
�I

Department of Computer Science

Smart Home

May 2019

Christos Christou

�II

Department of Computer Science

Smart Home
Christos Christou

May 2019

Thesis advisor: Mr. Andreas Pitsillides

This thesis was submitted towards partial completion of
the requirements for a Bachelor degree of Computer

Science, from the department of Computer Science of the
University of Cyprus.

Acknowledgements

Special thanks to my father, for his time and the engineering knowledge he
provided.

This project would not be possible without the constant support from my
closest people.

�III

Abstract

This thesis describes the procedure for creating a complete smart home
system. It goes through the implementation of the core system, mobile and
smartwatch apps, and a real-world example with a smart home. Every
process is explained in detail, explaining all of the tradeoffs, the decisions,
and the research behind each step.

�IV

Table of Contents

Chapter 1 - Introduction

1.1 Background 1

1.2 Goals 3

Chapter 2 - Definitions

2.1 Software 6

2.2 Hardware 8

2.3 Definitions 10

Chapter 3 - Main System

3.1 First steps 15

3.2 Electron core app 18

3.3 Speakers and microphones 20

3.4 Microphones and custom wiring 21

3.5 Google Assistant API 24

3.6 Front-End 27

3.7 Back-End 34

3.8 Keyword detection engine 35

3.9 Custom commands parser 39

3.10 Recap 41

�V

Chapter 4 - Expansions and real-world applications

4.1 Introduction 42

4.2 Smart display housing 43

4.3 House model 45

4.4 Components 48

4.5 Mobile apps 50

4.6 Smartwatch app 53

4.7 Communications 57

Chapter 5 - Conclusions

5.1 Evaluation 58

5.2 Future 60

�VI

Chapter 1 - Introduction

1.1 Background

We live in an era of technology. The free flow of knowledge and opinions, the
communication, the comfort and the accessibility to everyday conveniences
and goods, are closely related to the continuous and stable rising of
technology. Computer scientist and researchers, have the capability, and as a
result, the responsibility of shaping the future and improving everyone’s lives.

Among the hottest topics in the technological world for the last few years
have been the Internet of Things, Artificial Intelligence and Human-Computer
Interaction. Arguably the most profound application of the combination of all
of these is the Smart Home. However, what is the Smart Home? It’s more of
an ideology, rather than an application. It’s a complete system, integrated
into your home, making your everyday life more comfortable, providing a
helping hand whenever you need it. It doesn’t depend on appliances or
gadgets, you never notice it, unless you need it. It’s a natural extension of
your everyday life and routine.

Every day coming by, we see breakthroughs coming to light, innovations
being born. Artificial Intelligence has come a long way, allowing for the
appearance of smart assistants. Advancements in speech recognition and
speech synthesis brought a natural way to interact with computers.
Embedded systems and micro-computers opened a new world of
possibilities in internet-connected devices, both in quality, as in quantity.

1.1 Background 1
1.2 Goals 3

�1

As a result of all of the above, the first Smart Home systems started to
emerge. Smart speakers, such as the Google Home and the Amazon Echo,
made their first appearance in 2017. Following the great success of these
products, developers started to research new ways to extend the interfaces
and interactions of those systems. This resulted in the very first prototypes of
smart displays making their appearance in 2018 and the first commercial
products coming to market in 2019.

Being inspired from all the research on smart, interactive systems, and
understanding the impact that such technology could have in people’s lives, I
decided to take a new approach on Smart Home and develop a new, fully
customizable system, open for everyone, that combines all the best current
technology, while it also provides a layer of personalization and control.

This thesis describes the full development, from start to finish, of a complete
Smart Home system, including an AI assistant, a smart display, connected
devices, voice interactions and feedback, mobile and smartwatch companion
apps and more.

�2

1.2 Goals

Despite the great challenge emerging from the rapid development of Smart
Home systems, my goal was to implement a complete system, robust and
expandable, making it competent in every way, to every other existing
solution.

To achieve that, and to accomplish a user-first experience, I constructed a
set of principles, to act as guidelines throughout the design and the
implementation processes.

The principles are described below:

• Keep the interruptions minimal
This goal describes the purpose to keep the system as distraction-free as
possible. Ideally, the system should be available whenever you need it
and become “invisible” when you don’t. This behavior provides a natural
character to the system, making it available and helpful, but not
distractive or annoying.

This goal is being accomplished, by leveraging several mechanisms to
prevent the system from being distractive. For example, when the system
needs to ask you about something, remind you, or warn you, I set a time
limit, to make sure that it won’t ask you the same question twice in a set
period of time.

• Provide a multitude of interactions

A system can never be designed for everyone because every person has
different needs, capabilities, and tastes. My goal is to make this system
more accessible and bring it closer to the users. I implemented a
multitude of ways to interact, provide input and receive feedback from the

�3

system, including voice input and feedback, touch controls, graphical
output, mobile, and smartwatch apps.

Expanding the Human-Computer Interactions of the system makes all the
interactions more natural and fluid for everyone, but the importance of
this goal extends way beyond that. It also opens the doors to all people
with disabilities. For example, a blind person can fully interact with the
system using his / her voice and enjoy some music, get information about
the weather, check out the latest news, or get notified when it starts to
rain, to allow the system to close the windows automatically.

• Completeness and robustness of the system

Sometimes it’s better to have a complete system with fewer features,
rather than an incomplete one with many features. A system, to be
complete, needs to implement a coherent set of features, that satisfy a
specific purpose. Ultimately, a complete system doesn’t need any
external systems to complete its specified tasks. Robustness, on the
other hand, describes the ability of a system to maintain a fully functional
state, under any circumstances.

Although achieving completeness is not an easy task, I managed to do
that with the implementation of a broad variety of tools, interactions, and
procedures, such as mobile apps, notifications, and interfaces. To
maintain the robustness of the system, I build the system from the ground
up, with significant control over the errors, agile handling of edge cases
and a self-untangling communications system.

• Control and customizability
As I mentioned before, a system cannot be designed for everyone. For
that reason, I decided to include a complete set of features while allowing
developers to build on top of them and expand the functionality in various
ways. I also ensured the customizability of the system, primarily at the
user level, with different voices, names, and other preferences, but also at

�4

the developer level, with custom commands, User Interface options and
more.

To ensure expandability and customizability, I built the system with total
control over all of the components, procedures, and sub-systems. This is
due to the elimination of “black boxes” and the implementation of
programmatic and user interfaces.

• Serious attention on privacy
As technology progresses and gets deeply integrated into our lives, and
with the market continuously growing, more and more concerns are
coming to light every day. One of the greatest fears of the latest
technological advancements is the loss of privacy. Unfortunately, leaks
and scandals have proven most of these concerns legitimate.

As a computer scientist, trying to create tomorrow’s technology and
shape the principles at its foundations, I feel responsible for providing
solutions without sacrificing a fundamental human right such as privacy.
Achieving this, can be tremendously more complicated than it sounds.
Firstly, this means that I cannot rely on closed systems on which I don’t
have the full control, and secondly, I have to make my own systems as
transparent as possible, in order to be able to guarantee for their privacy
respect.

For this Smart Home system, I only used open source software, and
implemented my system along with it, maintaining absolute control of the
data. On top of that, I decided not to rely on cloud speech-to-text
services and provide the real-time keyword recognition pipeline offline,
utilizing the capabilities of the local device.

�5

Chapter 2 - Definitions

2.1 Software

InVision Studio
InVision Studio is an advanced prototyping and screen design platform. It
allows for the design of the UI / UX, interactions, and animations of an
application.

Keyshape
Keyshape is a tool for creating complex animations. It uses Scalable Vector
Graphics and provides a versatility of export options for the web.

Draw.io

Draw.io is a web-application that allows for the creation of complex two-
dimensional diagrams. It provides a variety of shapes and tools for creation
and customization.

Adobe Photoshop CC

Adobe Photoshop is the world-leading software for raster graphics creation
and editing. It is the industry standard for photo editing, digital art, and more.

Blender
Blender is a free, open-source 3D graphics suite. It provides a great variety of
tools for 3D modeling, texturing, material creation, rendering, and more.

2.1 Software 6
2.2 Hardware 8

2.3 Definitions 10

�6

Through the many years of its lifespan, it proved to be one of the best tools
for 3D content creation, and it is used in a multitude of applications, such as
3D Artwork, Game Development, and CGI.

�7

2.2 Hardware

Raspberry Pi 3B
The Raspberry Pi is a series of small single-board computers developed by
the Raspberry Pi Foundation. They are the most popular SBC on the market
and they are used in education, home automation and industrial automation.
[3, 5]

Sunfounder 10.1” Touchscreen Display

A 10.1” capacitive touchscreen display, designed for the Raspberry Pi.
Contains a display driver board, along with a mount for the Raspberry Pi.

ReSpeaker 4-Mic Array
A quad channel microphone, designed for smart home systems.

DRV8825
One of the most powerful stepper motor driver boards. It regulates power
and provides an electronic interface for interacting with the motor.[2]

NEMA17 Stepper Motor
A precise, robust motor with relatively small footprint. It is usually used in 3D
Printers.

Stereo Speakers
A set of generic 5V stereo speakers, with a standard 3.5mm input.

DHT22
A small temperature and humidity sensor, with high accuracy and a digital
interface.[1]

�8

APDS 9301 Ambient Light Sensor
An I2C-compatible luminosity sensor, that measures lux in the environment. It
combines an RGB sensor with an Infrared sensor, to provide accurate results.
[4]

SMD 5050 LED Strip
A bright, RGB LED Strip that uses a 12V power, and three channels for color
data.

IRL N-Channel MOSFET
A transistor with variable conductivity, that allows for controlling the current
that passes through a connection.

�9

2.3 Definitions

Porcupine
Porcupine is an open source keyword-detection engine, created by
Picovoice. It analyzes audio input in real-time and tries to detect a specified
keyword.

SBC - Single Board Computer
A single-board computer (SBC) is a complete computer built on a
single circuit board, with one or more microprocessors, memory, input/
output (I/O) and other features required of a functional computer.[5]

Node.js

Node.js is an open-source, cross-platform JavaScript run-time
environment that executes JavaScript code outside of a browser. It’s used in
server-side implementations and desktop applications.[5]

Electron

Electron is an open-source framework developed and maintained by GitHub.
It allows developers to build cross-platform graphical desktop applications
using web technologies. It uses Node.js for the backend and an embedded
Chromium build for the frontend.[5]

Google Assistant
Google Assistant is an artificial intelligence system developed by Google in
2016. It is primarily available on mobile and smart home devices.[5]

Google Assistant SDK
The Google Assistant SDK is an open source software development kit,
created by Google, to let developers embed the Google Assistant in their
projects.[5]

�10

Cross-Platform
In computing, cross-platform software (also multi-platform software or
platform-independent software) is computer software that is implemented to
run on multiple computing platforms. Cross-platform software may be
divided into two types; one that requires individual building or compilation for
each platform that it supports, and another that can be directly run on any
platform without any special preparation.[5]

Software Development Kit

A software development kit (SDK or devkit) is typically a set of software
development tools that allows the creation of applications for a certain
software package, software framework, hardware platform, computer system,
video-game console, operating system, or similar development platform. To
enrich applications with advanced functionalities, advertisements, push
notifications, and more, app developers implement specific software
development kits to help and enrich development.[5]

Operating System

An operating system (OS) is system software that manages computer
hardware and software resources and provides common services for
computer programs.[5]

Node Modules

A node module is a package, in the form of an archive containing computer
programs and additional metadata needed by package managers. While the
archive file format itself may be unchanged, package formats bear additional
metadata, such as a manifest file or certain directory layouts. Node modules
may contain either source code or executable files.[5]

Package Manager
A package manager or package-management system is a collection of
software tools that automates the process of installing, upgrading,

�11

configuring, and removing computer programs for a computer's operating
system in a consistent manner.[5]

NPM
npm (originally short for Node Package Manager) is a package manager for
the JavaScript programming language. It is the default package manager for
the JavaScript runtime environment Node.js. It consists of a command line
client, also called npm, and an online database of public and paid-for private
packages, called the npm registry. The registry is accessed via the client, and
the available packages can be browsed and searched via the npm website.
The package manager and the registry are managed by npm, Inc.[5]

SSH
Secure Shell (SSH) is a cryptographic network protocol for operating network
services securely over an unsecured network. Typical applications include
remote command-line login and remote command execution, but any
network service can be secured with SSH. SSH provides a secure channel in
a client–server architecture, connecting an SSH client application with an
SSH server.[5]

I²C
I²C (Inter-Integrated Circuit), pronounced I-squared-C, is a synchronous,
multi-master, multi-slave, packet switched, single-ended, serial computer bus
invented in 1982 by Philips Semiconductor (now NXP Semiconductors). It is
widely used for attaching lower-speed peripheral ICs to processors and
micro-controllers in short-distance, intra-board communication.[5]

GPIO

A general-purpose input/output (GPIO) is an uncommitted digital signal pin
on an integrated circuit or electronic circuit board whose behavior—including
whether it acts as input or output—is controllable by the user at run time.
GPIOs have no predefined purpose and are unused by default. If used, the

�12

purpose and behavior of a GPIO is defined and implemented by the designer
of higher assembly-level circuitry: the circuit board designer in the case of
integrated circuit GPIOs, or system integrator in the case of board-level
GPIOs.[5]

HAT - Hardware Attached on Top
A HAT, or Hardware Attached on Top, is an add-on board, usually for Arduino
or Raspberry Pi systems, that conforms to a specific set of rules which make
the set-up process easier. A significant feature of HATs is the inclusion of a
system that allows the Arduino or Raspberry Pi to identify the connected HAT
and automatically configure the GPIOs and drivers for the board.[3, 5]

SVG
Scalable Vector Graphics (SVG) is an XML-based vector image format for
two-dimensional graphics with support for interactivity and animation. The
SVG specification is an open standard developed by the World Wide Web
Consortium (W3C) since 1999.[5]

UI / UX

A user interface (UI) is a point of interaction between a computer and
humans; it includes any number of modalities of interaction (such as
graphics, sound, position, movement, etc.) where data is transferred between
the user and the computer system.[5]

User experience (UX) refers to a person's emotions and attitudes about using
a particular product, system or service. It includes the practical, experiential,
affective, meaningful, and valuable aspects of human–computer interaction
and product ownership. Additionally, it includes a person’s perceptions of
system aspects such as utility, ease of use, and efficiency.[5]

�13

ANSI C
ANSI C, ISO C and Standard C refer to the successive standards for the C
programming language published by the American National Standards
Institute (ANSI) and the International Organization for Standardization (ISO).
Historically, the names referred specifically to the original and best-supported
version of the standard (known as C89 or C90).[5]

Binding

In computing, a binding from a programming language to a library or
operating system service is an application programming interface (API)
providing glue code to use that library or service in a given programming
language. Binding generally refers to a mapping of one thing to another. In
the context of software libraries, bindings are wrapper libraries that bridge
two programming languages, so that a library written for one language can be
used in another language.[5]

ES6

ECMA-Script (or ES) is a scripting-language specification standardized by
Ecma International in ECMA-262 and ISO/IEC 16262. It was created to
standardize JavaScript, so as to foster multiple independent
implementations. JavaScript has remained the best-known implementation of
ECMAScript since the standard was first published.[5]

�14

Chapter 3 - Main System

3.1 First steps

The first steps of the implementation process, include the basic set-up of the
hardware, the installation of the operating system and the set-up of the basic
configurations.

I started by connecting the 10.1” display to the Raspberry Pi.

3.1 First steps 15
3.2 Electron core app 18

3.3 Speakers and microphones 20

3.4 Microphones and custom wiring 21

3.5 Google Assistant API 24

3.6 Front-End 27

3.7 Back-End 34

3.8 Keyword detection engine 35

3.9 Custom commands parser 39

3.10 Recap 41

�15

Figure 3.1: Connection of display and Raspberry Pi

Following that, I downloaded a copy of the latest version of Raspbian, an
operating system, based on Debian, that is tailored to the Raspberry Pi. I
burned the image of Raspbian on a micro SD card, and installed it on the
system. The display didn’t need any drivers or configuration, as it was pre-
programmed to work with a Raspberry Pi. I hooked up a mini wireless
keyboard-trackpad combo that I had from previous projects, in order to be
able to control the device, and apply some basic configurations.

�16

Figure 3.2: First boot

Among the first tasks, I enabled the SSH service on the device, to be able to
connect to it remotely and work on it, in a more convenient and productive
environment.

�17

3.2 Electron core app

My initial plan for the implementation of the system was to build it in C++ or
python. Due to the need of the system to interact with various components at
a low level, I naturally leaned towards the native direction of software
development.

When I got my hands on the Raspberry Pi and began the implementation, I
realized that the native approach was not the best to say at least, for multiple
reasons. The most profound problem with this approach was the platform
and OS dependency of the system. This dependency not only limits the
system's extent to the architecture and operating system of my current set-
up but also forces me to rely on the Raspberry Pi for testing and other
aspects of the implementation process.

The most obvious solution when it comes to building a cross-platform system
is the utilization of web technologies. Having all the experience from several
web applications that I built in the past, I decided to use Node.js, a javascript
environment for backend applications, through Electron, a framework
developed by Github that serves a Node.js application on the desktop.

This new approach gave me significant benefits over the previous one. First
and foremost, my system now became platform-agnostic and hardware-
agnostic, meaning that I could write the same code and test it across any
operating system and any hardware configuration. This feature allows me to
distribute my system freely to the users, without worrying about any platform-
specific implementations or modifications. The users can then use the
system under Windows, Linux or macOS, with their specific displays,
speakers and microphones. Moreover, the Electron development stack gives
me the ability to implement and test my system in any environment (i.e., my
personal computer) and then to be able to move it over to the Raspberry Pi
without any modifications. This boosts the implementation and testing phase

�18

tremendously, due to the convenience of working on my personal computer,
rather than on the Raspberry Pi.

Apart from the cross-platform related benefits, implementing the core of the
system in javascript and Node.js, allows me to utilize the comprehensive
toolset of javascript, along with its versatility and error-tolerance, and most
importantly, it allows for the use of node modules, through a package
manager.

The package manager I used for the management of the project is NPM,
since it is one of the most reliable options available, and I have been using it
for several years. I created two scripts inside package.json, the configuration
file of a Node.js project. The scripts are described below:

• start: Starts the execution of the system using the electron command.

• build: Builds all the node modules of the project with the help of the
electron-rebuild module.

The “build” script was necessary, because NPM is configured to be used only
within Node.js projects by default. Electron projects, on the other hand, need
some modifications in the building phase. Github provides the electron-
rebuild module that rebuilds the entire project with the appropriate
configuration for the Electron target.

�19

3.3 Speakers and microphones

After the implementation of the core Electron app, I installed the official node
module of the Google Assistant SDK from Google. Before being able to
implement an assistant process with voice input and audio feedback, I
needed to set-up the microphone and the speakers. For the speakers, I used
a cheap stereo speaker set, with a 5V USB power input and a 3.5mm jack
audio input. To drive and control the speakers through my system, I used the
node-speaker module. For the microphones, I used the ReSpeaker 4-mic
array, a quad-channel microphone system designed for the Raspberry Pi,
targeted towards home assistant systems with voice input. The four
microphones are necessary, to get a clear voice signal from all directions,
even at longer distances. In order to properly set-up the microphone array
with the Raspberry Pi, I needed to download and install the custom drivers
from the ReSpeaker’s Github repository. After the driver installation, I installed
the node-record-lpcm16 module on my project, to be able to interface and
read the input from the microphones from within my system.

�20

3.4 Microphones and custom wiring

Everything went smooth so far, but there was still an issue with this build; the
microphone array was designed to be a HAT. The Raspberry Pi features 40
connector pins, for power, interfaces, and GPIO. Everything I am planning to
connect to the Raspberry Pi must go through these pins. HAT, or Hardware
Attached on Top devices, are designed to provide an easy, push-pull
interface with the Raspberry Pi. The tradeoff with this is the fact that they use
all 40 pins that the Raspberry Pi provides, for connections and IO. Since I
was planning to connect several other devices on my system (sensors, LEDs,
motors, and others), I couldn’t afford to have a HAT device attached.
Fortunately, the ReSpeaker 4-mic array that I am using is an open hardware
project, meaning that all of its schematics and diagrams are available online. I
looked through the schematics, in order to reverse-engineer the connections
of each pin and eliminate any pins that are not necessary for the operation of
the microphone array, making them available for other devices. The
schematics I used are shown below:

Figure 3.3: Microphone array schematic

�21

After studying the schematic, I eliminated all the unused pins, the duplicate
ground and power connections, and the GPIO pins that were used to power
the LEDs on top of the microphones. I created a new schematic that
describes the simplified connection between the microphone array and the
Raspberry Pi. The new schematic is shown below:

Figure 3.4: New schematic for the microphone array

As we can see from the new schematic, I managed to release 25 pins, out of
which 14 can be used for General Purpose Input / Output. Following the

�22

schematic, I applied the connections between the microphones and the
Raspberry Pi using jumper wires. After the new wiring was done, I tested the
functionality of the microphone using Audacity, and everything worked
exactly like previously.

�23

3.5 Google Assistant API

Now that the speakers and the microphones were adequately connected, I
was able to continue with the development of the Google Assistant API. I
used the google-assistant module, which provides a convenient
programmatic interface to the Google Assistant SDK. I constructed a
configuration in javascript, containing all the options and parameters that I
pass to the Google Assistant instance, such as sample-rate, language, and
device id. I followed a procedure provided by Google, to register a new
assistant device and generate the credentials and keys for it. Then, I
implemented all the event listeners for the Google Assistant API. The Google
Assistant events are described below:

• audio-data: When the Google Assistant responds with audio data, such as
voice feedback.

• end-of-utterance: When the user finished a voice command.

• transcription: Live transcription of the user’s voice command to text.

• screen-data: When the Google Assistant responds with basic visual data,
in HtML format.

• response: The response of the Google Assistant in text format.

• volume-percent: When the Google Assistant detects a command that

contains percentage data.

• device-action: Event used for device actions, a feature of Google Assistant

to add and interact with different devices.

• ended: When a command-response cycle finishes.

• error: In case the Google Assistant detects an error during a conversation.

The implementation of the event handlers for all the events described above
acted as a dissection of the Google Assistant pipeline. This structure allowed
me to take full control over Google Assistant’s behavior, altering the
functionality, embedding new parts, or even remove unnecessary procedures
for the custom needs of my system.

�24

Below you can see a diagram that I made, showing the normal Google
Assistant pipeline:

Figure 3.5: Google Assistant pipeline

• Keyword detection engine: The keyword detection engine continuously
records the user (even when the user is not aware of it) and sends the data
to Google’s cloud backend, to check if the user said a predefined keyword
(Ok, Google).

• Speech to Text: If the keyword is detected during the previous step, a
conversation starts, and the user can say a command. The command is
translated to text in real-time, using Google’s speech-to-text AI procedures.

• Google Assistant Processing: After the command is translated to text, it is
sent over to the Google Assistant backend, in order to be processed by
pre-trained AI agents, to find the user’s intent and to provide an answer.

• Output (visual and audio): After an answer is constructed for the

command, a speech synthesis model produces the audio feedback. A basic
visual output is also constructed into an HTML file and sent back to the
user.

Although my system uses some of the Google Assistant’s well-polished
procedures, I structured my system in a way to be able to maintain full
control over the pipeline. This means that, while I can use Google’s
sophisticated systems, such as speech-to-text and speech synthesis
systems, I don’t have to rely on them, making them interchangeable at any

�25

time. This was a target from the very beginning, to combine all the greatest
technology available, not having to reinvent the wheel, while keeping the full
control over the functionality. So, as a result, I designed a custom pipeline
that reflects better my goals for this project.

The diagram below shows the custom pipeline I designed, that uses some of
the Google Assistant’s procedures (blue nodes), while also including my
custom procedures and additions to the system (red nodes).

Figure 3.6: System pipeline

All of the custom parts and procedures of the system will be explained in
detail in the next chapters.

�26

3.6 Front-End

Analyzing the Google Assistant’s functionality, through its extensive
documentation, and also with some trial and error, I discovered that all of the
responses follow a specific format. I categorized all of the responses into
three types, which I list below with a simple explanation:

• Simple response: A simple response consists of a title and a small

paragraph containing the answer to the question asked.

• Image response: The image response contains a title and a paragraph, just
like the simple response, but it also includes an image, related to the
question’s topic.

• Complex response: Any response that doesn’t follow the layout of the

previous categories falls into this category. Usually features a complex
layout, containing text, images, icons, and more.

In order to provide a seamless and coherent visual style for my system, I
created several prototypes and designed the User Interface and the User
Experience of my system for every scenario. The program I used to design
the UI / UX of my system is inVision Studio. Below you can see the
prototypes I created for every response type:

�27

Figure 3.7: Simple response design

Figure 3.8: Image response design

�28

Figure 3.9: Complex response design

Apart from the responses, the system consists of several other screens and
interactions. Firstly, I wanted to create a beautiful home-screen. The home-
screen is going to be presented to the user by default, including a wallpaper
and some useful information. Although this system can run on many
platforms and hardware configurations, I designed the home-screen with a
wall-mounted solution in mind. Having a smart display mounted on a wall
requires a meticulous design of the home screen, which is arguably the most
important and the most viewed screen of the system. For this reason, I chose
some beautiful, high-resolution wallpapers to act as a painting on the wall.
Also, while I wanted to provide some basic information on the home screen, I
decided to keep it minimal and clean, including only the time and the date.
Adjusting the layout, the fonts, and the colors inside inVision Studio, I
constructed the final design. You can see the design for the home-screen
below:

�29

Figure 3.10: Home screen design 1

Figure 3.11: Home screen design 2

�30

Figure 3.12: Home screen design 3

Finally, the design process of the main system concluded with the creation of
the “talking” indicator. This indicator shows up when the user triggers the
system to ask a question. I decided to make the indicator clearly visible, in
order to give a proper feedback to the user but to also keep it out of the way,
so it doesn’t block the home-screen or the previous response. The design of
the indicator is shown below:

�31

Figure 3.13: Indicator design on response

Figure 3.14: Indicator design on home screen

�32

After the design process was done, my next goal was to program the User
Interface of my system, according to my prototypes. First of all, I created the
indicator animation. The small lines on the left side of the indicator were
intended to be animated to simulate a waveform, to give a voice input
feedback to the user. I wanted to create the animated component using the
SVG format, to be scalable without losing quality, and small in file size. I
discovered the Keyshape program, an advanced tool for creating SVG
animations, with powerful procedures and versatile export options. After I
studied the tool, I managed to create the animated SVG and export it with
embedded CSS, containing all of the animations.

Moving back to the Electron app, I developed a front-end structure using
HTML, CSS, and Javascript. I moved all of my assets in the project and
created the home-screen and the indicator components. Finally, I
implemented the date and time functionality in Javascript.

For the multiple types of responses, I developed an output parser, that takes
as input the basic HTML response of the Google Assistant, deconstructs it
and recreates it with my specified design. The deconstruction of the HTML
file is done using HTML Templates. After that, I remove unnecessary content,
such as scripts, styles, and unused elements, and I generate the new style
dynamically, according to the type of the response. I implemented a set of
pre-made styles in CSS, which are then referenced and attached to the
response objects accordingly.

�33

3.7 Back-End

After finishing the front-end of my system, I moved back to the back-end of
my Electron app, to set-up all of the necessary communications between the
two sides. Using Electron’s provided communication system, I managed to
create the necessary connections between the renderer procedure (front-end)
and the main procedure (back-end). This system acts like a typical web-
socket implementation, so I developed an API to handle all of the
communications. The description of the API is shown below:

• hotword: This signal is sent from the main process to the renderer process,
to indicate the beginning of a command. The renderer process displays the
“talking” indicator, after receiving this signal.

• end-of-utterance: The end-of-utterance signal indicates the completion of
a command. It is sent to the renderer process, which, upon receiving it,
closes the “talking” indicator.

• transcript: The transcript message passes the user’s spoken words in real-
time to the front-end of the application. The renderer process then takes
the message and presents it inside the “talking” indicator.

• response: This message is sent from the main process to the renderer,
containing the basic HTML response from the Google Assistant. This output
is then handled from the output parser, inside the renderer process, and
after the reconstruction is presented to the screen.

From the API above, the only information that is missing is the audio
response. The reason for this is my decision to handle all of the audio
interfacings on the back-end. As with any client-server implementation, only
the back-end of the system can “talk” natively with the operating system and
interface hardware devices. As a result, the audio data of my system must be
handled in the main process, which interfaces and passes the data to the
speakers.

�34

3.8 Keyword detection engine

In order to be able to interface a system completely using voice input, the
“hotword”, or “trigger word” mechanism was invented. To avoid confusion
and false positives, regarding the voice input, the hotword mechanism acts
as a layer of separation between normal talking and voice commands to the
system. Examples of this mechanism can be observed in all major voice-first
systems, such as the Google Assistant, Amazon Echo, and Siri, with the
hotwords of “Ok, Google”, “Alexa”, and “Hey Siri” respectively.

As you can see, the hotword directly relates to the character and personality
of the system and even acts as the name of the virtual assistant.
Customizability, was one of my primary goals from the beginning, for this
system, so that the system adapts to the user’s needs and not the other way
around. Following this goal, it’s clear that the user should be able to
customize such an essential aspect of the system, such as the hotword.
Unfortunately, big companies don’t offer this layer of control. This is
happening mainly for two reasons; the decisions regarding allowances to the
user, and the technical limitations, due to the utilization of pre-trained neural
networks for the keyword detection process.

Another, even more critical aspect regarding keyword detection engines is
privacy. A keyword detection engine is a procedure that given a voice input,
tries to detect the appearance of a specific keyword or phrase. In other
words, it is the algorithm that detects when the user says the hotword. Users
often overlook the direct relation of a keyword detection procedure to privacy.
The engine needs to scan all of the vocal data continuously, in order to be
able to detect and trigger the system for a command. As a result, smart
assistants continuously record everything, even when the user is not aware of
it, and send the data to the company’s servers for keyword analysis. Of
course, besides the keyword analysis, the same data are exploited for other
purposes, such as advertisement and statistics. In other words, a typical
virtual assistant always listens, records, and analyzes all of your

�35

conversations collecting personal data. Now, you can see the enormous
impact of keyword detection procedures in the user’s privacy.

For all the reasons mentioned above, I decided to implement a custom
keyword detection solution for my system. I conducted research and
narrowed down all the possible routes I could follow for this task. I compiled
below a list with all of the viable options:

• Cloud based speech-to-text: This option implies the utilization of a cloud-
based speech-to-text API. There is a variety of such services provided by
Google, Microsoft, Amazon, and more. This is the easiest solution to
implement.

• PocketSphinx: PocketSphinx is a lightweight, Python-based, offline
speech recognition engine.

• Snowboy: Snowboy is an offline hotword detection engine, running on
multiple platforms. This seems to be the most popular option for custom
keyword detection engines.

• Porcupine: Porcupine is a small, lightweight, offline keyword detection
engine made by Picovoice. This engine takes a different approach for
keyword detection, showing impressive results in terms of speed and
accuracy.

The cloud-based solution is the easiest one to implement, and with the rapid
development of speech-to-text services, provides a simple and very accurate
answer to the problem. Despite that, I decided against it mainly because it
doesn’t resolve the privacy problem, as this method still requires the
transportation of the voice data to foreign hands. The second reason that
made me discard this option was the price. Although these services are
relatively inexpensive, they tie the user to a monthly payment, which is
always not welcome.

�36

Removing the cloud option from the list meant that I had to review and
evaluate all of the offline solutions. An offline keyword detection engine, runs
directly on the device, utilizing the local processing power, without sending
any data over the internet, which is precisely what I wanted. Resolving the
privacy issue, I generated another one though: performance. Since I decided
to run the keyword detection procedure locally on the device, the
performance of the whole process is limited to the capabilities and the
processing power of the device. A keyword detection engine is usually very
power demanding, as it needs to process audio data in real-time
continuously. Combining this with the fact that I wanted the system to be
able to run on embedded systems, such as the Raspberry Pi, introduced a
strong metric for comparison between all of the viable options.

I initiated the selection process by setting up all three engines. The
PocketSphinx was the most difficult one to get to work, as it required a lot of
configuration, and it relied on many dependencies. After performing the first
tests on the three systems, getting similar results, I searched for
customization options and libraries that would help me to integrate them with
my system. Snowboy was the most convenient out of the three to implement,
as there are libraries to use it through a Node.js environment. The problem
that I found with this particular option though, is the lack of multiple keyword
options and the very expensive plans offered by the company. This led me to
eliminate this option and focus on the other two. PocketSphinx although
seemed promising at first, because of accuracy issues, but most importantly,
because of the inconvenience to install and set-up correctly. Not wanting to
pass the hassle of configuration and installation to any users of my system, I
was left with the last option: Porcupine. Porcupine, not only was the smallest
in size, but it also performed really well. On top of that, it provided the most
accurate results and required almost zero configuration and set-up. The
project is open source on GitHub, and the base of the system is implemented
in ANSI C. Below, you can see a graph, comparing Porcupine’s accuracy with
PocketSphinx and Snowboy.

�37

Figure 3.15: Accuracy comparison of keyword detection engines

Although Porcupine provides bindings for a lot of languages and platforms,
unfortunately, it doesn’t provide a Node.js interface. As a result, I needed to
implement the necessary Node.js bindings to be able to call, run, pass data,
and get results through Porcupine’s C procedures. Starting off, I analyzed the
structure and functionality of the engine. After some research on creating
Node bindings to run native code through Node.js, I managed to create a
class containing all of the necessary functions to interface the Porcupine
library. Then, I built the library into a Node binary and wrapped the project
into a Node module. After this, I was able to include the module into my
project and create a Porcupine class with the proper parameters and finally
get the engine to work. I attached the engine to the pipeline of my system,
which now became a full virtual assistant with the latest addition.

�38

3.9 Custom commands parser

The last functionality that was left to be implemented on the system was
custom commands. The general logic of custom commands is that any
question that falls into the custom command category will be handled
separately by the system and not by the Google Assistant. If the command
doesn’t fit into any of the templates for a custom command, is then passed
into the Google Assistant’s general AI for further processing.

For this mechanism to work, I needed a way to “pause” the functionality of
the Google Assistant, pass the command through a command parser and
finally accept or decline Google Assistant’s response, in favor of the custom
command handler. The entire pipeline of the system is implemented using
asynchronous programming. Every procedure of the pipeline runs
independently and notifies the next procedure to begin, using Javascript
events. This is a good practice, as it adds speed and abstraction to the entire
pipeline. This structure introduces a problem for the custom command parser
though, regarding the pausing mechanism, as injecting a procedure into
asynchronous code, is not as easy as calling a function. To manage to
“synchronize” my asynchronous pipeline, I made use of Javascript Promises.
A promise is an object that signifies the successful or failed completion of an
asynchronous procedure in an uncertain time. With the utilization of
promises, I managed to block Google Assistant’s responses from being
propagated, until I check the command through the parser. If the parser finds
a match, Google Assistant’s responses get rejected, and I proceed with the
custom handling of the command. Otherwise, the promises get resolved, and
the operation flows normally, accepting Google Assistant’s responses.

Apart from the custom procedures that I attached to each custom command,
I also wanted an audio and visual response from the system. To keep
consistency across the responses, I had to get the Google Assistant to
somehow respond to my custom commands, with a controlled response. To
achieve that, I leveraged a mechanism, using Google Assistant’s “Repeat

�39

after me” command. This command, as the name implies, repeats everything
that follows after the call. To inject this mechanism, I further tweaked the flow
of the pipeline, to allow me to spawn assistant instances with a set text as
the command. After everything was set-up correctly, the custom responses
worked, but as a minor issue, Google Assistant attaches the phrase “You
said:” before both the visual and the voice feedback. For the visual feedback,
I removed the unnecessary part, using the output parser on the front-end.
Fixing the audio feedback was more complicated, as it involved a dynamic
“cutting” of the audio response, to a specific frame.

�40

3.10 Recap

The core system was completed at this point. In this section, I will summarize
the entire functionality of the system, as explained in the previous chapter
and describe the pipeline and the procedures involved.

The system is build using the Electron framework. The front-end of the
system is responsible for everything related to the User Interface, as well as
for all the interactions with the user, such as touch input and visual output.
On the front-end also resides the output parser; a procedure responsible for
the structure of the visual responses. On the back-end of the system, all the
interactions with the hardware take place. On top of that, the assistant
procedures, the keyword detection engine, and the custom commands
parser also live there.

When the user calls the predefined keyword, the keyword detection engine
triggers a google assistant procedure to begin. The user’s command is
captured by the procedure and sent over to the custom commands parser.
After it is parsed, it gets handled either by the parser or by the Google
Assistant. A voice response is generated and played, along with a basic
visual response, that is sent over to the front-end of the system, to be
handled by the output parser and to be presented on the screen.

�41

Chapter 4 - Expansions and real-world applications

4.1 Introduction

After the completion of the core system, my next goal was to build a real-
world solution, demonstrating the various aspects of my system. Specifically,
I wanted to demonstrate how a custom solution could be built upon, expand,
and work along with the system, in a home environment.

In order to adequately demonstrate this, I designed a set of scenarios in the
form of real-world use cases, which take place in a small house model.
Moreover, I designed and built a housing structure for the main system,
resembling a wall-mounted solution. Finally, the system was expanded,
becoming more complete and accessible, with the addition of convenient
mobile apps for iOS and Android, along with smartwatch apps.

4.1 Introduction 42
4.2 Smart display housing 43

4.3 House model 45

4.4 Components 48

4.5 Mobile apps 50

4.6 Smartwatch app 53

4.7 Communications 57

�42

4.2 Smart display housing

Finishing off the main system, I decided to build a structure to hold it
properly, with all of its components. I wanted this structure to resemble a
wall-mounted solution of the system, as it would be implemented in a house.

I constructed a 3D design of the housing, which you can see below:

Figure 4.1: 3D design of the smart display housing - front

�43

Figure 4.2: 3D design of the smart display housing - side

The design above was then implemented using aluminum and polyamide.
The materials were chosen carefully, based on their accessibility, workability,
and strength over weight.

The upper black rectangle is the 10.1” display of the system, while the lower
horizontal stripe consists of a fine mesh, beneath of which, the stereo
speakers are mounted, along with the quad-channel microphone. On the
back side of the display, resides the display driver board, the Raspberry Pi,
and all the interfaces and connections with the smart home. As a final small
detail, four rubber feet were placed at the bottom of the structure, to support
its weight and prevent it from scratching the surface beneath.

�44

4.3 House model

As I was planning the real-world scenarios for my system, I realized the
necessity for an environment to facilitate them. Having this in mind, I decided
to build a small house model to hold and demonstrate all of the use cases of
the system in a real home, as well as some new ideas, regarding comfort,
user experience, and energy saving.

Starting off, I designed a 3D model for the house, using Blender. I wanted to
achieve a balance between small and comfortable. On top of that, I wanted
to create an architecturally pleasing model, that resembles a real house. My
idea was to build the ground floor, of a house, consisting of a living room, a
kitchen, and a bathroom. The placement of the rooms, as well as the
dimensions, were chosen in a mixed procedure of visual design and
mathematical coherence. Below, you can see the final 3D design of the house
model:

Figure 4.3: 3D design of the smart home model 1

�45

Figure 4.4: 3D design of the smart home model 2

Figure 4.5: 3D design of the smart home model 3

The real model was created using strong marine plywood and painted with a
semi-glossy paint.

�46

After the model was built, I designed a set of interactive features for the
house. Typically in a smart home, we need to consider both inputs and
outputs. For the first, I chose a temperature-humidity sensor, and for the
interactive components I decided to use RGB LED lights, a ceiling fan, and a
smart window, that can be opened and closed electronically.

�47

4.4 Components

For the LED lights, I used an SMD 5050 RGB LED strip, which I placed
around each room individually. The strip was placed around the upper part of
the walls of each room. In order to preserve the aesthetic of the house, as
well as prevent direct light emission, I used an LED diffuser. The diffuser
consisted of an aluminum track for the LEDs, as well as a diffuser cap. I cut
the aluminum strip and placed it along the walls of each room, then I placed
the LEDs inside and finally closed it with the diffuser cap.

For the ceiling fan, I used a small phone-powered fan, which I disassembled
and re-wired to fit my purpose. The fan was then attached to an L-shaped
aluminum strip, in order to be brought to the middle of the living room,
without blocking the top-view of the model.

Finally, for the window, I chose to further expand my initially planned
functionality by using an LCD light valve. This allows me to electronically
control the transparency level of the window, switching between black
opaque, and transparent. On top of that, I designed a mechanism for
controlling the window position, allowing me to open and close the window
electronically. For the opening and closing mechanism, I used a stepper
motor for lifting the window. Below is the diagram with the design of the
mechanism:

�48

Figure 4.6: Window mechanism design diagram

The window mechanism design process was harder and more laborious than
I expected, but the final results were great.

Since the smart components needed a 12V power supply, I couldn’t power
them directly from the Raspberry Pi. To be able to control the various
components through the main system, I used an external 12V PSU, which’s
flow to each component is controlled by using Mosfets. Each Mosfet was
then connected to a GPIO pin of the Raspberry Pi, and after the
implementation of custom drivers, I managed to control the fan, the LEDs
state, and color in each of the three rooms, and the window opening and
closing, along with the dimming mechanisms.

�49

4.5 Mobile apps

The final step for providing a complete set of interactions for the system was
the development of companion apps. Since I wanted to implement a mobile
app, for both iOS and Android, I decided to use the benefits of modern web
technologies and build a Progressive Web App (PWA). A PWA is a web app,
along with a manifest and device-specific configurations, which help to
achieve a native-like experience. The major benefit from following this route
is the cross-platform capability, which makes both the development and the
maintenance of the app easier.

For the mobile app, I designed the User Interface using inVision Studio. As
with the main system, I tried to keep a clean style while providing all of the
necessary features for controlling a smart home.

�50

Figure 4.7: Mobile app design 1

�51

Figure 4.8: Mobile app design 2

�52

4.6 Smartwatch app

Although mobile apps are convenient and will cover the needs of most users,
having my Samsung Gear S3 smartwatch on my wrist gave me the idea to
take the interactions to the next level. Samsung smartwatches run on the
Tizen operating system. To develop a smartwatch companion app, I installed
and configured Tizen Studio, along with emulators and SDK’s that help with
the development.

To achieve the functionality I wanted for the companion app, I managed to
dig through and modify the core libraries for Tizen development, called Tau.
After days of iterative design and programming, I finally completed the app.
Through the implementation process, I was testing the app using the
provided emulators. When it was the time to install it on a real device, things
were not that easy. After a long process of developer account creations and
key management, I managed to install the app on my smartwatch, with
everything working as expected.

�53

Figure 4.10: Smartwatch app screen 1

Figure 4.11: Smartwatch app screen 2

�54

Figure 4.12: Smartwatch app screen 3

Figure 4.13: Smartwatch app screen 4

�55

Figure 4.14: Smartwatch app screen 5

Figure 4.15: Smartwatch app screen 6

�56

4.7 Communications

To manage all of the communications between the mobile apps, the
smartwatch apps, and the main system, my two options were Bluetooth and
HTTP. I quickly discarded the first option as it has a limited range and most
importantly, a limited number of parallel connections. Since I wanted to allow
for as many mobiles and smartwatches to be connected to the system, my
only viable option was HTTP.

For the HTTP communications, I could either use a local server, or a remote
server, with each option having its advantages and disadvantages. For the
local option, the system can only connect with devices that share the same
wifi network. The benefit, though, for this option, is a high-speed and reliable
connection. For the remote server route, devices can communicate from all
around the world, but the speed of the connection may vary.

The solution I chose was to use a remote server and build all of the
communications around WebSockets instead of HTTP. WebSockets is a full-
duplex TCP communication protocol, with minimal overhead, which results in
ultra-fast real-time communication. This allows me to combine remote
accessibility with fast connections, which ends up being the best solution
overall.

For the handling of the communications, I set-up an AWS EC2 server, to
handle the web socket messages from all the devices and pipe the requests
to the main system. This server acts as a “middle-man” between the devices
and the system, with each device only communicating with a single end-
point. The “middle-man” architecture, results in a self-untangling
communications system, where all the devices are constantly synced
together, as there is only one source of truth.

�57

Chapter 5 - Conclusions

5.1 Evaluation

Building the house model allowed me to test the system against real-world
situations. The system was tested in both the regular command-response
functionality, as well as in the home control and the automation scenarios.

For the first part, the system performed very well, as it could handle a
pleasant conversation and provide some great responses. Of course, the
intelligence behind the system is the Google Assistant, so in this process, I
tested mostly the integration aspect. The system was functioning as
expected with both the front-end and the back-end working flawlessly. The
speakers and the microphones were functioning correctly, the keyword
detection engine was responsive, and the User Interface was seamless, with
the home screen design and the structured visual response, as processed
through the output parser. Many types of question were tested, from
interactive games, weather reports, definitions, and everyday casual
questions.

The second phase of testing was about home control and the integration with
various types of smart components. The testing involved the communication
between the system, the mobile apps, and the smartwatch app, and the
handling of control commands, regarding smart home components.

5.1 Evaluation
5.2 Future

�58

As expected, the WebSockets communication was perfect, with almost zero
lag. Both device-system and device-device communications were performed
in real-time, with all of the devices staying synced at all times.

For the custom commands parser, I tested many variations of control
commands, such as “Turn on the kitchen lights”, “Make the lights blue”,
“Open the window”, and more. Everything worked as expected, and the
system provided a visual and audio response while executing the appropriate
action.

Although the system worked flawlessly, there is still one aspect that could be
improved. It seems that the bottleneck of the system is the Raspberry Pi. This
project really put Raspberry Pi to its limits, in power, memory, and processing
capacity. In a real-world application, I would prefer a more robust system,
that is expandable and more stable in terms of power.

�59

5.2 Future

Testing the system in real-life scenarios, with the creation of the house
model, led me to realize some important aspects regarding the future of this
system.

As for the day-to-day use of the system, as an all-in-one personal assistant
solution, the project can be launched as a cross-platform desktop application
for everyone to download and try. There are two additions that can be added
to the system, regarding this use-case. The first one is the addition of other
assistant back-ends, such as the Amazon Alexa, and Microsoft Cortana, with
the user being able to choose from them. The second addition, is the
integration with other desktop applications, such as web browsers, email
clients, and music players.

For the integration of the system with smart components, there are two viable
options:

The first option is to ship the system as a complete package, along with all of
the necessary hardware, including an embedded computer, speakers,
microphones, and a display. This option is along the lines of the smart-
display devices that start to appear on the market nowadays.

The second option is to ship the system, in a DIY package, where some of
the hardware components are provided, and the rest can be bought
separately, and configured by the customer. This option is the easiest and the
most cost-effective to follow, and can be implemented iteratively.

Apart from the two options above, in order for the system to have a seamless
integration with off-the-shelf smart components, an additional layer of
communication must be built, to support the available formats of the market
today. Of course, there are a lot of services providing this layer as of today,

�60

so the most viable solution would be to integrate one of these into the
system.

�61

References

1. https://www.adafruit.com/

2. https://www.pololu.com

3. https://www.raspberrypi.org/blog/

4. https://www.sparkfun.com/

5. https://www.wikipedia.org/

�62

https://www.adafruit.com/
https://www.pololu.com/
https://www.raspberrypi.org/blog/
https://www.sparkfun.com/
https://www.wikipedia.org/

Appendix A - Photos of the completed system

Figure A.1: Smart display housing - front

A-�1

Figure A.2: Smart display housing - back

A-�2

Figure A.3: Smart home model - top

A-�3

Figure A.4: Smart home model - perspective

A-�4

