while the if then else statement no short if needs an expression and two 

statement no short if. Similarly, the while statement no short if, needs an expression and 

a statement no short if. 

 

<if then statement>   ::= IF LPAREN <expression> RPAREN <statement> 

<if then else statement>  ::= IF LPAREN <expression> RPAREN   

        <statement no short if> ELSE  

          <statement> 

<if then else statement no short if>  ::= IF LPAREN <expression> RPAREN   

        <statement no short if> ELSE  

         <statement no short if> 

<while statement>    ::= WHILE LPAREN <expression> RPAREN <statement> 

<while statement no short if>   ::= WHILE LPAREN <expression> RPAREN  

        <statement no short if> 

 

Figure 4.11: Blocks and Commands grammar part 4 of 4 

 

 

 

 

4.3.1.5.  Expressions 

The “Expressions” part is responsible for all the valid expressions of the language. These 

include initializers for both variables and arrays, assignment expressions, conditional and 

equality expressions, shift, additive and multiplicative, as well as cast and unary 

expressions. The latter includes primaries which will be discussed in the next section. 

Their exact syntax is shown in Figure 4.12 and Figure 4.13. 
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<array initializer>   ::= LBRACE <variable initializers>? RBRACE 

<variable initializers>   ::= <variable initializer>  

    | <variable initializers> COMMA <variable initializer> 

<variable initializer>   ::= <expression>  

<expression>    ::= <assignment expression> 

<assignment expression>  ::= <conditional expression>  

    | <assignment>  

<assignment>    ::=  <field access> EQUALS <assignment expression>  

    | <array access> EQUALS <assignment expression> 

 

<conditional expression>  ::= <conditional or expression>  

<conditional or expression>  ::= <conditional and expression>  

    | <conditional or expression> OR <conditional and 

expression> 

<conditional and expression>  ::= <inclusive or expression>  

    | <conditional and expression> AND <inclusive or 

expression> 

<inclusive or expression>  ::= <exclusive or expression>  

    | <inclusive or expression> BOR <exclusive or expression> 

<exclusive or expression>  ::= <and expression>  

    | <exclusive or expression> XOR <and expression> 

<and expression>   ::= <equality expression>  

    | <and expression> BAND <equality expression> 

<equality expression>  ::= <relational expression>  

    | <equality expression> EQCHECK <relational expression>  

    | <equality expression> NEQCHECK <relational expression> 

 

Figure 4.12: Expressions grammar part 1 of 2 
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<relational expression>   ::= <shift expression>  

    | <relational expression> LT <shift expression>  

    | <relational expression> GT <shift expression>  

    | <relational expression> LE <shift expression>  

    | <relational expression> GE <shift expression> 

<shift expression>   ::= <additive expression>  

    | <shift expression> SL <additive expression>  

    | <shift expression> SR <additive expression>  

    | <shift expression> SRR <additive expression> 

<additive expression>   ::= <multiplicative expression>  

    | <additive expression> PLUS <multiplicative expression>  

    | <additive expression> MINUS <multiplicative expression> 

<multiplicative expression>  ::= <unary expression>  

    | <multiplicative expression> MUL <unary expression>  

    | <multiplicative expression> DIV <unary expression>  

    | <multiplicative expression> MOD <unary expression> 

<cast expression>   ::= LPAREN <primitive type> RPAREN <unary expression>  

    | LPAREN <array type> RPAREN <unary expression>  

    | <cast type> <unary expression> 

<unary expression>  ::= MINUS <unary expression>  

    | PLUS <unary expression> 

    | <primary>  

    | <cast expression> 

 

Figure 4.13: Expressions grammar part 2 of 2 

 

 

4.3.1.6.  Primaries 

The “Primaries” is the final part of the Backbone. It is responsible for all the handlers of 

variables that the program can have. This means that anything matched under the primary 

nonterminal can be a part of an expression, such as a field access, a method invocation or 

even a literal. Specifically, a primary can either be a primary no new array, or an array 

creation expression. The former can be a literal, “THIS” in order to refer to the current 

instance of an object, an expression, a class instance creation expression, a field access, 

a method invocation or an array access. 

 

Method invocation and field access are very similar in terms of grammar. They both need 

an identifier in order to define the method’s or the field’s name and both of them might 

have a primary handler in order to define where the method or the field is defined. Finally, 

a method invocation has an argument list. On the other hand, array access is a way to 
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access an index of an array. The handler in this situation is a primary no new array, while 

an expression is needed to set the index of the array. 

 

<primary>   ::= <primary no new array>  

    | <array creation expression> 

<method invocation>   ::= <IDENTIFIER> LPAREN <argument list>? RPAREN  

    | <primary> DOT <IDENTIFIER>  

      LPAREN <argument list>? RPAREN 

<field access>    ::= <IDENTIFIER>  

    | <primary> DOT <IDENTIFIER>  

<primary no new array>  ::= <literal>  

    | THIS  

    | LPAREN <expression> RPAREN  

    | <class instance creation expression>  

    | <field access>  

    | <method invocation>  

    | <array access> 

<array access>   ::= <primary no new array> LSBRACE <expression> RSBRACE 

<literal> ::= <INTEGERLITERAL  

| <FLOATLITERAL>  

| <BOOLEANLITERAL>  

| <CHARACTERLITERAL>  

| <STRINGLITERAL>  

| <NULL> 
 

Figure 4.14: Primaries grammar part 1 of 2 

 

 

Class instance creation expression is the expression responsible for creating a new 

Object. Therefore it needs to call a constructor using the identifier of its class (the class 

type) and an argument list. An argument list is just a set of expressions. Moreover, an 

array creation expression is responsible for creating a new array of a primitive type, or a 

class type. Therefore it needs the identifier of that type, along with a list of dimensional 

expressions (dim epxrs), and a list of empty dimensional expressions (dim emps). This 

allows to create new multidimensional arrays, while occupying memory only for some of 

their first dimensions, just like in Java [1]. 
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<class instance creation expression>  ::= NEW <class type>  

      LPAREN <argument list>? RPAREN 

<argument list>    ::= <expression>  

     | <argument list> COMMA <expression> 

<array creation expression>   ::= NEW <primitive type> <dim exprs> <dim emps>?  

     | new <class type> <dim exprs> <dim emps>? 

<dim exprs>     ::= <dim expr>  

     | <dim exprs> <dim expr> 

<dim expr>    ::= LSBRACE <expression> RSBRACE 

<dim emps>    ::= LRSBR  

     | <dim emps> LRSBR 
 

Figure 4.15: Primaries grammar part 2 of 2 

 

4.3.2.  Channels 

The Channels’ grammar introduces to the language, the capabilities discussed in the 

introduction of this chapter (Channel types, sending and receiving between processes 

using channels and threaded methods). All these are shown below, as well as how they 

are infused to the “Backbone” of the language. Let us assume that in the next figures, 

rules that are empty, followed by the comment notation “%%” indicate that more rules 

exist in previous impressions of the same token. 

 

A channel type is used to define a channel of a particular class that is able to transfer 

another channel, or object, thus it needs this information in its grammar. Its creation is 

similar to that of a class instance creation. The channel receive expression and the 

channel send expression, both need a unary expression to represent the channel to receive 

from or send to, while the latter needs another expression, which represents the data to be 

transferred in the channel. 

 

Finally, in order to make the purposes of this extension of the language possible, threaded 

method invocations should be introduced. Without altering the backbone of the language, 

the framework is able to run a threaded instance of a method, without the need of a 

different method declaration. This can be achieved by adding the “@” symbol right after 

the identifier of the grammar of method invocation. 
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<channel type>    ::= CHANNEL LT <class type>  

      LSBRACE <class type> RSBRACE GT 

     |  CHANNEL LT <channel type>  

      LSBRACE <class type> RSBRACE GT 

<channel creation expression> ::= NEW <channel type> LPAREN RPAREN 

<channel receive expression> ::= REC <unary expression> 

<channel send expression>  ::= <unary expression> REC expression  

<threaded method invocation> ::= <IDENTIFIER> AT LPAREN <argument list>? RPAREN  

    | <primary> DOT <IDENTIFIER>  

     AT LPAREN <argument list>? RPAREN 
 

Figure 4.16: Channels grammar 

 

 

While the above introduce new rules to the language, these rules need to be injected in 

some key points of the “Backbone”. Therefore, a primitive type can also be a channel 

type, a primary no new array can also be a channel creation expression and both 

statement expressions and assignment expression can also be channel receive expressions 

or channel send expressions. Finally, a method invocation can also be a threaded method 

invocation, ending the injection phase of the two grammars. 

 

%completing previous rules% 

<type>     ::= %% 

    | <channel type> 

<primary no new array>  ::= %% 

    | <channel creation expression> 

<statement expression>  ::= %% 

    | <channel receive expression>  

    | <channel send expression> 

<assignment expression> ::= %% 

    | <channel receive expression>  

    | <channel send expression> 

<method invocation>   ::= %% 

    | <threaded method invocation> 
 

Figure 4.17: Channels injection grammar 

4.3.3.  Policies 

The Policies grammar as described in the introduction of this chapter, is responsible for 

denoting a class as a private data type. Therefore, it needs the name of that class type, 

along with the groups of classes and their corresponding permissions. This is described 

under the token policy actions, where each policy action must have a class type, a set of 
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permissions (actions) and maybe an internal policies list. The latter is a set of more policy 

actions, in order to create a hierarchical group of classes that each has a different set of 

permissions. The syntax of “Policies” follows a similar grammar with the one described 

in the Privacy calculus [8].  

 

<policy declaration> ::= POLICY <class type> LBRACE <policy actions> RBRACE 

<policy actions>  ::= <policy action>  

   | <policy actions> <policy action>  

<policy action>   ::= <class type> LBRACE <actions> RBRACE  

     <internal policies>? SEMICOLON  

<internal policies>  ::= LSBRACE <policy actions>? RSBRACE  

<actions>   ::= <action>  

   | <actions> <action> 
 

Figure 4.18: Policies grammar part 1 of 2 

 

 

The actions that can be declared under a policy are the permissions named in 2.2.3. There 

are also some peculiar types of actions called special actions. These special actions not 

only they need their corresponding name, but they also need to declare a type. 

Specifically, the IDENTIFY action needs to declare a type which will be checked in the 

Semantic Analysis (Section 4.5) whether it describes a private data class or not. The 

USAGE action needs to define a type and an identifier, in order to check that only a 

particularly named final variable of specific type was used along this permission. Finally, 

the DISSEMINATE action needs to define a class type, which will define the class that 

can have the dissemination. 

<action>  ::=  READ  

   | UPDATE 

   | REFERENCE  

   | STORE  

   | READID  

   | AGGREGATE   

<special action>  ::= IDENTIFY LBRACE <type> RBRACE  

   | USAGE LBRACE type <IDENTIFIER> RBRACE 

   | DISSEMINATE <class type> 
 

Figure 4.19: Policies grammar part 2 of 2 
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Similarly to the “Channels” grammar, this grammar is also infused to the “Backbone” of 

the language. This time under only one rule, the type declaration. Again, it is assumed 

that rules that are empty, followed by the comment notation “%%” indicate that more 

rules exist in previous impressions of the same token. 

 

%completing previous rules% 

<type declaration>  ::= %% 

   | <policy declaration> 
 

Figure 4.20: Policies injection grammar 

 

4.4.  Class Hierarchy 

In order to allow the compiler to build the Abstract Syntax Tree, as mentioned in Section 

2.4, JastAdd uses an .ast file which denotes the hierarchy of the classes that will constitute 

the tree. Therefore, investing in a structural hierarchy, not only does the grammar become 

more readable, but also the simplicity of its extensibility is escalating. Again, this is easier 

to visualize in the three abstractions that constitute the language, as well as the 6 part 

division of the “Backbone” of the language.  

 

Similarly to the Syntax Analysis (Section 4.3), diagrams can give a brief summary of how 

the class hierarchy is formed. These can be found in Appendix B. 

 

The notation of the .ast file also uses the symbol “::=”, which denotes that the class on 

the left side is the parent, while it consists of the classes that are stated on the right side 

of the symbol. Moreover, the symbol “:” denotes that the class on its left extends the class 

to the right side of the symbol, in the context of Java’s Object Orientation. This means 

that the class inherits the types of the needed children of its parent class (Object Oriented 

parent and not the Abstract Syntax parent). The same context of Java’s Object Orientation 

applies for the classes that are declared as abstract. For this representation, let us assume 

three things: 

1) A star “*” represents a list of that particular class type. 

2) Anything between <angle brackets> represents a token from the Lexical 

Analysis. 
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3) Any class between [square brackets] means that the class on the left of the 

equation can be described without the absolute need of having a child of that 

class.  

4.4.1.  Backbone 

Following the same partitioning of the backbone’s grammar, as described in Section 

4.3.1, the class hierarchy is as follows. 

 

4.4.1.1.  Program 

This notation denotes that the Program object consists of a list of MyFile objects, where 

each of them consists of a String called Identifier, which acts as the file name and a list 

of TypeDeclaration instances. JastAdd by default, holds the line in each file where each 

construct of non terminals was found. Therefore, having in mind the name of the file as 

well as the line of each non terminal, it can help on printing the stack trace in case of an 

error. 

Program  ::= MyFile*; 

MyFile   ::= <Identifier:String> TypeDeclaration*; 
 

Figure 4.21: Program hierarchy 

 

4.4.1.2.  Declarations 

In this section, although the ClassDeclaration class inherits the TypeDeclaration class 

which has no children, the former has two. These children ClassType and ClassBody 

denote the type and the body of the class respectively. The UnknownClassDeclaration 

class which inherits the ClassDeclaration class is just a helping class, responsible for 

allowing the compiler to understand an error, in cases where a class was not declared at 

the input. 

TypeDeclaration      ; 

ClassDeclaration   : TypeDeclaration ::= ClassType ClassBody; 

UnknownClassDeclaration  : ClassDeclaration ; 
 

Figure 4.22: Declaration hierarchy part 1 of 5 

 

What is more, a ClassBody class consists of a list of ClassBodyDeclaration instances. 

The latter is an abstract class, following the Java meaning of abstract classes. This means 

that it cannot exist on its own but classes that inherit it also inherit its basic functionalities. 

This is useful as well for the ClassMemberDeclaration class which is also abstract and 



37 

 

inherits the ClassBodyDeclaration class. Furthermore, similarly to the 

UnknownClassDeclaration class, the UnknownDeclaration class which inherits the 

ClassMemberDeclaration class, exists only for the purposes of the compiler to throw an 

error if the appropriate declaration does not exist. Following, the NoNeededDeclaration 

class, which again inherits the ClassMemberDeclaration, exists for the exact opposite 

reason. That is when a variable has no need for a declaration, thus its absence must not 

trigger an error. This can be useful for referencing the “this” object in some classes. 

 

ClassBody        ::=  ClassBodyDeclaration*; 

abstract ClassBodyDeclaration      ; 

abstract ClassMemberDeclaration : ClassBodyDeclaration  ; 

NoNeededDeclaration   : ClassMemberDeclaration ; 

UnknownDeclaration   : ClassMemberDeclaration ; 
 

Figure 4.23: Declaration hierarchy part 2 of 5 

 

Moreover, in order to declare constructors under a class, the ConstructorDeclaration 

class is used. This class inherits the ClassMemberDeclaration class and consists of a 

ConstructorDeclarator and a ConstructorBody class. The former is responsible for the 

information about the constructor, thus it consists of a String Identifier and a list of 

FormalParameter instances. FormalParameter objects are also inheriting the 

ClassMemberDeclaration class but they consist of a Type and a VariableDeclaratorId 

class. On the other hand, the ConstructorBody class inherits the Block class and consists 

of a list of BlockStatement objects, which both will be explained in the next subsections. 

Moreover, the ConstructorBody can also have an optional child of an 

ExplicitConstructorInvocation class. This class consists of a list of Expression classes, 

which will be representing the arguments of an ExplicitConstructorInvocation instance. 

 

ConstructorDeclaration  : ClassMemberDeclaration  ::= ConstructorDeclarator ConstructorBody; 

ConstructorDeclarator    ::= <Identifier:String> FormalParameter*; 

FormalParameter  : ClassMemberDeclaration   ::= Type VariableDeclaratorId; 

ConstructorBody    : Block     ::= [ExplicitConstructorInvocation] BlockStatement*; 

ExplicitConstructorInvocation      ::= Expression*; 

 

Figure 4.24: Declaration hierarchy part 3 of 5 
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Furthermore, as classes in π-val must be capable of including fields, the FieldDeclaration 

class also inherits the ClassMemberDeclaration class, while it consist of a Type and a list 

of VariableDeclarator instances. This way, each variable declaration of a field can be 

matched with a type in the Semantic Analysis (Section 4.5). As an expansion of the 

language, the FinalFieldDeclaration class extends the FieldDeclaration class, which its 

only purpose is to declare a field that cannot change its value. Also, the 

VariableDeclarator and the VariableDeclaratorId classes inherit the 

ClassMemberDeclaration class. The former has a mandatory child of a 

VariableDeclaratorId and an optional Initializer instance, while the latter has a 

mandatory String Identifier for defining its name. The Initializer class will be discussed 

in the next paragraphs. 

 

FieldDeclaration  : ClassMemberDeclaration  ::= Type VariableDeclarator*; 

FinalFieldDeclaration : FieldDeclaration  ; 

VariableDeclarator  : ClassMemberDeclaration  ::= VariableDeclaratorId [Initializer]; 

VariableDeclaratorId  : ClassMemberDeclaration ::= <Identifier:String>; 

 

Figure 4.25: Declaration hierarchy part 4 of 5 

 

Finally, in π-val there is a capability of adding methods under classes. Therefore, 

MethodDeclaration class also extends the ClassMemberDeclaration class. Similarly to 

the constructor, it consists of a MethodHeader and a MethodBody class. The former 

consists of a MethodHeader, which is responsible for defining the method’s name and 

type. Therefore it consists of a Type and a MethodDeclarator class, which consists of a 

String Identifier, defining the name of the method, and a list of FormalParameter objects. 

On the other hand, the MethodBody class consists of a Block object. 

 

MethodDeclaration :ClassMemberDeclaration   ::= MethodHeader MethodBody; 

MethodHeader       ::= Type MethodDeclarator; 

MethodDeclarator      ::= <Identifier:String> FormalParameter*; 

MethodBody       ::= Block; 

 

Figure 4.26: Declaration hierarchy part 5 of 5 
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4.4.1.3.  Types 

In this section, classes concerning the type system of the language will be explained. 

Firstly, all classes ultimately inherit the abstract Type class. Therefore, any of the 

following classes can be held by an object that consists of Type objects. What is more, 

the existence of the abstract categories of types, PrimitiveType extending Type, 

NumericType extending PrimitiveType, IntegeralType extending NumericType and 

FloatingPointType extending NumericType are also defined. The presence of a VoidType, 

NullType and an UnknownType which extend the Type class, allows the language to have 

void methods, null objects, or even recognize the absence of a type declaration. 

 

Moreover, the ArrayType class, which again extends the Type class, consists of a Type 

object, resulting in allowing any Object that extends the Type class to belong to an array 

(as long as it is allowed by the semantics of the grammar, described in Section 4.5). This 

even applies on other ArrayType objects, therefore allowing multidimensionality. 

Furthermore, the ClassType class, which extends the PrimitiveType class, defines the 

types that the program declares. Therefore it needs a String Identifier in order to name 

those types. This class is extended by the CastType class.  

 

Finally, the BooleanType class extends the abstract PrimitiveType class, the IntType class 

and the CharType class extend the abstract IntegralType class, while the FloatType class 

and the DoubleType class extend the abstract FloatingPointType class.  
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abstract Type      ; 

VoidType    : Type   ; 

NullType   : Type   ; 

UnknownType   : Type   ; 

abstract PrimitiveType   : Type   ; 

ArrayType     : Type    ::= Type; 

ClassType   : PrimitiveType   ::= <Identifier:String>; 

CastType   : ClassType  ; 

BooleanType   : PrimitiveType  ; 

abstract NumericType   : PrimitiveType  ; 

abstract IntegralType  : NumericType  ; 

IntType    : IntegralType  ; 

CharType   : IntegralType  ; 

abstract FloatingPointType  : NumericType  ; 

FloatType    : FloatingPointType ; 

DoubleType   : FloatingPointType ; 
 

Figure 4.27: Types hierarchy 

 

4.4.1.4.  Blocks and Commands 

As mentioned before, the Block instance can be used as the body of a method, a 

constructor, a branch or a loop. This means that the Block class must inherit the abstract 

class StatementWithoutTrailingSubstatement. The same principle applies for the 

ReturnStatement, the ExpressionStatement, the StatementExpression, the 

EmptyStatement, the BreakStatement and the ContinueStatement classes. This allows the 

grammar to find it easier to construct a StatementWithoutTrailingSubstatement object, as 

it can be any of the previous. What is more, the Block class consists of a list of 

BlockStatement instances, which will be discussed in the next paragraph. Following, the 

ReturnStatement consists of an optional Expression instance, thus allowing the 

construction of the grammar rule where the return can match both a typed and a void 

method. Finally, the ExpressionStatement consists of a StatementExpression and the latter 

consists of a VariableInitializer.  
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Block    : StatementWithoutTrailingSubstatement  ::= BlockStatement*; 

ReturnStatement   : StatementWithoutTrailingSubstatement  ::= [Expression];  

ExpressionStatement  : StatementWithoutTrailingSubstatement  ::= StatementExpression; 

StatementExpression : StatementWithoutTrailingSubstatement ::= VariableInitializer;  

EmptyStatement  : StatementWithoutTrailingSubstatement ; 

BreakStatement   : StatementWithoutTrailingSubstatement  ; 

ContinueStatement  : StatementWithoutTrailingSubstatement ; 

 

Figure 4.28: Blocks and Commands hierarchy part 1 of 4 

 

The LocalVariableDeclaration class consists of a Type class and a list of 

VariableDeclarator objects, while extending the abstract class 

LocalVariableDeclarationStatement, which in turn extends the abstract class 

BlockStatement. As a result, any local variable declaration attempt is considered to be a 

BlockStatement instance. 

 

abstract BlockStatement      ; 

abstract LocalVariableDeclarationStatement : BlockStatement  ; 

LocalVariableDeclaration  : LocalVariableDeclarationStatement  ::= Type VariableDeclarator*; 
 

Figure 4.29: Blocks and Commands hierarchy part 2 of 4 

 

For the same purpose of considering BlockStatement instances, the abstract Statement 

class extends the BlockStatement, the abstract StatementNoShortIf extends the Statement 

and finally the abstract StatementWithoutTrailingSubstatement extends the 

StatementNoShortIf. 

 

abstract Statement      : BlockStatement ; 

abstract StatementNoShortIf     : Statement  ; 

abstract StatementWithoutTrailingSubstatement  : StatementNoShortIf ; 
 

Figure 4.30: Blocks and Commands hierarchy part 3 of 4 

 

Finally, the IfThenStatement class as well as the WhileStatement class, both extend the 

Statement class and consist of an Expression and a Statement object. The 

IfThenElsStatement class is similar to the IfThenStatement class, but consists of the same 

children and another Statement instance. Finally, the IfThenElseStatementNoShortIf and 

the WhileStatementNoShortIf classes are similar to the IfThenElsStatement and the 

WhileStatement classes respectively, as they need the same instances of children, but 

extend the StatementNoShortIf class instead of the Statement class.  
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IfThenStatement   : Statement   ::= Expression Statement; 

IfThenElseStatement   : Statement   ::= Expression Statement Statement; 

IfThenElseStatementNoShortIf  : StatementNoShortIf  ::= Expression Statement Statement; 

WhileStatement   : Statement   ::= Expression Statement; 

WhileStatementNoShortIf  : StatementNoShortIf   ::= Expression Statement;  
 

Figure 4.31: Blocks and Commands hierarchy part 4 of 4  

 

4.4.1.5.  Expressions 

There exists an abstract Initializer class, in order to be inherited by anything that can 

initialize a variable. There also exists an abstract VariableInitializer and an 

ArrayInitializer class. While they both extend the Initializer class, the latter consists of a 

list of Initializer instances. 

 

abstract Initializer    ; 

abstract VariableInitializer : Initializer  ; 

ArrayInitializer   : Initializer  ::= Initializer*; 
 

Figure 4.32: Expressions hierarchy part 1 of 3  

 

As expected, the abstract Expression class extends the VariableInitializer class and as the 

abstract AssignmentExpression class is also an expression, it extends the Expression class. 

Finally, the Assignment class extends the AssignmentExpression class, while it consists 

of a PrimaryOld instance which will be discussed later, a String Op for the operand that 

will be used (say for example the equals “=” operand) and another AssignmentExpression 

instance. This gives the option for multiple assignments in a single expression if allowed 

by the grammar. 

 

abstract Expression   : VariableInitializer  ; 

abstract AssignmentExpression  : Expression    ; 

Assignment   : AssignmentExpression   

     ::= PrimaryOld <Op:String> AssignmentExpression; 
 

Figure 4.33: Expressions hierarchy part 2 of 3  

 

Moreover, by listing the Expression categories in the next figure with a chained 

extensibility between them, it is implied that all Expressions between the classes 

ConditionalOrExpression and AdditiveExpression have the same children as the 
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ConditionalExpression class. These are a VariableInitializer, a String Op denoting the 

Operand of the expression and another VariableInitializer. As explained later, the 

Primary class is an extension of the VariableInitializer class, thus it is allowed to be also 

part of these expressions. What is different is the MultiplicativeExpression, where 

although it follows the chained inheritance of the previous expressions, its third child is 

optional. This is beneficial for the grammar’s structure, as it allows unary expression to 

be considered under this chained inheritance as well. As a result, the UnaryExpression 

class extends the Expression class, while it consists of a VariableInitializer. The same 

goes for the classes PlusUnaryExpression and MinusUnaryExpression which exist only 

to differenciate between positive and negative unary expressions. Finally, the 

CastExpression class extends the UnaryExpression class, consisting of the same child 

plus a Type instance, denoting the type that the VariableInitializer instance will be casted 

to. 

 

ConditionalExpression  : AssignmentExpression  

     ::=VariableInitializer <Op:String>VariableInitializer; 

ConditionalOrExpression  : ConditionalExpression  ; 

ConditionalAndExpression  : ConditionalOrExpression  ; 

InclusiveOrExpression   : ConditionalAndExpression ; 

ExclusiveOrExpression   : InclusiveOrExpression  ; 

AndExpression    : ExclusiveOrExpression  ; 

EqualityExpression   : AndExpression   ; 

RelationalExpression   : EqualityExpression   ; 

ShiftExpression    : RelationalExpression  ; 

AdditiveExpression   : ShiftExpression   ; 

MultiplicativeExpression : AdditiveExpression   

     ::=VariableInitializer <Op:String> [VariableInitializer]; 

UnaryExpression   : Expression   ::= VariableInitializer; 

PlusUnaryExpression  : UnaryExpression; 

MinusUnaryExpression  : UnaryExpression; 

CastExpression    : UnaryExpression   ::= Type VariableInitializer; 
 

Figure 4.34: Expressions hierarchy part 3 of 3  

 

4.4.1.6.  Primaries 

As mentioned before, Primaries will be used in various places of the grammar. These 

primaries are the handlers of variables, methods, as well as the creators of instances or 

arrays. As a result, the abstract Primary class extends the VariableInitializer class and it 

is extended by two subclasses, PrimaryOld and PrimaryNew. The former concerns any 



44 

 

Primary that has to do with already declared instances in π-val, while the latter is about 

creation of instances or arrays.  

 

abstract Primary : VariableInitializer ; 

abstract PrimaryOld : Primary  ; 

abstract PrimaryNew : Primary  ; 
 

Figure 4.35: Primaries hierarchy part 1 of 4  

 

Beginning with the PrimaryOld extensions, the MethodInvocation class consists of an 

optional Primary instance, a String Identifier denoting the name of the method, and a list 

of Expression instances, which act as the arguments of the method to be invocated. 

Similarly, the FieldAccess class is exactly the same but lacks the list of Expression 

instances, as it concerns variables rather than methods. Moreover, the 

PrimaryNoNewArray class consists of an optional VariableInitializer instance. This 

allows the use of “this” in the grammar, while the class itself acts like a container of all 

the allowed primaries. Finally, The ArrayAccess class consists of a PrimaryNoNewArray 

instance and an Expression instance. This relation allows multidimensionality in 

accessing arrays. 

 

MethodInvocation  : PrimaryOld  ::= [Primary] <Identifier:String> Expression*; 

FieldAccess   : PrimaryOld  ::= [Primary] <Identifier:String>; 

PrimaryNoNewArray : PrimaryOld  ::= [VariableInitializer]; 

ArrayAccess   : PrimaryOld  ::= PrimaryNoNewArray Expression; 
 

Figure 4.36: Primaries hierarchy part 2 of 4  

 

Following with the PrimaryNew extensions, the ClassInstanceCreationExpression class 

consists of a Type class, denoting the type of the class to be created and a list of Expression 

instances, which act as the arguments of the constructor that will be invocated. 

Furthermore, the ArrayCreationExpression class, also consists of a Type class, denoting 

the type of the array to be created, but also needs a list of DimExpr instances and a list o 

DimEmp instances for its dimensions. The former’s class consists of an Expression 

instance, therefore it is responsible for denoting the given dimension’s index, while the 

latter’s class does not contain anything, allowing the Java’s concept of 

multidimensionality, where a multidimensional array is just an array consisting of other 

arrays (which can also be multidimensional). 
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ClassInstanceCreationExpression  : PrimaryNew  ::= Type Expression*; 

ArrayCreationExpression  : PrimaryNew  ::= Type DimExpr* DimEmp*; 

DimExpr    : PrimaryNew ::= Expression; 

DimEmp      ; 
 

Figure 4.37: Primaries hierarchy part 3 of 4  

 

Furhtermore, the abstract Literal class extends the VariableInitializer class and consists 

of a String LiteralValue. Finally, the classes IntegerLiteral, FloatLiteral, BooleanLiteral, 

CharacterLiteral, StringLiteral and NullLiteral extend the abstract class Literal. 

 

abstract Literal   : VariableInitializer  ::= <LiteralValue:String>; 

IntegerLiteral  : Literal   ; 

FloatLiteral  : Literal   ; 

BooleanLiteral  : Literal   ; 

CharacterLiteral  : Literal   ; 

StringLiteral  : Literal   ; 

NullLiteral  : Literal   ; 
 

Figure 4.38: Primaries hierarchy part 4 of 4  

4.4.2.  Channels 

In the Channel expansion of the grammar, the classes that were used also need to be 

declared hierarchically. Therefore, following the same principles as in the previous 

sections, the ChannelType class extends the PrimitiveType class, while it consists of a 

Type instance and a ClassType instance. The former denotes the Type of private data that 

will travel through a channel of that ChannelType, while the latter stands for the owner 

of that channel. 

 

Regarding the expressions section, the classes ChannelSendExpression and 

ChannelReceiveExpression both extend the AssignmentExpression class and consist of a 

UnaryExpression instance, denoting the channel which will be operated. The only 

difference comes when the ChannelSendExpression needs another child for its 

construction and that is the Expression instance, which represents the data that will travel 

through the channel. 
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Finally, with respect to the Primaries section, the ChannelCreationExpression class 

extends the PrimaryNew class, as it regards a constructor. It consists of only a 

ChannelType instance, as channels constructors have no arguments. Lastly, the 

ThreadedMethodInvocation class is just an extension of the standard MethodInvocation 

class. 

 

/*Types*/ 

ChannelType   : Type   ::= Type ClassType; 

/*Expressions*/ 

ChannelSendExpression  : AssignmentExpression ::= UnaryExpression  Expression; 

ChannelReceiveExpression : AssignmentExpression ::= UnaryExpression ; 

/*Primaries*/ 

ChannelCreationExpression :PrimaryNew  ::= ChannelType; 

ThreadedMethodInvocation :MethodInvocation ; 
 

Figure 4.39: Channels hierarchy 

 

4.4.3.  Policies 

In the Policies expansion, there were introduced some more new classes in order to be 

used by the grammar. The PolicyDeclaration class extends the TypeDeclaration class 

which was mentioned before and it consists of a ClassType instance and a list of 

PolicyAction instances. The UnknownPolicyDeclaration class extending the 

PolicyDeclaration class, similar to the UnknownDeclaration class, exists only for the 

purposes of error handling. 

 

The PolicyAction class on the other hand is a standalone class and consists of a ClassType 

instance, a list of Action instances and another list of PolicyAction instances, in order to 

hierarchically declare some more permissions for its contained classes. 

 

Finally, the Action class consists of a String Identifier, defining its name. For the purposes 

of the existence of complicated actions, another class, the abstract SpecialAction was 

introduced, which extends the Action class and its children, but also needs a Type instance 

for its construction. This will become handy for the Identify, Disseminate and Usage 

classes, all three of which extend the SpecialAction class and its children, while the latter 

also needs a String VarName for its construction. 
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PolicyDeclaration  : TypeDeclaration ::= ClassType PolicyAction*; 

UnknownPolicyDeclaration : PolicyDeclaration ; 

PolicyAction      ::= ClassType Action* PolicyAction*; 

Action       ::= <Identifier:String>; 

 

abstract SpecialAction : Action   ::= <Identifier:String> Type; 

Identify   :  SpecialAction  ; 

Disseminate  :  SpecialAction  ; 

Usage   :  SpecialAction  ::= <Identifier:String> Type <VarName:String>; 

 

Figure 4.40: Policies hierarchy 

4.5.  Semantic Analysis 

As mentioned before, some characteristics of the grammar define various information 

about specific classes. Using the appropriate synthesized or inherited attributes on 

JastAdd [4, 6], these characteristics can be accessed anywhere in the Abstract Syntax Tree 

as long as there exists a reference to the instance of the node that needs to be processed. 

Consequentially, this means that even classes that implicitly do not have their 

characteristics defined by the grammar, can have them calculated by the characteristics 

of other classes that are either their ancestors, or descendants, recursively. 

4.5.1.   Basic aspects  

For making a better classification on the calculated attributes, various aspects were 

defined, grouping similar attributes together for the three abstractions of the language. 

Some of the basic aspects concern all three abstractions of the language. The first one 

affects the calculation of the type of a variable, method, constructor or expression, called 

the TypeAnalysis aspect. The second one is about the comparison between different 

types, called the TypeComparison aspect. Moreover, these aspects are being used for 

making sure that π-val allows the same type primitive conversions as Java [1], therefore 

making the translation at the Code Generation (Section 4.6) easier. Another basic aspect 

is the one called NameResolution, which is responsible for calculating the name of a 

variable, method or constructor.  
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Furthermore, the PrettyPrint aspect is responsible for translating the Abstract Syntax Tree 

nodes into readable Java code. This aspect will be explained further in Section 4.6. 

 

Based on the previous aspects, a new aspect called DeclAnalysis can be defined. 

DeclAnalysis is responsible for finding the existence of the declaration of a specific type, 

variable, method or constructor, based on their name. The way it searches for declarations, 

takes advantage of both the inherited and synthesized attributes of JastAdd. That is for 

every Block, ClassDeclaration, MethodDeclaration and ConstructorDeclaration instance, 

a synthesized lookup table is computed based on the statements, fields or formal 

parameters that belong to them. When a name needs to be searched, the aspect examines 

the first instance that has a computed lookup table in the parent hierarchy of the processed 

instance. If the name is not found, then the process repeats until there are no more 

instances in the parent hierarchy that have a lookup table. Finally, if the name exists under 

a lookup table, then the appropriate declaration instance is returned. Otherwise, it returns 

a new UnknownDeclaration object. 

 

Finally, there exist some other minor but helpful aspects. Firstly, the InitCheck attribute 

is responsible for checking if a variable is initialized. Secondly, the Statics aspect checks 

if a statement is static or not, thus it can be checked later if it is not used properly. Last 

but not least, the StatementReturn aspect is responsible for checking if methods are 

guaranteed to return a value. 

 

4.5.2.   Finding errors 

There exists an aspect dedicated for finding errors. The ErrorCheck aspect, by taking 

advantage of the previous aspects, as well as the ones explained in the next paragraphs, 

is responsible for finding potential errors under the semantics of the language and listing 

them along with the place they were invoked. These can be type mismatches, duplicate 

declarations, undeclared calls, missing return statements, wrong uses of break and 

continue, or even violations of final declarations.  

 

Regarding the policy declarations, this aspect prohibits the declaration of two policies for 

the same class, as well as it demands that the hierarchy of the policy must not contain the 



49 

 

same group more than once. Furthermore, private data classes must only declare non 

private data fields, while the declaration of a String id field is mandatory and constructors 

that can only include field assignments.  

 

There are also some limitations concerning the methods and constructors of a program. 

In particular, methods cannot return private data types. Therefore, they cannot be used as 

alternates to the concept of channels. What is more, method invocations cannot occur on 

private data handlers. Moreover, both methods’ and constructors’ arguments must be 

private data free, unless the constructor is also creating private data. This means that fields 

derived from private data cannot be used as such. As an overall limitation regarding 

methods and constructors, is that objects that contain private data fields are also 

considered as a threat to the completeness of Privacy calculus when being passed as 

arguments and thus prohibited. Finally, private data fields cannot be assigned to non 

private data variables and therefore are unable to bypass the previous checks. 

 

4.5.3.   Expanding aspects  

Things get more interesting, when adding the aspects of the Channel and Policy part. 

While some of them follow the same principles as the previous, there are two new aspects 

dedicated precisely for static type checking based on the Privacy Policy and Privacy 

calculus [8]. 

 

The first one, called classes, affects the helping classes that are going to be used along the 

language. The helping class that concerns the Channels part of the language is going to 

be used only by the generated output of the language, making it possible to interpret the 

meaning of channels in Java code. Therefore, any sending or receiving on a single channel 

will be done under the corresponding synchronized methods declared in that class. As 

expected, these methods will make the thread that wants to use a channel wait, until it 

becomes available. 

 

On the other hand, the helping classes concerning the Policy part of the language are 

going to be used alongside with the ones contained in the Abstract Syntax Tree. These 

classes called “Rule” classes, are responsible for representing the various rules of Privacy 
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calculus that were described in Section 2.2.3, as well as holding information about the 

hierarchy of the Abstract Syntax Tree nodes that invoked those rules. Furthermore, 

another class called “Group” is declared, responsible for the translation of those rules into 

new Abstract Syntax Tree nodes. 

 

What is more, in order to use the above “Rule” classes for representing the Privacy 

calculus rules, another aspect was needed to be declared, which will be responsible for 

searching for those rules under all nodes of the Abstract Syntax Tree. This aspect, called 

rules, traverses the whole Abstract Syntax Tree, in order to find nodes that invoked any 

permissions. In order to keep track of them, this traverse uses a HashSet of Action 

instances, tracking any effort of reading, writing or checking private data, based on the 

permissions that are related to the Privacy calculus. Therefore, for every branch of the 

Abstract Syntax Tree, the HashSet of the parent node is either transformed into an 

ArrayList of “Rule” instances, or duplicated and sent to its children, in order to be 

considered further down. The process of duplication stops in places where there will be 

no more branches, or where the actions tracked so far do not concern the children of that 

particular node. In either case, the rule collection process is still carrying on, but with new 

HashSet instances. Finally, when the whole Abstract Syntax Tree has been traversed, the 

ArrayList of “Rule” instances of the root of the tree is returned, describing all the rules 

that were invoked in the whole program. This list has a formation similar to a tree, 

therefore it can be traversed later in order to cross-check its contents with the permissions 

that are indeed allowed by the policy, hierarchically. Any disagreement between them 

should invoke a Violation error. 

 

The final aspect, called policyViolations, concerns the violations that happened 

throughout the program.  It reads the above ArrayList of rules and using the “Group” 

class, it converts them into PolicyAction instances, exactly as they are described in the 

“Policies” grammar in Section 4.3.3. Therefore, each private data class that is affected by 

those rules, has them added into its own list of “Group” instances, hierarchically. This 

concludes to a simple traversal of the private data classes, which can give the full report 

of all the violations that occurred.  
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4.5.4.   Finding violations 

In order to check whether a group describes a PolicyAction instance that is considered a 

violation of the policy, a simple process is run, regarding the ArrayList that was generated 

by the policyViolations aspect. This process finds the Abstract Syntax Tree nodes that 

invoked some of the under examination group’s rules, for each group in the hierarchy. 

These group’s hierarchy also needs to follow the declared policy’s hierarchy. If the policy 

declaration at the given step of the hierarchy contains an Action that is also contained in 

the group, then the Action is valid. Otherwise, the Action forms a violation and is added 

to an error list along with its hierarchy.  

 

The only Action that is checked differently is the “Aggregate” action. For this case, rules 

regarding aggregation are named after a combination of the variable type, name and field 

that caused the aggregation, thus creating a unique rule name for each field. At the 

policyViolation aspect, this is taken into consideration, in order to determine how many 

fields of a single private data variable have been aggregated in a step of the policy 

hierarchy. The algorithm then scrapes the first occurrence of the aggregation for each 

variable in each step of the policy hierarchy and for every other occurrence that involves 

the same fields of the variable, while it invokes a real aggregation rule when a second 

field of the same variable is found to be triggering an aggregation. 

 

4.6.  Code Generation 

In this part of the compiler phases, if the under examination program has no errors, or 

policy violations, then its code should be generated. As this language is very similar to 

Java, the code generation becomes almost effortless regarding the “backbone” part, as the 

tokens are outputted almost identical to how they were inputted. This process regards a 

simple traversal of the Abstract Syntax Tree for printing its nodes. 

 

 Moreover, the “Policies” section of the language exists only for the purposes of 

validation, therefore it gets scrapped.  

 

Finally, the only tricky part of the code generation process is the one concerning the 

ability of calling threaded methods. For each method that the compiler knows that it will 
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be used as a new Thread, a new method is also generated to the final program, with a 

similar name to the original one. This new method creates a new Thread, that is 

responsible for calling the original method and runs it, as shown in Figure 4.41. If the 

method is not void, then a similar process is followed, using the Callable class that can 

return values that were computed in Threads. 

 

This whole process results into having a full Java replica of the program which was 

originally written in π-val. 

 

Figure 4.41: Java representation of a threaded method 

 

4.7. Extra Features 

As π-val is based on Java, some of the basic functions of Java had to be incorporated. 

This leads to the need of introducing features that have nothing to do with the grammar 

of the language. As a result, a series of classes that are commonly used in Java programs 

should be implemented inside the framework. In order for any of these classes to be usable 

in π-val, a replica of them was defined, holding only the headers of their fields and 

methods. 

 

One of the classes that were chosen to be incorporated to the language is the File class, 

allowing π-val to handle files just like Java. Moreover, the InputStream, OutputStream 

and PrintStream classes are included, as well as the Scanner and Object classes, making 

it easier for a π-val programmer to use basic Input/Output processes. All these give the 

ability to the programmer to use instances of those Objects, without the need of defining 
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their class itself, just like they would have done in Java (e.g. creating a new File object 

and using methods on its instance, without declaring a File class). 

 

What is more, the “length” field of any array is also declared in a similar way.  

 

Moreover, the language allows System calls just like in Java [1]. This feature uses a static 

class in Java, but as the concept of statics does not exist in π-val, the word System is 

interpreted as an object of type System. Therefore, taking into consideration the previous 

inclusions, System.in, System.out and System.err are all valid for use, along with the 

System’s methods. 

 

Finally, another extra feature, the π-val compiler gives the option to the user to compile 

multiple files or even a folder that contains files, by reading them as arguments. 
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5.1.  Test case scenario 

In this section, an example that was given in the “Typechecking Privacy Policies in the 

π-Calculus” paper [8], will be discussed. In that paper, a specific privacy policy was 

proposed for this particular scenario, but for the purposes of this thesis, there will be slight 

modifications, in order to adapt it to the framework’s compatibility. As a clarification, 

when developing a program on π-val it is not necessary to follow the same sequence of 

steps as the ones that are going to be shown in this chapter. 

 

This example refers to a speed-control system which needs to check upcoming traffic, 

without violating the privacy of the drivers. The concept is that if a driver’s private data 

are stored, thus allowing the identification of the driver, while they are not exceeding the 

speed limit, then there is a privacy violation. This is because, as long as the driver is 

following the law, their personal data cannot be used in any way by the system. 

 

5.2.  Defining the policy 

The paper proposes three privacy preservations: 

1) Any data collected by the speed cameras must be used only for detecting speed-

limit violations. Any other processing on those data must not be allowed. 

2) The storage of any collected data must not be allowed, unless they evidence a 

speed-limit violation.  
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3) Any collected data that can identify the driver must remain hidden until a speed-

limit violation is detected. 

 

Moreover, the paper considers various groups, following the concept of π-calculus with 

groups [11, 3]. The first group refers to a system called SpeedControl, which is composed 

by car entities, thus creating the second group called Car. Furthermore, there is another 

group, defining the speed-control authority, called SCSystem, which is composed by 

speed camera entities, an authority for processing data and a database for storing data. 

These create three more groups called TrafficCam, Authority and DB respectively. 

 

What is more, types should be declared, defining what data are considered private. 

Therefore, as the paper proposes, there should be three types of private data for this 

scenario, CarReg, CarSpeed and DriverReg. The former refers to the license plates of a 

car, while the latter for the license plates that belong to a driver. CarSpeed on the other 

hand considers the speed of a car. 

 

Furthermore, having in mind the above propositions, as well as the grammar of π-val as 

mentioned in Chapter 4 and the rules that were set on the Privacy calculus [8], a policy 

regarding this scenario can be defined, as shown in Figure 5.1.  

 

The private data CarReg, which refers to the car’s plates can be seen by anyone who can 

view the car itself. Therefore, the car (Car) entity can STORE its license number or 

DISSEMINATE it to the speed control (SpeedControl). As a result, a traffic camera 

(TrafficCam) can gain access to a REFERENCE of this data (say for example by taking 

a photograph) and therefore DISSEMINATE it to the speed control system (SCSystem). 

The authority (Authority) can receive that REFERENCE and READ the actual private 

data (from the photograph). The authority might then want to IDENTIFY the owner of 

that car if it confirms that there was a traffic violation. 

 

Similarly for the private data CarSpeed, which refers to the car’s speed, it can be both 

STORED and UPDATED during the life cycle of a car (Car) process. This data can be 

DISSEMINATED to the speed control (SpeedControl) by various ways (say for example 

a speed radar). A traffic cam (TrafficCam) can then get a REFERENCE of that data and 
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then DISSEMINATE it to the speed control system (SCSystem). The authority 

(Authority) can receive that REFERENCE and READ the actual private data. It can then 

USE that data against a constant type of data (double overLim), in order to find out if a 

violation has occurred and conclude in STORING the data regarding the violation. 

 

Finally, the private data DriverReg, which refers to the license plate that a driver owns, 

can only be processed by the authority (Authority) and the database (DB). The latter can 

REFERENCE, STORE, or DISSEMINATE such data to the speed control system 

(SCSystem), while the former can REFERENCE, READ, or read the ID (READID) of 

such data. Furthermore, the Authority can AGGREGATE those data, in order to file the 

information of the driver that caused the violation. 

 

1. policy CarReg{   
2.     SpeedControl {}[   
3.         Car { STORE, DISSEMINATE SpeedControl};    
4.         SCSystem {}[   
5.             TrafficCam { REFERENCE, DISSEMINATE SCSystem};   
6.             Authority { REFERENCE, READ, IDENTIFY{DriverReg}};    
7.             DB {};                 
8.         ];   
9.     ];   
10. }    
11.    
12. policy CarSpeed{   
13.     SpeedControl {}[   
14.         Car { UPDATE, STORE, DISSEMINATE SpeedControl};    
15.         SCSystem {}[   
16.             TrafficCam { REFERENCE, DISSEMINATE SCSystem};   
17.             Authority { REFERENCE, READ, STORE, USAGE{double overLim}};   

18.             DB {};             
19.         ];   
20.     ];   
21. }   
22.    
23. policy DriverReg{   
24.     SpeedControl {}[   
25.         Car {};   
26.         SCSystem {}[   
27.             TrafficCam {};    
28.             Authority { REFERENCE, AGGREGATE, READ, READID};    
29.             DB {REFERENCE, STORE, DISSEMINATE SCSystem};   
30.         ];     
31.     ];   
32. }   

 

Figure 5.1: The privacy policy of the example 
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5.3.  Writing the program 

The paper also gives the operation of the program, in the form of the Privacy calculus 

syntax [8], as seen in Figure 5.2. Although this is not necessary for the writing of a 

program in π-val, it is a good practice, as it gives an overview of the programmer. All 

code quoting highlighting in this thesis was made using the online tool syntax-highlight-

word by PlanetB [17]. 

 

The System contains a group called SpeedControl, which encloses the other groups with 

the nested processes C, SC, A and D. The hierarchy of the nested processes and groups is 

the same as in the previous policy declaration in Figure 5.1. The above processes 

communicate by sharing some names. In particular, process C and SC share the name p, 

which represents a channel for the photograph of the running vehicle that the traffic 

camera has taken. Moreover, the authority and the traffic camera share the name a, which 

is another channel for the same data. Finally, the names r1, …, rn are used for the 

communication between the authority and the database. 

 

 

 

Figure 5.2: Basis of program in Privacy calculus 

 

 

Now that the policy is written in Figure 5.1, and the basis of the program is ready in terms 

of the Privacy calculus in Figure 5.2, the groups that are defined must be matched to their 

corresponding classes in the π-val program. Therefore, the programmer needs to declare 
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classes with the same names as the groups, as well as for the private types that the policy 

refers to. The latter is shown in Figure 5.3, while the other classes will be explained in 

the next paragraphs. As mentioned in Section 2.2.3, private data must contain an id along 

with the information that they hold, thus an id field is demanded on their class declaration. 

 

1. class CarReg{   

2.     String id;   
3.     String reg;   
4.        
5.     CarReg(String id,String reg){   
6.         this.id=id;   
7.         this.reg=reg;   
8.     }   
9. }    
10.    
11. class CarSpeed{   
12.     String id;   
13.     double speed;   

14.        
15.     CarSpeed(String id,double speed){   
16.         this.id=id;   
17.         this.speed=speed;   

18.     }   
19. }    
20.    
21. class DriverReg{   

22.     String id;   
23.     String reg;   
24.        
25.     DriverReg(String id,String reg){   
26.         this.id=id;   
27.         this.reg=reg;   
28.     }   

29. }   

 

Figure 5.3: Private data classes 

 

Moreover, the program in Figure 5.2 shows that in the Privacy calculus, the car process 

C, STORES two private data, the registration number (reg) and the speed (speed). The 

latter changes dynamically as shown in the second line of the process, via an external 

channel called cs. Finally, through the channel p, these information can be sent to the SC 

process. These can be easily transformed into π-val as seen in Figure 5.4, where the 

private data are stored as fields of private data types and the sub-processes are declared 

as methods which use channels. Note that the channels must declare to whom they should 

belong to. 
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1. class Car{   

2.     CarReg r;   
3.     CarSpeed s;    
4.            
5.     Car(String id,String reg,double speed){   
6.         this.r = new CarReg(id,reg);   
7.         this.s = new CarSpeed(id,speed);   
8.     }   
9.        
10.     void updateSpeed(Channel<CarSpeed[Car]> cs){   

11.         CarSpeed y = <-cs;   
12.         if(y!=null){   

13.             s.speed=y.speed;   
14.         }   
15.     }   
16.        
17.     void sendData(Channel<CarReg[SpeedControl]> p1, 

        Channel<CarSpeed[SpeedControl]> p2){   

18.         p1<-r;   
19.         p2<-s;   
20.     }   

21. }  

 

Figure 5.4: The Car class 

 

 

Similarly, the database process D stores a series of private data which represent the 

registration numbers that belong to various drivers and tries to send them over the names 

r1, …, rn . Again, the same can be translated into π-val with minimal effort, as shown in 

Figure 5.5. The private data are stored as fields, while their transmission is represented 

by the method sendReg(Channel), which can be called in a parallel to the program infinite 

loop by an instance. This instance can be the owner of a bunch of instances of DB objects, 

thus illustrating a complete database.  

 

1. class DB{   

2.     String name;   
3.     DriverReg r1;   
4.        
5.     DB(String id,String name,String reg){   
6.         this.r1=new DriverReg(id,reg);   
7.         this.name=name;        
8.     }   
9.        
10.     void sendReg(Channel<DriverReg[SCSystem]> link){   
11.             link<-this.r1;   
12.     }   

13. }   

 

Figure 5.5: The DB class 
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Furthermore, the process of the traffic cam (SC) is responsible for receiving the 

information of a car from channel p, and then trying to send them over the channel a. This 

again is easy to be transformed into π-val, where both channels are split into two parts 

each, as shown in Figure 5.6. 

 

1. class TrafficCam{   
2.     void receiveData(Channel<CarReg[SpeedControl]> p1, 

         Channel<CarSpeed[SpeedControl]> p2, 
           Channel<CarReg[SCSystem]> a1, 
            Channel<CarSpeed[SCSystem]> a2){   

3.         a1<-<-p1;   
4.         a2<-<-p2;   
5.     }   
6. }   

 

Figure 5.6: The TrafficCam class 

 

What is more, the process A receives those information from channel a and binds the 

speed of the car to the name z, using the channel k2. Without reading the corresponding 

id, it checks if the name z is greater than the constant overLim. If so, the process V is run. 

This can be seen in π-val in the first part of the function checkData() in Figure 5.7. 

 

Furthermore, when the process V runs (which is still part of the authority), it binds the 

registration number of the car to the name y, using the channel k1. It then receives from 

the channels r1, …, rn all the records that are contained in the database (process D). If 

there is a match of registration numbers, then the process stores the private data that 

correspond to the speed that led to the violation, along with the id of the owner of the car. 

This operation is quite different in the π-val translation, as seen on the last part of the 

function checkData() in Figure 5.7. The new private data that holds the violation details 

is stored in a dynamic array. In order to implement such array, the method 

expandViolationsTable() was used. 
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1. class Authority{   
2.     final double overLim=30;   
3.     CarSpeed[] violations = new CarSpeed[0];   
4.     Channel<CarSpeed[Authority]> v =  

          new Channel<CarSpeed[Authority]>();   

5.        
6.     void checkData(Channel<CarReg[SCSystem]> a1, 

        Channel<CarSpeed[SCSystem]> a2, 

         Channel<DriverReg[SCSystem]>[] links){   

7.         CarReg k1= <-a1;   
8.         CarSpeed k2= <-a2;   
9.         if(k2.speed  > overLim){   
10.             int i=0;   
11.             while(i<4){   

12.                 DriverReg dr= <-links[i];   
13.                 if(dr.reg == k1.reg){   

14.                     System.out.println("match");   
15.                     expandViolationsTable();   
16.                     violations[violations.length-1] 

          =new CarSpeed(dr.id, k2.speed);   

17.                 }   
18.                 i=i+1;   
19.             }   
20.         }   
21.     }   
22.        
23.     void expandViolationsTable(){   
24.         CarSpeed[] temp = new CarSpeed[violations.length+1];   
25.         int i=0;   
26.         while(i<violations.length){   

27.             temp[i]=violations[i];   
28.             i=i+1;   
29.         }   
30.         violations=temp;               
31.     }   
32. }   

 

Figure 5.7: The Authority class 

 

 

Although the Privacy calculus does not define any processes for some groups, in π-val 

their classes should be implemented. This concerns the SCSystem and the SpeedControl. 

What is more, these classes are cruicial for the program, as they constitute the main 

program.  

 

The SCSystem group, as defined by the privacy calculus policy in Figure 5.2, is holding 

information about the groups trafficCam, Auth and DBase, as well as for the processes 

SC, A and D. As a result, in the π-val representation, the SCSystem class is the one that 

holds instances of DB objects, along with their respective channel. This enables it to send 

the information of its database through those channels, using the method sendDB(). 

Moreover, another method, called process,  is responsible for calling in a parallel thread 

the method sendDB(), as well as sequentially receive data from the channels of the traffic 
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cam and redirecting them to the channels of the authority. This is also done by calling the 

corresponding processes of those instances in parallel threads.  

 

1. class SCSystem{   

2.         Channel<CarReg[SCSystem]> a1 = new Channel<CarReg[SCSystem]>();   

3.         Channel<CarSpeed[SCSystem]> a2 = new Channel<CarSpeed[SCSystem]>();   

4.          

5.         Channel<DriverReg[SCSystem]> link1 = new Channel<DriverReg[SCSystem]>();   

6.         Channel<DriverReg[SCSystem]> link2 = new Channel<DriverReg[SCSystem]>();   

7.         Channel<DriverReg[SCSystem]> link3 = new Channel<DriverReg[SCSystem]>();   

8.         Channel<DriverReg[SCSystem]> link4 = new Channel<DriverReg[SCSystem]>();   

9.         Channel<DriverReg[SCSystem]>[] links = {link1,link2,link3,link4};   

10.            
11.         DB d1 = new DB("1","driver 1","ABC 123");   
12.         DB d2 = new DB("2","driver 2","BCD 234");   
13.         DB d3 = new DB("3","driver 3","CDE 345");   
14.         DB d4 = new DB("4","driver 4","DEF 456");   

15.         DB drivers[] = {d1,d2,d3,d4};   
16.                
17.         TrafficCam tc=new TrafficCam();   
18.         Authority auth = new Authority();   

19.            
20.                
21.         void sendDB(){   
22.             int i=0;   
23.             while(true){   
24.                 drivers[i].sendReg(links[i]);   
25.                 i=(i+1)%drivers.length;   
26.             }   
27.         }   
28.        
29.         int process(Channel<CarReg[SpeedControl]> p1, 

         Channel<CarSpeed[SpeedControl]> p2){   

30.             int i=0;   
31.             sendDB@();   
32.             while(i<4){   

33.                 tc.receiveData@(p1,p2,a1,a2);   
34.                 auth.checkData@(a1,a2,links);   
35.                 i=i+1;   
36.             }   
37.             return 0;   

38.         }   
39. }   

 

Figure 5.8: The SCSystem class 

 

Finally, the last class, SpeedControl, is the one that “simulates” the presence of cars and 

thus holding their instances. Through a method called run(), it makes the cars run their 

process of sending data in parallel threads, as well as it starts the speed control system 

process, again in a parallel thread. As all these constitute the main procedure of the whole 

program, the static main method is also declared in this class, which is only purpose is to 

call the run() method. 
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1. class SpeedControl{   

2.       Channel<CarReg[SpeedControl]> p1=new Channel<CarReg[SpeedControl]>();   

3.       Channel<CarSpeed[SpeedControl]> p2=new Channel<CarSpeed[SpeedControl]>();  

4.            
5.       Car c1=new Car("10","ABC 123",200);   
6.       Car c2=new Car("9","BCD 234",10);   
7.       Car c3=new Car("8","CDE 345",20);   
8.       Car c4=new Car("7","DEF 456",150);   

9.       Car cars[]={c1,c2,c3,c4};   
10.    
11.       SCSystem scs=new SCSystem();   
12.            
13.       void run(){   
14.             int i=0;   
15.             while(i<cars.length){   
16.                 cars[i].sendData@(p1,p2);                  
17.                 i=i+1;   
18.             }   
19.             scs.process@(p1,p2);       
20.       }      
21.            
22.       void main(String args[]){   

23.             System.out.println("Outcome");   
24.             SpeedControl system=new SpeedControl();   

25.             system.run();   
26.       }   

27. }   

 

Figure 5.9: The SpeedControl class 

 

This completes the scenario in π-val and it is now ready for compiling. If there are any 

violations, the compiler will reject the program, otherwise it will create a new Java file 

named after the class that holds the main method (if there are more than one main 

methods, it takes the name of the first instance’s class). For this example, there should be 

no errors. This file can be now run normally by a Java compiler. The output program can 

be found in the Appendix C. 

 

5.4.  Errors and violations 

This framework is responsible for finding possible errors and policy violations in a given 

program. Although the former holds a significant part of the implementation of this 

framework and plays a big role for its validity, it is trivial to show such examples in this 

chapter. These are typical errors that someone can encounter in most programming 

languages. 

 

On the other hand, policy violations are what give purpose to this framework and thus 

will be demonstrated. Firstly, if the program was run on the framework, against an empty 
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policy declaration, the framework would give no message and proceed to the code 

generation process, as there are no private data classes defined, thus there can be no 

violations. 

 

Secondly, let us assume that the policy declaration which was defined in Figure 5.1 was 

just denoting what classes are considered as private data, without showing the hierarchy 

of the program, as shown in Figure 5.10.  

 

1. policy CarReg{   
2. }    
3.    
4. policy CarSpeed{   
5. }   
6.    
7. policy DriverReg{   
8. }   

 

Figure 5.10: Empty privacy policy without any hierarchy 

 

If the example program that was defined in Section 5.3 was run on the framework, against 

this policy declaration, the framework would just give policy violation errors about not 

following the correct hierarchy of the policy.  

 

These errors are shown in Figure 5.11, where the first part of each error denotes the file 

and the line that the violation was found on. For this missing hierarchy violation, the file 

and line which is shown is the one regarding the policy declaration itself. Following, is 

the error message that regards the violation. Finally, the hierarchy that was supposed to 

be found is shown between square brackets, along with the line numbers that indicate the 

trace of the code that invoked the violation. 
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Errors:  
~carPolicy.pmj: 1: Policy Violation:  Under policy declaration could not find hierarchy: [SpeedControl: 54, SpeedControl: 35, Car] 
~carPolicy.pmj: 1: Policy Violation:  Under policy declaration could not find hierarchy: [SpeedControl: 54, SpeedControl: 36, Car] 
~carPolicy.pmj: 1: Policy Violation:  Under policy declaration could not find hierarchy: [SpeedControl: 54, SpeedControl: 37, Car] 
~carPolicy.pmj: 1: Policy Violation:  Under policy declaration could not find hierarchy: [SpeedControl: 54, SpeedControl: 38, Car] 
~carPolicy.pmj: 1: Policy Violation:  Under policy declaration could not find hierarchy: [SpeedControl: 55, SpeedControl: 46, Car] 
~carPolicy.pmj: 1: Policy Violation:  Under policy declaration could not find hierarchy: [SpeedControl: 55, SpeedControl: 49, SCSystem: 91, TrafficCam] 
~carPolicy.pmj: 1: Policy Violation:  Under policy declaration could not find hierarchy: [SpeedControl: 55, SpeedControl: 49, SCSystem: 91, TrafficCam] 
~carPolicy.pmj: 1: Policy Violation:  Under policy declaration could not find hierarchy: [SpeedControl: 55, SpeedControl: 49, SCSystem: 92, Authority] 
~carPolicy.pmj: 1: Policy Violation:  Under policy declaration could not find hierarchy: [SpeedControl: 55, SpeedControl: 49, SCSystem: 92, Authority] 
~carPolicy.pmj: 1: Policy Violation:  Under policy declaration could not find hierarchy: [SpeedControl: 55, SpeedControl: 49, SCSystem: 92, Authority] 
~carPolicy.pmj: 1: Policy Violation:  Under policy declaration could not find hierarchy: [SpeedControl: 55, SpeedControl: 49, SCSystem: 92, Authority] 
~carPolicy.pmj: 5: Policy Violation:  Under policy declaration could not find hierarchy: [SpeedControl: 54, SpeedControl: 35, Car] 
~carPolicy.pmj: 5: Policy Violation:  Under policy declaration could not find hierarchy: [SpeedControl: 54, SpeedControl: 36, Car] 
~carPolicy.pmj: 5: Policy Violation:  Under policy declaration could not find hierarchy: [SpeedControl: 54, SpeedControl: 37, Car] 
~carPolicy.pmj: 5: Policy Violation:  Under policy declaration could not find hierarchy: [SpeedControl: 54, SpeedControl: 38, Car] 
~carPolicy.pmj: 5: Policy Violation:  Under policy declaration could not find hierarchy: [SpeedControl: 55, SpeedControl: 46, Car] 
~carPolicy.pmj: 5: Policy Violation:  Under policy declaration could not find hierarchy: [SpeedControl: 55, SpeedControl: 49, SCSystem: 91, TrafficCam] 
~carPolicy.pmj: 5: Policy Violation:  Under policy declaration could not find hierarchy: [SpeedControl: 55, SpeedControl: 49, SCSystem: 91, TrafficCam] 
~carPolicy.pmj: 5: Policy Violation:  Under policy declaration could not find hierarchy: [SpeedControl: 55, SpeedControl: 49, SCSystem: 92, Authority] 
~carPolicy.pmj: 5: Policy Violation:  Under policy declaration could not find hierarchy: [SpeedControl: 55, SpeedControl: 49, SCSystem: 92, Authority] 
~carPolicy.pmj: 5: Policy Violation:  Under policy declaration could not find hierarchy: [SpeedControl: 55, SpeedControl: 49, SCSystem: 92, Authority] 
~carPolicy.pmj: 5: Policy Violation:  Under policy declaration could not find hierarchy: [SpeedControl: 55, SpeedControl: 49, SCSystem: 92, Authority] 
~carPolicy.pmj: 5: Policy Violation:  Under policy declaration could not find hierarchy: [SpeedControl: 55, SpeedControl: 49, SCSystem: 92, Authority] 
~carPolicy.pmj: 5: Policy Violation:  Under policy declaration could not find hierarchy: [SpeedControl: 55, SpeedControl: 49, SCSystem: 92, Authority] 
~carPolicy.pmj: 5: Policy Violation:  Under policy declaration could not find hierarchy: [SpeedControl: 55, SpeedControl: 49, SCSystem: 92, Authority] 
~carPolicy.pmj: 9: Policy Violation:  Under policy declaration could not find hierarchy: [SpeedControl: 54, SpeedControl: 41, SCSystem: 69, DB] 
~carPolicy.pmj: 9: Policy Violation:  Under policy declaration could not find hierarchy: [SpeedControl: 54, SpeedControl: 41, SCSystem: 70, DB] 
~carPolicy.pmj: 9: Policy Violation:  Under policy declaration could not find hierarchy: [SpeedControl: 54, SpeedControl: 41, SCSystem: 71, DB] 
~carPolicy.pmj: 9: Policy Violation:  Under policy declaration could not find hierarchy: [SpeedControl: 54, SpeedControl: 41, SCSystem: 72, DB] 
~carPolicy.pmj: 9: Policy Violation:  Under policy declaration could not find hierarchy: [SpeedControl: 55, SpeedControl: 49, SCSystem: 89, SCSystem: 82, DB] 
~carPolicy.pmj: 9: Policy Violation:  Under policy declaration could not find hierarchy: [SpeedControl: 55, SpeedControl: 49, SCSystem: 92, Authority] 
~carPolicy.pmj: 9: Policy Violation:  Under policy declaration could not find hierarchy: [SpeedControl: 55, SpeedControl: 49, SCSystem: 92, Authority] 
~carPolicy.pmj: 9: Policy Violation:  Under policy declaration could not find hierarchy: [SpeedControl: 55, SpeedControl: 49, SCSystem: 92, Authority] 
~carPolicy.pmj: 9: Policy Violation:  Under policy declaration could not find hierarchy: [SpeedControl: 55, SpeedControl: 49, SCSystem: 92, Authority] 
~carPolicy.pmj: 9: Policy Violation:  Under policy declaration could not find hierarchy: [SpeedControl: 55, SpeedControl: 49, SCSystem: 92, Authority] 
~carPolicy.pmj: 9: Policy Violation:  Under policy declaration could not find hierarchy: [SpeedControl: 55, SpeedControl: 49, SCSystem: 92, Authority]  

 

Figure 5.11:  Hierarchy violation errors 
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Finally, let us assume that the hierarchy is defined correctly, but no permissions were 

given on the groups, as shown in Figure 5.12. 

 

1. policy CarReg{   
2.     SpeedControl {}[   
3.         Car {};    
4.         SCSystem {}[   
5.             TrafficCam {};   
6.             Authority {};    
7.             DB {};                 
8.         ];   
9.     ];   
10. }    
11.    
12. policy CarSpeed{   
13.     SpeedControl {}[   
14.         Car {};    
15.         SCSystem {}[   
16.             TrafficCam {};   
17.             Authority {};   
18.             DB {};             
19.         ];   
20.     ];   
21. }   
22.    
23. policy DriverReg{   
24.     SpeedControl {}[   
25.         Car {};   
26.         SCSystem {}[   
27.             TrafficCam {};    
28.             Authority {};   
29.             DB {};   
30.         ];     
31.     ];   
32. }   

 

Figure 5.12: Hierarchical privacy policy without permissions 

 

 

As a result, anything that regards private data, causes a policy violation. These 

violations can be viewed in Figure 5.13. Similarly to the previous error messages, the 

first part of each error denotes the file and the line of code that each violation has 

occurred. Following, it prints the name of the private data that regards that violation, 

along with the type of permission that was violated. Finally, it prints the trace of the 

code that invoked the violation. 
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Errors:  

~car.mj: 104: Policy Violation: CarReg STORE [SpeedControl: 54, SpeedControl: 35] Car: 104 

~car.mj: 104: Policy Violation: CarReg STORE [SpeedControl: 54, SpeedControl: 36] Car: 104 

~car.mj: 104: Policy Violation: CarReg STORE [SpeedControl: 54, SpeedControl: 37] Car: 104 

~car.mj: 104: Policy Violation: CarReg STORE [SpeedControl: 54, SpeedControl: 38] Car: 104 

~car.mj: 116: Policy Violation: CarReg DISSEMINATE SpeedControl [SpeedControl: 55, SpeedControl: 46] Car: 116 

~car.mj: 124: Policy Violation: CarReg DISSEMINATE SCSystem [SpeedControl: 55, SpeedControl: 49, SCSystem: 91] TrafficCam: 124 

~car.mj: 124: Policy Violation: CarReg REFERENCE [SpeedControl: 55, SpeedControl: 49, SCSystem: 91] TrafficCam: 124 

~car.mj: 136: Policy Violation: CarReg REFERENCE [SpeedControl: 55, SpeedControl: 49, SCSystem: 92] Authority: 136 

~car.mj: 142: Policy Violation: CarReg READ [SpeedControl: 55, SpeedControl: 49, SCSystem: 92] Authority: 142 

~car.mj: 142: Policy Violation: CarReg ~AGGREGATE [SpeedControl: 55, SpeedControl: 49, SCSystem: 92] Authority: 142 

~car.mj: 105: Policy Violation: CarSpeed STORE [SpeedControl: 54, SpeedControl: 35] Car: 105 

~car.mj: 105: Policy Violation: CarSpeed STORE [SpeedControl: 54, SpeedControl: 36] Car: 105 

~car.mj: 105: Policy Violation: CarSpeed STORE [SpeedControl: 54, SpeedControl: 37] Car: 105 

~car.mj: 105: Policy Violation: CarSpeed STORE [SpeedControl: 54, SpeedControl: 38] Car: 105 

~car.mj: 117: Policy Violation: CarSpeed DISSEMINATE SpeedControl [SpeedControl: 55, SpeedControl: 46] Car: 117 

~car.mj: 125: Policy Violation: CarSpeed DISSEMINATE SCSystem [SpeedControl: 55, SpeedControl: 49, SCSystem: 91] TrafficCam: 125 

~car.mj: 125: Policy Violation: CarSpeed REFERENCE [SpeedControl: 55, SpeedControl: 49, SCSystem: 91] TrafficCam: 125 

~car.mj: 137: Policy Violation: CarSpeed REFERENCE [SpeedControl: 55, SpeedControl: 49, SCSystem: 92] Authority: 137 

~car.mj: 138: Policy Violation: CarSpeed READ [SpeedControl: 55, SpeedControl: 49, SCSystem: 92] Authority: 138 

~car.mj: 138: Policy Violation: CarSpeed USAGE double [SpeedControl: 55, SpeedControl: 49, SCSystem: 92] Authority: 138 

~car.mj: 138: Policy Violation: CarSpeed ~AGGREGATE [SpeedControl: 55, SpeedControl: 49, SCSystem: 92] Authority: 138 

~car.mj: 145: Policy Violation: CarSpeed READ [SpeedControl: 55, SpeedControl: 49, SCSystem: 92] Authority: 145 

~car.mj: 145: Policy Violation: CarSpeed ~AGGREGATE [SpeedControl: 55, SpeedControl: 49, SCSystem: 92] Authority: 145 

~car.mj: 145: Policy Violation: CarSpeed STORE [SpeedControl: 55, SpeedControl: 49, SCSystem: 92] Authority: 145 

~car.mj: 141: Policy Violation: DriverReg REFERENCE [SpeedControl: 55, SpeedControl: 49, SCSystem: 92] Authority: 141 

~car.mj: 142: Policy Violation: DriverReg IDENTIFY CarReg [SpeedControl: 55, SpeedControl: 49, SCSystem: 92] Authority: 142 

~car.mj: 142: Policy Violation: DriverReg READ [SpeedControl: 55, SpeedControl: 49, SCSystem: 92] Authority: 142 

~car.mj: 142: Policy Violation: DriverReg ~AGGREGATE [SpeedControl: 55, SpeedControl: 49, SCSystem: 92] Authority: 142 

~car.mj: 145: Policy Violation: DriverReg AGGREGATE [SpeedControl: 55, SpeedControl: 49, SCSystem: 92] Authority: 145 

~car.mj: 145: Policy Violation: DriverReg READID [SpeedControl: 55, SpeedControl: 49, SCSystem: 92] Authority: 145 

~car.mj: 168: Policy Violation: DriverReg STORE [SpeedControl: 54, SpeedControl: 41, SCSystem: 69] DB: 168 

~car.mj: 168: Policy Violation: DriverReg STORE [SpeedControl: 54, SpeedControl: 41, SCSystem: 70] DB: 168 

~car.mj: 168: Policy Violation: DriverReg STORE [SpeedControl: 54, SpeedControl: 41, SCSystem: 71] DB: 168 

~car.mj: 168: Policy Violation: DriverReg STORE [SpeedControl: 54, SpeedControl: 41, SCSystem: 72] DB: 168 

~car.mj: 173: Policy Violation: DriverReg DISSEMINATE SCSystem [SpeedControl: 55, SpeedControl: 49, SCSystem: 89, SCSystem: 82] DB: 173 

 

Figure 5.13: Violation errors regarding permissions
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Conclusions 
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6.1.  Overall 

In this thesis, a framework was created, responsible for type checking a given system, 

regarding its privacy integrity, based on a specific policy statement. The framework was 

created using a meta-compilation system called JastAdd [4] and it follows the principles 

of formal methods [12] and the Privacy calculus [8], as described in Chapter 2. Moreover, 

in order to be able to construct such a framework, a new language called π-val was 

created, which allows the consideration of the previous principles into high-level 

programming.  

 

As a result, π-val is able to express the declaration of classes, variables, methods and 

constructors, using Java’s conventional types or even perform logical and arithmetical 

expressions upon them. Branches and loops are also available in the language, while it is 

incorporated with the notion of channels and threaded methods. Therefore, a program in 

π-val can be modelled to be very similar to a π-calculus program which uses parallel 

processes. 

 

Finally, π-val allows the expression of a policy statement, following again the principles 

of the Privacy calculus. In this statement, all valid actions regarding the various processes’ 

use of private data are being defined. Therefore, when the framework is run, it can detect 

whether or not there was a violation of the policy. If there was a violation with the 

combination of the initial program and a particular policy statement, the program is 



69 

 

rejected. If the program is valid, then it is translated into Java code and can be run by a 

typical Java compiler. 

 

6.2.  Limitations 

The approach for the framework of π-val’s implementation tries to follow as much as 

possible the Privacy calculus’ rules. Therefore, there is an attempt of following the same 

principles of π-calculus that bases the Privacy calculus. In order to do so, any interaction 

regarding private data between instances, must be narrowed down to the use of channels, 

as discussed in Section 4.5.2. These limitations that disallow any interaction without the 

use of channels, result in tightening the language’s flexibility. Although it can be possible 

for some of the restrictions to be used in the language without violating any of the Privacy 

calculus’ rules, it is better to throw an error when these constraints are met, until it is 

formally proved that they will not cause any breach on the completeness of the Privacy 

calculus. Nevertheless, the rule process is written in such a way, that it can detect the 

appropriate rules if they ever become enabled. 

 

Finally, the language lacks the notion of polymorphism. 

6.3.  Future work 

As mentioned in Section 6.1, the framework that was created for the purposes of this 

thesis covers the basic concepts of formal methods of privacy. Therefore, there exist many 

possible extensions that can be implemented in order to make the framework more 

powerful and compatible with the current industry’s needs. This extensibility can be 

achieved easily, as the framework is developed in a meta-compilation system that allows 

straightforward additions of new concepts, while keeping unharmed the previous 

functionalities. This advantage of meta-compilation systems and especially of JastAdd, 

is discussed in Section 2.4 and 2.4.2. 

 

Moreover, regarding the limitations of this framework, as mentioned in 6.2, some features 

of π-val have been disabled. This is because they are not following exactly the principles 

of Privacy calculus. Although the framework is able to operate along with those features 

enabled, further research can be made in order to prove their safeness. As a result, coding 
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in π-val in the future can be even more similar to Java, as the use of channels might be 

replaced by methods who can transfer private data between processes.  

 

What is more, in future work on this framework, the compiler of π-val could directly 

produce Java bytecode, in order to bypass the extra steps of having to run the exported 

Java program into a second compiler. 

 

Furthermore, as privacy is diachronically considered as a debatable concept, it is still a 

topic under research. As a result in the future, there can exist more instances of formal 

methods for privacy, or even expansions of existing ones. This can lead to a vast variety 

of possible extensions for the current framework, as well as re-innovations of its ongoing 

features. 

  

Finally, when the above will have been taken into consideration, this framework can find 

a great use in companies and governments, in order to ensure that their computer systems’ 

software follow the current law. Of course, some preparation has to be made by the law 

enforcing authorities, in order to ensure that the law is indeed translated correctly into a 

policy declaration. Nevertheless, any new tool that is originally created for our 

convenience, needs to be thoroughly tested and constantly updated in order to fulfil our 

never-ending needs. Therefore, the cost of ensuring the validity of the translation of the 

law to a policy declaration is little compared to the benefits that this framework can 

provide to the preservation of the privacy of a human being.  



71 

 

Bibliography 

 

[1]  J. Alves-Foss, Formal syntax and semantics of Java, Springer Science & Business 

Media, 1999.  

[2]  D. Basin, S. Debois and T. Hildebrandt, "On purpose and by necessity: 

compliance under the GDPR," Proceedings of Financial Cryptography and Data 

Security, vol. 18, 2018.  

[3]  L. Cardelli, G. Ghelli and A. D. Gordon, "Secrecy and group creation," in 

International Conference on Concurrency Theory, 2000.  

[4]  T. Ekman and G. Hedin, "The JastAdd system—modular extensible compiler 

construction," Science of Computer Programming, vol. 69, pp. 14-26, 2007.  

[5]  M. Forsberg and A. Ranta, "The labelled bnf grammar formalism," Department of 

Computing Science, Chalmers University of Technology and the University of 

Gothenburg, 2005.  

[6]  G. Hedin, "An introductory tutorial on JastAdd attribute grammars," in 

International Summer School on Generative and Transformational Techniques in 

Software Engineering, 2009.  

[7]  G. Hedin and E. Magnusson, "JastAdd—an aspect-oriented compiler construction 

system," Science of Computer Programming, vol. 47, pp. 37-58, 2003.  

[8]  D. Kouzapas and A. Philippou, "Type checking privacy policies in the π-

calculus," in International Conference on Formal Techniques for Distributed 

Objects, Components, and Systems, 2015.  

[9]  M. E. Lesk and E. Schmidt, Lex: A lexical analyzer generator, Bell Laboratories 

Murray Hill, NJ, 1975.  

[10]  S. Muchnick and others, Advanced compiler design implementation, Morgan 

kaufmann, 1997.  

[11]  D. Sangiorgi and D. Walker, The pi-calculus: a Theory of Mobile Processes, 

Cambridge university press, 2003.  

[12]  D. J. Solove, "A taxonomy of privacy," U. Pa. L. Rev., vol. 154, p. 477, 2005.  

[13]  M. C. Tschantz and J. M. Wing, "Formal methods for privacy," in International 

Symposium on Formal Methods, 2009.  

[14]  S. Wachter, "Normative challenges of identification in the Internet of Things: 

Privacy, profiling, discrimination, and the GDPR," Computer law & security 

review, vol. 34, pp. 436-449, 2018.  

[15]  "Java Syntax Specification," [Online]. Available: http://cs.au.dk/ 

amoeller/RegAut/JavaBNF.html. 

[16]  "Metacompilation," 4 2019. [Online]. Available: 

https://en.wikipedia.org/wiki/Metacompilation. 

[17]  J. Beach, "Syntax Highlight Code in Word Documents," [Online]. Available: 

http://www.planetb.ca/syntax-highlight-word. 

[18]  "Software agent," 5 2019. [Online]. Available: 

https://en.wikipedia.org/wiki/Software_agent. 

 

 



 

A-1 

 

Appendix A 

Below are the diagrams regarding the Syntax Analysis of π-val. Let us assume the 

following: 

1. A white filled ellipse with a continuous outline represents a node in the Abstract 

Syntax Tree. 

2. A dotted outlined ellipse represents an optional node. This means that the node 

which its child has a dotted outline, can be described without the absolute need of 

having a child of that type. 

3. Yellow filled ellipses represent lists of the types of nodes that they describe. The 

star "*” symbol at the end of the class name represents the allowance of the 

emptiness of such a list. 

4. Gray filled ellipses represent nodes that were described in a different diagram, but 

their functionality is being extended by this diagram. 

5. Bold titled ellipses represent nodes that are described in detail in the same 

diagram. 

6. Underlined titled ellipses represent nodes that are described in another diagram. 

7. Straight arrow lines show the necessity of a child node in order to describe its 

parent. 

8. Dotted arrow lines show that only one of the children with a dotted arrow line can 

describe their parent for each instance of the latter. 

 

 

Figure A.1: Program grammar diagram
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Figure A.2: Declarations grammar diagram
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Figure 14 Types grammar diagram
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Figure A.4: Blocks and Commands grammar diagram
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Figure A.5: Expressions grammar diagram
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Figure A.6: Primaries grammar diagram 
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Figure A.7: Channels grammar diagram 
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Figure A.8: Policies grammar diagram 
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Appendix B 

Below are the diagrams regarding the Class Hierarchy of π-val. Let us assume the 

following: 

1. A white filled ellipse with a continuous outline represents a class in the Class 

Hierarchy. 

2. A dotted outlined ellipse represents an optional class. This means that the class 

which its child has a dotted outline, can be described without the absolute need of 

having a child of that type. 

3. Yellow filled ellipses represent lists of the class that they describe. The star 

symbol at the end of the class name represents the allowance of the emptiness of 

such a list. 

4. Bold titled ellipses represent classes that are described in detail in the same 

diagram. 

5. Underlined titled ellipses represent classes that are described in another diagram. 

6. Straight arrow lines show the necessity of a child in order to describe its parent 

class. 

7. Shaped arrow lines show that the pointed class is the parent class, while the class 

where the line is directed from, extends its parent. 

 

 

Figure B.1: Program hierarchy diagram 
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Figure B.2: Declarations hierarchy diagram 
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Figure B.3: Types hierarchy diagram 
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Figure B.4: Blocks and Commands hierarchy diagram



 

B-5 

 

 

Figure B.5: Expressions hierarchy diagram 
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Figure B.6: Primaries hierarchy diagram 
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Figure B.7: Channels hierarchy diagram
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Figure B.8:  Policies hierarchy diagram
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Appendix C 

Below is the generated Java [1] code of the example in Chapter 5. The code quoting 

highlighting was made using the online tool syntax-highlight-word by PlanetB [17]. 

 

1. import AST._Channel;   
2. import java.util.concurrent.Callable;   
3. import java.util.concurrent.ExecutionException;   
4. import java.util.concurrent.ExecutorService;   
5. import java.util.concurrent.Executors;   
6. import java.util.concurrent.Future;   

7.    
8. class CarReg {   
9.     String id = null;   
10.     String reg = null;   

11.    
12.     CarReg(String id, String reg) {   
13.         this.id = id;   
14.         this.reg = reg;   

15.     }   
16. }   
17.    
18. class CarSpeed {   
19.     String id = null;   
20.     double speed = 0;   
21.    
22.     CarSpeed(String id, double speed) {   
23.         this.id = id;   
24.         this.speed = speed;   
25.     }   
26. }   
27.    
28. class DriverReg {   
29.     String id = null;   
30.     String reg = null;   

31.    
32.     DriverReg(String id, String reg) {   
33.         this.id = id;   
34.         this.reg = reg;   

35.     }   
36. }   
37.    
38. class SpeedControl {   
39.     _Channel p1 = new _Channel();   
40.     _Channel p2 = new _Channel();   
41.     Car c1 = new Car("10", "ABC 123", 200);   
42.     Car c2 = new Car("9", "BCD 234", 10);   
43.     Car c3 = new Car("8", "CDE 345", 20);   
44.     Car c4 = new Car("7", "DEF 456", 150);   
45.     Car[] cars = {c1,c2,c3,c4};   
46.     SCSystem scs = new SCSystem();   

47.    
48.     void run() {   
49.         int i = 0;   
50.         while (i < cars.length) {   

51.             cars[i].sendData_(p1, p2);   
52.             i = i + 1;   
53.         }   
54.         scs.process_(p1, p2);   
55.     }   
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56.    
57.    
58.     public static void main(String[] args) {   

59.         System.out.println("Outcome");   
60.         SpeedControl system = new SpeedControl();   

61.         system.run();   
62.     }   
63.    
64. }   
65.    
66. class SCSystem {   
67.     _Channel a1 = new _Channel();   
68.     _Channel a2 = new _Channel();   
69.     _Channel link1 = new _Channel();   
70.     _Channel link2 = new _Channel();   
71.     _Channel link3 = new _Channel();   
72.     _Channel link4 = new _Channel();   

73.     _Channel[] links = {link1,link2,link3,link4};   
74.     DB d1 = new DB("1", "driver 1", "ABC 123");   
75.     DB d2 = new DB("2", "driver 2", "BCD 234");   
76.     DB d3 = new DB("3", "driver 3", "CDE 345");   
77.     DB d4 = new DB("4", "driver 4", "DEF 456");   

78.     DB[] drivers = {d1,d2,d3,d4};   
79.     TrafficCam tc = new TrafficCam();   
80.     Authority auth = new Authority();   

81.    
82.     void sendDB() {   
83.         int i = 0;   
84.         while (true) {   

85.             drivers[i].sendReg(links[i]);   
86.             i = (i + 1) % drivers.length;   
87.         }   
88.     }   
89.    
90.     void sendDB_() {   
91.         new Thread(new Runnable() {   
92.             @Override   
93.             public void run() {   

94.                 sendDB();   
95.             }   
96.         }).start();   
97.     }   
98.    
99.     int process(_Channel p1, _Channel p2) {   
100.         int i = 0;   

101.         sendDB_();   

102.         while (i < 4) {   

103.             tc.receiveData_(p1, p2, a1, a2);   

104.             auth.checkData_(a1, a2, links);   

105.             i = i + 1;   

106.         }   

107.         return 0;   

108.     }   

109.    

110.     int process_(_Channel p1, _Channel p2) {   

111.         int _ret = 0;   

112.         ExecutorService _es = null;   

113.         try {   

114.             _es = Executors.newFixedThreadPool(1);   

115.             Future<Integer> _future =  

     _es.submit(new Callable<Integer>() {   

116.                 @Override   

117.                 public Integer call() {   

118.                     return process(p1, p2);   

119.                 }   
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120.             });   

121.             _ret = _future.get();   

122.         } catch (InterruptedException e) {   

123.         } catch (ExecutionException e) {   

124.         }   

125.         _es.shutdown();   

126.         return _ret;   

127.     }   

128. }   

129.    

130. class Car {   

131.     CarReg r = null;   

132.     CarSpeed s = null;   

133.    

134.     Car(String id, String reg, double speed) {   

135.         this.r = new CarReg(id, reg);   

136.         this.s = new CarSpeed(id, speed);   

137.     }   

138.    

139.     void updateSpeed(_Channel cs) {   

140.         CarSpeed y = (CarSpeed) cs.receive();   

141.         if (y != null) {   

142.             s.speed = y.speed;   

143.         }   

144.     }   

145.    

146.    

147.     void sendData(_Channel p1, _Channel p2) {   

148.         p1.send(r);   

149.         p2.send(s);   

150.     }   

151.    

152.     void sendData_(_Channel p1, _Channel p2) {   

153.         new Thread(new Runnable() {   

154.             @Override   

155.             public void run() {   

156.                 sendData(p1, p2);   

157.             }   

158.         }).start();   

159.     }   

160. }   

161.    

162. class TrafficCam {   

163.    

164.     void receiveData(_Channel p1, _Channel p2,  

     _Channel a1, _Channel a2) {   

165.         a1.send((CarReg) p1.receive());   

166.         a2.send((CarSpeed) p2.receive());   

167.     }   

168.    

169.     void receiveData_(_Channel p1, _Channel p2,  

     _Channel a1, _Channel a2) {   

170.         new Thread(new Runnable() {   

171.             @Override   

172.             public void run() {   

173.                 receiveData(p1, p2, a1, a2);   

174.             }   

175.         }).start();   

176.     }   

177. }   

178.    

179. class Authority {   

180.     final double overLim = 30;   

181.     CarSpeed[] violations = new CarSpeed[0];   

182.     _Channel v = new _Channel();   
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183.    

184.     void checkData(_Channel a1, _Channel a2, _Channel[] links) {  

185.         CarReg k1 = (CarReg) a1.receive();   

186.         CarSpeed k2 = (CarSpeed) a2.receive();   

187.         if (k2.speed > overLim) {   

188.             int i = 0;   

189.             while (i < 4) {   

190.                 DriverReg dr = (DriverReg) links[i].receive();   

191.                 if (dr.reg == k1.reg) {   

192.                     System.out.println("match");   

193.                     expandViolationsTable();   

194.                     violations[violations.length - 1]  

     = new CarSpeed(dr.id, k2.speed);   

195.                 }   

196.                 i = i + 1;   

197.             }   

198.         }   

199.     }   

200.    

201.     void checkData_(_Channel a1, _Channel a2, _Channel[] links) { 

202.         new Thread(new Runnable() {   

203.             @Override   

204.             public void run() {   

205.                 checkData(a1, a2, links);   

206.             }   

207.         }).start();   

208.     }   

209.    

210.     void expandViolationsTable() {   

211.         CarSpeed[] temp = new CarSpeed[violations.length + 1];   

212.         int i = 0;   

213.         while (i < violations.length) {   

214.             temp[i] = violations[i];   

215.             i = i + 1;   

216.         }   

217.         violations = temp;   

218.     }   

219.    

220. }   

221.    

222. class DB {   

223.     String name = null;   

224.     DriverReg r1 = null;   

225.    

226.     DB(String id, String name, String reg) {   

227.         this.r1 = new DriverReg(id, reg);   

228.         this.name = name;   

229.     }   

230.    

231.     void sendReg(_Channel link) {   

232.         link.send(this.r1);   

233.     }   

234.    

235. }   

 

 


