
Thesis Dissertation

A SIMULATOR FOR REVERSING PETRI NETS
BASED ON A MATRIX-EQUATION

REPRESENTATION

Maria Psara

UNIVERSITY OF CYPRUS

COMPUTER SCIENCE DEPARTMENT

May 2018

UNIVERSITY OF CYPRUS
COMPUTER SCIENCE DEPARTMENT

A Simulator for Reversing Petri Nets
Based on a Matrix-Equation

Representation

Maria Psara

Supervisor
Dr. Anna Philippou

Thesis submitted in partial fulfilment of the requirements for the award of
degree of Bachelor in Computer Science at University of Cyprus

May 2018

Acknowledgments

Primarily, I would like to express my gratitude to my supervisor Dr. Anna Philip-
pou for her help, her support and the very good cooperation we have had throughout
this diploma thesis. The incessant aid, support and guidance I have had throughout this
project gave me self-confidence and strength to keep going. I want to signalize that she
had provided me with opportunities and new knowledge which will be very lucrative for
my future career. The occasion to get involved in this absorbing project gave me the op-
portunity to explore intriguing areas.

Moreover, I want to thank the PhD student, Kyriaki Psara for her unlimited help and
patience during this thesis. She contributed in the construction of my project through
precious advice. Her experience in this area provided me with immediate support in hard
times and in major decision making.

I would also like to thank many of my fellow students and friends, because they were
there for me every step of the way, and I really appreciate everything they have done for
me.

Finally, a huge thank you I would like to address to my family that did not leave me
alone. Each member of my family it was next to me in a different way, supported me
at any time I needed it and helped me to deal with every problem I face. That’s why I
want to dedicate this diploma thesis to them and thank them deeply for the patience and
tolerance that they have indicated to me throughout my studies.

i

Abstract

This diploma thesis deals with the issue of reversible computation. Computation is said to
be reversible if it has the ability to execute in reverse, so that computation can go back to
previous visited states or even reaching new states, as well as it can proceed in the forward
direction. Different guises of reversibility can be found in systems from various fields.
Such systems have been investigated by means of reversible formal languages, including
reversible PNs (RPNs).

PNs have been used extensively to model systems both in graphical representation as
well as the mathematical alternative. The mathematical form represents PNs in a series
of matrix equations which can be used to specify and manipulate the state of the system
in a simulator. Thus, we set out to study the matrix equations of RPNs by exploring the
modelling of the main strategies for reversible computation.

The definition and creation of matrix equations for Reversing Petri nets has been used
for the implementation of an RPN simulator. This simulator gives to users the opportu-
nity to import a Reversing Petri net’s information, which can be expressed in the form
of matrices. The creation of the corresponding matrices, gives users the opportunity to
execute a specific transition, both in forward and reverse direction, and to see how the
marking of the net evolves in a computation. For the needs of the simulator some algo-
rithms have been implemented in the Java programming language and are based on the
matrix equations that have been defined.

After the completion of have the simulator we examined how the simulator of Revers-
ing Petri nets and, therefore, the matrices, can be applied on a reversible system simulating
the product assembly system, and whether or not it is possible to disassemble the prod-
uct by using the same Reversing Petri net model and the matrices that are derived from
it. Moreover, we discuss the usefulness of the approach in the context of manufacturing
task planning, a field where reversibility plays a crucial role both in the distinct processes
of assembly and disassembly and also as a means of recovering from failures during the
assembly process.

ii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Work Purpose . 2
1.3 Work Methodology . 2
1.4 Thesis Structure . 3

2 Related Work 4
2.1 Reversible Computation . 4
2.2 Reversible Modelling . 7

2.2.1 Forms of Reversibility . 8
2.3 Petri nets . 9
2.4 Reversing Petri nets . 11

2.4.1 Forward execution . 13
2.4.2 Backtracking . 14
2.4.3 Causal-Order reversibility . 14
2.4.4 Out-of-Causal-Order reversibility 15

3 Matrix Semantics 17
3.1 Forward execution . 18

3.1.1 Matrices description . 18
3.1.2 Execution example . 20

3.2 Backtracking . 22
3.2.1 Matrices description . 22
3.2.2 Execution example . 24

3.3 Causal-Order reversibility . 26
3.3.1 Matrices description . 26
3.3.2 Execution example . 26

3.4 Out-of-Causal-Order reversibility . 28
3.4.1 Matrices description . 28
3.4.2 Execution example . 29

4 Simulator 33
4.1 Requirements Specification . 33

4.1.1 Aims . 34
4.1.2 Objectives . 34
4.1.3 Specifications . 34

4.2 Implementation Programming Language 35
4.3 Simulator Manual . 35

iii

4.4 Simulator Functions . 45
4.4.1 Connected Component Method 45
4.4.2 Enabled Transitions Method . 46
4.4.3 Addition between Matrices Method 47
4.4.4 Subtraction between Matrices Method 47
4.4.5 Multiplication between Matrices Method 48
4.4.6 D Matrices Calculation Method 49
4.4.7 Connected Component Matrix Method 49
4.4.8 Forward Execution Method . 49
4.4.9 Backtracking Execution Method 49
4.4.10 Out-of-Causal-Order Execution Method 50
4.4.11 Last Transition Calculation Method 55
4.4.12 L Matrices Calculation Method 55

5 Case Study 57
5.1 Assembly and Disassembly . 57
5.2 Ballpoint pen Case Study . 58

6 Conclusion 73
6.1 Summary . 73
6.2 Challenges . 73
6.3 Future Work . 74

Appendices 76

A Arc structure 76

B Simulator Interface Functions 78

C Simulator Operation Functions 102

iv

List of Figures

2.1 Toffoli Gates . 6
2.2 An example of reversible chemical reaction; carbonic anhydrase 8
2.3 Causal Reversibility . 8
2.4 A Petri net composed of four places and two transitions. 9
2.5 Graphical Petri net symbols . 10
2.6 Graphical Petri net example where t1 is an enabled transition 11
2.7 Graphical Petri net example after the firing of transition t1 (of Figure 2.6) 11
2.8 Standard Petri Net example . 12
2.9 Reversible Petri Net example (same example with Figure 2.8) 12
2.10 Forward Execution . 15
2.11 Reversing in Out-of-Causal-Order . 16

3.1 Forward execution . 20
3.2 Backtracking execution . 24
3.3 Causal Order execution . 26
3.4 Out-Of-Causal-Order execution . 29

4.1 The appearance of the interface when you start the simulator 35
4.2 After the successful reading of the RPN information from the file PhoneEx.txt,

the information is being displayed on the screen 36
4.3 The form of the file that the user should import if he/she choose the “Read

from File” mode . 37
4.4 The information that the user should import if he/she choose the “Read

from User” mode . 38
4.5 The way we insert the information of an arc 39
4.6 The initial appearance of the simulator before we start the transitions ex-

ecution. 40
4.7 After the execution of the forward enabled transition t1 (in the first form),

the simulator will automatically calculate the new marking and the new
enabled transitions of each category (as shown in the second form) 41

4.8 By pressing the “RPN information” button (left form), the system displays
the initial information of the RPN model (right form). 43

4.9 By pressing the “Restart” button (left form), the system starts again from
the initial marking of the RPN model (right form). 44

5.1 The Petri net model (shown in left) capturing the relations between the
parts of an assembly product (shown in right). 58

5.2 Ballpoint pen [3] . 58
5.3 Pen Assembly/disassembly demonstration in Reversing Petri Nets 59

v

5.4 The initial marking of the Reversing Petri net and the forward enabled
transitions . 60

5.5 Simulator appearance after the forward execution of t1 62
5.6 Pen Assembly/disassembly RPN after the forward execution of t1 62
5.7 The current marking of the Reversing Petri net and the forward enabled

transitions . 63
5.8 Simulator appearance after the forward execution of t4 64
5.9 Pen Assembly/disassembly RPN after the forward execution of t4 65
5.10 Simulator appearance after the forward execution of t10 65
5.11 Pen Assembly/disassembly RPN after the forward execution of t10 66
5.12 The current marking of the Reversing Petri net and the out-of-causal-order

enabled transitions . 66
5.13 Simulator appearance after the out-of-causal-order execution of t10 68
5.14 Pen’s Graphical RPN model after the out-of-causal-order execution of t10 68
5.15 Simulator appearance after the forward execution of t12 69
5.16 Pen Assembly/disassembly RPN after the forward execution of t12 69
5.17 The current marking of the Reversing Petri net and the out-of-causal-order

enabled transitions . 70
5.18 Simulator appearance after the out-of-causal-order execution of t8 71
5.19 Pen Assembly/disassembly RPN after the out-of-causal-order execution

of t8 . 72

vi

Chapter 1

Introduction

Contents
1.1 Motivation . 1

1.2 Work Purpose . 2

1.3 Work Methodology . 2

1.4 Thesis Structure . 3

1.1 Motivation
Since PNs are able to model discrete event systems, it is helpful to have a system of

equations which can be used for specifying and manipulating the states of a system. Ma-
trix representation can be mechanised very easily and it can also be used to represent the
dynamic behaviour of PNs, study the coverability and reachability problems, and study
properties such as boundedness, invariance, conservativeness and liveness.

The automatic generation of assembly and disassembly sequence requires proper mod-
elling and representation of the assembly network that aims to generate the most efficient
assembly sequence. Modelling a disassembly process should consider the product topol-
ogy, mating relations, and precedence relations. The modelling of assembly and disassem-
bly by Petri nets is appealing because it is simple in its application, visually comprehen-
sible, and allows computer manipulation. Another advantage in Petri net representation
is that it can be further extended or modified to accommodate specific attributes required
for modelling of different systems.

A principal process during the re-manufacturing of worn-out or malfunctioning prod-
ucts is disassembly that enables the dumping, cleaning, repair or replacement of com-
ponents as desired. It is essentially the inverse of an assembly process that decomposes
products into parts or sub-assemblies. Therefore, reversible computation is by nature em-
bedded to real life applications of assembly and disassembly. Hence, the research issues
that we address in this work include the modelling of disassembly processes using RPNs
that offer the flexibility to provided program control using the reversible computation
strategies. Creating matrix equations helps to optimise the assembly operations, automat-
ically recover from the errors during the execution, and visualise an assembly process in

1

a quick and intuitive manner using computer graphics and Reversing Petri nets.

1.2 Work Purpose
The main aim of this thesis project is to present an overview of the fundamental ma-

trix equations that provide the basis for calculating the dynamic behaviour of RPNs. We
set out to study the matrix equations of RPNs by exploring the modelling of the main
strategies for reversible computation, namely, of backtracking, causal reversibility and
out-of-causal-order reversibility. Upon the development of the matrices, this thesis is
called to answer the question of whether the created matrices can be used for the mod-
elling and representation of an assembly network.

1.3 Work Methodology
In the first phase of the study, a theoretical study was conducted. Initially, an extensive

study and research was carried out in various scientific papers, based on reversibility, Petri
nets and Assembly/Disassembly processes, in order to fully understand and ensure the
appropriate knowledge of how the different semantic models of this study have emerged.
With the completion of the above, the Reversing Petri nets were extensively studied in
order to better understand their operations and the changes that had been made in relation
to the Petri nets model.

In the second phase of the thesis, all the knowledge we acquired from the first phase
was combined to create the corresponding matrices and their equations that met the needs
of the functions of the RPNs. These matrices were created to express all the informa-
tion of a Reversing Petri net model. By performing some matrices equations of addition,
subtraction and multiplication, we were able to perform operations corresponding to the
current operation semantics of the model. The result of these equations is to take as an
output the new marking of the RPN model.

In the third phase of the work, an experimental study of the matrices that were created
in the previous phase, was carried out. In particular, we have checked whether these ma-
trices can be used to model and express an assembly network. Disassembly is essentially
the inverse of an assembly process that decomposes products into parts or subassemblies
and therefore naturally follows the principles of reversible computation. The method de-
lineates the dynamics of the individual tasks, and emphasises a discrete system-oriented
approach.

After extensive study, the code for the implementation of the particular simulator be-
gan. The implementation of the algorithms was done in Java programming language.
Initially, the three basic equations for the possible execution modes in RPNs were imple-
mented. For the implementation of these procedures, there were other auxiliary functions
that broke the basic equations into smaller ones or performing a particular calculation of
the model. It also required the implementation of functions that were designed to make
math operations between the matrices, namely the operations of addition, subtraction, and
multiplication.

2

From the examples and audits we performed, we came to the conclusion that the re-
sults in this research can be applied to many other types of applications, except from
assembly/disassembly planning, such as in machining and human operation modelling.

1.4 Thesis Structure
In Chapter 2 there is a historical review of reversibility as a concept and the research

that has been centred on this field. Below are some areas where reversible modelling has
been applied, as well as the forms of reversibility that exist. Finally, reference is made to
the form and functions of Petri nets and to the Reversing Petri nets, which are a kind of
extension of PN models.

Chapter 3 presents separately the four forms of execution that exist in Reversing Petri
nets. In each case, once the matrix equations have been created, an example of the spe-
cific form of computation is executed on an RPN. These matrices, through a series of
addition, subtraction and multiplication operations, help to calculate the new marking M
of a network as well as the new emerging history.

Chapter 4 presents information on the creation and implementation of the simulator.
Initially, the algorithms created for the purpose of implementing the various system func-
tions and matrices are presented. After that, we explain the operations of the simulator
via the interface that has been created in Java programming language.

Chapter 5 presents a complete example of a case study. With the use of Reversing
Petri nets and matrix equations of Chapter 3, we assembly this object and disassembly it
when that is necessary.

Finally, in Chapter 6 we draw a general conclusion, mention the problems we encoun-
tered and how we dealt with them, as well as some future extensions that can be made to
the program to further expand it.

The complete Java code implementations for the algorithms listed in Chapter 4 as well
as the implementation of the interface of the simulator, are found in Appendix A and B
respectively.

3

Chapter 2

Related Work

Contents
2.1 Reversible Computation . 4

2.2 Reversible Modelling . 7

2.2.1 Forms of Reversibility . 8

2.3 Petri nets . 9

2.4 Reversing Petri nets . 11

2.4.1 Forward execution . 13

2.4.2 Backtracking . 14

2.4.3 Causal-Order reversibility . 14

2.4.4 Out-of-Causal-Order reversibility 15

2.1 Reversible Computation

Reversibility is a fundamental concept in sciences and is inherent in Mathematics,
Physics, Biology, and Computer Science. In the field of Computer Science, the concept
of reversibility is expressed in the form of computations. Reversible computation, in a
general sense, means computing using reversible operations, that is, operations that can
be easily and exactly reversed, or undone. More specifically, it is an unconventional form
of computing where any executed sequence of operations can be executed in reverse at
any point during computation.

The history of reversible computation starts in 1961, when physicist Rolf Landauer
published a paper with title “Irreversibility and Heat Generation in the Computing Pro-
cess” [4]. In this paper, Landauer, based on the fact that the most fundamental laws of
physics are reversible, and correlating the logical irreversibility with the physical irre-
versibility, supported that the logically irreversible character of conventional computa-
tional operations affects directly the thermodynamic behaviour of the device that is exe-
cuting these operations.

4

Reversible features of the laws of physics are based on the fact that, if you know all
the information of the state of a closed system at some time, you can apply in a reverse
order the laws of physics and find out the exact state of the system at any previous time.

The same fundamental reversibility is valid in quantum physics. Therefore, two dif-
ferent states of any physical system cannot evolve into the exact same state at some later
time, as in this case it would be impossible to define the earlier state from a later one.
So, to avoid this, we cannot destroy any information at the lowest level in physics, which
means that we can never truly erase information in a computer.

Although, in the world of computers, when we overwrite a bit of information with a
new value, the previous information is lost for all practical purposes. Instead of a physical
destruction, the previous information is pushed into the machine’s thermal environment,
where it becomes entropy and manifests as heat.

At the time of Landauer’s paper, people used to believe that the process of deleting in-
formation was a consequence of a computation process that you could not avoid. As Lan-
dauer described in his embedding [4], all irreversible operations can be transformed into
a reversible operation. However, he believed that these transformation techniques could
only be used to store temporarily each gate’s inputs, which later on should be deleted.

In 1963, Lecerf described for the first time the reversible Turing machine, in a paper
titled “Reversible Turing machines” [5]. This paper described a new method in which the
computational history was saved and then decomputed away. This was Lecerf’s reversal
method to uncompute histories. However, since he did not focus on the thermodynamic
applications, his machines did not save their outputs, so they were not very useful in the
physically reversible setting.

Almost 10 years later, in 1973, a breakthrough came to light by Bennett where he de-
fined the first universal reversible computation model. Bennett actually repeated Lecerf’s
reversal by adding the Bennett trick which copied the output before uncomputing the
undo trail. In this way he managed to limit the conventional (irreversible) Turing ma-
chines (TMs) and to define the reversible Turing machines (RTMs). This paper proved
for the first time that reversible computations can avoid entropy production, and pointed
out the possibility of a physically reversible computer in which the energy leakage is ar-
bitrarily small.

Logic, from the beginning, has had a central role in reversible computation. For ex-
ample, the ideas of Landauer for reversible gates were invented as a way to decrease the
heat dissipation of logic circuits.

Fredkin and Toffoli, in 1978, inspired by Landauer’s and Bennett’s work, reinvented
reversible computing in the form of conservative logic circuits [2]. In a conservative logic
circuit all logic gates must be reversible and also maintain their parity. For this reason,
Fredkin and Toffoli, introduce in this paper the Fredkin gate, a gate where the output
variables are expressed as explicit functions of the input variables. This functional rela-
tionship between input and output variables is invertible.

5

Later on, in 1980, Toffoli invented the n-bit controlled-not gates (shown in Figure 2.1),
also known as Toffoli gates [9]. This is perhaps the most used class of reversible gates
today. The fact that the gates are using a simple mathematical definition has rendered
reversible logic synthesis much easier.

Figure 2.1: Toffoli Gates

Other than reversible circuits, in the last decade, reversibility has found many inspir-
ing and important applications. For example, reversibility is useful in fault-tolerance, the
assembly/ disassembly process, simulation, quantum computing, reversible operational
semantics, causality and reversibility, and many other.

Several promising applications are enabled due to the prototype reversible circuits
which are, indeed, much greater in many aspects than conventional devices. Furthermore,
the inherent properties of the reversible computing paradigm can be used in the design
of conventional circuits and systems in such a way that the technology will remain unal-
tered. One of the most basic application domains of reversible circuit design is quantum
computational circuits.

Quantum computation [1] is an area which offers the promise of much more efficient
computation of problems that are difficult for today’s conventional computers. Any quan-
tum operation is inherently reversible, since quantum computation is based on physics
laws and as we know, the most fundamental laws of physics are reversible. By taking ad-
vantage of the physical effects of superposition and entanglement, quantum computation
leads us to a qualitatively new computation example. In quantum mechanical computa-
tion models, all quantum gates are reversible, since the events occur by unitary transfor-
mations.

Reversible computation can be considered to be a subset of quantum computing,
which is easier to work with and can, thus, be utilized for this purpose. One of the ben-
efits of the exploitation of reversible circuit design in the design of conventional systems
is the ability to undo any operation when an error state has been entered. Also, the full
connectivity of a reversible circuit makes the detection of an error much easier, only by
applying few randomly generated stimuli. In such type of circuits there is as well easy
testability since reversible computation allows perfect controllability and observability.

6

Reversibility can also be used for the development of reliable software/systems, since,
if any trouble occurs, it gives the opportunity to go back to past safe states, and from there
try to explore a new direction in such a way as to avoid the problematic actions and the
unsafe states. Also, it can be naturally applied in the debugging process, where when
an error occurs, reversibility can help to backtrack the execution until reaching the point
where the error was created.

Robotics is another area in which reversibility plays an important role. A main point
of this field is that a robot performs many reversible actions in a real environment. As an
example, we can consider the disassembly process that a robot performs which is actually
the inverse of an assembly sequence of operations. Reversibility is a helpful high-level
mechanism for describing operation sequences and may also allow someone to have a
practical reversible behaviour on hand.

2.2 Reversible Modelling
In the field of mathematics and computer science, the use of the term “formal lan-

guage” expresses a set of symbols or strings, combined with a set of rules that specify
their use. Any formal language is a modelling language which can be used for informa-
tion, knowledge or system description, either in a graphical (e.g. Behaviour trees, Petri
nets) or a textual (e.g. CCS, π-calculus) form. Formal languages can be used for various
systems modelling over a wide range of sciences, from biology to computer science.

There are different guises of reversibility that can be found in systems. A system is
called reversible if it has the ability to reverse certain processes, and return to its initial
state, without leaving net effects in any of the systems involved. Debugging systems are
a kind of reversible systems, since they provide fault tolerance by allowing the user to
return to previous states in the presence of faults, providing in this way high system de-
pendability. Another type of reversible systems is assembly/disassembly systems, where
the disassembly process can be done by executing the assembly process in the exact re-
verse order.

Both debugging and assembly/disassembly systems can be used for fault tolerance,
since if you face any error problem you can reverse to previous safe states. Except from
this kind of systems we can also find reversibility in natural systems, which are reversible
systems in the field of biology and chemistry. A reversible chemical system is actually a
chemical reaction that can go in both directions; the reactants - which are the chemicals
you start with - can change into the products - which are the chemicals you end up with -
and vice versa. Since many reversible systems exist, there is a need to create reversible
models in order to better understand their behaviour.

7

Figure 2.2: An example of reversible chemical reaction; carbonic anhydrase

In the Figure 2.2 above we can see the reactants and the products of the carbonic anhy-
drases. This kind of reversible reactions form a family of enzymes that catalyze the rapid
interconversion of carbon dioxide and water to carbonic acid - which essentially consists
of bicarbonate and protons - or vice versa. One of the functions of the enzyme in animals
is to interconvert carbon dioxide and bicarbonate to maintain acid-base balance in blood
and other tissues, and to help transport carbon dioxide out of tissues.

2.2.1 Forms of Reversibility

Computation is reversible if it has the ability to execute in reverse, so that computa-
tion can go back to previously visited states or even reaching new states, as well as it can
proceed in the forwards direction. There are three different forms of logic reversibility
that can be used in reversible models, which are backtracking, causal reversibility and
out-of-causal-order reversibility.

Backtracking is the process of undoing computational steps in the inverse order to the
order in which they occurred. This form of reversing can be considered as overly restric-
tive in the context of concurrent systems since, the reversing of computational moves in
the exact order in which they were executed, causes fake causal dependencies on back-
ward sequences of actions.

The second form of reversing is called causal reversibility and it is allowing events to
reverse in any order assuming that they are independent. Concurrent, distributed or asyn-
chronous computation is considered to be independent since forward steps may carry out
independently of each other, and possibly at different locations. Consequently, as long as
caused actions are reversed before the actions that have caused them, causal reversibility
does not have to execute the exact inverse order for independent steps.

Figure 2.3: Causal Reversibility

8

For example consider the Petri net in Figure 2.3. We may observe that transitions
t1 and t2 are independent from each other, as they may be executed in any order, and
they are both preconditions for transition t3. Backtracking the sequence of transitions
〈t1, t2, t3〉 would require that the three transitions should be reversed in exactly the reverse
order, i.e. 〈t3, t2, t1〉. Instead, causal flexibility allows the inverse computation to reverse
transition t3 and then t1 and t2 in any order, but never t1 or t2 before t3.

Both forms of backtracking and causal reversing are cause-respecting. However, many
examples in real life are undoing things in a seemingly arbitrary order, which includes the
reversing of causes before their effects are undone. This is the third form of reversibil-
ity and is called out-of-causal-order reversibility. This form gives us the opportunity to
create new states that were not accessible by any forward-only execution path, in contrast
with the other causally-respecting forms, which give us the ability to move forward and
backward through previously visited states.

We can observe that assembly/disassembly systems compute in the out-of-causal-
order form of reversibility. Imagine that we have a product that consists of many parts,
and one of those parts is a battery. After a long period of use, the battery should either
be charged or replaced. To get the battery removed from the product, we only have to
remove the battery and the parts that prevent access to it, and not disassemble the entire
product. The fact that we only remove certain pieces from the product without taking into
account the order in which the product was assembled, means that we have performed an
out-of-causal-order reversible form.

2.3 Petri nets
A Petri net - also known as a place/transition (PT) net - is one of several formal

modelling languages [7]. It is a formalism that allows the modelling of systems which
include concurrency, resource sharing, synchronization and conflict. The analysis of the
qualitative properties of these modelling systems, permits the validation of the system’s
correctness.

Figure 2.4: A Petri net composed of four places and two transitions.

A Petri net model is composed of a net structure that consists of nodes and arcs. The
nodes represent transitions, which are events that may occur and are graphically repre-
sented by bars, and places, which are conditions of the model and are graphically repre-
sented by circles. The arcs running from a place to a transition, describe which places
are pre-conditions for the corresponding transition and are called incoming arcs. The arcs

9

running from a transition to a place describe which places are post-conditions for the cor-
responding transition and are called outgoing arcs. Arcs can never run between transitions
or between places.

For example consider the Petri net in Figure 2.4. It is composed of four places which
are the circles with names P1, P2, P3, P4, and two transitions which are the bars with
names T 1 and T 2. Each arc that starts from a circle and ends to a bar is an incoming arc,
and each arc that starts from a bar and ends to a circle is an outgoing arc. In this Petri net
we have seven arcs from which the three are incoming arcs, and the rest are outgoing arcs.

The net structure is a weighted-bipartite directed graph specified as a 4-tuple:

N =< P,T,F,W >

where:
• P is a finite non-empty set of places.

• T is a finite non-empty set of transitions.

• F is a set of directed arcs, F ⊆ (T ×P)∪ (P×T).

• W : F → N+ is a function assigning a weight to each arc.

The weight is graphically represented on the arc as a label and most of the times omit-
ted if it is equal to one. The weight of the arc running from transition t to place p is
expressed as w(t, p), and w(p, t) is the expression of the weight of the arc runs from place
p to transition t.

Petri net graphs might contain tokens to some places. A token is one unity of a certain
resource, and is graphically represented as a dot inside the place; it cannot exist some-
where else on the graph except from there.

Figure 2.5: Graphical Petri net symbols

A marking of a Petri net graph is a mapping of its places P on N+. It represents an
assignment of tokens to each place of the graph. The marking of a Petri net graph changes
based on the marking evolution rule that describes how the states of the system are chang-
ing during computation.

10

The above rule determines whether a transition is enabled and may fire, and how the
marking will change with the firing of a transition. A transition t is enabled when every
input place pi of t contains as marking at least as many tokens as specified by the weight
w(pi, t). A transition t may fire, if and only if it is an enabled transition. The firing of
transition t removes every w(pi, t) tokens from each input place pi of t, and these tokens
are added to each output place po of t.

Figure 2.6: Graphical Petri net example where t1 is an enabled transition

Figure 2.7: Graphical Petri net example after the firing of transition t1 (of Figure 2.6)

The balance between the power of modelling and analyzability, is one of the things
that make Petri nets an interesting conception. Petri nets can automatically determine a lot
of useful information that someone might wish to know about concurrent systems. Sev-
eral subclasses of the specific model have been studied which can easily model interesting
classes of concurrent systems. Petri nets are characterized by some qualitative properties,
which are boundedness, liveness and reversibility. The analysis of such properties asso-
ciated with concurrent systems can successfully be supported by Petri nets, and that is a
major strength they have [8].

2.4 Reversing Petri nets
Reversing Petri nets [6] is a reversible approach to Petri nets that introduces machin-

ery and associated operational semantics to meet the challenges of the tree main forms of
reversibility, which are backtracking, causal reversing and out-of-causal-order reversing.
This model is actually an alternative of Petri nets where tokens are persistent and stand
out from each other with the use of an identity. The methodology of this approach can be
applied to a wide range of problems that feature reversibility.

11

Figure 2.8: Standard Petri Net example

Figure 2.9: Reversible Petri Net example (same example with Figure 2.8)

The Reversible Petri net (RPN) structure is specified as a tuple:

N =< A,P,B,T,F >

where:

• A is a finite set of bases or tokens ranged over by a, b,. . . . A = {a | a ∈ A} contains
a “negative” instance for each token and we write A = A∪A.

• P is a finite set of places.

• B⊆ A×A is a set of bonds ranged over by β , γ ,. . . . We use the notation a−b for a
bond (a,b) ∈ B. B = {β | β ∈ B} contains a “negative” instance for each bond and
we write B = B∪B.

• T is a finite set of transitions.

• F : (P×T ∪T ×P)→ 2A ∪B is a set of directed arcs.

Places and transitions are understood in a standard way as in Petri nets. Places are
indicated by circles and transitions by bars where bases are indicated by • and bonds
by lines between tokens. Arcs l = F(p, t) or l = F(t, p) contain each token at most
once, either as a or a and if a bond (a,b) ∈ l then a,b ∈ l and for l = F(t, p) then the
following holds l ∩ (A∪B) = /0. For t ∈ T we introduce: ◦t = {p ∈ P | F(p, t) 6= /0},

12

t◦ = {p ∈ P | F(t, p) 6= /0} to be the sets of incoming and outgoing places of t respec-
tively, and pre(t) =

⋃
p∈P F(p, t) as well as post(t) =

⋃
p∈P F(t, p) which are the unions

of labels of the incoming/outgoing arcs of t.

A marking is a distribution of tokens and bonds across places, M : P→ A∪B, where
for p∈P: if a−b∈M(p) then a,b∈M(p). A history assigns a memory to each transition,
h : T → ε ∪ IN and is represented over the respective transition as [k], where k = H(t). If
k = ε it means that t has not been executed yet or it has been reversed, while if k ∈ IN
indicates that t was the k-th transition executed and has not been reversed. H0 denotes the
initial history where H0(t) = ε for every t ∈ T . A state is a pair 〈M,H〉 of a marking and
history.

Every RPN is well-formed, acyclic and for all a ∈ A, |{p | a ∈M0(p)}|= 1.
A RPN is well-formed, when for all t ∈ T :

1. A∩pre(t) = A∩post(t),

2. If a−b ∈ pre(t) then a−b ∈ post(t),

3. F(t, p)∩F(t,q) = /0 for all p,q ∈ P, p 6= q,

For a ∈ A and C ⊆ A∪B the set of tokens and bonds connected with a according to
the set C is denoted by con(a,C).

con(a,C) = ({a}∩C)∪{β ,b,c | ∃w s.t. path(a,w,C),β ∈ w, and β = (b,c)}

where path(a,w,C) if w = 〈β1, . . . ,βn〉, and for all 1 ≤ i ≤ n, βi = (ai−1,ai) ∈ C ∩ B,
ai ∈C∩A, and a0 = a. We also write con(S,C), where S⊆ A, for

⋃
a∈S con(a,C).

2.4.1 Forward execution
Definition 1 Consider a RPN (A,P,B,T,F), a transition t ∈ T , and a state 〈M,H〉. We
say that t is forward enabled in 〈M,H〉 if:

1. if a,β ∈ F(x, t) for some x ∈ ◦t, then a,β ∈M(x),

2. if a,β ∈ F(x, t) for some x ∈ ◦t then a,β 6∈M(x),

3. if a ∈ F(t,y1), b ∈ F(t,y2), y1 6= y2 then b 6∈ con(a,M(x)) for all x ∈ ◦t, and

4. if β ∈ F(t,x) for some x ∈ t◦ and β ∈M(y) for some y ∈ ◦t then β ∈ F(y, t).

A transition t is enabled if all tokens and bonds on incoming arcs are available accord-
ing to marking M in pre(t), forks do not duplicate tokens and all repeated bonds appear
on the incoming places.

13

Definition 2 Given a RPN (A,P,B,T,F), a state 〈M,H〉, and a transition t enabled in
〈M,H〉, we write 〈M,H〉 t−→ 〈M′,H ′〉 where:

M′(x) =

M(x)−

⋃
a∈F(x,t) con(a,M(x)) if x ∈ ◦t

M(x)∪F(t,x)∪
⋃

a∈F(t,x),y∈◦t con(a,M(y)) if x ∈ t◦
M(x), otherwise

and H ′(t ′) = max{k | k = H(t ′′), t ′′ ∈ T}+1, if t ′ = t, and H(t ′), otherwise.

After the execution of t all tokens and bonds occurring in pre(t) are transferred from
the input to the output places of t. Moreover, the history function H is changed by assign-
ing the the next available integer number to the transition.

2.4.2 Backtracking
A transition is backward enabled if it was the last executed transition.

Definition 3 Consider RPN N = (A,P,B,T,F), a state 〈M,H〉 and a transition t ∈ T . We
say that t is bt-enabled in 〈M,H〉 if H(t) = k ∈ N with k ≥ k′ for all k′ ∈ N, k′ = H(t ′)
and t ′ ∈ T .

The effect of backtracking a transition in a RPN is as follows:

Definition 4 Given a RPN (A,P,B,T,F), a state 〈M,H〉, and a transition t bt-enabled in
〈M,H〉, we write 〈M,H〉 t

 b 〈M′,H ′〉 where:

M′(x) =

M(x)∪

⋃
y∈t◦,a∈F(x,t)∩F(t,y) con(a,M(y)− eff(t)), if x ∈ ◦t

M(x)−
⋃

a∈F(t,x) con(a,M(x)), if x ∈ t◦
M(x), otherwise

and H ′(t ′) = ε , if t ′ = t, and H(t) otherwise.

After reversing t all tokens and bonds, as well as their connected components, are
transferred from the outgoing places to the incoming places. Note that newly-created
bonds are broken and the history function H of t is altered to ε .

2.4.3 Causal-Order reversibility
A transition is causally enabled if all its effects are reversed or not executed yet.

Definition 5 Consider RPN N =(A,P,B,T,F), a state 〈M,H〉 and a transition t ∈ T . Then
that t is co-enabled in 〈M,H〉 if H(t) ∈ IN, and, for all a ∈ F(t, p), if a ∈M(q) for some
q and con(a,M(q))∩pre(t ′) 6= /0 for some t ′ ∈ T then either H(t ′) = ε or H(t ′)≤ H(t).

Reversing a transition in a causally-respecting manner is implemented in exactly the
same way as in backtracking.

14

2.4.4 Out-of-Causal-Order reversibility
In out-of-causal-order reversibility all executed transitions are enabled.

Definition 6 Consider RPN N = (A,P,B,T,F), a state 〈M,H〉 and a transition t ∈ T . We
say that t is o-enabled in 〈M,H〉, if H(t) ∈ IN.

The following notion defines the last transition that uses tokens of C which helps to
define the effect of out-of-causal-order reversing.

Definition 7 Given RPN N = (A,P,B,T,F), an initial marking M0, a current marking M,
a history H, and a set of bases and bonds C we write:

last(C,H) =

t, if ∃t post(t)∩C 6= /0, H(t) ∈ N

@t ′,post(t ′)∩C 6= /0,H(t ′) ∈ IN,H(t ′)> H(t)
⊥, otherwise

Thus, last(C,H) is defined as follows: If the component C has been manipulated by
some previously-executed transition, then last(C,H) is the last executed such transition.
Otherwise, if no such transition exists (e.g. because all transitions involving C have been
reversed), then last(C,H) is undefined (⊥). Transition reversal in an out-of-causal order
can thus be defined as follows in Definition 8.

Definition 8 Given a RPN (A,P,B,T,F), an initial marking M0, a state 〈M,H〉 and a
transition t that is o-enabled in 〈M,H〉, we write 〈M,H〉 t

 o 〈M′,H ′〉 where H ′ is defined
as in Definition 4 and we have:

M′(x) = M(x)− eff(t)− {Ca,x | ∃a ∈M(x),x ∈ t ′◦, t ′ 6= last(Ca,x,H ′)}
∪ {Ca,y | ∃a,y, a ∈M(y), last(Ca,y,H ′) = t ′,F(t ′,x)∩Ca,y 6= /0}
∪ {Ca,y | ∃a,y, a ∈M(y), last(Ca,y,H ′) =⊥,Ca,y ⊆M0(x)}

where we use the shorthand Cb,z = con(b,M(z)− eff(t)) for b ∈ A, z ∈ P.

When reversing t in out-of-causal order all bonds produced by t are broken. If the de-
struction of a bond divides a component into smaller connected components, then those
components should be transferred to the outgoing places of their last transition as defined
by 7, or to the places in their initial marking.

Figure 2.10: Forward Execution

15

Figure 2.11: Reversing in Out-of-Causal-Order

An example of forward transitions can be seen in Figure 2.10 where transitions t1, t2
and t3 take place with the histories of the two transitions becoming [1], [2] and [3], re-
spectively. In Figure 2.11 we observe transitions t1, t3 and t2 being reversed respectively,
with the histories of the three transitions being eliminated. As we can see in second step
of Figure 2.11, after the reversing of transition t1 the marking of the RPN does not change
since the transition t3 it is the last transition using the token a, and it does not let it go.
After the reversing of t3, in third step, we can see that token a return back to its initial
place since there are no other transitions that are using a. On the other hand, token b
return in place z since t2 is using b and has not been reversed yet.

16

Chapter 3

Matrix Semantics

Contents
3.1 Forward execution . 18

3.1.1 Matrices description . 18

3.1.2 Execution example . 20

3.2 Backtracking . 22

3.2.1 Matrices description . 22

3.2.2 Execution example . 24

3.3 Causal-Order reversibility . 26

3.3.1 Matrices description . 26

3.3.2 Execution example . 26

3.4 Out-of-Causal-Order reversibility 28

3.4.1 Matrices description . 28

3.4.2 Execution example . 29

Since Petri nets are presented as a model for discrete-event systems, it is helpful to
have a system of equations which can be used to specify and manipulate the state of the
system in a simulator. An alternative approach to the representation and analysis of Petri
nets is based on matrix equations. In this approach matrix equations are used to represent
the dynamic behaviour of Petri nets. We set out to study the matrix equations of RPNs
by exploring the modelling of the main strategies for reversible computation, namely, of
backtracking, causal reversibility and out-of-causal-order reversibility.

After the completion of this chapter we will be able to express the correlation between
transitions and places of a RPN through matrices, as well as execute some transitions by
using the equations between the matrices, which are defined below. The result of these
operations will be the export of the new marking matrix M and the new history matrix H.
These matrix equations will be used for the subsequent implementation of the simulator.

17

3.1 Forward execution

3.1.1 Matrices description
We now begin to describe how the matrix equations for the forward mode of compu-

tation are calculated. Starting with matrix FT which indicates the executing transition.

Definition 9 Transition matrix FT is a matrix of dimensions 1×η , where η = |T |, which
contains the number 1 in the position of the transition we are going to execute.

The following two definitions describe the matrices of the marking and history. Start-
ing with matrix M which indicates the current marking of the RPN model.

Definition 10 Current marking matrix M is a matrix of dimensions η×θ , where η = |T |
and θ = |P|, which contains the distribution of tokens and bonds across the places P. Each
position of the matrix, represent a place, and includes a set of tokens and bonds.

We now define the matrix H which indicates the current history of the RPN model.

Definition 11 History matrix H is a matrix of dimensions 1×η , where η = |T |, which
contains the assignment of a memory to each transition. Each position in this matrix
consists of a number from 0 to infinity (based on the times of the reversing).

We now proceed to describe the equations that operate on matrices consisting of multi-
sets of bases and bonds. The fact that Reversing Petri nets use tokens and bonds in their
directed arcs, and that each place in the network may contain a set of tokens and bonds,
led us to the decision to use sets of tokens and bonds for each entry instead of quantities.

Such matrices that consist of sets of objects require redefining matrix operations.
Firstly, we need to define the subtraction operation which will take one-by-one all the
sets of tokens of each position in a matrix, and will remove all the elements that are in the
corresponding position in the second matrix. Thus, we define the notion of subtraction
operator as follows:

Definition 12 Given two matrices A and B of dimensions n×m, we define the subtraction
operator C = A	B such that:

C[i][j] = A[i][j]−B[i][j]

For the addition operation we need to define a second operator which will take one-
by-one all the sets of tokens of each position in a matrix, and will add all the elements
that are in the corresponding position in the second matrix. Thus, we define the notion of
addition operator as follows:

Definition 13 Given two matrices A and B of dimensions n×m, we define addition oper-
ator C = A⊕B such that:

C[i][j] = A[i][j]∪B[i][j]

18

The last operator that we need to define is an operator for multiplication. It is based
on the rationale of matrices multiplication as defined in the field of mathematics. The
difference in our approach is that the first matrix of the multiplication operator is a matrix
which contains 1s and 0s. When you multiply a set of tokens with 1 then the result it is
equal with the set, and when you multiply a set of tokens with 0 then the result it is an
empty set. Thus, we define the notion of multiplication operator as follows:

Definition 14 Given two matrices A and B of dimensions n×m, we define multiplication
operator C = A⊗B such that:

C[i][j] =
⋃

A[i][k]=1 B[k][j]

The following two definitions show the sets of tokens and bonds which are present
on the directed arcs. If an arc goes from a place to a transition then it means that it is an
incoming arc and its tokens will be added in the matrix D−, as defined below:

Definition 15 Given an RPN N = (A,P,B,T,F) we write D− the matrix of the incoming
arcs :

D−[t][p] = F(p, t)

If an arc goes from a transition to a place then it means that it is an outgoing arc and
its tokens will be added in matrix D+, as defined below:

Definition 16 Given an RPN N = (A,P,B,T,F) we write D+ the matrix of the outgoing
arcs :

D+[t][p] = F(t, p)

Since we have defined all the auxiliary matrices we are now ready to define how to
execute a transition in forward direction. When executing t all tokens and bonds occurring
in pre(t) are transferred from the input to the output places of t. Moreover, the history
function H is changed by assigning the the next available integer number to the transition.

Definition 17 Given an RPN N = (A,P,B,T,F), a transition matrix FT (with an enabled
transition t as defined in Def. 1), a history matrix H, and a current marking matrix M, we
write 〈M,H〉 t−→ 〈M′,H ′〉 for M′ and H ′:

M′ = M⊕CD+⊕T D+	CD−

and H ′ = H⊕ (max{k|k = H(t), t ∈ T}+1)×FT
where:
T D+ = FT ⊗D+

T D− = FT ⊗D−

CD+[i] =
⋃

a∈T D+[i],p∈P con(a,M(p))
CD−[i] =

⋃
a∈T D−[i],p∈P con(a,M(p))

19

After the multiplication of matrices FT (Definition 9) and D+ (Definition 16) we store
the results in matrix T D+. Matrix T D+ contains the outgoing arcs of the executed tran-
sition, and has dimensions 1× p, where p = |P|. Similarly, after the multiplication of
matrices FT and D− we store the results in matrix T D−. Matrix T D− contains the in-
coming arcs of the executed transition, and has dimensions 1× p, where p = |P|.

The created matrices CD− and CD+ have dimensions 1× p, where p = |P|. These
matrices contain sets of tokens and bonds which are directly or indirectly connected with
the given elements of each place of matrices T D− and T D+, respectively.

3.1.2 Execution example

Figure 3.1: Forward execution

Example 1

20

An example of forward transitions can be seen in the steps of Figure 3.1 where tran-
sitions t2, t1 and t3 take place with the histories of the three transitions becoming [1], [2]
and [3], respectively. Note that to avoid overloading figures, we omit writing the bases
of bonds on the arcs of an RPN and recall that within places we indicate bases by • and
bonds by lines between relevant bases.

Any RPN can be represented as an incidence matrix. The reversing Petri net of the
first scheme in Figure 3.1 can be specified in matrix form as follows:

1. Matrix D− based on the incoming arcs of Fig. 3.1.

D− =

 {a} 0 0 0 0
0 {b,c} 0 0 0
0 0 {b} {c} 0

2. Matrix D+ based on the outgoing arcs of Fig. 3.1.

D+ =

 0 0 {a} 0 0
0 0 {b} {c} 0
0 0 0 0 {b− c}

To represent the firing transition of the RPN we create a transition matrix FT . As-

suming that transition t2 is firing, we have:

FT =
(

0 1 0
)

For the representation of the current marking of the RPN we create a marking matrix
M. Assuming that at the beginning, matrix M is the same with matrix M0, which contains
the initial marking we have:

M = M0 =
(
{a} {b,c} 0 0 0

)
To determine the marking of the reversing Petri net after the firing of the transition speci-
fied in the transition matrix, we perform the following steps:

Step 1: Calculate matrix T D+.

T D+ = FT ⊗D+ =
(

0 1 0
)
⊗

 0 0 {a} 0 0
0 0 {b} {c} 0
0 0 0 0 {b− c}

=

(
0 0 {b} {c} 0

)
Step 2: Calculate matrix T D−.

T D− = FT ⊗D− =
(

0 1 0
)
⊗

 {a} 0 0 0 0
0 {b,c} 0 0 0
0 0 {b} {c} 0

=

(
0 {b,c} 0 0 0

)
Step 3: Calculate matrix CD+.

CD+ =
(

0 0 {b} {c} 0
)

21

Step 4: Calculate matrix CD−.

CD− =
(

0 {b,c} 0 0 0
)

Step 5: Calculate the new marking matrix M′.

M′ = M⊕CD+⊕T D+	CD−

=
(
{a} {b,c} 0 0 0

)
⊕
(

0 0 {b} {c} 0
)

⊕
(

0 0 {b} {c} 0
)
	
(

0 {b,c} 0 0 0
)

=
(
{a} 0 {b} {c} 0

)
Step 6: Calculate the new history matrix H ′. (Initial history matrix H contains only

0s since no transition yet fire)

H ′ = H⊕ (max{k|k = H(t), t ∈ T}+1)×FT
=

(
0 0 0

)
⊕1×

(
0 1 0

)
=

(
0 1 0

)
The other two transitions, t1 and t3, of the example in Figure 3.1 are firing in the same

way as transition t2, starting from the state of the RPN as shown in the second scheme of
figure.

3.2 Backtracking

3.2.1 Matrices description
Matrix E is a matrix of dimensions 1 × places, which contains the current marking

tokens of each place, without the effect of the transition we are reversing.

Definition 18 Given a current marking matrix M (with dimensions 1×|P|), and the tran-
sition t we are reversing, we write:

E[i][j] = M[i][j]− eff(t)
where:
eff(t) = post(t)−pre(t).

After reversing t all tokens and bonds, as well as their connected components, are
transferred from the outgoing places to the incoming places. Note that newly-created
bonds are broken and the history function H of t is altered to ε .

Definition 19 Given an RPN N =(A,P,B,T,F), a transition matrix FT (with a bt-enabled
transition t as defined in Def. 3), a history matrix H, and a current marking matrix M, we
write 〈M,H〉 t

 b 〈M′,H ′〉 for M′ and H ′:

M′ = M⊕CD−	CD+

and H ′ = H	 ({k | k = H(t), t ∈ T,FT (t) = 1}×FT)
where:
T D+ = FT ⊗D+

22

T D− = FT ⊗D−

CD+[i] =
⋃

a∈T D+[i],p∈P con(a,M(p))
CD−[i] =

⋃
a∈T D−[i],p∈P con(a,E(p))

After the multiplication of matrices FT and D+ we store the results in matrix T D+.
Matrix T D+ contains the outgoing arcs of the executed transition, and has dimensions
1× p, where p = |P|. Similarly, after the multiplication of matrices FT and D− we store
the results in matrix T D−. Matrix T D− contains the incoming arcs of the executed tran-
sition, and has dimensions 1× p, where p = |P|.

The created matrices CD− and CD+ have dimensions 1× p, where p = |P|. These
matrices contain sets of tokens and bonds which are directly or indirectly connected with
the given elements of each place of matrices T D− and T D+, respectively.

23

3.2.2 Execution example

Figure 3.2: Backtracking execution

Example 2 After the forward execution of Figure 3.1, where transitions t1, t2 and t3
were executed in the order t2, t1, t3, in the example of Figure 3.2 we observe the same
transitions being backtracked with their histories being eliminated.

To represent the transition of the RPN that executed in reverse we create a transition
matrix FT where, assuming we are in the state of the first scheme of Figure 3.2 and that
transition t3 is reversing, we have:

FT =
(

0 0 1
)

The matrix E represent the current marking of the RPN, without the effect of the

24

transition we are reversing. In this case matrix E has the following values:

E =
(

0 0 {a} 0 {b,c}
)

The matrix M which represent the current marking of the RPN and the history matrix
H, after the forward execution of transitions t2, t1 and t3 respectively has take the following
values.

M =
(

0 0 {a} 0 {b− c}
)

H =
(

2 1 3
)

To determine the marking of the reversing Petri net after the reverse execution of the
transition specified in the transition matrix, we perform the following steps:

Step 1: Calculate matrix T D+.

T D+ = FT ⊗D+ =
(

0 0 1
)
⊗

 0 0 {a} 0 0
0 0 {b} {c} 0
0 0 0 0 {b− c}

=

(
0 0 0 0 {b− c}

)
Step 2: Calculate matrix T D−.

T D− = FT ⊗D− =
(

0 0 1
)
⊗

 {a} 0 0 0 0
0 {b,c} 0 0 0
0 0 {b} {c} 0

=

(
0 0 {b} {c} 0

)
Step 3: Calculate matrix CD+.

CD+ =
(

0 0 0 0 {b− c}
)

Step 4: Calculate matrix CD− (using con function on matrix E).

CD− =
(

0 0 {b} {c} 0
)

Step 5: Calculate the new marking matrix M′.

M′ = M⊕CD−	CD+

=
(

0 0 {a} 0 {b− c}
)
⊕
(

0 0 {b} {c} 0
)

	
(

0 0 0 0 {b− c}
)

=
(

0 0 {a,b} {c} 0
)

Step 6: Calculate the new history matrix H ′.

H ′ = H	 ({k | k = H(t), t ∈ T,FT (t) = 1}×FT)
=

(
2 1 3

)
	3×

(
0 0 1

)
=

(
2 1 0

)
The other two transitions, t1 and t2, of the example in Figure 3.2 are reversing re-

spectively following the same steps as t3 did and proceed from the first to the second
RPN scheme of Figure 3.2.

25

3.3 Causal-Order reversibility

3.3.1 Matrices description
Reversing a transition in a causally-respecting manner is implemented in exactly the

same way as in backtracking.

Definition 20 Given a RPN (A,P,B,T,F), and a co-enabled transition t (as defined in
Def. 5) in 〈M,H〉 we write 〈M,H〉 t

 c 〈M′,H ′〉 for M′ and H ′ as in Definition 19.

3.3.2 Execution example

Figure 3.3: Causal Order execution

Example 3 An example of causal-order reversibility can be seen in Figure 3.3. Here
we have two independent executions, t1 and t2, or t1 and t3. Assuming that transitions

26

were executed in the order t2, t1, t3 (as shown in Figure 3.1), the example demonstrates a
causally-ordered reversal where t3 is reversed, followed by the reversal of t2 and t1. These
can be reversed in any order although in the example t2 is reversed before t1.

To represent the transition of the RPN that executed in reverse we create a transition
matrix FT where, assuming that transition t3 has already reverse and now transition t2 is
reversing, we have:

FT =
(

0 1 0
)

In this case where transition t2 is reversing, matrix E has the same values with the
current marking matrix M, since the effect of t2 is the empty set.

So marking matrix M, E and the history matrix H, after the forward execution of
transitions t2, t1 and t3 respectively and the reverse execution of transition t3, has take the
following values.

M = E =
(

0 0 {a,b} {c} 0
)

H =
(

2 1 0
)

To determine the marking of the reversing Petri net after the reverse execution of the
transition specified in the transition matrix, we perform the following steps:

Step 1: Calculate matrix T D+.

T D+ = FT ⊗D+ =
(

0 1 0
)
⊗

 0 0 {a} 0 0
0 0 {b} {c} 0
0 0 0 0 {b− c}

=

(
0 0 {b} {c} 0

)
Step 2: Calculate matrix T D−.

T D− = FT ⊗D− =
(

0 1 0
)
⊗

 {a} 0 0 0 0
0 {b,c} 0 0 0
0 0 {b} {c} 0

=

(
0 {b,c} 0 0 0

)
Step 3: Calculate matrix CD+.

CD+ =
(

0 0 {b} {c} 0
)

Step 4: Calculate matrix CD− (using con function on matrix E).

CD− =
(

0 {b,c} 0 0 0
)

Step 5: Calculate the new marking matrix M′.

M′ = M⊕CD−	CD+

=
(

0 0 {a,b} {c} 0
)
⊕
(

0 {b,c} 0 0 0
)

	
(

0 0 {b} {c} 0
)

=
(

0 {b,c} {a} 0 0
)

27

Step 6: Calculate the new history matrix H ′.

H ′ = H	 ({k | k = H(t), t ∈ T,FT (t) = 1}×FT)
=

(
2 1 0

)
	3×

(
0 1 0

)
=

(
2 0 0

)
The transition t1 of the example in Figure 3.3 are causally reversing following the

same steps that t2 execute above.

3.4 Out-of-Causal-Order reversibility

3.4.1 Matrices description
When reversing t in out-of-causal order all bonds produced by t are broken. If the de-

struction of a bond divides a component into smaller connected components, then those
components should be transferred to the outgoing places of their last transition as defined
by 7, or to the places in their initial marking.

Definition 21 Given an RPN N = (A,P,B,T,F), a transition matrix FT (with a o-enabled
transition t as defined in Def. 6), a history matrix H, and a current marking matrix M, after
computing matrix E (as defined in Def. 18), we write 〈M,H〉 t

 o 〈M′,H ′〉 for M′ and H ′:

M′ = E	CL−⊕CL+

and H ′ = H	 ({k | k = H(t), t ∈ T,FT (t) = 1}×FT)
where:
CL+[i] =

⋃
a∈L+[i],p∈P con(a,E(p))

CL−[i] =
⋃

a∈L−[i],p∈P con(a,E(p))

The created matrices CL− and CL+ have dimensions 1× p, where p = |P|. These
matrices contain sets of tokens and bonds which are directly or indirectly connected with
the given elements of each place of matrices L− and L+, respectively.

The following two definitions show the sets of tokens which must be added or removed
from the current marking matrix. For the creation of this matrices we have to use the last
function as this defined in Definition 7. Matrix L+ contains the sets of tokens that must
be added to the current marking matrix in specific positions. Let us define the matrix L+

contents as follows:

Definition 22 Given an RPN N = (A,P,B,T,F) a history matrix H, initial marking ma-
trix M0 and a current marking matrix M we write:

L+[x] = L+[x]∪

{a} if ∃a,y, a ∈M(y), last(Ca,y,H ′) = t ′,F(t ′,x)∩Ca,y 6= /0
{a} if ∃a,y, a ∈M(y), last(Ca,y,H ′) =⊥,Ca,y ⊆M0(x)
/0, otherwise

Matrix L− contains the sets of tokens that must be removed from the current marking
matrix from specific positions. Let us define the matrix L− contents as follows:

28

Definition 23 Given an RPN N = (A,P,B,T,F) a history matrix H and a current marking
matrix M we write:

L−[x] = L−[x]∪
{
{a} if ∃a ∈M(x),x ∈ t ′◦, t ′ 6= last(Ca,x,H ′)
/0, otherwise

3.4.2 Execution example

Figure 3.4: Out-Of-Causal-Order execution

Example 4 An example of out-of-causal-order reversal can be seen in Figure 3.4. In
the net of Figure 3.1, we see that t2, t1 and t3 have been executed in this order and now
b,c tokens are in place y, and a token is in place x. The example demonstrates an out-of-
causal-order reversal where all the transitions are reversed in the exact order they fired.

29

To represent the transition of the RPN that is reversed out of order we create a transi-
tion matrix FT where, assuming that transition t2 is reversing, we have:

FT =
(

0 1 0
)

When transition t2 is reversing, matrix E has the same values with the current marking
matrix M, since the effect of t2 is the empty set.

So, marking matrices M, E and the history matrix H, after the forward execution of
transitions t2, t1 and t3 respectively, have the following values.

M = E =
(

0 0 {a} 0 {b− c}
)

H =
(

2 1 3
)

To determine the marking of the reversing Petri net after the reverse execution of the
transition specified in the transition matrix, we perform the following steps:

Step 1: Calculate matrix L+.

L+ =
(

0 0 {a} 0 {b,c}
)

Step 2: Calculate matrix L−.

L− =
(

0 0 {a} 0 0
)

Step 3: Calculate matrix CL+.

CL+ =
(

0 0 {a} 0 {b− c}
)

Step 4: Calculate matrix CL−.

CL− =
(

0 0 {a} 0 0
)

Step 5: Calculate the new marking matrix M′.

M′ = E	CL−⊕CL+

=
(

0 0 {a} 0 {b− c}
)
	
(

0 0 {a} 0 0
)

⊕
(

0 0 {a} 0 {b− c}
)

=
(

0 0 {a} 0 {b− c}
)

Step 6: Calculate the new history matrix H ′.

H ′ = H	 ({k | k = H(t), t ∈ T,FT (t) = 1}×FT)
=

(
2 1 3

)
	1×

(
0 1 0

)
=

(
2 0 3

)
Even when transition t2 reverses, the current marking of the RPN did not change be-

cause the transition t3, which is using tokens b and c has not reverse yet.

Now let us assume that transition t1 is reversing next, we have:

FT =
(

1 0 0
)

30

When transition t1 is reversing, matrix E has the same values with the current marking
matrix M, since the effect of t1 is the empty set.

To determine the marking of the reversing Petri net after the reverse execution of the
transition specified in the transition matrix, we repeat again the above steps.

Step 1: Calculate matrix L+.

L+ =
(
{a} 0 0 0 {b,c}

)
Step 2: Calculate matrix L−.

L− =
(

0 0 {a} 0 0
)

Step 3: Calculate matrix CL+.

CL+ =
(
{a} 0 0 0 {b− c}

)
Step 4: Calculate matrix CL−.

CL− =
(

0 0 {a} 0 0
)

Step 5: Calculate the new marking matrix M′.

M′ = E	CL−⊕CL+

=
(

0 0 {a} 0 {b− c}
)
	
(

0 0 {a} 0 0
)

⊕
(
{a} 0 0 0 {b− c}

)
=

(
{a} 0 0 0 {b− c}

)
Step 6: Calculate the new history matrix H ′.

H ′ = H	 ({k | k = H(t), t ∈ T,FT (t) = 1}×FT)
=

(
2 0 3

)
	2×

(
1 0 0

)
=

(
0 0 3

)
After t2 and t1 have reversed we assume that transition t3 is reversing next, so we have:

FT =
(

0 0 1
)

In this case, where transition t3 is reversing (and since the effect of t3 is the bond
(b− c)), matrix E has the following values :

E =
(
{a} 0 0 0 {b,c}

)
To determine the marking of the reversing Petri net after the reverse execution of the

transition specified in the transition matrix, we do:
Step 1: Calculate matrix L+.

L+ =
(
{a} {b,c} 0 0 0

)
Step 2: Calculate matrix L−.

L− =
(

0 0 0 0 {b,c}
)

31

Step 3: Calculate matrix CL+ (using con function on matrix E).

CL+ =
(
{a} {b,c} 0 0 0

)
Step 4: Calculate matrix CL−(using con function on matrix E).

CL− =
(

0 0 0 0 {b,c}
)

Step 5: Calculate the new marking matrix M′.

M′ = E	CL−⊕CL+

=
(
{a} 0 0 0 {b,c}

)
	
(

0 0 0 0 {b,c}
)

⊕
(
{a} {b,c} 0 0 0

)
=

(
{a} {b,c} 0 0 0

)
Step 6: Calculate the new history matrix H ′.

H ′ = H	 ({k | k = H(t), t ∈ T,FT (t) = 1}×FT)
=

(
0 0 3

)
	3×

(
0 0 1

)
=

(
0 0 0

)
Now we can see that after the reverse execution of t3 the tokens b and c have return in

their initial marking since the transition t2 has already been reversed before.

32

Chapter 4

Simulator

Contents
4.1 Requirements Specification . 33

4.1.1 Aims . 34

4.1.2 Objectives . 34

4.1.3 Specifications . 34

4.2 Implementation Programming Language 35

4.3 Simulator Manual . 35

4.4 Simulator Functions . 45

4.4.1 Connected Component Method 45

4.4.2 Enabled Transitions Method 46

4.4.3 Addition between Matrices Method 47

4.4.4 Subtraction between Matrices Method 47

4.4.5 Multiplication between Matrices Method 48

4.4.6 D Matrices Calculation Method 49

4.4.7 Connected Component Matrix Method 49

4.4.8 Forward Execution Method 49

4.4.9 Backtracking Execution Method 49

4.4.10 Out-of-Causal-Order Execution Method 50

4.4.11 Last Transition Calculation Method 55

4.4.12 L Matrices Calculation Method 55

4.1 Requirements Specification
The key of any well organised and coherent project is to simultaneously keep track

of the requirements and project development, since normally requirements will drive the
software design. Requirements are the objectives that must necessarily be met, they de-
fine the functions that the project is ultimately supposed to provide. The requirements

33

specification document contains the instructions which describe the behavioural charac-
teristics of the system that is going to be developed.

4.1.1 Aims
The theoretical semantics of Reversing Petri nets will find practical application in a

user-friendly software, simulating some algorithms that will be implemented based on the
matrix equations, defined in Chapter 3 which execute transitions in forward and reverse
computational order. The software product will give to users the opportunity to give a
Reversing Petri net’s information, express this information in the form of matrices, and
after the creation of the required matrices, users can execute a specific transition and see
how the new marking of the net has changed.

4.1.2 Objectives
In order to apply the principles of Reversing Petri net in practice several algorithms

are going to be constructed for the representation of the RPN information. The project
aims:

• To outline the theoretical aspects of bi-directional computing after extensive re-
search. The scientific principles on which the software is based are demonstrated
in previous chapters.

• The information of Reversing Petri net will be then translated into matrices, and
from that form into the corresponding algorithms which are using matrix equations.
A formal description of the logic was created in a previous chapter to define how
the RPN semantics can be expressed in the form of matrices.

• To prepare the stages of the software development by identifying the technical and
engineering background of the product.

• To construct a Graphical User Interface (G.U.I.) that allows users to interact with
the system, to understand Reversing Petri nets and observe the forward and reverse
execution of a chosen transition.

• To develop software product that demonstrates the changes of RPN marking after
the execution of transitions by showing how a chosen transition can change marking
by executing in forward or reverse order.

4.1.3 Specifications
The project objectives are going to be met, by starting with proposing ideas to express

Reversing Petri net information in the simulator environment in the form of an algorithm.
The key consideration of those ideas will be correctness at first, independent of the amount
of memory needed, and then efficiency.

Consequently, the project will start with finding the best structure to use for the rep-
resentation of the matrices information in the simulator environment. We have to choose

34

a structure that allows us to easily change the tokens within a set, since our system will
have to add or remove tokens from marking pretty often.

4.2 Implementation Programming Language
The developed software system simulates transition execution of RPNs both in for-

ward and reverse direction implemented in Java. Java is an object oriented language, that
provides programmers the opportunity to develop user friendly interfaces which are easy
to understand and once the code runs on one platform it does not need to be recompiled on
another. In addition by using the programming features that Java offers, memory space is
no longer a programming concern since they provide an easy way to clean up temporary
results and variables.

4.3 Simulator Manual
When the program starts the user can choose whether it should read the RPN information

from a file or from the user (as shown in Fig. 4.1). The information given is the names of
tokens A, places P, transitions T , directed arcs F - from a place to a transition or from a
transition to a place, with a set of tokens and/or bonds -, and initial marking M0.

Figure 4.1: The appearance of the interface when you start the simulator

If the user presses the “Read from File” button then the appearance of the interface
will change and the user will be asked to insert the name of the file that contains the infor-
mation of the model. If the name of the file is correct then by pressing the button “Read..”,
a window will appear on the screen with the information extracted from the file.

35

Figure 4.2: After the successful reading of the RPN information from the file
PhoneEx.txt, the information is being displayed on the screen

The imported file containing the information of the RPN model should have the same
form as the file in Fig. 4.3. The first line in the file should contain the tokens of the model
separated by comma. The next line should contain the places of the model, followed by
the transitions of the RPN in the next line, both of them being separated by comma. All
the directed arcs should follow in the fourth line in the form F(a,b) = {c}, where a and
b can be a transition or a place of the model, and c it is a set of tokens and/or bonds

36

(separated by comma). If a has the value of a transition that means that b should have the
value of a place, and vice versa. The initial marking M0 of the model should follow by
adding the tokens or/and bonds of each place, line by line (in the same order that places P
have been inserted in the second line). If a place does not contain any tokens in the initial
state, then the user should add to the corresponding line the value 0.

Figure 4.3: The form of the file that the user should import if he/she choose the “Read
from File” mode

If the user presses the “Read from User” button then the appearance of the interface
will change and the user will be asked to insert the tokens A, the places P and the tran-
sitions T of the model. After that, when the user chooses to continue, the system will
ask from him/her to add the directed arcs and the initial marking of each place of the
RPN model.

37

Figure 4.4: The information that the user should import if he/she choose the “Read from
User” mode

The user can add a directed arc as follows. From the existing drop-down lists the user
can choose the transition or place from which the arc begins and ends, and also the tokens
or bonds that are contained on the arc. By pressing the “Add” button the selected values
will be added in directed arcs. If the user wants to delete or edit the values of an arc that
is already in the list of arcs then he/she can just press the “Edit” button.

38

Figure 4.5: The way we insert the information of an arc

The tokens and bonds that appear on an arc can be more than one. The third list of
Figure 4.5 shows us that token a is selected. That means this token is the only one that
exists on the current arc. This list gives us the opportunity to select more than one item.
By using the up and down arrows of the list we can move through the list and select all
the tokens and bonds that exist on a specific arc. After the completion of the import of
all the necessary information needed for representing an RPN the user is able to press the
“Continue” button in order to proceed to the next form.

39

Figure 4.6: The initial appearance of the simulator before we start the transitions execu-
tion.

In the bottom form of Fig. 4.6 we can see the enabled transitions of the given model.
We can all find four categories of enabled transitions in a drop-down list. We have the for-
ward, backtracking, causal, and out-of-causal-order enabled transitions. If the first item
of a drop-down list is the “-Select-” value, this means that the specific list is not empty
and there are transitions that are enabled in this order. Otherwise, if the first - and only -
value of a drop-down list is “—”, the current list is empty, and there are no transitions that
can be executed in this order. If the imported model does not have any enabled transitions
then the simulator would display a relevant message (as shown in the bottom form of the
above Figure).

Under the four categories of the enabled transitions in Fig. 4.6 there is a text box where
the current marking matrix M occurs. At the beginning, the current marking it is the initial
marking of the model, and it is presented in the form of a matrix with dimensions 1×P
(where P is the number of places of the RPN model).

Once the user chooses to execute an enabled transition from a drop-down list, the form
of the simulator will change. The text box of the form will now contain the new marking,
as well as, the transition that the user executed and the category from which he chose
the specific transition. The system after the calculation of the new current marking and
history matrix, will automatically calculate the new enabled transitions of each category.
For that reason, after the execution of a transition, the drop-down lists with enabled tran-
sitions will change.

40

Figure 4.7: After the execution of the forward enabled transition t1 (in the first form), the
simulator will automatically calculate the new marking and the new enabled transitions
of each category (as shown in the second form)

Under the text box of the forms in Fig. 4.7 there are two buttons; “Prev” and “Next”.
These buttons give to the user the ability to move backward and forward, so he/she can
see the previous markings of the model and which transitions have been executed from
the beginning of the simulation until now.

41

There are two tabs on the menu bar of the simulator. The “File” tab contains the
“Close” and “Restart” button, and the “RPN info” tab contains the “RPN information”
button. As you can see in Figure 4.8, by pressing the “RPN information” button on the
menu bar in the “RPN info” tab, the system will display in the form the initial information
of the RPN model that have been read. This information contains the tokens A, the places
P, the transitions T , the directed arcs F and the initial marking M0 of the Reversing
Petri net. The user can proceed from the point where he was before, choosing the “RPN
information”, simply by pressing the “Continue” button. If the system has not yet read
any RPN model then this button will not display any information and will therefore not
change the current user form.

42

Figure 4.8: By pressing the “RPN information” button (left form), the system displays the
initial information of the RPN model (right form).

By pressing the “Restart” button on the menu bar in the “File” tab, the system will
give you the opportunity to start again the execution of enabled transitions of the model
from the initial marking. It is equivalent to never having execute any enabled transitions
from the beginning of the system.

The “Close” button will give the user the opportunity to insert an other Reversing Petri
net model, either by using the “Read from User” mode, or by using the “Read from File”
mode. Therefore, this button will display the first form that appeared when the user start
the simulator, as it shown in Fig. 4.1.

43

Figure 4.9: By pressing the “Restart” button (left form), the system starts again from the
initial marking of the RPN model (right form).

44

4.4 Simulator Functions
The program and the simulator was implemented on the Java programming language.

Each token, transition and place of the Reversing Petri net model was expressed in the
program as a String. The ArrayList structure was used to represent the matrices in Java.
At the beginning of the program, when the simulator reads the RPN model, its informa-
tion is automatically stored in an one-dimension ArrayList of Strings. For all the other
calculated matrices, the system is using a three-dimension ArrayList of Strings. These
lists are three-dimension because we need one dimension to represent the rows of a ma-
trix, one dimension for the representation of the columns of a matrix and the third dimen-
sion is a list which is used for the representation of a set of tokens and bonds in each place.

Other than the information of tokens, transitions and places, the simulator also reads
information about the directed arcs of the RPN. To store each of these arcs in the system,
a new structure was created, as shown below:

The structure of the directed arc (Arc) consists of three elements. The first element is
a String named from, which is the name of a transition or a place from where the specific
arc is beginning. The second element is a String named to, corresponding to the name
of a transition or a place where the directed arc ends. The third element is a list of Strings
named with that shows the set of tokens and/or bonds which are labelled on the arc and
represent the consumptions or productions of the arc.

4.4.1 Connected Component Method

The method con(a,b,c) is aimed at finding the connected components of a given
token a in a specific place b. It is a recursive function which takes as first argument a
String. This string represents the name of a token, from the set of tokens A, and tries to
find all the bonds between the specific token a and any other token in place b, where b is
the second argument of the function and it is an ArrayList.

Before checking whether or not there is a bond between a and another token, this
function checks whether the token a is already included in the list c. If it is not included
then token a is added in the list c before the calculation of its connected components;
otherwise the function returns in the previous recursion. The ArrayList c which is the
third argument of this function, it helps us to avoid stick in a loop. This function returns
an ArrayList which contains all the tokens that are directly or indirectly linked with the
given token a.

45

Algorithm 1: Connected Component Algorithm in the form of pseudo-code
1 Input: a is the token for which we want to find its connected tokens
2 Mp is a list with the current marking in the place where we want to search for the

connections of a
3 C is an auxiliary list which includes the tokens that have already calculated by the

recursive function con (it helps us prevent the loops)
4 Output: I is a list which contains all the bases and bonds that are directly and indirectly

connected to the given token
5 begin
6 foreach element e in Mp do
7 if e is a bond x− y then
8 if (x = a) then
9 insert a in C

10 if C does not contain y then
11 insert con(y,Mp,C) in I
12 end
13 insert e in I
14 end
15 end
16 else if e = a then
17 insert e in I
18 insert e in C
19 end
20 end
21 end

4.4.2 Enabled Transitions Method
We have four categories of enabled transitions; forward, backtracking, causal and out-

of-causal-order. For each category we have create a method which takes no arguments
and returns an ArrayList which contains all the names of the transitions that are enabled
in this category.

Method fenabled() was created for the forward enabled transitions as described
in Definition 1. To identify all the transitions that are forward enabled, this method needs
all the information of the RPN, and also the current marking M.

Method benabled() was created for the backtracking enabled transitions as de-
scribed in Definition 3. To identify all the transitions that are backtracking enabled, this
method needs the information of the transitions of the RPN, and also the current history
H.

Method coenabled() was created for the causal enabled transitions as described
in Definition 5. To identify all the transitions that are causally enabled, this method needs
all the information of the RPN, and also the current history H, and the current marking M.

46

Method oenabled() was created for the out-of-causal-order enabled transitions as
described in Definition 6. To identify all the transitions that are out-of-causal enabled, this
method needs the information of the transitions of the RPN, and also the current history
H.

4.4.3 Addition between Matrices Method
The method addMatrix(a,b) calculates the new table created by the addition of

the two matrices, a and b, which are inserted in the function as arguments. This func-
tion considers that the three-dimensions ArrayLists, a and b, have the same number of
columns and rows. By taking each position of the first matrix, and the relevant position of
the second matrix, it unites the two sets of tokens and/or bonds of the current positions.
The created union is stored in the corresponding position of a new matrix, which is a
three-dimensions ArrayList that will be returned as soon as the function completes.

Algorithm 2: Matrices Addition Operation Algorithm in the form of pseudo-
code
1 Input: N = (A,P,B,T,F) is the RPN structure
2 A[n][m] is a matrix which contains sets of tokens and bonds in each position, where

n = |T | and m = |P|
3 B[n][m] is a matrix which contains sets of tokens and bonds in each position, where

n = |T | and m = |P|
4 Output: C[n][m] is the matrix which contains the addition of the two matrices A and B,

where n = |T | and m = |P|
5 begin
6 foreach row x in A do
7 foreach column y in A do
8 C(x,y)← A(x,y)∪B(x,y)
9 end

10 end
11 end

4.4.4 Subtraction between Matrices Method
The method subMatrix(a,b) calculates the new table created by the subtraction

of the two matrices, a and b, which are inserted in the function as arguments. This func-
tion considers that the three-dimensions ArrayLists, a and b, have the same number of
columns and rows. It removes from each position of the first matrix, all the tokens and
bonds which are included in the relevant position of the second matrix. The set remaining
after deduction is stored in the corresponding position of a new matrix, which is a three-
dimension ArrayList that will be returned as soon as the function completes.

47

Algorithm 3: Matrices Subtraction Operation Algorithm in the form of pseudo-
code
1 Input: N = (A,P,B,T,F) is the RPN structure
2 A[n][m] is a matrix which contains sets of tokens and bonds in each position, where

n = |T | and m = |P|
3 B[n][m] is a matrix which contains sets of tokens and bonds in each position, where

n = |T | and m = |P|
4 Output: C[n][m] is the matrix which contains the subtraction of matrix B from matrix A,

where n = |T | and m = |P|
5 begin
6 foreach row x in A do
7 foreach column y in A do
8 C(x,y)← A(x,y)−B(x,y)
9 end

10 end
11 end

4.4.5 Multiplication between Matrices Method
The method mulMatrix(a,b) calculates the new table created by the multiplica-

tion of the two matrices, a and b, which are inserted in the function as arguments. This
function considers that the first matrix has dimensions 1× j, and consists of integer num-
bers, 0 or 1, and the second matrix has dimensions j× k, and consists of tokens and/or
bonds. By taking each position ji× ki of the second matrix, checks whether the integer
in position 1× ji of the first matrix is the number 1, and if that is true then the set of the
second matrix in position ji×ki is stored in position 1×ki of a new matrix. This function
returns the new matrix, which is a three-dimensions ArrayList with bonds and/or tokens.

Algorithm 4: Matrices Multiplication Operation Algorithm in the form of
pseudo-code
1 Input: N = (A,P,B,T,F) is the RPN structure
2 A[n] is a matrix which contains 0s and 1s in each position, where n = |T |
3 B[n][m] is a matrix which contains sets of tokens and bonds in each position, where

n = |T | and m = |P|
4 Output: C[1][m] is the matrix which contains the multiplication of the two matrices A

and B, where m = |P|
5 begin
6 foreach column x in B do
7 foreach row y in B do
8 if A(y) = 1 then
9 C(1,x)←C(1,x)∪B(y,x)

10 end
11 end
12 end
13 end

48

4.4.6 D Matrices Calculation Method
The function calcDmatrices() puts values in the public lists of the program, D−

and D+. Each of these lists is a three-dimensions t× p ArrayList, where t is the number
of transitions of the model, and p is the number of places of the model. For each directed
arc of the RPN, the system checks whether there is an incoming arc or an outgoing arc.
An incoming arc, from a place i to a transition j, is added in matrix D− in position [j, i];
an outgoing arc, from a transition j to a place i, is added in matrix D+ in position [j, i].

4.4.7 Connected Component Matrix Method
The method conMatrix(a,b) is aimed at finding the connected components of

each token that exist in a given matrix. The first argument of this function is a three-
dimensions ArrayList with tokens, and it is the list that will be used for the process of
function. As we know from the Connected Component Method which has been described
in section 4 we can find the tokens that are directly or indirectly connected with a given
token in a specific place. In some cases we want to find the connected tokens after de-
ducting an effect from a specific place. The second argument b is an integer which takes
values -1 or 1. In case of a -1 value the connected component will be calculated from
a specific marking, after removing the effect of the transition that is being executed at
the moment. Otherwise, the connected component will be calculated directly from the
current marking without any deduction. This function returns the new three-dimensions
ArrayList which created with all connected components of the inserted matrix.

4.4.8 Forward Execution Method
Method ForwardExec() was created for the forward execution of a transition as

described in Definition 17. After the step-by-step calculation of all matrices that is needed
- T D−,T D+,CD−andCD+ -, this function will find the new marking M, and also the new
history H of the system.

For a new marking value the function is adding the current marking and the produc-
tions of the executed transition, with all the connected tokens and bonds that come with it,
and later it subtracts from the new matrix the consumptions of the executed transition. For
new history value, the function, after finding the maximum value of the history, increases
this value by one, and puts it in place of the transition executed. This function does not
return anything since all changes are made directly on matrices M and H.

4.4.9 Backtracking Execution Method
Method Backtracking() was created for the backtracking and causal execution

of a transition as described in Definition 19. After the step-by-step calculation of all ma-
trices that is needed - T D−,T D+,CD−andCD+ -, this function will find the new marking
M, and also the new history H of the system.

49

For new marking value the function is adding current marking and the consumptions
of the executed transition, and later is subtract from the new matrix the productions of
the executed transition, with all the connected tokens and bonds that come with it. For
new history value, the function, after finding the value of the history in position of the
executed transition, removes this value from that position. This function does not return
anything since all changes are made directly on matrices M and H.

4.4.10 Out-of-Causal-Order Execution Method
Method OutOfCausalExec() was created for the out-of-causal-order execution

of a transition as described in Definition 21. After the step-by-step calculation of all ma-
trices that is needed - L−,L+,CL−andCL+ -, this function will find the new marking M,
and also the new history H of the system.

For new marking value the function is subtract from each place of matrix E - current
marking without the effect of executed transition - all tokens and bonds which are not in
the right place, and later is adding in each place the tokens and bonds that should be in
each position, based on the changes caused by the reversed transition. When calculating
the new history value, the function finds the value of the history in position of the exe-
cuted transition and removes this value from that position. This function does not return
anything since all changes are made directly on matrices M and H.

50

Algorithm 5: Forward Execution Algorithm in the form of pseudo-code
1 Input: M is the current marking matrix
2 H is the current history matrix
3 FT is the current executed transition matrix
4 N = (A,P,B,T,F) is the RPN structure
5 Output: M is the new marking matrix
6 H is the new history matrix
7 Variables: D+[n][m] is the matrix of outgoing arcs, where n = |T | and m = |P|
8 D−[n][m] is the matrix of incoming arcs, where n = |T | and m = |P|
9 T D+[m] is the matrix of outgoing arcs for the executed transition, where m = |P|

10 T D−[m] is the matrix of incoming arcs for the executed transition, where m = |P|
11 CD+[m] is the matrix with connected component of T D+, where m = |P|
12 CD−[m] is the matrix with connected component of T D−, where m = |P|
13 MC+[m], MD+[m] are intermediate matrices used, where m = |P|
14 max is the maximum number of matrix H
15 begin
16 foreach arc F(x,y) do
17 if F(x,y) is an incoming arc then
18 D−(y,x)← tokens on F(x,y)
19 end
20 else
21 D+(x,y)← tokens on F(x,y)
22 end
23 end
24 T D+← mulMatrix(FT,D+)
25 T D−← mulMatrix(FT,D−)
26 foreach position p in T D+ do
27 foreach token a in p do
28 foreach place q in M do
29 CD+(p)←CD+(p)∪ con(a,M(q))
30 end
31 end
32 end
33 foreach position p in T D− do
34 foreach token a in p do
35 foreach place q in M do
36 CD−(p)←CD−(p)∪ con(a,M(q))
37 end
38 end
39 end
40 MC+← addMatrix(M,CD+)
41 MD+← addMatrix(MC+,T D+)
42 M← subMatrix(MD+,CD−)
43 max← the maximum number in matrix H
44 foreach position i in H do
45 H(i)← H(i)+(max+1)×FT (i)
46 end
47 end

51

52

Algorithm 6: Backtracking and Causal Execution Algorithm in the form of
pseudo-code
1 Input: M is the current marking matrix
2 H is the current history matrix
3 FT is the current executed transition matrix
4 N = (A,P,B,T,F) is the RPN structure
5 Output: M is the new marking matrix
6 H is the new history matrix
7 Variables: D+[n][m] is the matrix of outgoing arcs, where n = |T | and m = |P|
8 D−[n][m] is the matrix of incoming arcs, where n = |T | and m = |P|
9 T D+[m] is the matrix of outgoing arcs for the executed transition, where m = |P|

10 T D−[m] is the matrix of incoming arcs for the executed transition, where m = |P|
11 CD+[m] is the matrix with connected component of T D+, where m = |P|
12 CD−[m] is the matrix with connected component of T D−, where m = |P|
13 MC−[m] is intermediate matrix used, where m = |P|
14 e f f is the effect of transition that is reversing
15 E is the current marking matrix without the e f f variable
16 executed is the number exist in position j where FT (j) = 1
17 begin
18 t← the transition where FT (t) = 1
19 e f f ← pre(t)− post(t)
20 foreach place w in M do
21 E(w)←M(w)− e f f
22 end
23 foreach arc F(x,y) do
24 if F(x,y) is an incoming arc then
25 D−(y,x)← tokens on F(x,y)
26 end
27 else
28 D+(x,y)← tokens on F(x,y)
29 end
30 end
31 T D+← mulMatrix(FT,D+)
32 T D−← mulMatrix(FT,D−)
33 foreach position p in T D+ do
34 foreach token a in p do
35 foreach place q in M do
36 CD+(p)←CD+(p)∪ con(a,M(q))
37 end
38 end
39 end
40 foreach position p in T D− do
41 foreach token a in p do
42 foreach place q in M do
43 CD−(p)←CD−(p)∪ con(a,E(q))
44 end
45 end
46 end
47 MC−← addMatrix(M,CD−)
48 M← subMatrix(MC−,CD+)
49 executed← the number exist in position j where FT (j) = 1
50 foreach position i in H do
51 H(i)← H(i)− executed×FT (i)
52 end
53 end

53

Algorithm 7: Out-of-Causal-Order Execution Algorithm in the form of pseudo-
code
1 Input: M is the current marking matrix
2 H is the current history matrix
3 FT is the current executed transition matrix
4 N = (A,P,B,T,F) is the RPN structure
5 Output: M is the new marking matrix
6 H is the new history matrix
7 Variables: L+[m] is the matrix which contains the tokens to be added to the marking in

the corresponding places, where m = |P|
8 L−[m] is the matrix which contains the tokens to be removed from the marking from the

corresponding places, where m = |P|
9 CL+[m] is the matrix with connected component of L+, where m = |P|

10 CL−[m] is the matrix with connected component of L−, where m = |P|
11 MC−[m] is intermediate matrix used, where m = |P|
12 e f f is the effect of transition that is reversing
13 E is the current marking matrix without the e f f variable
14 executed is the number exist in position j where FT (j) = 1
15 begin
16 t← the transition where FT (t) = 1
17 e f f ← pre(t)− post(t)
18 foreach place w in M do
19 E(w)←M(w)− e f f
20 end
21 L+,L− = calcLmatrices()
22 foreach position p in L+ do
23 foreach token a in p do
24 foreach place q in M do
25 CL+(p)←CL+(p)∪ con(a,E(q))
26 end
27 end
28 end
29 foreach position p in L− do
30 foreach token a in p do
31 foreach place q in M do
32 CL−(p)←CL−(p)∪ con(a,E(q))
33 end
34 end
35 end
36 ML−← subMatrix(E,CL−)
37 M← addMatrix(ML−,CL+)
38 executed← the number exist in position j where FT (j) = 1
39 foreach position i in H do
40 H(i)← H(i)− executed×FT (i)
41 end
42 end

54

4.4.11 Last Transition Calculation Method
The method last(a) was created as described in Definition 7. It aims to find the

last transition of the model that has been executed, and contains the given set of tokens a
on its outgoing arc. This method takes as an argument an ArrayList that represents a set
of tokens and bonds for which we want to find out their last position in the model. The
function returns the position of the transition in the transition set T for which the above
restrictions are true. If there are no transitions for which these restrictions are true then it
returns the value -1.

Algorithm 8: Last Transition Calculation Algorithm in the form of pseudo-code
1 Input: C is the set of tokens and bonds for which we want to find their last executed

transition
2 M is the current marking matrix
3 H is the current history matrix
4 FT is the current executed transition matrix
5 N = (A,P,B,T,F) is the RPN structure
6 Output: lastt is the position of the last executed transition that is using the given set, in T
7 Variables: last_history_value is the history value of the temporary last transition
8 begin
9 lastt←−1

10 last_history_value←−1
11 foreach transition t in T do
12 if (H(t) 6= 0) and (post(t)∩C 6= /0) and (H(t)> last_history_value) then
13 lastt← t
14 last_history_value← H(t)
15 end
16 end
17 end

4.4.12 L Matrices Calculation Method
The function calcLmatrices() puts values in the public lists of the program, L−

and L+. Each of these lists is a three-dimension ArrayList with dimensions 1× p, where p
is the number of places of the model. L− list contains in each position the tokens that are
in the wrong place on the model and must be removed from the specific place of marking.
L+ list contains in each position the tokens that must be added in the specific place of
marking. After the calculation of the connected component of each token, this function
calculates the last place of each connected component, and finds out the two lists, L− and
L+.

55

Algorithm 9: L Matrices Calculation Algorithm in the form of pseudo-code
1 Input: M0 is the initial marking matrix
2 M is the current marking matrix
3 FT is the current executed transition matrix
4 N = (A,P,B,T,F) is the RPN structure
5 Output: L+ is the matrix which contains the tokens to be added to the marking in the

corresponding places
6 L− is the matrix which contains the tokens to be removed from the marking from the

corresponding places
7 Variables: e f f is the effect of transition that is reversing
8 E is the current marking matrix without the e f f variable
9 conn is the set of tokens that are directly or indirectly connected with a specific token

10 lastt is the last executed transition that is using a specific token
11 begin
12 t← the transition where FT (t) = 1
13 e f f ← pre(t)− post(t)
14 foreach place w in M do
15 E(w)←M(w)− e f f
16 end
17 foreach place p in P do
18 foreach token a in p do
19 foreach place q in M do
20 conn← conn∪ con(a,E(q))
21 end
22 lastt← last(conn)
23 if lastt 6=⊥ then
24 foreach arc F(x, p) do
25 if (F(x, p)∩ conn 6= /0) and (lastt = x) then
26 L+(p)← L+(p)∪a
27 end
28 end
29 end
30 else if conn⊆M0(p) then
31 L+(p)← L+(p)∪a
32 end
33 if a ∈M(p) then
34 foreach arc F(z, p) do
35 if lastt 6= z then
36 L−(p)← L−(p)∪a
37 end
38 end
39 end
40 end
41 end
42 end

56

Chapter 5

Case Study

Contents
5.1 Assembly and Disassembly . 57

5.2 Ballpoint pen Case Study . 58

In this chapter we are going to examine how the matrices of Reversing Petri nets can
be applied on an example given from the product assembly process, and whether or not it
is possible to disassemble the product by using the same Reversing Petri net model and
the matrices that are derived from this.

5.1 Assembly and Disassembly
In a time of information revolution, assembly, one of the oldest forms of industrial

production, and its twin task, disassembly, have experienced enormous modernization.
Assembly is a productive function of the composition of some individual parts, subassem-
blies and substances in a predetermined quantity and within a predetermined period of
time. The assembly process is one of the most expensive and time-consuming activities
in the area of manufacturing.

Disassembly is defined as the set of all processes that decompose the structure of ge-
ometrically defined bodies over a given period of time. The aspects of disassembly must
be taken into account in various steps of the product life cycle, during both the design
process of the product and in the process of designing the disassembly of the end-of-life
products. Maintenance, remanufacturing, recycling or disposal of end-of-life products,
are some of the basic objectives of disassembly process.

While assembly procedures have existed since ancient history, disassembly has be-
come famous during the last decades as a response to society’s needs for recycling and
remanufacturing. As the complexity of products and production systems increases, the
need for models that deal with assembly and disassembly aspects is becoming greater.
Specifically, the kind of models that would be more useful for this kind of representations
are the reversible models, since the disassembly process is actually the reversing order of

57

the assembly execution process.

Figure 5.1: The Petri net model (shown in left) capturing the relations between the parts
of an assembly product (shown in right).

As a kind of reversible model, Petri nets facilitate the representation of the sub-
tasks into which an assembly model can be decomposed by taking into account the pre-
conditions and post-conditions which are used for the specification of the feasible se-
quences.

Figure 5.1 illustrates the Petri net model of a very simple assembly product. This
product consists of 3 parts, A, B and C. For each of these parts, a new place has been
added to the network. Within each place that represents a part of the product there is a to-
ken, this represents the fact that every part of the product exists only once. From the Petri
net that exists in the left scheme of figure we can notice which parts can be connected
together. For example, we can see that C can be added to the product only when parts A
and B have already been connected together.

As we mention in previous chapters, Petri net models, give the opportunity to study
the correctness of a system using the qualitative analysis they provide. In this case, when a
Petri net used for assembly/disassembly modelling [8], the correctness of this system can
be studied by using the qualitative analysis of the net. Since Petri nets are ideal models
for the representation of assembly and disassembly processes, this means that Reversing
Petri nets are equally appropriate.

5.2 Ballpoint pen Case Study

Figure 5.2: Ballpoint pen [3]

58

In Fig. 5.2 above we can see the sub-pieces of a ballpoint pen. We have five pieces;
cap, body, tube, head and button. In the product’s (ball point pen) reversing Petri net
(RPN) model below (Fig. 5.3) we can see that for each of the above five sub-pieces we
assign a token in the RPN model. We use C for Cap, O for Body, T for Tube, H for Head
and U for Button.

Figure 5.3: Pen Assembly/disassembly demonstration in Reversing Petri Nets

The RPN contains 13 places and 12 transitions. These numbers will be used later for
the creation of this Reversing Petri net’s matrices in simulator algorithms. Below we are
going to demonstrate the assembly and disassembly of this product by using any of the
four types of execution (that is enabled) within RPNs - forward execution, backtracking,
causal order and out-of-causal-order execution. In addition to the execution of the simu-
lator, the matrix equations that are executed through the simulator algorithms are shown
below.

The reversing Petri net in Figure 5.3 can be specified in matrix form as follows:
1. Find D− matrix with the incoming arcs of Fig. 5.3.

D− =

0 {O} 0 {H} 0 0 0 0 0 0 0 0 0
0 0 {T} {H} 0 0 0 0 0 0 0 0 0
{C} 0 0 0 0 {O} 0 0 0 0 0 0 0

0 0 {T} 0 0 {H} 0 0 0 0 0 0 0
0 {O} 0 0 0 0 {H} 0 0 0 0 0 0
0 {O} 0 0 {U} 0 0 0 0 0 0 0 0
0 0 {T} 0 0 0 0 {H} 0 0 0 0 0
{C} 0 0 0 0 0 0 0 {O} 0 0 0 0

0 0 0 0 0 0 {H} 0 0 {O} 0 0 0
0 0 0 0 {U} 0 0 0 {T} 0 0 0 0
{C} 0 0 0 0 0 0 0 0 0 0 {O} 0

0 0 0 0 {U} 0 0 0 0 0 {T} 0 0

59

2. Find D+ matrix with the outgoing arcs of Fig. 5.3.

D+=

00000{O−H} 0 0 0 0 0 0 0
00000 0 {T −H} 0 0 0 0 0 0
00000 0 0 {C−O} 0 0 0 0 0
00000 0 0 0 {H−T} 0 0 0 0
00000 0 0 0 {O−H} 0 0 0 0
00000 0 0 0 0 {O−U} 0 0 0
00000 0 0 0 0 0 {H−T} 0 0
00000 0 0 0 0 0 {C−O} 0 0
00000 0 0 0 0 0 0 {O−H} 0
00000 0 0 0 0 0 0 {T −U} 0
00000 0 0 0 0 0 0 0 {C−O}
00000 0 0 0 0 0 0 0 {T −U}

At the beginning, marking matrix M is the same with the matrix M0, which contains

the initial marking.

Marking matrix for Fig. 5.3:

M = M0 =
(
{C} {O} {T} {H} {U} 0 0 0 0 0 0 0 0

)
At this moment the only enabled transitions are transitions t1, t2 and t6, which are

forward enabled. Let us assume that we are going to fire transition t1, using forward
execution.

Figure 5.4: The initial marking of the Reversing Petri net and the forward enabled transi-
tions

60

Transition matrix for Fig. 5.3:

FT =
(

1 0 0 0 0 0 0 0 0 0 0 0
)

To determine the new marking of the RPN after the firing of the transition specified
in the transition matrix, we create the following matrices.

T D+ = FT ⊗D+ =
(

0 0 0 0 0 {O−H} 0 0 0 0 0 0 0
)

T D− = FT ⊗D− =
(

0 {O} 0 {H} 0 0 0 0 0 0 0 0 0
)

Matrix CD+ is the same with T D+, and matrix CD− is the same with T D−.

The initial history matrix H of Fig. 5.3 contains only 0s since no transition yet fire.
History matrix for Fig. 5.3:

H =
(

0 0 0 0 0 0 0 0 0 0 0 0
)

After the calculation of the above matrices we can now calculate the new marking
matrix M′:

M′ = M⊕CD+⊕T D+	CD−

=
(
{C} {O} {T} {H} {U} 0 0 0 0 0 0 0 0

)
⊕(

0 0 0 0 0 {O−H} 0 0 0 0 0 0 0
)
⊕(

0 0 0 0 0 {O−H} 0 0 0 0 0 0 0
)
	(

0 {O} 0 {H} 0 0 0 0 0 0 0 0 0
)

=
(
{C} 0 {T} 0 {U} {O−H} 0 0 0 0 0 0 0

)
and the new history matrix H ′:

H ′ = H⊕ (max{k|k = H(t), t ∈ T}+1)×FT
=

(
0 0 0 0 0 0 0 0 0 0 0 0

)
⊕

1×
(

1 0 0 0 0 0 0 0 0 0 0 0
)

=
(

1 0 0 0 0 0 0 0 0 0 0 0
)

The simulator algorithms will calculate the above matrix equations and as a result the
simulator will show to the user the following screen (as shows in Figure 5.5):

61

Figure 5.5: Simulator appearance after the forward execution of t1

Graphically the appearance of the Reversing Petri net model will change, since the
tokens will change places and new bonds will be created as shown below:

Figure 5.6: Pen Assembly/disassembly RPN after the forward execution of t1

After the calculation of the new marking and history matrices the new enabled transi-
tions sets will change. According to the new changes the forward enabled transitions now
are t3 and t4.

62

Figure 5.7: The current marking of the Reversing Petri net and the forward enabled tran-
sitions

Let us assume that we are going to fire transition t4.

Transition matrix for Fig. 5.6:

FT =
(

0 0 0 1 0 0 0 0 0 0 0 0
)

To determine the new marking of the RPN after the firing of the transition specified
in the transition matrix, we create the following matrices.

T D+ = FT ⊗D+ =
(

0 0 0 0 0 0 0 0 {H−T} 0 0 0 0
)

T D− = FT ⊗D− =
(

0 0 {T} 0 0 {H} 0 0 0 0 0 0 0
)

Matrices CD+ and CD− contains the connected component of each base of matrices
T D+ and T D−, respectively.

CD+ =
(

0 0 0 0 0 0 0 0 {O−H,T} 0 0 0 0
)

CD− =
(

0 0 {T} 0 0 {O−H} 0 0 0 0 0 0 0
)

63

After the calculation of the above matrices we can calculate the new marking matrix
M′:

M′ = M⊕CD+⊕T D+	CD−

=
(
{C} 0 {T} 0 {U} {O−H} 0 0 0 0 0 0 0

)
⊕(

0 0 0 0 0 0 0 0 {O−H,T} 0 0 0 0
)
⊕(

0 0 0 0 0 0 0 0 {H−T} 0 0 0 0
)
	(

0 0 {T} 0 0 {O−H} 0 0 0 0 0 0 0
)

=
(
{C} 0 0 0 {U} 0 0 0 {O−H,H−T} 0 0 0 0

)
and the new history matrix H ′:

H ′ = H⊕ (max{k|k = H(t), t ∈ T}+1)×FT
=

(
1 0 0 0 0 0 0 0 0 0 0 0

)
⊕

2×
(

0 0 0 1 0 0 0 0 0 0 0 0
)

=
(

1 0 0 2 0 0 0 0 0 0 0 0
)

The simulator algorithms will calculate the above matrix equations and as a result the
simulator will show to the user the following screen (as shows in Figure 5.8):

Figure 5.8: Simulator appearance after the forward execution of t4

Graphically the appearance of the Reversing Petri net model will change, since the
tokens will change places and new bonds will be created as shown below:

64

Figure 5.9: Pen Assembly/disassembly RPN after the forward execution of t4

Let us assume that after the forward execution of transition t4, the transition t10 has
been executed also in forward. So the simulator appearance, as well as the RPN model
has been changed as shown in Figure 5.10 and Figure 5.11, respectively.

Figure 5.10: Simulator appearance after the forward execution of t10

The current marking matrix M′ is:

M′ =
(
{C} 0 0 0 0 0 0 0 0 0 0 {O−H,H−T,T −U} 0

)
65

and the current history matrix H ′:

H ′ =
(

1 0 0 2 0 0 0 0 0 3 0 0
)

Figure 5.11: Pen Assembly/disassembly RPN after the forward execution of t10

Let’s assume that we are going to reverse transition t10, using out-of-causal-order
execution.

Figure 5.12: The current marking of the Reversing Petri net and the out-of-causal-order
enabled transitions

66

Transition matrix for Fig. 5.11:

FT =
(

0 0 0 0 0 0 0 0 0 1 0 0
)

When transition t10 is reversing, and since the effect of t10 is the bond (T−U)), matrix
E has the following values :

E =
(
{C} 0 0 0 0 0 0 0 0 0 0 {O−H,H−T,U} 0

)
To determine the new marking of the RPN after the reversing of the transition speci-

fied in the transition matrix, we create the following matrices.

L+ =
(
{C} 0 0 0 {U} 0 0 0 {O,H,T} 0 0 0 0

)
L− =

(
0 0 0 0 0 0 0 0 0 0 0 {O,H,T,U} 0

)
Matrices CL+ and CL− contains the connected component of each base of matrices

L+ and L−, respectively.

CL+ =
(
{C} 0 0 0 {U} 0 0 0 {O−H,H−T} 0 0 0 0

)
CL− =

(
0 0 0 0 0 0 0 0 0 0 0 {O−H,H−T,U} 0

)
After the calculation of the above matrices we can calculate the new marking matrix

M′:

M′ = E	CL−⊕CL+

=
(
{C} 0 0 0 0 0 0 0 0 0 0 {O−H,H−T,U} 0

)
	(

0 0 0 0 0 0 0 0 0 0 0 {O−H,H−T,U} 0
)
⊕(

{C} 0 0 0 {U} 0 0 0 {O−H,H−T} 0 0 0 0
)

=
(
{C} 0 0 0 {U} 0 0 0 {O−H,H−T} 0 0 0 0

)
and the new history matrix H ′:

H ′ = H	 ({k | k = H(t), t ∈ T,FT (t) = 1}×FT)
=

(
1 0 0 2 0 0 0 0 0 3 0 0

)
	

3×
(

0 0 0 0 0 0 0 0 0 1 0 0
)

=
(

1 0 0 2 0 0 0 0 0 0 0 0
)

The simulator algorithms will calculate the above matrix equations and as a result the
simulator will show to the user the following screen (as shows in Figure 5.13):

67

Figure 5.13: Simulator appearance after the out-of-causal-order execution of t10

Graphically the appearance of the Reversing Petri net model will change, since the
tokens will change places and new bonds will be created as shown below:

Figure 5.14: Pen’s Graphical RPN model after the out-of-causal-order execution of t10

Let us assume that after the out-of-causal-order execution of transition t10, transitions
t8 and t12 have been executed in forward, respectively. So the simulator appearance, and
the graphical representation of RPN model has been changed as shown in Fig. 5.15 and
Fig. 5.16, respectively.

68

Figure 5.15: Simulator appearance after the forward execution of t12

The current marking matrix M′ is:

M′ =
(

0 0 0 0 0 0 0 0 0 0 0 0 {C−O,O−H,H−T,T −U}
)

and the current history matrix H ′:

H ′ =
(

1 0 0 2 0 0 0 3 0 0 0 4
)

Figure 5.16: Pen Assembly/disassembly RPN after the forward execution of t12

69

Let us assume that we are going to reverse transition t8, using out-of-causal-order
execution.

Figure 5.17: The current marking of the Reversing Petri net and the out-of-causal-order
enabled transitions

Transition matrix for Fig. 5.16:

FT =
(

0 0 0 0 0 0 0 1 0 0 0 0
)

When transition t8 is reversing, and since the effect of t8 is the bond (C−O)), matrix
E has the following values :

E =
(

0 0 0 0 0 0 0 0 0 0 0 0 {C,O−H,H−T,T −U}
)

To determine the new marking of the RPN after the reversing of the transition speci-
fied in the transition matrix, we create the following matrices.

L+ =
(
{C} 0 0 0 0 0 0 0 0 0 0 0 {O,H,T,U}

)
L− =

(
0 0 0 0 0 0 0 0 0 0 0 0 {C}

)
Matrices CL+ and CL− contains the connected component of each base of matrices

L+ and L−, respectively.

CL+ =
(
{C} 0 0 0 0 0 0 0 0 0 0 0 {O−H,H−T,T −U}

)
70

CL− =
(

0 0 0 0 0 0 0 0 0 0 0 0 {C}
)

After the calculation of the above matrices we can calculate the new marking matrix
M′:

M′ = E	CL−⊕CL+

=
(

0 0 0 0 0 0 0 0 0 0 0 0 {C,O−H,H−T,T −U}
)
	(

0 0 0 0 0 0 0 0 0 0 0 0 {C}
)
⊕(

{C} 0 0 0 0 0 0 0 0 0 0 0 {O−H,H−T,T −U}
)

=
(
{C} 0 0 0 0 0 0 0 0 0 0 0 {O−H,H−T,T −U}

)
and the new history matrix H ′:

H ′ = H	 ({k | k = H(t), t ∈ T,FT (t) = 1}×FT)
=

(
1 0 0 2 0 0 0 3 0 0 0 4

)
	

3×
(

0 0 0 0 0 0 0 1 0 0 0 0
)

=
(

1 0 0 2 0 0 0 0 0 0 0 4
)

The simulator algorithms will calculate the above matrix equations and as a result the
simulator will show to the user the following screen (as shows in Figure 5.18):

Figure 5.18: Simulator appearance after the out-of-causal-order execution of t8

Graphically the appearance of the Reversing Petri net model will change, since the
tokens will change places and new bonds will be created as shown below:

71

Figure 5.19: Pen Assembly/disassembly RPN after the out-of-causal-order execution of
t8

72

Chapter 6

Conclusion

Contents
6.1 Summary . 73
6.2 Challenges . 73
6.3 Future Work . 74

6.1 Summary
In this work we have studied the matrix representation of RPNs which can be used for

specifying and manipulating the dynamic behaviour of RPNs as realised by backtracking,
causal reversibility and out-of-causal-order reversibility. The developed matrix equations
have been used to create simulating algorithms in the Java programming language. This
simulator enables the user to give the information of a Reversing Petri net model, and
execute one-by-one some transitions in the system. As a result, the simulator displays on
the screen the new marking of the model - in the form of a matrix - after performing the
specific transitions in that order.

We have noticed, when using Reversing Petri nets to represent the various subtasks
that assemble a product we are able to decompose it whilst taking into account the associ-
ated pre-conditions and post-conditions, which determine the various feasible sequences.
After extensive research and experimentation, we have observed that when using Revers-
ing Petri nets we are able to disassemble a product in all the three different manners of
reversibility. So we have used the developed simulator in order to model the automatic
generation of assembly and disassembly by delineating the dynamics of the individual
tasks, and emphasising a discrete system-oriented approach. During the experimentation
stage, various examples have shown that we can indeed use Reversing Petri nets to effi-
ciently simulate assembly and disassembly planning.

6.2 Challenges
Because this diploma thesis was the first major research I did, I encountered several

difficulties in all phases of the work. Initially, I had to devote time to understanding basic
terms that played a crucial role in this study. There were also difficulties in selecting the

73

appropriate articles to study since many of the articles I met were similar to the subject
I was working on, and although they helped me to better understand the basic concepts,
they were not ideal for this study.

A particular difficulty I encountered when creating the matrix equations. By looking
at various examples and different models of Petri net (e.g. Coloured Petri nets, Time Petri
nets etc.), I noticed that for matrix representations of these different models has been used
matrices containing 0s and 1s. After various attempts to represent the Reversing Petri nets
information by matrices containing 0s and 1s we have instead decided to use sets of bases
and bonds. We were led to this decision by the fact that our model information is mainly
concerned with the marking of the RPN in the form of tokens and bonds located in each
place.

Various difficulties were also encountered when creating the simulator. Initially there
was some difficulty when deciding how to represent the structure replicating the matrices
in the Java programming language. The choice of the particular structure - ArrayList with
Strings - is based on the fact that the representation of each token and bond, as a String
would make it much easier to add and subtract elements from a set.

One of the parts that created the greatest concern was the decision whether we should
allow the alternation between the three forms of reversibility - i.e. backtracking, causal
reversibility, out-of-causal-order reversibility - during the execution of an example. Af-
ter extensive study, we realized that the out-of-causal-order reversibility form contains
all three forms of reversibility, and the causal reversibility form contains the backtracking
form. So if we could classify the three forms of reversibility from the smaller to the larger,
we would have, backtracking, causal reversibility, out-of-causal-order reversibility. So
we concluded that the order of execution can be made from the smallest to the larger set
but not the opposite. Thus, once the user selects one of the three forms of reversibility
then he can not perform any of the other forms, since they belong to a smaller set.

6.3 Future Work
RPNs are appealing because they can be mechanised very easily and therefore as a

future work we could develop a tool that uses computer graphics in order to visually rep-
resent the assembly/disassembly process and allow computer manipulation in a quick and
intuitive manner. The developed matrix equations can also be used to study the coverabil-
ity and reachability problems as well as study properties such as boundedness, invariance,
conservativeness and liveness. The results in this research can be applied to many other
types of applications such as in machining and human operation modelling. Another
direction could be to implement a simulation that demonstrates the assembling/disassem-
bling of a product based on the three forms of reversibility. This simulation could compare
the various ways of disassembling a product in order to identify the most efficient one de-
pending on the system’s needs.

74

Bibliography

[1] Quantum theory, the church–turing principle and the universal quantum computer.
Proceedings of the Royal Society of London A: Mathematical, Physical and Engi-
neering Sciences, 400(1818):97–117, 1985.

[2] E. Fredkin and T. Toffoli. Conservative logic. International Journal of Theoretical
Physics, 21(3):219–253, Apr 1982.

[3] T. Kanehara, T. Suzuki, A. Inaba, and S. Okuma. On algebraic and graph structural
properties of assembly petri net - searching by linear programming. In Proceedings
of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS
1993, Tokyo, Japan, July 26 - 30, 1993, pages 2286–2293, 1993.

[4] R. Landauer. Irreversibility and heat generation in the computing process. IBM Jour-
nal of Research and Development, 5(3):183–191, 1961.

[5] Y. Lecerf. Récursive insolubilité de l’équation générale de diagonalisation de deux
monomorphisms de monoïdes libres φ x=ψ x. Comptes rendus de l’Académie des
Sciences Paris, 257:2940–2943.

[6] A. Philippou and K. Psara. Reversible computation in petri nets. CoRR,
abs/1804.04607, 2018.

[7] W. Reisig. Understanding Petri Nets - Modeling Techniques, Analysis Methods, Case
Studies. Springer, 2013.

[8] J. Rosell. Assembly and task planning using petri nets: A survey. Proceedings of the
Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture,
218(8):987–994, 2004.

[9] T. Toffoli. Reversible computing. In Automata, Languages and Programming, 7th
Colloquium, Proceedings, pages 632–644, 1980.

75

Appendix A

Arc structure

1 import j a v a . u t i l . A r r a y L i s t ;
2
3 p u b l i c c l a s s Arc {
4 S t r i n g from ; // the place or transition from where the arc

starts
5 S t r i n g t o ; // the place or transition where the arc ends
6 A r r a y L i s t < S t r i n g > wi th ; // the tokens and/or bonds on the

specific arc
7
8 /**
9 * The constructor of this structure.

10 *
11 * @param f
12 * the name of the position from where the arc

starts
13 * @param t
14 * the name of the position where the arc ends
15 * @param w
16 * the tokens and bonds which are on the arc
17 */
18 Arc (S t r i n g f , S t r i n g t , S t r i n g w) {
19 S t r i n g [] s p l i t , s ;
20 from = f ;
21 t o = t ;
22 wi th = new A r r a y L i s t < S t r i n g > () ;
23 s p l i t = w. s p l i t (" | ") ;
24 i f (s p l i t [0] . e q u a l s (" { ") | | s p l i t [0] . e q u a l s (" [")) {
25 s p l i t = w. s u b s t r i n g (1 , w. l e n g t h () − 1) . s p l i t (" , ") ;
26 f o r (i n t i = 0 ; i < s p l i t . l e n g t h ; i ++) {
27 s = s p l i t [i] . s p l i t ("−") ;
28 i f (s . l e n g t h > 1) {
29 i f (! w i th . c o n t a i n s (s [0]))
30 wi th . add (s [0]) ;
31 i f (! w i th . c o n t a i n s (s [1]))
32 wi th . add (s [1]) ;
33 }

76

34 i f (! w i th . c o n t a i n s (s p l i t [i]))
35 wi th . add (s p l i t [i]) ;
36 }
37 } e l s e {
38 s = w. s p l i t ("−") ;
39 i f (s . l e n g t h > 1) {
40 i f (! w i th . c o n t a i n s (s [0]))
41 wi th . add (s [0]) ;
42 i f (! w i th . c o n t a i n s (s [1]))
43 wi th . add (s [1]) ;
44 }
45 i f (! w i th . c o n t a i n s (w))
46 wi th . add (w) ;
47 }
48 }
49
50 p u b l i c S t r i n g t o S t r i n g () {
51 S t r i n g s ;
52 s = " (" + from + " , " + t o + ") " + "=" + wi th ;
53 re turn s ;
54 }
55
56 /**
57 * This function checks whether a directed arc is included in

the given list
58 * with arcs.
59 *
60 * @param list
61 * a list with Arcs
62 * @return
63 */
64 p u b l i c boolean i n c l u d e d I n (A r r a y L i s t <Arc > l i s t) {
65 f o r (i n t i = 0 ; i < l i s t . s i z e () ; i ++) {
66 i f (l i s t . g e t (i) . from . e q u a l s (t h i s . from) && l i s t . g e t (i) . t o .

e q u a l s (t h i s . t o)
67 && (l i s t . g e t (i) . w i th . c o n t a i n s (t h i s . w i t h . g e t (0))
68 | | l i s t . g e t (i) . w i th . c o n t a i n s (mainbody . r e v (t h i s . w i t h . g e t

(0)))))
69 re turn true ;
70 }
71 re turn f a l s e ;
72 }
73 }

77

Appendix B

Simulator Interface Functions

1 import j a v a . awt . Dimension ;
2 import j a v a . awt . Font ;
3 import j a v a . awt . G r a p h i c s ;
4 import j a v a . u t i l . L i s t ;
5 import j a v a . awt . e v e n t . A c t i o n E v e n t ;
6 import j a v a . awt . e v e n t . A c t i o n L i s t e n e r ;
7 import j a v a . awt . image . Buf f e r ed Image ;
8 import j a v a . i o . IOExcep t ion ;
9 import j a v a . u t i l . A r r a y L i s t ;

10 import j a v a . u t i l . C a l e n d a r ;
11 import j a v a x . image io . ImageIO ;
12 import j a v a x . swing . Box ;
13 import j a v a x . swing . D e f a u l t L i s t S e l e c t i o n M o d e l ;
14 import j a v a x . swing . ImageIcon ;
15 import j a v a x . swing . J B u t t o n ;
16 import j a v a x . swing . JComboBox ;
17 import j a v a x . swing . JFrame ;
18 import j a v a x . swing . J L a b e l ;
19 import j a v a x . swing . J L i s t ;
20 import j a v a x . swing . JMenu ;
21 import j a v a x . swing . JMenuBar ;
22 import j a v a x . swing . JMenuItem ;
23 import j a v a x . swing . J P a n e l ;
24 import j a v a x . swing . J S c r o l l P a n e ;
25 import j a v a x . swing . J T e x t F i e l d ;
26 import j a v a x . swing . JTex tPane ;
27 import j a v a x . swing . S w i n g C o n s t a n t s ;
28
29 p u b l i c c l a s s I n t e r f a c e ex tends JFrame implements A c t i o n L i s t e n e r

{
30 Buf f e r ed Image image ;
31 MyPanel c o n t e n t P a n e = new MyPanel () ;
32 S t r i n g d a t e = " " ;
33 S t r i n g day = " " ;
34 S t r i n g month = " " ;
35 S t r i n g d a t = " " ;

78

36 S t r i n g c l c = " " ;
37 L i s t < S t r i n g > M h i s t o r y = new A r r a y L i s t < S t r i n g > () ;
38 i n t mode ;
39
40 I n t e r f a c e () {
41 Buf f e r ed Image image ;
42 t r y {
43 image = ImageIO . r e a d (g e t C l a s s () . g e t R e s o u r c e (" / m a t r i x . png ")

) ;
44 t h i s . s e t I c o n I m a g e (image) ;
45 } ca tch (IOExcep t ion e) {
46 e . p r i n t S t a c k T r a c e () ;
47 }
48 t h i s . s e t T i t l e (" RPNSimulator ") ;
49 }
50
51 /**
52 * Set action to each item of the menu bar
53 */
54 @Override
55 p u b l i c vo id a c t i o n P e r f o r m e d (A c t i o n E v e n t e v t) {
56 S t r i n g b t n L a b e l = e v t . getActionCommand () ;
57 i f (b t n L a b e l . e q u a l s (" Close ")) {
58 t h i s . g e t C o n t e n t P a n e () . removeAl l () ;
59 mainbody . t o k e n s . c l e a r () ;
60 mainbody . p l a c e s . c l e a r () ;
61 mainbody . t r a n s i t i o n s . c l e a r () ;
62 mainbody . a r c s . c l e a r () ;
63 mainbody .Mo. c l e a r () ;
64 mainbody . Dplus . c l e a r () ;
65 mainbody . Dmin . c l e a r () ;
66 mainbody . t o k e n s = new A r r a y L i s t < S t r i n g > () ;
67 mainbody . p l a c e s = new A r r a y L i s t < S t r i n g > () ;
68 mainbody . t r a n s i t i o n s = new A r r a y L i s t < S t r i n g > () ;
69 mainbody . a r c s = new A r r a y L i s t <Arc > () ;
70 mainbody .Mo = new A r r a y L i s t < A r r a y L i s t < A r r a y L i s t < S t r i n g

> > >() ;
71 mainbody .M = new A r r a y L i s t < A r r a y L i s t < A r r a y L i s t < S t r i n g > > >()

;
72 mainbody . Dplus = new A r r a y L i s t < A r r a y L i s t < A r r a y L i s t < S t r i n g

> > >() ;
73 mainbody . Dmin = new A r r a y L i s t < A r r a y L i s t < A r r a y L i s t < S t r i n g

> > >() ;
74 M h i s t o ry . c l e a r () ;
75 mainbody . h i s t o r y . c l e a r () ;
76 mainbody . e x e c t r a n s . c l e a r () ;
77 mainbody .M. c l e a r () ;
78 mainbody . h i s t o r y = new A r r a y L i s t < I n t e g e r > () ;
79
80 mainbody . e x e c t r a n s = new A r r a y L i s t < I n t e g e r > () ;

79

81
82 f o r (i n t p = 0 ; p < mainbody . t r a n s i t i o n s . s i z e () ; p ++) {
83 mainbody . e x e c t r a n s . add (0) ;
84 }
85
86 f o r (i n t t = 0 ; t < mainbody . t r a n s i t i o n s . s i z e () ; t ++) {
87 mainbody . h i s t o r y . add (0) ;
88 }
89 mode = 0 ;
90 t h i s . g e t C o n t e n t P a n e () . add (MENUForm ()) ;
91 t h i s . r e v a l i d a t e () ;
92 t h i s . r e p a i n t () ;
93 t h i s . pack () ;
94 } e l s e i f (b t n L a b e l . e q u a l s (" R e s t a r t ")) {
95 t h i s . g e t C o n t e n t P a n e () . removeAl l () ;
96 // delete all the extra list with the marking
97 M h i s t o ry . c l e a r () ;
98 mainbody . h i s t o r y . c l e a r () ;
99 mainbody . e x e c t r a n s . c l e a r () ;

100 mainbody .M. c l e a r () ;
101 mainbody . h i s t o r y = new A r r a y L i s t < I n t e g e r > () ;
102 mainbody .M = new A r r a y L i s t < A r r a y L i s t < A r r a y L i s t < S t r i n g > > >()

;
103 mainbody . e x e c t r a n s = new A r r a y L i s t < I n t e g e r > () ;
104 mainbody .M. add (new A r r a y L i s t < A r r a y L i s t < S t r i n g > >()) ;
105 f o r (i n t m1 = 0 ; m1 < mainbody .Mo. g e t (0) . s i z e () ; m1++) {
106 mainbody .M. g e t (0) . add (new A r r a y L i s t < S t r i n g > ()) ;
107 f o r (i n t m2 = 0 ; m2 < mainbody .Mo. g e t (0) . g e t (m1) . s i z e () ;

m2++) {
108 mainbody .M. g e t (0) . g e t (m1) . add (mainbody .Mo. g e t (0) . g e t (

m1) . g e t (m2)) ;
109 }
110 }
111 f o r (i n t p = 0 ; p < mainbody . t r a n s i t i o n s . s i z e () ; p ++) {
112 mainbody . e x e c t r a n s . add (0) ;
113 }
114
115 f o r (i n t t = 0 ; t < mainbody . t r a n s i t i o n s . s i z e () ; t ++) {
116 mainbody . h i s t o r y . add (0) ;
117 }
118 mode = 0 ;
119 t h i s . g e t C o n t e n t P a n e () . add (whileForm (" i n i t i a l n " , 0)) ;
120 t h i s . r e v a l i d a t e () ;
121 t h i s . r e p a i n t () ;
122 t h i s . pack () ;
123 } e l s e i f (b t n L a b e l . e q u a l s ("RPN i n f o r m a t i o n ")) {
124 i f (! mainbody . t r a n s i t i o n s . i sEmpty ()) {
125 t h i s . g e t C o n t e n t P a n e () . removeAl l () ;
126 t h i s . g e t C o n t e n t P a n e () . add (in foForm ()) ;
127 t h i s . r e v a l i d a t e () ;

80

128 t h i s . r e p a i n t () ;
129 t h i s . pack () ;
130 }
131 }
132 }
133
134 p r i v a t e c l a s s MyPanel ex tends J P a n e l {
135 p r i v a t e Buf fe r ed Image image ;
136
137 p u b l i c MyPanel () {
138 t r y {
139 image = ImageIO . r e a d (MyPanel . c l a s s . g e t R e s o u r c e (" /

w h i t e g r e y . j p g ")) ;
140 } ca tch (IOExcep t ion i o e) {
141 i o e . p r i n t S t a c k T r a c e () ;
142 }
143 }
144
145 @Override
146 p u b l i c Dimension g e t P r e f e r r e d S i z e () {
147 re turn image == n u l l ? new Dimension (4 0 0 , 300) : new

Dimension (image . ge tWid th () , image . g e t H e i g h t ()) ;
148 }
149
150 @Override
151 p r o t e c t e d void pa in tComponen t (G r a p h i c s g) {
152 super . pa in tComponen t (g) ;
153 g . drawImage (image , 0 , 0 , t h i s) ;
154 }
155 }
156
157 /**
158 * The initial form of the RPN simulator.
159 *
160 * @return
161 */
162 p r i v a t e J P a n e l MENUForm () {
163 J P a n e l MENU = new J P a n e l () ;
164
165 g e t C o n t e n t P a n e () . removeAl l () ;
166 se tJMenuBar (menu ()) ;
167
168 J B u t t o n b u t t o n = new J B u t t o n (" Read from F i l e " , new ImageIcon

(g e t C l a s s () . g e t R e s o u r c e (" / r e a d f i l e s m a l l . png "))) ;
169 b u t t o n . s e t V e r t i c a l T e x t P o s i t i o n (S w i n g C o n s t a n t s .BOTTOM) ;
170 b u t t o n . s e t H o r i z o n t a l T e x t P o s i t i o n (S w i n g C o n s t a n t s . CENTER) ;
171 b u t t o n . se tOpaque (f a l s e) ;
172 b u t t o n . s e t C o n t e n t A r e a F i l l e d (f a l s e) ;
173 MENU. add (b u t t o n) ;
174 b u t t o n . a d d A c t i o n L i s t e n e r (new A c t i o n L i s t e n e r () {

81

175 p u b l i c vo id a c t i o n P e r f o r m e d (A c t i o n E v e n t e) {
176 t r y {
177 g e t C o n t e n t P a n e () . removeAl l () ;
178 g e t C o n t e n t P a n e () . add (ReadfromFi leForm ()) ;
179 r e v a l i d a t e () ;
180 r e p a i n t () ;
181 pack () ;
182 } ca tch (E x c e p t i o n e r) {
183 // Ignore the error and continues
184 }
185 }
186 }) ;
187
188 J B u t t o n b u t t o n 2 = new J B u t t o n (" Read from User " , new

ImageIcon (g e t C l a s s () . g e t R e s o u r c e (" / r e a d u s e r s m a l l . png "))) ;
189 b u t t o n 2 . s e t V e r t i c a l T e x t P o s i t i o n (S w i n g C o n s t a n t s .BOTTOM) ;
190 b u t t o n 2 . s e t H o r i z o n t a l T e x t P o s i t i o n (S w i n g C o n s t a n t s . CENTER) ;
191 b u t t o n 2 . se tOpaque (f a l s e) ;
192 b u t t o n 2 . s e t C o n t e n t A r e a F i l l e d (f a l s e) ;
193 MENU. add (b u t t o n 2) ;
194 b u t t o n 2 . a d d A c t i o n L i s t e n e r (new A c t i o n L i s t e n e r () {
195 p u b l i c vo id a c t i o n P e r f o r m e d (A c t i o n E v e n t e) {
196 t r y {
197 g e t C o n t e n t P a n e () . removeAl l () ;
198 g e t C o n t e n t P a n e () . add (ReadfromUserForm ()) ;
199 r e v a l i d a t e () ;
200 r e p a i n t () ;
201 pack () ;
202 } ca tch (E x c e p t i o n e r) {
203 // Ignore the error and continues
204 }
205 }
206 }) ;
207
208 r e v a l i d a t e () ;
209 r e p a i n t () ;
210 pack () ;
211
212 MENU. se tBounds (6 0 , 90 , 500 , 500) ;
213 MENU. se tOpaque (f a l s e) ;
214
215 re turn MENU;
216 }
217
218 /**
219 * The form to read from a file the RPN information.
220 *
221 * @return
222 */
223 p r i v a t e J P a n e l ReadfromFi leForm () {

82

224 J P a n e l R F i l e = new J P a n e l () ;
225
226 g e t C o n t e n t P a n e () . removeAl l () ;
227 se tJMenuBar (menu ()) ;
228
229 J L a b e l fn = new J L a b e l ("RPN Fi lename (e . g . f i l e . t x t) :

") ;
230 fn . s e t F o n t (new Font (" C o ns o l a s " , Font . PLAIN , 14)) ;
231 fn . s e t H o r i z o n t a l A l i g n m e n t (S w i n g C o n s t a n t s . LEFT) ;
232 J T e x t F i e l d f i l e n a m e = new J T e x t F i e l d (2 0) ;
233 J B u t t o n r e a d f i l e = new J B u t t o n (" Read . . ") ;
234
235 r e a d f i l e . s e t F o n t (new Font (" C o ns o l a s " , Font . PLAIN , 14)) ;
236 r e a d f i l e . a d d A c t i o n L i s t e n e r (new A c t i o n L i s t e n e r () {
237 p u b l i c vo id a c t i o n P e r f o r m e d (A c t i o n E v e n t e) {
238 t r y {
239 S t r i n g f i l e = f i l e n a m e . g e t T e x t () ;
240 mainbody . i n t r o (f i l e) ;
241
242 mainbody .M. add (new A r r a y L i s t < A r r a y L i s t < S t r i n g > >()) ;
243 f o r (i n t m1 = 0 ; m1 < mainbody .Mo. g e t (0) . s i z e () ; m1++)

{
244 mainbody .M. g e t (0) . add (new A r r a y L i s t < S t r i n g > ()) ;
245 f o r (i n t m2 = 0 ; m2 < mainbody .Mo. g e t (0) . g e t (m1) .

s i z e () ; m2++) {
246 mainbody .M. g e t (0) . g e t (m1) . add (mainbody .Mo. g e t (0) .

g e t (m1) . g e t (m2)) ;
247 }
248 }
249 f o r (i n t p = 0 ; p < mainbody . t r a n s i t i o n s . s i z e () ; p ++)

{
250 mainbody . e x e c t r a n s . add (0) ;
251 }
252
253 g e t C o n t e n t P a n e () . add (RPNFileForm ()) ;
254 r e v a l i d a t e () ;
255 r e p a i n t () ;
256 pack () ;
257 } ca tch (E x c e p t i o n e r) {
258 // Ignore the error and continues
259 }
260 }
261 }) ;
262
263 r e v a l i d a t e () ;
264 r e p a i n t () ;
265 pack () ;
266
267 R F i l e . add (fn) ;
268 R F i l e . add (f i l e n a m e) ;

83

269 R F i l e . add (r e a d f i l e) ;
270 R F i l e . s e tBounds (6 0 , 30 , 500 , 500) ;
271 R F i l e . se tOpaque (f a l s e) ;
272
273 re turn R F i l e ;
274 }
275
276 /**
277 * The form to read from user the RPN information
278 *
279 * @return
280 */
281 p r i v a t e J P a n e l ReadfromUserForm () {
282 J P a n e l RUser = new J P a n e l () ;
283
284 g e t C o n t e n t P a n e () . removeAl l () ;
285 se tJMenuBar (menu ()) ;
286
287 J L a b e l t o k = new J L a b e l ("RPN Tokens (s e p a r a t e d by comma) :

") ;
288 t o k . s e t F o n t (new Font (" C o ns o l a s " , Font . PLAIN , 14)) ;
289 t o k . s e t H o r i z o n t a l A l i g n m e n t (S w i n g C o n s t a n t s . LEFT) ;
290 J T e x t F i e l d tokw = new J T e x t F i e l d (3 0) ;
291
292 J L a b e l p l = new J L a b e l ("RPN P l a c e s (s e p a r a t e d by comma) :

") ;
293 p l . s e t F o n t (new Font (" C o ns o l a s " , Font . PLAIN , 14)) ;
294 p l . s e t H o r i z o n t a l A l i g n m e n t (S w i n g C o n s t a n t s . LEFT) ;
295 J T e x t F i e l d plw = new J T e x t F i e l d (3 0) ;
296
297 J L a b e l t r = new J L a b e l ("RPN T r a n s i t i o n s (s e p a r a t e d by comma)

: ") ;
298 t r . s e t F o n t (new Font (" C o ns o l a s " , Font . PLAIN , 14)) ;
299 t r . s e t H o r i z o n t a l A l i g n m e n t (S w i n g C o n s t a n t s . LEFT) ;
300 J T e x t F i e l d t rw = new J T e x t F i e l d (3 0) ;
301
302 J B u t t o n c o n t i n = new J B u t t o n (" C o n t i n u e ") ;
303 c o n t i n . s e t F o n t (new Font (" C o ns o l a s " , Font . PLAIN , 14)) ;
304 c o n t i n . a d d A c t i o n L i s t e n e r (new A c t i o n L i s t e n e r () {
305 p u b l i c vo id a c t i o n P e r f o r m e d (A c t i o n E v e n t e) {
306 t r y {
307 S t r i n g [] s = tokw . g e t T e x t () . s p l i t (" , ") ;
308 f o r (i n t i = 0 ; i < s . l e n g t h ; i ++) {
309 mainbody . t o k e n s . add (s [i]) ;
310 }
311
312 s = plw . g e t T e x t () . s p l i t (" , ") ;
313 f o r (i n t i = 0 ; i < s . l e n g t h ; i ++) {
314 mainbody . p l a c e s . add (s [i]) ;
315 }

84

316
317 s = t rw . g e t T e x t () . s p l i t (" , ") ;
318 f o r (i n t i = 0 ; i < s . l e n g t h ; i ++) {
319 mainbody . t r a n s i t i o n s . add (s [i]) ;
320 }
321 g e t C o n t e n t P a n e () . removeAl l () ;
322 g e t C o n t e n t P a n e () . add (ReadfromUserForm2 (tokw . g e t T e x t () ,

plw . g e t T e x t () , t rw . g e t T e x t ())) ;
323 r e v a l i d a t e () ;
324 r e p a i n t () ;
325 pack () ;
326 } ca tch (E x c e p t i o n e r) {
327 // Ignore the error and continues
328 }
329 }
330 }) ;
331
332 RUser . add (t o k) ;
333 RUser . add (tokw) ;
334 RUser . add (p l) ;
335 RUser . add (plw) ;
336 RUser . add (t r) ;
337 RUser . add (t rw) ;
338 RUser . add (c o n t i n) ;
339
340 RUser . s e tBounds (6 0 , 30 , 500 , 500) ;
341 RUser . se tOpaque (f a l s e) ;
342
343 re turn RUser ;
344 }
345
346 /**
347 * The second form to read from user the RPN information about

the directed
348 * arcs and the initial marking
349 *
350 * @param s1
351 * the RPN tokens
352 * @param s2
353 * the RPN places
354 * @param s3
355 * the RPN transitions
356 * @return
357 */
358 p r i v a t e J P a n e l ReadfromUserForm2 (S t r i n g s1 , S t r i n g s2 , S t r i n g

s3) {
359 J P a n e l RUser = new J P a n e l () ;
360 g e t C o n t e n t P a n e () . removeAl l () ;
361 J L a b e l t o k = new J L a b e l ("RPN Tokens (s e p a r a t e d by comma) :

") ;

85

362 t o k . s e t F o n t (new Font (" C o ns o l a s " , Font . PLAIN , 14)) ;
363 t o k . s e t H o r i z o n t a l A l i g n m e n t (S w i n g C o n s t a n t s . LEFT) ;
364 J T e x t F i e l d tokw = new J T e x t F i e l d (3 0) ;
365 tokw . s e t T e x t (s1) ;
366
367 J L a b e l p l = new J L a b e l ("RPN P l a c e s (s e p a r a t e d by comma) :

") ;
368 p l . s e t F o n t (new Font (" C o ns o l a s " , Font . PLAIN , 14)) ;
369 p l . s e t H o r i z o n t a l A l i g n m e n t (S w i n g C o n s t a n t s . LEFT) ;
370 J T e x t F i e l d plw = new J T e x t F i e l d (3 0) ;
371 plw . s e t T e x t (s2) ;
372
373 J L a b e l t r = new J L a b e l ("RPN T r a n s i t i o n s (s e p a r a t e d by comma)

: ") ;
374 t r . s e t F o n t (new Font (" C o ns o l a s " , Font . PLAIN , 14)) ;
375 t r . s e t H o r i z o n t a l A l i g n m e n t (S w i n g C o n s t a n t s . LEFT) ;
376 J T e x t F i e l d t rw = new J T e x t F i e l d (3 0) ;
377 t rw . s e t T e x t (s3) ;
378
379 J L a b e l d r = new J L a b e l (" RPN D i r e c t e d Arcs :

") ;
380 dr . s e t F o n t (new Font (" C o ns o l a s " , Font . PLAIN , 14)) ;
381 dr . s e t H o r i z o n t a l A l i g n m e n t (S w i n g C o n s t a n t s . LEFT) ;
382 J T e x t F i e l d drw = new J T e x t F i e l d (3 0) ;
383 drw . s e t E d i t a b l e (f a l s e) ;
384
385 J L a b e l f = new J L a b e l (" F (") ;
386 f . s e t F o n t (new Font (" C o ns o l a s " , Font . PLAIN , 14)) ;
387 f . s e t H o r i z o n t a l A l i g n m e n t (S w i n g C o n s t a n t s . LEFT) ;
388
389 JComboBox< S t r i n g > from = new JComboBox< S t r i n g > () ;
390
391 f o r (i n t t = 0 ; t < mainbody . t r a n s i t i o n s . s i z e () ; t ++) {
392 from . addI tem (" " + mainbody . t r a n s i t i o n s . g e t (t)) ;
393 }
394 f o r (i n t t = 0 ; t < mainbody . p l a c e s . s i z e () ; t ++) {
395 from . addI tem (" " + mainbody . p l a c e s . g e t (t)) ;
396 }
397 from . s e t S e l e c t e d I n d e x (0) ;
398
399 J L a b e l c = new J L a b e l (" , ") ;
400 c . s e t F o n t (new Font (" C o ns o l a s " , Font . PLAIN , 14)) ;
401 c . s e t H o r i z o n t a l A l i g n m e n t (S w i n g C o n s t a n t s . LEFT) ;
402
403 JComboBox< S t r i n g > t o = new JComboBox< S t r i n g > () ;
404
405 f o r (i n t t = 0 ; t < mainbody . p l a c e s . s i z e () ; t ++) {
406 t o . addI tem (" " + mainbody . p l a c e s . g e t (t)) ;
407 }
408

86

409 f o r (i n t t = 0 ; t < mainbody . t r a n s i t i o n s . s i z e () ; t ++) {
410 t o . addI tem (" " + mainbody . t r a n s i t i o n s . g e t (t)) ;
411 }
412
413 t o . s e t S e l e c t e d I n d e x (0) ;
414
415 J L a b e l f2 = new J L a b e l (") = ") ;
416 f2 . s e t F o n t (new Font (" C o ns o l a s " , Font . PLAIN , 14)) ;
417 f2 . s e t H o r i z o n t a l A l i g n m e n t (S w i n g C o n s t a n t s . LEFT) ;
418
419 S t r i n g s w i t h = " " ;
420
421 f o r (i n t t = 0 ; t < mainbody . t o k e n s . s i z e () ; t ++) {
422 s w i t h += mainbody . t o k e n s . g e t (t) + " " ;
423 }
424 f o r (i n t t = 0 ; t < mainbody . t o k e n s . s i z e () ; t ++) {
425 f o r (i n t j = t + 1 ; j < mainbody . t o k e n s . s i z e () ; j ++) {
426 s w i t h += mainbody . t o k e n s . g e t (t) + "−" + mainbody . t o k e n s .

g e t (j) + " " ;
427 }
428 }
429
430 S t r i n g [] s t w i t h = s w i t h . s p l i t (" ") ;
431
432 J L i s t < S t r i n g > wi th = new J L i s t < S t r i n g >(s t w i t h) ;
433
434 wi th . s e t V i s i b l e R o w C o u n t (2) ;
435
436 wi th . s e t S e l e c t i o n M o d e l (new D e f a u l t L i s t S e l e c t i o n M o d e l () {
437 @Override
438 p u b l i c vo id s e t S e l e c t i o n I n t e r v a l (i n t index0 , i n t i n de x1) {
439 i f (super . i s S e l e c t e d I n d e x (ind ex 0)) {
440 super . r e m o v e S e l e c t i o n I n t e r v a l (index0 , i nd ex 1) ;
441 } e l s e {
442 super . a d d S e l e c t i o n I n t e r v a l (index0 , i nd ex 1) ;
443 }
444 }
445 }) ;
446 wi th . s e t S e l e c t e d I n d e x (0) ;
447
448 J B u t t o n add = new J B u t t o n ("Add") ;
449 add . s e t F o n t (new Font (" C o ns o l a s " , Font . PLAIN , 14)) ;
450 add . a d d A c t i o n L i s t e n e r (new A c t i o n L i s t e n e r () {
451 p u b l i c vo id a c t i o n P e r f o r m e d (A c t i o n E v e n t e) {
452 L i s t < S t r i n g > l i s t = wi th . g e t S e l e c t e d V a l u e s L i s t () ;
453 S t r i n g temp = " " ;
454 f o r (i n t g = 0 ; g < l i s t . s i z e () ; g ++) {
455 i f (g != 0)
456 temp += " , " ;
457 temp += l i s t . g e t (g) ;

87

458 }
459
460 S t r i n g s t = " " + "F (" + from . g e t S e l e c t e d I t e m () + " , " +

t o . g e t S e l e c t e d I t e m () + ") ={ " + temp + " } " ;
461
462 S t r i n g s = drw . g e t T e x t () ;
463 i f (s . e q u a l s (" ")) {
464 drw . s e t T e x t (s t) ;
465 } e l s e {
466 drw . s e t T e x t (s + " , " + s t) ;
467 }
468 r e v a l i d a t e () ;
469 r e p a i n t () ;
470 pack () ;
471 wi th . c l e a r S e l e c t i o n () ;
472 }
473 }) ;
474
475 J B u t t o n e d i t = new J B u t t o n (" E d i t ") ;
476 e d i t . s e t F o n t (new Font (" C o ns o l a s " , Font . PLAIN , 14)) ;
477 e d i t . a d d A c t i o n L i s t e n e r (new A c t i o n L i s t e n e r () {
478 p u b l i c vo id a c t i o n P e r f o r m e d (A c t i o n E v e n t e) {
479 drw . s e t E d i t a b l e (t rue) ;
480 r e v a l i d a t e () ;
481 r e p a i n t () ;
482 pack () ;
483 }
484 }) ;
485
486 JTex tPane rpnsem = new JTex tPane () ;
487 rpnsem . s e t P r e f e r r e d S i z e (new Dimension (3 5 0 , 200)) ;
488
489 S t r i n g msg = " I n s e r t t h e i n i t i a l marking f o r each p l a c e (a

p l a c e can c o n t a i n t o k e n s o r / and bonds , o r 0 i f i t ’ s empty
) : \ n " ;

490 f o r (i n t m = 0 ; m < mainbody . p l a c e s . s i z e () ; m++) {
491 msg += "− " + mainbody . p l a c e s . g e t (m) + " : \ n " ;
492 }
493
494 rpnsem . s e t T e x t (msg) ;
495 rpnsem . s e t F o n t (new Font (" C o ns o l a s " , Font . PLAIN , 17)) ;
496
497 J S c r o l l P a n e j s p = new J S c r o l l P a n e (rpnsem) ;
498
499 J B u t t o n c o n t i n = new J B u t t o n (" C o n t i n u e ") ;
500 c o n t i n . s e t F o n t (new Font (" C o ns o l a s " , Font . PLAIN , 14)) ;
501 c o n t i n . a d d A c t i o n L i s t e n e r (new A c t i o n L i s t e n e r () {
502 p u b l i c vo id a c t i o n P e r f o r m e d (A c t i o n E v e n t e) {
503 t r y {
504 g e t C o n t e n t P a n e () . removeAl l () ;

88

505
506 S t r i n g [] s = drw . g e t T e x t () . s p l i t (" , F") ;
507 f o r (i n t i = 0 ; i < s . l e n g t h ; i ++) {
508 i f (i == 0) {
509 s [i] = s [i] . s u b s t r i n g (1) ;
510 }
511 S t r i n g [] e1 = s [i] . s p l i t ("=") ;
512 S t r i n g [] f i n = e1 [0] . s u b s t r i n g (1 , e1 [0] . l e n g t h () −

1) . s p l i t (" , ") ;
513 mainbody . a r c s . add (new Arc (f i n [0] , f i n [1] , e1 [1])) ;
514 }
515
516 S t r i n g [] p t = rpnsem . g e t T e x t () . s p l i t (" : | \ \ r ? \ \ n ") ;
517 mainbody .Mo. add (new A r r a y L i s t < A r r a y L i s t < S t r i n g > >()) ;
518 f o r (i n t i = 0 ; i < mainbody . p l a c e s . s i z e () ; i ++) {
519 mainbody .Mo. g e t (0) . add (new A r r a y L i s t < S t r i n g > ()) ;
520
521 S t r i n g [] s i = p t [2 ∗ i + 3] . s p l i t (" , ") ;
522 f o r (i n t j = 0 ; j < s i . l e n g t h ; j ++) {
523 i f (! s i [j] . e q u a l s (" 0 "))
524 mainbody .Mo. g e t (0) . g e t (i) . add (s i [j]) ;
525 }
526 }
527 mainbody .M. add (new A r r a y L i s t < A r r a y L i s t < S t r i n g > >()) ;
528 f o r (i n t m1 = 0 ; m1 < mainbody .Mo. g e t (0) . s i z e () ; m1++)

{
529 mainbody .M. g e t (0) . add (new A r r a y L i s t < S t r i n g > ()) ;
530 f o r (i n t m2 = 0 ; m2 < mainbody .Mo. g e t (0) . g e t (m1) .

s i z e () ; m2++) {
531 mainbody .M. g e t (0) . g e t (m1) . add (mainbody .Mo. g e t (0) .

g e t (m1) . g e t (m2)) ;
532 }
533 }
534 f o r (i n t p = 0 ; p < mainbody . t r a n s i t i o n s . s i z e () ; p ++)

{
535 mainbody . e x e c t r a n s . add (0) ;
536 }
537
538 mainbody . c a l c D m a t r i c e s () ;
539 f o r (i n t t = 0 ; t < mainbody . t r a n s i t i o n s . s i z e () ; t ++)

{
540 mainbody . h i s t o r y . add (0) ;
541 }
542 mode = 0 ;
543 g e t C o n t e n t P a n e () . add (whileForm (" i n i t i a l n " , 0)) ;
544 r e v a l i d a t e () ;
545 r e p a i n t () ;
546 pack () ;
547 } ca tch (E x c e p t i o n e r) {
548 // Ignore the error and continues

89

549 }
550 }
551 }) ;
552
553 J L a b e l s p a c e = new J L a b e l (" ") ;
554 J L a b e l sp a ce 2 = new J L a b e l (" ") ;
555
556 RUser . add (t o k) ;
557 RUser . add (tokw) ;
558 RUser . add (p l) ;
559 RUser . add (plw) ;
560 RUser . add (t r) ;
561 RUser . add (t rw) ;
562 RUser . add (d r) ;
563 RUser . add (e d i t) ;
564 RUser . add (drw) ;
565 RUser . add (f) ;
566 RUser . add (from) ;
567 RUser . add (c) ;
568 RUser . add (t o) ;
569 RUser . add (f2) ;
570 RUser . add (new J S c r o l l P a n e (wi th)) ;
571 RUser . add (s p a c e) ;
572 RUser . add (add) ;
573 RUser . add (j s p) ;
574 RUser . add (sp a ce 2) ;
575 RUser . add (c o n t i n) ;
576
577 RUser . s e tBounds (6 0 , 30 , 500 , 500) ;
578 RUser . se tOpaque (f a l s e) ;
579
580 re turn RUser ;
581 }
582
583 /**
584 * The form which displays the RPN information
585 *
586 * @return
587 */
588 p r i v a t e J P a n e l in foForm () {
589 J P a n e l RPN = new J P a n e l () ;
590
591 JTex tPane rpnsem = new JTex tPane () ;
592 rpnsem . s e t E d i t a b l e (f a l s e) ;
593 rpnsem . s e t P r e f e r r e d S i z e (new Dimension (5 0 0 , 400)) ;
594
595 rpnsem . s e t T e x t (" Tokens : \ n " + mainbody . t o k e n s + " \ n \ n P l a c e s :

\ n " + mainbody . p l a c e s + " \ n \ n T r a n s i t i o n s : \ n "
596 + mainbody . t r a n s i t i o n s + " \ n \ nArcs : \ n " + mainbody . a r c s +

" \ n \ n I n i t i a l Marking : \ n "

90

597 + mainbody .Mo. g e t (0)) ;
598 rpnsem . s e t F o n t (new Font (" C o ns o l a s " , Font . PLAIN , 17)) ;
599
600 J S c r o l l P a n e j s p = new J S c r o l l P a n e (rpnsem) ;
601
602 J B u t t o n c o n t i n = new J B u t t o n (" C o n t i n u e ") ;
603 c o n t i n . s e t F o n t (new Font (" C o ns o l a s " , Font . PLAIN , 14)) ;
604 c o n t i n . a d d A c t i o n L i s t e n e r (new A c t i o n L i s t e n e r () {
605 p u b l i c vo id a c t i o n P e r f o r m e d (A c t i o n E v e n t e) {
606 t r y {
607 g e t C o n t e n t P a n e () . removeAl l () ;
608
609 i f (M h i s t o r y . i sEmpty ()) {
610 mainbody . c a l c D m a t r i c e s () ;
611 f o r (i n t t = 0 ; t < mainbody . t r a n s i t i o n s . s i z e () ; t

++) {
612 mainbody . h i s t o r y . add (0) ;
613 }
614 mode = 0 ;
615 g e t C o n t e n t P a n e () . add (whileForm (" i n i t i a l n " , 0)) ;
616 } e l s e {
617 g e t C o n t e n t P a n e () . add (whileForm (" k r " , M h i s t o r y . s i z e

() − 1)) ;
618 }
619 r e v a l i d a t e () ;
620 r e p a i n t () ;
621 pack () ;
622 } ca tch (E x c e p t i o n e r) {
623 // Ignore the error and continues
624 }
625 }
626 }) ;
627
628 r e v a l i d a t e () ;
629 r e p a i n t () ;
630 pack () ;
631
632 RPN . add (j s p) ;
633 RPN . add (c o n t i n) ;
634
635 RPN . se tBounds (6 0 , 100 , 500 , 500) ;
636 RPN . se tOpaque (f a l s e) ;
637 re turn RPN;
638 }
639
640 p r i v a t e J P a n e l RPNFileForm () {
641 J P a n e l RPN = new J P a n e l () ;
642
643 JTex tPane rpnsem = new JTex tPane () ;
644 rpnsem . s e t E d i t a b l e (f a l s e) ;

91

645 rpnsem . s e t P r e f e r r e d S i z e (new Dimension (5 0 0 , 400)) ;
646
647 rpnsem . s e t T e x t (" Tokens : \ n " + mainbody . t o k e n s + " \ n \ n P l a c e s :

\ n " + mainbody . p l a c e s + " \ n \ n T r a n s i t i o n s : \ n "
648 + mainbody . t r a n s i t i o n s + " \ n \ nArcs : \ n " + mainbody . a r c s +

" \ n \ n I n i t i a l Marking : \ n "
649 + mainbody .Mo. g e t (0)) ;
650 rpnsem . s e t F o n t (new Font (" C o ns o l a s " , Font . PLAIN , 17)) ;
651
652 J S c r o l l P a n e j s p = new J S c r o l l P a n e (rpnsem) ;
653 J B u t t o n c o n t i n = new J B u t t o n (" C o n t i n u e ") ;
654 c o n t i n . s e t F o n t (new Font (" C o ns o l a s " , Font . PLAIN , 14)) ;
655 c o n t i n . a d d A c t i o n L i s t e n e r (new A c t i o n L i s t e n e r () {
656 p u b l i c vo id a c t i o n P e r f o r m e d (A c t i o n E v e n t e) {
657 t r y {
658 g e t C o n t e n t P a n e () . removeAl l () ;
659 mainbody . c a l c D m a t r i c e s () ;
660 f o r (i n t t = 0 ; t < mainbody . t r a n s i t i o n s . s i z e () ; t ++)

{
661 mainbody . h i s t o r y . add (0) ;
662 }
663 g e t C o n t e n t P a n e () . add (whileForm (" i n i t i a l n " , 0)) ;
664 r e v a l i d a t e () ;
665 r e p a i n t () ;
666 pack () ;
667 } ca tch (E x c e p t i o n e r) {
668 // Ignore the error and continues
669 }
670 }
671 }) ;
672 r e v a l i d a t e () ;
673 r e p a i n t () ;
674 pack () ;
675
676 RPN . add (j s p) ;
677 RPN . add (c o n t i n) ;
678 RPN . se tBounds (6 0 , 100 , 500 , 500) ;
679 RPN . se tOpaque (f a l s e) ;
680
681 re turn RPN;
682 }
683
684 /**
685 * The form which execute the main operation of the simulator.

In this form
686 * the user can choose which transition to execute and see the

new marking
687 * of the model after the execution.
688 *
689 * @param st

92

690 * the name of transition and the form of execution
we will use

691 * (b for backtracking, c for causal, o for out-of-
causal)

692 * @param pos
693 * the marking that we want to display on screen
694 * @return
695 */
696 p r i v a t e J P a n e l whileForm (S t r i n g s t , i n t pos) {
697 J P a n e l R F i l e = new J P a n e l () ;
698 J L a b e l s p a c e = new J L a b e l (" ") ;
699 J L a b e l sp a ce p = new J L a b e l (
700 "

") ;
701
702 g e t C o n t e n t P a n e () . removeAl l () ;
703
704 S t r i n g [] s = s t . s p l i t (" ") ;
705 S t r i n g t y p e = " " ;
706
707 i f (s [1] . e q u a l s (" f ")) {
708 t y p e = " f o r w a r d " ;
709 } e l s e i f (s [1] . e q u a l s (" b ")) {
710 t y p e = " b a c k t r a c k i n g " ;
711 } e l s e i f (s [1] . e q u a l s (" c ")) {
712 t y p e = " c a u s a l " ;
713 } e l s e i f (s [1] . e q u a l s (" o ")) {
714 t y p e = " out−of−c a u s a l " ;
715 } e l s e {
716 t y p e = " marking " ;
717 }
718
719 i f (! s [1] . e q u a l s (" n ")) {
720 f o r (i n t t = 0 ; t < mainbody . t r a n s i t i o n s . s i z e () ; t ++) {
721 i f (t == mainbody . t r a n s i t i o n s . indexOf (s [0])) {
722 i f (mainbody . e x e c t r a n s . g e t (t) . e q u a l s (0))
723 mainbody . e x e c t r a n s . s e t (t , 1) ;
724 } e l s e
725 mainbody . e x e c t r a n s . s e t (t , 0) ;
726 }
727
728 A r r a y L i s t < A r r a y L i s t < A r r a y L i s t < S t r i n g >>> tempDP = mainbody .

mulMat r ix (mainbody . e x e c t r a n s , mainbody . Dplus) ;
729 A r r a y L i s t < A r r a y L i s t < A r r a y L i s t < S t r i n g >>> tempDM = mainbody .

mulMat r ix (mainbody . e x e c t r a n s , mainbody . Dmin) ;
730 mainbody . e f f e c t = new A r r a y L i s t < S t r i n g > () ;
731 f o r (i n t i = 0 ; i < tempDP . s i z e () ; i ++) {
732 f o r (i n t j = 0 ; j < tempDP . g e t (0) . s i z e () ; j ++)
733 mainbody . e f f e c t . ad dA l l (tempDP . g e t (i) . g e t (j)) ;

93

734 }
735 f o r (i n t i = 0 ; i < tempDM . s i z e () ; i ++) {
736 f o r (i n t j = 0 ; j < tempDM . g e t (0) . s i z e () ; j ++)
737 mainbody . e f f e c t . removeAl l (tempDM . g e t (i) . g e t (j)) ;
738 }
739
740 i f (s [1] . e q u a l s (" f ")) {
741 mainbody . ForwardExec () ;
742 } e l s e i f (s [1] . e q u a l s (" b ")) {
743 mainbody . B a c k t r a c k i n g () ;
744 } e l s e i f (s [1] . e q u a l s (" c ")) {
745 mainbody . B a c k t r a c k i n g () ;
746 } e l s e i f (s [1] . e q u a l s (" o ")) {
747 mainbody . OutOfCausalExec () ;
748 }
749 }
750
751 A r r a y L i s t < S t r i n g > f e n a b l e d = new A r r a y L i s t < S t r i n g > () ;
752 f e n a b l e d . ad dAl l (mainbody . f e n a b l e d ()) ;
753
754 A r r a y L i s t < S t r i n g > b e n a b l e d = new A r r a y L i s t < S t r i n g > () ;
755 i f (mode == 1 | | mode == 0)
756 b e n a b l e d . ad dAl l (mainbody . b e n a b l e d ()) ;
757
758 A r r a y L i s t < S t r i n g > c o e n a b l e d = new A r r a y L i s t < S t r i n g > () ;
759 i f (mode == 2 | | mode == 0)
760 c o e n a b l e d . ad dA l l (mainbody . c o e n a b l e d ()) ;
761
762 A r r a y L i s t < S t r i n g > o e n a b l e d = new A r r a y L i s t < S t r i n g > () ;
763 i f (mode == 3 | | mode == 0)
764 o e n a b l e d . ad dAl l (mainbody . o e n a b l e d ()) ;
765
766 i f (f e n a b l e d . i sEmpty () && b e n a b l e d . i sEmpty () && c o e n a b l e d .

i sEmpty () && o e n a b l e d . i sEmpty ()) {
767 J L a b e l fn = new J L a b e l (" There a r e no e n a b l e d t r a n s i t i o n s ! "

) ;
768 fn . s e t F o n t (new Font (" C o ns o l a s " , Font . PLAIN , 14)) ;
769 R F i l e . add (fn) ;
770 } e l s e {
771 J L a b e l fn = new J L a b e l ("<html > f o r w a r d e n a b l e d t r a n s i t i o n s :

< b r / > </ html >" , S w i n g C o n s t a n t s . LEFT) ;
772 fn . s e t F o n t (new Font (" C o ns o l a s " , Font . PLAIN , 14)) ;
773 R F i l e . add (fn) ;
774
775 JComboBox< S t r i n g > forw = new JComboBox< S t r i n g > () ;
776 i f (f e n a b l e d . i sEmpty ()) {
777 forw . addI tem (" −−− ") ;
778 } e l s e {
779 forw . addI tem (" − S e l e c t − ") ;
780 }

94

781
782 f o r (i n t f = 0 ; f < f e n a b l e d . s i z e () ; f ++) {
783 forw . addI tem (f e n a b l e d . g e t (f)) ;
784 }
785 forw . s e t S e l e c t e d I n d e x (0) ;
786 forw . a d d A c t i o n L i s t e n e r (new A c t i o n L i s t e n e r () {
787 p u b l i c vo id a c t i o n P e r f o r m e d (A c t i o n E v e n t e) {
788 S t r i n g s = (S t r i n g) forw . g e t S e l e c t e d I t e m () ;
789
790 i f (! s . e q u a l s (" − S e l e c t − ") && ! s . e q u a l s (" −−−

")) {
791 g e t C o n t e n t P a n e () . add (whileForm (s + " f " , M h i s t o r y .

s i z e ())) ;
792 r e v a l i d a t e () ;
793 r e p a i n t () ;
794 pack () ;
795 }
796 }
797 }) ;
798 R F i l e . add (forw) ;
799
800 J L a b e l bn = new J L a b e l ("<html > b a c k t r a c k i n g e n a b l e d

t r a n s i t i o n s : < b r / > </ html >" , S w i n g C o n s t a n t s . LEFT) ;
801 bn . s e t F o n t (new Font (" C o ns o l a s " , Font . PLAIN , 14)) ;
802 bn . s e t H o r i z o n t a l A l i g n m e n t (S w i n g C o n s t a n t s . LEFT) ;
803 R F i l e . add (bn) ;
804
805 JComboBox< S t r i n g > bac = new JComboBox< S t r i n g > () ;
806 i f (b e n a b l e d . i sEmpty ()) {
807 bac . addI tem (" −−− ") ;
808 } e l s e {
809 bac . addI tem (" − S e l e c t − ") ;
810 }
811
812 f o r (i n t f = 0 ; f < b e n a b l e d . s i z e () ; f ++) {
813 bac . addI tem (b e n a b l e d . g e t (f)) ;
814 }
815 bac . s e t S e l e c t e d I n d e x (0) ;
816 bac . a d d A c t i o n L i s t e n e r (new A c t i o n L i s t e n e r () {
817 p u b l i c vo id a c t i o n P e r f o r m e d (A c t i o n E v e n t e) {
818 S t r i n g s = (S t r i n g) bac . g e t S e l e c t e d I t e m () ;
819
820 i f (! s . e q u a l s (" − S e l e c t − ") && ! s . e q u a l s (" −−−

")) {
821 mode = 1 ;
822 g e t C o n t e n t P a n e () . add (whileForm (s + " b " , M h i s t o r y .

s i z e ())) ;
823 r e v a l i d a t e () ;
824 r e p a i n t () ;
825 pack () ;

95

826 }
827 }
828 }) ;
829 R F i l e . add (bac) ;
830
831 J L a b e l cn = new J L a b e l ("<html > c a u s a l e n a b l e d t r a n s i t i o n s :

< b r / > </ html >" , S w i n g C o n s t a n t s . LEFT) ;
832 cn . s e t F o n t (new Font (" C o ns o l a s " , Font . PLAIN , 14)) ;
833 cn . s e t H o r i z o n t a l A l i g n m e n t (S w i n g C o n s t a n t s . LEFT) ;
834 R F i l e . add (cn) ;
835
836 JComboBox< S t r i n g > cau = new JComboBox< S t r i n g > () ;
837 i f (c o e n a b l e d . i sEmpty ()) {
838 cau . addI tem (" −−− ") ;
839 } e l s e {
840 cau . addI tem (" − S e l e c t − ") ;
841 }
842
843 f o r (i n t f = 0 ; f < c o e n a b l e d . s i z e () ; f ++) {
844 cau . addI tem (c o e n a b l e d . g e t (f)) ;
845 }
846 cau . s e t S e l e c t e d I n d e x (0) ;
847
848 cau . a d d A c t i o n L i s t e n e r (new A c t i o n L i s t e n e r () {
849 p u b l i c vo id a c t i o n P e r f o r m e d (A c t i o n E v e n t e) {
850 S t r i n g s = (S t r i n g) cau . g e t S e l e c t e d I t e m () ;
851
852 i f (! s . e q u a l s (" − S e l e c t − ") && ! s . e q u a l s (" −−−

")) {
853 mode = 2 ;
854 g e t C o n t e n t P a n e () . add (whileForm (s + " c " , M h i s t o r y .

s i z e ())) ;
855 r e v a l i d a t e () ;
856 r e p a i n t () ;
857 pack () ;
858 }
859 }
860 }) ;
861 R F i l e . add (cau) ;
862
863 J L a b e l oocn = new J L a b e l ("<html >out−of−c a u s a l e n a b l e d

t r a n s i t i o n s : < b r / > </ html >" , S w i n g C o n s t a n t s . LEFT) ;
864 oocn . s e t F o n t (new Font (" C o ns o l a s " , Font . PLAIN , 14)) ;
865 oocn . s e t H o r i z o n t a l A l i g n m e n t (S w i n g C o n s t a n t s . LEFT) ;
866 R F i l e . add (oocn) ;
867
868 JComboBox< S t r i n g > ooca = new JComboBox< S t r i n g > () ;
869 i f (o e n a b l e d . i sEmpty ()) {
870 ooca . addI tem (" −−− ") ;
871 } e l s e {

96

872 ooca . addI tem (" − S e l e c t − ") ;
873 }
874
875 f o r (i n t f = 0 ; f < o e n a b l e d . s i z e () ; f ++) {
876 ooca . addI tem (o e n a b l e d . g e t (f)) ;
877 }
878 ooca . s e t S e l e c t e d I n d e x (0) ;
879 ooca . a d d A c t i o n L i s t e n e r (new A c t i o n L i s t e n e r () {
880 p u b l i c vo id a c t i o n P e r f o r m e d (A c t i o n E v e n t e) {
881 S t r i n g s = (S t r i n g) ooca . g e t S e l e c t e d I t e m () ;
882
883 i f (! s . e q u a l s (" − S e l e c t − ") && ! s . e q u a l s (" −−−

")) {
884 mode = 3 ;
885 g e t C o n t e n t P a n e () . add (whileForm (s + " o " , M h i s t o r y .

s i z e ())) ;
886 r e v a l i d a t e () ;
887 r e p a i n t () ;
888 pack () ;
889 }
890 }
891 }) ;
892 R F i l e . add (ooca) ;
893 }
894
895 JTex tPane rpnsem = new JTex tPane () ;
896 rpnsem . s e t E d i t a b l e (f a l s e) ;
897 rpnsem . s e t P r e f e r r e d S i z e (new Dimension (3 7 0 , 200)) ;
898 S t r i n g MH = " " ;
899 i f (s [1] . e q u a l s (" r ")) {
900 MH = M h i s t o ry . g e t (pos) ;
901 } e l s e {
902 MH = s [0] + " " + t y p e + " \ n \ n " + "M = " + mainbody .M. g e t

(0) ;
903 M h i s t o ry . add (MH) ;
904 }
905 rpnsem . s e t T e x t (MH) ;
906 rpnsem . s e t F o n t (new Font (" C o ns o l a s " , Font . PLAIN , 17)) ;
907
908 J S c r o l l P a n e j s p = new J S c r o l l P a n e (rpnsem) ;
909 J B u t t o n p r e v i o u s = new J B u t t o n (" Prev ") ;
910 p r e v i o u s . s e t F o n t (new Font (" C o ns o l a s " , Font . PLAIN , 14)) ;
911 p r e v i o u s . a d d A c t i o n L i s t e n e r (new A c t i o n L i s t e n e r () {
912 p u b l i c vo id a c t i o n P e r f o r m e d (A c t i o n E v e n t e) {
913 g e t C o n t e n t P a n e () . removeAl l () ;
914 i f (pos == 0) {
915 g e t C o n t e n t P a n e () . add (whileForm (" k r " , pos)) ;
916 } e l s e {
917 g e t C o n t e n t P a n e () . add (whileForm (" k r " , pos − 1)) ;
918 }

97

919 r e v a l i d a t e () ;
920 r e p a i n t () ;
921 pack () ;
922 }
923 }) ;
924
925 J B u t t o n n e x t = new J B u t t o n (" Next ") ;
926 n e x t . s e t F o n t (new Font (" C o ns o l a s " , Font . PLAIN , 14)) ;
927 n e x t . a d d A c t i o n L i s t e n e r (new A c t i o n L i s t e n e r () {
928 p u b l i c vo id a c t i o n P e r f o r m e d (A c t i o n E v e n t e) {
929 g e t C o n t e n t P a n e () . removeAl l () ;
930 i f (pos == M h i s t o r y . s i z e () − 1) {
931 g e t C o n t e n t P a n e () . add (whileForm (" k r " , pos)) ;
932 } e l s e {
933 g e t C o n t e n t P a n e () . add (whileForm (" k r " , pos + 1)) ;
934 }
935 r e v a l i d a t e () ;
936 r e p a i n t () ;
937 pack () ;
938 }
939 }) ;
940
941 r e v a l i d a t e () ;
942 r e p a i n t () ;
943 pack () ;
944
945 R F i l e . add (sp a ce p) ;
946 R F i l e . add (j s p) ;
947 R F i l e . add (s p a c e) ;
948 R F i l e . add (p r e v i o u s) ;
949 R F i l e . add (n e x t) ;
950 R F i l e . s e tBounds (6 0 , 30 , 500 , 500) ;
951 R F i l e . se tOpaque (f a l s e) ;
952
953 re turn R F i l e ;
954 }
955
956 /**
957 * The function calculates the date and time of the program.
958 *
959 * @return
960 */
961 p r i v a t e S t r i n g DateNTime () {
962 S t r i n g s t r = " " ;
963 C a l e n d a r r ightNow = C a l e n d a r . g e t I n s t a n c e () ;
964 d a t e = " " + r ightNow . getTime () ;
965 S t r i n g s p t a b [] = d a t e . s p l i t (" ") ;
966 sw i t ch (s p t a b [0]) {
967 case "Mon" :
968 day = " Monday " ;

98

969 break ;
970 case " Tue " :
971 day = " Tuesday " ;
972 break ;
973 case "Wed" :
974 day = " Wednesday " ;
975 break ;
976 case " Thu " :
977 day = " Thursday " ;
978 break ;
979 case " F r i " :
980 day = " F r i d a y " ;
981 break ;
982 case " S a t " :
983 day = " S a t u r d a y " ;
984 break ;
985 case " Sun " :
986 day = " Sunday " ;
987 break ;
988 }
989 sw i t ch (s p t a b [1]) {
990 case " Jan " :
991 month = " 01 " ;
992 break ;
993 case " Feb " :
994 month = " 02 " ;
995 break ;
996 case " Mar " :
997 month = " 03 " ;
998 break ;
999 case " Apr " :

1000 month = " 04 " ;
1001 break ;
1002 case "May" :
1003 month = " 05 " ;
1004 break ;
1005 case " Jun " :
1006 month = " 06 " ;
1007 break ;
1008 case " J u l " :
1009 month = " 07 " ;
1010 break ;
1011 case "Aug" :
1012 month = " 08 " ;
1013 break ;
1014 case " Sep " :
1015 month = " 09 " ;
1016 break ;
1017 case " Oct " :
1018 month = " 10 " ;

99

1019 break ;
1020 case "Nov" :
1021 month = " 11 " ;
1022 break ;
1023 case " Dec " :
1024 month = " 12 " ;
1025 break ;
1026 }
1027 d a t = s p t a b [2] ;
1028 c l c = s p t a b [3] ;
1029
1030 s t r += day + " , " + d a t + " / " + month + " , " + c l c ;
1031
1032 re turn s t r ;
1033 }
1034
1035 /**
1036 * This function insert to the simulator the menu bar.
1037 *
1038 * @return
1039 */
1040 p r i v a t e JMenuBar menu () {
1041 JMenuBar menuBar = new JMenuBar () ;
1042 JMenu menu ;
1043 JMenuItem menuItem ;
1044
1045 menu = new JMenu (" F i l e ") ;
1046 menu . s e t F o n t (new Font (" A r i a l " , Font . PLAIN , 14)) ;
1047 menuItem = new JMenuItem (" Close ") ;
1048 menuItem . s e t F o n t (new Font (" A r i a l " , Font . PLAIN , 14)) ;
1049 menuItem . a d d A c t i o n L i s t e n e r (t h i s) ;
1050 menu . add (menuItem) ;
1051 menuItem = new JMenuItem (" R e s t a r t ") ;
1052 menuItem . s e t F o n t (new Font (" A r i a l " , Font . PLAIN , 14)) ;
1053 menuItem . a d d A c t i o n L i s t e n e r (t h i s) ;
1054 menu . add (menuItem) ;
1055 menuBar . add (menu) ;
1056
1057 menu = new JMenu ("RPN i n f o ") ;
1058 menu . s e t F o n t (new Font (" A r i a l " , Font . PLAIN , 14)) ;
1059 menuItem = new JMenuItem ("RPN i n f o r m a t i o n ") ;
1060 menuItem . s e t F o n t (new Font (" A r i a l " , Font . PLAIN , 14)) ;
1061 menuItem . a d d A c t i o n L i s t e n e r (t h i s) ;
1062 menu . add (menuItem) ;
1063 menuBar . add (menu) ;
1064
1065 S t r i n g s t r = DateNTime () ;
1066 menu = new JMenu (s t r) ;
1067 menu . s e t F o n t (new Font (" A r i a l " , Font . PLAIN , 14)) ;
1068 menuBar . add (Box . c r e a t e H o r i z o n t a l G l u e ()) ;

100

1069 menuBar . add (menu) ;
1070
1071 re turn menuBar ;
1072 }
1073
1074 p u b l i c s t a t i c vo id main (S t r i n g [] a r g s) {
1075 mainbody . h i s t o r y = new A r r a y L i s t < I n t e g e r > () ;
1076 mainbody . t o k e n s = new A r r a y L i s t < S t r i n g > () ;
1077 mainbody . p l a c e s = new A r r a y L i s t < S t r i n g > () ;
1078 mainbody . t r a n s i t i o n s = new A r r a y L i s t < S t r i n g > () ;
1079 mainbody . a r c s = new A r r a y L i s t <Arc > () ;
1080 mainbody .Mo = new A r r a y L i s t < A r r a y L i s t < A r r a y L i s t < S t r i n g > > >() ;
1081 mainbody .M = new A r r a y L i s t < A r r a y L i s t < A r r a y L i s t < S t r i n g > > >() ;
1082 mainbody . Dplus = new A r r a y L i s t < A r r a y L i s t < A r r a y L i s t < S t r i n g

> > >() ;
1083 mainbody . Dmin = new A r r a y L i s t < A r r a y L i s t < A r r a y L i s t < S t r i n g

> > >() ;
1084
1085 mainbody . e x e c t r a n s = new A r r a y L i s t < I n t e g e r > () ;
1086
1087 I n t e r f a c e f rame = new I n t e r f a c e () ;
1088 frame . s e t D e f a u l t C l o s e O p e r a t i o n (JFrame . DISPOSE_ON_CLOSE) ;
1089
1090 frame . c o n t e n t P a n e . s e t L a y o u t (n u l l) ;
1091
1092 frame . s e t L o c a t i o n B y P l a t f o r m (t rue) ;
1093 frame . s e t C o n t e n t P a n e (f rame . c o n t e n t P a n e) ;
1094 frame . g e t C o n t e n t P a n e () . add (f rame . MENUForm ()) ;
1095 frame . pack () ;
1096 frame . s e t V i s i b l e (t rue) ;
1097 System . o u t . p r i n t l n ("WELCOME TO RPN S i m u l a t o r ! \ n \ n ") ;
1098 }
1099 }

101

Appendix C

Simulator Operation Functions

1 import j a v a . i o . B u f f e r e d R e a d e r ;
2 import j a v a . i o . F i l e R e a d e r ;
3 import j a v a . i o . IOExcep t ion ;
4 import j a v a . u t i l . A r r a y L i s t ;
5 import j a v a . u t i l . Scanne r ;
6
7 import org . omg . Messaging . SyncScopeHelper ;
8
9 p u b l i c c l a s s mainbody {

10 s t a t i c Scanne r r e a d e r = new Scanne r (System . i n) ;
11
12 s t a t i c A r r a y L i s t < I n t e g e r > h i s t o r y ; // a list with the history

values of each
13 // transition
14 s t a t i c A r r a y L i s t < S t r i n g > t r a n s i t i o n s ; // a list with all the

transitions of
15 // RPN
16 s t a t i c A r r a y L i s t < S t r i n g > p l a c e s ; // a list with all the places

of RPN
17 s t a t i c A r r a y L i s t < S t r i n g > t o k e n s ; // a list with all the tokens

of RPN
18 s t a t i c A r r a y L i s t <Arc > a r c s ; // a list with all the directed

arcs of RPN
19 s t a t i c A r r a y L i s t < A r r a y L i s t < A r r a y L i s t < S t r i n g >>> Mo; // the

initial marking
20 // matrix of RPN
21 s t a t i c A r r a y L i s t < A r r a y L i s t < A r r a y L i s t < S t r i n g >>> M; // the

current marking
22 // matrix of RPN
23
24 s t a t i c A r r a y L i s t < A r r a y L i s t < A r r a y L i s t < S t r i n g >>> Dplus ; // the

matrix with the
25 // outgoing arcs of
26 // RPN
27 s t a t i c A r r a y L i s t < A r r a y L i s t < A r r a y L i s t < S t r i n g >>> Dmin ; // the

matrix with the

102

28 // incoming arcs of
29 // RPN
30 s t a t i c A r r a y L i s t < A r r a y L i s t < A r r a y L i s t < S t r i n g >>> Lplus ; // the

matrix which
31 // contains the
32 // tokens to be
33 // added to the
34 // marking
35 s t a t i c A r r a y L i s t < A r r a y L i s t < A r r a y L i s t < S t r i n g >>> Lmin ; // the

matrix which
36 // contains the
37 // tokens to be
38 // removed from the
39 // marking
40
41 s t a t i c A r r a y L i s t < S t r i n g > e f f e c t ; // the effect of the

transition we are
42 // executing
43
44 s t a t i c A r r a y L i s t < I n t e g e r > e x e c t r a n s ; // a list which contains

1 in the
45 // position of the transition we are
46 // executing
47
48 /**
49 * This method is aimed at finding the connected components of

a given token
50 * a in a specific place b.
51 *
52 * @param a
53 * the name of an element for which we want to find

its connected
54 * tokens
55 * @param place
56 * a list with the current marking in the place
57 * @param calcon
58 * a list which includes the tokens that have

already calculated
59 * @return a list which contains all the bases and bonds that

are directly
60 * and indirectly connected to the given token
61 */
62 p u b l i c s t a t i c A r r a y L i s t < S t r i n g > con (S t r i n g a , A r r a y L i s t < S t r i n g

> p l a c e , A r r a y L i s t < S t r i n g > c a l c o n) {
63 S t r i n g s ;
64 S t r i n g [] m a t r i x ;
65 A r r a y L i s t < S t r i n g > l i s t = new A r r a y L i s t < S t r i n g > () ;
66 m a t r i x = a . s p l i t ("−") ;
67 i f (m a t r i x . l e n g t h == 1) { // the given element is a base
68 f o r (i n t i = 0 ; i < p l a c e . s i z e () ; i ++) {

103

69 s = p l a c e . g e t (i) ; // takes the elements of the given
place

70 // one-by-one
71 m a t r i x = s . s p l i t ("−") ;
72 i f (m a t r i x . l e n g t h == 2) { // if the specific element is

a bond
73 // if the bond is between the given element and

another
74 // token then we are calling recursively the connected
75 // function on the other token
76 i f (m a t r i x [0] . e q u a l s (a)) {
77 c a l c o n . add (a) ;
78 i f (! c a l c o n . c o n t a i n s (m a t r i x [1])) {
79 l i s t . ad dA l l (con (m a t r i x [1] , p l a c e , c a l c o n)) ;
80 }
81 i f (! l i s t . c o n t a i n s (s)) {
82 l i s t . add (s) ;
83 }
84 } e l s e i f (m a t r i x [1] . e q u a l s (a)) {
85 c a l c o n . add (a) ;
86 i f (! c a l c o n . c o n t a i n s (m a t r i x [0])) {
87 l i s t . ad dA l l (con (m a t r i x [0] , p l a c e , c a l c o n)) ;
88 }
89 i f (! l i s t . c o n t a i n s (s)) {
90 l i s t . add (s) ;
91 }
92 }
93 // if the specific element is a base then it directly

added
94 // in the list
95 } e l s e i f (s . e q u a l s (a) && ! l i s t . c o n t a i n s (s)) {
96 l i s t . add (s) ;
97 c a l c o n . add (s) ;
98 }
99 }

100 }
101 re turn l i s t ;
102 }
103
104 /**
105 * This function finds the position of a specific element

inside a list.
106 *
107 * @param x
108 * the element we want to find
109 * @param list
110 * the list where we want to search for the specific

element
111 * @return the number in the list where the given element exist
112 */

104

113 p u b l i c s t a t i c i n t p o s i t i o n O f (S t r i n g x , A r r a y L i s t < S t r i n g > l i s t)
{

114 f o r (i n t i = 0 ; i < l i s t . s i z e () ; i ++) {
115 i f (l i s t . g e t (i) . e q u a l s (x))
116 re turn i ;
117 }
118 re turn −1;
119 }
120
121 /**
122 * This function calculates all the forward enabled transitions

of the
123 * model.
124 *
125 * @return a list with all the forward enabled transitions
126 */
127 p u b l i c s t a t i c A r r a y L i s t < S t r i n g > f e n a b l e d () {
128 boolean boo l = t rue ;
129 A r r a y L i s t < S t r i n g > f e n a b l e = new A r r a y L i s t < S t r i n g > () ;
130 S t r i n g [] s ;
131
132 f o r (i n t i = 0 ; i < t r a n s i t i o n s . s i z e () ; i ++) {
133 A r r a y L i s t < I n t e g e r > t o = new A r r a y L i s t < I n t e g e r > () ;
134 A r r a y L i s t < I n t e g e r > o t = new A r r a y L i s t < I n t e g e r > () ;
135 boo l = t rue ;
136 f o r (i n t j = 0 ; j < a r c s . s i z e () ; j ++) {
137 i f (a r c s . g e t (j) . t o . e q u a l s (t r a n s i t i o n s . g e t (i))) {
138 o t . add (p o s i t i o n O f (a r c s . g e t (j) . from , p l a c e s)) ;
139 f o r (i n t t = 0 ; t < a r c s . g e t (j) . w i th . s i z e () ; t ++) {
140 s = a r c s . g e t (j) . w i th . g e t (t) . s p l i t (" | ") ;
141 i f (s [0] . e q u a l s (" ! ")) {
142 i f (M. g e t (0) . g e t (p o s i t i o n O f (a r c s . g e t (j) . from , p l a c e s

))
143 . c o n t a i n s (a r c s . g e t (j) . w i th . g e t (t) . s u b s t r i n g (1))
144 | | M. g e t (0) . g e t (p o s i t i o n O f (a r c s . g e t (j) . from , p l a c e s)

)
145 . c o n t a i n s (r e v (a r c s . g e t (j) . w i th . g e t (t) . s u b s t r i n g (1)))

) {
146 boo l = f a l s e ;
147 break ;
148 }
149 } e l s e {
150 i f (!M. g e t (0) . g e t (p o s i t i o n O f (a r c s . g e t (j) . from ,

p l a c e s)) . c o n t a i n s (a r c s . g e t (j) . w i th . g e t (t))
151 && !M. g e t (0) . g e t (p o s i t i o n O f (a r c s . g e t (j) . from , p l a c e s

))
152 . c o n t a i n s (r e v (a r c s . g e t (j) . w i th . g e t (t)))) {
153 boo l = f a l s e ;
154 break ;
155 }

105

156 }
157 }
158 }
159 i f (a r c s . g e t (j) . from . e q u a l s (t r a n s i t i o n s . g e t (i))) {
160 i f (! t o . c o n t a i n s (j))
161 t o . add (j) ;
162 }
163 }
164 i f (t o . s i z e () > 1)
165 f o r (i n t m = 0 ; m < t o . s i z e () ; m++)
166 f o r (i n t n = m + 1 ; n < t o . s i z e () ; n ++)
167 f o r (i n t k = 0 ; k < o t . s i z e () ; k ++) {
168 f o r (i n t lm = 0 ; lm < a r c s . g e t (t o . g e t (m)) . w i th . s i z e

() ; lm ++) {
169 A r r a y L i s t < S t r i n g > c a l c o n = new A r r a y L i s t < S t r i n g > ()

;
170 A r r a y L i s t < S t r i n g > temp = con (a r c s . g e t (t o . g e t (m)) .

w i th . g e t (lm) , M. g e t (0) . g e t (o t . g e t (k)) ,
171 c a l c o n) ;
172 f o r (i n t l n = 0 ; l n < a r c s . g e t (t o . g e t (n)) . w i th .

s i z e () ; l n ++) {
173 i f (temp . c o n t a i n s (a r c s . g e t (t o . g e t (n)) . w i th . g e t (

l n))
174 | | temp . c o n t a i n s (r e v (a r c s . g e t (t o . g e t (n)) . w i th .

g e t (l n)))) {
175 boo l = f a l s e ;
176 break ;
177 }
178 }
179 }
180 }
181
182 f o r (i n t n = 0 ; n < t o . s i z e () ; n ++)
183 f o r (i n t k = 0 ; k < o t . s i z e () ; k ++) {
184 f o r (i n t w = 0 ; w < a r c s . g e t (t o . g e t (n)) . w i th . s i z e () ; w

++) {
185 Arc check = new Arc (p l a c e s . g e t (o t . g e t (k)) , t r a n s i t i o n s

. g e t (i) , a r c s . g e t (t o . g e t (n)) . w i th . g e t (w)) ;
186
187 i f (M. g e t (0) . g e t (o t . g e t (k)) . c o n t a i n s (a r c s . g e t (t o . g e t (n

)) . w i th . g e t (w))
188 | | M. g e t (0) . g e t (o t . g e t (k)) . c o n t a i n s (r e v (a r c s . g e t (t o .

g e t (n)) . w i th . g e t (w))))
189 i f (! check . i n c l u d e d I n (a r c s)) {
190 boo l = f a l s e ;
191 break ;
192 }
193 }
194 }
195

106

196 i f (boo l)
197 f e n a b l e . add (t r a n s i t i o n s . g e t (i)) ;
198 }
199 re turn f e n a b l e ;
200 }
201
202 /**
203 * This function calculates all the backtracking enabled

transitions of the
204 * model.
205 *
206 * @return a list with all the backtracking enabled transitions
207 */
208 p u b l i c s t a t i c A r r a y L i s t < S t r i n g > b e n a b l e d () {
209 A r r a y L i s t < S t r i n g > b e n a b l e d = new A r r a y L i s t < S t r i n g > () ;
210
211 i n t max = maxHis to ry () ;
212
213 f o r (i n t i = 0 ; i < t r a n s i t i o n s . s i z e () ; i ++) {
214 i f (! h i s t o r y . g e t (i) . e q u a l s (0) && (max == i)) {
215 b e n a b l e d . add (t r a n s i t i o n s . g e t (i)) ;
216 }
217 }
218
219 re turn b e n a b l e d ;
220 }
221
222 /**
223 * This function calculates all the causal enabled transitions

of the model.
224 *
225 * @return a list with all the causal enabled transitions
226 */
227 p u b l i c s t a t i c A r r a y L i s t < S t r i n g > c o e n a b l e d () {
228 A r r a y L i s t < S t r i n g > c o e n a b l e d = new A r r a y L i s t < S t r i n g > () ;
229 boolean e n a b l e d = t rue ;
230 f o r (i n t i = 0 ; i < t r a n s i t i o n s . s i z e () ; i ++) {
231 e n a b l e d = t rue ;
232 i f (! h i s t o r y . g e t (i) . e q u a l s (0)) {
233 f o r (i n t f = 0 ; f < a r c s . s i z e () ; f ++) {
234 i f (a r c s . g e t (f) . from . e q u a l s (t r a n s i t i o n s . g e t (i))
235 && !M. g e t (0) . g e t (p o s i t i o n O f (a r c s . g e t (f) . to , p l a c e s))

. c o n t a i n s A l l (a r c s . g e t (f) . w i th)) {
236 e n a b l e d = f a l s e ;
237 }
238 }
239 i f (e n a b l e d)
240 c o e n a b l e d . add (t r a n s i t i o n s . g e t (i)) ;
241 }
242 }

107

243
244 re turn c o e n a b l e d ;
245 }
246
247 /**
248 * This function reverse the tokens of a bond (e.g. if we have

the bond a-b
249 * it returns the bond b-a)
250 *
251 * @param s
252 * the bond we want to reverse
253 * @return the reversing bond
254 */
255 p u b l i c s t a t i c S t r i n g r e v (S t r i n g s) {
256 S t r i n g newS = s ;
257 S t r i n g [] sp = s . s p l i t ("−") ;
258 i f (sp . l e n g t h > 1) {
259 newS = sp [1] + "−" + sp [0] ;
260 }
261 re turn newS ;
262 }
263
264 /**
265 * This function calculates all the out-of-causal-order enabled

transitions
266 * of the model.
267 *
268 * @return a list with all the out-of-causal-order enabled

transitions
269 */
270 p u b l i c s t a t i c A r r a y L i s t < S t r i n g > o e n a b l e d () {
271 A r r a y L i s t < S t r i n g > o e n a b l e = new A r r a y L i s t < S t r i n g > () ;
272 f o r (i n t i = 0 ; i < t r a n s i t i o n s . s i z e () ; i ++) {
273 i f (! h i s t o r y . g e t (i) . e q u a l s (0)) {
274 o e n a b l e . add (t r a n s i t i o n s . g e t (i)) ;
275 }
276 }
277 re turn o e n a b l e ;
278 }
279
280 /**
281 * This function reads the RPN information given by a user or

from a file.
282 *
283 * @param filename
284 * @throws IOException
285 */
286 p u b l i c s t a t i c vo id i n t r o (S t r i n g f i l e n a m e) throws IOExcep t i on {
287 B u f f e r e d R e a d e r f i l e r e a d e r = n u l l ;
288 boolean u s e r e a d e r = f a l s e ;

108

289 i f (f i l e n a m e . e q u a l s (" ")) {
290 u s e r e a d e r = t rue ;
291 } e l s e {
292 f i l e r e a d e r = new B u f f e r e d R e a d e r (new F i l e R e a d e r (f i l e n a m e)) ;
293 }
294
295 S t r i n g [] s , e , f i n ;
296
297 i f (u s e r e a d e r) {
298 System . o u t . p r i n t l n ("− E n t e r P e t r i Net ’ s t o k e n s (s e p a r a t e d

by a comma) : ") ;
299 s = r e a d e r . n e x t () . s p l i t (" , ") ;
300 } e l s e
301 s = f i l e r e a d e r . r e a d L i n e () . s p l i t (" , ") ;
302
303 f o r (i n t i = 0 ; i < s . l e n g t h ; i ++) {
304 t o k e n s . add (s [i]) ;
305 }
306
307 i f (u s e r e a d e r) {
308 System . o u t . p r i n t l n ("− E n t e r P e t r i Net ’ s p l a c e s (s e p a r a t e d

by a comma) : ") ;
309 s = r e a d e r . n e x t () . s p l i t (" , ") ;
310 } e l s e
311 s = f i l e r e a d e r . r e a d L i n e () . s p l i t (" , ") ;
312
313 f o r (i n t i = 0 ; i < s . l e n g t h ; i ++) {
314 p l a c e s . add (s [i]) ;
315 }
316
317 i f (u s e r e a d e r) {
318 System . o u t . p r i n t l n ("− E n t e r P e t r i Net ’ s t r a n s i t i o n s (

s e p a r a t e d by a comma) : ") ;
319 s = r e a d e r . n e x t () . s p l i t (" , ") ;
320 } e l s e
321 s = f i l e r e a d e r . r e a d L i n e () . s p l i t (" , ") ;
322
323 f o r (i n t i = 0 ; i < s . l e n g t h ; i ++) {
324 t r a n s i t i o n s . add (s [i]) ;
325 }
326
327 i f (u s e r e a d e r) {
328 System . o u t . p r i n t l n ("− E n t e r P e t r i Net ’ s d i r e c t e d a r c s (

s e p a r a t e d by comma) − ex . F (p , t) =a−b : ") ;
329 s = r e a d e r . n e x t () . s p l i t (" , F") ;
330 } e l s e
331 s = f i l e r e a d e r . r e a d L i n e () . s p l i t (" , F") ;
332
333 f o r (i n t i = 0 ; i < s . l e n g t h ; i ++) {
334 i f (i == 0) {

109

335 s [i] = s [i] . s u b s t r i n g (1) ;
336 }
337 e = s [i] . s p l i t ("=") ;
338 f i n = e [0] . s u b s t r i n g (1 , e [0] . l e n g t h () − 1) . s p l i t (" , ") ;
339 a r c s . add (new Arc (f i n [0] , f i n [1] , e [1])) ;
340 }
341
342 i f (u s e r e a d e r)
343 System . o u t . p r i n t l n ("− E n t e r P e t r i Net ’ s i n i t i a l marking : "

) ;
344
345 Mo. add (new A r r a y L i s t < A r r a y L i s t < S t r i n g > >()) ;
346 f o r (i n t i = 0 ; i < p l a c e s . s i z e () ; i ++) {
347 Mo. g e t (0) . add (new A r r a y L i s t < S t r i n g > ()) ;
348
349 i f (u s e r e a d e r) {
350 System . o u t . p r i n t (" −−> Tokens a t p l a c e " + p l a c e s . g e t (i

) + " : ") ;
351 s = r e a d e r . n e x t () . s p l i t (" , ") ;
352 } e l s e
353 s = f i l e r e a d e r . r e a d L i n e () . s p l i t (" , ") ;
354
355 f o r (i n t j = 0 ; j < s . l e n g t h ; j ++) {
356 i f (! s [j] . e q u a l s (" 0 "))
357 Mo. g e t (0) . g e t (i) . add (s [j]) ;
358 }
359 }
360 i f (! u s e r e a d e r)
361 f i l e r e a d e r . c l o s e () ;
362 }
363
364 /**
365 * This method calculates the new table created by the addition

of the two
366 * matrices
367 *
368 * @param A
369 * the first matrix which contains sets of tokens

and bonds in
370 * each position
371 * @param B
372 * the second matrix which contains sets of tokens

and bonds in
373 * each position
374 * @return the matrix which contains the addition of the two

matrices
375 */
376 p u b l i c s t a t i c A r r a y L i s t < A r r a y L i s t < A r r a y L i s t < S t r i n g >>>

addMat r ix (A r r a y L i s t < A r r a y L i s t < A r r a y L i s t < S t r i n g >>> A,
377 A r r a y L i s t < A r r a y L i s t < A r r a y L i s t < S t r i n g >>> B) {

110

378 A r r a y L i s t < A r r a y L i s t < A r r a y L i s t < S t r i n g >>> C = new A r r a y L i s t <
A r r a y L i s t < A r r a y L i s t < S t r i n g > > >() ;

379
380 C . ad dAl l (A) ;
381 f o r (i n t i = 0 ; i < B . s i z e () ; i ++) {
382 f o r (i n t j = 0 ; j < B . g e t (i) . s i z e () ; j ++) {
383 f o r (i n t k = 0 ; k < B . g e t (i) . g e t (j) . s i z e () ; k ++) {
384 i f (! C . g e t (i) . g e t (j) . c o n t a i n s (B . g e t (i) . g e t (j) . g e t (k)))
385 C . g e t (i) . g e t (j) . add (B . g e t (i) . g e t (j) . g e t (k)) ;
386 }
387 }
388 }
389 re turn C ;
390 }
391
392 /**
393 * This method calculates the new table created by the

subtraction of the
394 * two matrices
395 *
396 * @param A
397 * the first matrix which contains sets of tokens

and bonds in
398 * each position
399 * @param B
400 * the second matrix which contains sets of tokens

and bonds in
401 * each position
402 * @return the matrix which contains the subtraction of the two

matrices
403 */
404 p u b l i c s t a t i c A r r a y L i s t < A r r a y L i s t < A r r a y L i s t < S t r i n g >>>

s u b M a t r i x (A r r a y L i s t < A r r a y L i s t < A r r a y L i s t < S t r i n g >>> A,
405 A r r a y L i s t < A r r a y L i s t < A r r a y L i s t < S t r i n g >>> B) {
406 A r r a y L i s t < A r r a y L i s t < A r r a y L i s t < S t r i n g >>> C = new A r r a y L i s t <

A r r a y L i s t < A r r a y L i s t < S t r i n g > > >() ;
407
408 C . ad dAl l (A) ;
409 f o r (i n t i = 0 ; i < B . s i z e () ; i ++) {
410 f o r (i n t j = 0 ; j < B . g e t (i) . s i z e () ; j ++) {
411 f o r (i n t k = 0 ; k < B . g e t (i) . g e t (j) . s i z e () ; k ++) {
412 C . g e t (i) . g e t (j) . remove (B . g e t (i) . g e t (j) . g e t (k)) ;
413 }
414 }
415 }
416 re turn C ;
417 }
418
419 /**
420 * This function finds the place of the RPN that contains the

111

specific
421 * bases.
422 *
423 * @param s
424 * the name of the base we want to check for
425 * @return the place on the marking which contain the given

base
426 */
427 p u b l i c s t a t i c i n t p l a c e o f (S t r i n g s) {
428 f o r (i n t i = 0 ; i < M. g e t (0) . s i z e () ; i ++) {
429 i f (M. g e t (0) . g e t (i) . c o n t a i n s (s))
430 re turn i ;
431 }
432 re turn −1;
433 }
434
435 /**
436 * This method calculates the new table created by the

multiplication of the
437 * two matrices
438 *
439 * @param A
440 * the first matrix which contains 0s and 1s in each

position
441 * @param B
442 * the second matrix which contains sets of tokens

and bonds in
443 * each position
444 * @return the matrix which contains the multiplication of the

two matrices
445 */
446 p u b l i c s t a t i c A r r a y L i s t < A r r a y L i s t < A r r a y L i s t < S t r i n g >>>

mulMatr ix (A r r a y L i s t < I n t e g e r > A,
447 A r r a y L i s t < A r r a y L i s t < A r r a y L i s t < S t r i n g >>> B) {
448 A r r a y L i s t < A r r a y L i s t < A r r a y L i s t < S t r i n g >>> C = new A r r a y L i s t <

A r r a y L i s t < A r r a y L i s t < S t r i n g > > >() ;
449
450 C . add (new A r r a y L i s t < A r r a y L i s t < S t r i n g > >()) ;
451 f o r (i n t k = 0 ; k < B . g e t (0) . s i z e () ; k ++) {
452 C . g e t (0) . add (new A r r a y L i s t < S t r i n g > ()) ;
453 f o r (i n t j = 0 ; j < A. s i z e () ; j ++) {
454 i f (A. g e t (j) . e q u a l s (1)) {
455 C . g e t (0) . g e t (k) . ad dA l l (B . g e t (j) . g e t (k)) ;
456 }
457 }
458 }
459 re turn C ;
460 }
461
462 /**

112

463 * This function calculates the matrices which contains the
information of

464 * the incoming and outgoing arcs of the RPN model
465 */
466 p u b l i c s t a t i c vo id c a l c D m a t r i c e s () {
467 f o r (i n t i = 0 ; i < t r a n s i t i o n s . s i z e () ; i ++) {
468 Dplus . add (new A r r a y L i s t < A r r a y L i s t < S t r i n g > >()) ;
469 Dmin . add (new A r r a y L i s t < A r r a y L i s t < S t r i n g > >()) ;
470 f o r (i n t j = 0 ; j < p l a c e s . s i z e () ; j ++) {
471 Dplus . g e t (i) . add (new A r r a y L i s t < S t r i n g > ()) ;
472 Dmin . g e t (i) . add (new A r r a y L i s t < S t r i n g > ()) ;
473 }
474 }
475
476 f o r (i n t a = 0 ; a < a r c s . s i z e () ; a ++) {
477 i f (t r a n s i t i o n s . c o n t a i n s (a r c s . g e t (a) . from)
478 && p l a c e s . c o n t a i n s (a r c s . g e t (a) . t o))
479 Dplus . g e t (t r a n s i t i o n s . indexOf (a r c s . g e t (a) . from)) . g e t (

p l a c e s . indexOf (a r c s . g e t (a) . t o))
480 . ad dAl l (a r c s . g e t (a) . w i th) ;
481 e l s e i f (p l a c e s . c o n t a i n s (a r c s . g e t (a) . from)
482 && t r a n s i t i o n s . c o n t a i n s (a r c s . g e t (a) . t o))
483 Dmin . g e t (t r a n s i t i o n s . indexOf (a r c s . g e t (a) . t o)) . g e t (p l a c e s

. indexOf (a r c s . g e t (a) . from))
484 . ad dAl l (a r c s . g e t (a) . w i th) ;
485 }
486 }
487
488 /**
489 * This function is aimed at finding the connected components

of each token
490 * that exist in a given matrix.
491 *
492 * @param matrix
493 * the list that will be used for the process of

function
494 * @param eff
495 * an integer which takes values -1 or 1 based on if

we want to
496 * remove the effect of the executed transition or

not
497 * @return
498 */
499 p u b l i c s t a t i c A r r a y L i s t < A r r a y L i s t < A r r a y L i s t < S t r i n g >>>

conMat r ix (A r r a y L i s t < A r r a y L i s t < A r r a y L i s t < S t r i n g >>> mat r i x ,
500 i n t e f f) {
501
502 A r r a y L i s t < A r r a y L i s t < A r r a y L i s t < S t r i n g >>> c m a t r i x = new

A r r a y L i s t < A r r a y L i s t < A r r a y L i s t < S t r i n g > > >() ;
503 A r r a y L i s t < S t r i n g > m a r k i n g p l a c e = new A r r a y L i s t < S t r i n g > () ;

113

504 i n t p = −1;
505 f o r (i n t i = 0 ; i < m a t r i x . s i z e () ; i ++) {
506 c m a t r i x . add (new A r r a y L i s t < A r r a y L i s t < S t r i n g > >()) ;
507 f o r (i n t j = 0 ; j < m a t r i x . g e t (0) . s i z e () ; j ++) {
508 c m a t r i x . g e t (i) . add (new A r r a y L i s t < S t r i n g > ()) ;
509 f o r (i n t k = 0 ; k < m a t r i x . g e t (i) . g e t (j) . s i z e () ; k ++) {
510 i f (! c m a t r i x . g e t (i) . g e t (j) . c o n t a i n s (m a t r i x . g e t (i) . g e t (

j) . g e t (k))
511 && t o k e n s . c o n t a i n s (m a t r i x . g e t (i) . g e t (j) . g e t (k))) {
512 p = p l a c e o f (m a t r i x . g e t (i) . g e t (j) . g e t (k)) ;
513 m a r k i n g p l a c e . c l e a r () ;
514 m a r k i n g p l a c e . ad dA l l (M. g e t (0) . g e t (p)) ;
515
516 i f (e f f == −1) {
517 m a r k i n g p l a c e . removeAl l (e f f e c t) ;
518 }
519 c m a t r i x . g e t (i) . g e t (j)
520 . ad dAl l (con (m a t r i x . g e t (i) . g e t (j) . g e t (k) ,

ma rk in g p l ac e , new A r r a y L i s t < S t r i n g > ())) ;
521 }
522 }
523 }
524 }
525 re turn c m a t r i x ;
526 }
527
528 /**
529 * This function was created for the forward execution of a

transition of a
530 * RPN model. The function proceeds based on matrix equations.
531 */
532 p u b l i c s t a t i c vo id ForwardExec () {
533 A r r a y L i s t < A r r a y L i s t < A r r a y L i s t < S t r i n g >>> t d p = mulMatr ix (

e x e c t r a n s , Dplus) ;
534 A r r a y L i s t < A r r a y L i s t < A r r a y L i s t < S t r i n g >>> tdm = mulMatr ix (

e x e c t r a n s , Dmin) ;
535 A r r a y L i s t < A r r a y L i s t < A r r a y L i s t < S t r i n g >>> cdp = conMat r ix (tdp ,

1) ;
536 A r r a y L i s t < A r r a y L i s t < A r r a y L i s t < S t r i n g >>> cdm = conMat r ix (tdm ,

1) ;
537 A r r a y L i s t < A r r a y L i s t < A r r a y L i s t < S t r i n g >>> mcp = addMat r ix (M,

cdp) ;
538 A r r a y L i s t < A r r a y L i s t < A r r a y L i s t < S t r i n g >>> mp = addMat r ix (mcp ,

t d p) ;
539 M = s u b M a t r i x (mp , cdm) ;
540
541 i n t max = maxHis to ry () ;
542 f o r (i n t h = 0 ; h < h i s t o r y . s i z e () ; h ++) {
543 h i s t o r y . s e t (h , (h i s t o r y . g e t (h) + (h i s t o r y . g e t (max) + 1) ∗

e x e c t r a n s . g e t (h))) ;

114

544 }
545 }
546
547 /**
548 * This function was created for the backtracking execution of

a transition
549 * of a RPN model. The function proceeds based on matrix

equations.
550 */
551 p u b l i c s t a t i c vo id B a c k t r a c k i n g () {
552 A r r a y L i s t < A r r a y L i s t < A r r a y L i s t < S t r i n g >>> t d p = mulMatr ix (

e x e c t r a n s , Dplus) ;
553 A r r a y L i s t < A r r a y L i s t < A r r a y L i s t < S t r i n g >>> tdm = mulMatr ix (

e x e c t r a n s , Dmin) ;
554 A r r a y L i s t < A r r a y L i s t < A r r a y L i s t < S t r i n g >>> cdp = conMat r ix (tdp ,

1) ;
555 A r r a y L i s t < A r r a y L i s t < A r r a y L i s t < S t r i n g >>> cdm = conMat r ix (tdm ,

−1) ;
556 A r r a y L i s t < A r r a y L i s t < A r r a y L i s t < S t r i n g >>> mm = addMat r ix (M,

cdm) ;
557 M = s u b M a t r i x (mm, cdp) ;
558
559 i n t r = e x e c t r a n s . indexOf (1) ;
560 f o r (i n t h = 0 ; h < h i s t o r y . s i z e () ; h ++) {
561 h i s t o r y . s e t (h , (h i s t o r y . g e t (h) − h i s t o r y . g e t (r) ∗

e x e c t r a n s . g e t (h))) ;
562 }
563 }
564
565 /**
566 * This function finds and returns the maximum value in the

history matrix
567 *
568 * @return maximum value in history
569 */
570 p u b l i c s t a t i c i n t maxHis to ry () {
571 i n t max = −1;
572 i n t vmax = −1;
573 f o r (i n t i = 0 ; i < h i s t o r y . s i z e () ; i ++) {
574 i f (h i s t o r y . g e t (i) > vmax) {
575 max = i ;
576 vmax = h i s t o r y . g e t (i) ;
577 }
578 }
579 re turn max ;
580 }
581
582 /**
583 * This function aims to find the last transition of the model

that has been

115

584 * executed, and contains the given set of tokens C on its
outgoing arc.

585 *
586 * @param C
587 * a set of tokens
588 * @return the position of the last transition of the set
589 */
590 p u b l i c s t a t i c i n t l a s t (A r r a y L i s t < S t r i n g > C) {
591 i n t l a s t = −1;
592 i n t h l a s t = −1;
593 f o r (i n t t = 0 ; t < t r a n s i t i o n s . s i z e () ; t ++) {
594 f o r (i n t a = 0 ; a < a r c s . s i z e () ; a ++) {
595 i f (! h i s t o r y . g e t (t) . e q u a l s (0) && a r c s . g e t (a) . from . e q u a l s

(t r a n s i t i o n s . g e t (t))) {
596 f o r (i n t c = 0 ; c < C . s i z e () ; c ++) {
597 i f (a r c s . g e t (a) . w i th . c o n t a i n s (C . g e t (c)) && (h i s t o r y .

g e t (t) > h l a s t)) {
598 l a s t = t ;
599 h l a s t = h i s t o r y . g e t (t) ;
600 }
601 }
602 }
603 }
604 }
605 re turn l a s t ;
606 }
607
608 /**
609 * This function puts values in the public lists of the program

, Lplus and
610 * Lmin.
611 */
612 p u b l i c s t a t i c vo id c a l c L m a t r i c e s () {
613 A r r a y L i s t < S t r i n g > conn = new A r r a y L i s t < S t r i n g > () ;
614 A r r a y L i s t < S t r i n g > m a r k i n g p l a c e = new A r r a y L i s t < S t r i n g > () ;
615
616 i n t p t = −1;
617 i n t l a s t t ;
618 Lp lus . add (new A r r a y L i s t < A r r a y L i s t < S t r i n g > >()) ;
619 Lmin . add (new A r r a y L i s t < A r r a y L i s t < S t r i n g > >()) ;
620 f o r (i n t p = 0 ; p < p l a c e s . s i z e () ; p ++) {
621 Lplus . g e t (0) . add (new A r r a y L i s t < S t r i n g > ()) ;
622 Lmin . g e t (0) . add (new A r r a y L i s t < S t r i n g > ()) ;
623 f o r (i n t t = 0 ; t < t o k e n s . s i z e () ; t ++) {
624 p t = p l a c e o f (t o k e n s . g e t (t)) ;
625
626 m a r k i n g p l a c e . c l e a r () ;
627 m a r k i n g p l a c e . ad dA l l (M. g e t (0) . g e t (p t)) ;
628 m a r k i n g p l a c e . removeAl l (e f f e c t) ;
629

116

630 conn = con (t o k e n s . g e t (t) , ma rk in gp l a ce , new A r r a y L i s t <
S t r i n g > ()) ;

631 l a s t t = l a s t (conn) ;
632
633 i f (l a s t t > −1) {
634 f o r (i n t a = 0 ; a < a r c s . s i z e () ; a ++) {
635 i f (a r c s . g e t (a) . from . e q u a l s (t r a n s i t i o n s . g e t (l a s t t))

&& a r c s . g e t (a) . t o . e q u a l s (p l a c e s . g e t (p))) {
636 f o r (i n t c = 0 ; c < conn . s i z e () ; c ++) {
637 i f (a r c s . g e t (a) . w i th . c o n t a i n s (conn . g e t (c))
638 && ! Lplus . g e t (0) . g e t (p) . c o n t a i n s (t o k e n s . g e t (t)

)) {
639 Lplus . g e t (0) . g e t (p) . add (t o k e n s . g e t (t)) ;
640 }
641 }
642 }
643 }
644 } e l s e i f (l a s t t == −1) {
645 i f (Mo. g e t (0) . g e t (p) . c o n t a i n s A l l (conn)) {
646 Lplus . g e t (0) . g e t (p) . add (t o k e n s . g e t (t)) ;
647 }
648 }
649 i f (p t == p) {
650 f o r (i n t a = 0 ; a < a r c s . s i z e () ; a ++) {
651 i f (! Lmin . g e t (0) . g e t (p) . c o n t a i n s (t o k e n s . g e t (t)) &&

a r c s . g e t (a) . t o . e q u a l s (p l a c e s . g e t (p))
652 && (t r a n s i t i o n s . indexOf (a r c s . g e t (a) . from) != l a s t t

)) {
653 Lmin . g e t (0) . g e t (p) . add (t o k e n s . g e t (t)) ;
654 }
655 }
656 }
657 }
658 }
659 }
660
661 /**
662 * This function was created for the out-of-causal-order

execution of a
663 * transition of a RPN model. The function proceeds based on

matrix
664 * equations.
665 */
666 p u b l i c s t a t i c vo id OutOfCausalExec () {
667 // change history
668 i n t r = e x e c t r a n s . indexOf (1) ;
669 f o r (i n t h = 0 ; h < h i s t o r y . s i z e () ; h ++) {
670 h i s t o r y . s e t (h , (h i s t o r y . g e t (h) − h i s t o r y . g e t (r) ∗

e x e c t r a n s . g e t (h))) ;
671 }

117

672
673 Lplus = new A r r a y L i s t < A r r a y L i s t < A r r a y L i s t < S t r i n g > > >() ;
674 Lmin = new A r r a y L i s t < A r r a y L i s t < A r r a y L i s t < S t r i n g > > >() ;
675 c a l c L m a t r i c e s () ;
676
677 // Marking
678 A r r a y L i s t < A r r a y L i s t < A r r a y L i s t < S t r i n g >>> c l p = conMat r ix (

Lplus , −1) ;
679 A r r a y L i s t < A r r a y L i s t < A r r a y L i s t < S t r i n g >>> clm = conMat r ix (Lmin

, −1) ;
680
681 A r r a y L i s t < A r r a y L i s t < A r r a y L i s t < S t r i n g >>> E = new A r r a y L i s t <

A r r a y L i s t < A r r a y L i s t < S t r i n g > > >() ;
682 E . ad dAl l (M) ;
683 f o r (i n t e = 0 ; e < p l a c e s . s i z e () ; e ++) {
684 E . g e t (0) . g e t (e) . removeAl l (e f f e c t) ;
685 }
686 A r r a y L i s t < A r r a y L i s t < A r r a y L i s t < S t r i n g >>> lm = s u b M a t r i x (E ,

clm) ;
687 M = addMat r ix (lm , c l p) ;
688 }
689
690 p u b l i c s t a t i c vo id main (S t r i n g [] a r g s) throws IOExcep t i on {
691 // TODO Auto-generated method stub
692
693 h i s t o r y = new A r r a y L i s t < I n t e g e r > () ;
694 t o k e n s = new A r r a y L i s t < S t r i n g > () ;
695 p l a c e s = new A r r a y L i s t < S t r i n g > () ;
696 t r a n s i t i o n s = new A r r a y L i s t < S t r i n g > () ;
697 a r c s = new A r r a y L i s t <Arc > () ;
698 Mo = new A r r a y L i s t < A r r a y L i s t < A r r a y L i s t < S t r i n g > > >() ;
699 M = new A r r a y L i s t < A r r a y L i s t < A r r a y L i s t < S t r i n g > > >() ;
700 Dplus = new A r r a y L i s t < A r r a y L i s t < A r r a y L i s t < S t r i n g > > >() ;
701 Dmin = new A r r a y L i s t < A r r a y L i s t < A r r a y L i s t < S t r i n g > > >() ;
702
703 e x e c t r a n s = new A r r a y L i s t < I n t e g e r > () ;
704
705 S t r i n g f i l e = " " ;
706
707 System . o u t . p r i n t l n (" P l e a s e choose : \ nA . Read from User \ nB .

Read from f i l e ") ;
708 S t r i n g r = r e a d e r . n e x t () ;
709 i f (r . e q u a l s ("B")) {
710 System . o u t . p r i n t (" P l e a s e g i v e t h e name of t h e f i l e : ") ;
711 f i l e = r e a d e r . n e x t () ;
712 }
713 i n t r o (f i l e) ;
714
715 M. add (new A r r a y L i s t < A r r a y L i s t < S t r i n g > >()) ;
716 f o r (i n t m1 = 0 ; m1 < Mo. g e t (0) . s i z e () ; m1++) {

118

717 M. g e t (0) . add (new A r r a y L i s t < S t r i n g > ()) ;
718 f o r (i n t m2 = 0 ; m2 < Mo. g e t (0) . g e t (m1) . s i z e () ; m2++) {
719 M. g e t (0) . g e t (m1) . add (Mo. g e t (0) . g e t (m1) . g e t (m2)) ;
720 }
721 }
722
723 // initialise executed transition matrix
724 f o r (i n t p = 0 ; p < t r a n s i t i o n s . s i z e () ; p ++) {
725 e x e c t r a n s . add (0) ;
726 }
727
728 System . o u t . p r i n t l n (" Tokens = " + t o k e n s) ;
729 System . o u t . p r i n t l n (" P l a c e s = " + p l a c e s) ;
730 System . o u t . p r i n t l n (" T r a n s i t i o n s = " + t r a n s i t i o n s) ;
731 System . o u t . p r i n t l n (" Arcs = " + a r c s) ;
732 System . o u t . p r i n t l n (" I n i t i a l Marking = " + Mo) ;
733 System . o u t . p r i n t l n () ;
734
735 c a l c D m a t r i c e s () ;
736
737 /**********************************
738 * REPEATED PART STARTS HERE
739 ***/
740
741 // initialise the history matrix
742 f o r (i n t t = 0 ; t < t r a n s i t i o n s . s i z e () ; t ++) {
743 h i s t o r y . add (0) ;
744 }
745
746 whi le (t rue) {
747
748 A r r a y L i s t < S t r i n g > f e n a b l e d = new A r r a y L i s t < S t r i n g > () ;
749 f e n a b l e d . ad dAl l (f e n a b l e d ()) ;
750 A r r a y L i s t < S t r i n g > b e n a b l e d = new A r r a y L i s t < S t r i n g > () ;
751 b e n a b l e d . ad dAl l (b e n a b l e d ()) ;
752 A r r a y L i s t < S t r i n g > c o e n a b l e d = new A r r a y L i s t < S t r i n g > () ;
753 c o e n a b l e d . ad dA l l (c o e n a b l e d ()) ;
754 A r r a y L i s t < S t r i n g > o e n a b l e d = new A r r a y L i s t < S t r i n g > () ;
755 o e n a b l e d . ad dAl l (o e n a b l e d ()) ;
756
757 i f (f e n a b l e d . i sEmpty () && b e n a b l e d . i sEmpty () && c o e n a b l e d .

i sEmpty () && o e n a b l e d . i sEmpty ()) {
758 System . o u t . p r i n t l n ("No more e n a b l e t r a n s i t i o n s ! ") ;
759 break ;
760 }
761
762 S t r i n g s = " " ;
763 S t r i n g t r a n = " " ;
764
765 do {

119

766 System . o u t . p r i n t l n (" \ nChoose which t r a n s i t i o n you want
t o e x e c u t e from t h e l i s t s below : ") ;

767 System . o u t . p r i n t l n ("− f o r w a r d e n a b l e d : " + f e n a b l e d) ;
768 System . o u t . p r i n t l n ("− b a c k t r a c k i n g e n a b l e d : " +

b e n a b l e d) ;
769 System . o u t . p r i n t l n ("− c a u s a l e n a b l e d : " + c o e n a b l e d) ;
770 System . o u t . p r i n t l n ("− out−of−c a u s a l e n a b l e d : " +

o e n a b l e d) ;
771 System . o u t . p r i n t (" \ n−> ") ;
772 s = r e a d e r . n e x t () ;
773 t r a n = r e a d e r . n e x t () ;
774 } whi le (! t r a n s i t i o n s . c o n t a i n s (s) && ! f e n a b l e d . c o n t a i n s (s)

&& ! b e n a b l e d . c o n t a i n s (s)
775 && ! c o e n a b l e d . c o n t a i n s (s) && ! o e n a b l e d . c o n t a i n s (s)) ;
776
777 f o r (i n t t = 0 ; t < t r a n s i t i o n s . s i z e () ; t ++) {
778 i f (t == t r a n s i t i o n s . indexOf (s)) {
779 i f (e x e c t r a n s . g e t (t) . e q u a l s (0))
780 e x e c t r a n s . s e t (t , 1) ;
781 } e l s e
782 e x e c t r a n s . s e t (t , 0) ;
783 }
784
785 // calculate the effect of transition s (assume that only

one
786 // transition is executed)
787 A r r a y L i s t < A r r a y L i s t < A r r a y L i s t < S t r i n g >>> tempDP = mulMatr ix

(e x e c t r a n s , Dplus) ;
788 A r r a y L i s t < A r r a y L i s t < A r r a y L i s t < S t r i n g >>> tempDM = mulMatr ix

(e x e c t r a n s , Dmin) ;
789 e f f e c t = new A r r a y L i s t < S t r i n g > () ;
790 f o r (i n t i = 0 ; i < tempDP . s i z e () ; i ++) {
791 f o r (i n t j = 0 ; j < tempDP . g e t (0) . s i z e () ; j ++)
792 e f f e c t . ad dA l l (tempDP . g e t (i) . g e t (j)) ;
793 }
794 f o r (i n t i = 0 ; i < tempDM . s i z e () ; i ++) {
795 f o r (i n t j = 0 ; j < tempDM . g e t (0) . s i z e () ; j ++)
796 e f f e c t . removeAl l (tempDM . g e t (i) . g e t (j)) ;
797 }
798
799 i f (f e n a b l e d . c o n t a i n s (s) && t r a n . e q u a l s (" f ")) {
800 ForwardExec () ;
801 } e l s e i f (b e n a b l e d . c o n t a i n s (s) && t r a n . e q u a l s (" b ")) {
802 B a c k t r a c k i n g () ;
803 } e l s e i f (c o e n a b l e d . c o n t a i n s (s) && t r a n . e q u a l s (" c ")) {
804 B a c k t r a c k i n g () ;
805 } e l s e i f (o e n a b l e d . c o n t a i n s (s) && t r a n . e q u a l s (" o ")) {
806 OutOfCausalExec () ;
807 }
808

120

809 System . o u t . p r i n t l n ("H = " + h i s t o r y) ;
810
811 System . o u t . p r i n t l n (" The new marking of t h e P e t r i Net i s : "

) ;
812 System . o u t . p r i n t l n (M. g e t (0)) ;
813
814 System . o u t . p r i n t l n (" C o n t i n u e ? (y o r n) ") ;
815 System . o u t . p r i n t ("−> ") ;
816 s = r e a d e r . n e x t () ;
817 i f (s . e q u a l s (" n "))
818 break ;
819 }
820 System . o u t . p r i n t l n (" The End ") ;
821 }
822 }

121

	Introduction
	Motivation
	Work Purpose
	Work Methodology
	Thesis Structure

	Related Work
	Reversible Computation
	Reversible Modelling
	Forms of Reversibility

	Petri nets
	Reversing Petri nets
	Forward execution
	Backtracking
	Causal-Order reversibility
	Out-of-Causal-Order reversibility

	Matrix Semantics
	Forward execution
	Matrices description
	Execution example

	Backtracking
	Matrices description
	Execution example

	Causal-Order reversibility
	Matrices description
	Execution example

	Out-of-Causal-Order reversibility
	Matrices description
	Execution example

	Simulator
	Requirements Specification
	Aims
	Objectives
	Specifications

	Implementation Programming Language
	Simulator Manual
	Simulator Functions
	Connected Component Method
	Enabled Transitions Method
	Addition between Matrices Method
	Subtraction between Matrices Method
	Multiplication between Matrices Method
	D Matrices Calculation Method
	Connected Component Matrix Method
	Forward Execution Method
	Backtracking Execution Method
	Out-of-Causal-Order Execution Method
	Last Transition Calculation Method
	L Matrices Calculation Method

	Case Study
	Assembly and Disassembly
	Ballpoint pen Case Study

	Conclusion
	Summary
	Challenges
	Future Work

	Appendices
	Arc structure
	Simulator Interface Functions
	Simulator Operation Functions

