
Thesis Dissertation

MBDISASS: ANALYSIS OF MIXED BINARIES

UNIVERSITY OF CYPRUS

COMPUTER SCIENCE DEPARTMENT

May 2018

UNIVERSITY OF CYPRUS
COMPUTER SCIENCE DEPARTMENT

mbDisass: Analysis of Mixed Binaries

Michalis Papaevripides

Supervisor

Dr. Elias Athanasopoulos

Thesis submitted in partial fulfilment of the requirements for the award of

degree of Bachelor in Computer Science at University of Cyprus

May 2018

Acknowledgements

I would like to express my sincere gratitude to my thesis advisor Dr. Elias Athanasopou-

los for guiding me throughout my research.

I am also grateful for my family and friends who provided me with support and con-

tinuous encouragement throughout the process of the thesis.

Abstract

Static binary analysis is vital for the reverse engineering community. Binary instrumen-

tation and vulnerability search at the binary level rely on the good understanding of the

program’s control flow using static analysis tools. In addition, as control flow hijacking is

one of the most widely used attacks for software exploitation performed by attackers, now

is more important than ever to make sure modern software won’t constitute easy targets

for the attackers.

The core practice used by attackers in order to achieve control flow hijacking is by tam-

pering control data, namely data that are used by the programs’ indirect branches in order

to achieve jumps determined on the runtime rather at the compilation time. For example

indirect branches are utilized in C through function pointers and in C++ through VTable

pointers in order to achieve dynamic dispatching.

Understanding a program’s flow becomes even more difficult not only because modern

software gets more complex but also because many programming languages get inter-

mixed together. Binaries with intermixed programming languages could pose a great

danger in the future since languages like Rust that doesn’t enforce memory safety at run-

time could be used for tampering control data and consequently achieving control flow

hijacking.

We propose mbDisass, a static binary analysis tool for mixed binaries. mbDisass’s

analysis consists of two phases. The first phase is responsible for disassembling and

storing the functions of the disassembled executable in a database. The second phase is

responsible for loading the disassembled functions from the previous phase, finding all the

indirect branches contained in the functions and finally classifying each indirect branch

to a programming language among C,C++ and Rust.

Contents

1 Introduction 1

2 Background 4
2.1 Disassembly . 5

2.2 Binary Static Analysis . 5

2.3 Memory Safety Exploits . 5

2.4 Defences against Memory Safety Exploits 6

2.4.1 Data Execution Prevention . 6

2.4.2 Address Space Layout Randomization 6

2.4.3 Stack Cookies . 7

2.5 Control flow hijacking . 7

2.6 Control Flow Integrity . 8

2.7 Indirect Branches . 9

2.7.1 Function Pointers . 9

2.7.2 Virtual Tables Pointers . 10

2.8 Rust . 10

2.9 Capstone . 11

2.10 Nucleus . 11

2.11 LLVM Compiler Infrastructure . 12

2.12 LLVM Intermediate Representation . 12

2.13 SQLite3 . 13

3 Architecture 14
3.1 Disassembler . 15

3.1.1 Binary analysis and disassembly 15

3.1.2 Structures and Database creation 16

3.2 Heuristic . 16

3.2.1 Indirect Branches Extraction . 16

3.2.2 Indirect Branches Language Classifying 17

4 Implementation 19

4.1 Disassembler . 19

4.2 Heuristic . 23

4.3 Heuristic Rules . 24

4.3.1 C++ Heuristic Rules . 25

4.3.2 C Heuristic Rules . 26

4.3.3 Rust Heuristic Rules . 28

4.3.4 Previous Knowledge Rule . 32

4.3.5 Build-In Heuristic Rules . 32

4.4 LLVM IR - Bitcode Analysis . 33

5 Evaluation 34
5.1 Runtime performance of the Disassembler 35

5.2 Runtime performance of the Heuristic 36

5.3 Indirect Branches Finding . 37

5.4 Indirect Branches Classifying . 38

5.4.1 Ground Truth . 39

5.4.2 False Negatives . 40

5.4.3 Challenging Cases . 41

6 Discussion - Future Work 42
6.1 Disassembler . 42

6.2 Heuristic . 42

7 Related Work 44
7.1 Static Binary analysis . 44

7.2 Control Flow Attacks and Defences . 44

8 Conclusion 46

List of Figures

2.1 Stack Canary example . 7

2.2 Return Oriented Programming(ROP) example 8

2.3 Control Flow Hijacking example . 9

3.1 mbDisass Architecture . 15

4.1 Hexadecimal preprocessing before Capstone example 20

4.2 Address Formatting example. 21

4.3 Function Structure creation example. 22

5.1 mixBinaryExample.o architecture . 39

List of Tables

4.1 Database Function table example . 23

5.1 Runtime performance of the Disassembler 35

5.2 Runtime performance of the Heuristic 36

5.3 Indirect Branches Finding . 37

5.4 Indirect Branches Classifying . 38

5.5 mbDisass’s results of mixBinaryExample.o 41

List of Listings

2.1.1 Binary code in hexadecimal notation to disassembly example 5

2.6.1 Control Flow Integrity example . 10

2.7.1 Indirect Branch example . 11

2.7.2 Vtable example . 12

3.2.1 C indirect Branches example . 17

3.2.2 Rust indirect branches example. 18

4.3.1 Heuristic Rules 1,2 C++ example. 25

4.3.2 Heuristic Rule 3 C example. 27

4.3.3 Heuristic Rule 4 C example. 27

4.3.4 Rust Conventional Function Pointer example. 28

4.3.5 Heuristic Rule 5 Rust example. 29

4.3.6 Heuristic Rule 6 Rust example. 30

4.3.7 Heuristic Rule 7 Rust example. 31

4.3.9 Heuristic Rule 9 Build-In example. 32

4.4.1 C program in both LLVM IR and Disassembly 33

5.4.1 mixBinaryExample.o . 40

Chapter 1

Introduction

Static binary analysis is vital for the reverse engineering community. As software gets

more complex, a need for powerful static binary analysis tools arise. Static binary analy-

sis help the reverse engineering community to understand how a program works without

the need of the source code. In addition binary instrumentation [12] and vulnerably

search [11] at the binary level rely on the good understanding of the program’s control

flow.

Software attacks that alternate a program’s control flow have been widely used for a long

time. Such exploits are divided into two categories, forward edge attacks and backward

edge attacks in regards to the Control Flow Graph (CFG).In the last few years there has

been an increase number of software attacks using the forward edge rather the backward

edge. This is due to the fact that the computer security research community success-

fully managed to protect the backward edge by securing the return addresses and other

vital stack based data using stack cookies and other hardware methods [8, 14]. However

forward edge attacks are still an unsolved problem as there is not an efficient defence yet

that prevents these attacks. Control flow hijacking is one of the most widely used attack in

software exploitation . In order to achieve control flow hijacking, attackers tamper control

data to divert a program from its intended flow. Function pointers used for target resolving

at runtime in languages like C and C++ and virtual function table pointers called VTable

pointers for dynamic dispatching constitute the main targets to achieve control flow hi-

jacking [25].

Modern commercial software mix various programming languages to achieve their tar-

gets. For example Mozilla Firefox intermixes C++ and Rust [7]. As a result, binaries

1

originated from different programming languages are running simultaneously. Conse-

quently indirect branches originated from different programming languages get mixed

together. For this reason we built mbDisass, a static binary analysis tool that disassem-

bles an executable, finds the indirect branches included in a binary file and classifies them

to a programming language using heuristic rules. The programming languages that the

heuristic rules search for are C, C++ and Rust.

Rust statically enforces memory safety at compilation time for efficiency reasons in con-

trast with other programming languages which enforce memory safety at runtime [20].

The previous statement in combination with the fact that Rust binaries get mixed with bi-

naries originated from other programming languages raises potential exploitation threads.

For example we believe that if an attacker tampers the control data of a programming

language which enforces memory safety at runtime like a VTable pointer of C++ and uses

that exploit to manipulate the control data coming from Rust, could result in catastrophic

consequences as this would result in cancelling the safety guarantees of Rust.

Despite the fact that there are many defences that protect against software exploitation

[2, 8, 14, 22, 24] there isn’t an efficient and effective defence against control flow hijack-

ing. Even with the core defence against it which is Control Flow Integrity [1], software is

still vulnerable to control flow hijacking [6,9,10,23]. For this reason, is crucial to find the

indirect branches contained in a binary and recognize their origin programming language.

This procedure is very important because it could help the reverse engineering commu-

nity to identify early on various vulnerabilities that could pose a thread in the future. In

addition identifying the indirect branches in the binary could be very helpful for better

understanding the control flow of a program.

The above effort has some serious challenges. Firstly it is well known that disassem-

bly is an open problem [3]. Inaccuracies in disassembly could result in poor static binary

analysis, consequently an awful indirect branch detection. Moreover, with an extension

to the disassembly, accurate function detection constitutes a crucial need regarding the

indirect branches resolving. However function detection tools face two main problems,

function start detection and function boundary detection, these two can be a difficult task

as they face challenging cases like padding, unreachable code and tail calls [4]. Finally,

classifying indirect branches to a programming language is a difficult task. The reason

behind this is because there isn’t a single indirect branch pattern at the binary level that

could determine the origin programming language.

mbDisass is divided into two main sections, the Disassembler and the Heuristic. The

2

disassembler loads the executable’s binary and disassembles it in batches to generate

an accurate disassembly. Afterwards the disassembler creates data structures contain-

ing the disassembly and the functions’ entry points. Lastly, the heuristic finds the indirect

branches and uses a number of heuristic rules to classify them in each of the three pro-

gramming languages, C, C++ and Rust. The heuristic rules try to identify patterns that

show up at the binary level from each of the three programming languages mentioned

before.

We present mbDisass, a static binary analysis tool for mixed binaries that locates and

classifies indirect branches to a programming language. It provides the following contri-

butions:

• A mixed binary disassembler.

• Successfully finds over indirect branches contained in an executable/library with a

high accuracy.

• Extensibility for analysing indirect branches from programming languages other

than C,C++ and Rust.

• Fast indirect branches analysis.

3

Chapter 2

Background

2.1 Disassembly . 5

2.2 Binary Static Analysis . 5

2.3 Memory Safety Exploits . 5

2.4 Defences against Memory Safety Exploits 6

2.4.1 Data Execution Prevention . 6

2.4.2 Address Space Layout Randomization 6

2.4.3 Stack Cookies . 7

2.5 Control flow hijacking . 7

2.6 Control Flow Integrity . 8

2.7 Indirect Branches . 9

2.7.1 Function Pointers . 9

2.7.2 Virtual Tables Pointers . 10

2.8 Rust . 10

2.9 Capstone . 11

2.10 Nucleus . 11

2.11 LLVM Compiler Infrastructure . 12

2.12 LLVM Intermediate Representation 12

2.13 SQLite3 . 13

4

2.1 Disassembly

Disassembly is the translation of machine language into assembly language which is a

human-readable format and constitutes the foundation for static binary instrumentation

research. However it is well known that is an unsolved problem, as a result, static analysis

becomes even more challenging. Complex constructs like in-line data and padding result

most of the times to an inaccurate disassembly [3]. Accurate disassembly is crucial for

binary based research as it enables binary-level vulnerability search, binary-level anti-

exploitation systems and generally program analysis when source code is not available.

0x55 0x48 0x8b 0x05 0xb8 0x13 0x00 0x00

a: Binary code in hex

push rbp
mov rax , qword p t r [r i p + 0 x13b8]

b: Disassembly

Listing 2.1.1: Binary code in hexadecimal notation to disassembly example. As shown

in the Listing, the left one 2.1.1a represents binary code in hexadecimal notation. As

shown from the right Listing 2.1.1b, after disassembling the binary code we get a human

readable representation which makes it feasible for static analysing an executable.

2.2 Binary Static Analysis

Binary Static Analysis is the act of analysing the binary of a program without executing

it. Binary Static Analysis is one of the key elements for human reverse engineering. Not

only it is crucial for understanding complex binary code but also vital for discovering

vulnerabilities that could pose a threat in the future.

2.3 Memory Safety Exploits

Memory corruption bugs constitute the main source of software exploitation. To achieve

a memory safety exploit, the attacker can either dereference an out-of-bounds pointer

which is called spatial error, or dereference a dangling pointer which is called a temporal

error [25]. Using dangling pointers namely those that point to a deleted objects and

invalid pointers namely those that point to an invalid address are two core memory safety

exploits that are used by attacker to take control of a program and execute malicious

5

code. Dangling pointers are mainly used in virtual table hijacking and invalid pointers in

function pointer hijacking.

2.4 Defences against Memory Safety Exploits

Memory Safety Exploitation has bother security research community for a long time be-

cause by using a bug, attackers can gain malicious code execution over a program, this

might result in the diversion of the control flow with unintended code execution. Some of

the most widely deployed defences against this issue follow below.

2.4.1 Data Execution Prevention

Data Execution Prevention (DEP) [2] combines both software and hardware technolo-

gies in order to prevent input data execution in regions like the stack and the heap. Basi-

cally it determines the executable regions and non executables regions in order to prevent

memory safety exploits, for example heap spraying and stack shell code injection are no

longer immediate threads without first surpassing the DEP. Nonetheless Return Oriented

Programming(ROP) [6,9,10,23] constitutes on of the main workaround against DEP. At-

tackers take advantage of small chunks of code ending with "ret", called gadgets. When

correctly placed data in the stack gets combined with a chain of gadgets then the pro-

gram diverts from its indented control flow and as a result, malicious code execution is

achieved. An example can be seen in Figure 2.2. Consequently Control Flow Hijacking

still occurs with DEP in place.

2.4.2 Address Space Layout Randomization

Address Space Layout Randomization (ASLR) [22, 24] is considered a very effective

defence against memory safety exploits as it randomizes the processes loading address

space layout. The process loading address is a vital information for developing software

exploits, thus without it, attackers are unable to develop any exploits. However this de-

fence is weak against Information Leaks. Therefore Memory Safety Exploits can still

occur with ASLR in place.

6

2.4.3 Stack Cookies

Figure 2.1: Stack Canary example. The above figure illustrates an example of how a stack

cookie works. Basically as the buffer grows up, in case it exceeds its fixed size then the

stack cookie prevents it from overwriting the return address.

Stack cookies [8, 14] (Figure 2.1) placed in the stack to prevent overwriting control data

like return addresses using a linear overflow. When a program writes more data to a buffer

than its fixed allocated size, its called Buffer Overflow and it used to be a major exploita-

tion thread in the past until the deployment of stack cookies. Nevertheless, because of the

use of stack canaries which mainly protect the backward edge, attackers shifted their fo-

cus to the forward edge exploitation. The previous statement in combination with the fact

that information leaks can compromise the protection of stack cookies, results programs

to still be vulnerable to software exploitation even with stack cookies in place.

As we can conclude, despite the promising defences that are widely deployed, we still

face software exploitation threats that manage to take control of our software.

2.5 Control flow hijacking

A common memory-corruption method used in software exploitation these days is Control

Flow Hijacking where an attacker tries to divert the flow of a program by overwriting

control data. Control flow is divided into two categories, Backward edge and Forward

edge. Backward edge is used when a callee function returns to the caller function address

and Forward edge is used by functions pointers and virtual function tables pointers used

for dynamic dispatching. Even though several widely adopted techniques have been used

to protect the backward edge, protecting the forward edge remains an open problem. This

happens because Control Flow Integrity(CFI), the technique used for protecting forward

edge has high overhead and impractical assumptions, as a result it hasn’t been integrated

in production compilers. A simplified example of Control Flow Hijacking can be seen

7

Figure 2.2: Return Oriented Programming(ROP) example. The above figure illustrates

a simplified example of a ROP attack. As it can be seen, the attacker uses small pieces

of binary code ending with "return" shown at the right and there addresses are carefully

placed on the stack shown on the left. As a result when a small piece ends with a "return",

the program the proceeds by jumping on the next addresses placed in the stack.

from the Figure 2.3. In this specific occasion, the register "%rax" holds the address of

the function that the program is going to call next. If an attacker manages to temper any

control data, namely the register "%rax" and replace its target address with an address

which points to a malicious code, then the attacker manages to gain control of the program

and gains arbitrary code execution.

2.6 Control Flow Integrity

Control Flow Integrity (CFI) [1] (Listing 2.6.1) is the main protection method against

Control Flow Hijacking aside from ASLR, DEP and stack cookies that were previously

mentioned. CFI uses a finite static Control Flow Graph to restrict unintended Control

Flows from those intended by the programmer. Despite being an effective method, it

has its drawbacks. Firstly, its high overhead produced when building the Control Flow

Graph and checking every jump of the program if it is legitimate using labels makes it

impractical to be integrated in production compilers. In addition, Control Flow Integrity

builds its Control Flow Graph using source code which most of the times is not available

in commercial software, as a result Control Flow Integrity can’t protect from any Control

Flow attacks.Despite Control Flow Integrity promising capabilities against Control Flow

Hijacking, it is still prone to some attacks. For instance, code reuse attacks are able to

bypass CFI using ROP [10] exploitation.

8

Figure 2.3: Control Flow Hijacking example. The above Figure illustrates a simplified

example that shows that a program supposed to call the function "foo" but instead the

attacker temper the control flow of the program by changing the control data "%rax"

register and replace it with the "maliciousFunction" address .

2.7 Indirect Branches

Indirect branches (Listing 2.7.1) are control program instructions that instead of having

precomputed address for the next instruction that will get executed, they resolve that

address at runtime. Having said that, attackers tamper control data, namely the addresses

used for the calls thus achieve control flow hijacking, one of the currently most popular

attacks in software exploitation. Below follow two examples of mechanisms provided by

the programming languages C and C++ that utilize indirect branching.

2.7.1 Function Pointers

Programming language C uses function pointers (Listing 2.7.1) in order to achieve indi-

rect branching. Basically, function pointers are used for calling functions but what differs

from a direct branch is that when a function pointer is called, the address that holds at

that specific moment of the call is the function address that is going to be called. The

significance behind this, is the fact that the target address gets resolved at runtime rather

at the compiling time like direct branches.

9

1 void foo () {
2 }
3 i n t main () {
4
5 foo () ;
6 . . .
7 foo () ;
8 . . .
9 re turn 0 ;

10 }

a: C source code b: Control Flow Integrity

Listing 2.6.1: Control Flow Integrity example. As shown by 2.6.1a, "foo" function is

called in two different places in the "main" function. This created two lables (L1,L2) that

permits foo to return. In other case "foo" cannot return. This can be seen by the final

arrow that tries to return to a place but because it doesn’t belong to a valid list of labels

the return is failed.

2.7.2 Virtual Tables Pointers

Programming language C++ uses virtual function tables called VTables for dynamic dis-

patching. As can be seen by Listing 2.7.2, Parent is a superclass and Boy and Girl are

two subclasses. The input will determine if p1 will be instance of Boy or instance of Girl.

As a result compiler doesn’t know which of the two functions is going to be called. For

this reason the correct function is going to be selected by the virtual function table which

holds all the virtual functions during runtime.

2.8 Rust

Rust [20] is a systems programming language which statically enforces memory safety at

compilation time in contrast with other programming languages which enforce memory

safety at runtime. This happens for efficiency reasons. In addition, Rust uses a packet

manager called Cargo to provide Foreign Function Interface(FFI). Specifically it provides

efficient C bindings.

10

1 void foo () {
2 }
3 void b a r () {
4 }
5 i n t main () {
6 . . .
7 void (∗ f u n c P t r) () ;
8 i f i n p u t < 0
9 f u n c P t r = &foo ;

10 e l s e
11 f u n c P t r = &b a r ;
12 f u n c P t r () ;
13 foo () ;
14 re turn 0 ;
15 }

a: C source code b: Indirect Branch Illustration

Listing 2.7.1: Indirect Branch example. As can be seen by 2.7.1a, the program uses both

direct and indirect branches. Line 13 which includes the direct branch, during compilation

time the target address is known so it is a fixed value in the executable’s binary code.

However Line 12 includes an indirect branch which its target address will be determined

by the input during runtime. As a result the indirect branch has a variable target address

which can be changed during runtime contrary to the direct branch which has a fixed value

2.9 Capstone

Capstone [19] is an open source multi-architecture disassembly framework which has

been used as the core disassembler for the executables in the mbDisass.

2.10 Nucleus

Nucleus [4] is an open-source function detection tool for binaries which has been used in

mbDisass to provide further information about the indirect branches, namely to split up

the disassembly into functions and give us a more precise analysis. Nucleus detects func-

tions at the Control Flow Graph - level, this means that it can detect functions regardless

if the binary has been stripped.

11

1 c l a s s P a r e n t {
2 p u b l i c : v i r t u a l void t a l k () {}
3 } ;
4
5 c l a s s Boy : p u b l i c P a r e n t {
6 p u b l i c : void t a l k () {}
7 } ;
8 c l a s s G i r l : p u b l i c P a r e n t {
9 p u b l i c : void t a l k () {}

10 } ;
11
12 i n t main (i n t argc , char ∗a rgv []) {
13
14 P a r e n t ∗p1 ;
15 i n p u t == t r u e ? p1 = new Boy () : p1 = new G i r l () ;
16 p1−> t a l k () ;
17 re turn 0 ;
18 }

a: C++ source code b: VTable example

Listing 2.7.2: VTable example. 2.7.2a shows a C++ program which uses dynamic dis-

patching. As it can be seen by 2.7.2a it is not known whether p1 is an instance of Boy or

an instance of Girl, this will be determined during runtime. Thus when "talk" function is

called in line 16 the virtual table will find the correct offset of the targeted function and

call it.

2.11 LLVM Compiler Infrastructure

The LLVM compiler infrastructure [13] provides modular compiler technologies. Its de-

sign gives the ability to add custom passes to the compiler flow that perform transforma-

tions, optimizations and build analysis results. What’s important with the LLVM compiler

Infrastructure is the fact that all the phases in compilation are represented using LLVM

Intermediate Representation (IR).

2.12 LLVM Intermediate Representation

LLVM compiler infrastructure uses Intermediate Representation(IR) throughout all its

compilation phases. The purpose of this, is not only to provide a human readable assembly

language representation but also to make analysis and debug a lot easier.

12

2.13 SQLite3

SQLite3 [16] is a public domain relational database management system written in C that

provides applications, the capability for internal data storage.

13

Chapter 3

Architecture

3.1 Disassembler . 15

3.1.1 Binary analysis and disassembly 15

3.1.2 Structures and Database creation 16

3.2 Heuristic . 16

3.2.1 Indirect Branches Extraction 16

3.2.2 Indirect Branches Language Classifying 17

mbDisass is static analysis tool for binaries that tries to identify every indirect branch con-

tained in an executable/library and determine their origin programming language using

heuristics rules. It is divided into two main sections, the Disassembler and the Heuris-

tic. The Disassembler which loads the executable’s binary and disassembles it in batches,

finds the functions’ entry points and combines them with the disassembly to create struc-

tures that hold the disassembled instructions separately based on the function they belong

to.

Afterwards, these structures are saved in a persistent database to eliminate the need for

repeating the section of Disassembler in future executions unless the binary changes. Fi-

nally, the Heuristic gets called. It loads the structures created by the previous section

from the database, it finds the indirect branches and analyses them using heuristic rules to

classify them in each of the three programming languages, C, C++ and Rust.

14

(a) Disassembler (b) Heuristic

Figure 3.1: mbDisass Architecture

3.1 Disassembler

The Disassembler section is divided into two phases:

1. Binary analysis and disassembly: Using conditions, the binary is divided and gets

disassembled in batches.

2. Structures creation and database creation: Combining the functions’ entry points

with the executable’s disassembly to create data structures that hold each function

separately and then save them to a persistent database.

3.1.1 Binary analysis and disassembly

Accurate disassembly is crucial for static binary analysis. Through the various tests with

mbDisass it showed that when the binary code that is going to be disassembled receives

some kind of preprocessing, results in a more accurate disassembly. For this reason the

objective of this step is to divide the binary into batches and then disassemble each batch

separately. This approach helps disassembly overcome problems when different challeng-

ing cases arrive like extreme uses of padding.

15

3.1.2 Structures and Database creation

This step combines information about the executables’ functions, namely entry points

and sizes with the executable’s disassembly to create structures which hold the informa-

tion mentioned before. This happens because when the Heuristic phase begins and the

heuristic rules start analysing the different functions, they isolate the area close to the ac-

tual indirect branch to recognize a specific programming language using a small number

of instructions as some patterns need precision in order be successfully recognized by the

correct heuristic rule. In addition, to avoid repeating the whole Disassembly section in

future executions when having an already analysed executable, the structures are saved

to a persistent database that can be retrieved at any time by the Heuristic to perform its

analysis.

3.2 Heuristic

The analysis following the disassemble of the executable is divided into two phases:

1. Indirect Branches Extraction: Using static analysis to extract the indirect branches.

2. Indirect Branches Language Classifying: Using a set of heuristic rules to determine

the origin programming language.

3.2.1 Indirect Branches Extraction

After retrieving the structures containing the functions from the previous step from the

database, the indirect branches finding begins. The simple pattern that the indirect branches

have at the binary level makes it easy to extract them by a single pass of the disassembly.

When an instruction is a call or a jump to a register, then it is considered as an indirect

branch by mbDisass.

16

3.2.2 Indirect Branches Language Classifying

Now that the indirect branches have been obtained from the disassembly, is time to try to

classify them to any of the three languages C, C++ and Rust. We used several heuristic

rules that each one serves one of the three languages mentioned above, but every rule

follows the same approach. The heuristic rules use a number of instructions appearing

above the indirect call to identify the origin programming language. When a rule gets

enabled, the percentage of the language that was written for, increases. At the end, the

language with the highest percentage is considered the corresponding language of the

indirect branch.

Heuristics Rules The heuristics rules are basically used for classifying the indirect

branches. Each rule was written to identify a single pattern produced by a single pro-

gramming language. The reason that indirect branches classifying is not a standardised

method is because there isn’t a single pattern that can determine the producing program-

ming language of an indirect branch.

1 void i n d i r e c t F u n c C a l l e e () {
2
3 }
4
5 i n t main () {
6
7 void (∗ f u n c P o i n t e r) () ;
8 f u n c P o i n t e r = &i n d i r e c t F u n c C a l l e e ;
9 f u n c P o i n t e r () ;

10 re turn 0 ;
11 }

a: C source code

14004 d6 < i n d i r e c t F u n c C a l l e e > :
2. . .
3
4
54004 e0 <main > :
6
7. . .
8mov −0x8(% rbp) ,% r a x
9mov $0x0 ,% e d i
10c a l l q ∗%r a x
11. . .

b: Disassembly indirect branch

Listing 3.2.1: The above listing demonstrates the C pattern occurring when an indirect

branch is created by a function call using a function pointer . As it can be seen when the

function is called using a function pointer, a "mov" instruction(Listing 3.2.1b - Line 8)

appears that moves the address of the target function to the calling register.

As shown in Listing 3.2.1b (Lines 8 - 10) there are three lines of disassembly produced

by the C indirect branch. The first "mov" instruction represents the move of the callee ad-

dress to the calling register. The second "mov" instruction represents the arguments taken

by the callee function, in this case there are none. Finally the call instruction represents

the indirect branch to the address , namely "foo" using the register "rax".

17

1 fn i n d i r e c t _ f u n c _ c a l l e e () {
2 }
3
4 fn i n d i r e c t _ f u n c _ c a l l e r (f u n c _ p o i n t e r : fn

()) {
5 f u n c _ p o i n t e r () ;
6 }
7
8 fn main () {
9

10 i n d i r e c t _ f u n c _ c a l l e r (
i n d i r e c t _ f u n c _ c a l l e e) ;

11
12 }

a: Rust source code

16db0 < . . . i n d i r e c t _ f u n c _ c a l l e e . . . > :
2. . .
3
46 dc0 < . . . i n d i r e c t _ f u n c _ c a l l e r . . . > :
5. . .
6c a l l q ∗%r d i
7. . .
8
96dd0 < . . . main . . . > :
10. . .
11push %r a x
12l e a −0x28(% r i p) ,% r d i # 6db0
13c a l l q 6 dc0 < . . . i n d i r e c t _ f u n c _ c a l l e r . . . >
14. . .

b: Disassembly indirect branch

Listing 3.2.2: The above listing demonstrates the Rust pattern occurring when an indi-

rect branch is created by a function call using a function pointer . As it can be seen,

above the indirect branch(3.2.2b - Line 6) there isn’t any "mov" instruction that is used

for transferring the target function address to the calling register. This is due to the fact

that the target address was already transferred to the calling register in the "main" func-

tion(3.2.2b - Line 12) because the target function was sent as argument to the function

"indirect_func_caller".

As shown in Listing 3.2.2b - Line 6) there is only one line of disassembly, the actual

call. This happens due to the fact that contrary to the C program, in the Rust program

the function pointer gets "foo’s address from main as an argument so there is no "mov"

instructions above the actual call.

As a result of this example, we can conclude that despite the fact that in both situations

a function pointer is used to call a function(foo), C and Rust have both similarities and

differences in the patterns they produce.

18

Chapter 4

Implementation

4.1 Disassembler . 19

4.2 Heuristic . 23

4.3 Heuristic Rules . 24

4.3.1 C++ Heuristic Rules . 25

4.3.2 C Heuristic Rules . 26

4.3.3 Rust Heuristic Rules . 28

4.3.4 Previous Knowledge Rule . 32

4.3.5 Build-In Heuristic Rules . 32

4.4 LLVM IR - Bitcode Analysis . 33

mbDisass consists of two sections, the disassembler which is responsible for the prepa-

ration of the data structures containing the disassembly of the loaded ELF file and the

Heuristic which is responsible for finding and classifying each indirect branch to a pro-

gramming language. mbDisass was was built using python version 2.7 and uses only

libraries provided by the language or open-source software.

4.1 Disassembler

The first step of our analysis starts by calling Nucleus [4]. As Nucleus is written in C++

with no python binding we used subprocess.process() to spawn a new process in order to

execute Nucleus and also have access to its output. After Nucleus finishes, it returns the

19

functions’ entry points and sizes which will be used later for splitting the disassembly of

the ELF into functions.

Then mbDisass uses the open-source python library pyelftools [5] to load the ".text"

section and its starting address of the ELF file in hexadecimal notation. The binary code

of the ".text" section is loaded in lines of sixteen bytes each. ‘

Prior calling the Capstone disassembler, the hexadecimal representation of the ".text"

section is being processed using regular expressions and escape character removal to

transform it in the representation that Capstone can process, for example Listing 4.1

shows that ’31ed’ transforms into ’\x31\xed’). As mentioned before, disassembly is an

Figure 4.1: Hexadecimal preprocessing before Capstone example. When pyelftools load

an executable, the binary is represented like the first box. In order for Capstone to disas-

semble the binary, it has to be in the format shown in the second box. For this reason the

binary showed in the first box gets formatted to the binary showed in the second box.

unsolved problem, thus despite Capstone’s outstanding capabilities, sometimes it seems

to fail to return a precise disassembly when given a whole executable binary at once. As

a workaround to this problem, we analyse the executable’s binary to detect padding and

disassemble it in batches, this results to better disassembly and consequently to a more

accurate indirect branch detection. When splitting the binary code in the wrong places

results in an inaccurate disassembly, for this reason we have added some conditions to

ensure the regular flow of the program. Nevertheless these conditions are very time-

consuming which affect the final runtime performance of the Disassembler.

For example Listing 4.1 shows some lines of binary code taken from Mozilla’s Firefox li-

brary libmozavcodec.so. It is noticeable that Line 3 contains excessive padding which re-

sults in Capstone failing to disassemble anything after Line 3. The conditions mentioned

before take care of these kind of situations as they split the binary code in batches and

also verify that the batches won’t make the Capstone to fail to generate the corresponding

disassembly. As a result this is the most time-consuming step of the Disassembler

Capstone is adjusted to produce AT&T representation of the disassembly as the heuristic

rules that will be discussed later are written with AT&T representation in mind. More-

over, we used the Capstone’s settings that produce the disassembly in 64-bit code for the

20

1 . . .
2 0 d7dae13 00 e9dbf9 f f f f 6 6 0 f 1 f840000
3 00000000 00000000 00000000 00000000
4 5581 f a f f f f f f 0 f b 8 b7b1bbbe 4889 e50 f
5 . . .

Listing 4.1: Binary from Mozilla’s Firefox libmozavcodec.so

in hexadecimal notation example. Line 3 has excessive

padding which makes Capstone to stop disassembling anything

below Line 3. Even though this is an example, its very com-

mon in commercial software

x86 architecture.

As Nucleus and Capstone return the hexadecimal addresses in different representation

(for example, Figure 4.2 shows that Nucleus returns 0x00000000004003e0, in contrast

to Capstone that returns 0x4003e0) we used a string formatting pre-processing to bring

Capstones’ addresses in Nucleus’s representation.

Figure 4.2: Address Formatting example. Capstone returns instructions’ addresses in the

format showed in the first box, on the other hand, Nucleus returns functions’ entry points

in the format showed in the second box. For consistency reasons Capstones’ addresses

are transformed in the format represented in the seconds box.

Afterwards, we combine both the functions’ entry points and sizes with the disassembly

of the ".text" section of the ELF file to create data structures that hold every function of

disassembly separately with their corresponding entry points and sizes. We used the entry

points addresses and the functions’ sizes to determine the last address of each function.

By iterating simultaneously the functions’ entry points and the disassembled instructions,

we match each function entry point with the the instructions that correspond to its func-

tion boundaries. One challenge we face in this phase is that Nucleus in rare cases returns

a size not reflecting the real size of the function, as a result, that function matches more

instructions than what it actually has. To solve this problem, we check if the current

instruction that is going to be matched with a function has smaller address than the next

entry point in line. For example Figure 4.3, we have the entry points A=0x6f80 with func-

tion size 79175 bytes and the following entry point is B=0x6f90, the current inspecting

instruction is I=0x6f90, what is going to happen here, before assigning I to A it checks if

21

Figure 4.3: Function Structure creation example. The example presented above shows

how the function structures are created, namely the instructions get matched to their cor-

responding function using the their addresses. By combining the entry points and the

sizes of each function we get their boundaries

I is higher or equal to B entry point and then it proceeds, as we can see for this example I

isn’t going to be assigned to A (actual example from a rust executable) but to B. Another

challenge we face in this phase is that Nucleus in rare cases misses some function entry

points. In these situations, we add all the instructions into one data structure to continue

to the indirect branch detection by the Heuristic but with no function information.

mbDisass can be executed in two modes, one that does the above procedure only for

the input file and another mode that also includes the dynamic dependencies of the input

file. As a result the Heuristic finds both the indirect branches of the executable itself and

also the indirect branches of the dynamic dependencies.

As mentioned before, the phase of the Disassembler creates enough overhead that the need

for making this section redundant, arise. In order to achieve that, after the structures are

created, they get saved in a database using SQLite3 [16]. As a result, unless an executable

has changed, the Disassembler section needs to run once for each executable/library, then

the Heuristic section can run at any time. An example representing how the data is saved

in the database can be seen from the Table 4.1 . Each row represents an object containing

a function with its instructions. The first column represents the name of binary file that

contains the current function, the second column represents the entry point of the function,

namely the beginning address of the current function, the third column represents the size

of the current function which combined with the entry point said before is used to locate

each function’s boundaries. Lastly, the fourth column represents a serialized object of the

function corresponding to the current row. The Python library cPickle [17] was used for

serializing the objects. By serializing the objects, they get transformed in a format that

22

executable/library Function Entry Point Function Size Function
Cexample.o 0x00000000004003e0 42 <Serialized Object 1>

Cexample.o 0x0000000000400410 50 <Serialized Object 2>

...

libc.so.6 0x000000000001f8b0 130 <Serialized Object 3>

libc.so.6 0x000000000001f932 74 <Serialized Object 4>

...

ld-linux-x86-64.so.2 0x0000000000000ac0 331 <Serialized Object 5>

ld-linux-x86-64.so.2 0x0000000000000c0b 30 <Serialized Object N>

...

Table 4.1: Database Function table example. Each row represents a function. The first

column holds the name of the file the function is contained. The second column holds the

entry point of the function. The third column holds the size of the function and finally the

fourth column holds the serialized object of the function.

can be stored and can be accessed at any time by deserializing them.

4.2 Heuristic

Now that the data structures containing the disassembly of the ELF file divided into func-

tions are saved in the database, the Heuristic gets called to find the indirect branches

inside the disassembly and try to classify them to their corresponding programming lan-

guage between C, C++ and Rust.

Firstly mbDisass accesses the database to retrieve all functions of the executable that is

going to be analysed including the one structure containing all the instructions that their

corresponding function wasn’t found. By deserializing the serialized objects of functions,

recreates the structures and prepares them for the analysis. Afterwards, the Heuristic tries

to identify and classify the indirect branches using regular expressions [18] based on the

AT&T notation, as a result every future expand to the Heuristic should be written with the

AT&T notation in mind.

The Heuristic checks every instruction in the data structures containing the disassem-

bly of the ELF file. If an instruction contains the pattern "callq *..." or "jmpq *..." then

both the instruction and the function containing it, get classified as an indirect branch and

23

get saved for further analysing later. For example, if an instruction is "callq *%rax" then

it is classified as an indirect branch.

Following the inspection for indirect branches, the functions that got classified as indi-

rect branches, continue to the next phase that the Heuristic classifies them to their cor-

responding programming language. After observing different instruction patterns among

the programming languages C, C++ and Rust regarding the indirect branches with hands

on disassembly, we wrote some heuristic rules that try to determine the origin language

when these patterns show up. Since there isn’t any specific pattern for each language,

the Heuristic sometimes fails to determine the programming language of some indirect

branches.

The heuristic rules utilize the information extracted from the instructions appearing close

to the actual indirect call in order to recognize any pattern that was mentioned above. The

register used for the indirect branch, as other registers used for moving the address of

the target function or any arguments used by the target function, are extracted from the

instructions using regular expressions.

When a pattern is recognized, a counter of the language that was written for, gets in-

creased by one. Every heuristic rule has its own weight, specifically when a rule gets

activated, before its added to it’s corresponding programming language counter, it gets

multiplied with a number between 0.5 and 1.5 called weight. The reason behind this de-

cision is because some of the patterns show up in more than one programming language.

As a result the rule that gets activated for many languages won’t determine the outcome

by it self if it has a low weight. However if a pattern shows up specifically for one pro-

gramming language, for example a function calling through a VTable, as this happens

explicitly in C++, the rule corresponding to this pattern has a higher weight in order to

determine the outcome.

Finally, the indirect branch gets assigned to the language with the highest percentage.

This procedure is repeated for all the indirect branches found in the disassembly.

4.3 Heuristic Rules

As mentioned before, there isn’t any specific pattern produced by the indirect branches

that can be used to determine every programming language. Because of this, mbDisass

24

uses a number of heuristic rules that try to recognize the patterns that are produced by a

single programming language. Currently, mbDisass searches for patterns produced by the

programming languages C, C++ and Rust.

4.3.1 C++ Heuristic Rules

Heuristic Rule 1 The most distinct pattern that show up when an indirect branch gets

enabled in C++ is the call of a virtual table function. As shown in the Listing 4.3.1, when

a function is going to be called through a virtual table, we expect to notice one "mov"

instruction which transfers the address to the calling register. In addition below the said

"mov" instruction we expect an "add" instruction which adds to the address the offset for

the targeted function. As a result this heuristic rule gets enabled when the Lines 11,13 of

Listing 4.3.1b show up.

1 c l a s s P a r e n t {
2 p u b l i c : v i r t u a l vo id t a l k () {}
3 p u b l i c : v i r t u a l vo id l a u g h () {}
4 } ;
5
6 c l a s s C h i l d : p u b l i c P a r e n t {
7 p u b l i c : void t a l k () {}
8 p u b l i c : void l a u g h () {}
9 } ;

10
11 i n t main (i n t argc , char ∗ a rgv []) {
12
13 P a r e n t ∗p1 ;
14 p1 = new C h i l d () ;
15 p1−> t a l k () ;
16 p1−>l a u g h () ;
17 re turn 0 ;
18 }

a: C++ source code

14006 c6 <main > :
2
3. . .
4mov −0x18(% rbp) ,% r a x
5mov (% r a x) ,% r a x
6mov (% r a x) ,% r a x
7mov −0x18(% rbp) ,% rdx
8mov %rdx ,% r d i
9c a l l q ∗%r a x
10. . .
11mov −0x18(% rbp) ,% r a x
12mov (% r a x) ,% r a x
13add $0x8 ,% r a x
14mov (% r a x) ,% r a x
15mov −0x18(% rbp) ,% rdx
16mov %rdx ,% r d i
17c a l l q ∗%r a x
18. . .

b: Disassembly indirect branch

Listing 4.3.1: Heuristic Rules 1,2 C++ example. The above listing demonstrates the C++

pattern occurring when an indirect branch is created by a virtual function call. As it can

be seen, when a virtual function is called, a "mov" instruction(Listing 4.3.1b - Line 11)

appears that moves the address of the virtual table to the calling register. Afterwards an

"add" instruction is expected to appear(Listing 4.3.1b - Line 13) that adds the appropriate

offset to get the targeted function address from the virtual table.

25

Heuristic Rule 2 Despite the fact that indirect branches created by virtual function calls

are distinct because of the reasons mentioned in the previous C++ Heuristic rule, this is

not always the case. As it can be seen from Listing 4.3.1, there are two virtual function

calls, one to the function "talk"(Listing 4.3.1a- Line 15) and one to the function "laugh"

(Listing 4.3.1a- Line 16) but only the "laugh" has the "add" instruction which is used for

adding the offset in order to get the targeted function address. This happens because talk

happens to appear first in the "Child" class, as a result the transferred virtual function

address already points to the "talk" function and so no any other actions is needed. To

overcome this issue, this rule is created which tries to identify the "mov" instructions

pattern seen on the Listing 4.3.1b- Lines 4-6 without the need for the "add" instruction.

4.3.2 C Heuristic Rules

Heuristic Rule 3 By observing the disassembly patterns produced by C function point-

ers, it is easily noticeable that when an indirect pointer is used for calling a function then

a "mov" instruction shows up that transfers the function address to the calling register

and then at least one "mov" instruction which is used to transfer the arguments of the

callee function to their corresponding registers. When the function gets called indirectly,

and it takes more than one arguments, then the arguments transference show up as "mov"

instructions, between the "mov" instruction of the target function address to the calling

register and the actual "call" instruction. Even if the function doesn’t take any arguments,

there is still one "mov" instruction other than the one that transfers the address which

transfers a "0x0" Listing 4.3.2b - Line 9.

Heuristic Rule 4 This rule is meant for detecting patterns that occur in case a function

pointer is used to call a function that takes arguments. As mention in the Heuristic Rule 3,

when a function takes arguments, "mov" instructions show up between the "mov" instruc-

tion of the target function address to the calling register and the actual "call" instruction

(Listing 4.3.3b - Lines 8,9).

26

1 void i n d i r e c t F u n c C a l l e e () {
2 }
3
4 i n t main () {
5
6 void (∗ f u n c P o i n t e r) () ;
7 f u n c P o i n t e r = &i n d i r e c t F u n c C a l l e e ;
8 f u n c P o i n t e r () ;
9 re turn 0 ;

10
11 }

a: C source code

14004 d6 < i n d i r e c t F u n c C a l l e e > :
2. . .
3
4
54004 e0 <main > :
6
7. . .
8mov −0x8(% rbp) ,% r a x
9mov $0x0 ,% e d i
10c a l l q ∗%r a x
11. . .

b: Disassembly indirect branch

Listing 4.3.2: Heuristic Rule 3 C example.The above listing demonstrates the C pattern

occurring when an indirect branch is created by a function call using a function pointer.

As it can be seen when a function is called using a function pointer, a "mov" instruc-

tion(Listing 4.3.2b - Line 8) appears that moves the address of the target function to the

calling register.

1 void i n d i r e c t F u n c C a l l e e (i n t a , i n t b) {
2 }
3
4 i n t main () {
5 void (∗ f u n c P o i n t e r) (i n t , i n t) ;
6 f u n c P o i n t e r = &i n d i r e c t F u n c C a l l e e ;
7 f u n c P o i n t e r (5 , 2) ;
8 re turn 0 ;
9

10
11 }

a: C source code

14004 d6 < i n d i r e c t F u n c C a l l e e > :
2. . .
3
4
54004 e3 <main > :
6. . .
7mov −0x8(% rbp) ,% r a x
8mov $0x2 ,% e s i
9mov $0x5 ,% e d i
10c a l l q ∗%r a x
11. . .

b: Disassembly indirect branch

Listing 4.3.3: Heuristic Rule 4 C example. The above listing demonstrates the C pattern

occurring when an indirect branch is created when calling a function that takes arguments,

indirectly . As it can be seen when function is called using a function pointer, a "mov"

instruction(Listing 4.3.3a - Line 7) appears that moves the address of the target function

to the calling register. In addition, two "mov" instructions appear (Listing 4.3.3b - Lines

8, 9) that are used for transferring the arguments that the callee function takes, into the

registers.

27

4.3.3 Rust Heuristic Rules

Heuristic Rule 5 Rust also provides function pointers as C and C++, however it is

observed that when a function pointer is declared in a function and assign a function

address to it then when compiled it is turned into a direct branch by the compiler (Listing

4.3.4b - Line 9). Nonetheless as it can be seen from the Listing 4.3.5b - Line 6, function

pointers in Rust can still produce indirect branches. When the address of a function gets

sent as an argument to another function and the pointer holding the address is used to

call that function then an indirect branch is produced. In this specific situation, unless

the actual call happens immediately after the function entry, then no "mov" instruction is

expected above the actual "call" instruction (Listing 4.3.5) in order for this heuristic to

get enabled.

1 fn i n d i r e c t _ f u n c _ c a l l e e () {
2
3 }
4
5 fn main () {
6
7 l e t f u n c _ p o i n t e r ;
8 f u n c _ p o i n t e r = i n d i r e c t _ f u n c _ c a l l e e ;
9 f u n c _ p o i n t e r () ;

10 }

a: Rust source code

16db0 < i n d i r e c t _ f u n c _ c a l l e e > :
2. . .
3
4
56 dc0 < . . . main . . . > :
6. . .
7
8
9c a l l q 6db0 < . . . i n d i r e c t _ f u n c _ c a l l e e . . . >
10. . .

b: Disassembly indirect branch

Listing 4.3.4: Rust Function Pointer example. The above listing demonstrates that Rust

function pointers written with the conventional manner don’t create an indirect branch in

contrast with other programming languages like C and C++. The reason behind this is the

fact that Rust compiler replaces the indirect branch with a direct Branch (Listing 4.3.4b -

Line 9).

28

1 fn i n d i r e c t _ f u n c _ c a l l e e () {
2 }
3
4 fn i n d i r e c t _ f u n c _ c a l l e r (f u n c _ p o i n t e r : fn

()) {
5 f u n c _ p o i n t e r () ;
6 }
7
8 fn main () {
9

10 i n d i r e c t _ f u n c _ c a l l e r (
i n d i r e c t _ f u n c _ c a l l e e) ;

11
12 }

a: Rust source code

16db0 < . . . i n d i r e c t _ f u n c _ c a l l e e . . . > :
2. . .
3
46 dc0 < . . . i n d i r e c t _ f u n c _ c a l l e r . . . > :
5. . .
6c a l l q ∗%r d i
7. . .
8
96dd0 < . . . main . . . > :
10. . .
11push %r a x
12l e a −0x28(% r i p) ,% r d i # 6db0
13c a l l q 6 dc0 < . . . i n d i r e c t _ f u n c _ c a l l e r . . . >
14. . .

b: Disassembly indirect branch

Listing 4.3.5: Heuristic Rule 5 Rust example.The above listing demonstrates the Rust

pattern occurring when an indirect branch is created by a function call using a function

pointer . As it can be seen, above the indirect branch (4.3.5b - Line 6) there isn’t any

"mov" instruction that is used for transferring the target function to the calling register.

This is due to the fact that the target address was already transferred to the calling register

in the "main" function at Listing 4.3.5b - Line 12 because the target function was sent as

an argument to the function "indirect_func_caller".

29

Heuristic Rule 6 When a function which takes arguments, gets called indirectly, then

two things happen. Firstly, a "mov" instruction shows up above the actual call (Listing

4.3.6b - Line 10). In addition above the transference of the target function address, a

number of "mov" instructions show up (Listing 4.3.6b - Line 9) that are used for the

transference of the arguments. When these two things happen, then this heuristic rule

gets enabled.

1 fn i n d i r e c t _ f u n c _ c a l l e e (number : i 3 2) {
2
3 }
4
5 fn i n d i r e c t _ f u n c _ c a l l e r (f u n c _ p o i n t e r : fn

(i 3 2)) {
6 f u n c _ p o i n t e r (5) ;
7 }
8
9

10
11 fn main () {
12
13
14 i n d i r e c t _ f u n c _ c a l l e r (

i n d i r e c t _ f u n c _ c a l l e e) ;
15
16 }

a: Rust source code

16db0 < . . . i n d i r e c t _ f u n c _ c a l l e e . . . > :
2. . .
3
46 dc0 < . . . i n d i r e c t _ f u n c _ c a l l e r . . . > :
5. . .
6mov $0x5 ,% eax
7. . .
8mov %r d i ,(% r s p)
9mov %eax ,% e d i
10mov (% r s p) ,% r c x
11c a l l q ∗%r c x
12. . .
13
146 de0 <main > :
15. . .
16l e a −0x38(% r i p) ,% r d i # 6db0
17c a l l q 6 dc0 < . . . i n d i r e c t _ f u n c _ c a l l e r . . . >
18. . .

b: Disassembly indirect branch

Listing 4.3.6: Heuristic Rule 6 Rust example.The above listing demonstrates the Rust

pattern occurring when an indirect branch is created when calling a function that takes

arguments, indirectly . As it can be seen when function is called using a function pointer,

a "mov" instruction(Listing 4.3.6b - Line 10) appears that moves the address of the target

function to the calling register. In addition, one "mov" instruction appear (Listing 4.3.6b

- Lines 9) that is used for transferring the argument that the callee function takes, into the

register.

30

Heuristic Rule 7 This heuristic rule searches for the pattern that Rust traits produce.

As shown by Listing 4.3.7 - Line 15, there is a "mov" instruction that transfers the target

function address to the calling register. In addition despite the fact that the callee function

takes arguments, the "mov" instruction that transfers the argument to the register appears

above from the actual call but it’s not produce by the actual call as in the case of the Rust

function pointer.

1 s t r u c t Dog { f u n c _ p t r : fn (i 3 2) }
2 t r a i t Animal {
3 fn new (f u n c _ p t r : fn (i 3 2)) −> S e l f ;
4 }
5 impl Animal f o r Dog {
6 fn new (f u n c _ p t r : fn (i 3 2)) −> Dog {
7 Dog { f u n c _ p t r : f u n c _ p t r }
8 }
9 }

10 fn i n d i r e c t _ f u n c _ c a l l e e (number : i 3 2) {
11 }
12
13 fn main () {
14 l e t dog : Dog = Animal : : new (

i n d i r e c t _ f u n c _ c a l l e e) ;
15 (dog . f u n c _ p t r) (5) ;
16 }

a: Rust source code

16db0 < . . . Dog . . . Animal . . . new . . . > :
2. . .
3
4
5
6
7
86 dc0 < . . . i n d i r e c t _ f u n c _ c a l l e e . . . > :
9. . .
10
116dd0 < . . . main . . . > :
12. . .
13mov $0x5 ,% e d i
14. . .
15mov (% r s p) ,% r a x
16c a l l q ∗%r a x
17. . .

b: Disassembly indirect branch

Listing 4.3.7: Heuristic Rule 7 Rust example.The above listing demonstrates the Rust

pattern occurring when an indirect branch is created by a function call through a trait.

As it can be seen, when a function is called using a trait function pointer, a "mov" in-

struction(Listing 4.3.7b - Line 15) appears that moves the address of the target function

to the calling register. In addition since the callee function takes an argument, a "mov"

instruction shows in Listing 4.3.7b - Line 13 but it isn’t created explicitly by the actual

call instruction. Because of this, the "mov" instructions are not expected to appear imme-

diately above the call instruction but could appear anywhere above it.

31

4.3.4 Previous Knowledge Rule

Heuristic Rule 8 Usually, some indirect branches can not be identified as they exhibit

patterns that have not yet implemented as heuristic rules. As a result, these indirect

branches remain unidentified during the analysis. To deal with this incident, the Rule

8 was written. This rule checks if the indirect branch that is being currently analysed, be-

longs to a function which was already classified from an indirect branch analysed before.

If this is true then this rule gets enabled and increments the counter of the corresponding

programming language.

4.3.5 Build-In Heuristic Rules

Heuristic Rule 9 During disassembly analysis it was noticed that some of the indirect

branches were produced by the compiler. In order for these indirect branches not to

interfere with the analysis of the others produced by the actual source code, we created a

rule that classifies those produced by the compiler as Build In indirect branches.

1 400410 < d e r e g i s t e r _ t m _ c l o n e s > :
2 . . .
3 t e s t %rax ,% r a x
4 . . .
5 jmpq ∗%r a x
6 . . .
7 400450 < r e g i s t e r _ t m _ c l o n e s > :
8 . . .
9 t e s t %rax ,% r a x

10 . . .
11 jmpq ∗%r a x
12 . . .
13 4004 b0 <frame_dummy >:
14 . . .
15 t e s t %rax ,% r a x
16 . . .
17 c a l l q ∗%r a x
18 . . .

Listing 4.3.9: Heuristic Rule 9 Rust example. The above listing illustrates three indirect

branches produced by the compiler. As it can be seen above the actual callq/jmpq instruc-

tion, a "test" instruction is expected to appear including the register that holds the address

of the target function that will be called indirectly.

32

4.4 LLVM IR - Bitcode Analysis

During the implementation of the Heuristic for detecting indirect branches on binary level,

we also implemented a Heuristic for detecting indirect branches on the Bitcode level (In-

termediate Representation of LLVM). After some tests it was noticeable that the inter-

mediate representation of LLVM doesn’t carry as much information as the disassembly

regarding the indirect branches. As shown in the Listing 4.4.1, both the IR and the dis-

assembly come from the same source, but with the IR case, there isn’t any information

regarding the registers that will be used for the transference of either the arguments or

the address of the target function address. In addition, LLVM intermediate representa-

tion analysis becomes even more difficult because in order to produce the intermediate

representation of a program, the source code is required, which usually it is not publicly

available when it comes to commercial software.

void i n d i r e c t F u n c C a l l e e (i n t a)
{
}

i n t main () {

void (∗ f u n c P o i n t e r) (i n t) ;
f u n c P o i n t e r = &

i n d i r e c t F u n c C a l l e e ;
f u n c P o i n t e r (5) ;
re turn 0 ;

}

a: C source code

d e f i n e void @ i n d i r e c t F u n c C a l l e e (i 3 2 %a) #0 {
e n t r y :

. . .
}

d e f i n e i 3 2 @main () #0 {
e n t r y :

. . .
%0 = l o a d void (i 3 2) ∗ , void (i 3 2)∗∗ %f u n c P o i n t e r ,

a l i g n 8
c a l l void %0(i 3 2 5)

. . .
}

b: LLVM IR

4004 d6 < i n d i r e c t F u n c C a l l e e > :
. . .

4004 e0 <main > :

. . .
mov −0x8(% rbp) ,% r a x
mov $0x5 ,% e d i
c a l l q ∗%r a x

. . .

c: Disassembly

Listing 4.4.1: C program in both LLVM IR and Disassembly. Listing 4.4.1a shows a

program in C containing an indirect branch. Listings 4.4.1b and 4.4.1c show the indirect

branch from Listing 4.4.1a to demonstrate that the static analysis in the binary level gives

more information in contrast to the LLVM IR level analysis. This is because binary level

analysis produce register information which can be used to trace down the transference of

the addresses and arguments.

33

Chapter 5

Evaluation

5.1 Runtime performance of the Disassembler 35

5.2 Runtime performance of the Heuristic 36

5.3 Indirect Branches Finding . 37

5.4 Indirect Branches Classifying . 38

5.4.1 Ground Truth . 39

5.4.2 False Negatives . 40

5.4.3 Challenging Cases . 41

mbDisass is implemented on Linux for x86_64. In this chapter we evaluate mbDisass in

the following four aspects:

1. Runtime performance of the Disassembler.

2. Runtime performance of the Heuristic.

3. Indirect Branch Finding.

4. Indirect Branch Classifying.

We evaluated mbDisass on Ubuntu 16.04 LTS running on an Intel Core i7-4710MQ CPU

@ 2.50GHz and 8GB of Ram. All the the evaluations following were performed only on

the ".text" section of the executables/ libraries.

34

5.1 Runtime performance of the Disassembler

The Disassembler phase loads the executable’s binary code, splits it in batches, disassem-

bles it, finds the function entry points and finally creates the function structures and stores

them in a database. This phase needs to be executed once for each executable as long as

there aren’t any changes to the binary code.

executable/library Binary Code Lines Time(mm:ss.ms)
servo 3032888 33:32.98

firefox 10281 00:05.78

libc.so.6 86822 00:55.79

libstdc++.so.6 44027 00:26.99

libm.so.6 29041 00:16.34

ld-linux-x86-64.so.2 7641 00:04.64

libgcc_s.so.1 4069 00:02.34

libfreebl3.o 101 00:00.21

libfreeblpriv3.so 25261 00:13.81

liblgpllibs.so 4662 00:02.98

libmozavcodec.so 96984 01:01.80

Table 5.1: Runtime performance of the Disassembler. Binary Lines gives the number

of lines containing 16 bytes of binary code in hexadecimal notation that the Disassem-

bler split during disassembling. Time gives the time needed for loading the executable’s

binary, the disassembly and storing the function structures that ware created.

Table 5.1 shows how much time is needed for the Disassembler to finish for each exe-

cutable/library. The more binary code lines an executable has, the more time is needed

for the Disassembler phase to finish. This is not only due to the obvious reason that the

bigger the executable the greater time is needed for disassembling it but also, as it was

mentioned in a previous section (Section 4.2), before disassembling the binary code, it

goes through some conditions in order to be split into batches to achieve high disassem-

bly accuracy. Because of the fact that these conditions prevent Capstone disassembler

from crashing, they do some time consuming checks. As a result in order to achieve both

a high disassembly accuracy and a low runtime performance, the number of the times

these checks are executed during the Disassembler phase are defined by the number of

binary code lines included in each executable.

35

5.2 Runtime performance of the Heuristic

The Heuristic phase loads the functions structures from the database and analyses every

instruction to find the indirect branches. If an instruction is an indirect branch then the

whole function containing that instruction proceeds to the next step in order to be deter-

mined its origin programming language by the heuristic rules.

executable/library Instructions Indirect Branches Discovered Time(mm:ss.ms)
servo 10562414 58425 04:00.33

firefox 41535 126 00:00.69

libc.so.6 334042 1714 00:07.29

libstdc++.so.6 169697 1819 00:04.79

libm.so.6 100300 10 00:01.30

ld-linux-x86-64.so.2 28661 124 00:00.55

libgcc_s.so.1 16554 25 00:00.22

libfreebl3.o 470 24 00:00.02

libfreeblpriv3.so 98374 341 00:01.81

liblgpllibs.so 19369 137 00:00.41

libmozavcodec.so 349114 1916 00:12.36

Table 5.2: Runtime performance of the Heuristic. Instructions gives the number of lines

analysed for indirect branches. Indirect Branches Discovered gives the number of indi-

rect branches found by the mbDisass during the Heuristic phase. Finally, Time gives the

time needed for loading the function structures from the database created by the Disas-

sembler and the time needed for running the heuristic rules on the functions classified as

having an indirect branch, searching for patterns that could determine the origin program-

ming language of the indirect branches.

The Runtime performance of the Heuristic as shown by the Table 5.2 is a result of the

combination of the number of instructions contained in an executable and the number of

indirect branches found. This happens because all the functions containing at least one

indirect branch proceed to be analysed by the heuristic rules.

36

5.3 Indirect Branches Finding

The indirect branches contained in each executable were found by parsing the "objdump"

output of each file using the same patterns used in mbDisass to identify instructions as

indirect branches.

executable/library Indirect Branches Indirect Branches Found Accuracy
servo 60516 58425 96.54%

firefox 126 126 100%

libc.so.6 1720 1714 99.65%

libstdc++.so.6 1846 1819 98.53%

libm.so.6 10 10 100%

ld-linux-x86-64.so.2 124 124 100%

libgcc_s.so.1 25 25 100%

libfreebl3.o 24 24 100%

libfreeblpriv3.so 342 341 99.70%

liblgpllibs.so 138 137 99.27%

libmozavcodec.so 1916 1916 100%

Table 5.3: Indirect Branches Finding. Indirect Branches gives the number of indirect

branches of the analysed executable/library. Indirect Branches Found gives the number

of indirect branches found by the mbDisass during the Heuristic phase. Accuracy gives

the accuracy of the discovery of indirect branches based on how many indirect branches

exist and how many were found by the Heuristic.

Table 5.3 shows that mbDisass manages to identify indirect branches with a high ac-

curacy. However the accuracy could be increased if the disassembly was more accurate

compared to the current disassembly. As it was mentioned before, the Disassembler phase

has some conditions that split the binary code in batches in order to achieve a more ac-

curate disassembly. Nevertheless these checks increase the runtime performance as they

are very time consuming. Since there is a trade off between the runtime performance and

the accuracy of the disassembly, the Disassembler is adjusted so that the disassembly has

a high accuracy with a low overhead. This could change and have an even more accurate

disassembly and consequently a more accurate indirect branch identification but with a

massive overhead increase. As a result we chose to limit the numbers that the Disassem-

bler splits the binary code into batches in order to achieve a lower runtime performance

but a less accurate indirect branch identification.

37

5.4 Indirect Branches Classifying

Each function found to have at least one indirect branch, proceeds to this phase. Nu-

merous heuristic rules try to identify known patterns which could determine the origin

programming language of the indirect branch. The heuristic rules in this current evalua-

tion can identify indirect branches patterns from three different programming languages

C,C++ and Rust.

executable/library Unidentified Build-In C Rust C++ Total
servo 808 10 4203 43349 10055 58425

firefox 29 4 4 40 49 126

libc.so.6 136 1 224 610 743 1714

libstdc++.so.6 51 0 133 1202 433 1819

libm.so.6 0 0 0 1 9 10

ld-linux-x86-64.so.2 9 1 6 59 49 124

libgcc_s.so.1 0 0 0 1 24 25

libfreebl3.o 0 0 0 2 22 24

libfreeblpriv3.so 8 0 22 154 157 341

liblgpllibs.so 11 0 3 86 37 137

libmozavcodec.so 2 3 1589 198 124 1916

Table 5.4: Indirect Branches Classifying. Unidentified gives the number of indirect

branches that were classified as Unidentified, namely those that no heuristic rule got

enabled during the analysis. Build-In gives the number of indirect branches that were

classified as Build-In, namely those that have been added by the compiler. C gives the

number of indirect branches that were classified as C. Rust gives the number of indirect

branches that were classified as Rust. C++ gives the number of indirect branches that

were classified as C++.

Table 5.4 shows how the heuristic rules classified each indirect branch for each exe-

cutable/library. As there isn’t any way to know how many of them were classified cor-

rectly we show below a ground truth example.

38

5.4.1 Ground Truth

In order to obtain the ground truth about the mbDisass indirect branch classification ca-

pabilities we wrote small programs containing indirect branches from C++, Rust and C.

Below follows an example of a mixed binary containing indirect branches from both C

and Rust.

Figure 5.1: mixBinaryExample.o architecture. The above figure illustrates both the indi-

rect and direct branches produced between the functions from different languages.

We wrote a small program named mixBinaryExample.o combining Rust and C, in order

to obtain the ground truth. The mixBinaryExample.o’s architecture can be seen from

the Figure 5.1 which shows the direct and indirect branches. The mixBinaryExample.o’s

source code and disassembly is showed by the Listing 5.4.1. Finally, Table 5.5 shows

mixBinaryExample.o’s results when given to the mbDisass as the input.

39

e x t er n void t a z () ;

void i n d i r e c t F u n c C (i n t a) {

}

void foo () {

void (∗ f u n c P t r C) (i n t) ;
f u n c P t r C = &i n d i r e c t F u n c C ;
f u n c P t r C (5) ;
//Indirect Branch

}

i n t main () {

t a z (& foo) ;
re turn 0 ;

}

a: C source code

[no_mangle]
pub e x t er n fn t a z (f u n c _ p t r : fn ()) {

i n d i r e c t _ f u n c _ c a l l e r (i n d i r e c t _ f u n c _ c a l l e e) ;
f u n c _ p t r () ; //Indirect Branch

}

fn i n d i r e c t _ f u n c _ c a l l e r (f u n c _ p t r : fn (x : i32 , y :
i 3 2)) {

f u n c _ p t r (5 , 2) ; //Indirect Branch

}

fn i n d i r e c t _ f u n c _ c a l l e e (x : i32 , y : i 3 2) {

}

e x t er n {
fn foo () ;

}

b: Rust Source Code

4004 d6 < i n d i r e c t F u n c C >:
. . .

4004 e0 <foo >:
. . .

mov −0x8(% rbp) ,% r a x
mov $0x5 ,% e d i
c a l l q ∗%r a x
. . .

4004 f e <main > :
. . .

400520 < t a z > :
. . .

mov %r d i ,−0x8(% rbp)
. . .
c a l l q 400550 < . . .

i n d i r e c t _ f u n c _ c a l l e r . . . >
c a l l q ∗−0x8(% rbp)
. . .

400550 < . . . i n d i r e c t _ f u n c _ c a l l e r
. . . > :

. . .
mov $0x5 ,% eax
mov $0x2 ,% e s i
. . .

mov %r d i ,−0x8(% rbp)
mov %eax ,% e d i
c a l l q ∗−0x8(% rbp)
. . .

c: Disassembly

Listing 5.4.1: mixBinaryExample.o. The above listing illustrates a mixed binary example

containing three indirect branches. It consists source code from both C (Listing 5.4.1a)

and Rust (Listing 5.4.1b). The disassembly (Listing 5.4.1c) shows the indirect branches

produced from each function.

5.4.2 False Negatives

Listing 5.4.1 and Figure 5.1 show that there are only two indirect branches coming from

Rust and only one indirect branch coming from C. However mbDisass found two indirect

branches coming from C and only one coming from Rust as can be seen by the Table 5.5.

The reason behind this wrong classification is that the heuristic rules failed to classify

the indirect branch contained in function "taz" as Rust because firstly, there aren’t any

arguments sent. This makes the pattern not as specific as it has to be in order to be

classified as Rust. In addition the indirect branch is very close to the beginning of the

function where the arguments’ transference happens , as a result the core heuristic rule 3

which classifies indirect branches to Rust fails to get enabled.

40

Classification mixBinaryExample.o
Unidentified 0

Build-In 4

C 2

Rust 1

C++ 0

Total 7

Table 5.5: mbDisass’s results of mixBinaryExample.o. Each row represents the number

of indirect branches classified as the programming language specified by the first column.

5.4.3 Challenging Cases

In some cases its very difficult to distinguish the difference between the indirect branches

because of numerous optimizations made by the compiler, several similarities between the

different patterns or even unknown patterns that have not yet to be found. Some examples

of challenging cases follow below:

• Tail calls: This is an example of the optimizations made by the compiler. The com-

piler instead of using the "call" instruction in order to call a function, it uses the

"jmp" instruction. This optimization eliminates the need of the caller function to

return to its caller, instead the callee function returns to its caller’s caller function.

The problem here is that because this is an optimization by the compiler, many in-

direct branches using the "jmp" instruction exhibit similar patterns across the three

programming languages.

• Unknown Patterns: As it can be seen by the Table 5.4 there are many indirect

branches that are classified as Unidentified. What happens in this cases is that no

heuristic rule was activated. This is due to the fact that these indirect branches

exhibit either a too generic pattern that cannot be implemented because it is sim-

ilar across all the three programming languages or the pattern that they exhibit is

unknown.

41

Chapter 6

Discussion - Future Work

6.1 Disassembler . 42

6.2 Heuristic . 42

6.1 Disassembler

As it was mentioned in previous sections, the Disassembler section of the program can

produce a more accurate disassembly but this will result in a bigger overhead. The rea-

son behind the significant overhead are different conditions that split the binary code into

batches which prevent Capstone from failing to generate the corresponding disassembly.

An important modification that can be done in the future is to improve the Disassem-

bler so that it can produce an accurate disassembly but without the current overhead. In

order for this to happen, there is the need of better analysing the hexadecimal binary to

reduce the different conditions that slow down the program.

6.2 Heuristic

As it can be noticed by the evaluation chapter. The mbDisass finds and correctly recog-

nizes a significant number of indirect branches but still there is room for improvement. For

that reason the more we understand the patterns exhibited by different indirect branches

the stricter heuristic rules could be developed in order to get even better results.

42

Finally, since mbDisass offers extensibility, there is the possibility of developing heuris-

tic rules that could classify indirect branches coming from programming languages other

than C,C++ and Rust.

43

Chapter 7

Related Work

7.1 Static Binary analysis . 44

7.2 Control Flow Attacks and Defences 44

Analysing and defending control flow in modern software is a topic that draws great

attention from the security research community as it is still considered an open problem.

7.1 Static Binary analysis

Before developing defences against control flow attacks, its essential first to understand a

program’s flow with the use of disassembly and static analysis tools. For example, Marx

[15] presented by Pawlowski et al. is a class hierarchy reconstruction tool targeted at C++

binaries with high precision.

In addition mbDisass disassembly is based on linear disassembly which based on An-

driesse et al. [3] research on x86/x64 Binaries disassembly accuracy, it was found that

linear disassembly is generated with a high accuracy.

7.2 Control Flow Attacks and Defences

Many techniques have been introduced throughout the years that try to defend software

from the control flow hijacking attacks. Now we will discuss some of the related work on

44

the defences proposed against control flow attacks.

Protections against VTable hijacking seem to draw a great attention. For example, VTrust [28]

is a solution that focuses on protecting the virtual table calls. VTrust is a lightweight two

layer defence implemented on the LLVM compiler. Its first layer focuses on validating

that the runtime target virtual function has the same type with the one in the source code.

The second layer ensures that the VTable pointers references a valid VTable. Similar work

is VTint [27] against VTable pointers hijacking. Another similar proposal is VTPin [21]

which preserves VTable pointers when their VTable objects gets freed in order to prevent

their use in a "use-after-free" exploitation.

In addition to the defences mentioned above, there are some more generic like the core

defence against control flow hijacking which is control flow integrity [1] which checks if

the program follows its intended control flow.

Finally, the approach presented by Tice et al [26] is a great example of a CFI mecha-

nism which ensures that Vtable pointers won’t point to a malicious VTable with a little

overhead. This solution was introduced as a gadget for both GCC and LLVM compilers.

45

Chapter 8

Conclusion

Binary static analysis is vital for understanding a program’s control flow and develop-

ing defences against software exploitation. We have shown that mbDisass, our indirect

branch analysis tool, finds and identifies a huge number of indirect branches among three

programming languages Rust, C and C++. mbDisass can be easily extended to be able to

identify indirect branches originated from programming language other than C, C++ and

Rust.

Moreover mbDisass doesn’t need source code as it conducts static analysis on binary

level. Even though its Disassembler section adds a significant overhead, it is executed

only once for each executable because its outcome gets stored in a database and can be

accessed at any time to proceed with the Heuristic section.

It was showed that commercial software intermixes more than one programming lan-

guages. As a result, indirect branches originated from many programming languages

coexist in the same executable. This could be a great hazard as indirect branches origi-

nated from languages that enforce memory safety at runtime, tamper control data coming

from Rust, a language that doesn’t enforce memory safety at runtime.

46

Bibliography

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow integrity. In Pro-

ceedings of the 12th ACM conference on Computer and communications security,

pages 340–353. ACM, 2005.

[2] S. Andersen and V. Abella. Data execution prevention. changes to functionality

in microsoft windows xp service pack 2, part 3: Memory protection technologies,

2004.

[3] D. Andriesse, X. Chen, V. van der Veen, A. Slowinska, and H. Bos. An in-depth

analysis of disassembly on full-scale x86/x64 binaries. In USENIX Security Sympo-

sium, pages 583–600, 2016.

[4] D. Andriesse, A. Slowinska, and H. Bos. Compiler-agnostic function detection in

binaries. In Security and Privacy (EuroS&P), 2017 IEEE European Symposium on,

pages 177–189. IEEE, 2017.

[5] E. Bendersky. Parsing ELF and DWARF in Python, 2018. https://github.com/

eliben/pyelftools.

[6] N. Carlini and D. Wagner. Rop is still dangerous: Breaking modern defenses. In

USENIX Security Symposium, pages 385–399, 2014.

[7] L. Clark. Inside a super fast CSS engine: Quantum CSS

(aka Stylo), 2017. https://hacks.mozilla.org/2017/08/

inside-a-super-fast-css-engine-quantum-css-aka-stylo/.

[8] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier, P. Wagle,

Q. Zhang, and H. Hinton. Stackguard: Automatic adaptive detection and prevention

of buffer-overflow attacks. In USENIX Security Symposium, volume 98, pages 63–

78. San Antonio, TX, 1998.

[9] D. Dai Zovi. Practical return-oriented programming. SOURCE Boston, 2010.

47

https://github.com/eliben/pyelftools
https://github.com/eliben/pyelftools
https://hacks.mozilla.org/2017/08/inside-a-super-fast-css-engine-quantum-css-aka-stylo/
https://hacks.mozilla.org/2017/08/inside-a-super-fast-css-engine-quantum-css-aka-stylo/

[10] E. Göktaş, E. Athanasopoulos, H. Bos, and G. Portokalidis. Out Of Control: Over-

coming Control-Flow Integrity. In Proc. of IEEE S&P, pages 575–589, 2014.

[11] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A static analysis tool for detecting

web application vulnerabilities. In Security and Privacy, 2006 IEEE Symposium on,

pages 6–pp. IEEE, 2006.

[12] M. A. Laurenzano, M. M. Tikir, L. Carrington, and A. Snavely. Pebil: Efficient static

binary instrumentation for linux. In Performance Analysis of Systems & Software

(ISPASS), 2010 IEEE International Symposium on, pages 175–183. IEEE, 2010.

[13] LLVM. The LLVM Compiler Infrastructure, 2018. https://llvm.org/.

[14] A. One. Smashing the stack for fun and profit. Phrack magazine, 7(49):365, 1996.

[15] A. Pawlowski, M. Contag, V. van der Veen, C. Ouwehand, T. Holz, H. Bos,

E. Athanasopoulos, and C. Giuffrida. Marx: Uncovering class hierarchies in c++

programs. In Proceedings of the 24th Annual Symposium on Network and Dis-

tributed System Security (NDSSâĂŹ17), 2017.

[16] Python. DB-API 2.0 interface for SQLite databases, 2018. https://docs.

python.org/2/library/sqlite3.html.

[17] Python. Python object serialization, 2018. https://docs.python.org/2/

library/pickle.html.

[18] Python. Regular expression operations, 2018. https://docs.python.org/2/

library/re.html.

[19] N. A. Quynh. Capstone: Next-gen disassembly framework. Black Hat USA, 2014.

[20] Rust. The Rust Programming Language, 2018. https://doc.rust-lang.org/

book/second-edition/index.html.

[21] P. Sarbinowski, V. P. Kemerlis, C. Giuffrida, and E. Athanasopoulos. Vtpin: prac-

tical vtable hijacking protection for binaries. In Proceedings of the 32nd Annual

Conference on Computer Security Applications, pages 448–459. ACM, 2016.

[22] F. J. Serna. Cve-2012-0769, the case of the perfect info leak. In Blackhat Confer-

ence, Feb, 2012.

[23] H. Shacham. The geometry of innocent flesh on the bone: Return-into-libc without

function calls (on the x86). In Proceedings of the 14th ACM conference on Computer

and communications security, pages 552–561. ACM, 2007.

48

https://llvm.org/
https://docs.python.org/2/library/sqlite3.html
https://docs.python.org/2/library/sqlite3.html
https://docs.python.org/2/library/pickle.html
https://docs.python.org/2/library/pickle.html
https://docs.python.org/2/library/re.html
https://docs.python.org/2/library/re.html
https://doc.rust-lang.org/book/second-edition/index.html
https://doc.rust-lang.org/book/second-edition/index.html

[24] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh. On the

effectiveness of address-space randomization. In Proceedings of the 11th ACM con-

ference on Computer and communications security, pages 298–307. ACM, 2004.

[25] L. Szekeres, M. Payer, L. T. Wei, and R. Sekar. Eternal war in memory. IEEE

Security & Privacy, 12(3):45–53, 2014.

[26] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Ú. Erlingsson, L. Lozano, and

G. Pike. Enforcing forward-edge control-flow integrity in gcc & llvm. In USENIX

Security Symposium, pages 941–955, 2014.

[27] C. Zhang, C. Song, K. Z. Chen, Z. Chen, and D. Song. Vtint: Protecting virtual

function tables’ integrity. In NDSS, 2015.

[28] C. Zhang, D. Song, S. A. Carr, M. Payer, T. Li, Y. Ding, and C. Song. Vtrust:

Regaining trust on virtual calls. In NDSS, 2016.

49

	Introduction
	Background
	Disassembly
	Binary Static Analysis
	Memory Safety Exploits
	Defences against Memory Safety Exploits
	Data Execution Prevention
	Address Space Layout Randomization
	Stack Cookies

	Control flow hijacking
	Control Flow Integrity
	Indirect Branches
	Function Pointers
	Virtual Tables Pointers

	Rust
	Capstone
	Nucleus
	LLVM Compiler Infrastructure
	LLVM Intermediate Representation
	SQLite3

	Architecture
	Disassembler
	Binary analysis and disassembly
	Structures and Database creation

	Heuristic
	Indirect Branches Extraction
	Indirect Branches Language Classifying

	Implementation
	Disassembler
	Heuristic
	Heuristic Rules
	C++ Heuristic Rules
	C Heuristic Rules
	Rust Heuristic Rules
	Previous Knowledge Rule
	Build-In Heuristic Rules

	LLVM IR - Bitcode Analysis

	Evaluation
	Runtime performance of the Disassembler
	Runtime performance of the Heuristic
	Indirect Branches Finding
	Indirect Branches Classifying
	Ground Truth
	False Negatives
	Challenging Cases

	Discussion - Future Work
	Disassembler
	Heuristic

	Related Work
	Static Binary analysis
	Control Flow Attacks and Defences

	Conclusion

