
Thesis Dissertation

CLASSPIN:CLASS POINTER HIJACKING
PROTECTION FOR OBJECTIVE-C BINARIES

Marios Karapetris

UNIVERSITY OF CYPRUS

COMPUTER SCIENCE DEPARTMENT

May 2018

UNIVERSITY OF CYPRUS
COMPUTER SCIENCE DEPARTMENT

ClassPin:Class Pointer Hijacking Protection for Objective-C Binaries

Marios Karapetris

Supervisor

Dr. Elias Athanasopoulos

Thesis submitted in partial fulfillment of the requirements for the award

of degree of Bachelor in Computer Science at University of Cyprus

May 2018

Acknowledgments

I would like to take the opportunity to express my appreciation to Dr. Elias Athanasopou-

los, my thesis dissertation supervisor, for his pricelesses advices and guidance during this

project. His continuous help and the excellent communication between us were critical to

overcome all the challenges and difficulties I faced from the start of this dissertation until

the end. My sincere thanks for giving me the opportunity to deal with Computer Security

field and sharing his educational views on several issues related to my thesis or not.

In addition, I would like to express my thanks to the other members of Security Re-

search Group of the University of Cyprus for their help during the course of the disserta-

tion.

Finally, I have to thanks my family and my friends for their incessant support,their

encouragement and for being so motivating all these years, which undoubtedly played an

enormous role to complete my studies and achieve my goals in general.

i

Summary

Software exploitation’s modern techniques usually contain a step where attackers abuse

use-after-free vulnerabilities. In Objective-C programs, such attacks can be achieved by

hijacking the class pointer in object’s instances. In addition, class pointer hijacking by-

passes the established defenses and does not involve memory corruption, as the attacker

just needs to utilize dangling pointers that are still available by a process. As a result, the

attackers manage to abuse the program’s control flow according to their needs.

In this thesis dissertation, we analyze the above problem and we design and implement

ClassPin. ClassPin is a system that provides protection against class pointer hijacking,

through use-after-free vulnerabilities, to Objective-C programs. It can be used, especially,

in large Objective-C binaries that are impossible to be re-compiled or re-written, as it is

fully portable. The core idea of ClassPin is to pin every freed class pointer to a safe class

under ClassPin’s control so it prevents its space from future allocations and subsequently

from being hijacked. Specifically, in every object destruction, ClassPin preserves and

redirects the class pointer to the safe class and deallocates the rest of the space occupied

by the object. Therefore, if a dangling pointer calls a method, a safe method of the safe

class will be invoked. As a result, ClassPin not only defuses all dangling pointers but can

also help to track and patch them.

ClassPin is suitable and practical solution to the problem, as it does not require access

to the source code (i.e., re-compilation) or the binary (i.e.,binary analysis) of the program

that going to be protected. It works directly on binaries and in the least intrusive way.

Also, it does not interfere with the program allocator’s strategies and policies. Simply,

ClassPin is invoked in each object’s destruction and preserves the class pointer. As a

result, ClassPin is very effective and fast. For instance, ClassPin protects Safari when

running popular web browser benchmarks with an addition of 0.38% -1.93% average

memory overhead and 21.12% - 28.43% performance overhead.

ii

Contents

1 Introduction 1

2 Background 4
2.1 Software Security . 4

2.2 Application Security . 5

2.3 Objective-C . 5

2.4 Class Pointer Hijacking . 6

3 Methodology 10

4 Architecture 12
4.1 Object Resolving . 15

5 Implementation 17
5.1 Portability Requirements . 18

5.2 Basic Components . 19

5.2.1 Memory Map . 19

5.2.2 Safe Class . 19

5.3 Differences between Linux and MacOS Prototypes 20

5.4 Object Resolution . 21

5.5 Class Pointer Pinning . 22

5.6 Compiling and Running . 22

5.6.1 Linux . 22

5.6.2 MacOS . 23

6 Evaluation 24
6.1 Effectiveness . 25

6.2 Linux Prototype . 27

6.3 MacOS Prototype . 28

6.3.1 Deallocation Calls . 29

6.3.2 Memory Overhead . 30

iii

6.3.3 Performance Overhead . 30

7 Future Work 32
7.1 Garbage Collector . 32

8 Related Work 34
8.1 VTPin . 34

9 Conclusion 36

Bibliography 37

Appendix A A-1

Appendix B B-8

Appendix C C-13

Appendix D D-17

Appendix E E-19

iv

List of Figures

2.1 The memory layout of objects, classes, caches, and methods implementa-

tion. 6

2.2 Example program to illustrate how use-after-free vulnerabilities can be

abused for class hijacking. In line 12 two Example class pointers are

declared, namely o1 and o2. In line 14, an instance of Example class is

created and o1 points at it. . After that, in line 17 o1 and o2 point to the

same location, and at line 19 o1 is deleted. The allocator frees all space

occupied by the Examplesinstance, but o2 still points to the location that

o1 was pointing at. If o2 is accessed (line 22) the program behavior is

undefined. 7

2.3 Class hijacking mechanics. For the example program of Figure 2.2, we

present, in (a), the memory layout of the instance that o1 points to. The

first 8 bytes are containing a class pointer, which points to the Example's

class, followed by the respective object’s data. The Example class is

stored in read-only memory and contains pointers to the parent’s class, the

cache and the methods of Example. In (b), we demonstrate what happens

if o1 is deleted, and in (c), how the attacker can abuse the dangling pointer

(o2). An attacker can spray memory with the contents of a phony class

pointer that points to data under the attacker’s control. This data can be

intentionally resemble a valid class with valid method implementations in

such way, so that if dereferenced through a dangling pointer (Figure 2.2,

line 22), then a forged method will be executed (e.g., mprotect), instead

of the one the original program called. 8

3.1 Extreme Programming Methodology model. 10

v

4.1 Class Pointer hijacking prevention when ClassPin is enabled, using as

example the program illustrated in Figure 2.2. In the beginning, in (a),

the two pointers, o1 and o2, point to Example’s instance (Figure 2.2, line

17). Later, in (b), the o1 is freed (Figure 2.2, line 19) and the ClassPin

frees all the space occupied by the Example instance except of the class

pointer. In addition, the ClassPin redirects the class pointer to point on a

safe class controlled by itself. Finally, an attacker may spray the memory

with malicious pointers, as in (c), however the class pointer is preserved

and cannot be hijacked. Also, if a dangling pointer (o2) try to invoke a

method, as shown in Figure 2.2at line 22, a safe method of the ClassPin’s

safe class will be invoked and the call will be tracked. 13

5.1 ClassPin prototype overview. For every pointer that going to be freed,

ClassPin resolves if the pointer is relative to an object or not (Section

4.1). Firstly, the memory map is used to check the permissions of the

object’s class, assuming that the first pointer is pointing to one. Later,

the pointer passed through the phase, where ClassPin supposes that the

pointer is associated with an object and treats its like one by using runtime

functions. If the pointer pass the two stages then ClassPin’s free invoked

otherwise the default free function is called. ClassPin’s free preserves

and pins the class pointer to a safe class and deallocates the rest memory

occupied by the object. 21

6.1 Execution of the example’s program of Figure 2.2 in Linux environment.

Three different executions are shown: a) ./example execution of the ex-

ample program without protection, b) ./example-under-attack execu-

tion of the example program slightly modified to simulate use-after-free

attack by abusing (o2) dangling pointer, c) LD_PRELOAD=./malloc.so

./example-under-attack execution of the same binary like in (b) but

with ClassPin enabled. 25

vi

6.2 Execution of the example’s program of Figure 2.2 in MacOS operating

system. Three different executions are shown: a) ./example execution of

the example program without protection, b) ./example-under-attack

execution of the example program slightly modified to simulate use-after-

free attack by abusing (o2 dangling pointer, c) DYLD_FORCE_FLAT_NAMESPACE=1

DYLD_INSERT_LIBRARIES=./libmalloc.dylib ./example-under-attack

execution of the same binary like in (b) but with ClassPin enabled. 26

vii

List of Tables

6.1 Statistics for evaluation of ClassPin Linux prototype. The statistics were

calculated by running an example program which in a loop of 20 millions

iterations were allocated and freed 10 millions objects and 10 millions

string buffers. 27

6.2 Distribution of free calls for popular benchmarks run on Safari under

ClassPin’s MacOS prototype protection. 29

6.3 Memory Overhead for popular web browser’s benchmarks run on Safari,

under ClassPin’s MacOS prototype protection. 31

6.4 Runtime Overhead for popular web browser’s benchmarks run on Safari,

under ClassPin’s MacOS prototype protection. Two overheads are illus-

trated, the first is calculated from stats that ClassPin is measuring during

the execution and the second is worked out from total execution times

gotten using the time command provided from all linux based platforms. 31

viii

Chapter 1

Introduction

In days where the use of computer systems is essential for a plethora of actions in ev-

eryday life and several software applications are used from the simplest to the most vital

importance procedures, it is crucial to establish that they are preserving their integrity and

they are not susceptible to attacks. In the recent past, in order to secure software from

being exploited, there was a great advance in software hardening which unquestionably

made attacks’ construction a really challenging procedure [36]. Regardless of the nu-

merous protections in modern systems [32], such as address space layout randomization

(ASLR) [34], sandboxing [24] and non-executable memory [21], attackers still manage

to compromise critical applications, like web browsers.

Attackers, in order to bypass defenses in place, are taking advantage of a variety of

different vulnerabilities. Abuse of temporal safety errors, especially use-after-free vul-

nerabilities, became very common in modern exploitation techniques [1, 2, 14, 15]. It is

remarkable that hijacking the control flow of a process using use-after-free bugs does not

involve corruption of memory. Instead, the attacker just has to utilize dangling pointers

still accessible by a process. In addition, this type of attack neither violates the integrity

of return addresses so it remains undetected by generic CFI policies [30].

Attacks based on temporal safety errors could be tremendously effective in large

Objective-C programs. Objective-C is the primary programming language in Apple’s

OS X and iOS platforms and is used for the development of some of the main applica-

tions in Apple’s platforms such as iTunes, Safari, etc. It is an extension of C language

with object-oriented constructs, while differs from C++ language in the way that dynamic

dispatch of function call is implemented. Each object instance holds a pointer to the class

1

of it, which additional contains pointers to super-class, cache and methods and they are

used when the respective object calls a function.

Therefore, use-after-free attacks may be more likely in Objective-C programs than

in programs implemented in other programming languages which support dynamic dis-

patch only in virtual objects, such as C++. For instance, assuming that there are dangling

pointers in a program, an attacker could overwrite the pointer to the class, by driving

the program to allocate memory with data of his choice, resulting to have the ability to

redirect the control flow of the program according to his needs. Should be noticed that,

abusing use-after-free bugs by hijacking objects’ class can be combined with other attack

vectors for delivering the end-to-end exploit.

For defending against use-after-free attacks in Objective-C, we suggest ClassPin, a

protecting mechanism works in the minimum intrusive way. ClassPin has no need for both

the source code of the program or recompilation of it, as it works directly on Objective-C

binaries. Furthermore, it does not depend on complex binary analysis and does not in-

terfere with allocator’s strategies and policies, causing low overhead. Notice that, despite

the several proposals for defending against these types of attacks in C++, use-after-free

attacks in Objective-C has not been thoroughly examined by system security researchers.

ClassPin preserves class pointers after an object is freed and pins them to a safe ob-

ject’s class by instrumenting all free calls. Each time free called, ClassPin quickly detects

if the memory going to be freed is associated with an object by using Objective-C Run-

time API. Subsequent, the deallocation is handled by ClassPin if it is related to an object,

or forwarded to the program’s allocator if it is not. Through the deallocation, all the

memory allocated by the object is freed except the pointer to the object’s class. Also,

the preserved pointer is redirected to the ClassPin’s safe object. Therefore, in any trig

of a dangling pointer, the safe object invokes and handles the function call. As a result,

ClassPin not only provides protection against use-after-free attacks, but also helps to log

and track dangling pointers.

To sum up, ClassPin handles only the deallocation of objects and only a single pointer

survives (i.e., 8 bytes), while all other memory operations, including allocation of objects,

are handled by the program’s allocator. Consequently, the memory overhead that ClassPin

causes is low, as it is demonstrated in evaluation with Safari. Additionally, an idea of a

garbage collector is proposed, which could periodically search for preserved pointers that

are unlikely to be dangling pointers, free them and retrieve their occupied memory.

2

Scope. ClassPin protects Objective-C binaries from being exploited through class pointer

hijacking and use-after-free vulnerabilities. ClassPin is a entirely portable tool, as it works

by just pre-loading a binary, and works with minimal impact on its execution, as it is not

based on binary analysis neither affects default allocator’s policies and strategies. Last

but not least, ClassPin defends such attacks not just by complicate their construction, but

by eliminate completely the possibility for attackers to hijack class pointers.

Contributions.

1. We designed, implemented and evaluated ClassPin, a protecting mechanism against

exploitations through use-after-free vulnerabilities for Objective-C, based on VTPin

[37], a similar tool works on C++ binaries. Although that we used the same idea

and the equivalent logic for defending the problem, we faced numerous difficulties

during the implementation, due to major differences between the two languages and

the ways they manage the memory and implement the object-oriented programming

environment.

2. ClassPin is fully portable as it works directly on Objective-C binaries, does not

based on binary analysis and does not interfere with the allocator’s policies and

strategies.

3. ClassPin is evaluated using Safari, the default web browser in MacOS platforms

which is written in Objective-C. We used popular web browser benchmarks that

heavily stress the capabilities of web browsers. As a result, the ClassPin experiences

0.38% -1.93% average memory overhead and 21.12% - 28.43% runtime overhead.

3

Chapter 2

Background

Contents
2.1 Software Security . 4

2.2 Application Security . 5

2.3 Objective-C . 5

2.4 Class Pointer Hijacking . 6

2.1 Software Security

Software security [31] is a relatively new field of Computer Science. Software exploita-

tion problem is a serious and vital aspect of Computer Security, as intruders manage to

hack into systems by exploiting software vulnerabilities. Especially, with the internet-

enabled application growth and the constant addition of complexity and extensibility in

software. The Software Security field’s main idea is developing secure software that

continues to retain the confidentiality, integrity and availability under malicious attacks.

More specific, the developers must to be aware and understand the common threads and

use right engineering techniques from the early stages of software developing to design

and implements software free of bugs and vulnerabilities.

4

2.2 Application Security

According to Institute of Electrical and Electronics Engineers (IEEE) [7], Application

Security [31] deals with the securing of software after their completion in contrast with

Software Security (Section 2.1) which integrates the concept of security during the soft-

ware’s development. Although that implementing a secure software is much more easier

than protecting one after its already completed, in many occasions revisioning and rewrit-

ing a program may be infeasible. So, there is a need for securing applications after their

built with protections like Sandbox [27, 35], Control Flow Integrity (CFI) [20], Address

Space Layout Randomization (ASLR) [34], Data Execute Prevention (DEP) [21] etc., or

with the use of other applications specialized in a specific type of attack like the one we

implement in this thesis dissertation.

A simple example shows the difference between Software and Applications Security

is:

• Application Security: preventing buffer overflow by detecting malicious HTTP traf-

fic.

• Software Security: Patch the source code to be completely impossible to create a

buffer overflow.

2.3 Objective-C

Objective-C is an extension of C programming language with object-oriented construc-

tions. Dynamic dispatch of function call is implemented for all function calls, in com-

parison with C++ which only enable this mechanism in virtual object occasions. In

C++, VTable pointers are used at runtime to invoke a function implementation where the

proper function is not known at compile time. However, every time a function is called

in Objective-C a message is sent by calling a predefined function (msgSend), which lo-

cates and executes the right function implementation. These messages contain a receiver

object, a selector and arguments, if there are any. The receiver object is a pointer to the

object which calls a function and the selector is the name of the function to be called. In

that point, the appropriate implementation might be found in object’s class method list, in

object’s parents’ classes method list or in a cache which saves previous calls for the same

5

Figure 2.1: The memory layout of objects, classes, caches, and methods implemen-
tation.

object. Also, the class might provide the ability to forward the messages to other objects

or dynamically respond to new messages in the runtime. However, in the compile time

the object’s class, and accordingly the all the other fields illustrated above, may not be

yet known. Therefore, the compiler attaches a class pointer to each object’s instance as

it shown in Figure 2.1, so as to resolve the message dispatch’s target in the runtime. As

shown in Figure 2.1, super pointer contains the address of class’ parent class or null if it

is in the top of hierarchy, while the cache and methods pointers point to lists of selectors

and the respectively function pointer for each implementation.

2.4 Class Pointer Hijacking

In modern days, software exploitations usually contain a step where use-after-free vul-

nerabilities are abused, because defenses in place fail to protect the process against these

types of attacks. Exploiting use-after-free vulnerabilities is a process of actions which

difficultly consider as fraudulent, as it is not involve memory corruption, such as writing

over memory bounds or overwriting process’ data structures (e.g., override return address

in the process’ stack). The main idea of use-after-free exploitations is to utilize pointers

that point to freed memory still accessible from a process. These pointers are created after

the destruction of an object without modifying the value of the pointer which pointed to it,

in that way so it still points to deallocated memory. After that, the system’s allocator may

reallocate the same memory area and filled it with completely different data as needed.

6

1 @ i n t e r f a c e Example : NSObject
2 − (void) foo ;
3 @end
4
5 @implementa t ion Example
6 − (void) foo {
7 NSLog (@" I am an o b j e c t ") ;
8 }
9 @end

10
11 i n t main (i n t argc , c o n s t char ∗ a rgv []) {
12 Example ∗o1 , ∗o2 ;
13 /*...*/

14 o1= [Example a l l o c] ; //allocation of an example object

15 /*...*/

16 [o1 foo] ;
17 o2= o1 ;
18 /*...*/

19 [o1 r e l e a s e] ; //deallocation of the example object

20 //o2 is now dangling pointer

21 /*...*/

22 [o2 foo] ; //use-after-free trigger

23 }

Figure 2.2: Example program to illustrate how use-after-free vulnerabilities can
be abused for class hijacking. In line 12 two Example class pointers are declared,
namely o1 and o2. In line 14, an instance of Example class is created and o1 points
at it. . After that, in line 17 o1 and o2 point to the same location, and at line 19 o1 is
deleted. The allocator frees all space occupied by the Examplesinstance, but o2 still
points to the location that o1 was pointing at. If o2 is accessed (line 22) the program
behavior is undefined.

Now, if the program try to dereference this pointer, which is called dangling pointer, the

behavior of the program will be unpredictable. Therefore, if an attacker manage to in-

sert his data in the freed memory and then cause dereference of a dangling pointer which

points to this space, he can carefully adapt the dereferenced data and control the data flow

of the running process. While this attack can be achieved through any dangling pointer,

in Objective-C usually class pointers are chosen because they are used to trigger indi-

rect calls, as explained in Section 2.3, and consequently they are tremendously useful for

changing the control flow of a program.

Figures 2.2 and 2.3 demonstrate the mechanics of a class hijacking attack. As it can be

clearly seen in Figure 2.2, a class definition, Example class, is declared and implemented

in lines 1 to 9. In line 12, the program declares two pointers of type Example namely o1

and o2. Later in line 14, a new Example object is allocated and o1 redirected to point on

7

(a) (b) (c)

Figure 2.3: Class hijacking mechanics. For the example program of Figure 2.2,
we present, in (a), the memory layout of the instance that o1 points to. The first 8
bytes are containing a class pointer, which points to the Example's class, followed by
the respective object’s data. The Example class is stored in read-only memory and
contains pointers to the parent’s class, the cache and the methods of Example. In
(b), we demonstrate what happens if o1 is deleted, and in (c), how the attacker can
abuse the dangling pointer (o2). An attacker can spray memory with the contents of
a phony class pointer that points to data under the attacker’s control. This data can
be intentionally resemble a valid class with valid method implementations in such
way, so that if dereferenced through a dangling pointer (Figure 2.2, line 22), then
a forged method will be executed (e.g., mprotect), instead of the one the original
program called.

it. So, when the function foo is called in line 16 the msgSent function is invoked with

o1 as receiver argument, and the class pointer, which points to Example class, is used in

order the right implementation to be found. Respectively in figure 2.3(a), the memory

layout of the object that is pointed by o1, is illustrated. As shown, the first 8 bytes contain

the address of the Example class, which is used as explained in Section 2.3, followed by

object’s data. Notice that super class, cache and methods pointers shown in Figures 2.1

and 2.3 are stored in read-only memory so they cannot be hijacked. Unfortunately, the

class pointers are located in writable region as all objects instances are allocated in heap,

stack or global data sections, so it may be overwritten.

Going back to Figure 2.2, o1’s value is copied to the o2 in line 17 and subsequently

in line 19 o1 is deallocated. During the deallocation of o1, the memory that Example’s

instance occupied marked as free and it can be reused from the allocator for future needs.

Also, depending on the system’s allocator, the contents of the free area and o1 may be

zeroed or left as are. However, o2 still points to where the o1 was pointing and where the

class pointer was located, so o2 is now a dangling pointer. Essentially, at that moment the

8

memory layout is illustrated in Figure 2.3(b). At this point, if o2 is accessed, like in our

example in Figure 2.2 in line 22 where the foo function is called, the program’s behavior

is undefined. Technically, the execution will be continued in three possible ways:

a. if the freed memory is zeroed or the class pointer points to a not valid address the

program will crash.

b. if the data in the freed memory has not been changed, the implementation of foo

function will be invoked.

c. if the freed memory has filled intentionally with data in that way that the class

pointer points on another class, arbitrary code will be executed.

The scenario (c) is the one which attracts more interest for exploitation purposes. An

attacker may spray [38] memory with malicious contents, specifically fill the memory

with pointers to a class that is under his control, as demonstrated in Figure 2.3(c). There-

fore, in case of a function call with the receiver of the message be a dangling pointer, a

function of the attacker’s class will be invoked. Notice, that the attacker is not able to

inject code, as we assuming that the injection is done in not-executable pages [21], but in

this occasion he writes memory addresses in this area. For example, he can insert data

in that way so when a function is called the mprotect function be invoked, which, once

called, modifies the permissions to executable in memory areas where the attacker has

write privileges. Also notice that, the attacker’s class can be implemented in that way

so it forward any messages with any selector to a specific function implementation. So,

in case of vulnerable process, such as the one illustrated in Figure 2.2, the attacker may

abuse the memory like is shown in Figure 2.3(c), and hijack the control flow.

9

Chapter 3

Methodology

Figure 3.1: Extreme Programming Methodology model.

A software development methodology is a framework that is followed during the de-

signing and construction of a new software application, and it is used for structuring,

planning and controlling the developing process. There are several methodology models

and each one has its own known advantages and disadvantages. For this thesis disser-

tation, we chose Agile Software Development and specifically Extreme Programming

model as it seems to be the most suitable. Extreme Programming methodology refers to

the approach that a system is created in iterations and each iteration includes implemen-

tation testing, feedback and planning. It is flexible, simple, helps the new application to

improve through continuous testing, can be used for short period projects and in small

teams which made it the appropriate methodology to use.

10

As shown in the Figure 3.1 the model includes two main phases: planning and iter-

ation stage. In the planning phase, we research and understand the security issues and

how they apply in Objective-C. Also, we investigated solutions of the respective prob-

lem in other programming languages or with different approaches. Finally, the system’s

development plan and its requirements were set.

The second phase is divided into three other phases: Analysis, Design and Implemen-

tation. In each iteration, a new prototype of the system was created and tested. Their

defects were analyzed in a weekly meeting and a new system was designed and im-

plemented. Finally, when the system was meet the specifications and requirements we

proceed to evaluation and reporting phase.

11

Chapter 4

Architecture

Contents
4.1 Object Resolving . 15

ClassPin intent to protect Objective-C programs from being exploited through use-

after-free bugs and class hijacking. The solution has to interfere with the running process

with the least possible impact and has low time and memory overhead. Consequently, it

is necessary to meet the following requirements:

• No need for source code, recompilation or debugging symbols

• No analysis, disassembling or patching of the binary

• No interfere with allocator’s policies or strategies.

The main idea of our solution is simple, however, the implementation of a system

which applies it, may be complicated enough (Section 5). The majority of use-after-free

attacks in Objective-C programs are based on class pointer hijacking through intentionally

and strategically (re)allocation of freed memory. So, instead of searching and protecting

each dangling pointer [23], we ensure that all class pointers are always valid. Hence,

they cannot be hijacked by future malicious reallocations. Based on this, we were able to

promote a fully portable and generic solution for defending software exploitation through

use-after-free vulnerabilities and class hijacking. ClassPin handles all deallocations of

the program and ensures that all class pointers will be preserved. Specifically, ClassPin

resolves the class pointer in the space that going to be freed, preserves it and overwrites it

12

(a) (b) (c)

Figure 4.1: Class Pointer hijacking prevention when ClassPin is enabled, using as
example the program illustrated in Figure 2.2. In the beginning, in (a), the two
pointers, o1 and o2, point to Example’s instance (Figure 2.2, line 17). Later, in (b),
the o1 is freed (Figure 2.2, line 19) and the ClassPin frees all the space occupied by
the Example instance except of the class pointer. In addition, the ClassPin redirects
the class pointer to point on a safe class controlled by itself. Finally, an attacker
may spray the memory with malicious pointers, as in (c), however the class pointer
is preserved and cannot be hijacked. Also, if a dangling pointer (o2) try to invoke a
method, as shown in Figure 2.2at line 22, a safe method of the ClassPin’s safe class
will be invoked and the call will be tracked.

in that way it points to a safe class under its control, while it releases all the other memory

occupied. Essentially, it prevents the class pointers’ memory from being freed so their

space is unavailable for future allocations. Although dangling pointers may continue to

exist in the program, they are effectively neutralized and they are harmless if they are

triggered. In addition, if ClassPin is in place and a dangling pointer is triggered, not only

the program will not crash but also it can help to detect the dangling pointer, so it can be

eventually patched.

Figure 4.1 shows how ClassPin handles the memory, using as example the vulnerable

program demonstrated in Figure 2.2. In the beginning, the two pointers, o1 and o2, point

to the class pointer of the Example’s instance (Figure 2.2 , line 17), and respectively that

points to the Example’s class. The Figure 4.1(a) shows the memory layout of the object

and its class at this point. In line 19 (Figure 2.2), the o1 is deleted, and the ClassPin takes

control which frees all the memory occupied by the Example’s object except of the class

pointer, as demonstrated in Figure 4.1(b). Following, it overwrites the class pointer with

the address of a safe class controlled by itself. As illustrated in Figure 4.1(c), an attacker

may spray the heap with phony pointers; however, the space occupied by the class pointer

is never freed, so it cannot be hijacked. Finally, when the dangling pointer (o2) tries to

13

call a method (Figure 2.2, line 22), the message will be forwarded to a safe method of

the ClassPin’s class, resulting the invoke of a safe method which can help to log the call.

The security provided by ClassPin unfortunately has a cost, as memory and time over-

head are introduced. Extra memory is needed because we preserve all class pointers,

and extra time is consumed because we need to resolve which pointers have to be pre-

served. We managed to minimize the time overhead with a low complexity algorithm

which rapidly distinguishes object’s destructions from other memory deallocations. This

algorithm is explained later in Section 4.1.

Regarding the memory overhead, for each object destruction, only the class pointer (8

bytes) survives. Unfortunately, class pointers need to be preserved in all object destruc-

tions, in comparison with the respective solution provided by VTPin, which preserves the

VTable pointers in virtual objects only. Moreover, several applications, like web browsers,

are based on short-lived process models. In other words, those programs fork new pro-

cesses, to execute some procedures, which are terminated after a while. In such cases,

there is no practically memory overhead as the preserved pointers will be freed at the

process termination. However, the preserved pointers could occupy a large amount of

memory in long-lived processes. Consequently, we propose a garbage collector (GC) in

Section 7.1 as a solution. The garbage collector can periodically scan the memory for

potential dangling pointers and free the preserved class pointers that are not referenced by

any of them. Thus, we still retain all class pointers that are possibly referenced from other

memory locations in order to keep the process secure from use-after-free attacks. Notice

that, garbage collector could be a costly operation, although, it could free a significant

amount of memory as the majority of the preserved class pointers will not be referenced

(i.e., we assume that the majority of programs does not contain a vast amount of dangling

pointers). Furthermore, the GC, unlike the traditional garbage collectors [22], is used just

to free class pointers that there is no need to be preserved anymore, so it can be invoked

rarely and with low performance overhead on the running process. As it can be clearly

be seen in Section 6, we estimate the memory overhead of ClassPin for small example

programs and even with the use of complicated benchmark suites that heavily stress the

capabilities of web browsers.

14

4.1 Object Resolving

ClassPin secures programs from use-after-free attacks without needing access to the source

code or the binary and without modifying the system’s allocator. As a matter of fact, it

intervenes in all free calls of the process, and handles the deallocation only when it is

relative to an object. Therefore, it has to resolve if the chunk of memory, that going to be

freed, compose an object or not. In the following, we simply explain the main algorithm

of this procedure. The technical details for implementing the algorithm and the ClassPin

prototype are provided in Section 5.

Free is called with a pointer (ptr), to the first byte of the memory to be freed, as a

parameter. ClassPin passes the pointer through some stages until it concludes to proceed

to the program allocator’s free function or to handle the memory as an object. Firstly,

the ptr is checked if is valid (i.e., not null, Surprisingly a lot of free calls are called on

null pointers), and if it is not, does nothing and return to the normal program’s execution.

Later, the ptr is passed through two stages until is surely resolved to its category. Each

stage corresponds to a heuristic which distinguishes pointers that point to object’s relative

memory from them that are not. We use two main heuristics:

1. Memory Page’s Permissions: Check if the class pointer belongs to a writable or

executable memory page by examining the permissions of all memory regions of the

running process. All classes are stored in same type region , so if the class pointer

does not point to one of them then the ptr is not associated with an object and it can

be simply freed using the program’s default allocator. Finding the permissions of

all memory regions is an easy and fast procedure, as all shared libraries are mapped

linearly and ASLR or fine-grained randomization [26, 28, 33, 39] has no impact.

2. RTTI: We extract the first 8 bytes of the memory block that is pointed by the ptr,

and we treat it like is a class pointer. Specifically, we use run-time type information

functions provided by Objective-C [12] to determine the class type of the assumed

class pointer. If the class type is discovered successfully it means that the ptr is

definitely related to an object. On the other hand, in case of memory block that is

not associated with an object, there is high possibility for a fault, due to reference to

unmapped memory. Such faults must be handled from the ClassPin with no impact

to the running process, as we further discuss in Section 5.

Due to the fact that we implement the ClassPin for two different operating systems

15

(i.e., Linux, MacOs) with great differences between them, the algorithm of each prototype

slightly differ. However, the main idea behind the algorithm of both prototypes is the one

we discuss above. We illustrates the differences of the two prototypes and the way each

prototype adapts the algorithm in Section 5.3

16

Chapter 5

Implementation

Contents
5.1 Portability Requirements . 18

5.2 Basic Components . 19

5.2.1 Memory Map . 19

5.2.2 Safe Class . 19

5.3 Differences between Linux and MacOS Prototypes 20

5.4 Object Resolution . 21

5.5 Class Pointer Pinning . 22

5.6 Compiling and Running . 22

5.6.1 Linux . 22

5.6.2 MacOS . 23

We implemented two prototypes of ClassPin one for each operating system, Linux

and MacOS. The two prototypes are both written in C/Objective-C and target Objective-

C binaries on 64bit systems. They are based on the same main idea, however, there

are some variations between the two prototypes due to the differences in the way the

compilers handle the Objective-C programs in each operating system. In this chapter,

we further explain the implementation details for each prototype, and also, we provide

and discuss some technical aspects that need to adjust in order to use ClassPin on each

platform.

17

5.1 Portability Requirements

ClassPin is fully portable as long as the following requirements are met.

1. Hooking free: ClassPin works by instrumenting each free call on a running pro-

cess. Therefore, ClassPin have to be able to hook free either if the system’s allocator

is used, or if a custom allocator is in place [5].

2. Realloc in the same address: ClassPin works by preserving the class pointer of each

object, that going to be freed, and deallocating the rest memory, that is occupied

by it. Also, the class pointer has to be preserved in the exactly memory address is

found in order to neutralize possible dangling pointers that point to this address. The

ClassPin’s porotypes are based on realoc function of the standard glibc allocator.

In cases when the realloc is called with a new size, (i.e., n bytes), smaller or

equal to the space that is allocated, the realloc simply keeps the first n bytes and

discards the rest [16] . If an allocator [25, 29] does not implement realloc in the

same way and handles the reallocation by moving the n bytes memory block to a

different address than the one that initially was allocated at, the ClassPin will not

work. This happens because a probable dangling pointer still points to the original

address of the object, and so an attacker is still able to fill it with malicious data and

abuse the control flow of the program. However, this problem can be solved with

a simply modification of the ClassPin, in that way that for each free associated

with an object do nothing (i.e., no realloc or free call). Also notice that in case of

such modification the memory overhead will sharply increase, as for each object

deallocation all the object’s space will be preserved instead of just one pointer.

3. Handling invalid memory accesses: Objective-C offers some runtime functions

[12] that gives runtime type information for pointers, objects and classes. ClassPin

uses those functions to resolve if a pointer is associated with an object (Section

4.1). Hence, when the ClassPin tries to invoke a runtime function with a non-object

argument, there is a high probability of unmapped memory to be touched. In that

case a segmentation fault is caused. Therefore, ClassPin has to be able to recover

from a SIGSEGV signal or touch unmapped memory without causing a segfault.

Most platforms support handling SIGSEGV in user space, so ClassPin uses this tech-

nique.

18

5.2 Basic Components

ClassPin consists of two basic components: (a) memory map that contains all the memory

regions of the process and their permissions and (b) a safe class where the preserved

pointers are pinned when an object is deallocated.

5.2.1 Memory Map

One way to separate memory blocks associate with an object from those who do not, is to

check the permissions of the memory pages where the object’s components are allocated

to. To achieve that, ClassPin keeps a memory map with the process’s memory regions and

their permissions. Specifically, the ClassPin maintains a table with the first and last ad-

dress of each memory region and their page’s permissions. Also, due to the fact that there

are not overlapping regions, the search in the memory map can be done efficiently. So,

for each pointer can be quickly resolved in what type of memory page is pointed at (i.e.,

execute or writable). ClassPin reads the memory region’s information at the initialization

of it. In addition, we hook dlopen in order to check when the memory regions of the pro-

cess are changed and the memory map needs to be updated. In Linux, ClassPin collects

these pages by reading the proc/self/maps file of the running process. In MacOs this

file does not exist, so we create it using a system call with vmmap command.

5.2.2 Safe Class

The first time an object is deallocated, the ClassPin allocates a special safe object. The

class of this special object is the safe class in which all preserved class pointers will be

point at in all the next objects deallocations (Figure 4.1). Furthermore, the safe class

implements a forwarder which forwards all msgSend, regardless to the selector, to a spe-

cific function in the safe class. Therefore, any dangling pointer, if triggered, invokes that

function and the attacker no more has the ability to abuse the control flow of the program.

Also, this special function prints information for the dangling pointer in order to help the

administrator to find it and correct the bug. Finally, the execution of the program does

not terminate, since the dangling pointer is no dangerous any more, because the termi-

nation of the program in such cases would provide an advantage for attackers to use the

ClassPin’s functionality against it and produce denial of service attacks.

19

5.3 Differences between Linux and MacOS Prototypes

The compiler in each operating system, Linux and MacOS, handles differently the Objective-

C programming language .In this Section we discuss the differences between the two

operating systems and the way ClassPin handles them. The compiler in each operating

system handles differently the Objective-C programming language.

1. Extra bytes: Although that the memory layout of an object is the same in both

operating systems, in Linux the free function is called with a pointer that points 16

bytes above the object as argument. ClassPin’s Linux prototype makes the all the

calculations needed in order to handle the class pointer, which is on the first 8 bytes

of the object. However, due to the way the realloc works 24 bytes are preserved

instead of 8 (pointers size).

2. Memory Region: In MacOs the classes are allocated in read-only memory pages

(i.e., executable and not writable), while in Linux classes belong to writable mem-

ory pages (i.e., not executable). Therefore the two prototypes check for the appro-

priate memory pages’ permissions respectively.

3. Class Pointer Value: In Linux, the class pointer value is changed during the de-

struction of the object before the function free is called. In order to be able to use

the heuristics we illustrate in Section 4.1(RTTI and Memory Page’s Permissions),

the ClassPin needs to know the original address the class pointer was pointed to.

We analysed the deallocation procedure and we found out that the class pointer

value is changed to 0xdeadface using the object_setClass function. Therefore,

ClassPin prototype in Linux, places a hook to the object_setClass function and

preserves the original function to the class pointer if the new value that going to be

set is equal to 0xdeadface.

4. Loading Memory Map: In MacOS, there is not a file which contains the current

mapped memory regions like Linux, so ClassPin has to create it with a call to

vmmap. This system call cannot be executed in the initialization phase of ClassPin

because this procedure contains free calls, and subsequently the system could

crash or an endless loop would be created. Consequently, ClassPin prototype on

MacOS, places a hook to the release function and loads the memory maps in the

first call of it. Also, the ClassPin’s special free function invokes the allocator’s

default free function until the memory maps are loaded. So, the memory maps are

loaded exactly before the first probable object’s destruction in order to set in place

the ClassPin’s free function and consequently the protection.

20

Figure 5.1: ClassPin prototype overview. For every pointer that going to be freed,
ClassPin resolves if the pointer is relative to an object or not (Section 4.1). Firstly,
the memory map is used to check the permissions of the object’s class, assuming
that the first pointer is pointing to one. Later, the pointer passed through the phase,
where ClassPin supposes that the pointer is associated with an object and treats its
like one by using runtime functions. If the pointer pass the two stages then ClassPin’s
free invoked otherwise the default free function is called. ClassPin’s free preserves
and pins the class pointer to a safe class and deallocates the rest memory occupied
by the object.

5.4 Object Resolution

Figure 5.1 shows a high-level overview of the ClassPin’s algorithm for object’s resolution

which is described in Section 4.1. Given a pointer to be freed, ClassPin assumes that the

pointer is associated with an object and extracts the supposed class pointer. Then the

permissions of the memory region where the class pointer point to are rapidly checked.

To manage that ClassPin maintains a memory map as described in Section 5.2.1. Also,

each prototype’s check is different as illustrated in Section 5.3. So, the ClassPin very

quickly resolve pointers that point to memory pages with different permissions and does

not proceed to the next algorithm stage which is little more costly.

To the next stage of the algorithm, ClassPin uses a RTTI function, object_getClass

which returns the class of the given instance. In that point, ClassPin can mark a pointer

as not relative to an object in two occasions. First, if an exception was created during

21

the RTTI function’s call, and second, if the returned value from function is not valid.

However, in case of first, the ClassPin has to handle the exception. So, before calling any

RTTI, ClassPin saves the current state of the calling environment [18] with the use of

setjmp() function. Also, a custom exception handler is called when a SIGSEGV signal

occurs, which is calling longjmp() and returns the control to the same point the setjmp

saved. Notice that, during the RTTI function’s calls more free calls occur which must be

handled carefully without creating an infinitive loop.

5.5 Class Pointer Pinning

Once ClassPin finds pointers that are associated with an object a special deallocation pro-

cedure is invoked, otherwise the default allocator’s free function is executed normally.

In the case of the first, the class pointer should be preserved and pinned to a safe class

(Figure 5.1, while the rest of the memory should be normally freed. ClassPin shrinks the

object to 8 bytes by using the realloc function. By this, the class pointer, which is at

the first 8 bytes of the object, is preserved at the original memory address while the rest

of the object is deallocated. Finally, the value of the class pointer is changed to point to

the safe class provided by ClassPin. Class pointer hijacking is not possible anymore, as

any dangling pointer trig, will invoke a safe method under the ClassPin’s control. Also,

the value of the class pointer cannot be overwritten by future allocations as this space is

never freed.

5.6 Compiling and Running

ClassPin tool is a software compiled into a shared library and loaded along with the bi-

nary that going to be protected.In this section we provide extra details for compiling and

running the two ClassPin’s prototypes.

5.6.1 Linux

In Linux operating system, the compilation can be done either using GCC or LLVM Clang

compiler. To create a shared library (.so extension) use -fPIC -shared flags during the

22

compilation. In order to run ClassPin along with a binary the shared library, which was

created, should be loaded before other libraries, so the ClassPin’s functions overwrite the

default ones. To preload a shared library in linux, the LD_PRELOAD can be used.

5.6.2 MacOS

In MacOS operating system the compilation can be done using the system default LLVM

CLANG compiler. To create a dynamic library (.dylib extension) use -dynamiclib

flag during the compilation. Also, the flag -framework Foundation has to be added

as the ClassPin use it. The dynamic library should be loaded first similarly to Linux.

However, in order to preload a dynamic library in MacOS is slightly more complex than

in Linux. Firstly, the respective command DYLD_INSERT_LIBRARIES is used instead of

LD_PRELOAD. Secondly, the environment variable DYLD_FORCE_FLAT_NAMESPACE has to

be set to 1 in order to ignore any two-level namespace bindings [9]. Moreover, the

System Integrity Protection (SIP) should be disabled as it prevents the dynamic library

from preloading. The Systems Integrity protection on a Mac can be disabled from a

terminal in a recovery mode using the command csrutil disable [6] . Finally, MacOs

prevents the preloading when the binary and the dynamic library images have different

signatures. We can bypass this protection by signing the binary with the same signature

as the ClassPin.

23

Chapter 6

Evaluation

Contents
6.1 Effectiveness . 25

6.2 Linux Prototype . 27

6.3 MacOS Prototype . 28

6.3.1 Deallocation Calls . 29

6.3.2 Memory Overhead . 30

6.3.3 Performance Overhead . 30

In this section, we illustrate how ClassPin success to secure Objective-C binaries and

present the ClassPin’s overhead in terms of performance and memory. Both Linux and

MacOS ClassPin’s prototypes were carried out using virtual machines, Oracle Virtual Box

v 5.2.8, on Windows 10. The Linux virtual machine was set up with a 2.5GHz quad-core

Intel Core i5-7500U CPU, 4GB RAM and the operating system was 64bit Ubuntu Linux v

16.04 LTS. The MacOS prototype was tested on 64bit macOS High Sierra v 10.13 armed

with 2.7GHz CPU processor and 5GB RAM.

Because there are no software written in Objective-C available for running on Linux

based operating systems, the Linux ClassPin prototype was tested for the effectiveness

and for the performance overhead with small programs we implemented. On the other

hand, the MacOS ClassPin prototype was evaluated by running the Safari web browser,

which is the MacOS default browser and is written with Objective-C, and by using popular

browser benchmarks.

24

Figure 6.1: Execution of the example’s program of Figure 2.2 in Linux environ-
ment. Three different executions are shown: a) ./example execution of the example
program without protection, b) ./example-under-attack execution of the exam-
ple program slightly modified to simulate use-after-free attack by abusing (o2) dan-
gling pointer, c) LD_PRELOAD=./malloc.so ./example-under-attack execution of
the same binary like in (b) but with ClassPin enabled.

6.1 Effectiveness

We assessed the security effectiveness of the ClassPin’s prototypes by using the sample

program we illustrated in Figure 2.2. Figure 6.1 presents what happens in the execution

of the example program in Linux platform; (a) without protection, (b) without protection

under and (c) with the use of Linux ClassPin tool. Respectively, Figure 6.2 shows the

execution in MacOS platform for the same scenarios. Notice that we did not actually

attack the program, but we simulated the attack.

In scenario (a) we run the example program presented in Figure 2.2 with no protection

enabled (./example). In line 16, the foo function is called which prints a message to the

console. Then in line 22, the foo function is called again but at that point from a dangling

pointer (o2) as the Example object had freed (line 19). In MacOS (Figure 6.2) the same

message as before is printed, while in Linux (Figure 6.1) the program crashes. This

is happening because during the deallocation of the object in MacOS the values of the

freed memory were not changed, so the foo function is invoked. However, in Linux the

25

Figure 6.2: Execution of the example’s program of Figure 2.2 in MacOS op-
erating system. Three different executions are shown: a) ./example execution
of the example program without protection, b) ./example-under-attack ex-
ecution of the example program slightly modified to simulate use-after-free
attack by abusing (o2 dangling pointer, c) DYLD_FORCE_FLAT_NAMESPACE=1

DYLD_INSERT_LIBRARIES=./libmalloc.dylib ./example-under-attack execu-
tion of the same binary like in (b) but with ClassPin enabled.

compiler changed the value of the class pointer to 0xdeadface, therefore the program

crashed because invalid memory is touched when the msgSend() is called.

In scenario (b) we simulated an attack to the example program of the Figure 2.2

(./example-under-attack. We managed to simulate a use-after-free attack by allocat-

ing an object of type Attack just after the deallocation of the Example’s object. Due to

the fact that the compilers place the new object exactly to the same location the freed one

was if their sizes are exactly the same, the program behaves as it would do if it was under

a class pointer hijacking attack. As it can be clearly seen, in both operating systems, the

attacker’s function is called which in our example just prints a message to the console.

Finally, in scenario (c) we present the effectiveness of the ClassPin tool by preloading

ClassPin’s shared library in the binary of scenario (b) execution. Similarly to scenario

(b), the two operating systems have the same results. However, now the class pointer was

preserved and was pinned to the safe class. So, in line 22 when the dangling pointer calls

the foo function, the safe method of ClassPin’s class is invoked and prints (red color)

the function name and the memory location of the dangling pointer in order to help the

developer find it and fix the bug.

26

Statistic Value Percentage

Total free calls 20,008,555 100%

Unhandled free calls 0 0%

free calls on null 99 0.0005%

free calls on non-objects 10,008,412 50.02%

free calls on objects 10,000,044 49.98%

object_setClass calls 20,000,108 100%

object_setClass calls on 10,000,007 49.99%

possible objects going to be freed (99.99% of objects)

Time Overhead

Total time (ClassPin disabled) 2.02 sec. -

Total time (ClassPin enabled) 5.05 sec. 60%

free extra time 0.99 sec. 19.6%

object_setClass 0.76 sec. 15.05%

Total extra time 1.75 sec. 34.65 %

Table 6.1: Statistics for evaluation of ClassPin Linux prototype. The statistics were
calculated by running an example program which in a loop of 20 millions iterations
were allocated and freed 10 millions objects and 10 millions string buffers.

6.2 Linux Prototype

The security that ClassPin provide comes with a cost. In this section, we present and

discuss the cost of ClassPin as it was measured using the Linux prototype. The evaluation

of ClassPin on Linux was estimated using an example program we implemented because

there is no known software written on Objective-C language that running on Linux ma-

chines. Specifically, we implement a program in Objective-C that uses a loop of 20 mil-

lion iterations to allocate and then release 10 million objects and 10 million string buffers.

The example program is run firstly normally and then by preloading the ClassPin shared

library to enable the ClassPin’s protection.

Table 6.1 presents the statistics obtained during the executions. Firstly, we illustrate

the free and object_setClass function calls divided into seven main categories, as they

27

were counted by the ClassPin. The example program invoked 10 million times the free

function with a pointer to a string buffer as an argument and released an object, which is

also calling the free function, another 10 million times. As it can be clearly seen, the

ClassPin recognize the if the free is associated with an object and separated the calls to

calls on object and calls on non-objects. The free calls are just above 20 million because

the free function is also used during the initialization and termination of the program.

The calls of object_setClass are shown too. The object_setClass is used to set the

value of the class pointer on an object, and as we mentioned in Section 5.3 is changing

the class pointer of an object going to be freed to 0xdeadface. The object_setClass

function was called just around 20 million times, as it is called once at the allocation phase

and once during the deallocation. Moreover, the ClassPin counts the calls where the class

pointer is set to 0xdeadface as possible objects going to be freed.

The table also shows the performance overhead of the ClassPin. The runtime overhead

is calculated in two different ways. Once by using the time command provided by Linux

systems, and the other by using times calculated by the ClassPin during the execution.

The first method shows 34.65% and the second around 60% overhead. The big difference

in the results is due to that the time command is also counting the time needed to preload

the shared library and the time ClassPin takes to retain and print the statistics. Finally, is

shown that the free causes the 19.6% of the overhead and object_setClass 15.05%. In

a real scenario of implementing this solution to a system, the compiler could be modified

so it does not call the object_setClass function during the deallocation, as the change

in class pointer value is no longer needed. Additionally, there will be no need for statistics

keeping that consuming extra time. As a result, the runtime overhead would be lower than

20%.

6.3 MacOS Prototype

In this section we measure the performance and memory overheads of the ClassPin’s

prototype on MacOS. The calculations are made by using Safari web, the MacOS platform

default web browser. Moreover, we push safari to the limits by using widespread web

browser benchmark suites. Namely, we use ARES-6 [3], Octane [13], Spedometer [19],

MotionMark [11] and JetStream [8].

28

Benchmark Calls Unhandled null Non-object Object
(freed) (preserved & pinned)

ARES-6 5,949,071 84 (0.001%) 593,302 (9.97%) 5,209,164 (87.56%) 146,521 (2.46%)

JetStream 16,198,052 89 (0.0005%) 1,598,916 (9.87%) 14,247,810 (87.96%) 351,210 (2.16%)

MotionMark 9,746,480 70 (0.0007%) 970,986 (9.7%) 8,646,199 (88.71%) 129,225 (1.32%)

Octane 3,626,358 28 (0.0008%) 369,143 (10.17%) 3,190,227 (87.97%) 66,960 (1.84%)

Speedometer 9,892,087 92 (0.0009%) 978,284 (9.88%) 8,693,270 (87.88%) 220,441 (2.22%)

Table 6.2: Distribution of free calls for popular benchmarks run on Safari under
ClassPin’s MacOS prototype protection.

6.3.1 Deallocation Calls

Table 6.2 illustrate the calls’ distribution of the free function, as they were counted

by the ClassPin for the web browser benchmarks. Firstly, the calls are presented in two

categories, handled and unhandled. The unhandled calls are the ones were made before

the ClassPin’s initialization. For example, during the creation of the memory map (before

that ClassPin cannot check the pointer going to be freed for association with an object.

Then free calls are distributed to three categories:

a. Calls on null : the ClassPin returns to the execution without further actions.

b. Calls on non objects : the ClassPin invokes the allocator’s free function to handle

the deallocation.

c. Calls on objects : the ClassPin preserves and pins the class pointer to a special

class, under its control, and then invokes the allocator’s realloc function to shrink

the object to the size of a pointer (i.e., 8 bytes).

As it can be observed from the Table 6.2, almost 10% of free calls are called with

null pointer as argument, which is too easy and fast for ClassPin to handle them. More-

over, the majority of calls, around 88%, in common programs is not associated with an ob-

ject deallocation, therefore there is no memory overhead for them as they normally freed.

Finally, the free calls which are referred to an object are 66,960 out of 3,626358 (1.84

%) for Octane, which is the best-case scenario, and 146,521 out of 5,949,071 (2.46%) for

ARES-6, the worst-case scenario. These calls must be specially handled, so the less they

are the less memory overhead occurs.

29

6.3.2 Memory Overhead

Binaries are protected from class pointer hijacking through use-after-free vulnerabilities

by preserving the class pointer in each object deallocation. Therefore, is very important

to measure the memory volume that remains occupied by the preserved pointers instead

of released rather than being released as will be done without using the ClassPin.

To estimate the memory overhead, in each malloc call (hook) we record the size of

every allocation to calculate the total malloced chunks as shown in the first column of

the Table 6.3. Also we get the resident set size (RSS) [17], second column of the table,

by using the getrusage function [4]. The RSS is always smaller than total malloc size

because some parts of the memory are not used and are not located in the main memory

(RAM). Although the actual memory overhead is the one calculated by using the total size

of malloced memory, the memory overhead calculated by using the RSS is more objec-

tive because only the extra occupied memory in RAM is considered important. The freed

objects are shrinked to the size of a pointer (8 bytes) during the destruction. However,

the actual size they occupy may be larger due to memory fragmentation. We compute

the actual memory size occupied by preserved pointers by using the malloc_size func-

tion [10], which returns the size of the memory block pointed by a pointer, and we present

it in the third column of the table.

In fourth and fifth columns of the Table 6.3 we present the memory overheads, cal-

culated as explained above, for the web browser’s benchmarks. The actual average

overhead computed using total malloced memory size is 0.38% while the real average

overhead, computed using RSS, is 1.93%. Regardless that ARES-6 has higher percentage

of frees on objects (2.46%) than JetStream (2.16%) as shown in Table 6.2, the memory

overhead of the second is greater (ARES-6 0.33% - 2.05% , JetStream 0.67% - 3.58%).

Octane has the least free calls on objects (1.84%) and the least memory overhead (0.16%

- 1.04%).

6.3.3 Performance Overhead

ClassPin instruments each free call and resolves if the pointer, that going to be freed,

is relative to an object or not. Therefore, this procedure comes with a cost, runtime

overhead. In this section, we estimate the extra time consumed by ClassPin MacOS’s

prototype in order to provide protection to Safari running the web browser benchmarks

30

Benchmark Total malloc’ed Peak Memory Usable Size of ClassPin Overhead ClassPin Overhead
Memory Usage Preserved Objects

(maloc_size()) (peak RSS) (Total malloc)

ARES-6 681,520 KB 111,412 KB 2,289 KB 2.05% 0.33%

JETSTREAM 815,044 KB 153,376 KB 5,487 KB 3.58% 0.67%

MotionMark 719,755 KB 157,272 KB 2,019 KB 1.28% 0.28%

Octane 645,095 KB 100,288 KB 1,046 KB 1.04% 0.16%

Speedometer 711,967 KB 205,672 KB 3,444 KB 1.67% 0.48%

Table 6.3: Memory Overhead for popular web browser’s benchmarks run on Safari,
under ClassPin’s MacOS prototype protection.

Benchmark Total time Total time Extra free Extra time for ClassPin Total ClassPin ClassPin
with ClassPin no ClassPin time memory map extra time Overhead Overhead

(extra times) (compare executions)

ARES-6 134 sec. 114.69 sec. 33.85 sec. 5.9 sec. 39.76 sec. 29.67% 14.92%

JETSTREAM 312.44 sec. 232.79 sec. 83.55 sec. 7.19 sec. 90.75 sec. 29.04% 25.49%

MotionMark 402.95 sec. 334.8 sec. 80.53 sec. 5.14 sec. 85.67 sec. 21.26% 16.91%

Octane 83.58 sec. 54.42 sec. 19.71 sec. 10.64 sec. 30.36 sec. 36.32% 34.88%

Speedometer 270.30 sec. 233.98 sec. 59.82 sec. 10.02 sec. 69.84 sec. 25.83% 13.43%

Table 6.4: Runtime Overhead for popular web browser’s benchmarks run on Safari,
under ClassPin’s MacOS prototype protection. Two overheads are illustrated, the
first is calculated from stats that ClassPin is measuring during the execution and
the second is worked out from total execution times gotten using the time command
provided from all linux based platforms.

suites mentioned above. The Table 6.4 illustrates the measurements taken.

Likewise in Linux evaluation 6.2, the runtime overhead is estimated in two ways,

first by using the time command provided and second by using times calculated by

the ClassPin. The difference in execution times shows an average runtime overhead of

21.12%, while the estimation of runtime average overhead with the ClassPin statistics is

28.43%. Notice that the ClassPin in MacOS has to execute a system call to create the file

before reading it to retain memory maps, a procedure that causes an average overhead of

4.88%. Also, significant time is consumed due to statistics keeping from ClassPin.

31

Chapter 7

Future Work

Contents
7.1 Garbage Collector . 32

7.1 Garbage Collector

In this section, we propose a garbage collector as an extension to the ClassPin. The idea

is to search for preserved class pointers that they do not have reference on them, and

release them. However, all the preserved pointers that possibly referenced from other

memory location should be retained. As a result, the memory occupied from unnecessary

preserved class pointers could be released. The garbage collector could work with low

overhead by running it periodically as it does not need to be enabled in all time. Also, a

lot of memory could be freed, as the majority of the preserved pointers are not expected

to be referenced from other locations, as we assume that most programs does not contain

large numbers of dangling pointers.

The main idea how to implement the ClassPin’s garbage collector is discussed here.

During the deallocation of an object, except from pinning the class pointer to a safe class,

the address of the preserved class pointer should be saved in a data structure (e.g., array,

list, ...). When the garbage collector is invoked, it scans the heap, stack and global data

sections of the process for addresses that are contained to the data structure mentioned

above. If an address is matched, then possible dangling pointers exists, and should be

marked. After the completion of the scan, the garbage collector could search the data

32

structure with the addresses of preserved pointers, and release all the unmarked pointers.

Finally, this process can be aggressively parallelized by scanning with different CPU cores

each memory region.

33

Chapter 8

Related Work

Contents
8.1 VTPin . 34

8.1 VTPin

VTPin [37] is a system that protects C++ binaries against VTable hijacking. VTable

hijacking is a type of use-after-free attack in which the attacker utilizes dangling pointers

in a program in order to abuse the control flow of it. Specifically, all virtual objects in

C++ contain one or more pointers that point to the VTable. The VTable is a data structure

that contains pointers to the method’s implementation of the object. So, when a virtual

object calls a method, the VTable pointer is used with an offset in order to be called the

right method’s implementation. When a virtual object is deallocated the memory space

that the VTable object occupied is free for future allocations. Therefore, an attacker may

intentionally spray the memory with data which are malicious pointers to a VTable under

his control, and then just call a method through a dangling pointer and control the control

flow of the process. VTPin secures binaries from such attacks by preserving any VTable

pointer during the object’s deallocation. Also, it pins the pointer to a safe VTable under his

control, which provides safe methods to get be called if a dangling pointer tries to invoke

a method. In this way, VTPin ensures the integrity of the control flow and provides help

to log, track and patch possible dangling pointers. VTPin is a fully portable system which

works directly on binaries. It does not require source compilation or binary rewriting,

does not base on binary analysis and does not replace the allocator. Finally, it is fast and

34

with low memory overhead.

The main idea of VTPin is used for the implementation of ClassPin. Namely, we

follow the same requirements and restrictions and we use the same logic to defeat against

class pointer hijacking in Objective-C. Also, we used VTPin’s technics for distinguishing

virtual objects from other memory deallocations to implement ClassPin’s algorithm that

distinguishes free calls associated with objects from them which are not.

35

Chapter 9

Conclusion

In this thesis dissertation, we propose and implement a system for securing Objective-C

software against class pointer hijacking through use-after-free vulnerabilities, ClassPin.

ClassPin is a fully portable tool that protects directly binaries, without need of recompi-

lation of the source code, by just preloading it along with the binary. Moreover, it does

not base on complex binary analysis neither interferes with the allocator’s policies and

strategies. To succeed that, ClassPin interferes with each destruction of an object and pre-

serves the class pointer. Finally, except protecting them from being hijacked, it also helps

the developer track and patch possible dangling pointers. We implement two prototypes,

one for Linux and one for MacOS platform, and we evaluate them by using Safari web

browser on popular browser benchmarks suites. We show that ClassPin adds an average

0.38% -1.93% memory overhead and 21.12% - 28.43% runtime overhead, which could

further be decreased as we explain. To sum up, the above characteristics make ClassPin

suitable for practical and immediate application in software’s protection.

36

Bibliography

[1] Advanced Exploitation of Mozilla Firefox Use-after-free Vulnerability

(MFSA 2012-22). http://www.vupen.com/blog/20120625.Advanced_

Exploitation_of_Mozilla_Firefox_UaF_CVE-2012-0469.php.

[2] Advanced Exploitation of Mozilla Firefox Use-After-Free Vulnerability (Pwn2Own

2014). http://www.vupen.com/blog/20140520.Advanced_Exploitation_

Firefox_UaF_Pwn2Own_2014.php.

[3] ARES-6 web browser benchmark. https://browserbench.org/ARES-6/about.

html.

[4] Get information about resource utilization. http://www.manpages.info/

macosx/getrusage.2.html.

[5] Hooking the memory allocator in Firefox. https://glandium.org/blog/?p=

2848.

[6] How to Disable System Integrity Protection (SIP).

https://support.intego.com/hc/en-us/articles/

115003523252-How-to-Disable-System-Integrity-Protection-SIP-.

[7] IEEE Security and Privacy. https://ieeexplore.ieee.org/xpl/

RecentIssue.jsp?punumber=8013.

[8] JetStream web browser benchmark. https://browserbench.org/JetStream/.

[9] Mac OS DYLD. https://developer.apple.com/legacy/library/

documentation/Darwin/Reference/ManPages/man1/dyld.1.html.

[10] Memory allocation information. https://developer.apple.com/legacy/

library/documentation/Darwin/Reference/ManPages/man3/malloc_

size.3.html.

37

http://www.vupen.com/blog/20120625.Advanced_Exploitation_of_Mozilla_Firefox_UaF_CVE-2012-0469.php
http://www.vupen.com/blog/20120625.Advanced_Exploitation_of_Mozilla_Firefox_UaF_CVE-2012-0469.php
http://www.vupen.com/blog/20140520.Advanced_Exploitation_Firefox_UaF_Pwn2Own_2014.php
http://www.vupen.com/blog/20140520.Advanced_Exploitation_Firefox_UaF_Pwn2Own_2014.php
https://browserbench.org/ARES-6/about.html
https://browserbench.org/ARES-6/about.html
http://www.manpages.info/macosx/getrusage.2.html
http://www.manpages.info/macosx/getrusage.2.html
https://glandium.org/blog/?p=2848
https://glandium.org/blog/?p=2848
https://support.intego.com/hc/en-us/articles/115003523252-How-to-Disable-System-Integrity-Protection-SIP-
https://support.intego.com/hc/en-us/articles/115003523252-How-to-Disable-System-Integrity-Protection-SIP-
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8013
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8013
https://browserbench.org/JetStream/
https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man1/dyld.1.html
https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man1/dyld.1.html
https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man3/malloc_size.3.html
https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man3/malloc_size.3.html
https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man3/malloc_size.3.html

[11] MotionMark web browser benchmark. https://browserbench.org/

MotionMark/about.html.

[12] Objective-C Runtime. https://developer.apple.com/documentation/

objectivec/objective_c_runtime.

[13] Octane web browser benchmark. https://developers.google.com/octane/

benchmark.

[14] (Pwn2Own) Adobe Flash Player AS3 ConvolutionFilter Use-After-Free Re-

mote Code Execution Vulnerability. http://www.zerodayinitiative.com/

advisories/ZDI-15-134/.

[15] (Pwn2Own) Google Chrome Blink Use-After-Free Remote Code Execution Vulner-

ability. http://www.zerodayinitiative.com/advisories/ZDI-14-086/.

[16] realloc() – GNU C Library. http://bazaar.launchpad.net/~vcs-imports/

glibc/master/view/head:/malloc/malloc.c#L4235.

[17] Resident set size. https://en.wikipedia.org/wiki/Resident_set_size.

[18] Save Current Environment (Non-local Gotos). http://man7.org/linux/

man-pages/man3/setjmp.3.html.

[19] Speedometer web browser benchmark. https://browserbench.org/

Speedometer2.0/.

[20] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-Flow Integrity. In Proc.

of ACM CCS, pages 340–353, 2005.

[21] S. Andersen and V. Abella. Changes to Functionality in Microsoft Windows XP Ser-

vice Pack 2, Part 3: Memory Protection Technologies, Data Execution Prevention.

Microsoft TechNet Library, September 2004. http://technet.microsoft.com/

en-us/library/bb457155.aspx.

[22] H.-J. Boehm, A. J. Demers, and S. Shenker. Mostly Parallel Garbage Collection. In

Proc. of ACM PLDI, pages 157–164, 1991.

[23] J. Caballero, G. Grieco, M. Marron, and A. Nappa. Undangle: Early Detection

of Dangling Pointers in Use-after-free and Double-free Vulnerabilities. In Proc. of

ISSTA, pages 133–143, 2012.

[24] Chromium OS. Sandbox. https://www.chromium.org/developers/

design-documents/sandbox.

38

https://browserbench.org/MotionMark/about.html
https://browserbench.org/MotionMark/about.html
https://developer.apple.com/documentation/objectivec/objective_c_runtime
https://developer.apple.com/documentation/objectivec/objective_c_runtime
https://developers.google.com/octane/benchmark
https://developers.google.com/octane/benchmark
http://www.zerodayinitiative.com/advisories/ZDI-15-134/
http://www.zerodayinitiative.com/advisories/ZDI-15-134/
http://www.zerodayinitiative.com/advisories/ZDI-14-086/
http://bazaar.launchpad.net/~vcs-imports/glibc/master/view/head:/malloc/malloc.c#L4235
http://bazaar.launchpad.net/~vcs-imports/glibc/master/view/head:/malloc/malloc.c#L4235
https://en.wikipedia.org/wiki/Resident_set_size
http://man7.org/linux/man-pages/man3/setjmp.3.html
http://man7.org/linux/man-pages/man3/setjmp.3.html
https://browserbench.org/Speedometer2.0/
https://browserbench.org/Speedometer2.0/
http://technet.microsoft.com/en-us/library/bb457155.aspx
http://technet.microsoft.com/en-us/library/bb457155.aspx
https://www.chromium.org/developers/design-documents/sandbox
https://www.chromium.org/developers/design-documents/sandbox

[25] J. Evans. A Scalable Concurrent malloc(3) Implementation for FreeBSD. In Proc.

of BSDCan, 2006.

[26] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum. Enhanced Operating System Secu-

rity Through Efficient and Fine-grained Address Space Randomization. In Proc. of

USENIX SEC, pages 475–490, 2012.

[27] I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer. A secure environment for

untrusted helper applications confining the wily hacker. In Proceedings of the 6th

Conference on USENIX Security Symposium, Focusing on Applications of Cryp-

tography - Volume 6, SSYM’96, pages 1–1, Berkeley, CA, USA, 1996. USENIX

Association.

[28] J. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and J. W. Davidson. ILR: Where’d My

Gadgets Go? In Proc. of IEEE S&P, pages 571–585, 2012.

[29] S. Lee, T. Johnson, and E. Raman. Feedback directed optimization of TCMalloc. In

Proc. of MSPC, 2014.

[30] J. Lettner, B. Kollenda, A. Homescu, P. Larsen, F. Schuster, L. Davi, A.-R. Sadeghi,

T. Holz, and M. Franz. Subversive-c: Abusing and protecting dynamic message

dispatch. In 2016 USENIX Annual Technical Conference (USENIX ATC 16), pages

209–221, Denver, CO, 2016. USENIX Association.

[31] G. McGraw. Software security. IEEE Security Privacy, 2(2):80–83, Mar 2004.

[32] Microsoft. Enhanced Mitigation Experience Toolkit, 2016. http://www.

microsoft.com/emet.

[33] V. Pappas, M. Polychronakis, and A. D. Keromytis. Smashing the Gadgets: Hinder-

ing Return-Oriented Programming Using In-place Code Randomization. In Proc. of

IEEE S&P, pages 601–615, 2012.

[34] PaX Team. Address Space Layout Randomization (ASLR), 2003. http://pax.

grsecurity.net/docs/aslr.txt.

[35] V. Prevelakis and D. Spinellis. Sandboxing applications. In Proceedings of the

FREENIX Track: 2001 USENIX Annual Technical Conference, pages 119–126,

Berkeley, CA, USA, 2001. USENIX Association.

[36] T. Rains, M. Miller, and D. Weston. Exploitation Trends: From Potential Risk to

Actual Risk. In RSA Conference, 2015.

39

http://www.microsoft.com/emet
http://www.microsoft.com/emet
http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/aslr.txt

[37] P. Sarbinowski, V. P. Kemerlis, C. Giuffrida, and E. Athanasopoulos. Vtpin: Prac-

tical vtable hijacking protection for binaries. In Proceedings of the 32Nd Annual

Conference on Computer Security Applications, ACSAC ’16, pages 448–459, New

York, NY, USA, 2016. ACM.

[38] A. Sotirov. Heap Feng Shui in JavaScript. In Blackhat 2007, 2007.

[39] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin. Binary Stirring: Self-randomizing

Instruction Addresses of Legacy x86 Binary Code. In Proc. of ACM CCS, pages

157–168, 2012.

40

Appendix A

In this appendix we show the ClassPin’s source code for the MacOS prototype.

1
2 # d e f i n e _GNU_SOURCE
3
4
5 # import < F o u n d a t i o n / F o u n d a t i o n . h>
6 # import < o b j c / r u n t i m e . h>
7 # import < o b j c / o b j c . h>
8
9

10 # import " s a f e O b j .m"
11 # i n c l u d e < d l f c n . h>
12 # i n c l u d e < s t d i o . h>
13 # i n c l u d e < s t r i n g . h>
14 # i n c l u d e < s t d l i b . h>
15 # i n c l u d e < s i g n a l . h>
16 # i n c l u d e < u n i s t d . h>
17 # i n c l u d e < s t d a r g . h>
18 # i n c l u d e < sched . h>
19 # i n c l u d e < t ime . h>
20 # i n c l u d e < s e t j m p . h>
21
22
23 # i n c l u d e < s y s / mman . h>
24
25 # i n c l u d e "MacOsMemoryMap . h "
26
27
28
29
30
31
32 /* Statistics */

33 s t a t i c unsigned long v o l a t i l e s t a t s _ f r e e _ a l l = 0 ;
34
35 s t a t i c unsigned long v o l a t i l e s t a t s _ f r e e _ v o b j e c t = 0 ;
36 s t a t i c unsigned long v o l a t i l e s t a t s _ f r e e _ n o n _ v o b j e c t = 0 ;
37 s t a t i c unsigned long v o l a t i l e s t a t s _ f r e e _ n u l l = 0 ;
38 s t a t i c unsigned long v o l a t i l e s t a t s _ p o s s i b l e _ v o b j e c t =0 ;
39 s t a t i c double s t a t s _ f r e e _ t i m e =0;
40
41
42
43
44 s t a t i c unsigned long v o l a t i l e s t a t s _ t o t a l _ s i z e _ o f _ v o b j e c t s = 0 ;
45 s t a t i c unsigned long v o l a t i l e s t a t s _ t o t a l _ m a l l o c _ s i z e = 0 ;
46
47 t y p e d e f void ∗ (∗ r e a l _ m a l l o c _ t) (s i z e _ t) ;
48 s t a t i c r e a l _ m a l l o c _ t r e a l _ m a l l o c =NULL;
49
50
51 t y p e d e f void (∗ r e a l _ f r e e _ t) (void ∗ p t r) ;
52 s t a t i c r e a l _ f r e e _ t r e a l _ f r e e = NULL;

A-1

53
54
55 t y p e d e f C l a s s (∗ o b j _ s e t C l a s s _ t) (id ∗ i , C l a s s ∗ c l s) ;
56 s t a t i c o b j _ s e t C l a s s _ t r e a l _ o b j e c t _ s e t C l a s s = NULL;
57
58
59
60
61 s t a t i c boo l s a f e O b j C r e a t e d = f a l s e ;
62 s t a t i c s a f e O b j ∗ s a f e o b j = NULL;
63
64
65
66 /* Destructor:

67 Print stats when destroying vtpin object */

68 _ _ a t t r i b u t e _ _ ((d e s t r u c t o r)) s t a t i c vo id p r i n t _ v t p i n _ s t a t s (void) {
69 s t r u c t r u s a g e r u s a g e ;
70 g e t r u s a g e (RUSAGE_SELF , &r u s a g e) ;
71 s i z e _ t peakRSS =(s i z e _ t) r u s a g e . ru_maxr s s ;
72
73 unsigned long s t a t s _ r e c o r d e d = s t a t s _ f r e e _ n o n _ v o b j e c t + s t a t s _ f r e e _ v o b j e c t +

s t a t s _ f r e e _ n u l l ;
74 double s t a t s _ t o t a l _ t i m e = s t a t s _ f r e e _ t i m e + s t a t s _ r e l e a s e _ t i m e ;
75
76
77
78
79
80 p r i n t f (" \ x1B [34m Objc−VTPin d e s t r o y e d . S t a t s : \ n f r e e () c a l l s : %l u \ n f r e e () c a l l s

r e c o r d e d : %l u \ nread_maps () c a l l s : %l u \ n f r e e () c a l l s on o b j e c t s : %l u \ n f r e e ()
c a l l s on non o b j e c t s : %l u \ n f r e e () c a l l s on n u l l p o i n t e r s : %l u \ n \ n f r e e ()

e x t r a t ime %f s e c o n d s \ nread_maps () e x t r a t ime %f s e c o n d s \ n t o t a l e x t r a t ime
%f s e c o n d s \ n f r e e () t o t a l m a l l o c _ u s a b l e _ s i z e o f O b j e c t s : %l u Bytes \ n f r e e ()
t o t a l s i z e o f ma l l oc ’ ed chunks : %l u Bytes \ n f r e e () peak p h y s i c a l memory : %zu

Bytes \ n O b j e c t o v e r h e a d p e r c e n t a g e (peakRSS) : %g %% \ n O b j e c t o v e r h e a d
p e r c e n t a g e : %g %%\n−−\x1B [0m" ,
s t a t s _ f r e e _ a l l , s t a t s _ r e c o r d e d , s t a t s _ m a p s _ a l l , s t a t s _ f r e e _ v o b j e c t ,
s t a t s _ f r e e _ n o n _ v o b j e c t , s t a t s _ f r e e _ n u l l , s t a t s _ f r e e _ t i m e , s t a t s _ r e l e a s e _ t i m e ,
s t a t s _ t o t a l _ t i m e , s t a t s _ t o t a l _ s i z e _ o f _ v o b j e c t s , s t a t s _ t o t a l _ m a l l o c _ s i z e ,
peakRSS , (((double) s t a t s _ t o t a l _ s i z e _ o f _ v o b j e c t s) / peakRSS) ∗ 1 0 0 , (((double)
s t a t s _ t o t a l _ s i z e _ o f _ v o b j e c t s) / s t a t s _ t o t a l _ m a l l o c _ s i z e) ∗100) ;

81 p r i n t f (" \ n ") ;
82
83
84 }
85
86 s t a t i c i n t segmeFla f =0;
87
88 void h a n d l e _ t e r m i n a t i o n (i n t i s i g n a l , s i g i n f o _ t ∗ p s s i g i n f o , void ∗ p s C o n t e x t) {
89 p r i n t _ v t p i n _ s t a t s () ;
90 }
91
92 s i g j m p _ b u f p o i n t ;
93
94 /* segmentation fault handling*/

95 void s e g f a u l t _ s i g a c t i o n (i n t s i g n a l , s i g i n f o _ t ∗ s i , void ∗ a r g)
96 {

A-2

97 //return the execution to point

98 longjmp (p o i n t , 1) ;
99 }

100
101
102
103
104 void e s t a b l i s h _ s i g h a n d l e r (void) {
105
106
107 s t r u c t s i g a c t i o n newTERM ;
108
109 memset(&newTERM, 0 , s i z e o f newTERM) ;
110 s i g e m p t y s e t (&newTERM . sa_mask) ;
111 newTERM . s a _ s i g a c t i o n = h a n d l e _ t e r m i n a t i o n ;
112 newTERM . s a _ f l a g s = SA_SIGINFO ;
113
114 i n t r e s = s i g a c t i o n (SIGTERM , &newTERM, NULL) ;
115 i f (r e s) {
116 // debug("Sigaction returned: %d", res);

117 e x i t (1) ;
118 }
119
120 s t r u c t s i g a c t i o n sa ;
121
122 memset(&sa , 0 , s i z e o f (s t r u c t s i g a c t i o n)) ;
123 s i g e m p t y s e t (& sa . sa_mask) ;
124 sa . s a _ s i g a c t i o n = s e g f a u l t _ s i g a c t i o n ;
125 sa . s a _ f l a g s = SA_NODEFER;
126
127 s i g a c t i o n (SIGSEGV , &sa , NULL) ;
128 s i g a c t i o n (SIGBUS , &sa , NULL) ;
129
130 }
131
132
133
134
135 /* hook release*/

136 @inter face NSObject (MHOverride)
137 −(oneway void) r e l e a s e M y e d i t i o n ;
138 @end
139
140 @implementation NSObject (MHOverride)
141 +(void) l o a d {
142 Method method1= c l a s s _ g e t I n s t a n c e M e t h o d (s e l f , @selec tor (r e l e a s e)) ;
143 Method method2 = c l a s s _ g e t I n s t a n c e M e t h o d (s e l f , @selec tor (r e l e a s e M y e d i t i o n)) ;
144
145 m e t h o d _ e x c h a n g e I m p l e m e n t a t i o n s (method1 , method2) ;
146 }
147
148 /*create safe object*/

149 s t a t i c vo id i n i t S a f e (void) {
150 //NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

151 s a f e o b j = [s a f e O b j a l l o c] ;
152
153 }

A-3

154
155 /*release object by preserving and pinning class pointer*/

156 s t a t i c vo id C l a s s P i n _ r e l e a s e _ o b j e c t (void ∗ p t r) {
157 i f (! s a f e O b j C r e a t e d) {
158 i n i t S a f e () ;
159 s a f e O b j C r e a t e d = t r u e ;
160 }
161
162
163 void ∗ t ;
164 t = (id) s a f e o b j ;
165
166 p t r = r e a l l o c (p t r , 8) ;
167 // printf("%d\n",malloc_usable_size(ptr));

168 memcpy (p t r , t , 8) ;
169 s t a t s _ f r e e _ v o b j e c t ++;
170 s t a t s _ t o t a l _ s i z e _ o f _ v o b j e c t s += m a l l o c _ s i z e (p t r) ;
171
172 // if(stats_free_vobject>stats_possible_vobject)

173 // printf("%d %d\n",stats_free_vobject, stats_possible_vobject);

174
175 }
176
177
178
179
180 −(oneway void) r e l e a s e M y e d i t i o n {
181 // stats_release_all++;

182 // struct timeval tim;

183 // gettimeofday(&tim,NULL);

184 // double start=tim.tv_sec+(tim.tv_usec/1000000.0);

185
186
187 i f (! maps_loaded)
188 read_memory_maps () ;
189
190
191 //gettimeofday(&tim,NULL);

192 //double end=tim.tv_sec+(tim.tv_usec/1000000.0);

193 //stats_release_time+=(end-start);//difftime(end,start);

194 [s e l f r e l e a s e M y e d i t i o n] ;
195
196
197
198
199 }
200
201 @end
202
203 /*initialization of ClassPin*/

204 s t a t i c vo id m y m t r a c e _ i n i t (void) {
205
206
207
208 r e a l _ m a l l o c = (r e a l _ m a l l o c _ t) dlsym (RTLD_NEXT, " ma l l oc ") ;
209 i f (NULL == r e a l _ m a l l o c) {
210 f p r i n t f (s t d o u t , " E r r o r i n ‘ dlsym ‘ : %s \ n " , d l e r r o r ()) ;

A-4

211 }
212 //printf("initializing freeeee()\n");

213 r e a l _ f r e e = (r e a l _ f r e e _ t) dlsym (RTLD_NEXT, " f r e e ") ;
214 //printf("%p\n",real_free);

215 i f (NULL == r e a l _ f r e e) {
216 //fprintf(stdout, "error in free init\n");

217 e x i t (0) ;
218 }
219
220 e s t a b l i s h _ s i g h a n d l e r () ;
221
222 }
223
224 /* ---- DLOPEN START ---- */

225
226 t y p e d e f void ∗ (∗ r e a l _ d l o p e n _ t) (c o n s t char ∗ , i n t) ;
227 s t a t i c r e a l _ d l o p e n _ t r e a l _ d l o p e n = NULL;
228 s t a t i c boo l newmaps= f a l s e ;
229 void ∗ d l op en (c o n s t char ∗ f i l e n a m e , i n t f l a g) {
230 i f (! r e a l _ d l o p e n) {
231 r e a l _ d l o p e n = (r e a l _ d l o p e n _ t) dlsym (RTLD_NEXT, " d l op en ") ;
232 i f (! r e a l _ d l o p e n) {
233 p r i n t f (" dlsym problem : %s " , d l e r r o r ()) ;
234 e x i t (1) ;
235 }
236 }
237
238 void ∗ r e t = r e a l _ d l o p e n (f i l e n a m e , f l a g) ;
239
240 i f (maps_loaded)
241 newmaps= t r u e ;
242
243
244 re turn r e t ;
245 }
246
247 /*---- DLOPEN END ---- */

248
249
250 void ∗ma l l oc (s i z e _ t s i z e)
251 {
252 i f (r e a l _ m a l l o c ==NULL) {
253 m y m t r a c e _ i n i t () ;
254 }
255 s t a t s _ t o t a l _ m a l l o c _ s i z e += s i z e ;
256 void ∗p = NULL;
257
258 // fprintf(stdout, "%d\tmalloc(%ld) = ",i++, size);

259 p = r e a l _ m a l l o c (s i z e) ;
260 // fprintf(stdout, "%p\n", p);

261 re turn p ;
262 }
263
264
265
266
267

A-5

268 s t a t i c i n t i n l o o p =0;
269 /*resolve if a pointer is associated with an object*/

270 s t a t i c i n t c h e c k P o i n t e r (void∗ p t r) {
271
272 void ∗p ;
273 char∗ x ;
274
275 i f (p e r m i s s i o n s O f (p t r) != ’w’)
276 re turn 0 ;
277
278
279 i f (i n l o o p)
280 re turn 0 ;
281 i f (s e t j m p (p o i n t) ==0) {
282 i n l o o p =1;
283 //printf("%p\n",DEREFERENCE(ptr));

284 i f (p e r m i s s i o n s O f (GET_ADDRESS(DEREFERENCE(p t r))) != ’w’&&p e r m i s s i o n s O f (
GET_ADDRESS(DEREFERENCE(p t r))) != ’ b ’) {

285 i n l o o p =0;
286 re turn 0 ;
287 }
288
289 s t a t s _ p o s s i b l e _ v o b j e c t ++;
290 p= o b j e c t _ g e t C l a s s (p t r) ;
291
292 }
293 e l s e {
294 i n l o o p =0;
295 re turn 0 ;
296 }
297
298 i n l o o p =0;
299 i f (p==NULL | | p== n i l | | p e r m i s s i o n s O f (p) != ’w’)
300 re turn 0 ;
301
302
303 i f (p e r m i s s i o n s O f (p) == ’∗ ’&&newmaps) {
304
305 newmaps= f a l s e ;
306 read_memory_maps () ;
307 // printf("maps loaded_again\n");

308 re turn c h e c k P o i n t e r (p t r) ;
309 }
310
311
312
313
314 //printf("version - %d\n " ,class_getVersion(p));

315
316 re turn 1 ;
317 }
318
319 /*hook free*/

320 void f r e e (void ∗ p t r) {
321
322 //printf("ptr %p\n", ptr);

323 s t r u c t t i m e v a l t im ;

A-6

324 g e t t i m e o f d a y (&tim ,NULL) ;
325 double s t a r t = t im . t v _ s e c +(t im . t v _ u s e c / 1 0 0 0 0 0 0 . 0) ;
326
327 i f (r e a l _ f r e e == NULL)
328 m y m t r a c e _ i n i t () ;
329 s t a t s _ f r e e _ a l l ++;
330
331 i f (p t r == NULL) {
332 s t a t s _ f r e e _ n u l l ++;
333 re turn ;
334 }
335 i f (p t r == n i l) {
336 s t a t s _ f r e e _ n u l l ++;
337 re turn ;
338 }
339
340
341 i n t f l a g V i r t u a l =0 ;
342 i f (maps_loaded) {
343 f l a g V i r t u a l = c h e c k P o i n t e r (p t r) ;
344 }
345
346
347 i f (f l a g V i r t u a l) {
348 C l a s s P i n _ r e l e a s e _ o b j e c t (p t r) ;
349 g e t t i m e o f d a y (&tim ,NULL) ;
350 double end= t im . t v _ s e c +(t im . t v _ u s e c / 1 0 0 0 0 0 0 . 0) ;
351 s t a t s _ f r e e _ t i m e +=(end− s t a r t) ; //difftime(end,start);
352 } e l s e {
353 s t a t s _ f r e e _ n o n _ v o b j e c t ++;
354 g e t t i m e o f d a y (&tim ,NULL) ;
355 double end= t im . t v _ s e c +(t im . t v _ u s e c / 1 0 0 0 0 0 0 . 0) ;
356 s t a t s _ f r e e _ t i m e +=(end− s t a r t) ; //difftime(end,start);
357 r e a l _ f r e e (p t r) ;
358 }
359
360
361
362 re turn ;
363
364 }

A-7

Appendix B

In this appendix we show the ClassPin’s source code for the Linux prototype.

1 # d e f i n e _GNU_SOURCE
2
3 # import < F o u n d a t i o n / F o u n d a t i o n . h>
4 # import < o b j c / r u n t i m e . h>
5 # import < o b j c / o b j c . h>
6
7 # i n c l u d e "memoryMap . h "
8 # import " s a f e O b j .m"
9 # i n c l u d e < d l f c n . h>

10 # i n c l u d e < s t d i o . h>
11 # i n c l u d e < s t r i n g . h>
12
13 s i g j m p _ b u f p o i n t ;
14
15 /*handle segmentation fault*/

16 void s e g f a u l t _ s i g a c t i o n (i n t s i g n a l , s i g i n f o _ t ∗ s i , void ∗ a r g)
17 {
18 //printf("Caught segfault at address %p\n", si->si_addr);

19 longjmp (p o i n t , 1) ;
20 }
21
22 t y p e d e f void (∗ r e a l _ f r e e _ t) (void ∗ p t r) ;
23 s t a t i c r e a l _ f r e e _ t r e a l _ f r e e = NULL;
24
25 t y p e d e f C l a s s (∗ o b j _ s e t C l a s s _ t) (id ∗ i , C l a s s ∗ c l s) ;
26 s t a t i c o b j _ s e t C l a s s _ t r e a l _ o b j e c t _ s e t C l a s s = NULL;
27
28 /* Statistics */

29 s t a t i c unsigned long v o l a t i l e s t a t s _ f r e e _ a l l = 0 ;
30 s t a t i c unsigned long v o l a t i l e s t a t s _ r e l e a s e _ a l l =0 ;
31 s t a t i c unsigned long v o l a t i l e s t a t s _ f r e e _ v o b j e c t = 0 ;
32 s t a t i c unsigned long v o l a t i l e s t a t s _ f r e e _ n o n _ v o b j e c t = 0 ;
33 s t a t i c unsigned long v o l a t i l e s t a t s _ f r e e _ n u l l = 0 ;
34 s t a t i c unsigned long v o l a t i l e s t a t s _ p o s s i b l e _ v o b j e c t =0 ;
35 s t a t i c double s t a t s _ f r e e _ t i m e =0;
36 s t a t i c double s t a t s _ r e l e a s e _ t i m e =0;
37
38 s t a t i c boo l s a f e O b j C r e a t e d = f a l s e ;
39 s t a t i c s a f e O b j ∗ s a f e o b j = NULL;
40 s t a t i c vo id ∗ code = (void ∗) 0 x f a c e d e a d ;
41
42 /* Destructor:

43 Print stats when destroying vtpin object */

44 _ _ a t t r i b u t e _ _ ((d e s t r u c t o r)) s t a t i c vo id p r i n t _ v t p i n _ s t a t s (void) {
45
46
47 unsigned long s t a t s _ r e c o r d e d = s t a t s _ f r e e _ n o n _ v o b j e c t + s t a t s _ f r e e _ v o b j e c t +
48 + s t a t s _ f r e e _ n u l l ;
49 double s t a t s _ t o t a l _ t i m e = s t a t s _ f r e e _ t i m e + s t a t s _ r e l e a s e _ t i m e ;
50
51
52

B-8

53
54
55 p r i n t f (" \ x1B [34m Objc−VTPin d e s t r o y e d . S t a t s : \ n f r e e () c a l l s : %l u \ n f r e e () c a l l s

r e c o r d e d : %l u \ n o b j e c t _ s e t C l a s s s () c a l l s : %l u \ n f r e e () c a l l s on v o b j e c t s : %l u
\ n o b j e c t _ s e t C l a s s s () c a l l s on p o s s i b l e v o b j e c t s : %l u \ n f r e e () c a l l s on non
v o b j e c t s : %l u \ n f r e e () c a l l s on n u l l p o i n t e r s : %l u \ n \ n f r e e () e x t r a t ime %f
s e c o n d s \ n o b j e c t _ s e t C l a s s s () e x t r a t ime %f s e c o n d s \ n t o t a l e x t r a t ime %f
s e c o n d s %%\x1B [0m" , s t a t s _ f r e e _ a l l , s t a t s _ r e c o r d e d , s t a t s _ r e l e a s e _ a l l ,
s t a t s _ f r e e _ v o b j e c t , s t a t s _ p o s s i b l e _ v o b j e c t , s t a t s _ f r e e _ n o n _ v o b j e c t ,
s t a t s _ f r e e _ n u l l , s t a t s _ f r e e _ t i m e , s t a t s _ r e l e a s e _ t i m e , s t a t s _ t o t a l _ t i m e) ;

56 p r i n t f (" \ n ") ;
57
58
59 }
60
61 void h a n d l e _ t e r m i n a t i o n (i n t i s i g n a l , s i g i n f o _ t ∗ p s s i g i n f o , void ∗ p s C o n t e x t) {
62 p r i n t _ v t p i n _ s t a t s () ;
63 }
64
65 void e s t a b l i s h _ s i g h a n d l e r (void) {
66
67 // debug("Establishing sighandler");

68
69
70 s t r u c t s i g a c t i o n newTERM ;
71
72 memset(&newTERM, 0 , s i z e o f newTERM) ;
73 s i g e m p t y s e t (&newTERM . sa_mask) ;
74 newTERM . s a _ s i g a c t i o n = h a n d l e _ t e r m i n a t i o n ;
75 newTERM . s a _ f l a g s = SA_SIGINFO ;
76
77 i n t r e s = s i g a c t i o n (SIGTERM , &newTERM, NULL) ;
78 i f (r e s) {
79 // debug("Sigaction returned: %d", res);

80 e x i t (1) ;
81 }
82
83 s t r u c t s i g a c t i o n sa ;
84
85 memset(&sa , 0 , s i z e o f (s t r u c t s i g a c t i o n)) ;
86 s i g e m p t y s e t (& sa . sa_mask) ;
87 sa . s a _ s i g a c t i o n = s e g f a u l t _ s i g a c t i o n ;
88 sa . s a _ f l a g s = SA_NODEFER;
89
90 s i g a c t i o n (SIGSEGV , &sa , NULL) ;
91
92 }
93
94 s t a t i c vo id i n i t S a f e (void) {
95 s a f e o b j = [s a f e O b j a l l o c] ;
96
97 }
98
99 s t a t i c vo id r e l e a s e _ o b j e c t (void ∗ p t r) {

100 i f (! s a f e O b j C r e a t e d) {
101 i n i t S a f e () ;
102 s a f e O b j C r e a t e d = t r u e ;

B-9

103 }
104 void ∗ t ;
105 t = (id) s a f e o b j ;
106 // real_free(ptr);

107 p t r = r e a l l o c (p t r , 24) ;
108 // printf("%d\n",malloc_usable_size(ptr));

109 memcpy (p t r + 16 , t , 8) ;
110 s t a t s _ f r e e _ v o b j e c t ++;
111 }
112
113 s t a t i c vo id m t r a c e _ i n i t (void) {
114 r e a l _ f r e e = (r e a l _ f r e e _ t) dlsym (RTLD_NEXT, " f r e e ") ;
115 i f (NULL == r e a l _ f r e e)
116 f p r i n t f (s t d e r r , " e r r o r i n f r e e i n i t \ n ") ;
117
118 r e a l _ o b j e c t _ s e t C l a s s = (o b j _ s e t C l a s s _ t) dlsym (RTLD_NEXT, " o b j e c t _ s e t C l a s s ") ;
119 i f (r e a l _ o b j e c t _ s e t C l a s s == NULL) {
120 f p r i n t f (s t d e r r , " e r r o r i n f r e e i n i t \ n ") ;
121 e x i t (0) ;
122 }
123 e s t a b l i s h _ s i g h a n d l e r () ;
124
125
126 }
127
128 /* ---- DLOPEN START ---- */

129
130 t y p e d e f void ∗ (∗ r e a l _ d l o p e n _ t) (c o n s t char ∗ , i n t) ;
131 s t a t i c r e a l _ d l o p e n _ t r e a l _ d l o p e n = NULL;
132
133 void ∗ d l op en (c o n s t char ∗ f i l e n a m e , i n t f l a g) {
134 i f (! r e a l _ d l o p e n) {
135 r e a l _ d l o p e n = (r e a l _ d l o p e n _ t) dlsym (RTLD_NEXT, " d l op en ") ;
136 i f (! r e a l _ d l o p e n) {
137 debug (" dlsym problem : %s " , d l e r r o r ()) ;
138 e x i t (1) ;
139 }
140 }
141
142 void ∗ r e t = r e a l _ d l o p e n (f i l e n a m e , f l a g) ;
143 i f (maps_loaded)
144 read_memory_maps () ;
145
146
147 re turn r e t ;
148 }
149
150 /* ---- DLOPEN END ---- */

151
152
153 C l a s s o b j e c t _ s e t C l a s s (id o b j e c t , C l a s s c l s) {
154 s t a t s _ r e l e a s e _ a l l ++;
155 s t r u c t t i m e v a l t im ;
156 g e t t i m e o f d a y (&tim ,NULL) ;
157 double s t a r t = t im . t v _ s e c +(t im . t v _ u s e c / 1 0 0 0 0 0 0 . 0) ;
158
159

B-10

160
161 i f (r e a l _ o b j e c t _ s e t C l a s s == NULL)
162 m t r a c e _ i n i t () ;
163
164
165 i f (c l s != (void ∗) 0 x d e a d f a c e) {
166 g e t t i m e o f d a y (&tim ,NULL) ;
167 double end= t im . t v _ s e c +(t im . t v _ u s e c / 1 0 0 0 0 0 0 . 0) ;
168 s t a t s _ r e l e a s e _ t i m e +=(end− s t a r t) ; //difftime(end,start);
169 re turn r e a l _ o b j e c t _ s e t C l a s s ((s t r u c t o b j c _ c l a s s ∗∗) o b j e c t , (s t r u c t o b j c _ c l a s s

∗∗) c l s) ;
170 }
171 s t a t s _ p o s s i b l e _ v o b j e c t ++;
172 g e t t i m e o f d a y (&tim ,NULL) ;
173 double end= t im . t v _ s e c +(t im . t v _ u s e c / 1 0 0 0 0 0 0 . 0) ;
174 s t a t s _ r e l e a s e _ t i m e +=(end− s t a r t) ; //difftime(end,start);
175 re turn r e a l _ o b j e c t _ s e t C l a s s ((s t r u c t o b j c _ c l a s s ∗∗) o b j e c t , (s t r u c t o b j c _ c l a s s ∗∗)

o b j e c t _ g e t C l a s s (o b j e c t)) ;
176 }
177
178
179 s t a t i c i n t c h e c k P o i n t e r (void∗ p t r) {
180 void ∗p ;
181 i f (s e t j m p (p o i n t) ==0)
182 p= o b j e c t _ g e t C l a s s (p t r) ;
183 e l s e
184 re turn 0 ;
185 i f (p==NULL | | p== n i l)
186 re turn 0 ;
187
188 i f (p e r m i s s i o n s O f (p) [2]== ’ x ’)
189 re turn 0 ;
190
191 //printf("version - %d\n " ,class_getVersion(p));

192 //stats_possible_vobject++;

193 re turn 1 ;
194 }
195
196
197 void f r e e (void ∗ p t r) {
198 s t a t s _ f r e e _ a l l ++;
199 s t r u c t t i m e v a l t im ;
200 g e t t i m e o f d a y (&tim ,NULL) ;
201 double s t a r t = t im . t v _ s e c +(t im . t v _ u s e c / 1 0 0 0 0 0 0 . 0) ;
202
203 i f (r e a l _ f r e e == NULL)
204 m t r a c e _ i n i t () ;
205
206 i f (! maps_loaded)
207 read_memory_maps () ;
208
209 i f (p t r == NULL) {
210 s t a t s _ f r e e _ n u l l ++;
211 re turn ;
212 }
213 i f (p t r == n i l) {
214 s t a t s _ f r e e _ n u l l ++;

B-11

215 re turn ;
216 }
217
218 // ptr is -16 from *object

219 i f (c h e c k P o i n t e r ((p t r + 16)) == 1) {
220
221 g e t t i m e o f d a y (&tim ,NULL) ;
222 double end= t im . t v _ s e c +(t im . t v _ u s e c / 1 0 0 0 0 0 0 . 0) ;
223 s t a t s _ f r e e _ t i m e +=(end− s t a r t) ; //difftime(end,start);
224 r e l e a s e _ o b j e c t (p t r) ;
225 //printf("free calls : %d\nvobjects : %d\n",freeCalled,vObjects);

226 } e l s e {
227 s t a t s _ f r e e _ n o n _ v o b j e c t ++;
228 g e t t i m e o f d a y (&tim ,NULL) ;
229 double end= t im . t v _ s e c +(t im . t v _ u s e c / 1 0 0 0 0 0 0 . 0) ;
230 s t a t s _ f r e e _ t i m e +=(end− s t a r t) ; //difftime(end,start);
231 r e a l _ f r e e (p t r) ;
232 }
233 re turn ;
234 }

B-12

Appendix C

In this appendix we show the source code for creating memory maps on MacOS prototype.

1
2 # i n c l u d e < s t d i o . h>
3 # i n c l u d e < s t r i n g . h>
4
5 # d e f i n e DEREFERENCE(o) (void ∗) (∗ (long ∗) o)
6 # d e f i n e GET_ADDRESS(o) (void ∗) ((long) o & 0 x 7 f f f f f f f f f f f) // 47bits

7 # d e f i n e GET_ADDRESS2(o) (void ∗) ((long) o & 0 x 7 f f f f f f f f) // 47bits

8 unsigned long long ∗ s t a r t A d d r e s s ;
9 unsigned long long ∗ endAddress ;

10 char ∗ p e r m i s s i o n s ;
11 char ∗ readPerm ;
12 s t a t i c boo l maps_loaded = f a l s e ;
13 s t a t i c unsigned long v o l a t i l e s t a t s _ m a p s _ a l l =0 ;
14 s t a t i c double s t a t s _ r e l e a s e _ t i m e =0;
15 s t a t i c i n t t a b l e L e n g t h = 0 ;
16
17 s t a t i c vo id read_memory_maps () {
18 s t a t s _ m a p s _ a l l ++;
19 s t r u c t t i m e v a l t im ;
20 g e t t i m e o f d a y (&tim ,NULL) ;
21 double s t a r t = t im . t v _ s e c +(t im . t v _ u s e c / 1 0 0 0 0 0 0 . 0) ;
22
23 i n t p i d = g e t p i d () ;
24 char ∗ s t r i n g = ma l lo c (2 0 0 0) ;
25 s t r i n g [0] = ’ \ 0 ’ ;
26 s t r c a t (s t r i n g , " sudo vmmap − i n t e r l e a v e d −v ") ;
27
28 char ∗ p i d s t r = ma l lo c (1 0) ;
29 s p r i n t f (p i d s t r , "%d " , p i d) ;
30 s t r c a t (s t r i n g , p i d s t r) ;
31 s t r c a t (s t r i n g , " | t a i l −n +23 > " t e m p F i l e . t x t ") ;
32 sys tem (s t r i n g) ;
33
34
35 FILE ∗ fp = fopen (
36 " / t e m p F i l e . t x t " , " r ") ;
37 / / FILE ∗ fp = fopen (" t e m p f i l e . t x t " , " rb ") ;
38 i f (fp == NULL) {
39 p r i n t f (" E r r o r in open ing f i l e \ n ") ;
40 e x i t (0) ;
41 }
42
43 c h a r c , prevC , prev2C ;
44
45 / / c o u n t l i n e s o f f i l e
46 w h i l e ((c = g e t c (fp)) != EOF) {
47
48 i f (prevC == ’ \ n ’ && c == ’ \ n ’)
49 b r e a k ;
50 i f (c == ’ \ n ’)
51 t a b l e L e n g t h ++;
52 prevC = c ;

C-13

53 }
54
55 / / p r i n t f ("%d−−− l i n e s −−−−−−−−\n " , t a b l e L e n g t h) ;
56
57 f s e e k (fp , 0 , SEEK_SET) ;
58 i f (maps_loaded) {
59 f r e e (s t a r t A d d r e s s) ;
60 f r e e (endAddress) ;
61 f r e e (p e r m i s s i o n s) ;
62 f r e e (readPerm) ;
63 }
64 s t a r t A d d r e s s =
65 (u n s i g n e d long long ∗) m a l lo c (s i z e o f (u n s i g n e d long long) ∗ t a b l e L e n g t h) ;
66 endAddress =
67 (u n s i g n e d long long ∗) m a l lo c (s i z e o f (u n s i g n e d long long) ∗ t a b l e L e n g t h) ;
68 p e r m i s s i o n s = (c h a r ∗) m a l lo c (t a b l e L e n g t h) ;
69 readPerm = (c h a r ∗) m a l lo c (t a b l e L e n g t h) ;
70
71 i n t i , k = 0 ;
72 c h a r l i n e [1 0 0 0 0] ;
73 c h a r temp [2 0] ;
74 i n t a = 0 ;
75
76 f o r (i = 0 ; i < t a b l e L e n g t h ; i ++) {
77 w h i l e (1) {
78 c = g e t c (fp) ;
79 i f (c != ’ ’ && prevC == ’ ’ && prev2C == ’ ’)
80 b r e a k ;
81 prev2C = prevC ;
82 prevC = c ;
83 }
84 prevC = ’ a ’ ;
85 prev2C = ’ a ’ ;
86 a = 0 ;
87 w h i l e (1) {
88 c = g e t c (fp) ;
89 i f (c == ’− ’)
90 b r e a k ;
91 temp [a ++] = c ;
92 }
93 temp [a] = ’ \ 0 ’ ;
94 / / p r i n t f ("%s −−− " , temp) ;
95 s t a r t A d d r e s s [k] = s t r t o l (temp , NULL, 16) ;
96 / / i f (k>0 && s t a r t A d d r e s s [k] ! = endAddress [k−1])
97 / / s t a r t A d d r e s s [k]= endAddress [k−1];
98 a = 0 ;
99 w h i l e (1) {

100 c = g e t c (fp) ;
101 i f (c == ’ ’)
102 b r e a k ;
103 temp [a ++] = c ;
104 }
105 temp [a] = ’ \ 0 ’ ;
106 / / p r i n t f ("%s \ n " , temp) ;
107 endAddress [k] = s t r t o l (temp , NULL, 16) ;
108
109 w h i l e (1) {

C-14

110 c = g e t c (fp) ;
111 i f (c == ’] ’)
112 b r e a k ;
113 }
114 p e r m i s s i o n s [k] = ’ n ’ ; / / none
115 c = g e t c (fp) ;
116 c = g e t c (fp) ;
117 readPerm [k] = c ;
118 c = g e t c (fp) ;
119 i f (c == ’w ’) {
120 p e r m i s s i o n s [k] = ’w ’ ;
121 }
122 c = g e t c (fp) ;
123 i f (c == ’ x ’) {
124 i f (p e r m i s s i o n s [k] == ’w ’)
125 p e r m i s s i o n s [k] = ’ b ’ ; / / bo th
126 e l s e
127 p e r m i s s i o n s [k] = ’ x ’ ;
128 }
129
130 k ++;
131
132 w h i l e (1) {
133 c = g e t c (fp) ;
134 i f (c == ’ \ n ’)
135 b r e a k ;
136 }
137 / /
138 }
139
140 f c l o s e (fp) ;
141 f r e e (s t r i n g) ;
142 sys tem (" rm / t e m p F i l e . t x t ") ;
143 maps_loaded = t r u e ;
144
145 g e t t i m e o f d a y (&tim ,NULL) ;
146 do ub l e end= t im . t v _ s e c +(t im . t v _ u s e c / 1 0 0 0 0 0 0 . 0) ;
147 s t a t s _ r e l e a s e _ t i m e +=(end− s t a r t) ; / / d i f f t i m e (end , s t a r t) ;
148
149
150 r e t u r n ;
151 }
152 / / s t a t i c i n t a =0;
153 / / s t a t i c i n t b =0;
154 s t a t i c c h a r p e r m i s s i o n s O f (vo id ∗ p t r) {
155 / / p r i n t f ("%p \ n " , p t r) ;
156 i f (p t r == NULL | | p t r == n i l | | ! p t r)
157 r e t u r n ’∗ ’ ;
158 / / b ++;
159 / / vo id ∗ p t r = DEREFERENCE(p) ;
160 / / p r i n t f (" i s r e a d on ly %p %p \ n " , p , p t r) ;
161 i n t i = 0 ;
162 f o r (i = 0 ; i < t a b l e L e n g t h − 2 ; i ++) {
163 i f ((u n s i g n e d long long) p t r >= s t a r t A d d r e s s [i] &&
164 (u n s i g n e d long long) p t r <= endAddress [i])
165 b r e a k ;
166 e l s e i f (i == t a b l e L e n g t h − 2)

C-15

167 r e t u r n ’∗ ’ ;
168 }
169 / / p r i n t f ("%x %x %c \ n " , s t a r t A d d r e s s [i] , endAddress [i] , p e r m i s s i o n s [i]) ;
170 / / s l e e p (5) ;
171 r e t u r n p e r m i s s i o n s [i] ;
172 }
173
174 s t a t i c i n t r e a d P e r m i s s i o n s O f (vo id ∗ p t r) {
175 / / b ++;
176 / / vo id ∗ p t r = DEREFERENCE(p) ;
177 / / p r i n t f (" i s r e a d on ly %p %p \ n " , p , p t r) ;
178 i n t i = 0 ;
179 f o r (i = 0 ; i < t a b l e L e n g t h − 2 ; i ++) {
180 i f ((u n s i g n e d long long) p t r >= s t a r t A d d r e s s [i] &&
181 (u n s i g n e d long long) p t r <= endAddress [i])
182 b r e a k ;
183 e l s e i f (i == t a b l e L e n g t h − 2)
184 r e t u r n ’∗ ’ ;
185 }
186 / / p r i n t f ("%x %x %s \ n " , s t a r t A d d r e s s [i] , endAddress [i] , p e r m i s s i o n s [i]) ;
187 / / s l e e p (5) ;
188 i f (readPerm [i] == ’ r ’)
189 r e t u r n 1 ;
190 e l s e
191 r e t u r n 0 ;
192 }

C-16

Appendix D

In this appendix we show the source code for creating memory maps in Linux prototype.

1
2 # i n c l u d e < s t d i o . h>
3 # i n c l u d e < s t r i n g . h>
4
5 # d e f i n e DEREFERENCE(o) (void ∗) (∗ (u i n t p t r _ t ∗) o)
6
7 unsigned long long ∗ s t a r t A d d r e s s ;
8 unsigned long long ∗ endAddress ;
9 char ∗∗ p e r m i s s i o n s ;

10 s t a t i c boo l maps_loaded = f a l s e ;
11 s t a t i c i n t t a b l e L e n g t h = 0 ;
12
13 s t a t i c vo id read_memory_maps () {
14 maps_loaded = t r u e ;
15 // NSProcessInfo *processInfo = [NSProcessInfo processInfo];

16 // int processID = [processInfo processIdentifier];

17 i n t p r o c e s s I D = g e t p i d () ;
18
19
20 char ∗mapFilename = m a l loc (1 6) ;
21 mapFilename [0] = ’ \ 0 ’ ;
22 s p r i n t f (mapFilename , " / p roc /%d / maps " , p r o c e s s I D) ;
23 // printf("%s\n",x);

24 FILE ∗ fp = fopen (mapFilename , " rb ") ;
25 i f (fp == NULL) {
26 p r i n t f (" E r r o r i n open ing %s \ n " , mapFilename) ;
27 e x i t (−1) ;
28 }
29
30 char c ;
31
32 // count lines of file

33 whi le ((c = g e t c (fp)) != EOF) {
34 i f (c == ’ \ n ’)
35 t a b l e L e n g t h ++;
36 }
37 f s e e k (fp , 0 , SEEK_SET) ;
38
39 s t a r t A d d r e s s =
40 (unsigned long long ∗) m a l lo c (s i z e o f (unsigned long long) ∗ t a b l e L e n g t h) ;
41 endAddress =
42 (unsigned long long ∗) m a l lo c (s i z e o f (unsigned long long) ∗ t a b l e L e n g t h) ;
43 p e r m i s s i o n s = (char ∗∗) ma l lo c (s i z e o f (char ∗) ∗ t a b l e L e n g t h) ;
44
45 i n t k = 0 ;
46 char l i n e [1 0 0 0 0] ;
47 char temp [2 0] ;
48 i n t a = 0 ;
49
50 whi le ((c = g e t c (fp)) != EOF) {
51 i f (c != ’ \ n ’) {
52 l i n e [a ++] = c ;

D-17

53 c o n t in u e ;
54 }
55
56 a = 0 ;
57 whi le (l i n e [a] != ’− ’) {
58 temp [a] = l i n e [a] ;
59 a ++;
60 }
61
62 s t a r t A d d r e s s [k] = s t r t o l (temp , NULL, 16) ;
63 a ++;
64
65 i n t q = 0 ;
66 whi le (l i n e [a] != ’ ’) {
67 temp [q] = l i n e [a] ;
68 q ++;
69 temp [q] = ’ \ 0 ’ ;
70 a ++;
71 }
72
73 endAddress [k] = s t r t o l (temp , NULL, 16) ;
74
75 whi le (l i n e [a ++] != ’ ’)
76 ;
77 // a++;

78 p e r m i s s i o n s [k] = (char ∗) c a l l o c (5 , s i z e o f (char)) ;
79 s t r n c a t (p e r m i s s i o n s [k] , l i n e + a , 4) ;
80 k ++;
81 a = 0 ;
82 }
83
84 }
85
86 s t a t i c char ∗ p e r m i s s i o n s O f (void ∗ p t r) {
87
88 i n t i = 0 ;
89 f o r (i = 0 ; i < t a b l e L e n g t h − 2 ; i ++) {
90 i f ((unsigned long long) p t r >= s t a r t A d d r e s s [i] &&
91 (unsigned long long) p t r <= endAddress [i])
92 break ;
93 }
94
95 re turn p e r m i s s i o n s [i] ;
96 }

D-18

Appendix E

In this appendix we show the source code of the ClassPin’s safe class. This code is the

same for the two prototypes.

1
2 # import < F o u n d a t i o n / F o u n d a t i o n . h>
3
4 @inter face s a f e O b j : NSObject
5 //+ (void) createSafeObject;

6 + (void) s a f e ;
7 @end
8
9 @implementation s a f e O b j

10 /*forward any method call*/

11 − (void) f o r w a r d I n v o c a t i o n : (N S I n v o c a t i o n ∗) i n v {
12 p r i n t f (" \ 0 3 3 [1m\ 0 3 3 [3 1m" "

∗∗∗\ n∗∗A
r e s e r v e d p o i n t e r a t %p c a l l e d method : %s \ n
∗∗∗ " " \ 0 3 3 [0m" ,
s e l f , s e l_ge tName ([i n v s e l e c t o r])) ;

13 p r i n t f (" \ n ") ;
14
15
16 }
17
18 − (NSMethodSignature ∗) m e t h o d S i g n a t u r e F o r S e l e c t o r : (SEL) a S e l e c t o r {
19 i n t numArgs = [[N S S t r i n g F r o m S e l e c t o r (a S e l e c t o r)
20 c o m p o n e n t s S e p a r a t e d B y S t r i n g :@" : "] c o u n t] −
21 1 ;
22 // we assume that all arguments are objects

23 // The type encoding is "v@:@@@...", where "v" is the return type, void

24 // "@" is the receiver, object type; ":" is the selector of the current

25 // method;

26 // and each "@" after corresponds to an object argument

27 re turn [NSMethodSignature
28 s i g n a t u r e W i t h O b j C T y p e s : [[@"v@: " s t r i n g B y P a d d i n g T o L e n g t h : numArgs + 3
29 w i t h S t r i n g :@"@"
30 s t a r t i n g A t I n d e x : 0] UTF8Str ing]] ;
31 }
32
33
34 + (void) s a f e {
35 p r i n t f (" Sa fe o b j e c t e d c a l l e d ! ! \ n ") ;
36 }
37
38 @end

E-19

	Introduction
	Background
	Software Security
	Application Security
	Objective-C
	Class Pointer Hijacking

	Methodology
	Architecture
	Object Resolving

	Implementation
	Portability Requirements
	Basic Components
	Memory Map
	Safe Class

	Differences between Linux and MacOS Prototypes
	Object Resolution
	Class Pointer Pinning
	Compiling and Running
	Linux
	MacOS

	Evaluation
	Effectiveness
	Linux Prototype
	MacOS Prototype
	Deallocation Calls
	Memory Overhead
	Performance Overhead

	Future Work
	Garbage Collector

	Related Work
	VTPin

	Conclusion
	Bibliography
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E

