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ABSTRACT

Real-time 3D pose estimation is of high interest in interactive applications, virtual reality,

activity recognition, but most importantly, in the growing gaming industry. In this thesis, we

present a method that captures and reconstructs the 3D skeletal pose and motion articulation of

multiple characters using a monocular RGB camera. This method deals with the challenging, but

useful, task by taking advantage of the recent development in deep learning that allows 2D pose

estimation of multiple characters, and the increasing availability of motion capture data. We fit

2D estimated poses, extracted from a single camera via OpenPose, with a 2D multi-view joint

projections database that is associated with their 3D motion representations. We then retrieve

the 3D body pose of the tracked character, ensuring throughout that the reconstructed movements

are natural, satisfy the model constraints, are within a feasible set, and are temporally smooth

without jitters. We demonstrate the performance of the method in several examples, including

human locomotion, simultaneously capturing of multiple characters, and motion reconstruction

from different camera views.

Anastasios Yiannakidis – University of Cyprus, 2019
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Chapter 1

Introduction

Contents

1.1 Motion Capture Using Monocular Cameras . . . . . . . . . . . . . . . . . 1

1.2 Method Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1 Motion Capture Using Monocular Cameras

Motion capture (mocap) is the technological process used for acquiring three-dimensional

(3D) position and orientation information of a moving object. Despite recent advances in motion

capture technology, that allows high quality acquisition and portrayal of movements, common cap-

ture systems are cost-demanding, and require a setup of capturing devices that is not accessible to

the general public, especially for home use. Recently, scholars turned their attention in using more

affordable technologies, such as single RGB or depth cameras. Capturing and reconstructing the

motion of multiple characters using single, monocular cameras has a wide spectrum of applica-

tions in surveillance, human-computer interaction, activity recognition, behavioral analysis, and

virtual reality. It is also of high interest in the growing gaming industry, where users require cost

effective, and easy configurable systems for real-time human-machine interaction. Real-time pose

1
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estimation and 3D motion reconstruction using data only from a single RGB camera is, however,

a challenging task. This is because skeletal pose estimation, using such sparse data, is a highly

under-constrained problem. A human pose is usually represented and parameterized by a set of

joint positions and rotations, whereas its heterogeneous, dynamic, and highly versatile nature, as

well as the changes in camera viewpoint, makes motion reconstruction a difficult job.

Most papers in the literature estimate the human pose in 2D for one or multiple characters

by localizing joint keypoints in pixel space [1, 2] or by extracting the shape silhouette and then

retrieving the closest neighbor from a database [3, 4, 5]. More recently, and with the advent of

Deep Learning (DL), the community is moving to learning-based discriminative methods, where

the effectiveness of 2D human pose estimation has greatly improved [6, 7, 8]. The 3D skeletal

reconstruction, though, is a much harder problem [9, 10]. Even though there are methods that are

effective at 3D pose reconstruction, they are usually not real-time implementable, and suffer from

depth, and scale ambiguities. In addition, the reconstructed motion is temporally inconsistent and

unstable since they treat each frame independently, and do not employ bone lengths constraints.

The big challenge in this context is to learn rich features to encode depth, spatial and temporal re-

lation of the body parts so as to ensure smooth motion reconstruction [11, 12]. While some recent

methods run at high-frame (e.g., [11, 13]), they are still unsuitable for use in closely interactive

characters or crowds. This is because they require a tracked bounding box for each person, and

thus, they can only reconstruct the motion of a single person at a time.

The novel contribution of this thesis, in principle, is that it fits 2D deep estimated poses, taken

from a single, monocular camera, with the 2D multi-view joint projections of 3D motion data,

to retrieve the 3D body pose of the tracked character. Our method takes advantage of the recent

advances in deep and convolutional networks that allow 2D pose estimation of multiple characters,

and the large (and increasing) availability of motion capture data. More particularly, our method
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infers the 3D human poses in real-time using only data from a single video stream. To deal with

the limitations of the prior work, such as the bone length constraints violations, the simultaneously

capturing of multiple characters, and the temporal consistency of the reconstructed skeletons, we

generate a database with numerous 2D projections by rotating, a small angle at a time, the yaw

axis of 3D skeletons. Then, we match the input 2D poses (which are extracted from a single video

stream using the OpenPose network [8]) with the projections on the database, and retrieve the best

3D skeleton pose that is temporally consistent to the skeleton of the previous frames, producing

natural and smooth motion.

Our approach is capable of estimating the posture of multiple characters in real-time, while the

reconstructed pose is always within a natural and feasible set. The performance of our method in

reconstructing 3D articulated motion is demonstrated in several examples, including video streams

taken from different points of view, and using multiple characters in the scene.
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1.2 Method Overview

Select 3D Animaon from
Moon Capture Database

Retarget to a global
skeleton & fps reducon 

Group in clusters  
and store them in Database

Get 2D skeleton
using OpenPose
& Normalize it

Retrieve k best 2D 
projecons from Database

... ...

...
Retrieve best 3D esmaon 
from k 2D, that is temporaly 
consistent to prev frames.

Video
(input)

3D animaon
(output)

2D projecons every 12° 
around y-axis 

for each animaon frame

Figure 1: An overview of the proposed method.

Our approach for motion reconstruction can be decomposed into two main parts: (a) the pre-

processing step, whereas a 2D pose database is defined by motion capture data projections, and

its entries are associated with 3D skeletons, and (b) the run-time step, where 2D joint positions

extracted from a video are matched to the 2D pose projections database in order to recover the 3D

skeleton and reconstruct the motion.

More specifically, as a first step, we retarget motion data taken from an online motion capture

database [14] into a universal skeleton format, and then compute the 2D projections of the 3D

skeleton from many different views. The 2D projections are associated with their 3D skeletons

and their viewing information, and stored in a database. The 2D projections are thereafter grouped

into mutually exclusive clusters, and for each cluster, we allocate a representative pose. Then, in

the second stage, for an input frame taken from a video stream, we extract in real-time its 2D

pose using the OpenPose network [8]. The 2D pose is then rescaled so as to be consistent with

the 2D projections stored in the database. We select the k-best matches from the database to the

input 2D pose, and retrieve their 3D skeletons. To achieve smooth reconstruction of the articulated
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motion, we select the 3D skeleton from the k-matched projections that is temporally consistent to

the previous frame.



Chapter 2

Literature Review

Contents

2.1 Marker-based Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Marker-less Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Marker-based Systems

There has been a growing demand in recent years for realistic 3D animation in media and

entertainment, as well as for research and training purposes. 3D motion acquisition can be roughly

categorized as being achieved either using marker-based, or marker-less motion capture systems.

Marker-based systems are generally producing high-quality, realistic animations and are

mainly used by the movies and entertainment industries. They use fiduciary markers which are

attached near each joint to identify motion, and they provide real-time acquisition of labeled or al-

gorithmically tracked data to reconstruct the subjects’ articulated motion. More specifically, they

utilize data captured from special markers (passive and active) to triangulate the 3D position of

a subject inferred from a number of high speed cameras[15, 16]. The main strengths of optical

systems are their high acquisition accuracy, speed, and high sample rate capture. However, optical

6
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hardware is expensive, intrusive by nature, and lacks portability; calibration is needed for precise

application of the markers, while extensive and tedious manual effort is required to recover the

misapplied or (self-)occluded markers [17, 18].

More recently, a number of autonomous systems have been developed that use a variety of

sensors, such as inertial measurement units (IMUs) [19, 20, 21]. Inertial mocap technology use

a number of gyroscopes and accelerometers to measure rotational rates, while these rotations

are translated to a skeleton model. Inertial systems do not require external cameras to capture the

sensors, and thus, they are portable and functional in outdoor environments. Nevertheless, marker-

based systems are costly and thus not suitable for home use, and more particularly, for interactive

applications or gaming.

2.2 Marker-less Systems

In general, there is a tendency to reduce the required equipment and the objects attached to

the body for motion tracking and reconstruction. One way to deal with sparse data is to model

the trajectories of the end effectors, and then apply kinematics models to fill in the gaps [22, 23].

The most popular way, though, is the use of marker-less systems (or vision systems), that are

becoming more and more popular since they are easy to set-up, have low cost, and are less in-

trusive, meaning that subjects are not required to wear special equipment for tracking. Usually,

the subject’s silhouette is captured from a single or multiple angles using a number of vision or

RGB-depth cameras [24, 25]. A voxel representation of the body is extracted over time, while

animation is achieved by fitting a skeleton into the 3D model, e.g., [26, 27, 28, 29, 30]. These

approaches can be broadly classified into discriminative, generative and hybrid approaches. Gen-

erative methods reconstruct human pose by fitting a template model to the observed data [31, 32].

Discriminative methods infer mode-to-depth correspondences, cluster pixels to hypothesize body
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joint positions, fit a model and then track the skeleton [33, 34]. Hybrid methods use a combina-

tion of the aforementioned techniques to achieve higher accuracy [35]. Other works also include

methods for motion capturing using an architecture of multiple color-depth sensors to better deal

with occlusions or unobserved view angles [36, 37].

Skeletal pose estimation from a single camera is a much harder problem; the problem has been

tackled by localizing the joint keypoint positions in pixel space [1, 2], or by extracting the shape

silhouette and then retrieving the closest neighbor from a database [3, 4, 5]. For a recent overview

of 3D pose estimations, refer to [38].

More recently, deep learning has brought revolutionary advances in computer vision and

graphics, including efficient methods for pose estimation. Learning-based discriminative methods,

are quite popular for real-time 2D pose estimation of single or multiple characters [6, 7, 39, 8].

More recently, a number of methods tackled a much harder problem, that of 3D skeletal estima-

tion from single color images or videos [9, 10, 13, 40]. A common limitation of the discriminative

methods in 3D pose reconstruction, though, is that they typically run off-line, and since they do not

take into consideration the temporal consistency of motion (they reconstruct the 3D joint positions

on per image), the generated motion is oscillating. Moreover, they are restricted to the viewpoints

learned from the training data [41], while they suffer from depth, and scale ambiguities. The prob-

lem of different camera-views can be dealt by training the network to predict the same pose using

images from multiple views [42, 43]. Another major limitation is that the reconstructed 3D pose

is not assigned on a character model (3D joint positions are estimated independently), to enforce

kinematic constraints, resulting in temporal bone length violations. The methods in [11] (V-Nect),

and [12] animate a modelled character, work in real-time, and produce smooth animations in

terms of their temporal coherence. However, since they require each character to be tracked by a
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bounding box, they only reconstruct single-person skeletons at a time, making them unsuitable for

closely interacting characters.

Our method overcomes most of the prior work limitations, including the 3D capturing of

multiple characters, the skeletal model constraints, and the production of smooth animation for

the articulated character.
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Figure 2: A number of skeleton sequences used in our dataset D, taken from the CMU motion
capture library.

The first step of our method, in a preprocessing time, is to define a pose database that will

be used to retrieve the 3D pose estimates. The database contains normalized 3D skeletons from

motion data sequences, associated with their 2D projections from different views. In order to

allow fast skeleton indexing and retrieval, the 2D projections are grouped into mutually exclusive

clusters and each cluster is associated with its representative 2D projection.

3.1 Motion Capture Data

We used a small dataset D of mocap data, taken from the Carnegie Mellon University (CMU)

mocap library [14] (see Figure 2). CMU mocap library hosts a variety of mocap data (about 2,500

files), in the biovision hierarchy format (.bvh), in a consistent skeleton hierarchy as defined in

Figure 3. The dataset that we used consists of animation that is highly related to our input.

In our experiments, we only used a small dataset of different actions, in total 5 minutes of

motion (72, 000 frames). Considering that our input consists of ordinary human motions such as
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walking, running, jumping, squats and hand movements like arbitrary rotations and boxing, we

selected animation frames mainly from 86 and some frames from 91, 111 and 127 CMU BVH

directories. To avoid repetitiveness of the same motion, We manually selected (using Autodesk

MotionBuilder) animation sequences, so we can achieve variation of motion in just 5 minutes of

motion.

3.2 Biovision Hierarchy Format

A BVH file consists of two parts. The first part is the header section which defines the

skeleton hierarchy. The definition is recursive, as each segment (joint) of the hierarchy defines its

children and contains data relevant only to itself. Each segment contains the translational offset it

has from its parent, and some channels that define the segments format. A channel can be either a

rotational offset or a translational offset from the segment’s parent. Usually, Root segment has 6

channels (Xpos, Ypos, Zpos, Zrot, Xrot, Yrot) and the other segments have 3 channels (Zrot, Xrot,

Yrot). The second part is the motion section which indicates the number of frames, the sampling

rate of the data and the actual motion data. The motion data is described by frames, and each

frame is defined in a single line of numbers appeared in the order of the channel specifications as

defined in the skeleton hierarchy.

3.3 Skeleton Retargeting & Fps Reduction

The human poses in the CMU motion capture data are represented by n = 31 joint positions

and rotations (some joints overlap, see figure 4 for skeleton definition). In our work we use 2D

poses that are estimated from an input monocular video using OpenPose [8] (see Section 4.1 for

more details), that are represented by m = 14 joint locations as seen in the figure 11. Thus, in

order to have a uniform and comparable skeleton, we retarget the CMU bvh data to a 3D skeleton
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Figure 3: CMU and our BVH Skeleton Hierarchy.

that its projection in T-pose1 matches the 2D skeleton (in T-pose) returned by OpenPose (see

figure 5 for skeletons comparison).

The CMU motion capture data is originally sampled at 120 frames per second (fps), but since

human motion is locally linear, and in order to reduce the computational cost, we resample it to 24

fps (using Autodesk Motion Builder) without much loss of the temporal information (see [44]).
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Figure 4: CMU BVH Skeleton illustration

1T-Pose is the default state of a 3D model described by stretched arms and legs so they form the letter T.
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Figure 5: Retarget CMU skeleton to a simplified skeleton that matches the 2D skeleton returned
by OpenPose.

3.4 Normalized 2D Projections

After the skeleton retargeting and fps reduction, we extract 2D normalized projections from

each animation frame. The projections have the new skeleton (as defined in figure 5) but with the

joints 1,2,4 being removed. We remove these joints because they do not give additional informa-

tion about the posture, however they are necessary for the definition of the bvh skeleton hierarchy.

As a result, the skeleton now matches exactly the skeleton of OpenPose skeleton (see figure 11 for

OpenPose skeleton). The frame processing of each .bvh file, is implemented in C# in Unity 3D,

using BvhImporterExporter from Winterdust, a library that allows us to import .bvh files in Unity

3D and get data about the joints in each frame. Thus, for each frame we get the 3D positions P of

the joints and we reposition P so each joint is relative to the Root2 and Root joint is positioned

at < 0, 0, 0 >. In addition we scale P by a ScalingFactor which is defined and discussed in

Section 3.5.

PRoot = (PLeftUpLeg + PRightUpLeg)/2;

2Root is the middle point of LeftUpLeg and RightUpLeg (see figure 11)
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Pi = Pi − PRoot;

Pi = Pi ∗ ScalingFactori;

Then we create 2D Projections from different angles, by rotating the set P by an angle a

around y-axis each time:

Pi = Quaternion.Euler(0, a, 0) ∗ Pi;

Z-value is omitted (or equals to zero) when referring to the set P’ as a 2D projection; however

we keep the 3rd dimension (z) as it is useful to create (later on) articulated motion using the set P’

as a set of 3D positions (see Appendix A).

Skeleton retargeting and scaling are crucial since we will compare the input to our database

pixelwise the joint locations of the 2D skeletons joint-by-joint.

Projection Angle

In order to make our method invariant to the camera view, and robust against fine-grained

pose variations, for each frame we compute the 2D projections of the 3D skeleton, rotated by an

angle θ at a time (θ = 12o) on the yaw axis, resulting in total to 30 projections per frame. The

main idea is to assign for each 3D pose multiple 2D projection representation from many different

camera viewpoints, and is illustrated in Figure 6. Each 2D projection is associated with its initial

3D skeleton (pointed to its frame on the bvh animation), by indexing the corresponding frame on

the animation, and its rotation angle. Note that, in this work, we place the camera at 1.5 meters

above earth plane (common height for video recording), and similarly, we project the 3D skeletons

assuming that the camera is at the same height.
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Figure 6: Multi-view skeleton projection. For each frame, we rotate the 3D skeleton by an angle
θ at a time on the yaw axis, and create 2D projections.

3.5 Scaling 2D Figures

The same scaling method is used in normalizing both the 2D figures of the Database and the

2D figures of the input. We have examined two methods of calculating the scaling factor of a 2D

figure: Scale by bones length and Scale by bounding box. The first method, scales a 2D projected

figure to a global skeleton, using bones length; a bone is defined as the edge between two joints.

We concluded that this method does not always guarantee correct scaling because bone length

can be altered simultaneously when 2D projected. More specifically, this method may fail when

the bone lengths in the torso area are altered. The second method is simpler as it scales all 2D

projected figures so their bounding box remains constant; meaning that all figures will have the

same height. We use this method as bones length alteration does not affect the reliability of the

results.
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3.5.1 Scaling using Bones Length

We are going to take a glimpse into this method because despite its disadvantage described in

the introduction, it works in most cases. Particularly in this method, the scaling factor is calculated

by the ratio of a bone of the figure and the corresponding bone of the global skeleton (eq. 1).

ScalingFactor(Bonei) =
Length(GlobalSkeleton,Bonei)

Length(Figure,Bonei)
(1)

In the equation we use the bone that its length has the least alteration when it has been pro-

jected. To determine which bone is the best to use, we test all bones that belongs to the torso

area (see Algorithm 1). We omit the limbs because their length change more often when they are

2D projected. For each bone, we create a new figure that is scaled using the scaling factor from

eq. 1. Finally, we select the scaling factor that scales a figure so the torso bone lengths have the

minimum difference from the corresponding bones of the global skeleton.

Algorithm 1 Calculate Scaling Factor using best bone

Require: B, List of bones in Torso area
GS, Global Skeleton
F , Figure to be scaled

1: procedure GETBESTSCALINGFACTOR(F,GS)
2: for each b ∈ B do
3: error = 0
4: sf ← ScalingFactor(b)
5: SF ← Scale(F, sf)
6: for each b ∈ B do
7: error = error+ | Length(SF, b)− Length(GS, b) |
8: end for
9: ∆← 〈error, sf〉

10: end for
11: return minError(∆)
12: end procedure

To evaluate Algorithm 1 we compare the results of the algorithm to already known scaling

factors of various figures. Particularly, we scaled a figure F by x units, that its 3D skeleton S
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is known. Then, we compare the scaling factor that GETBESTSCALINGFACTOR(F,S) returns, to

the x value. We run this test for 2, 000 various figures and we conclude that the bone defined

by the Spine and Root joint (the point between RightUpLeg and LeftUpLeg, see figure 11) is

always selected as the best bone to use in the calculation of the scaling factor, with the numerical

difference from x being 0.00876 on average. Despite the fact that this method does not guarantee

correct scaling due to the possibility of torso length alternation, it is effective in any other case.

3.5.2 Scaling using Bounding Box

This method is simpler; it scales the 2D pose projections so their bounding box remains con-

stant over time. It ensures that the height, which is defined as the distance of the lowest point L

and the highest point H of the figure, is the same for all 2D pose projections. More specifically,

the scaling factor is the ratio of the height to a constant number X; meaning that all 2D pose

projections will have height equal to X .
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3.6 Data Clustering

To allow fast skeleton indexing and retrieval, we position the 2D pose projections into d-

dimensional space using Multi-Dimensional Scaling (MDS) [45] and we apply the k-means al-

gorithm to group the data into clusters. All steps are implemented in Matlab R2018b, using

mdscale() and kmeans() built-in functions.

3.6.1 Dissimilarity Matrix and Multi-dimensional Scaling

First step of the clustering procedure, is to create a dissimilarity matrix that represents the cor-

relations of our data (2D pose projections) and apply Multi-Dimensional Scaling (MDS) [45] for

dimensionality reduction. We tried different dimensionalities, Rd , and the quality of embedding

seems to be equally well for 2 ≤ d ≤ 5. The distance metric used to compute the distance between

the 2D skeletal projections to create the dissimilarity matrix, is defined as:

distij =

m∑
k=1

d (pk,qk) , (2)

where m is the number of joints, and pk, qk ∈ R2 are the joint positions of the two skeletons i

and j. The term d (pk,qk) represents the Euclidean norm between the two joint positions.

Since for each frame we extract 30 projections (rotated by an angle θ = 12o on the yaw-

axis), our 2D projection database D consists in total with 216, 000 pose projections. Considering

the computational complexity of MDS (O(N3)), in order to reduce the processing time and data

usage, we randomly group our 2D projections set into smaller groups and apply the clustering

procedure to each group separately. Thus, we grouped the 216, 000 projections into 10 groups.
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3.6.2 K-Means

2D projection representations in Rd are then grouped into mutually exclusive clusters. We

use the k-means clustering algorithm (Lloyd’s algorithm) to create clusters that are separated by

similar characteristics (see figure 8 for clustering visualization). For each cluster, we also define

a representative pose that is the one closest to the centroid of the cluster. Figure 7 portrays the

2D poses of five selected clusters and their representative skeletons. As can be seen in Figure 7,

similar 2D projections corresponds to many different 3D skeletons.

Figure 7: Five selected clusters with their representatives. The projected poses with the smallest
distance to the centroid are placed nearest to the center, and as we move further from the center,
the poses are less correlated to the centroid.

Selecting the right number of clusters for organizing D is very important since it will allow

fast indexing, and searching of poses, but it will also guarantee the quality of motion retrieval.

To find the ideal number of clusters, we increased the number until the mean distance between

the projections of each cluster and its centroid, do not change more than 1% (see Table 1 and

Figure 9).

We need to acknowledge that the k-means algorithm does not always converge to the optimal

solution, because the algorithm depends on the initial cluster centroid positions. As a result, some

clusters may contain projections that are irrelevant to the representative. Let’s take a deeper look

into the algorithm and explain how to minimize this error. k-means as implemented in Matlab
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Figure 8: Visualization of Clusters: 100, 300, 400 clusters for the same sample of data. Colors
only demarcate a cluster from its neighbours. The x-mark in each cluster represents the centroid
of the cluster.

R2018b, uses a two-phase iterative algorithm to minimize the sum of point-to-centroid distances.

The first phase is described as batch updates, where all points are assigned to their nearest cluster

followed by recalculation of cluster centroids; this phase by its very nature does not guarantee

to a local minimum solution. During the second phase, described as online updates, points are

individually reassigned reducing the sum of point-to-centroid distances, and then the centroids are

recomputed. Using the second phase, the algorithm converges to a local minimum, but undoubt-

edly there is no guarantee that this is the global minimum. In conclusion, in Matlab R2018b, in

order to get satisfactory results we need to enable the online updates phase, set the Replicates

option to repeat the clustering r times and get the solution with the local minimum. Executing the

clustering multiple times is not time consuming if we execute them in parallel, by enabling the

Use Parallel option which activate as many workers as we need, considering the available virtual

cores of the machine.
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Group id # Number of Clusters Mean distance from Centroid
1 490 0.6859
2 470 0.7226
3 440 0.6499
4 480 0.6574
5 440 0.6443
6 360 0.5372
7 400 0.5527
8 400 0.5897
9 500 0.7135
10 410 0.6089

Table 1: Indicates the number of clusters for each group of projections, when the mean distance
between the projections of each cluster and its centroid do not change more than 1% while in-
creasing the number of clusters.
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Figure 9: The rate of change of the mean distance between representative and projections is de-
creasing while the number of clusters is increasing.
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4.1 Input Processing

4.1.1 OpenPose

For an input video stream, we use OpenPose to estimate, in real-time, the 2D pose of the

characters. OpenPose is a bottom-up approach that uses Part Affinity Fields, a set of 2D vector

fields that encode the location and orientation of limbs over the image domain, offering robustness

to early commitment. It offers state-of-the-art accuracy, it returns the 2D key points of the joints

for multiple articulated characters at the same time, but most importantly, it decouples runtime

complexity from the number of people in the image, achieving low computational cost.

(a) (b) (c) (d) (e) (f)

Figure 10: OpenPose pipeline: (a) Input image in the CNN which predicts the (b) confidence
maps for body part detection and (c) PAFs for (d) body parts association. (e,f) The final result is
the assembly of the body parts into a full pose.

In this project, we assume that the character’s skeleton is fully visible at the camera, meaning

that all 14 joint 2D positions are known. However, in a video sequence some joints may be uniden-

tified due to occlusions, body parts may be out of frame or not stand out from the background.

Future work will see the introduction of a pose recovery method (see section 6.2).

4.1.2 Scaling the Input

Since the 2D joint locations are inferred from a video, the size of the estimated pose is de-

pended on the size of the tracked character (e.g., adult or child), and its depth (e.g., how far or
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Figure 11: OpenPose skeleton example.

near is to the camera). To deal with this size ambiguity, and be consistent with the 2D projec-

tions stored in the database, we introduce a scaling step. For each OpenPose 2D pose, we export

its bounding box and rescale it so as the height of the bounding box remains constant over time

(same scaling method used in 2D projections, in section 3.4). Figure 12 shows a sequence of 2D

poses of a walking character moving closer to the camera (the size of its pose increases over time),

as inferred by OpenPose, and its rescaled pose that its size remains constant over time.

4.2 Retrieve Nearest 2D Poses

Having the rescaled 2D pose from OpenPose, we then need to search and retrieve the nearest

pose to the entry from the projections database, and associate it with its corresponding 3D skeleton.

However, one of the main challenges to deal with is that multiple 3D poses may correspond to

the same 2D pose after projection. This introduces severe ambiguities in 3D pose estimation.

Moreover, applying per-frame pose estimation on a motion sequence does not ensure temporal
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Figure 12: Scaling the OpenPose 2D pose estimation to ensure comparison consistency.

consistency of motion, and small pose inaccuracies lead to temporal jitter and motion oscillations.

We dealt with these challenges in two steps.

First, we compare the entry pose with the cluster representations, and then select the i closest

clusters with the smallest Euclidean distance (see equation 2) between the input pose and their

representative. Note that, searching on a single cluster is not a good idea since there is no guar-

antee that the closest representative contains the closest projection for our entry. The number of

clusters to select, should be at least the number of groups; a group is defined in section 3.6.2. The

more clusters we search, the bigger the possibility is to find the best 2D match (at the expense

of execution time). For each of those i clusters, we retrieve the j nearest poses projections using

the same distance metric (equation 2). Figure 13 portrays j selected clusters (spiral shapes) and i

nearest poses projections (blue figures) of an entry pose.



27

(a) (b)
(d)

(e)

(f)

(c)

Figure 13: Illustration of nearest cluster representatives (b) and nearest projections (c) of input (a).
The nearest clusters are illustrated in (f), where blue figures denote that they belong in the group
of i nearest projections. The green figure visualizes the projection of the input’s 3D estimation (e).
Sub-figure (d) shows the green figure overlaid by the input.
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4.3 Retrieve Temporally Consistent 3D Estimation

Then, by taking advantage of the property that motion is locally linear, we retrieve the 3D

skeleton that is temporally more consistent to the reconstructed poses of the previous frames. More

specifically, for each of the l = i× j selected nearest pose projections, we get their location to the

bvh animation; recall that a projection is extracted from a 3D skeleton that comes from a specific

frame in a bvh animation. Thereafter, we compare the 3D skeletons of their w previous frames,

in the bvh animation, with the w previously reconstructed skeletons (each of the w skeletons is

weighted differently), and select the one that its w previous frames have the smallest average

distance (see Figure 14 for a visual explanation). The window length w is determined by the fps

of the bvh files that we used in our database. We empirically conclude that w = 4 covers enough

previous motion.

To compute the distances between the 3D skeletons, we use the Lee et al. [46] distance metric,

that is the sum of the difference in rotation between joints. The distance between two skeletons is

defined as:

dist2ij =

m∑
k=1

‖ log
(
q−1
j,k qi,k

)
‖2, (3)

where m is the number of joints, and qi,k, qj,k ∈ S3 are the complex forms of the quaternion for

the k-th joint of the two skeletons i and j, respectively. The log-norm term ‖ log
(
q−1
j,k qi,k

)
‖2

represents the geodesic norm in quaternion space, which yields the distance from qi,k to qj,k on

S3.

The selection of the 3D estimation is strongly affected by the estimation of the previous frames.

Thus, it is very possible that successive frames will have the same estimation, resulting in a frozen

motion for an amount of frames as Figure 15 illustrates. To avoid that, we can put a restriction

on the 3D estimation: reject the previous frame 3D estimation. This restriction assures that two
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successive frames do not have the same 3D estimation, however it will cause more jitter that is

more visible when the human figure (input) stands still or moves slowly.

Figure 14: To ensure temporal consistency in motion, for each candidate skeleton, we compare its
w previous frames in the original animation (shown in red) with the w previously reconstructed
skeletons (shown in blue), and then select the candidate skeleton that its previous frames return
the smallest average distance (highlighted box).

4.4 Save the 3D Estimation

At this point, we need to recall that 3D human motion is described by rotations of joints

(and the translation of the root). Lets take a look into two approaches of saving a 3D motion

sequence into files that can be used by 3D computer graphics software toolsets like Blender or

MotionBuilder.

The first approach is to use the corresponding BVH rotations and adjust only the root rotation

(rotate by θ deg around yaw-axis) to match the projection angle. Having the correct oriented BVH

rotations for each frame, we can export the 3D motion sequence as a BVH file. In order to do that,

we use the same skeleton hierarchy that we used for our database and we append the motion part

which is the translation of the root and the joint rotations (refer to Section 3.2 for the structure of
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Figure 15: Comparison of raw-unfiltered 3D joint positions (RightHand, LeftHand, Right-
Foot, LeftFoot) with and without applying the restriction: ”Rejecting the previous frame 3D
Estimation”.Blue-squares, green-diamonds and black-circles illustrate the x,y,z components re-
spectively without applying the restriction and red points denote the difference in the estimation
when the restriction is applied. Red areas mark the frames where motion is frozen when restriction
is not applied.
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a BVH file). This approach assure us that each animation frame has a realistic pose, as the joint

rotational translation comes directly from recorded motion (BVH file).

The second approach is independent of the actual BVH rotations; all the joint rotations are

recalculated for an articulated character, using the 3D joint positions of the 3D estimation (see

figure 16). We can export the 3D motion sequence as an FBX file, recording the articulated

motion each frame using the class GameObjectRecorder that belongs to UnityEditor.Animations

namespace. Refer to Appendix A for further information on how to create articulated motion

from a set of 3D positions. This approach is more generic as we can animate any skeleton (rigged

model) we want, however it is exposed to animation artifacts such as unrealistic joint rotations and

ambiguities in roll rotations of limbs and neck.

Figure 16: The 3D joint rotations are calculated using the available 3D joint positions.

4.5 Motion smoothing

Retrieving the pose that is more related to the previous frames will still cause some unwanted

oscillation. Hence, we need to additionally smooth the reconstructed 3D motion using filtering

methods, e.g., the SavitzkyGolay [47] or the 1 Euro filter [48]. The filtering can be either applied

to the 3D joint positions or to the 3D joint rotations (in quaternions) of the estimation sequence.
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Motion data can be further edited, again in real-time, using FBBIK [49] to avoid common synthesis

artifacts, such as foot sliding and floor penetration.

4.5.1 1 e Filter

1 e Filter (”One Euro filter”) is an algorithm that improves noisy signal quality. It uses a first

order low-pass filter with an adjustable jitter and lag: when the speed is low, a low cutoff stabilizes

the signal (reduces jitter) at the expense of latency, but at high speeds the cutoff is increased to

reduce lag rather than jitter. This adaptive cutoff frequency suits to the nature of 3D animation: in

low movement speed the jitter is more visible to the eye and we care less about the lag, but as the

speed increases we become more sensitive to the lag and we mind less about the jitter.

In the first order low-pass filter that is being used, every time the frequency doubles, the signal

amplitude is reduced by half. The equation 4 describes a first low-pass filter where Xi is the

new raw data and X̂i the filtered data at time i, while α being the smoothing factor ∈ [0, 1]. As

α decreases, the jitter decreases but lag increases, as the first term of the equation denotes the

contribution of new input data value and the second term denotes the previous values. Comparing

to the standard n moving average filter based algorithms, the low-pass filter has less lag since the

contribution of older values exponentially decreases.

X̂i = αXi + (1− α)X̂i−1 (4)

α =
1

1 + f 1
2πfc

(5)

fc = fcmin + β| ˙̂
Xi| (6)
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The algorithm adjusts the equation 4 so it considers the time intervals between samples. Pa-

rameter α can be now computed as a function of the sampling rate f and the cutoff frequency fc

(see eq. 5). The main challenge is to find the ideal fc value (defined in eq. 6) which configures the

trade off between lag and jitter. So, we need to increase the cutoff slope β if we want to minimize

lag (in high speeds), and decrease the minimum cutoff frequency fcmin in order to minimize jit-

ter(in low speeds). Proper initial values for these parameters are β = 0 and fcmin = 1; note that

even a very small increment in β value (for example by 0.007 may show some lag reduction).

The 1 e Filter is easy to understand and implement, and it is suitable for real time filtering

as it uses only previous samples. However, the main downside is the constant need of adjusting

the parameters β and fcmin in order to achieve the ideal trade-off between jitter and lag. We

concluded that these values: < β = 0.4, fcmin = 1 >, balance the trade-off, resulting in an

acceptable real-time filtering (see 17 for results). The filter can be applied on the 3D positions or

on the quaternions that describe the rotational movement applied on an articulated body.

Figure 17: In Raw 3D estimation (first line), there is some visible discontinuation in movement
especially in hands and the at the exact time when the root orientation is changing (red figures).
In Filtered results using 1 e Filter (second line) the movement of the figure is much smoother.

4.5.2 Savitzky Golay Filter

Savitzky and Golay method was published in 1964, and their paper [50] was described as

one of the best papers ever published in the Analytical Chemistry journal. This method is used
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to smooth out a noisy signal while maintaining the tendency of the signal. It uses a convolution

process that fits consecutive subsets of 2m + 1 digital data points by a polynomial of degree

p (p ≤ 2m) based on linear-least squares (m is the half width of the approximation interval).

Ronald W. Schafer in his article [51] gives a smooth and detailed explanation on the algorithm.

The main idea of the algorithm is to calculate the coefficients of a polynomial that minimize the

mean-square approximation error for a set of digital data points (2m + 1: also referred as frame

length) centered at k. The output value for the kth digital point is equal to the kth polynomial

coefficient.

Savitzky Golay Filter might not be as simple as 1e Filter, however its results are fairly reliable.

We used the Matlab’s built-in sgolayfilt() function using as input the 3D joints positions, and

we concluded that the filter works fine with polynomial order being the 3rd and the frame length

being 11.

4.5.3 FBBIK

Our system lacks of obtaining the space translation, meaning that the output has a fixed root

translation preventing the skeleton to move around in space. However, root translation feature

is included in our future work, thus an IK solver is essential to be used in order to resolve any

animation artifacts such as foot sliding, floor penetration and joint rotation abnormalities.

FBBIK (Full Body Biped Inverse Kinematics) is a system implemented for Unity Game En-

gine, designed specifically for bipeds that applies IK to an animated articulated body and it belongs

to a general collection of inverse kinematics solutions named Final IK. The 3D model displayed

in figure 16 is based on an articulated body model which is a tree set of rigid links connected to

joints which can be rotated or translated. The leaves of that tree are called end effectors, which

are basically the ending position of the most outboard links. In Forward Kinematics, the position
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Figure 18: Illustration example of 3D positions for 100 frames, of joints 0 to 4 (Head, Neck,
RightArm, RightForeArm, RightHand). The blue (left) graph illustrates the raw 3D estimation,
and the red (right) graph illustrates the 3D estimation after applying S-Golay filter with 3rd order
polynomial and frame length 11. Successively frames in the raw data may maintain the same (or
similar) 3D position, but S-Golay filter will interpolate those points. Note that the filtered output
maintains the number of points (frames) of the raw data.

of the end effectors are calculated when applying the definition of the whole pose (rotation and

translation of all joints). However, in Inverse Kinematics, defining only the end effectors position

results in the definition of the whole body pose.
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The applications of IK increase the more creative you get. Generally, IK can be used in

configuring the pose when an end effector interacts with a target, for example when arms are

reaching, following, or grabbing an object. It can also be used to correctly place feet on a surface

avoiding the artifacts of floating feet, floor penetrations and feet sliding. By just defining the

ground, the joints can be configured in resulting in a convincing stepping cycle.

What FBBIK actually does, is mapping the biped character for each frame in LateUpdate1

to a low resolution IK rig with effectors, then configures the final pose and applies the result to

the character. This setup uses three types of effectors. The end-effectors (hands and feet) that

can be rotated changing the direction of the limb, affecting the mid-body effectors (shoulders and

thighs). In addition, multi-effectors are attached to torso area and can be dragged along with the

other effectors defining the final pose. In addition, each limb and body are defined as chains that

have the ”pull”, ”reach” and ”push” property. ”Reach” property adjusts the update rate of the IK

solver and the other two define how easily we can pull or push the character using the effector.

These property values are weights between the chains, for example if right foot ”pull” weight

equals to 1 and other chains equals to 0, we can pull the character from right foot without being

restricted by the other body parts.

Final IK collection among other IK solutions offers the Grounder system. This system is using

FBBIK solver, to place the feet on the ground minimizing any artifacts due to the feet and ground

interaction. Grounder uses raycasting to find the ground height from each foot and the character’s

root’s y-position, and then pulls the feet to the ground if needed and optionally bends the spine.

Minimizing feet jitter along with Grounder system will result in a smoothing stepping cycle.

1LateUpdate is a function in Unity declared in MonoBehaviour class, that is called every frame after all Update
functions have been called and is completely independent from the animating system. Other Update functions are
Update() and FixedUpdate().
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5.1 Motion Examples Results

We conducted several experiments to evaluate the performance of our method. Figure 19 visu-

alizes the 3D pose reconstruction on several motion examples which are included in our Database,

such as walking, boxing, jumping, and running. Unlike VNect [11], our method is able to 3D

estimate multiple, closely interactive characters, as Figure 19 illustrates. Figure 20 shows the ef-

fectiveness of our method in tracking and capturing motion that is temporally coherent. It can be

observed that the 3D skeletons of the articulated motion are smoothly reconstructed over time.
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5.2 Evaluation using Virtual Video

To quantitatively evaluate the performance of our method, we animated a .bvh file using a vir-

tual character (see Figure 21) using Autodesk MotionBuilder. We then video capture the animated

character, and input the video in our system to get the 3D estimation. The virtual character used

in the video should be human-like, in order to have satisfactory results from OpenPose; using the

robot character we observed weak results. We computed the difference between the poses of the

original and reconstructed characters; the average Euclidean distance between their joints is only

10 cm (for a character with height 175 cm).

5.3 Evaluate Input in Different Angles

We further evaluated the effectiveness of our method in pose reconstruction by recording the

same action from two different viewing angles, and then reconstructing their 3D motion. We

computed the average Euclidean distance between the two 3D skeletons per joint (as Figure 23

illustrates) for recordings with the angle view difference being approximately 135 deg and 75 deg.

The average distance without applying any filtering to our results is 12.64 cm for 135 deg and 9.3

cm for 75 deg. With filtering, the average distance is 9.4 cm and 6.8 cm respectively. We compared

our results to VNect [11] and the corresponding distance for the filtered VNect reconstruction is

16.4 cm and 15.2 cm, respectively. Note that, for the comparison between the two poses, we

discard the translation and rotation of the root joint so as to fairly compare the two 3D poses.

Figure 22 illustrates the two 3D poses from different angles.
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5.4 Implementation Tools and Resources

We have implemented our main system and GUI in the Unity game engine (Unity 2018.3.9f1)

using C#. We have used Matlab R2018b to cluster 2D projections and to use SavitzkyGo-

lay [47] Filter built-in function. All experiments were run on a six-core PC with Intel i7-6850K at

3.6GHz, 32GB RAM, and nVIDIA Titan XP GPU.

5.5 Live Input Implementation

The system has been extended to allow live 3D motion reconstruction using a webcam. The

2D poses (skeletons) are estimated live using the OpenPose Unity Plugin and each incoming frame

is processed, displaying the results in real-time as Figure 24 illustrates (using the method From 3D

positions to Articulated Motion described in Appendix A). The bottleneck of the method (using

the database as described in section 3) is the OpenPose Unity Plugin that process frames in 15fps

on average. However, in every Unity Update that is over 60fps, the 3D motion reconstruction

frames are interpolated using the 1 e Filter making the 3D animation play smoothly in higher fps.
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Figure 19: 3D skeleton reconstruction of various different frames for (a) single character, and (b)
multiple interactive characters in the scene. The RGB video frames are shown on the left side of
the figure, the selected 2D projections in the middle, and the 3D skeleton reconstruction on the
right.
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Figure 20: Smooth motion reconstruction in a sequence of skeletons.
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Figure 21: 3D motion reconstruction on virtually animated motion capture data. The output of our
method (c) is being compared to the motion capture data (b) used in the video.

Figure 22: 3D pose reconstruction of the same action recorded from different angles. The arrow
shows the same pose, but rotated, to be aligned and visually comparable with the pose from the
other view.
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Figure 23: Illustration of comparing 3D pose estimation from two different angles ( approx.
135 deg difference) using VNect (a) and using our method (b). The root translation and rotation
of the skeleton of each angle (skeleton1: red spheres - green lines, skeleton2: blue spheres - black
lines, and the reddish lines denote the skeleton’s left side) has been discarded, so the skeletons are
aligned are ready to be compared.

Figure 24: Real Time 3D motion reconstruction.
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6.1 Conclusions

We have presented a method that estimates, in real-time, the 3D pose of a human character

using a single, monocular camera, and reconstructs its articulated motion. Our method is capa-

ble of tracking and reconstructing multiple 3D human postures at the same time, ensuring that

the estimated 3D poses satisfy the character’s bone constraints, and are always within a natu-

ral and feasible set. Common prior work limitations were efficiently dealt, such as the temporal

consistency of poses, and the production of smooth and linear motion. We have evaluated the per-

formance of our method in several examples, including a large variety of locomotion with single
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and multiple characters in the scene, on data taken from different points of view, artificially gen-

erated data, etc.; our results which have been compared with a state-of-the-art method (VNect),

demonstrate the efficiency of the proposed approach.

6.2 Limitations and future work

Our method has some limitations. First, the accuracy of the 2D joint estimation (using Open-

Pose) can greatly affect our method’s 3D estimation performance. There are two ways to overcome

this limitation: (a) one way is to use a weighted distance metric and enforce less influence (see

eq. 3) on faulty joint positions, or (b) to use an architecture of two or more cameras for a better 2D

pose estimation. Moreover, in our work we assume that the characters skeleton is fully visible at

the camera; however, this is not always possible due to occlusions from other characters or objects

in the scene. Future work will see the introduction of a pose recovery method that selects the most

appropriate skeleton, from the database, and matches with the sparse data.

A second limitation lies on the camera’s projection angle, which must match the view angle

of the camera. A possible way to make our system invariant to different camera viewpoints is to

further extend the database with additional projections on different axis, different height (view),

or camera parameters. Learning the camera viewpoint to improve 3D pose estimation is currently

an active and challenging topic in computer vision [52].

Another limitation of our method is that the results are highly related to the training data. A

larger variety of movements will increase the variety of reconstructed actions, but at the same

time, it will increase the computational cost. Finally, since there is no calibration of the scene,

our method is not trained to account for global translation and rotation. In future work, scene

calibration and root translations will be added.
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6.3 Publications

During this project, we have achieved the following publication, and it will be presented at

the 32nd International Conference on Computer Animation and Social Agents (CASA 2019), that

will be held on July 1-3, 2019 in Paris, France.

• Anastasios Yiannakides, Andreas Aristidou, Yiorgos Chrysanthou. 2019. Real-time 3D

Human Pose and Motion Reconstruction from Monocular RGB Videos. Comput. Animat.

Virtual Worlds. 30(3-4):1-10, doi:https://doi.org/10.1002/cav.1887

doi: https://doi.org/10.1002/cav.1887
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A.1 Introduction

In this guide, we are going through a process that reconstructs articulated motion from a set

of 3D joint positions. A common straightforward definition of a 3D pose is a set of 3D world-

positions that represent the joints, which are connected by rigid links. Calculating the rotations

using oversimplified motion information is a challenging task due to possible ambiguities and non-

realistic joint rotations (Figure 27). Ambiguities can arise due to the limited number of known 3D

joint positions, most commonly on the roll rotation of the limbs and head; in this project we also

face severe ambiguities in hands and feet because we discarded the information of fingers and toes
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Figure 25: From 3D Positions to Articulated Motion.

in order to simplify the skeleton. Another challenge is to avoid any abnormal rotations that can

cause penetration of body parts or over-rotation of joints. This guide promises to be as generic as

possible in terms of mapping articulated motion to any rigged 3D model. Any code shown is in

C# implemented for Unity2018.3.9f1.

A.2 Different Skeleton Configurations

Rigged humanoid 3D models may differ on their skeleton definition: joint hierarchy and initial

rotations of joints may be different. Some skeletons may have a more complicated joint hierarchy

than others; for example a complete set of joints for each finger and toe. However, a proper defined

humanoid skeleton should at least consist of the basic joints as described in the hierarchy (right)

in Figure 3 and illustrated in figure 25. We assume that we have set of 3D positions P for each

animation frame, for an immutable set of joints. Using Breadth-first search we can find the joints

that correspond to the set of known 3D positions P ; we save these joints in an indexed list J , so

we can apply any transformations on them directly.
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Figure 26: Two examples of rigged 3D models (in T-Pose) that show variation in local axes ori-
entation. The Female model (left) has its local axes defined in a more complicated way than the
Robot model (right) which all joints happens to be the oriented the same (with zero local rotation).
The figure illustrates the positive x,y,z axes in red, green and blue respectively. Axes x,y,z are
also called Right, Up and Forward respectively.

Our goal is to calculate the rotations of the joints J for a set of 3D positions P that describes

an animation frame. At first it is important to define the initial local axes orientation of each joint

by the T-Pose of the skeleton. Unity uses a left-handed coordinate system which means that right

is the positive direction of x-axis, up is the positive direction of y-axis and forward is the positive

direction of z-axis; this coordinate system defines the global axes (world space axes) which happen

to match the local axes orientation of the Robot’s joints, as seen in Figure 26. Thus, we first are

going to configure the rotations of the Robot model, and then extend the method to a more generic

approach.

A.3 Calculating Rotational Transformations

The green stick figure in Figure 25 is composed by the set P connected by rigid links. Fig-

ure 28 illustrates an example of RightForeArm link which is defined by 3D positions a and b.
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This link is actually a vector ~V that is equal to (a−b): a vector that starts from point b and ends on

point a. Now, we need to calculate the rotation of that joint so its orientation matches the direction

of ~V . Observing its local axes (Figure 26) we decide that we should align the positive x-axis (red)

with the ~V , as Figure 28 shows. In the same way we determine for each joint an axis ~A to be

aligned with the corresponding vector ~V .

Figure 27: Unrealistic joint rotation artifact (b).

Rotating just ~A to the direction of ~V is not enough because the direction of the other two axes

is still undefined; which can cause unrealistic rotations (see Figure 27). Thus, we need to define

the direction of a second axis that will look towards the direction of ~U ; the direction of ~U will

define the roll rotation of the joint. In order to be consistent to our formula, we first calculate the

rotation R1 that points the axis ~A to the global Forward-axis; so ~A becomes the z-axis.

R1 = Quaternion.FromToRotation( ~A, V ector3.forward);

Then we should point ~A to the direction of ~V with y-axis pointing towards ~U . Hence, we

calculate R2 whose z-axis is aligned with ~V , x-axis is aligned with cross product between ~V and

~U , and y-axis is aligned with cross product between z and x.

R2 = Quaternion.LookRotation(~V , ~U);
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Finally, the product R = R2 ∗R1 is the rotation that should be applied on the joint. Note that

the rotations should be applied using a pre-order traversal visit in the joint hierarchy, meaning that

the parent should be transformed before transforming its child.

Figure 28: RightForeArm’s local axes are rotated so the positive x-axis (red) is aligned with
a vector ~V defined by two 3D Positions a and b. Red spheres represent a set of 3D positions
connected with links.

A.4 A Generic Approach

As we already pointed out, the joints of a rigged model in T-Pose might have already some

initial local rotation, that changes the orientation of the axes, just like in Female model in Fig-

ure 25); making the selection of the axis ~A and defining ~U a confusing task. Thus, we need to map

the global axes to the local axes, so when we request the forward-axis, we get the actual axis that

looks at global forward. Using the same example (Figure 26), in RightUpLeg or in LeftUpLeg,

the global up-axis is actually equal to the local down-axis (negatve y-axis). We can automate the

axes matches by calculating the smallest angle distance between a local axis and a global axis; this

process is done only one time, using the T-Pose.

Let the types of global axes be T = Up, Right, Fwd, Down, Left, Back
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localAxisWorldSpace = transform.TransformDirection(globalAxisi);

Distance = Mathf.Abs(V ector3.Angle(localAxisWorldSpace, globalAxisj));

We save the direction of each axis type in an array D, which can be indexed by T . Let a

function getActualAxis(t) to return the actual axis that looks at t ∈ T . At this point, we can

calculate R = R2 ∗R1 with R1 defined as:

~A = D[getActualAxis(t)];

R1 = Quaternion.FromToRotation( ~A,D[Fwd]);

Table 2 shows the direction of ~V and the selected axis ~A for each joint of the list J defined as

seen in Figure 29. It is important to point out that we don’t really have enough information (consid-

ering the limited set of 3D points P ) to define ~U which decides the roll rotation. So, for a joint j we

can approximate this rotation by using current hips’ TransformDirection(D[getActualAxis(Fwd)])

only if the Up-axes of hips and j match, else TransformDirection(D[getActualAxis(Back)]).

For example, in Female model in Figure 26, ~URightLeg equals to hips.transform.TransformDirection(<

0, 0,−1 >) as the Up-axes of hips and RightLeg are looking at the opposite direction. Now, for the

Hips joint, there is enough information to calculate its ~U direction; two more positions p[1] ∈ P

and p[14] ∈ P will determine ~U = p[1]− p[14] (see Figure 29 for set P ).

A.5 Post Production and Conclusions

In this appendix we have discussed how to create articulated motion using a limited set of

3D positions P . This limitation as we already discussed, causes ambiguities especially in roll

rotations of limbs and neck. A future work can be the application of a more sophisticated way of

estimating the roll rotation. However, we still can fix any abnormal rotations, by applying angle

limitations on the joints. Note that our result from Unity can be saved as an AnimationClip using a

GameObjectRecorder instance and then export the animated 3D model as an FBX animation file
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Figure 29: The set of 3D positions P (0...14) are used to calculate the rotations of joints J . ~A axis
that is aligned with ~V (pi−pj , pi,j ∈ P ) may vary between different rigged models. Positive local
x,y,z axes are illustrated in red, green and blue respectively.

Joint ~Aglobal ~V

0-Head - -
1-Neck Up 0− 1

2-RightArm Right 3− 2
3-RightForeArm Right 4− 3

4-RightHand - -
5-LeftArm Right 5− 6

6-LeftForeArm Right 6− 7
7-LeftHand - -

8-RightUpLeg Up 8− 9
9-RightLeg Up 9− 10

10-RightFoot - -
11-LeftUpLeg Up 11− 12
12-RightLeg Up 12− 13
13-RightFoot - -

14-Hips Right 8− 11

Table 2: For each joint, we define the axis to be aligned with ~V (pi − pj , pi,j ∈ P ). ~Aglobal can be
mapped to the local ~A which is used in the calculations of the rotations.

using the FBX Exporter plug-in. Thus, we can further edit the FBX in a 3D character animation

software like MotionBuilder, in order to achieve the results we want.
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Figure 30: From the same set P we create articulated motion to different rigged 3d models show-
ing respect to their unique skeleton definition.
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view silhouettes. ACM Trans. Graph., 27(3):97:1–97:9, 2008.

[29] J. Gall, A. Yao, and L. Van Gool. 2d action recognition serves 3d human pose estimation. In
Proc. of ECCV’10: Part III, pages 425–438, Berlin, Heidelberg, 2010. Springer-Verlag.

[30] Y. Liu, J. Gall, C. Stoll, Q. Dai, H.-P. Seidel, and C. Theobalt. Markerless motion capture of
multiple characters using multiview image segmentation. IEEE Trans. Pattern Anal. Mach.
Intell., 35(11):2720–2735, 2013.

http://mocap.cs.cmu.edu/
http://www.phasespace.com
http://www.vicon.com
http://www.xsens.com


57

[31] X. Wei, P. Zhang, and J. Chai. Accurate realtime full-body motion capture using a single
depth camera. ACM Trans. Graph., 31(6):188:1–188:12, 2012.

[32] M. Ye and R. Yang. Real-time simultaneous pose and shape estimation for articulated objects
using a single depth camera. In Proc. of CVPR’14, pages 2353–2360, DC, USA, 2014. IEEE
CS.

[33] J. Shotton, T. Sharp, A. Kipman, A. Fitzgibbon, M. Finocchio, A. Blake, M. Cook, and
R. Moore. Real-time human pose recognition in parts from single depth images. Commun.
ACM, 56(1):116–124, 2013.

[34] T. Sharp. The vitruvian manifold: Inferring dense correspondences for one-shot human pose
estimation. In Proc. of CVPR’12, pages 103–110, DC, USA, 2012. IEEE CS.

[35] A. Baak, M. Müller, G. Bharaj, H.-P. Seidel, and C. Theobalt. A data-driven approach for
real-time full body pose reconstruction from a depth camera. In Proc. of ICCV’11, pages
1092–1099. IEEE CS, 2011.

[36] D. Vlasic, P. Peers, I. Baran, P. Debevec, J. Popović, S. Rusinkiewicz, and W. Matusik. Dy-
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