

DIPLOMA PROJECT

PROTEIN SECONDARY STRUCTURE PREDICTION

USING BIDIRECTIONAL RECURRENT NEURAL

NETWORKS AND

HESSIAN FREE OPTIMIZATION

KONSTANTINOS CHARALAMPOUS

UNIVERSITY OF CYPRUS

DEPARTMENT OF COMPUTER SCIENCE

MAY 2018

UNIVERSITY OF CYPRUS

DEPARTMENT OF COMPUTER SCIENCE

Protein Secondary Structure Prediction

Using Bidirectional Recurrent Neural Networks

And

Hessian Free Optimization

Konstantinos Charalampous

Supervisor

Chris Christodoulou

The Diploma Project was submitted for partial completion of the requirements

for obtaining the degree of Computer Science of the Department of Computer

Science of the University of Cyprus

Η Ατομική Διπλωματική Εργασία υποβλήθηκε προς μερική εκπλήρωση των

απαιτήσεων απόκτησης του πτυχίου Πληροφορικής του Τμήματος

Πληροφορικής του Πανεπιστημίου Κύπρου

May 2018

Acknowledgments

Firstly, I would like to express my sincere gratitude to my advisor Dr.

Christodoulou Chris for the continuous support of my study and related research,

for his patience, motivation, and immense knowledge. His guidance helped me

in all the time of research and writing of this thesis.

I would also like to thank the assistant professor and head of the Bioinformatics

Research Laboratory in the Department of Biological Sciences, Dr. Prompona

Vasili, whose knowledge regarding the proteins part of the dissertation was

crucial for the conduction of this dissertation.

Finally, I would like to thank the doctorate student Michali Agathokleous, as well

as my fellow students Antrea Dionysiou and Panayioti Dimitriou for their constant

support and help throughout the whole past year of conducting together this

research.

Summary

This dissertation focuses on the problem of protein secondary structure

prediction, a problem that mainly concerns the fields of Computer Science and

Biology.

Proteins are an integral part of the human body and every living organism.

Studying the structure and functions of proteins facilitate the process of

manufacturing food supplements, drugs and antibiotics to further evolve the

quality of life and healthiness of people forward. The study of existing proteins is

the key for treating diseases and solving a number of biological problems,

especially nowadays when technology has made the process computationally

easier, faster and significantly cheaper.

Despite the fact that for millions of proteins, the primary structure is well

documented, only for a small fraction of those we know the secondary and tertiary

structure. This is because the current state-of-the art methodologies and

instruments for protein structure determination are extremely costly in terms of

both money and time. This is incredibly serious, since the primary structure on its

own, tells nothing about the actual function of the protein. This resulted in the

emergence of a number of computational techniques and algorithms that attempt

to predict the secondary and tertiary structure of a protein, given its primary,

which do so significantly faster and cheaper.

For the purpose of this dissertation, a Bidirectional Recurrent Neural Network

(BRNN) was implemented, trained with the Hessian Free Optimization to predict

the secondary structures of proteins. The motivation of this project is to use HFO

on a complex problem like PSSP, which was not done before, to test the

theoretical superior performance in terms of execution times. The results of this

network was an overall accuracy of 78.15% for a single fold with ensembles and

76.52 for 10-fold cross validation without ensembles, which is extremely

promising, considering the current best methods and algorithms result in

accuracies that are in between the 84-85% range (Wang et al., 2016).

Περίληψη

Ο στόχος της παρούσας εργασίας είναι η προσπάθεια επίλυσης του

προβλήματος πρόβλεψης της δευτεροταγούς δομής πρωτεϊνών, ένα πρόβλημα

το οποία αφορά κυρίως τους κλάδους της Πληροφορικής και Βιολογίας.

Οι πρωτεΐνες είναι ένα αναπόσπαστο κομμάτι του ανθρώπινου σώματος καθώς

και κάθε ζωντανού οργανισμού. Μελετώντας την δομή και την λειτουργία των

πρωτεϊνών, διευκολύνεται η διαδικασία ανάπτυξης διαφόρων συμπληρωμάτων

διατροφής, φαρμάκων και αντιβιοτικών τα οποία μπορούν να εξελίξουν ραγδαία

την ποιότητα ζωής και την γενικότερη υγεία των ανθρώπων. Η μελέτη των

γνωστών πρωτεϊνών είναι το κλειδί για την εύρεση θεραπείας σοβαρών

ασθενειών καθώς και για την επίλυση σημαντικών βιολογικών προβλημάτων.

Αυτό ισχύει ειδικότερα στα σημερινά δεδομένα, όπου η τεχνολογία έχει καταφέρει

να κάνει τις απαιτούμενες διαδικασίες υπολογιστικά ευκολότερες, γρηγορότερες

και σημαντικά φθηνότερες.

Παρόλο το γεγονός ότι για εκατομμύρια πρωτεΐνες, η πρωτοταγής δομής τους

είναι αρκετά ικανοποιητικά καταγεγραμμένες, μόνο για ένα πολύ μικρό κομμάτι

από αυτές είναι γνωστή η δευτεροταγής και τριτοταγής δομής τους. Αυτό

οφείλεται στο γεγονός ότι οι υπάρχουσες μεθοδολογίες και όργανα για

εξακρίβωση της δομής των πρωτεϊνών είναι εξαιρετικά δαπανηρές, τόσο σε θέμα

χρημάτων όσο και στο χρόνο που απαιτείται για να ολοκληρωθούν. Αυτό είναι

πολύ σοβαρό πρόβλημα, διότι η πρωτοταγής δομής από μόνη της δεν παρέχει

αρκετή πληροφορία για εξακρίβωση της λειτουργίας μια πρωτεΐνης. Αυτό είχε σαν

αποτέλεσμα την εμφάνιση υπολογιστικών μεθοδολογιών και τεχνικών, οι οποίες

προσπαθούν δεδομένου της πρωτοταγής δομής μια πρωτεΐνης, να προβλέψουν

την δευτεροταγής της.

Στα πλαίσια της παρούσας Διπλωματικές εργασίας, υλοποιήθηκε ένα Νευρωνικό

Δίκτυο αμφίδρομης ανάδρασης, εκπαιδευμένο με Hessian Free Optimization, με

σκοπό την πρόβλεψη της δευτεροταγής δομής πρωτεϊνών. Ο σκοπός της

έρευνας είναι να εφαρμόσουν τον αλγόριθμο HFO σε ένα πιο δύσκολο πρόβλημα

όπως το PSSP, για να εξεταστεί η θεωριτική ανώτερη επίδοση του όσων αφορά

τον χρόνο εκτέλεσης Το αποτέλεσμα ήταν μια ολική ακρίβεια της τάξης του

78,15% για ένα fold με χρήση ensembles, και 76,52% με 10-fold cross validation,

χωρίς την χρήση ensembles το οποίο είναι εξαιρετικά υποσχόμενο, δεδομένου

ότι οι καλύτερες μεθοδολογίες και αλγόριθμοι για το πρόβλημα κυμαίνονται γύρω

στο 84-85%.

Contents

Chapter 1 Introduction……………………………………………………… .1

 1.1 The Importance and Purpose of PSSP 2

1.2 Previous work on PSSP 4

Chapter 2 Background Information……………………………………….8

2.1 Biology Background 8

2.1.1 The Biological Role of Proteins 8

2.1.2 Amino Acids 9

2.1.3 Protein Structure 14

 2.1.3.1 Primary Structure 15

 2.1.3.2 Secondary Structure 15

 2.1.3.3 Tertiary and Quaternary Structure 16

2.2 Artificial Neural Networks (ANN) Background 18

 2.2.1 ANN Origins 18

 2.2.2 ANN Variants 20

Chapter 3 Dataset ………………………………………….. ……………..36

 3.1 PSSP Metrics 37

3.2 Protein Databases and Dictionary of Secondary 38

 Structure of Proteins

3.3 Training/Testing Set and Cross Validation 39

3.4 Dataset Format 40

3.5 The CB513 Dataset 41

3.6 Data Encoding and Multiple Sequence Alignment profiles 42

3.7 Sliding Window 44

3.8 Ensembles 45

3.9 Filtering 46

Chapter 4 Methodology……………………………….……………. 49

 4.1 Selecting a suitable ANN for PSSP 50

 4.2 Bidirectional Recurrent Neural Network (BRNN) 52

 4.3 Hessian Free Optimization (HFO) 54

 4.4 System Implementation 64

Chapter 5 Results and Discussions………………………………… 67

5.1 Feedforward Neural Network Experimentations 68

5.2 Recurrent Neural Network Experimentations 73

5.3 BRNN Experimentations 80

5.4 Cross Validation, Filtering and Ensembles 87

Chapter 6 Conclusion and Future Work…………………………… 93

6.1 Conclusion 94

6.2 Future Work 95

R e f e r e n c e s ………………………………………………………………. 96

A n n e x Α ……………..………………….……..…………………….………… Α-1

A n n e x B ……………..………………….……..…………………….………… B-1

A n n e x C ……………..………………….……..…………………….………… C-1

A n n e x D ……………..………………….……..…………………….………… D-1

A n n e x E ……………..………………….……..…………………….………… E-1

Page 1 of 102

Chapter 1

Introduction

1.1 The Importance and Purpose of PSSP 2

1.2 Previous work on PSSP 4

Page 2 of 102

1.1. The Importance and Purpose of PSSP

Proteins are an integral part of every living organism. In the human body, there

are more than 30,000 unique proteins, which perform a vast array of important

functions inside the cells. They are responsible for DNA replicating and defending

against infections, as well as for many other functions required to sustain life.

They consist of organic compounds called amino acids connected to each other

in longs chains. Each protein differentiates from another in structure and in

function, depending on the serial sequence of its amino acids. This is because

the amino acids that make up a protein interact with each other, which causes

the protein to fold into a specific three-dimensional structure. The structure is

always the same for a specific protein, under certain conditions, and this is what

determines its function.

Studying the structure and functions of proteins facilitate the process of

manufacturing food supplements, drugs and antibiotics to further evolve the

quality of life and healthiness of people forward. The study of existing proteins is

the key for treating diseases and solving a number of biological problems,

especially nowadays when technology has made the process computationally

easier, faster and significantly cheaper.

In order to facilitate the process of studying proteins, a hierarchical approach has

been established to better observe the structure of the proteins in the various

phases of their formation. There are four layers of organization, which are the

primary structure, the secondary structure, the tertiary structure and finally, the

quaternary structure. The primary structure is the linear sequence of the amino

acids, namely the order in which amino acids appear in the protein when

unfolded. The secondary structure defines the way local segments of a protein

are oriented in space, while the tertiary structure is the three-dimensional shape

of a protein, when the amino acid chain is folded, and is the one that determines

the specific function of a protein. Finally, a number of tertiary structures folding

together forms a quaternary structure.

Page 3 of 102

Despite the fact that for millions of proteins, the primary structure is well

documented, only for a small fraction of those we know the secondary and tertiary

structure. This is because the current state-of-the art methodologies and

instruments for protein structure determination are incredibly costly in terms of

both money and time. This is incredibly serious, since the primary structure on its

own, tells nothing about the actual function of the protein. This resulted in the

emergence of a number of computational techniques and algorithms that attempt

to predict the secondary and tertiary structure of a protein, given its primary,

which do so significantly faster and cheaper.

One of those techniques used on this problem - PSSP (Protein Secondary

Structure Prediction) is the use of Machine Learning algorithms. These

algorithms are designed based on computational statistics and mathematical

optimization techniques, which give computer systems the ability to learn patterns

and idiosyncrasies of data, with the goal of being able to predict and classify new

ones. There are a number of machine learning algorithms that have been used

over time on this problem (which are discussed in the subsequent chapter);

however, the focus of this dissertation is on Artificial Neural Networks (ANN).

More specifically, a bidirectional recurrent neural network (BRNN), similar to the

one used by Baldi (1999), trained with the Hessian Free Optimization (HFO)

(Martens 2010) was developed and optimized on this problem.

The benefit of using BRNN for this problem is very clear. The way biological

proteins fold in local segments (secondary structure) depends solely on the

interactions and bonds that are formed by the neighboring amino acids.

Consequently, a network, which is designed to take into account the amino acids

located on either side (bidirectional) of the specific amino acid being classified, is

bound to give a better prediction.

The original BRNN by Baldi was trained using the backpropagation algorithm

(Werbos 1974) and resulted in extremely good predictions at the time. However,

it is a relatively slow algorithm which suffers from problems like overfitting and

Page 4 of 102

getting stuck in local minima. Using Second Order Optimization Algorithms, which

are named so because they use second order derivatives (Hessian Matrix),

additional information is calculated by the network, which heavily improves the

optimization process in terms of both speed and accuracy. However, calculating

and using the Hessian Matrix is often prohibiting due to its extremely large

memory requirements. HFO addresses the memory issues by not calculating the

Hessian Matrix (H) but the product Hu (u is an arbitrary vector), which is

mathematically possible with a number of techniques and costs just as much as

a gradient calculation. This, with combination of a number of other things,

discussed on Chapter 4, made HFO computationally possible and accurate.

1.2 Previous Work on PSSP

There is more than half a century’s worth of work on the PSSP problem. A number

of machine learning algorithms have been developed and optimized for this

specific problem over the years, which resulted recently in accuracies >90%

(Shangxin et al. 2018, Magnan et al. 2014) in the Q3 accuracy score (Equation

2.1.) that essentially mark the problem solved. However, the algorithms that

managed to achieve such high accuracies (>85%) have all used additional

information and structural templates from databases, called sequence-based

structural similarity of a protein. This makes the learning process and

performance extremely better, relatively to the more pure machine learning

algorithms. Without relying on these structural templates, the three-state

accuracy is now at 82-84%, which is still good, considering the complexity of the

problem, however there is still room for improvement, considering the theoretical

limit of the three state prediction of around 88-90% (Rost, Burkhard 2001).

𝑄 = 100
1

𝑛
∑𝑚𝑖

𝑛

𝑖=1

Equation 1.1.: Equation measuring the accuracy of protein secondary structure

predictions, where n is the number of amino acid residues and mi takes the value of 1 if

the predicted value of the ith amino acid residue is correct and 0 otherwise

Page 5 of 102

Figure 1.1: Number of publications for PSSP per year (Yang et al. 2016)

Observing the figure 1.1 it is clear that despite its long history it was only until the

90’s that PSSP started getting more attention. That is because some major

breakthroughs were achieved during that period which resulted in gradually

increasing the three-state accuracy of the problem significantly.

While most methods were around the 60-63% Q3 before the 90’s, in 1993 Rost

and Sander (Rost & Sander, 1993) achieved accuracy of 69.7%. Their predictor

was a fully connected feed forward Neural Network with early training stopping

conditions and made use of averaging ensembles by training multiple models. In

1994, the same people released an automatic mail server for PSSP, called PHD

(Rost et al., 1994) with accuracy of 71.4%.

Five years later, in 1999, two other predictors achieved accuracies of 76% and

76.5%. The first one was a Bidirectional Recurrent Neural Network trained with

Backpropagation by Baldi (Baldi, 1999) and the second was PSIPRED by David

Page 6 of 102

T.Jones (Jones, 1999) based on the position specific scoring matrices generated

by PSI-BLAST.

In 2007, the Structural Property prediction with Integrated Neural Network by Ofer

Dor and Yaoqi Zhou (Dor & Zhou, 2007) achieved 80%, using multiple sequence

alignment (MSA), representative amino acid properties, a slow learning rate,

overfitting protection, and an optimized sliding‐window size.

In 2015, the Integrated Deep neural network 2 (SPIDER2) by Heffernan

(Heffernan et al., 2015) achieved 82% using local backbone angles, solvent

accessible surface area of proteins and iterative deep learning.

Finally, in 2016, the Deep Convolution Neural Field network (DeepCNF) by Wang

SPeng JMa JZ (Wang et al., 2016) achieved the highest documented accuracy,

without relying on the structural templates, of 84%.

Page 7 of 102

Chapter 2

Background

2.1 Biology Background

2.1.1 The Biological Role of Proteins 8

2.1.2 Amino Acids 9

2.1.3 Protein Structure 14

 2.1.3.1 Primary Structure 15

 2.1.3.2 Secondary Structure 15

 2.1.3.3 Tertiary and Quaternary Structure 16

2.2 Artificial Neural Networks (ANN) Background

 2.2.1 ANN Origins 18

 2.2.2 ANN Variants 20

Page 8 of 102

2.1 Biology Background

2.1.1 The Biological Role of Proteins

Proteins are large, complex molecules made up of hundreds to thousands of

smaller units called amino acids, which are attached to one another in long

chains. Proteins are responsible for most of the functions within organisms and

this is what classifies each protein into a specific type. For example, there are

structural proteins, which strengthen cells, tissues and organs and defense

proteins, namely the antibodies, which help organisms fight infection, heal

damaged tissue and evade predators.

Table 2.1 lists the most important functions of proteins, which reflect the

importance of proteins in nearly the entirety of an organism.

Type Function Description Example

Enzyme

Enzymes build and break down molecules. They are
critical for growth, digestion, and many other processes in
the cell. Without enzymes, chemical reactions would
happen too slowly to sustain life.

Lactase

Messenger
Messenger proteins transmit signals to coordinate
biological processes between different cells, tissues, and
organs.

Growth
Hormone

Structural
Structural proteins strengthen cells, tissues, organs, and
more.

Collagen

Transport
Transport proteins move molecules and nutrients around
the body and in and out of cells.

Hemoglobin

Storage
Storage proteins store nutrients and energy-rich
molecules for later use.

Gluten

Signaling
Signaling proteins allow cells to communicate with each
other.

Insulin

Regulatory Regulatory proteins bind DNA to turn genes on and off.
Androgen,
Estrogen

Sensory
Sensory proteins help us learn about our environment.
They help us detect light, sound, touch, smell, taste, pain,
and heat.

Opsin

Motor
Motor proteins keep cells moving and changing shape.
They also transport components around inside cells.

Dynein,
Kinesin

Defense
Defense proteins help organisms fight infection, heal
damaged tissue, and evade predators.

Antibodies

Table 2.1: Types of proteins and their function (http://learn.genetics.utah.edu,
2018, May 5)

http://learn.genetics.utah.edu/

Page 9 of 102

In the human body, proteins are created mostly through the consumption of

foods. When food, which contains proteins, is consumed, the digestive system

breaks it down into amino acids, which enter the blood stream. The cells then

gather the necessary amino acids from the blood stream, to create the proteins it

requires to perform any of the vast array of functions possible. A diet poor of

proteins results in few amino acids entering the blood stream which weakens the

immune system, causes exhaustion, dizziness and possibly a number of other

very serious diseases. This is because the cells do not have enough amino acids

to create the proteins required for each of the functions necessary to sustain the

human body.

Consequently, understanding the significant role of proteins in all aspects of living

organisms is important. However, what is necessary is to understand the core

structure and function of each protein, in order to facilitate the process of creating

food supplements, drugs and antibiotics to further evolve the quality of life and

healthiness of people forward. The study of existing proteins, is the key for

treating diseases and solving a number of biological problems, especially

nowadays when technology has made the process computationally easier and

significantly faster.

2.1.2 Amino Acids

Amino acids, or as they are often called, the building blocks of life are the sole

component of proteins. There are more than five hundred (500) naturally

occurring amino acids known, but only twenty (20) appear in the genetic code

and in the formation of proteins (Table 2.2). Consequently, those amino acids are

called the essential amino acids and are found in most, but not all proteins.

All amino acids are composed by one functional group of amine (-NH2) and

carboxyl (-COOH), along with a side chain, the R group, specific to each amino

acid. The unique side chain is what differentiates amino acids in their physical

and chemical properties. Moreover, depending on the chemistry of their side

chain, amino acids are classified into three (3) different categories. The first and

Page 10 of 102

largest group of amino acids has nonpolar side chains, while the second has polar

side chains, which are uncharged. The third one has amino acids with positive

and negative charges on their side chain. This is extremely critical to the protein

structure, since these side chains can interact and bond with one another based

on their chemistry, which forms the specific part of the protein in a certain shape.

This means that the sequence and location of amino acids in a particular protein

determines where the bends and folds occur in its three-dimensional structure,

(which is discussed later). Finally, every single amino acid has its amino group

positively charged and its carboxylic group negatively charged. This facilitates the

sequential connection between amino acids with covalent bonds.

Amino
Acid

Abbreviatio
n

Structure Amino Acid
Abbreviatio

n
Structure

1. Glycine Gly G

11.
Phenylalanin

e
Phe F

2. Alanine Ala A

12. Tyrosine Tyr Y

3. Valine Val V

13. Tryptophan Trp W

4. Leucine Leu L

14. Histidine His H

5. Isoleucine Ile I

15. Lysine Lys K

6. Methionine Met M

16. Arginine Arg R

7. Serine Ser S

17. Aspartate Asp D

8. Cysteine Cys C

18. Glutamate Glu E

9. Threonine Thr T

19. Asparagine Asn N

10. Proline Pro P

20. Glutamine Gln Q

Table 2.2: List of all the 20 essential amino acids (Hausman & Cooper, 2004).

The way amino acids connect to each other is by peptide bonds, in units as small

as two or three amino acids, called dipeptides and tripeptides respectively, or in

much longer chains called polypeptides, forming a protein molecule. This process

https://commons.wikimedia.org/wiki/File:Glycin_-_Glycine.svg
https://commons.wikimedia.org/wiki/File:L-Phenylalanin_-_L-Phenylalanine.svg
https://commons.wikimedia.org/wiki/File:L-Alanin_-_L-Alanine.svg
https://commons.wikimedia.org/wiki/File:Tyrosin_-_Tyrosine.svg
https://commons.wikimedia.org/wiki/File:L-Valin_-_L-Valine.svg
https://commons.wikimedia.org/wiki/File:L-Tryptophan_-_L-Tryptophan.svg
https://commons.wikimedia.org/wiki/File:L-Leucin_-_L-Leucine.svg
https://commons.wikimedia.org/wiki/File:L-Histidin_-_L-Histidine.svg
https://commons.wikimedia.org/wiki/File:L-Isoleucin_-_L-Isoleucine.svg
https://commons.wikimedia.org/wiki/File:L-Lysin_-_L-Lysine.svg
https://commons.wikimedia.org/wiki/File:L-Methionin_-_L-Methionine.svg
https://commons.wikimedia.org/wiki/File:L-Arginin_-_L-Arginine.svg
https://commons.wikimedia.org/wiki/File:L-Serin_-_L-Serine.svg
https://commons.wikimedia.org/wiki/File:L-Asparagins%C3%A4ure_-_L-Aspartic_acid.svg
https://commons.wikimedia.org/wiki/File:L-Cystein_-_L-Cysteine.svg
https://commons.wikimedia.org/wiki/File:L-Glutamins%C3%A4ure_-_L-Glutamic_acid.svg
https://commons.wikimedia.org/wiki/File:L-Threonin_-_L-Threonine.svg
https://commons.wikimedia.org/wiki/File:L-Asparagin_-_L-Asparagine.svg
https://commons.wikimedia.org/wiki/File:L-Prolin_-_L-Proline.svg
https://commons.wikimedia.org/wiki/File:L-Glutamin_-_L-Glutamine.svg

Page 11 of 102

is called condensation reaction and it extracts a water molecule as it joins the

amino group of one amino acid and the carboxyl group of a neighboring amino

acid. What remains of each amino acid after the junction, is called amino acid

residue.

Figure 2.1 illustrates the core structure of all amino acids and the process of

protein formation.

Figure 2.1: Amino acid structure and protein conformation (Nature Education 2010)

Page 12 of 102

Each amino acid is abbreviated into a single (or triple) character from the English

alphabet, meaning the amino acid sequence of a polypeptide can be represented

as a sequence of characters. This sequence is considered to be the primary

structure of the protein, which is discussed in detail later in section 2.1.3.1 As a

result, any change in the sequence of the polypeptide, leads to the formation of

a completely different protein, along with a completely different set of properties

and functionalities.

The way each protein is assembled is encoded in the genes of an organism, the

DNA. More specifically, the unique amino acid sequence, which forms a protein,

is specified by the nucleotide sequence of the gene encoding that protein. In the

case of the human genome, there are around thirty-thousand (30,000) genes,

each of which encodes a single, unique protein.

The way it works is that the “DNA makes RNA” through a process called

transcription and the “RNA makes proteins” through a process called translation.

This constitutes The Central Dogma of Molecular Biology, which is illustrated in

figure 2.2.

Figure 2.2: The Central Dogma of Molecular Biology: DNA makes RNA makes proteins
(Nucleic Acids Book, www.atdbio.com, 2018, May 5)

The genetic code is basically a set of nucleotide triplets, called codons. Each

combination of a triplet designates an amino acid, and since there are four (4)

unique nucleotides (adenine - A, uracil - U, guanine - G, and cytosine -C), the

total number of triplets that can be arranged is sixty-four (43 = 64). However, there

are only twenty (20) amino acids that can be encoded naturally, which means

some amino acids can be described by more than one codon, or some codons

do not encode any amino acids. Those codons, which do not encode any amino

http://www.atdbio.com/

Page 13 of 102

acids, are called the stop codons and serve as a termination signal for the

translation process, meaning that when one is found, the polypeptide, or the

protein, translated up to that point is released. Figure 2.3 illustrates an example

of the translation from DNA to protein (the first few amino acids for the alpha

subunit of the protein hemoglobin), while figure 2.4 examines the full table of

codons, along with the amino acid or the stop signal they encode.

Figure 2.3: Example of the central dogma. The first few amino acids for the alpha subunit
of hemoglobin (Madprime, 2006)

.

Figure 2.4: The amino acids specified by each codon. (Nature Education 2014)

Page 14 of 102

2.1.3 Protein Structure

In order to facilitate the process of studying proteins, a hierarchical approach has

been established to better observe the structure of the proteins in the various

phases of their formation, discussed previously in section 2.1.2. There are four

layers of organization, which are the primary structure, the secondary structure,

the tertiary structure and finally, the quaternary structure (Figure 2.5). It is

important to note that this organization of many hierarchical structures is strictly

used to make things easier for people to understand how proteins are formed. In

organisms, proteins have one single structure, which is three-dimensional.

Figure 2.5: Layers of protein structure (Madison 2009)

Page 15 of 102

2.1.3.1 Primary Structure

The primary structure of a protein is the discrete sequence of amino acids, which

is basically the linear succession of amino acids in the protein, if its three-

dimensional structure was to be unfolded. Using the one-character amino acid

abbreviations (Table 2.2), countless possibilities of protein formation exist.

However, only a tiny subset of them has actually been studied and most of the

information that exists today about proteins is about their primary structure. This

is because the primary structure of a protein can easily be translated from the

genetic material, though no useful information regarding its function can be

extracted from it. However, various learning algorithms can be applied to it, to

accurately predict cheaply its secondary and tertiary structure, which is also the

main focus of this dissertation. The benefits of the secondary and tertiary

structure are discussed subsequently, in sections 2.1.3.2 and 2.1.3.3 respectively

2.1.3.2 Secondary Structure

The secondary structure is the three-dimensional form of local segments of

proteins. The most common method of describing the secondary structure of

proteins was defined by the Dictionary of Protein Secondary Structure, or DSSP

(Kabsch et al., 1983) in short. Single character codes are used, based on

hydrogen bond patterns, to define the eight (8) types of secondary structure that

the DSSP classifies. These are the α-helix (H), 3-helix (G), π-helix (I), β-strand

(E), β-bridge (B), β-turn (T), bend (S), and random coil (C) for residues which are

not in any of the other conformations. This last designation is unfortunate as no

portion of protein three-dimensional structure is truly random and it is usually not

a coil. A number of "other" secondary structures types have been proposed;

however, they represent a small fraction of residues and may not be a general

structural principle of proteins. It is common to group these eight (8) categories

into three (3) to describe the nature of the shape of the specific local segment of

the protein. First, the helix conformations that obviously contain the first three

categories (H, G, I), and have helical form, the sheet conformations that contain

Page 16 of 102

the β-strand (E) and β-bridge (B) categories, and finally Coil conformations which

contain everything else.

Figure 2.6: alpha helices form spirals (left) and beta-pleated sheets arrows

(right) (http://ib.bioninja.com.au, 2018, May 5)

2.1.3.3 Tertiary and Quaternary Structure

The tertiary structure is the way the polypeptide chain coils and turns to form a

complex molecular three-dimensional shape. This structure is what actually

defines the functions and properties of the protein. Despite its great significance

only for a very small portion of known proteins, there is a documented and fully

defined tertiary structure. This is because of the very expensive experimental

procedures required and it is still today a very important problem. Under certain

conditions, such as protein temperature or pH change, the original three-

dimensional structure is destroyed and its properties and biological functions are

altered, despite of the fact that the amino acid sequence is still the same. This

confirms that the 3D structure of the protein is what defines its function and not

the amino acid sequence it is made up of. However, under normal conditions,

both secondary and tertiary structures remain the same for each protein, since

the linear sequence of amino acids (primary structure) is always the same and

the following structures are developed through the interactions between the R

groups of the amino acids.

http://ib.bioninja.com.au/

Page 17 of 102

Figure 2.7: The formation of protein tertiary 3D structure (http://ib.bioninja.com.au, 2018,
May 5)

The Quaternary Structure of a protein forms by multiple tertiary structures folding

together.

Figure 2.8: The Quaternary Structure of a protein (McKinnon, 2003)

http://ib.bioninja.com.au/

Page 18 of 102

2.2 Artificial Neural Networks (ANN) Background

2.2.1 Artificial Neural Networks (ANN) Origins

Artificial Neural Networks (ANN) are computing systems based on biological

neural networks, which learn patterns and tasks without explicit programming.

The term ‘learn’ varies based on the application it is used. However, a learning

system could be summarized as a system that progressively improves its

performance on a task given the metrics of the application. The learning is being

accomplished by feeding and training the network on examples and data related

to a specific task, with the goal of ultimately being able to identify the nature of

newer, never before seen by the network data. For example, in financial

applications, an ANN could be trained on historic stock market data with the goal

of predicting future stock prices.

The popularity of ANN mainly resulted because of its theoretically extremely good

properties. First of all, the Multilayer Perceptron (MLP), one of the most basic

classes of ANN, is a Universal Function Approximator (Hornik et al., 1989). This

essentially means that in theory ANN can reproduce all human intelligence and

can solve any problem imaginable, with the assumption that everything can be

reduced and modeled into a specific mathematical function. Moreover, they have

the ability to extract useful information from inconsistent and noisy data and are

able to generalize well from previous examples. They have minimal

computational requirements when fully trained and due to their architecture, they

can take advantage of parallelism, which significantly improves its training speed,

comparing to the traditional serial computations. Finally, they are extremely

suited to solve problems that are ill defined or problems that require enormous

amount of processing.

Artificial Neural Networks were originally created to mimic and solve problems in

the same way that a human brain would. This is reflected by the core architecture

of an artificial neural network. In order to fully comprehend the similarities

Page 19 of 102

between artificial and biological neural networks a brief explanation of how both

networks are assembled and work follows.

The biological neural network is a collection of neurons that receive, process and

transmit information between each other, through electrical and chemical signals

via specialized connections called synapses. The ANN is essentially identical in

terms of architecture, having nodes (artificial neurons), a simplified version of

biological neurons in terms of functionalities, and edges, or connections instead

of synapses, which transmit signals from one artificial neurons to another

connected to it. A biological neuron consists of three (3) main components. The

cell body (soma), the axons and the dendrites (Figure 2.9). Signals are

transmitted through the axons and are received by dendrites, which in turn

transmit it to the cell body. Finally, the cell body is responsible to process the

aggregated signals, namely to add them together. Finally, providing that value

exceeds a predefined threshold, the neuron fires another signal to some other

connected neuron. Similarly, ANN work with the same concept, which is

discussed in detail on the following chapters.

Figure 2.9: Structure of a Biological Neuron (cs.stanford.edu, 2018, May 5)

However, as ANN began gaining popularity, the attention was slowly shifted away

from replicating the human brain and the biological neural networks. The need

for matching and solving specific tasks, lead to the development of various ANN

architectures, some of which deviate majorly from its initial biologically inspired

Page 20 of 102

nature. For example, the need for image recognition, lead to the development of

an alternative ANN called Convolutional Neural Network (CNN) (Lecun et al.,

2015) which integrates a preprocessing module that is able to extract complex

but useful features from images. These features are then fed into a classic ANN,

a fully connected feedforward MLP (section 2.2.1), to classify and label the initial

image. There are countless other variations of ANN to solve other specific tasks

like speech recognition, machine translation and playing video games, some of

which are discussed in the following section.

2.2.1 ANN Variants

McCulloch και Pitts (McP)

The foundation of all Artificial Neural Networks, proposed by Warren McCulloch

and Walter Pitts in 1943 (McCulloch & Pits, 1943), also known as a Binary

Threshold Unit (Figure 2.10). The model aimed to replicate in its simplest form

the structure and function of a single biological neuron of a neural network in the

human brain. In the biological terms discussed earlier, an input vector takes the

place of the ‘dendrites’, which feeds the artificial neuron the signals, by

performing multiplications with the weight values. The artificial neuron then sums

those signals and transmits the added value to a threshold function, the Step (or

Heaviside) function (Figure 2.11).There, if the value exceeds a certain threshold

value, it outputs an output signal of 1, otherwise an output signal of 0 (Equation

2.1) (similarly to biological neurons). Therefore, it can only be used for binary

classification.

Figure 2.10: The artificial neuron of McCulloch and Pitts (1943)

Page 21 of 102

Figure 2.11.: The Step or Heaviside Function

𝑦 = {
1 𝑖𝑓 𝑤 ∙ 𝑥 > 𝑠
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Equation 2.1: The output y of the network where x is the input vector, w the weight

vector, 𝐰 ∙ 𝐱 the dot product and s the threshold

The way they classify inputs depends on the weights of the connections as well

as on the threshold value. In a simple two-dimensional scenario (2D input vector),

the decision line is that of the Equation 2.2.

𝑥2 = − (
𝑤1

𝑤2
) 𝑥1 + (

𝑠

𝑤2
)

Equation 2.2: Decision line of a 2D input vector

For example in the case of trying to classify the AND gate, the model would have

to have weights of W = [1, 1] and threshold of S = 1.5 (this is just an example,

there are infinite other ways to solve this). The way the decision line would be is

that of figure 2.12 and inputs would be classified depending on whether they are

above the decision line (Class 1) or below (Class 0).

Figure 2.12.: Decision Line of AND gate

Page 22 of 102

Perceptron Learning Algorithm

The way McP neurons learn is through a learning algorithm called Perceptron

(Rosenblatt 1957). The idea is to present input and desired output to the network,

calculate the output for that input and in the case of misclassification (output is 1

but should be 0, or vice versa) adapt the weights accordingly (Algorithm 2.1).

Although, this initially seemed promising, it was quickly proven that it could only

solve linearly separable patterns, that is, patterns where a hyperplane can be

found on space that can separate them. For example it could solve perfectly

problems like the OR gate, since a straight line can separate the two classes.

However, in problems like the XOR gate, where more than a straight line is

needed to separate the classes, this algorithm failed (Figure 2.13). Moreover,

there was no way to distinguish between outputs that are closer to the desired

class due to the binary nature of the Heaviside function, which made the learning

process more difficult, and impossible in more complicated scenarios of

combining multiple perceptrons. This lead to more sophisticated algorithms and

networks like the Multilayer perceptron (MLP) and the backpropagation algorithm,

which are discussed subsequently.

Algorithm 2.1: Perceptron Learning Algorithm

Perceptron Learning Algorithm

1. Initialize weights and threshold randomly.

2. Present input and desired output.

3. Calculate actual output (Equation 2.1).

4. Adapt weights:

if output 0, should be 1: 𝑤𝑖(𝑡 + 1) = 𝑤𝑖(𝑡) + 𝜂 ∙ 𝑥𝑖(𝑡)

if output 1, should be 0: 𝑤𝑖(𝑡 + 1) = 𝑤𝑖(𝑡) − 𝜂 ∙ 𝑥𝑖(𝑡)

if output is correct : 𝑤𝑖(𝑡 + 1) = 𝑤𝑖(𝑡)

where 0 ≤ 𝜂 ≤ 1 the learning rate, controlling the

adaptation rate.

Page 23 of 102

Figure 2.13: Linear Separability on OR gate vs Linear Inseparability on XOR Gate

Multilayer Perceptron (MLP)

Multilayer Perceptrons (MLP), or the ‘vanilla’ neural networks as they are often

referred as, are the most popular and well-known variants of ANN. They are

layered feedforwards networks, consisting of multiple (slightly different version

of) McCulloch and Pitts neurons (Figure 2.14). The difference between true McP

neurons and MLP neurons is that while the former strictly uses a threshold

activation function (the Heaviside step function), the latter uses any arbitrary

activation function (Table 2.3) This means that, while McP can only perform

binary classification, MLP can either perform classification or regression,

depending on the activation function used. In addition, activation functions serve

as a way to distinguish between outputs that are closer to the desired class, which

gives an indication of the scale by which to adjust the weights to have better

predictions.

They have an input layer, an output layer and at least one hidden layer, with one

or multiple neurons each. Each layer, apart from the output, has an independent

‘bias’ neuron unit, which basically helps fit the predictions better to the data, with

a constant input value of 1. The hidden layers have multiple properties and it is

where most of the information for the learning process is being stored and

processed. Each neuron unit in the first hidden layer defines a new decision line

that separates classes and patterns (Figure 2.13). Moreover, adding a second

hidden layer leads to the formation of arbitrary complex decision shapes that are

Page 24 of 102

capable of separating any classes. Consequently, no more than two hidden

layers are needed in a network (Kolmogorov Theorem).

The process for calculating the output signal is feed forward and is similar to the

one of McP. Neurons in the input layer, feed their values to the first hidden layer,

where based on the activation function, they output a signal per hidden neuron

(Equation 2.3). Those signals are in turn fed as inputs to the next hidden or output

layer, where the process is repeated until no layer is left.

𝒚 = 𝒔(𝒘𝑻𝒙 + 𝒃)

Equation 2.3: The output y of a single neuron where x is the input vector for that neuron,

w the weight vector, 𝒘𝑻 ∙ 𝐱 the dot product, b the threshold and s the arbitrary activation
function

Figure 2.14 Multi-layer perceptron with 1 hidden layer

Page 25 of 102

Name Plot Equation Derivative Range

Heaviside

𝑓(𝑥) = {
1 𝑖𝑓 𝑥 > 0
 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝑓′(𝑥) = {
0 𝑖𝑓 𝑥 ≠ 0
? 𝑖𝑓 𝑥 = 0

 {0,1}

Logistic /

Sigmoid

𝑓(𝑥) =
1

1 + 𝑒−𝑥
 𝑓′(𝑥) = 𝑓(𝑥)(1 − 𝑓(𝑥)) (0,1)

TanH

𝑓(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 𝑓′(𝑥) =

1

𝑥2 + 1
 (-1,1)

Rectified

linear unit

(ReLU)

𝑓(𝑥) = {
0 𝑖𝑓 𝑥 < 0
𝑥 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝑓′(𝑥) = {
0 𝑖𝑓 𝑥 < 0
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 [0,∞)

SoftPlus

𝑓(𝑥) = ln (1 + 𝑒𝑥) 𝑓′(𝑥) =
1

1 + 𝑒−𝑥
 (0,∞)

Gaussian

𝑓(𝑥) = 𝑒−𝑥
2
 𝑓′(𝑥) = −2𝑥𝑒−𝑥

2
 (0,1)

Table 2.3 : List of some of the most important activation functions.

Gradient Descent

Gradient descent, also known as steepest descent, is a mathematical

optimization algorithm for finding the minimum of a function. It is probably one of

the most used algorithms in training Artificial Neural Networks. The way gradient

descent works is, similarly to its name, given a point, it take steps proportional to

the negative of the gradient of the function at the current point.

An error signal is defined (Equation 2.4) which describes how well or how bad

the network has managed to classify the input patterns. The goal is to minimize

this function, so as many inputs as possible be correctly classified.

Page 26 of 102

𝑬 =
𝟏

𝟐
∑(𝒕𝒑𝒋 − 𝒐𝒑𝒋)

𝟐

𝒋

Equation 2.4: Mean Square Error (MSE) function, where t target output, o actual output, p
denotes the pattern and j the neuron

The main idea is to apply the Gradient Descent algorithm to the MSE function in

order to minimize the error, namely the difference between the desired and actual

outputs. What this means is to make a change in the weight vectors, proportional

to the negative of the derivative of the error in the current pattern with respect to

each weight.

𝛥𝑤𝑖𝑗 = −𝑛
𝜕𝐸𝑝

𝜕𝑤𝑖𝑗

Equation 2.5: Weight change based on gradient descent where n learning rate

Backpropagation (BP)

Using the gradient descent method as is, the weights of the last hidden layer to

the output layer are only possible to be adjusted. This is because, a desired

output must be known in order to calculate (and minimize) the error, which is

obviously not known in the hidden layers. Backpropagation addresses this issue

by, as the name suggests, back-propagating the error from one layer, starting

from the output layer, to the previous one. Two passes from all neurons are

needed to achieve this. A forward pass, where given an input, the error is

calculated (Equation 2.4). Then, at a second pass, the backward pass, the error

is back propagated to the previous layers, adjusting the weights accordingly. This

process is repeated until all patterns have been fed into the network enough times

to minimize the error at a point where is small enough depending on the problem

or enough epochs (the number of times all patterns have been fed into the

network) have passed. (Algorithm 2.2).

Page 27 of 102

Algorithm 2.2: The Backpropagation algorithm, where dij is the error signal of
neuron i of layer j, yij is the actual output of neuron i of layer j and dij is the target
output of neuron i of layer j. The δik is the διj but in the previous iteration of the
algorithm

Recurrent Neural Network (RNN)

Recurrent Neural Networks have the same structure as the Multilayer Perceptron

Networks with one major difference. While MLP networks are feedforward, RNN

have recurrent inputs, meaning the output of a hidden or output layer is fed back

as input to itself or to another previous layer. The main idea behind this, is to

create some sort of memory for the network which enables the output to be

dependent not only from the current input, but also on a sequence of input data

that were processed on previous iterations. Consequently, these ANN are used

mainly on dynamic problems, namely time series predictions or predictions where

the sequence of data is very important.

Some of the most popular RNN architectures are the one creates by Jordan

(1986) and the one created by Elman (1990) (Figure 2.15). The Jordan Network

feeds its output to a context layer, which was connections to the hidden layer as

well as back to itself, while the Elman Network feeds its hidden layer output to a

context layer, which connects back to the hidden layer.

Backpropagation

Repeat:
 For each pattern :
 // Forward Pass
 Calculate the output

// Backward Pass
 For each layer j, starting at the output:
 For each unit i:
 // Compute the error

 If output neuron: 𝛿𝑖𝑗 = 𝑦𝑖𝑗(1 − 𝑦𝑖𝑗)(𝑑𝑖𝑗 − 𝑦𝑖𝑗)

 If hidden neuron: 𝛿𝑖𝑗 = 𝑦𝑖𝑗(1 − 𝑦𝑖𝑗) 𝛿𝑖𝑘 ∙ 𝑊𝑗𝑘

 For each weight to this unit:
 Compute and apply Δw
 Compute total error
 Increment epoch counter
Until small enough error or epoch counter exceeded

Page 28 of 102

Figure 2.15: Jordan Network (Left), Elman Network (Right)

Backpropagation through time (BPTT)

Recurrent neural networks share a lot of similarities with the Multilayer Perceptron

Networks. However, the recurrent connections make it difficult for the standard

BP to work on this architecture. As a result, Mozer in 1989 (Mozer, 1989),

developed a technique to unfold the network in time to enable the standard BP to

work (Figure 2.16). What this means, is that when a recurrent layer is found,

create as many copies of it as time stamps (number of input-output pairs), each

of which has the same parameters. Those layers have as inputs, recursively the

output of the previous time stamp, as well as the new input data of the current

time stamp. The BPTT algorithm by Werbos (1990) sums the errors of each time

stamp until the end of the input window, and recursively moves back in the

unfolded network, adjusting the weights.

Figure 2.16: Unfolding RNN through time (Headlessplatter, 2010)

Page 29 of 102

Line Search

Line search is an iterative method, used to find a minimum x* of an objective

function (in the case of ANN, x are the weights of the network and the error

function is the objective function.)

In the simplest terms, equation 2.6 shows the basic components in calculating

the next iteration of x, where d is the search direction and a is the step size, which

determines how far x should move along that direction. With simple gradient

descent, the search direction is the negative gradient of the error function, and

the step size an arbitrary learning rate. If the step size is too big, the objective

function might move far away from the minimum. If it is too small, the updates get

too small which can either make the optimization process significantly slower or

force the objective into a local minimum. Consequently, it is very important to

determine an optimal step size of each search direction at each iteration. As a

result, line search tries to find the optimal step size, which minimizes an objective

function in a specific search direction at each iteration.

𝒙𝒏+𝟏 = 𝒙𝒏 + 𝒂𝒏𝒅𝒏

Equation 2.6: Weights update, where a is the step size and d the search direction

A naïve approach of finding the step size is to proceed along the search direction

in small steps, evaluating the error function until it starts increasing (Hush and

Salas, 1988). However, there are many variations of line search, much more

efficient, robust and accurate (Press et al., 1992; Charalambous, 1992).

Page 30 of 102

Conjugate Gradient (CG)

In order to apply line search to optimize the step size and minimize the error

function at each iteration, a descent search direction must first be determined. In

the case of Gradient Descent, the search direction is the negative gradient of the

error function at each new position. However, this is generally not a good choice

of direction. Successive gradient directions, lead to the problem illustrated in

figure 2.17 (green) in which the weights oscillate on successive steps while

making little to no progress towards the minimum.

Figure 2.17: Gradient Descent (Green) and Conjugate Gradient (Red) convergence with optimal

step size (Alexandrov 2007)

The Conjugate gradient algorithm addresses the problem by choosing directions

in each iteration that do not interfere with each other or undo some of the progress

made previously. More specifically, in an N-dimensional problem, CG guarantees

a solution in N steps, with each step attaining the minimum in its direction. Figure

2.17 illustrates CG convergence on a 2-dimensional problem, in just two steps.

The algorithm, which describes how it works in detail follows:

Page 31 of 102

Algorithm 2.3: Conjugate Gradient Method (Bishop, 1995)

Newtons’s Method

Newton’s method is an iterative method originally created for finding

approximations to the roots of real-valued functions. However, this method can

also be used in optimization theory, to find a minimum or maximum of a function

f(x). The derivative of the function at these points is obviously zero, so the local

minima and maxima can be found by applying Newton’s Method to the derivative

of the function to be optimized. In second-degree polynomials which are quadratic

in nature, information of the second derivative of the function would be needed to

work with, which essentially makes Newton’s method a second-order

optimization algorithm. This usage of second-order derivative results in a

Conjugate Gradient

1. Initialize weight vector w0 randomly, set i=0

2. Evaluate the gradient vector gi, and set the initial

search direction di =-gi

3. Use Line Search to find best step size a, which

minimizes the function f(wi+adi)

4. Update weights wi+1 = wi + adi

5. Test stopping conditions

6. Evaluate new gradient vector gi+1

7. Evaluate new search direction di+1= -gi+1 + βidi,

where βi is given by one of:

βi =
𝑔𝑖+1
𝑇 (𝑔𝑖+1−𝑔𝑖)

𝑔𝑖
𝑇𝑔𝑖

βi =
𝑔𝑖+1
𝑇 𝑔𝑖+1

𝑔𝑖
𝑇𝑔𝑖

8. Set i=i+1 and go to step 3

(Fletcher and Reeves)

(Polar and Ribiere)

Page 32 of 102

significantly faster and more accurate convergence to the minimum, comparing

to first-order optimization methods like gradient descent.

In a simple first-degree polynomial and 1-dimensional problem of a function f(x)

and a sub-optimal initial solution x0, Newton’s method suggests the following:

1. Set xi=x0

2. Find the equation of the tangent at xi

3. Find the point xi+1 at which the tangent line intersects with the x-axis

4. Find the projection of xi+1 on f(x)

5. Set xi = xi+1 and go to 2 until f(xi) < threshold

Figure 2.18: Newton’s method in a first degree polynomial

The math behind this method is pretty simple. The equation of a point-slope line

is

𝒚 − 𝒚𝟏 = 𝒎(𝒙 − 𝒙𝟏)

Equation 2.7: The equation of a point-slope line

Where m is the slope. This can be rewritten as

𝒇(𝒙) − 𝒇(𝒙𝟏) = 𝒇′(𝒙)(𝒙 − 𝒙𝟏)

Equation 2.8: The equation of a point-slope line using derivative instead of slope

Page 33 of 102

However, f(x1) = 0 (point of interaction at x-axis) which finally gives the update

rule for x as

𝒙𝒊+𝟏 = 𝒙𝒊 −
𝒇(𝒙𝒊)

𝒇′(𝒙𝒊)

Equation 2.9: The update rule for optimizing the function

However, this is just an illustrating example, used to gain the intuition behind the

method of finding the roots of a function. What this method actually does in

optimization theory is instead of using tangent lines at a current solution x as

discussed earlier, it approximates the function f(x) by a local quadratic function

around x, and take steps iteratively towards the minimum of that approximated

function. This is repeated enough times to reach a certain threshold of the error

or until a specific number of iterations have passed. Figure 2.19 illustrates the

quadratic approximations around the weights at each iteration.

Figure 2.19 Local Quadratic approximations (Rezamohammadighazi 2014)

To approximate the function f(x), the second-order Taylor expansion is being

utilized.

Page 34 of 102

f(𝑥0 + x) ≈ f(𝑥0) + f′(𝑥0)x + f′′(𝑥0)
𝑥2

2

Equation 2.10: The second series Taylor approximation

Obviously, an optimal x needs to be chosen so the f(𝑥0 + x) is a minimum. In

order to do that, Newton’s method suggests to take the derivative of the Taylor

series and set it equal to zero.

d(f(𝑥0) + f
′(𝑥0)x + f

′′(𝑥0)
𝑥2

2
)

dx
= 𝑓′(𝑥0) + 𝑓

′′(𝑥0)𝑥 = 0 ⇒ 𝑥 = −
𝑓′(𝑥0)

𝑓′′(𝑥0)

Equation 2.11: The minimizer of Taylor’s approximation

Ideally, this x should have been the absolute minimum of f(x). However, it is just

the absolute minimum of the local approximation of f(x) around the initial solution

of x0. In order to get to the minimum of the objective function, we just repeat the

process. This gives the final update rule for a 1-dimensional problem, which

eventually converges to a minimum:

𝑥𝑛+1 = −
𝑓′(𝑥𝑛)

𝑓′′(𝑥𝑛)

Equation 2.12: The update rule for optimizing the function f(x) for a 1D problem

The problem is that this algorithm only works for objective functions with a single

dimension (𝑓:ℝ → ℝ).

If the objective function, has multiple dimensions (𝑓:ℝ𝑛 → ℝ), the algorithm is

simply modified by replacing derivatives with gradients and second derivatives

with Hessians (the matrix of second partial derivatives, figure 2.20)

Page 35 of 102

𝑥𝑛+1 = −
∇f(𝑥𝑛)

𝐻(𝑓)(𝑥𝑛)

Equation 2.13: The final update rule for optimizing the function f(x) for multi-

dimensional problem

This is the final update rule, which is the one cited as the Newton’s method.

Figure 2.20: The Hessian matrix of the error function in regards with the weights

This method seems to be extremely efficient and fast computationally, since

unlike Gradient Descent, it does not fit a plane (derivative) at a solution and move

forward on that plane (using the learning rate / step size) but fits a quadratic

approximation around that solution and directly finds the minimum of that

curvature.

However, as the parameters of the function increase, it gets computationally

impossible to calculate and store the entire hessian matrix of the function. This is

why the standard Newton’s method cannot be applied to Neural Networks where

there are thousands to millions of parameters. However, with some modifications,

a different variant of the algorithm can be derived which would make the Hessian

calculation unnecessary and thus possible to apply it to ANN training (Hessian

Free Optimization) (Martens 2010), discussed in section 4.2.

Page 36 of 102

Chapter 3

Data Processing

3.1 PSSP Metrics 37

3.2 Protein Databases and Dictionary of Secondary Structure of Proteins 38

3.3 Training/Testing Set and Cross Validation 39

3.4 Dataset Format 40

3.5 The CB513 Dataset 41

3.6 Data Encoding and Multiple Sequence Alignment (MSA) profiles 42

3.7 Sliding Window 44

3.8 Ensembles 45

3.9 Filtering 46

Page 37 of 102

3.1 PSSP Metrics

The focus of the PSSP problem is to predict accurately – to some extent – the

secondary structure of a protein, given its primary. As a result, proteins with both

structures known have been used to train and test the ANN used in this

dissertation. As input, they have the primary structure of a protein encoded in

some format, and as output, the predicted secondary structure, in a format, which

is consistent to the actual secondary structure format of DSSP, discussed

subsequently.

In order to measure the accuracy of the models trained, two (2) different metrics

were used in this dissertation, which are the most common for the PSSP problem.

First, the Q3 accuracy, which simply measures the number of correctly classified

amino acids, divided by the number of total amino acids (Equation 1.1). However,

this method does not measure how well each separate class is predicted and

how good is the general structure of the complete predicted protein.

As a result, a different metric, the Segment Overlap (SOV) (Rost et al., 1994)

score is also applied to address this problem. This method, instead of comparing

each amino acid in a row, it compares segments of classes. For example, if in

the correct secondary structure, there are four (4) helices, followed by two (2)

coils and another four (4) helices but in the predicted structure there are simple

ten (10) helices in a row the two metrics would produce significantly different

accuracies. Indeed, the Q3 accuracy would be 80%, while the SOV score would

be just 48. Note that SOV originally was not a percentage, since it could produce

values outside of the 0-100 range. However, a modified definition of SOV (Zemla

et al., 1999), fixed this problem using normalization techniques.

Page 38 of 102

3.2 Protein Databases and Dictionary of Secondary Structure of

Proteins (DSSP)

There are millions of documented proteins in various protein databases such as

Protein Information Resource (iProClass), Protein Data bank in Europe (PDBe),

Protein Data bank in Japan (PDBj) and RCSB Protein Data Bank. In those

databases, information regarding protein names, length, structures (primary,

secondary, tertiary and quaternary) exists, as well as many other biological

information related to proteins. Those databases were used to extract protein

information to create the datasets used in PSSP.

The Dictionary for Secondary Structure of Proteins (DSSP) (Kabsch et al., 1983)

defined a standardized format of categorizing the secondary structures of a

protein. In this format, there are eight (8) different classes of secondary

structures, based on their shape and they are represented by a capital English

letter. There are the α-helix (H), 3-helix (G), π-helix (I), β-strand (E), β-bridge (B),

β-turn (T), bend (S), and random coil (C) (table 3.1) for residues which are not in

any of the other conformations. This last designation is unfortunate as no portion

of protein three-dimensional structure is truly random and it is usually not a coil.

A number of "other" secondary structures types have been proposed; however,

they represent a small fraction of residues and may not be a general structural

principle of proteins. It is common to group these eight (8) categories into three

(3) to describe the nature of the shape of the specific local segment of the protein,

which is the way they are categorized in this dissertation. First, the helix (H)

conformations that obviously contain the first three categories (H, G, I), and have

helical form, the sheet (E) conformations that contain the β-strand (E) and β-

bridge (B) categories, and finally Coil (C) conformations which contain everything

else.

Page 39 of 102

Secondary Structure 8 class code 3 class code

α-helix H

H 3-helix G

π-helix I

β-strand E
E

β-bridge B

β-turn T

C bend S

Random coil C

Table 3.1. Matrix with the abbreviations of the secondary structures grouped in 8 and 3
classes

3.3 Training/Testing Set and Cross Validation

The way that learning algorithms work, and more specifically supervised methods

like ANN, is they have a set of data, called the training dataset whose purpose is

to train the model to recognize their patterns and identify each training example

to a given class. This is achieved by a learning algorithm like those discussed on

Section 2.2. In order to evaluate if the model has the ability to generalize those

patterns and that it does not just learn them by heart, another set of data is used,

called the test dataset, completely different from the training one, which simply

measures how well the network has classified the new, never before seen data.

Generally a good way to split a given dataset on training and testing sets, is by

the 80-20 rule, meaning 80% of the total data are used for training while the

remaining 20% for testing, but depending on the problem, different splitting

percentages may produce better results.

However, most of the times, this is not good enough, since the data on a single

test set may not give a good indication on how well the model generalizes new

data. For this reason, a method called k-fold cross validation (Figure 3.1) is often

used to address this issue. What this method suggests, is to split the data on k

folds evenly, and train k different models with each model having a unique fold

Page 40 of 102

as testing and the remaining k-1 folds as training. The average accuracy of each

model is the cross validation accuracy.

Figure 3.1: 10-fold cross validation with error/accuracy being the average of each iteration

3.4 Dataset Format

The datasets used in this dissertation for the purpose of training and validating

ANN for the prediction of the secondary structure of proteins consist of three (3)

lines per protein. The first line of each triplet has the protein name, which is useful

in a later stage, for including additional information to the network beside the

primary structure, using the Multiple Sequence Alignment (MSA) (Rost and

Sander, 1993) profiles (discussed subsequently). The second line has the

primary structure of the protein, which is essentially a sequence of amino acids,

each of which is encoded in a single English character (Table 2.2) as discussed

on Section 2.1. The final, third line has the correct secondary structure of the

protein, which the model aims to predict.

Page 41 of 102

Figure 3.2: An example of a protein representation in the training set files

Generally, in machine learning and ANNs, the performance of the predictive

model heavily depends on the quality of the data being utilized. It is very critical

to the success of the machine learning solution, to create a dataset, which is well

selected and prepared. In order to ensure this, a process often called data

selecting and data cleaning has to be performed. In the case of PSSP, there are

many common datasets which have been created over the years, all of which

have followed this process. In this dissertation, the dataset used is CB513 (Cuff

and Barton 1999), which consists of 513 unique proteins. A very brief explanation

of the process, which was required to create it, follows.

3.5 The CB513 Dataset

The origin of the CB513 (Cuff and Barton 1999) dataset was the dataset of Heinz-

Uwe Hobohm (Pdb_Select25, 2009) in 2009. This dataset originally contained

4019 proteins, with maximum similarity per protein pair of 25%. This is incredibly

important in order to avoid a problem called selection bias, where the data sample

is not truly random and there is no even representation of all classes of the

problem. In selection bias, the trained model learns some classes better than

others, which results in poor classification/prediction on patterns in the testing

set, which belong to a poorly represented class on the training dataset.

From the initial 4019 proteins, only 513 finally remained. This is due to three main

reasons. First, proteins had to be in the PDB database and be encoded in the

Protein Name Primary Structure Secondary Structure

Page 42 of 102

DSSP format. Second, the secondary structure of those proteins should have

been determined by the X-Ray crystallography method or by the NMR (Nuclear

magnetic resonance) method. Finally, there was some additional specific

requirements, regarding both the structure of amino acids in a protein as well as

the clarity of the structure determination by the X-Rays, Those conditions had to

be set and followed, in order to create a dataset which would actually be useful

for the PSSP problem without negatively influencing the classifications.

Finally, due to some problems in the MSA profiles (discussed subsequently),

eight (8) distinct proteins (figure 3.3) had to be excluded from the training sets.

Those proteins had MSA profiles with every value being 0, which would

negatively affect the learning process, which was why it was decided for the

purpose of this dissertation, to remove them altogether.

Figure 3.3. A list of the name of the 8 excluded proteins

3.6 Data Encoding and Multiple Sequence Alignment (MSA)

profiles

In ANN, and in most machine learning algorithms, the input and output of the

model should be encoded and normalized in a real numbered value between zero

and one (0-1) or between minus one and one (-1,1) depending on the range of

the activation function used (Table 2.3). This is because all training examples in

the dataset should be of equal importance. Having inputs with extremely high

values, the network will learn and adjust to those examples in a way that it would

be difficult for inputs with significantly smaller values to overcome. In the case of

PSSP, the idea originally was to encode the input in twenty (20) artificial neurons,

Page 43 of 102

with each neuron representing a unique amino acid (Table 2.2). The amino acid

being examined at each iteration would have its neuron take the value of 1 while

the rest the value of 0. This is called Orthogonal Encoding (Agathokleous 2009)

(Figure 3.4). As intuitive as this method was, it did not give enough information to

the network. As a result, a new method was suggested, which made use of

Multiple Sequence Alignment (MSA) profiles.

Figure 3.4: Orthogonal encoding of amino acids

A lot of proteins have an evolutionary relationship with each other, by which they

share a linkage and are descended from a common ancestor. Due to their

evolutionary relationship, these proteins are supposed to have the same

secondary and tertiary structure (Rost and Sander, 1993). As a result, MSA

suggests aligning the amino acids of those proteins together, and encode in each

position of their sequence the probability of each amino acid appearance. Figure

3.5 illustrates a simple example of the process.

Figure 3.5. Process of MSA profiling

Page 44 of 102

In the case of adjusting those profiles for ANN use, a slightly more complicated

encoding is needed. Figure 3.6 illustrates this in a simple matrix. In the first line,

there are the 20 possible amino acids in a protein and in the first column the

amino acid sequence of the specific protein being examined. Each line has the

probabilities of which amino acid would appear in that specific position in the

protein sequence. In the case of the example of the figure 3.5, the third from last

line would have 0s in all 20 positions of the amino acids except from the V amino

acid where it would have 89% (8/9) and the E amino acid 11% (1/9). Note that

each line should add up to 100, and before feeding them into the network they

should be divided by 100 in order to be in the 0-1 range. Using this encoding,

each amino acid instead of having a single value of 1 in its 20 positions, it has

multiple positive values summed up to 1 which should give a better indication to

the network on how to predict its structure.

Figure 3.6: MSA profile matrix (Christodoulou 2010)

In order to create these matrices, for each protein in the datasets, its

corresponding encoding in MSA profiles was extracted from the HSSP

(Homology‐derived Secondary Structure of Proteins) Database.

3.7 Sliding Window

The structure of proteins in specific positions of the amino acid sequence,

depends heavily on the bonds and interactions formed from neighboring amino

acids. In order to capture this relation, instead of feeding into the network a single

amino acid, a good idea is to feed multiple amino acids together. This is called a

Page 45 of 102

sliding window. How this windows works, is essentially feeding into the network

a fixed number (window size) of successive inputs concatenated, with the desired

output varying depending on the application. For example, in time series

prediction, the desired output of the window is usually the desired output of the

immediate training example following the window. This is because, in time series

problems, the output of a given time stamp depends solely on the previous time

stamps.

However, in the case of PSSP, the secondary structure of an amino acid depends

on the neighboring amino acids on either side of it. Consequently, in this case,

the middle element of the window is the one being predicted and it is its desired

output which is the desired output of the window. It is important to note that at

each iteration the window slides by just one position and not by its whole size. So

for example, in a given ANN trained with a window size of three (3), in the time

stamp t, the inputs would be x(t-1) to x(t+1). In the following iteration, the inputs

would have been x(t) to x(t+2) and not x(t+2) to x(t+5).

Figure 3.7: An example of an ANN trained with a window of size 3.(Wang et al. 2016)

3.8 Ensembles

In machine learning, a good way to improve the performance of your learning

model is to make use of a method called ensemble learning. What this method

suggests is instead of training just one model and get a single prediction, train

multiple and combine in some way the results.

Page 46 of 102

There are a number of ensemble methods, some of which are more advanced

and complex than others. In this dissertation, a relatively simple and basic one

was applied. It is called an averaging ensemble and essentially what it does is,

as the name suggests, averages the outputs of its models. More specifically, in a

scenario where there is a number of different models which were trained for the

PSSP problem, the ensembling process works as follows. For each input/output

pair, calculate the output for each model and classify it into one of the three

classes available (H, E, and C). Using the ‘winner takes all’ method, take the

results of each model, and the class with the most representations is the final

class of the specific input. In the case of a tie, an arbitrary class of those

participating in the tie is selected.

This way, random errors which might have occurred in some models are

averaged out, which results in ultimately slightly better predictions, given the

simplicity of this ensemble method. In more advanced ensembles, significant

improvement may be achieved but they are usually computationally more

expensive and time consuming.

3.9 Filtering

Another way to improve the performance of a predictive model is to apply post-

processing filtering. The filtering can either be generic by applying another

learning algorithm on the existing predictions or problem specific (Kountouris et

al., 2012). In this dissertation, both methods were applied which resulted in

slightly better results in the quality of the predictions (SOV score) or in the final

raw accuracies (Q3 Score).

In the first case, different training and testing sets are being created based on the

results of the original learning algorithm. These sets are basically the original

sets, with the only difference being that instead of having as inputs the amino

acids, they have the class of each amino acid which was predicted by the original

model. Those sets are then used to train a separate learning model, which slightly

Page 47 of 102

improves the results mostly in the Q3 accuracy. In this dissertation the learning

model used to filter the data was the Support Vector Machines (SVM) (Cristianini

et al., 2000).

The SVM algorithm, like Neural Networks, is a supervised algorithm, mainly used

for classification. The way it works is essentially based on the idea of finding

hyperplanes that best divide a dataset into classes, as shown in the image below.

Figure 3.8. Dividing two linearly separable classes

However, if the data are not linearly separable, as discussed in section 2.2, SVM

tries to map the data into a higher dimension, using non-linear kernel functions

that simply compute inner products, which is extremely cheap and effective. After

this non-linear transformation into a higher dimension, the data are more likely to

become linearly separable as illustrated in figure 3.9

Figure 3.9. Transforming the feature vectors non-linearly to higher dimensions, results in
the data becoming linearly seperable

In the second case, a specific set of external rules are being applied which are

problem specific to the PSSP problem. Those rules were derived by empirical

observations and mainly aim to fix the quality of the predictions instead of the

overall accuracy.

Page 48 of 102

More specifically, they include the following rules:

1. Single 'H' or 'E' are replaced with 'C'

2. Sequence 'HEEH' is replaced with 'HHHH'

3. Sequence 'HEH' is replaced with 'HHH'

4. Sequence '!HH!' is replaced with '!CC!'

Where H, E and C are the three predicting classes of table 3.1.

These rules are computationally extremely cheap since they consist of simple

conditional statements, which improve the SOV score, while occasionally

decreasing slightly the Q3 score.

Page 49 of 102

Chapter 4

Methodology

4.1 Selecting a suitable ANN for PSSP 50

4.2 Bidirectional Recurrent Neural Network (BRNN) 52

4.3 Hessian Free Optimization (HFO) 54

4.4 System Implementation 64

Page 50 of 102

4.1 Selecting a suitable ANN for PSSP

The way the PSSP problem in this dissertation is defined (Chapter 3) makes it a

classification problem suitable for ANN training. There are a number of ANN

architecture options, each of which has its benefits, which facilitate different types

of classification problems. For example, for problems with just two linearly

separable classes, a simple perceptron would be the best option for it, given its

extreme simplicity, which results in a superior performance in terms of training

time. However, as the complexity of the problem rises, more complex

architectures and learning algorithms are required for effective predictions, such

as MLPs and RNNs trained with their respective BP algorithms (Section 2.2).

The way biological proteins fold in local segments (secondary structure) depends

solely on the interactions and bonds that are formed by the neighboring amino

acids. A network, which is designed to take into account this information, namely

to have as input not just the amino acid being classified, but also the amino acids

located on either side of it, in a way that makes sense, is theoretically bound to

give a better prediction. As a result, a different variation of ANN from those

discussed in section 2.2 has been used which makes use of this information.

The way this new network is designed is essentially combining existing network

architectures of feedforward MLP and recurrent ANN discussed earlier. More

specifically, it is composed of three (3) separate modules/networks, two of which

are recurrent networks with the other one being a simple feedforward MLP

(Figure 4.1). The first recurrent network has as input the sequence of amino acids

preceding the amino acid being classified while the second has the sequence of

amino acids following it. This creates a bidirectional memory for the network,

which facilitates the correlation of amino acids located on either side of the one

being predicted, hence its name of Bidirectional Recurrent Neural Network

(BRNN), originally proposed and designed by Baldi in 1999 (Baldi et al., 1999).

Page 51 of 102

Figure 4.1.: Baldi’s Bidirectional Recurrent Neural Network (1999)

4.2 Bidirectional Recurrent Neural Network (BRNN)

The Bidirectional Recurrent Neural Network (BRNN) (Baldi et al., 1999) is

designed for non-casual problems, namely problems where outputs at discrete

times depend on future inputs as well. This is very important for problems like the

PSSP where there is a correlation between the secondary structure of a specific

amino acid and the sequence of amino acids that are bidirectionally located next

to it in the unfolded structure of the protein.

The main idea of the architecture is that there are two separate recurrent

networks whose outputs are aggregated and joined by another feedforward MLP

which determines the final output of the BRNN. More specifically, there are a

forward (F) and backward (B) RNN which work separately using their own hidden

layer(s). Their outputs, along with the output of the hidden layer of the MLP are

Page 52 of 102

used to calculate the final output of the network, which is the final predicted

secondary structure of the amino acid being examined (Equation 4.1).

𝑌𝑡 = 𝑛(𝐹𝑡 , 𝐼𝑡 , 𝐵𝑡)

Equation 4.1.: The output of the network, where n() is realized by the MLP, Ft is the

output of the Forward RNN, It is the current input of the network and Bt is the output

of the Backward RNN.

The BRNN has as input in time t a sequence (input window) of amino acids which

is used to better classify the amino acid located in the center of this sequence.

The time in this case is essentially the location of the amino acid in the primary

structure of the protein. As a result, the time stamps of the network are limited to

the 0-T range where T is the length of the primary structure of the protein. The

input window has a fixed size for the entirety of the training process, which is

always centered on the amino acid at location t.

The amino acids in the input window which precede and follow the amino acid in

location t, are fed into two non-linear functions φ() (Equation 4.2) and β()

(Equation 4.3), which are realized by the Forward and Backward RNN

respectively. The forward RNN has as input the sequence of amino acids which

is in the input window and precedes the amino acid t with a left-to-right order.

Respectively, the backward RNN has as input the sequence of amino acids that

is in the input window and follows the amino acid t with a right-to-left order. Being

recurrent networks, they both have an additional input, which is their own output

of the previous iteration. Consequently, these networks form some sort of a

bidirectional memory for the network with which it can correlate the sequential

relation between successive amino acids.

The way the data are fed into each recurrent network can either be one by one

amino acid, or as a sequence of amino acids which has a fixed length, smaller

than the number of amino acids that precede or follow the centered amino acid

in the input window. In the edge cases, namely for t < 0 or t > (total number of

Page 53 of 102

amino acids) a padding of zero-valued vectors are used for each position outside

of the allowed range.

The unfolded network in time, which illustrates the successive inputs to the

network, is presented in figure 4.2.

𝐹𝑡 = 𝜑(𝐹𝑡−1,𝑈𝑡)

Equation 4.2: The output of the forward RNN, which is a non-linear function of its

previous output (Ft-1) and its current input, encoded by the unit Ut of figure 4.1.

𝐵𝑡 = 𝛽(𝐵𝑡+1,𝑈𝑡)

Equation 4.3: The output of the backward RNN, which is a non-linear function of

its previous output (Bt+1) and its current input, encoded by the unit Ut of figure 4.1.

Figure 4.2. The BRNN unfolded in time (Agathokleous, 2009)

Page 54 of 102

4.3 Hessian Free Optimization (HFO)

4.3.1 Introduction to HFO

Hessian Free Optimization (HFO) (Martens, 2010) is a second order optimization

algorithm of real-valued objective functions. It is a variation of the standard

Newton’s method, discussed in section 2.2, which uses local quadratic

approximations to generate update proposals. As mentioned in that section, on

problems with high dimensionality, namely large neural networks with many

hidden layers, first order optimization algorithms like Gradient Descent can be

extremely slow and ineffective. This is due to a problem called the Vanishing

Gradient. In Gradient Descent, the updates are proportional to the gradient of the

error function back propagated through the layers. Each time it is

backpropagated, the gradient decreases, meaning that for many-layered or

recurrent ANNs, the gradient becomes vanishingly small which results in the front

layers having close to zero information on how to update their weights, meaning

slow to completely ineffective training.

The advantage of using a second order optimization algorithm like Newton’s

method or HFO is that these algorithms consider the curvature of the error

surface (Hessian Matrix) in their optimization process which results in extremely

better step-wise performance. More specifically, instead of fitting a plane at an

initial solution and then determining the step-wise jump like first order algorithms,

second order methods find a tightly fitting quadratic curve at that point and directly

find the minimum of that curvature, which is supremely fast and efficient.

However, computing the Hessian Matrix for a large ANN with thousands to

millions of parameters is not always possible due to the extremely high memory

requirements needed to store it. This is why, while there have been a number of

Newton’s variations like Newton-CG, CG-Steihaug, Newton-Lanczos (Nash,

1984), and Truncated Newton (Nash 2000), none of them have been applied

effectively to machine learning and neural networks, or their applications have

been extremely limited (Martens and Sutskever, 2012).

Page 55 of 102

The Hessian Free method, however proposes solutions to these memory

requirements, which enable it to be effective for Neural Network training. First of

all, it does not compute and store the whole Hessian Matrix (H), but instead just

the dot product of it with an arbitrary vector (u) (Hu), using mathematical methods

like finite differences which cost as much as a single gradient evaluation. This

works really well for HFO since it does not require explicit use of the Hessian but

rather many dot products with it and arbitrary vectors. Secondly, the local

quadratic objectives, which second-order methods approximate, can be

efficiently optimized using the linear conjugate gradient (CG), discussed in

section 2.2 in order to compensate for the lack of the Hessian Matrix needed in

Newton’s method. While the CG method needs N iterations to converge, where

N is the number of parameters of the network, there are a number of stopping

criteria, which terminate it at early stages when significant progress in the

minimization process has been made. This is extremely important since it is

clearly impractical to wait for a complete CG convergence when there is a very

low margin of further minimization.

It is important to note that even though in HFO no Hessian Matrix is calculated

there are no approximations done and the Hu product is calculated accurately.

The only difference between HFO and Newton’s method is that while standard

Newton’s method performs a complete optimization to the approximated

quadratic, HFO does not via the un-converged CG discussed earlier (Martens,

2010). However, the efficiency related benefits of avoiding a full Hessian Matrix

calculation and inversion are clear and more than make up for the extremely small

difference in accuracy by the not fully converged CG.

Finally, although the Hu product can be calculated efficiently and accurately, it is

not the one usually used in HFO. Instead, the Gu product is used, where G is the

Gauss-Newton matrix, an approximation of the Hessian Matrix (Schraudolph,

2002). While it seems pointless to use an approximation instead of the correct

curvature matrix when there is no problem in efficiency, Gauss-Newton avoids

some of the problems that the Hessian may face, which cause the algorithm to

Page 56 of 102

be completely ineffective. In fact, even when those problems do not occur, the

use of the G matrix consistently results in better search directions utilizing half

the memory and running twice as fast, comparing to the usage of the Hessian

matrix (Martens, 2010)

4.3.2 Detailed Analysis of HFO

The HFO method is a minimization algorithm of a twice-differentiable objective

function 𝑓:ℝ𝑛 → ℝ with regards to a vector of parameters 𝑤 ∈ ℝ𝑛. Like Newton’s

method, it is based on the idea of iteratively optimizing a sequence of local

quadratic approximations of the objective function in order to produce updates to

w.

In the simplest situation, given the previous parameters wt−1, iteration t produces

a new wt by minimizing a local quadratic model Mt−1(δ) of the objective f(wt−1 + δ),

which is formed using gradient and curvature information local to wk−1 (Equation

4.4)

𝑓(𝑤𝑡−1 + 𝛿) ≅ 𝑀𝑡−𝑡(𝛿) = 𝑓(𝑤𝑡−1) + ∇𝑓(𝑤𝑡−1)
𝑇𝛿 +

1

2
𝛿𝛵𝛣𝑡−1𝛿

Equation 4.4: The local quadratic approximation of the objective f(wt-1+δ) where

Bt-1 is the curvature matrix, which is usually the Hessian (H)

Minimizing the quadratic means that an optimal search direction δ* is found with

which the new update is calculated based on Equation 4.5

𝑤𝑡 = 𝑤𝑡−1 + 𝑎𝛿𝑡
∗

Equation 4.5: The new weight update, where 𝛅𝐭
∗ is the minimizer of the quadratic

of equation 4.4 and α ∈ [0, 1] is the step size, calculated by line search, discussed

in section 2.2.

Solving the system in equation 4.4 in order to find the minimizer δ* like proposed

by the standard Newton’s method is computationally impractical and for some

Page 57 of 102

networks even impossible if you consider the complexity it requires of O(n3)

(Martens and Sutskever, 2012). In order to avoid this, the linear Conjugate

Gradient (CG) (section 2.2) is being used which partially optimizes the quadratic

M. The resulting approximate minimizer δ* is then used to update the weights w

(Equation 4.5).

Conjugate Gradient for HFO

Conjugate Gradient is a specialized optimizer created specifically for quadratic

objectives of the form 𝑞(𝑥) =
1

2
𝑥𝑇𝐴𝑥 − 𝑏𝑇𝑥 where A ∈ ℝ𝑛𝑥𝑛 is positive definite

(𝑥𝑇𝐴𝑥 > 0 ∀ non zero column vector x) and b ∈ ℝ𝑛. To apply CG to equation 4.4

of the quadratic model, we take x = δ, A = Bt−1 and b = ∇f(wt−1), noting that the

constant term f(wt−1) can be ignored.

Conjugate Gradient in the worst case converges in N steps, however depending

on the structure of the curvature matrix B, it often converges in significantly less

iterations and even if it does not converge, it tends to make very good partial

progress (Martens and Sutskever, 2012). In fact, there is a method called

preconditioning, which accelerates the CG convergence by transforming the

coordinate system using a preconditioning matrix P. The CG algorithm using

preconditioning is described in algorithm 4.1.

In order for CG to terminate optimally, there are a number of stopping criteria,

which balance the quality of the solution with the number of iterations required to

obtain it. Martens proposed an approach, which measures the relative progress

of optimizing M, computed as of equation 4.6 (Martens and Sutskever, 2012).

𝑠𝑗 =
𝑀(𝑥𝑗) − 𝑀(𝑥𝑗−𝑘)

𝑀(𝑥𝑗)

Equation 4.6: The measurement of progress suggested by Martens, where xj is the

jth iterate of CG and k is the size of the window over witch the progress is

calculated. (Martens and Sutskever, 2012).

Page 58 of 102

CG can be terminated when sj is below some constant value (e.g. 0.0001).

However, deciding when to terminate can be an extremely more complex and

complicated process and thus a number of more advanced stopping criteria are

available, with some even having nothing to do with the value of M.

Algorithm 4.1. The preconditioned CG. Noting that for minimizing the HFO
quadratic we have x = δ, A = Bt−1 and b = ∇f(wt−1), P the preconditioning matrix
(Martens and Sutskever, 2012)

Damping

The CG algorithm described previously, requires the curvature matrix B to be

positive-definite. However, in the case of Neural Networks where the objective

function is usually non-convex, B may not be positive-definite, which means that

the minimizer of M may not exist and thus the CG method becomes not

applicable. Moreover, the minimizer δ* of the quadratic approximation M can be

very large and “aggressive” in the early stages of the optimization, which means

that is often located far beyond the region where the quadratic approximation is

reasonably trust-worthy. These are general problems of 2nd order optimization for

which a method called ‘damping‘ addresses.

Page 59 of 102

Damping methods essentially restrict the optimization of M to a “trust region” by

augmenting M with penalty terms, which are designed to encourage the minimizer

of M to remain somewhere where M is a good approximation of the objective

function.

There are a number of damping methods proposed by Martens, which are

applicable to HFO (Martens and Sutskever, 2012). However, the one used in this

dissertation is the Tikhonov Damping with the Levenberg-Marquardt heuristic

(Nocedal and Wright, 1999).

Tikhonov regularization or Tikhonov damping is one of the most well-known

damping methods, which works by penalizing the quadratic model by introducing

an additional quadratic penalty term into the quadratic model M. Thus, instead of

minimizing M, we minimize a “damped” quadratic

Equation 4.7: The new damped quadratic, where �̂� = 𝑩 + 𝝀𝜤 and λ ≥ 0 is a scalar

parameter determining the “strength” of the damping.

Picking a good value of λ is critical to the success of the Tikhonov damping.

Picking a too high value of λ results in updates which resemble gradient descent

with extremely small learning rate that essentially take away all the benefits of 2nd

order optimizations discussed previously (Martens and Sutskever, 2012). Too

small, and CG will aggressively optimize the quadratic, resulting in very large

weight updates that may increase the objective instead of decreasing it. This can

be clearly observed by the difference in CG iterations needed per HFO iteration,

based on the initial damping value of λ in the experiments section of the

dissertation.

Dynamically adjusting the value of λ during optimization is just as important

however, in order for it to constantly keep up with the changing local curvature

Page 60 of 102

properties of the objective function f. A good method for addressing this issue is

the Levenberg-Marquardt heuristic. This heuristic defines a reduction ratio, which

measures the ratio of the reduction in the objective produced by the update δ, to

the reduction predicted by the quadratic model.

Equation 4.8: The reduction ratio measuring the reduction of the objective function

comparing to the quadratic

When ρ is much smaller than 1, the quadratic model overestimates the amount

of reduction needed, so the value of λ should increase in order for future updates

to be more reliable and smaller, as discussed previously. Contrary, when ρ is

closer to 1, the quadratic model has a decent minimizer and so λ can be reduced

since there is some margin for allowing larger and more substantial updates.

More specifically the Levenberg-Marquardt heuristic proposes two explicit rules

to dynamically adapt the value of λ:

1. If ρ > 3/4 then λ ← 2/3λ

2. If ρ < 1/4 then λ ← 3/2λ

else λ ← λ

Despite the clear benefits of damping, it is important to note that they are very

tricky and must be used with care. If they are overused, they produce extremely

reliable updates, which are simultaneously useless since they are too small.

Moreover, if they are not properly calibrated they can produce updates which give

the best reductions of the objective function in early stages but may not result in

the best global optimization performance in the end.

Page 61 of 102

Gauss-Newton Matrix

There is a significant problem, briefly mentioned previously, regarding the use of

the Hessian as the curvature matrix. The problem is the inability to apply the CG

algorithm to the quadratic model if the curvature matrix is not positive-definite,

which the Hessian sometimes tends to be. While the damping methods address

this issue in a way, there is a more direct solution to deal with this.

Instead of using the Hessian Matrix as the curvature matrix, another matrix can

be used which is guaranteed to always be positive semi-definite. This new matrix

is the generalized Gauss-Newton matrix, which is an approximation of the

Hessian (Schraudolph, 2002). The benefits of using this matrix do not only lie in

the fact that it is always positive semi-definite but actually in practice, it tends to

work much better both in regards in efficiency and in performance, than the

Hessian. This even applies to situations where Hessian is positive-definite and

there is no problem in using it as the curvature matrix. However, the use of the

Gauss-Newton matrix does not eliminate the need for damping, but when

combining them both, HFO produces much better updates with significantly less

damping.

Evaluating the Hessian-Vector Multiplication

There have been many references in this dissertation stating that no explicit

evaluation and storing of the Hessian is being done for HFO. Instead, dot

products with the Hessian and arbitrary vectors v ∈ ℝ𝑛 are being computed and

utilized, which cost as much as a gradient evaluation.

If you consider the Hessian to be the Jacobian matrix (first order derivatives

matrix) of the gradient, by the definition of directional derivatives, the H(w)v

product is the directional derivative of the gradient ∇f(w) in the direction v, which

gives

Page 62 of 102

Equation 4.9: H(w)v is the directional derivate of the gradient in the direction v

While this may imply a finite-differences algorithm for computing Hv at the cost of

a single gradient evaluation, in practice finite-differences suffer from numerical

errors, which are extremely undesirable in neural network training.

Consequently, another method is being used which avoids those errors. This

method is called ‘Forward Differentiation’, originally proposed by Wengert

(Wengert, 1964) and later adjusted to neural network training by Pearlmutter

(Pearlmutter, 1994).

The idea behind forward differentiation is to make repeated use of the chain rule

to the value of every node of the gradient, like in the BP algorithm described in

section 2.2. More precisely an Rv(X) operator is defined, which denotes the

directional derivative of X in direction v.

Equation 4.10: The Rv(X) operator being the directional derivative of X in the

direction v

Since the R operator is a derivative operator, it obeys the usual rules of

differentiation:

Equation 4.11: The standard rules of differentiation

Page 63 of 102

By applying these rules recursively to the gradient calculation algorithm, in a way

analogous to back-propagation, the Hv product can be efficiently computed.

Algorithm 4.2 shows the algorithm for a simple gradient evaluation, while

Algorithm 4.3 shows the modification of the gradient algorithm by applying the

rules of differentiation to compute the Hv product. Similarly, algorithm 4.4 shows

the algorithm for the Gv product, which is similar to Hv but simpler.

Algorithm 4.2: An algorithm for computing the gradient of a feedforward neural network,
where L(yl;tl) is one of the loss functions of table 4.1 (Martens and Sutskever, 2012)

Algorithm 4.3: An algorithm for computing the H(w)v product in a feedforward neural
network, where L(yl;tl) is one of the loss functions of table 4.1 (Martens and Sutskever,
2012)

Page 64 of 102

Algorithm 4.4: An algorithm for computing the G(w)v product in a feedforward neural
network, where L(yl;tl) is one of the loss functions of table 4.1 (Martens and Sutskever,
2012)

Table 4.1 : Typical losses with their derivatives and Hessians.

4.4 System Implementation

For the purpose of this dissertation, a library for the Hessian Free Optimization

was used, which was implemented by in 2015 (Rasmussen, 2015) based on

the papers of Martens and Sutskever (Martens, 2010; Martens and Sutskever,

2011). It made use of many optimization tricks that were suggested in those

papers and the structure of the library was ideal for the needs of this dissertation.

First of all, both Feedforward and Recurrent Neural Networks were supported for

HFO training, which were needed for implementing the Bidirectional network

described in section 4.1. Moreover, the connections between the layers were not

restrictive, meaning that it was possible to interconnect arbitrary layers, which

was also necessary for constructing the BRNN connections. Finally, all the

standard nonlinearities and loss functions were built-in, which is great for

experimentation.

Page 65 of 102

However, the RNN recursion was later discovered that it was possible only within

a single layer, namely connections from a layer back to itself. For this reason,

some functions of the library were modified to allow multi-layer recursion from

arbitrary layers. Moreover, there was support for a single input layer (which is

standard in ANN), but BRRN requires three different inputs for each separate

network. As a result, the function which implements the forward pass was

modified to allow the input layer to be split into three different vectors, with each

vector being fed into a different hidden layer.

The way the RNN in this library is implemented requires the use of minibatches.

In minibatch training, the training set is split into smaller batches (subsets) and

the weight updates are done after all examples in a single batch are through.

Generally, there are two more ways of training. The online method, where the

weight updates are computed and applied every time a training example is fed

into the network, and the batch method, where all the training examples in the

dataset are used to calculate the weight update. Consequently, minibatching is

somewhere in the middle of the two methods, trying to balance the benefits of

both. Having a larger minibatch size (approaching the batch method), the

convergence of the learning algorithm is usually more accurate but significantly

slower and requires much more memory. Contrary, in a smaller minibatch size

(approaching the online method), the convergence is usually faster but a lot less

accurate.

In the case of PSSP, a minibatch size was chosen in a way to include as much

information as possible, without splitting proteins in half, which would have a

negative result in the predictions. More specifically, the number of training

examples in a mini batch was chosen to be the number of amino acids in the

longest amino acid chain of a protein included in the datasets used, which was

753. This way, all information regarding a single protein would be used to make

the adjustments to the weights of the network. For smaller sized proteins, with

less amino acids, a padding of 0s was added to even out the batches.

Page 66 of 102

Chapter 5

Results and Discussion

5.1 Feedforward Neural Network Experimentations 68

5.2 Recurrent Neural Network Experimentations 73

5.3 Bidirectional Recurrent Neural Network Experimentations 80

5.4 Cross Validation, Filtering and Ensembles 87

Page 67 of 102

5. Results and Discussion

In order to find the optimal parameters of the Bidirectional Recurrent network

many experimentations have been conducted, using different values for the

hyper-parameters.

Before experimenting with the final BRNN though, the built-in Feedforward and

Recurrent neural networks had to be tested, in order to verify their ability to work

and learn properly using HFO, the PSSP problem. Otherwise, there was no point

in modifying them into a BRNN, since that would not work either.

It is also important to note that in order to get the best accuracy in a given model,

it a critical to stop the learning process when the testing error starts getting higher

instead of decreasing at each iteration. This is called overfitting where the model

starts learning the training examples by heart and fails to generalize for unseen

data. It can be clearly observed in figure 5.1 at iteration around 37 until the end.

To address this issue, a condition was implemented to check whether the testing

error at a given iteration is higher than the one at a number of iterations

previously. After some experimentations, it was observed the fluctuations did not

really last for more than 5-10 iterations before converging into overfitting or

escaping a local minimum and start decreasing again. For this reason, the

number of previous iterations for comparing the testing error was set at 10.

However, the last 10 iterations of possible overfitting before being terminated

have extremely bad effects on the final accuracy for the network. Consequently,

the best weights up until a given iteration of the network are being stored in order

to restore the network in its optimal iteration to counter the overfitting of those 10

iterations, when the training is over.

Page 68 of 102

5.1 Feedforward Neural Network Experimentations

Beginning with the Feedforward network, the parameters that had to be tuned

were fairly straightforward. As is standard in FF neural networks, the number of

neurons in hidden layers as well as the nonlinearities and loss functions used are

the major architectural parameters that need to be optimized. In terms of the HFO

parameters, fortunately there are not many. There are mainly only two, which is

the initial damping λ described in section 4.2 and the maximum number of

Conjugate Gradient iterations, which was set at a fixed 500, but in practice rarely

exceeded the 300 mark. Finally, the last parameter which had to be tuned for

every type of network was the window size discussed in section 3.7.

The training for FFN was done using batch learning, meaning that every single

training example was fed into the network before adjusting and updating the

weights. This is because simple FFN do not require much memory and batch

learning usually results in better performance.

Parameter Value

Window Size 11

Number of Hidden Layers 1

Hidden Layer 1 Neurons 75

Nonlinearity Softmax

Loss Function Cross Entropy

Damping factor λ 45

Maximum CG Iterations 500

Table 5.1: The parameters for the first experiment on FFN

Page 69 of 102

Figure 5.1: The graph of the testing error, with regards to the number of iteration

Beginning the experimentations with the default settings of the library, as

mentioned in the table above and an initial window size of 11, it is clear that the

algorithm works extremely well. The Q3 accuracy with these settings is 73.5%,

which not only validates the correctness of the implementation for the FFN, but

also is a really decent accuracy overall, considering the simplicity of the

feedforward network with a single hidden layer. However, as it turned out this

combination of softmax nonlinearity and cross entropy loss function required an

unexpected amount of memory, which made it impossible to experiment with

more complex architectures (e.g. more neurons and hidden layers) or with a

bigger window size.

As a result, the forthcoming experiments were conducted with the other

nonlinearities available (ReLU and Logistic/Sigmoid) and with the Squared Error

loss function.

Page 70 of 102

Parameter Value

Window Size 11

Number of Hidden Layers 1

Hidden Layer 1 Neurons 75

Nonlinearity ReLU

Loss Function Squared Error

Damping factor λ 45

Maximum CG Iterations 500

Table 5.2: The parameters for the second experiment on FFN

Figure 5.2: The graph of the testing error, with regards to the number of iteration

While it seems that the testing error was significantly reduced (~0.24, Figure 5.2)

by the ReLU functions comparing to the error in the first example (~0.62, Figure

5.1) using the Softmax function, it is not true, since the errors in the two examples

Page 71 of 102

are not comparable. In the first case the loss function used was the Cross entropy

error and in the second the Squared Error, which both use different metrics to

calculate the error of the network. In fact, the Q3 accuracy of this method is just

73.1%, which is slightly lower than the 73.5% of the first experiment.

Parameter Value

Window Size 11

Number of Hidden Layers 1

Hidden Layer 1 Neurons 75

Nonlinearity Logistic

Loss Function Squared Error

Damping factor λ 45

Maximum CG Iterations 500

Table 5.3: The parameters for the third experiment on FFN

Figure 5.3: The graph of the testing error, with regards to the number of iteration

Page 72 of 102

It is clear that the Logisitc function works best with the Squared error for this

problem (Table 5.3). The testing error was reduced to ~0.18 with the Q3 accuracy

being 75.1% (Figure 5.3).

Parameter Value

Window Size 13

Number of Hidden Layers 1

Hidden Layer 1 Neurons 90

Nonlinearity Logistic

Loss Function Squared Error

Damping factor λ 10

Maximum CG Iterations 500

Table 5.4: The parameters for the best experiment on FFN

Figure 5.4: The graph of the testing error, in regards to the number of iteration

Page 73 of 102

After many experimentations, which are not discussed individually since FFN is

not the purpose of this dissertation, but rather BRRN, the best accuracy taken

was 76.01% using the above configurations (Table 5.4). More information about

the neighboring amino acids are given to the network by having a slightly bigger

window size, which required an increase in the number of hidden neurons as well

in order to be able to store more complex relations. However, since the network

by design is very simple, increasing the window too much results in worse results

since it simply learns the training examples by heart and fails to generalize. The

optimal window for FFN was found to be 13 and any bigger than that resulted in

significantly worse results (72-74%)

Figure 5.5: The confusion matrix, describing the predictions and mispredictions of the

FFN.

However, observing figure 5.5, it is clear that the network, despite its relatively

good accuracy, is unable to predict the E class effectively (62.28% comparing to

~80% of the other classes). A reason as to why this is happening could be that

the ‘E’ class could potentially by formed with specific long-range dependancies

and interactions with amino acids not close to the predicted one, which FFN,

given its simplicity and relatively small window size, is unable to attain.

Since every nonlinearity and loss function implemented seemed to work fine for

FFN, it was time to test the Recurrent networks if they work just as well.

79.26%

7.10%
10.59%

3.20%

62.28%

9.04%

17.54%

30.62%

80.37%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

H class E Class C Class

Predictions and Mispredictions

H class E Class C Class

Page 74 of 102

5.2 Recurrent Neural Network Experimentations

The way RNN are implemented in the library used is that each layer can be

defined as recurrent by feeding its input back to itself, or not, by behaving as a

standard feedforward layer. Therefore, along with the parameters that had to be

tuned for the feedforward network, the RNN has to also define the layers which

should be recurrent. The default is to make all layers except the input layer and

output layer recurrent, which is what is being done in the following

experimentations.

By design, recurrent neural networks are able to correlate and take into account

previous examples in their predictions. For this reason, the input window has

been modified to have the amino acid being predicted on the far right edge of the

window. This way, the network would have input in a given time only the amino

acids following it, since the ones preceding it would have already passed into the

network and fed back into it as a recurrent input.

The training for RNN was done using minibatch learning, discussed in section

4.4. The way the error is calculated in this method is by summing all the individual

errors from each example in a batch so it seems to be much higher than it actually

is, comparing to the previous errors from FFN.

Parameter Value

Window Size 15

Number of Hidden Layers 1

Hidden Layer 1 Neurons 90

Nonlinearity ReLU / Logistic

Loss Function Squared Error

Damping factor λ 45

Maximum CG Iterations 500

Page 75 of 102

Table 5.5: The parameters for the experiment on RNN in terms of activation functions

Figure 5.6: The graph of the testing error, with regards to the number of iteration for the

ReLU and Logistic activation functions

Starting off with the default parameters again (Table 5.5), but not including the

Softmax activation with the Cross Entropy error for the same reasons discussed

earlier. Using the parameters on the table above, the testing error taken using

both ReLU and Logistic activation functions with a window size of 15 was just

34.2 and 33.8 with final accuracies 66.5% and 67.1% respectively (Figure 5.6).

Despite the fact that RNN by design does take into account previous examples

in its predictions, adjusting the window to not indlude them as input turns out that

it was not a good idea. Given their importance in the determination of a specific

amino acid’s secondary structure, the RNN recursive memory is not enough to

justify excluding those examples altogether from the input. For this reason, the

forthcoming experiments were conducted using the window method done in FFN

as well, namely having the amino acid in the center of the window being the one

getting predicted, in order to include both following and preceding amino acids in

the prediction of a single amino acid.

Page 76 of 102

Parameter Value

Window Size 11 / 15 / 21

Number of Hidden Layers 1

Hidden Layer 1 Neurons 75 / 90 / 110

Nonlinearity ReLU

Loss Function Squared Error

Damping factor λ 45

Maximum CG Iterations 500

Table 5.6: The parameters for the experiment on RNN in terms of window size and the

ReLU activation function

Figure 5.7: The graph of the testing error, with regards to the number of iteration for

different window sizes and the ReLU activation

Page 77 of 102

It is clear that adjusting the window sequence to have the amino acid being

predicted in the center, greatly improves the performance of the network and the

final accuracies. With the parameters used on the table 5.6, the testing error

taken using the ReLU activation function with a window size of 11 was 26.4, with

15 it was 26.2 and finally with a window size of 21 it was 25.98 with final

accuracies 74.5%, 75.42% and 75.82% respectively (Figure 5.7). The best

results were taken with a window size of 21 which is bigger than the one for FFN.

This is because RNN has a slightly more complex architecture, with which it can

calculate and store more complicated relations.

Parameter Value

Window Size 11 / 15 / 21

Number of Hidden Layers 1

Hidden Layer 1 Neurons 75 / 90 / 110

Nonlinearity Logistic

Loss Function Squared Error

Damping factor λ 45

Maximum CG Iterations 500

Table 5.7: The parameters for the experiment on RNN in terms of window size and the

Logistic activation function

Figure 5.8: The graph of the testing error, with regards to the number of iteration for

different window sizes and the Logistic activation function

Page 78 of 102

Testing the network with the same parameters but with the Logistic activation

function (Table 5.7), results in slightly better accuracies, about ~0.4-0.7% higher

in each case, comparing with the ReLU function. More specifically, with a window

size of 11 the accuracy was 74.9%, with 15 it wad 75.91% and with 21 it was

76.21% (Figure 5.8). It is clear that RNN was also implemented correctly for both

activation functions and it is able to learn more than decently the PSSP problem,

which is great, considering that both FFN and RNN networks have to be correct

in order to be formed into the Bidirectional network.

Parameter Value

Window Size 21

Number of Hidden Layers 1

Hidden Layer 1 Neurons 120

Nonlinearity Logistic

Loss Function Squared Error

Damping factor λ 0.1

Maximum CG Iterations 500

Table 5.8: The parameters for the best experiment on RNN

Figure 5.9: The graph of the testing error, with regards to the number of iteration for the

best experiment on RNN

Page 79 of 102

From the previous examples, it was clear that the logistic function, using a window

size of 21 resulted in the best accuracies. Experimenting with the damping value

λ, (Table 5.8) the optimal accuracy for RNN was 76.62%. (Figure 5.9)

A significantly smaller damping value (0.1, comparing to the default of 45) gave

the optimal results in both network architectures. This means that the quadratic

approximations that HFO calculates are fairly reliable which results in the CG

producing larger and substantial updates by being more aggressive, as

discussed in section 4.3. This can be clearly observed by figure 5.10, which

shows that not only does the λ value start at a lower point, but keeps decreasing

using the Levenberg-Marquardt heuristic. This confirms that throughout the

training the quadratic models are fairly accurate, which is reflected by the final

accuracies. Otherwise, the damping would increase, producing smaller updates,

which would produce much lower accuracies.

Figure 5.10: The graph of the the damping value of λ, with regards to the number of

HFO iteration

Page 80 of 102

5.3 Bidirectional Recurrent Neural Network Experimentations

After testing and validating the correct implementation and ability to learn the

PSSP problem for both Feedforward and Recurrent network architectures, it was

time to test the modifications described in section 4.4, which formed the BRNN.

In BRRN there are much more parameters that have to be tuned, since there are

3 individual networks with their hidden layers and neurons. Moreover, there is

another window which is used for the recurrent networks to feed their input layers

with a subsequence of the initial window’s amino acids at each time stamp, as

described in section 4.2. Moreover, since the Logistic nonlinerity consistently

resulted in better results, comparing to the ReLU, it is the only one being used in

the following experiments.

Parameter Value

Window Size 21

Recurrent Window size 1 / 3 / 5

Backward Hidden Layer 1 Neurons 50

Backward Hidden Layer 2 Neurons 30

Forward Hidden Layer 1 Neurons 50

Forward Hidden Layer 2 Neurons 30

MLP Hidden Layer Neurons 80

Nonlinearity Logistic

Loss Function Squared Error

Damping factor λ 45

Maximum CG Iterations 500

Table 5.9: The parameters for the experiment on BRNN in terms of recurrent window

size

Page 81 of 102

Figure 5.11: The graph of the testing error, with regards to the number of iteration in

terms of recurrent window size

Starting the experiments with some arbitary hidden layer sizes, and changing the

recurrent window size in order to find an optimal in the range of 1 / 3 / 5 (Table

5.9) it is clear that the window size of 3 gives the better predictions (Figure 5.11).

More specifically, the window size of 1 has accuracy of 74.81%, the window size

of 3 has 76.01% and the window size of 5 has 73.97%. Feeding too much

information into the network at a time, results in even worse results than feeding

it with significantly less. This is extremely important to highlight, since more

information does not always mean better predictions.

Page 82 of 102

Parameter Value

Window Size 11 / 21 / 31

Recurrent Window size 3

Backward Hidden Layer 1 Neurons 50

Backward Hidden Layer 2 Neurons 30

Forward Hidden Layer 1 Neurons 50

Forward Hidden Layer 2 Neurons 30

MLP Hidden Layer Neurons 80

Nonlinearity Logistic

Loss Function Squared Error

Damping factor λ 45

Maximum CG Iterations 500

Table 5.10: The parameters for the experiment on BRNN in terms of window size

Figure 5.12: The graph of the testing error, with regards to the number of iteration in

terms of the window size

Page 83 of 102

Similary to the previous example, feeding too much information to the network

does not always mean better performance with higher accuracies. For a window

size of 11(Table 5.10) the accuracy of the network was 74.85%, for 21 it was

76.05% and for 31 it was 74.73%. (Figure 5.12)

Parameter Value

Window Size 21

Recurrent Window size 3

Backward Hidden Layer 1 Neurons 50

Backward Hidden Layer 2 Neurons 30

Forward Hidden Layer 1 Neurons 50

Forward Hidden Layer 2 Neurons 30

MLP Hidden Layer Neurons 80

Nonlinearity Logistic

Loss Function Squared Error

Damping factor λ 0.01 / 1 / 20 / 45

Maximum CG Iterations 500

Table 5.11: The parameters for the experiment on BRNN in terms of the damping

parameter λ

Page 84 of 102

Figure 5.13: The graph of the testing error, with regards to the number of iteration in

terms of the damping parameter λ

Continuting with maybe the most important parameter in terms of both

performance and execution time optimization that had to be tuned was the

damping parameter λ. (Table 5.11). As discussed in section 4.3, picking a too

high value of λ results in more reliable updates, which can be extremely small

and inefficient. Too small, and CG will aggressively optimize the quadratic,

resulting in very large weight updates. Figures 5.13, 5.14 and 5.15 clearly

demonstrate this theory, where at a higher value of 45 the HFO computes less

CG iterations per HFO iteration, which results in smaller updates and higher

execution time. As the damping becomes lower, the updates become larger by

calculating significantly more CG iterations and lowering the execution time. It is

important to find a balance between the two, which in the case of this problem,

the balance of the λ value was at 1. This resulted in a final accuracy of 76.45%,

compared to 75.82%, 76.11% and 76.07% for damping 0.01, 20 and 45

respectively.

Page 85 of 102

Figure 5.14: The graph of the CG iterations per HFO iteration with different values of

damping

Figure 5.15: The graph of the execution times with different values of damping

Page 86 of 102

Parameter Value

Window Size 21

Recurrent Window size 3

Backward Hidden Layer 1 Neurons 25

Backward Hidden Layer 2 Neurons 13

Forward Hidden Layer 1 Neurons 25

Forward Hidden Layer 2 Neurons 13

MLP Hidden Layer Neurons 50

Nonlinearity Logistic

Loss Function Squared Error

Damping factor λ 1

Maximum CG Iterations 500

Table 5.12: The parameters for the best experiment on BRNN.

Figure 5.16: The graph of the testing error for the best experiment on BRNN.

Page 87 of 102

The final parameters that were adjusted to produce the best results in BRNN

were the number of neurons in each hidden layer for both the recurrent networks

and the feedforward one (Table 5.12). It seems that the network does not require

many neurons to make better predictions. This is probably because of the input,

due to the MSA profiles, which are mostly 0s which the network can learn to

encode in significantly less neurons. In fact, comparing to the previous

experiments, they only require less than half of it, which significantly reduced the

training duration from 10-11 hours depending on the damping value to just 7-8.

The final accuracy of the network was 76.91%, which is extremely good.

5.4 Cross Validation, Filtering and Ensembles

However, good results taken from a single testing set does not indicate whether

the network is indeed a good predicting model, or whether the testing set used

was just favoring its performance. For this reason, the 10-fold cross validation is

being used to validate the good generalization properties of it, as discussed in

chapter 3.

The parameters used are the same of Table 5.12 which gave the best accuracies

overall.

Figure 5.17: The graph of the testing error for all the folds in cross validation.

Page 88 of 102

 Q3 (%) QH (%) QE (%) QC (%) SOV

Fold0 76.81 79.11 69.72 79.37 70.01

Fold1 74.91 71.02 68.12 80.1 71.02

Fold2 76.32 74.02 69.01 78.2 71.58

Fold3 76.02 78.01 68.12 76.52 71.02

Fold4 75.72 76.52 70.02 77.01 73.54

Fold5 75.01 78.52 68.51 75.12 70.92

Fold6 77.01 79.11 68.12 78.78 72.41

Fold7 75.95 77.91 71.74 75.03 73.68

Fold8 74.75 76.42 67.25 77.12 70.36

Fold9 75.52 77.14 71.12 74.15 73.22

Average 75.8 76.74 69.17 77.14 71.78

Table 5.13: The results of the 10-fold cross validation for the overall Q3 accuracy, the

accuracy for each class and the overal SOV of each fold as well as the average results for

all folds.

Observing figure 5.17, illustrating the training process for all folds, it seems that

each fold learns with a similar pace. It is clear that the model works for all folds,

however the overall accuracy dropped by about 1% to 75.8%, which is expected

since the model was optimized for the first fold. Slightly different parameters

would produce better results for the other folds which could potentially improve

the overall accuracy for the cross validation. However, due to the high amounts

of execution time, it was not possible to find the optimal parameters that would

benefit all the folds overall.

Table 5.13 gives a better insight on the quality of the results, instead of a simple

Q3 accuracy. Observing the accuracies for each class as well as the SOV

accuracy, it is clear that while the Helix and Coil classes are getting predicted

Page 89 of 102

fairly accurately, the sheet conformations not so much, which negatively affects

the overall SOV performance of the network.

However, as discussed in Chapter 3 there are a number of ways to improve either

the Q3 accuracy using post-processing filtering with SVMs, or the SOV accuracy

using the external rules.

 Q3 (%) QH (%) QE (%) QC (%) SOV

Fold0 77.26 79.52 69.92 79.12 69.82

Fold1 76.12 74.02 68.01 79.02 70.76

Fold2 76.91 75.02 69.51 78.11 71.42

Fold3 77.01 79.23 69.12 76.72 71.31

Fold4 76.12 76.82 69.92 77.13 73.14

Fold5 75.94 78.91 68.11 75.92 70.75

Fold6 77.41 79.33 68.54 78.81 72.31

Fold7 76.22 77.61 71.94 76.03 73.81

Fold8 75.35 76.51 68.25 77.11 70.61

Fold9 76.82 79.14 70.12 75.15 72.12

Average 76.52 77.61 69.34 77.31 71.61

Table 5.14: The results of the 10-fold cross validation for the overall Q3 accuracy, the

accuracy for each class and the overal SOV of each fold as well as the average results for

all folds, after applying the SVM filtering

Applying the SVM filtering for each fold in the cross validation results, an increase

of about 0.7% was achieved for the overall Q3 accuracy, while the SOV

decreased by just under 0.2 (Table 5.14). It is important to find a balance between

the overall accuracy of the network and the SOV accuracy, which are both

significant.

Page 90 of 102

 Q3 (%) QH (%) QE (%) QC (%) SOV

Fold0 76.91 79.81 69.52 79.40 70.51

Fold1 75.91 74.12 67.84 79.14 71.32

Fold2 76.42 75.32 69.47 78.33 71.99

Fold3 76.57 79.31 68.52 76.81 71.83

Fold4 76.01 76.89 69.81 77.17 73.51

Fold5 75.59 78.99 67.97 76.01 71.42

Fold6 76.94 79.41 68.01 78.91 72.83

Fold7 76.11 77.71 71.21 76.52 74.01

Fold8 75.22 76.71 67.58 77.23 71.04

Fold9 76.51 79.22 70.01 75.27 72.57

Average 76.22 77.75 68.99 77.48 72.1

Table 5.15: The results of the 10-fold cross validation for the overall Q3 accuracy, the

accuracy for each class and the overal SOV of each fold as well as the average results for

all folds, after applying the external rules.

Applying the external rules filtering for each fold in the cross validation results, an

increase of about 0.5 was achieved for the overall SOV accuracy, while the Q3

decreased by just 0.3 (Table 5.15).

When deciding what is important in the final predictions of the secondary structure

of a protein, whether that would be the raw accuracy overall or the individual

accuracy of each class, or just the segment overlap, describing the general

structure of the protein, it is critical to choose a suitable post processing filtering

method. For the first cases, the SVM filter usually results in better overall

predictions, while the empirical external rules are better for a better general

structure instead of just individual amino acids.

Page 91 of 102

Finally, the last method used to improve the performance was the ensembles.

However, since there was not enough time to create multiple ensembles for each

fold, the process was applied only for a single fold (Fold 0).

The ensemble files used for figure 5.18 were the results after using SVMs, while

the files for figure 5.19 were the results after using the external rules.

Figure 5.18: The graph of the Q3 accuracy, depending on the quantity of ensemble files

used

Figure 5.19: The graph of the SOV accuracy, depending on the quantity of ensemble

files used

Page 92 of 102

Observing figures 5.18 and 5.19, the accuracies in both cases improved for the

first 4-6 ensemble files but then they remain relatively the same. This is important

to highlight, since creating a huge set of files for ensembling purposes will not

drastically improve the predictions, since the predicting model is the same, which

more or less has the same predicting patterns at every completed training

iteration. However, ensembles do pick up on random misclassifications, but

ultimately only slightly improve the overall performance. In the case of this

problem, ensembles improved the Q3 accuracy by about ~1% to 78.15 while the

SOV accuracy by about ~0.25 to 70.76.

Figure 5.20: The 10 worst-predicted proteins (Protein name / Q3 accuracy / Secondary structure /

Predicted Secondary structure)

Figure 5.21: The 10 best-predicted proteins (Protein name / Q3 accuracy / Secondary structure /

Predicted Secondary structure)

Figures 5.20 and 5.21 show the 10 worst/best-predicted proteins of the whole

dataset, taken using cross validation and the BRRN network with the parameters

of table 5.12. It seems that some of the worst proteins are much smaller in length,

while some of the best are much larger. However, proteins with any length are

Page 93 of 102

found in both figures, which makes it hard to conclude in a specific reasoning

behind why those specific proteins are the ones being the best/worst-predicted

ones.

Figure 5.22: The Average Q3 accuracy in terms of protein length.

Finally, observing the average accuracy per protein length of Figure 5.22 it is

clear that the network fails to predict accurately the proteins which have a smaller

size (<50) at an average ~68.5% Q3 accuracy comparing to proteins which are

larger (50-300) at an average ~76% Q3 accuracy. Interestingly, when proteins

are significantly larger (>300) the accuracy falls about 2%, which does not

necessarily mean that there could be a specific reasoning behind this, but it’s

probably due to the small sample of proteins (only 37). The fact that there is also

a small sample for smaller proteins (34), however, does not justify the significantly

lower accuracies of it too.

34 Proteins

113 Proteins

217 Proteins 82 Proteins

37 Proteins

64.00%

66.00%

68.00%

70.00%

72.00%

74.00%

76.00%

78.00%

<50 50-100 100-200 200-300 >300

Q
3

 A
cc

u
ra

cy

Protein Length (Number of amino acids)

Average Accuracy per protein Length

Page 94 of 102

Chapter 6

Conclusion and Future Work

6.1 Conclusion 95

6.2 Future Work 96

Page 95 of 102

6.1 Conclusion

The purpose of this dissertation was the problem of Protein Secondary Structure

Prediction (PSSP), using learning algorithms that aim to predict the secondary

structure of a protein based on its primary. The importance of this lies on the fact

that the experimental methods and instruments that actually determine it are

incredible costly, whereas learning methods are not. Moreover, being able to

predict the functions of a protein through its secondary structure, enables the

manufacturing of pharmaceutical drugs, food complements and antibiotics.

In this thesis, a Bidirectional Recurrent Neural Network (BRNN) was trained using

the Hessian Free Optimization (HFO). The results taken were extremely

promising at about 78.15% Q3 accuracy using a single fold with ensembles and

SVM filtering and about 76.52% using 10-fold cross validation with SVM filtering

but not ensembles, due to the high amounts of training time. Finally, the highest

SOV score achieved for cross validation was 72.1 which is fairly decent. It is

important to highlight that even though some of published results have higher

accuracies (84-85%), they use different datasets, which are much larger than CB

513, which means that they are not completely comparable. However, there is

still room for improvement, discussed in the following section.

Q
3

 (
%

)

S
O

V

Q
3
 w

/S
V

M
(%

)

Q
3
 w

/
E

x
te

rn
a
l

R
u

le
s
 (

%
)

S
O

V
 w

/S
V

M

S
O

V
 w

/

E
x
te

rn
a
l
R

u
le

s

Q
3
 w

/

E
n

s
e
m

b
le

s
 (

%
)

S
O

V
 w

/

E
n

s
e
m

b
le

s

10-fold

Cross

Validation

75.58 71.78 76.52 76.22 71.61 72.1 - -

One fold 76.81 70.01 77.26 76.91 69.82 70.51 78.15 70.76

Table 6.1 The final results of the dissertation

Page 96 of 102

6.1 Future Work

Even though the results were fairly good, considering they were just 6-7% lower

than the current best Q3 accuracies, there is still some margin for improvement.

First of all, the complete dataset used was split into ten folds for the purpose of

the 10-fold cross validation. Therefore, necessarily, one of those folds was used

to optimize the parameters for the model. However, the correct thing to do is to

have a separate file for this process, containing proteins which are not included

in any of the folds used for the cross validation. This is because in order to have

an objective validation for the good generalization properties of the model, it is

necessary to not have the optimized fold influence the final results of the cross

validation. For this reason, the dataset should be split into 11 folds instead, where

the addition fold should be used solely for optimizing the parameters and not be

included in the cross validation.

Morever, the results taken from feedforward networks were extremely promising,

given their simple architecture and superior performance in execution time.

Therefore, a proper methodology should be used to validate its performance

using cross validation. Moreover, additional filtering, similar to the one used for

BRNN in this dissertation (SVM, external empirical rules and ensembles), should

also be applied to find the limits in the accuracies of the network. Finally, given

the extremely promising results taken from Convolutional Neural Networks which

used a simple Gradient descent optimizer for its feedforward network in the end

(Διονυσίου, 2018), there is some possibility that even better results could be

achieved if the HFO optimizer was used instead.

Due to lack of time and the extremely high amounts of training time required for

BRNNs, no ensembling was done for the cross validation. This could potentially

increase the overall accuracy by ~1-1.5%. Moreover, the averaging ensemble

method used is the simplest form of ensembles. Using a more complex ensemble

like AdaBoost (Rätsch et al., 2001) or Random Forest (Chan et al, 2008) could

Page 97 of 102

also potentially increase the final performance of the network. Finally, in this

thesis the ensemble files used were all derived from the same network trained

with the same parameters. Combining different architecture trained with different

learning algorithms which store different kinds of relations, could also increase

the quality of the results.

The current implementation used for BRNN and HFO, required extremely large

amounts of memory. This prevented the training of an existing, significantly larger

dataset, derived from PISCES, which is a protein sequence culling server (Wang

et al, 2003). In general, training a learning algorithm with a much larger dataset

often results in better predictions. Consequently, it is important to try to optimize

the implementation to require less memory or use a machine with higher memory

capabilities in order to get results with HFO on a much larger dataset.

Finally, the benefits of using HFO lie on its superior performance in terms of

execution times. In order to verify this, proper comparisons should be conducted

with other second order algorithms like Scaled Conjugate Gradient, which are

implemented on BRNN as well. (Agathokleous, 2016)

Page 98 of 102

References

Agathocleous, M., Christodoulou, C.,Promponas, V., Kountouris, P. and

Vassiliades, V. (2016). Training Bidirectional Recurrent Neural Network

Architectures with the Scaled Conjugate Gradient Algorithm. Artificial Neural

Networks and Machine Learning - ICANN 2016, Lecture Notes in Computer

Science, ed. by A. E. P. Villa, P. Masulli and A. J. P. Rivero, Springer-Verlag,

9886, pp. 123-131.

Baldi, P., Brunak, S., Frasconi, P., Soda, G., & Pollastri, G. (1999) Exploiting the

past and the future in protein secondary structure prediction. Bioinformatics,

15(11), pp. 937-946.

Bishop, C.M. (1995). Neural networks for pattern recognition. Oxford University

Press, Oxford, UK

Chan, J. C. W., & Paelinckx, D. (2008). Evaluation of Random Forest and

Adaboost tree-based ensemble classification and spectral band selection for

ecotope mapping using airborne hyperspectral imagery. Remote Sensing of

Environment, 112(6), pp. 2999-3011.

Charalambous, C. (1992). Conjugate gradient algorithm for efficient training of

artificial neural networks. Circuits, Devices and Systems, IEE Proceedings G,

139(3), pp. 301-310

Cristianini, N., & Shawe-Taylor, J. (2000). An introduction to Support Vector

Machines. Cambridge University Press, New York, NY, USA

Dor, O. and Zhou, Y. (2006). Achieving 80% ten-fold cross-validated accuracy for

secondary structure prediction by large-scale training. Proteins: Structure,

Function, and Bioinformatics, 66(4), pp.838-845.

Page 99 of 102

Heffernan, R., Paliwal, K., Lyons, J., Dehzangi, A., Sharma, A., Wang, J., Sattar,

A., Yang, Y. and Zhou, Y. (2015). Improving prediction of secondary structure,

local backbone angles and solvent accessible surface area of proteins by iterative

deep learning. Scientific Reports, 5, 11476.

Hornik, K., Stinchcombe, M. and White, H. (1989). Multilayer feedforward

networks are universal approximators. Neural Networks, 2(5), pp.359-366.

Hush, D. R. and Salas, J. M., (1988). Improving the learning rate of back-

propagation with the gradient reuse algorithm, Proceedings of the IEEE 1988

International Conference on Neural Networks, San Diego, CA, USA, vol.1, pp.

441-447

Jones, D. (1999). Protein secondary structure prediction based on position-

specific scoring matrices. Journal of Molecular Biology, 292(2), pp.195-202.

Joosten, R., Te Beek, T., Krieger, E., Hekkelman, M., Hooft, R., Schneider, R.,

Sander, C. and Vriend, G. (2010). A series of PDB related databases for everyday

needs. Nucleic Acids Research, 39(Database), pp.D411-D419.

Kabsch, W. and Sander, C. (1983). Dictionary of protein secondary structure:

Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers,

22(12), pp.2577-2637.

LeCun, Y., Bengio, Y. and Hinton, G. (2015). Deep learning. Nature, 521(7553),

pp.436-444.

Kountouris, P., Agathocleous, M., Promponas, V., Christodoulou, G.,

Hadjicostas, S., Vassiliades, V. and Christodoulou, C. (2012). A Comparative

Study on Filtering Protein Secondary Structure Prediction. IEEE/ACM

Transactions on Computational Biology and Bioinformatics, 9(3), pp.731-739.

Page 100 of 102

Magnan, C. and Baldi, P. (2014). SSpro/ACCpro 5: almost perfect prediction of

protein secondary structure and relative solvent accessibility using profiles,

machine learning and structural similarity. Bioinformatics, 30(18), pp.2592-2597.

Martens, J. (2010) Deep learning via Hessian-free optimization. In Proceedings

of the 27th International Conference on Machine Learning (ICML‘10), Bottou, L.,

and Littman, M., (eds.), pp. 735-742.

Martens, J., Sutskever, I. (2012). Training Deep and Recurrent Networks with

Hessian-Free Optimization. In: Montavon G., Orr G.B., Müller KR. (eds) Neural

Networks: Tricks of the Trade. Lecture Notes in Computer Science, vol 7700.

Springer, Berlin, Heidelberg

Nash, S. G. (1984). Newton-type minimization via the Lanczos method. SIAM

Journal on Numerical Analysis, 21(4), 770-788.

Nash, S.G. (2000). A survey of truncated-newton methods. Journal of

Computational and Applied Mathematics, 124(1), pp 45–59.

Nocedal, J., & Write, S. SJ (1999). Numerical optimization. Springer-Verlag, New

York

Pearlmutter, B.A. (1994). Fast exact multiplication by the hessian. Neural

Computation, 6(1): pp.147–160.

Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery (1992).

Numerical Recipes in C: The Art of Scientific Computing (Second ed.).

Cambridge University Press. Cambridge, MA

Rasmussen, D. (2015), Hessian-free optimization for deep networks, GitHub

repository, https://github.com/drasmuss/hessianfree, May, 2018.

https://github.com/drasmuss/hessianfree

Page 101 of 102

Rost, B. and Sander, C. (1993). Improved prediction of protein secondary

structure by use of sequence profiles and neural networks. Proceedings of the

National Academy of Sciences, 90(16), pp.7558-7562.

Rost, B., Sander, C. and Schneider, R. (1994). PHD-an automatic mail server for

protein secondary structure prediction. Bioinformatics, 10(1), pp.53-60.

Rätsch, G., Onoda, T., & Müller, K. R. (2001). Soft margins for AdaBoost.

Machine learning, 42(3), pp. 287-320.

Schraudolph, N. (2002). Fast Curvature Matrix-Vector Products for Second-Order

Gradient Descent. Neural Computation, 14(7), pp.1723-1738.

Wang, G., & Dunbrack Jr, R. L. (2003). PISCES: a protein sequence culling

server. Bioinformatics, 19(12), pp. 1589-1591.

Wang, S., Peng, J., Ma, J., & Xu, J. (2016). Protein secondary structure prediction

using deep convolutional neural fields. Scientific reports, 6, 18962.

Wengert, RE. (1964). A simple automatic derivative evaluation program.

Communications of the ACM, 7(8), pp.463–464.

Xie, S., Li, Z. and Hu, H. (2018). Protein secondary structure prediction based on

the fuzzy support vector machine with the hyperplane optimization. Gene, 642,

pp.74-83.

Yang, Y., Gao, J., Wang, J., Heffernan, R., Hanson, J., Paliwal, K. and Zhou, Y.

(2016). Sixty-five years of the long march in protein secondary structure

prediction: the final stretch?. Briefings in Bioinformatics, p.bbw129.

Zemla, A., Venclovas, Č., Fidelis, K., & Rost, B. (1999). A modified definition of

Sov, a segment‐based measure for protein secondary structure prediction

Page 102 of 102

assessment. Proteins: Structure, Function, and Bioinformatics, 34(2), pp. 220-

223.

Αγαθοκλέους Μ., (2009). Πρόβλεψη Δευτεροταγούς Δομής Πρωτεϊνών με την

χρήση Νευρωνικών Δικτύων Αμφίδρομης Ανάδρασης, Προπτυχιακή

διπλωματική, Τμήμα Πληροφορικής Πανεπιστήμιο Κύπρου, Λευκωσία.

Διονυσίου Α., (2018). Πρόβλεψη Δευτεροταγούς Δομής Πρωτεινών Με Χρήση

Συνελικτικών Νευρωνικών Δικτύων Σε Συνδυασμό Με Φίλτρα Gabor Και Support

Vector Machines, Προπτυχιακή διπλωματική, Τμήμα Πληροφορικής

Πανεπιστήμιο Κύπρου, Λευκωσία.

Πετρίδου Ε., (2015 Πρόβλεψη Δευτεροταγούς Δομής Πρωτεϊνών, Μεταπτυχιακή

διατριβή, Τμήμα Πληροφορικής Πανεπιστήμιο Κύπρου, Λευκωσία.

Χριστοδούλου, Γ. (2010). Διερεύνηση Μεθόδων Εκπαίδευσης Νευρωνικών

Δικτύων Αμφίδρομης Ανάδρασης για Πρόβλεψη Δευτεροταγούς Δομής

Πρωτεϊνών, Προπτυχιακή διπλωματική, Τμήμα Πληροφορικής Πανεπιστήμιο

Κύπρου, Λευκωσία.

A-1

Annex A

BRNN.py

import hessianfree as hf

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import storeProteins

import datetime

import os

import random

import pickle

import sys

def trainRNN(trainingData, trainingOutput, testingData, testingOutput,

window):

 optimizer = hf.opt.HessianFree(CG_iter=250, init_damping=45)

 rnn = hf.RNNet(

 shape=[20 * window, 120, 3],

 layers=hf.nl.Logistic(),

 loss_type=[hf.loss_funcs.SquaredError(),

 hf.loss_funcs.StructuralDamping(1e-4,

optimizer=optimizer)], debug=False,

 rng=np.random.RandomState(0))

 rnn.run_epochs(trainingData, trainingOutput,

 optimizer=optimizer, test=(testingData,

testingOutput),

 max_epochs=100,

 test_err=hf.loss_funcs.SquaredError())

 return rnn

def trainFFN (trainingData, trainingOutput,testingData, testingOutput

, window, plots=True,seed=0,fold=0):

 ff = hf.FFNet([20 * window, 75, 3],

 layers=hf.nl.Logistic(),

 loss_type=hf.loss_funcs.SquaredError())

 pre = seed

 ff.run_epochs(trainingData, trainingOutput,

 optimizer=hf.opt.HessianFree(CG_iter=500,

init_damping=45),

 max_epochs=150, plotting=plots,

file_output="Results/Fold"+str(fold)+"/BRRN_PLOT_"+str(pre),test=(test

ingData, testingOutput))

 return ff

def trainBRNN(trainingData, trainingOutput,testingData, testingOutput,

window, plots=True,seed = 0,fold=0,d=45):

A-2

 optimizer = hf.opt.HessianFree(CG_iter=500, init_damping=d)

 brnn = hf.BRNNet([20 * 3, 20 * 13, 20 * 3, 65, 30, 30, 15, 15, 3],

 layers=hf.nl.Logistic(),

 windowC=13, windowF=3, windowB=3, windowA=21,

 loss_type=[hf.loss_funcs.SquaredError(),

 hf.loss_funcs.StructuralDamping(1e-4,

optimizer=optimizer)],

 conns={0: [4], 1: [3], 2: [5], 4: [6], 5: [7], 3:

[8], 6: [8], 7: [8]},

 rec_layers=[4, 5])

 pre = seed

 brnn.run_epochs(trainingData, trainingOutput,

 optimizer=optimizer,

 max_epochs=150, plotting=plots,

file_output="Results/Fold"+str(fold)+'/damping ' + '{0:.5f}'.format(d)

+ "/BRRN_PLOT_"+str(pre), test=(testingData, testingOutput),

test_err=hf.loss_funcs.SquaredError(),)

 return brnn

def getFFNAccuracy(testingData,testingOutput,ff,proteins, plots =

True,fold=0):

 outputs = ff.forward(testingData)[-1]

 accuracy = 0

 count = [0,0,0]

 countTotal = [0,0,0]

 correctProts = ['C', 'E', 'H']

 f = open("Results/Fold" + str(fold)+ "/" +

datetime.datetime.now().strftime("BRNN_%Y%m%d%H%M%S")+ '.txt', "w+")

 np.set_printoptions(precision=3, suppress=True)

 c = len(proteins[2])

 counter = 0

 pos =0

 for i in range(len(outputs)):

 max = outputs[i][0]

 index = 0

 prot = ""

 if (outputs[i][1] > max):

 max = outputs[i][1]

 index = 1

 if (outputs[i][2] > max):

 max = outputs[i][2]

 index = 2

 if testingOutput[i][index] == 1:

 accuracy += 1

 count[index] += 1

 prot += correctProts[index]

 counter += 1

 if counter == c:

 proteins[pos * 4 + 3] = prot

 prot = ""

 counter = 0

 pos += 1

 if i<len(outputs)-1:

 c = len(proteins[pos*4+2])

 f.write(str(outputs[i])[1:-1] + ' ' +

str(testingOutput[i])[1:-1] + '\n')

 countTotal[np.where(testingOutput[i]==1)[0][0]] =

countTotal[np.where(testingOutput[i]==1)[0][0]]+1

 acc = accuracy * 100 / (len(testingOutput))

A-3

 print("Accuracy: ", accuracy * 100 / (len(testingOutput)), "%")

 print("Accuracy Coil: ", count[0]*100.0/ countTotal[0], "%")

 print("Accuracy E: ", count[1] * 100.0 / countTotal[1], "%")

 print("Accuracy H: ", count[2] * 100.0 / countTotal[2], "%")

 return acc,proteins

def getRNNAccuracy(testingData, testingOutput, rnn,

proteins,plots=True,fold=0,d = 45):

 outputs = rnn.forward(testingData)[-1]

 accuracy = 0

 count = [0,0,0]

 countTotal = [0,0,0]

 correctProts = ['C','E','H']

 f = open("Results/Fold" + str(fold)+ "/damping " + str(d) + '/' +

datetime.datetime.now().strftime("BRNN_%Y%m%d%H%M")+ '.txt', "w+")

 np.set_printoptions(precision=3, suppress=True)

 for i in range(len(outputs)):

 prot = ""

 for j in range(len(outputs[i])):

 if (1 not in testingOutput[i][j]):

 break;

 max = outputs[i][j][0]

 index = 0

 if (outputs[i][j][1] > max):

 max = outputs[i][j][1]

 index = 1

 if (outputs[i][j][2] > max):

 max = outputs[i][j][2]

 index = 2

 if testingOutput[i][j][index] == 1:

 accuracy += 1

 count[index] += 1

 if testingOutput[i][j][0] == 1:

 countTotal[0] +=1

 elif testingOutput[i][j][1] == 1:

 countTotal[1] +=1

 elif testingOutput[i][j][2] == 1:

 countTotal[2] +=1

 f.write(str(outputs[i][j])[1:-1] + ' ' +

str(testingOutput[i][j])[1:-1] + '\n')

 prot +=correctProts[index]

 proteins[i*4+3] = prot

 acc = accuracy * 100 / (countTotal[0]+countTotal[1]+countTotal[2])

 print("Accuracy: ", accuracy * 100 /

(countTotal[0]+countTotal[1]+countTotal[2]), "%")

 print("Accuracy Coil: ", (count[0]*100.0/ countTotal[0]) if

(countTotal[0] > 0) else 100, "%")

 print("Accuracy E: ", count[1] * 100.0 / countTotal[1] if

countTotal[1] >0 else 100, "%")

 print("Accuracy H: ", count[2] * 100.0 / countTotal[2] if

countTotal[2] >0 else 100, "%")

 return acc, proteins

def createSet(file,window,batch=None,cutoff=None):

 open_file = open(file, "r")

A-4

 lines = open_file.readlines()

 protObj = storeProteins.storeProteins()

 size = 1

 prot = lines[0:]

 proteins = protObj.readProteins(prot, window - 1,batch,cutoff)

 print("Helix: ",protObj.h)

 print("Extended strand: ", protObj.e)

 print("Coil: ", protObj.c)

 print("Zeroes(padding): ", protObj.padding)

 data = []

 pos = 0

 i = 0

 temp = []

 if cutoff is not None:

 batch = cutoff*20+(window-1)*20

 while i <= (len(protObj.data) - 20 * (window)):

 data.append(protObj.data[i:i + 20 * window])

 if (batch is not None and i> 0 and ((i+ (window) * 20) %

(batch*size) == 0)):

 i += int(window) * 20

 temp.append(data)

 data= []

 continue

 elif (protObj.endOfProtein[pos] == i + (window) * 20):

 pos += 1

 i += int(window) * 20

 continue;

 i += 20

 if batch is None:

 data = np.array(data)

 output = np.array(protObj.yt)

 else:

 output = []

 for i in range(0,len(protObj.yt),protObj.maxProtein*size):

 output.append(protObj.yt[i:i+protObj.maxProtein*size])

 output = np.array(output)

 if len(data) > 0:

 print(len(data))

 print(protObj.maxProtein*size - len(data))

 temp.append(data)

 print("remaining")

 data = np.array([np.array(t) for t in temp])

 return data, output, proteins

window = 21

#cb 513

batch_size = 753*20+(window-1)*20

cutoff = None

fold = 0

damping = 1

startTime = datetime.datetime.now().strftime("%H:%M %Y-%m-%d")

print(startTime)

pre = random.randint(1,1000000)

#These files for full dataset

A-5

testingData,testingOutput, proteinsTest = createSet("TestSets/testSet"

+ str(fold),window,batch_size,cutoff)

trainingData,trainingOutput, proteinsTrain =

createSet("TrainingSets/trainSet"+str(fold),window,batch_size,cutoff)

#These files for just one protein for testing

#trainingData,trainingOutput,proteinsTrain =

createSet("TrainingSets/msaProteinsTrainBigDataset_afterProcess.txt",w

indow,batch_size,cutoff)

#testingData,testingOutput, proteinsTest =

createSet("TrainingSets/msaProteinsTrainBigDataset_afterProcess.txt",w

indow,batch_size,cutoff)

#ffn = trainFFN(trainingData, trainingOutput, testingData,

testingOutput, window,seed=pre)

#rnn = trainRNN(trainingData, trainingOutput, testingData,

testingOutput, window)

rnn = trainBRNN(trainingData, trainingOutput, testingData,

testingOutput, window,seed=pre,fold=fold,d = damping)

#Set the weights to the weight of the best epoch for ffn

'''ffn.W = ffn.best_W.copy()

np.save("Results/Fold" + str(fold) + "/damping " + str(damping) + '/'

+ str(pre) +"_weights.npy", ffn.W)

with open("Results/Fold" + str(fold) + "/damping " + str(damping) +

'/' + "/" + str(pre) + "_brnn_settings.pkl", "wb") as f:

 pickle.dump(ffn.shape, f)

accTest,proteinsTest = getFFNAccuracy(testingData, testingOutput, ffn,

proteinsTest,fold=fold)

accTrain, proteinsTrain= getFFNAccuracy(trainingData, trainingOutput,

ffn, proteinsTrain,fold=fold)

endTime = datetime.datetime.now().strftime("%H:%M %Y-%m-%d")

print(endTime)

outputs = ffn.forward(trainingData)[-1]

outputs2 = ffn.forward(testingData)[-1]'''

#Set the weights to the weight of the best epoch for rnn

rnn.W = rnn.best_W.copy()

np.save("Results/Fold" + str(fold) + "/damping " +

'{:.5f}'.format(damping) + '/' + str(pre) +"_weights.npy", rnn.W)

with open("Results/Fold" + str(fold) + "/damping " +

'{0:.5f}'.format(damping) + '/' + "/" + str(pre) +

"_brnn_settings.pkl", "wb") as f:

 pickle.dump(rnn.shape, f)

accTest,proteinsTest = getRNNAccuracy(testingData, testingOutput, rnn,

proteinsTest,fold=fold,d=damping)

accTrain, proteinsTrain= getRNNAccuracy(trainingData, trainingOutput,

rnn, proteinsTrain,fold=fold,d=damping)

endTime = datetime.datetime.now().strftime("%H:%M %Y-%m-%d")

print(endTime)

outputs = rnn.forward(trainingData)[-1]

outputs2 = rnn.forward(testingData)[-1]

Save predictions

A-6

f= open('Results/Fold' + str(fold) + "/damping " +

'{0:.5f}'.format(damping) + '/' + 'train-' + str(accTrain) + str(pre)

+ ".txt","w+")

f2= open('Results/Fold' + str(fold) + "/damping " +

'{0:.5f}'.format(damping) + '/' + 'test-'+ str(accTest) + str(pre)

+".txt","w+")

for p in proteinsTrain:

 f.write(p + '\n')

for p in proteinsTest:

 f2.write(p + '\n')

B-1

Annex B

storeProteins.py

Read data from file and organize them into input

and target output

from numpy import *

class storeProteins:

 def __init__(self):

 self.sizeOfAminoacids = 0 # for training data

 self.sizeOfCleanAminoacids = 0 # for targets

 self.aminoacids = []

 self.data = []

 self.yt = []

 self.maxProtein = 753

 self.h = 0

 self.c = 0

 self.e = 0

 self.extra = 0

 self.padding = 0

 self.endOfProtein = []

 ##

 # Read data from file and finds there MSA representation. Adds

zeros, equal to the window size, at the beginning

 # and the end of the protein. Returns an array with the output

format of the program

 # (Protein name\nPrimary Structure\nCorrect secondary structure\n

+\n) where + is to be replaced with the predicted

 # secondary structure. If the sequence has unknown symbols i.e.

'!' it removes them from the sequence.

 ##

 def readProteins(self, lines, window,batch_size=None,cutoff=None):

 wrongProteins = ['1coiA_1-29','1mctI_1-28','1tiiC_195-

230','2erlA_1-40','1ceoA_202-254','1mrtA_31-61','1wfbB_1-37','6rlxC_-

2-20']

 proteins = []

 leadingZeros = zeros((1, window * 10)) # half window frond and

back

 if cutoff is not None:

 self.maxProtein = cutoff

 for i in range(0, len(lines), 3):

 name = lines[i].rstrip()

 if (name in wrongProteins):

 print (name)

 continue;

 proteins.append(name)

 secondary = lines[i + 2].rstrip()

 proteins.append(lines[i + 1].rstrip().replace('!', '')) #

protein's first structure

B-2

 proteins.append(secondary.replace('!', '')) # protein's

secondary structure

 proteins.append('') # protein's predicted secondary

structure which will be added later in the + field

 try:

 msa = loadtxt("msaFiles/" + name + '.hssp')

 except FileNotFoundError:

 print(name, " protein not found")

 # followingZeros = zeros((1, (753-(len(msa))) * 20)) #

padding

 protein = (msa * 1.0) / 100.0

 if batch_size is not None:

 protein = concatenate((protein, tile(zeros(20),

(self.maxProtein-len(protein),1))))

 if cutoff is not None:

 self.extra = cutoff - (len(protein) % cutoff)

 protein = concatenate((protein,tile(zeros(20),(cutoff

- (len(protein) % cutoff),1))))

 #protein = append(protein, zeros(20)*(cutoff -

(len(protein) % cutoff)))

 temp = protein.copy()

 for i in range(cutoff, len(protein), cutoff):

 temp = concatenate((temp[:i + int(i / cutoff - 1)

* window], protein[i - int(window / 2):i],

 temp[i + int(i / cutoff - 1) *

window:i + int(i / cutoff - 1) * window + int(window / 2)],

 temp[i + int(i / cutoff - 1) *

window:]))

 #temp = concatenate((temp[:i+int(i/cutoff-

1)*window],protein[i-int(window/2):i] , temp[i+int(i/cutoff-

1)*window:]))

 protein = temp

 # Placing half windows on the front and the back of a

protein makes the predicted amino acid being on the center of each

window

 self.data = append(self.data, leadingZeros)

 self.data = append(self.data, protein)

 self.data = append(self.data, leadingZeros)

 #self.data = append(self.data, leadingZeros)

 #self.data = append(self.data, leadingZeros)

 if cutoff is None:

 self.endOfProtein = append(self.endOfProtein,

len(self.data))

 else:

 for i in range(cutoff,len(protein),cutoff):

 self.endOfProtein = append(self.endOfProtein,

len(self.data-len(protein)+i))

 # self.data = append(self.data, followingZeros) # padding

 self.sizeOfAminoacids += len(msa) + window

 # self.sizeOfAminoacids += 753 + window

 self.sizeOfCleanAminoacids += len(msa)

B-3

 # self.sizeOfCleanAminoacids += 753

 self.normilizeOutput(secondary, window,batch_size,cutoff)

 # self.normilizeOutput(secondary, window, followingZeros)

 return proteins

 ##

 # Converts the secondary structure class in to neuron activation.

 ##

 def normilizeOutput(self, secondary,

window,batch_size=None,cutoff=None):

 se = secondary.split()

 for i in range(0, window, 1):

 # self.yt.append([0, 0, 0])

 self.aminoacids.append("10")

 count = 0

 for t in se[0]:

 if t == "C":

 self.yt.append([1, 0, 0])

 self.c += 1

 self.aminoacids.append(t)

 elif t == "E":

 self.yt.append([0, 1, 0])

 self.e += 1

 self.aminoacids.append(t)

 elif t == "H":

 self.yt.append([0, 0, 1])

 self.h += 1

 self.aminoacids.append(t)

 else:

 count +=1

 continue # ignores if there is a ! or anything except

the three above

 if batch_size is not None:

 self.padding += self.maxProtein-len(se[0])+count

 for i in range(self.maxProtein-len(se[0])+count):

 self.yt.append([0,0,0])

 if cutoff is not None:

 for i in range(self.extra):

 self.yt.append([0,0,0])

C-1

Annex C

Bffnet.py

"""Implementation of feedforward network, including Gauss-Newton

approximation

for use in Hessian-free optimization.

.. codeauthor:: Daniel Rasmussen

<daniel.rasmussen@appliedbrainresearch.com>

Based on

Martens, J. (2010). Deep learning via Hessian-free optimization. In

Proceedings

of the 27th International Conference on Machine Learning.

"""

from __future__ import print_function

from collections import defaultdict, OrderedDict

import pickle

import warnings

import numpy as np

import math

import hessianfree as hf

class BFFNet(object):

 """Implementation of feed-forward network (including

gradient/curvature

 computation).

 :param list shape: the number of neurons in each layer

 :param layers: nonlinearity to use in the network (or a list

giving a

 nonlinearity for each layer)

 :type layers: :class:`~.nonlinearities.Nonlinearity` or `list`

 :param dict conns: dictionary of the form `{layer_x:[layer_y,

layer_z],

 ...}` specifying the connections between layers (default is to

 connect in series)

 :param loss_type: loss function (or list of loss functions) used

to

 evaluate network

 :type loss_type: :class:`~.loss_funcs.LossFunction` or `list`

 :param dict W_init_params: parameters passed to

:meth:`.init_weights`

 (see parameter descriptions in that function)

 :param bool use_GPU: run curvature computation on GPU (requires

 PyCUDA and scikit-cuda)

 :param load_weights: load initial weights from given array or

filename

 :type load_weights: `str` or :class:`~numpy:numpy.ndarray`

 :param bool debug: activates expensive features to help with

debugging

 :param rng: used to generate any random numbers for this network

(use

C-2

 this to control the seed)

 :type rng: :class:`~numpy:numpy.random.RandomState`

 :param dtype: floating point precision used throughout the network

 :type dtype: :class:`~numpy:numpy.dtype`

 """

 def __init__(self, shape, layers=hf.nl.Logistic(), conns=None,

 loss_type=hf.loss_funcs.SquaredError(),

W_init_params=None,

 use_GPU=False, load_weights=None, debug=False,

rng=None,

 dtype=np.float64):

 self.debug = debug

 self.shape = shape

 self.n_layers = len(shape)

 self.dtype = np.float64 if debug else dtype

 self.mask = None

 self._optimizer = None

 self.rng = np.random.RandomState() if rng is None else rng

 # note: this isn't used internally, it is just here so that an

 # external process with a handle to this object can tell what

epoch

 # it is on

 self.epoch = None

 self.inputs = None

 self.targets = None

 self.activations = None

 self.d_activations = None

 # initialize layer nonlinearities

 if not isinstance(layers, (list, tuple)):

 if isinstance(layers, hf.nl.Nonlinearity) and

layers.stateful:

 warnings.warn("Multiple layers sharing stateful

nonlinearity, "

 "consider creating a separate instance

for each "

 "layer.")

 layers = [layers for _ in range(self.n_layers)]

 layers[0] = layers[1] = layers[2] = hf.nl.Linear()

 if len(layers) != len(shape):

 raise ValueError("Number of nonlinearities (%d) does not

match "

 "number of layers (%d)" %

 (len(layers), len(shape)))

 self.layers = []

 for t in layers:

 if isinstance(t, str):

 # look up the nonlinearity with the given name

 t = getattr(hf.nl, t)()

 if not isinstance(t, hf.nl.Nonlinearity):

 raise TypeError("Layer type (%s) must be an instance

of "

 "nonlinearities.Nonlinearity" % t)

 self.layers += [t]

C-3

 # initialize loss function

 self.init_loss(loss_type)

 # initialize connections

 if conns is None:

 # set up the feedforward series connections

 conns = {}

 for pre, post in zip(np.arange(self.n_layers - 1),

 np.arange(1, self.n_layers)):

 conns[pre] = [post]

 self.conns = OrderedDict(sorted(conns.items(), key=lambda x:

x[0]))

 # note: conns is an ordered dict sorted by layer so that we

can

 # reliably loop over the items (in compute_offsets and

init_weights)

 # maintain a list of backwards connections as well (for

efficient

 # lookup in the other direction)

 self.back_conns = defaultdict(list)

 for pre in conns:

 for post in conns[pre]:

 self.back_conns[post] += [pre]

 if pre >= post:

 raise ValueError("Can only connect from lower to

higher "

 "layers (%s >= %s)" % (pre,

post))

 # add empty connection for first/last layer (just helps smooth

the code

 # elsewhere)

 self.conns[self.n_layers - 1] = []

 self.back_conns[0] = []

 # compute indices for the different connection weight matrices

in the

 # overall parameter vector

 self.compute_offsets()

 # initialize connection weights

 if load_weights is None:

 if W_init_params is None:

 W_init_params = {}

 self.W = self.init_weights(

 [(self.shape[pre], self.shape[post])

 for pre in self.conns for post in self.conns[pre]],

 **W_init_params)

 else:

 if isinstance(load_weights, np.ndarray):

 self.W = load_weights

 else:

 # load weights from file

 self.W = np.load(load_weights)

 if len(self.W) != np.max(list(self.offsets.values())):

C-4

 raise IndexError(

 "Length of loaded weights (%s) does not match

expected "

 "length (%s)" % (len(self.W),

np.max(list(self.offsets.values()))))

 if self.W.dtype != self.dtype:

 raise TypeError("Loaded weights dtype (%s) doesn't

match "

 "self.dtype (%s)" % (self.W.dtype,

self.dtype))

 # initialize GPU

 if use_GPU:

 try:

 import pycuda

 import skcuda

 except Exception as e:

 print(e)

 raise ImportError("PyCuda/scikit-cuda not installed. "

 "Set use_GPU=False.")

 hf.gpu.init_kernels()

 self.use_GPU = use_GPU

 def run_epochs(self, inputs, targets, optimizer,

 max_epochs=100, minibatch_size=None, test=None,

 test_err=None, target_err=1e-6, plotting=False,

 file_output=None, print_period=1):

 """Apply the given optimizer with a sequence of (mini)batches.

 :param inputs: input vectors (or a

:class:`~.nonlinearities.Plant` that

 will generate the input vectors dynamically)

 :type inputs: :class:`~numpy:numpy.ndarray` or

 :class:`~.nonlinearities.Plant`

 :param targets: target vectors corresponding to each input

vector (or

 None if a plant is being used)

 :type targets: :class:`~numpy:numpy.ndarray`

 :param optimizer: computes the weight update each epoch (see

 optimizers.py)

 :param int max_epochs: the maximum number of epochs to run

 :param int minibatch_size: the size of the minibatch to use in

each epoch

 (or None to use full batches)

 :param tuple test: tuple of (inputs,targets) to use as the

test data

 (if None then the same inputs and targets as training will

be used)

 :param test_err: a custom error function to be applied to

 the test data (e.g., classification error)

 :type test_err: :class:`~.loss_funcs.LossFunction`

 :param float target_err: run will terminate if this test error

is

 reached

 :param str file_output: output files from the run will use

this as a

C-5

 prefix (if None then don't output files)

 :param bool plotting: if True then data from the run will be

output to

 a file, which can be displayed via dataplotter.py

 :param int print_period: print out information about the run

every `x`

 epochs

 """

 test_errs = []

 self.best_W = None

 self.best_error = None

 # compute test error

 if test is None:

 test_in, test_t = inputs, targets

 else:

 test_in, test_t = test[0], test[1]

 prefix = "HF" if file_output is None else file_output

 minibatch_size = minibatch_size or inputs.shape[0]

 plots = defaultdict(list)

 self.optimizer = optimizer

 if isinstance(optimizer, hf.opt.SCG):

 if test_err is None:

 err = self.error(self.W, test_in, test_t)

 else:

 output = self.forward(test_in, self.W)

 err = test_err.batch_loss(output, test_t)

 test_errs += [err]

 for i in range(max_epochs):

 self.epoch = i

 printing = print_period is not None and (i % print_period

== 0 or

 self.debug)

 #printing = False;

 print("=" * 40)

 print("epoch", i)

 # run minibatches

 indices = self.rng.permutation(inputs.shape[0])

 #indices = range(inputs.shape[0])

 for start in range(0, inputs.shape[0], minibatch_size):

 # generate minibatch and cache activations

 self.cache_minibatch(

 inputs, targets, indices[start:start +

minibatch_size])

 # validity checks

 if self.inputs.shape[-1] != self.winA*20:

 raise ValueError(

 "Input dimension (%d) does not match number of

input "

 "nodes (%d)" % (self.inputs.shape[-1],

self.shape[0]))

 if self.targets.shape[-1] != self.shape[-1]:

 raise ValueError(

 "Target dimension (%d) does not match number

of "

C-6

 "output nodes (%d)" % (self.targets.shape[-1],

 self.shape[-1]))

 assert self.activations[-1].dtype == self.dtype

 # compute update

 print(prefix)

 update = optimizer.compute_update(printing,prefix)

 #compute update SCG

 #update =

optimizer.compute_update(printing,inputs,targets,indices[start:start +

minibatch_size])

 assert update.dtype == self.dtype

 # apply mask

 if self.mask is not None:

 update[self.mask] = 0

 # update weights

 self.W += update

 # invalidate cached activations (shouldn't be

necessary,

 # but doesn't hurt)

 #self.activations = None

 #self.d_activations = None

 #self.GPU_activations = None

 if test_err is None:

 err = self.error(self.W, test_in, test_t)

 else:

 output = self.forward(test_in, self.W)

 err = test_err.batch_loss(output, test_t)

 test_errs += [err]

 if isinstance(optimizer,hf.opt.SCG):

 print("Object of SCG")

 comparison = 2 * optimizer.delta * (test_errs[-2] -

test_errs[-1]) / np.power(optimizer.phi, 2)

 print(test_errs[-2],test_errs[-1])

 if comparison >= 0:

 if test_errs[-1] < target_err:

 break # done!

 vector = np.copy(self.W)

 f_old = test_errs[-1]

 self.activations, self.d_activations =

self.forward(inputs[indices[start:start + minibatch_size]],

self.W,

deriv=True)

 self.activations = [np.asarray(a,

dtype=self.dtype)

 for a in self.activations]

 self.d_activations = [np.asarray(a,

dtype=self.dtype)

 for a in

self.d_activations]

 self.r_new = -self.calc_grad()

C-7

 self.success = True

 self.lamb_ = 0

 if (i+1) % self.W.shape[0] == 0:

 optimizer.grad_new = optimizer.r_new

 else:

 beta = (np.dot(optimizer.r_new,

optimizer.r_new) - np.dot(optimizer.r_new, optimizer.r)) /

optimizer.phi

 optimizer.grad_new = optimizer.r_new + beta *

optimizer.grad

 if comparison > 0.75:

 optimizer.lamb = 0.5 * optimizer.lamb

 else:

 optimizer.lamb_ = optimizer.lamb

 # end

 if comparison < 0.25:

 optimizer.lamb = 4 * optimizer.lamb

 if printing:

 print("test error", test_errs[-1])

 print("test error", test_errs[-1])

 # save the weights with the best error

 if self.best_W is None or test_errs[-1] < self.best_error:

 self.best_W = self.W.copy()

 self.best_error = test_errs[-1]

 # dump plot data

 if plotting:

 plots["update norm"] += [np.linalg.norm(update)]

 plots["W norm"] += [np.linalg.norm(self.W)]

 plots["test error (log)"] += [test_errs[-1]]

 if hasattr(optimizer, "plots"):

 plots.update(optimizer.plots)

 with open("%s_plots.pkl" % prefix, "wb") as f:

 pickle.dump(plots, f)

 # dump weights

 '''if file_output is not None:

 np.save("%s_weights.npy" % prefix, self.W)'''

 # check for termination

 if test_errs[-1] < target_err:

 if print_period is not None:

 print("target error reached")

 break

 if test is not None and i > 10 and test_errs[-5] <

test_errs[-1]:

 if print_period is not None:

 print("overfitting detected, terminating")

 break

 def forward(self, inputs, params=None, deriv=False):

 """Compute layer activations for given input and parameters.

 :param inputs: input vectors (passed to first layer)

C-8

 :type inputs: :class:`~numpy:numpy.ndarray`

 :param params: parameter vector (weights) for the network

(defaults to

 ``self.W``)

 :type params: :class:`~numpy:numpy.ndarray`

 :param bool deriv: if True then also compute the derivative of

the

 activations

 """

 params = self.W if params is None else params

 if isinstance(inputs, hf.nl.Plant):

 inputs.reset()

 activations = [None for _ in range(self.n_layers)]

 if deriv:

 d_activations = [None for _ in range(self.n_layers)]

 original = inputs.copy()

 for i in range(self.n_layers):

 if i == 0:

 if isinstance(inputs, hf.nl.Plant):

 inputs = inputs(None)

 else:

 inputs = original[:,0:self.shape[0]]

 elif i == 1:

 inputs = original[:,self.shape[0]:self.shape[0] +

self.shape[1]]

 elif i==2:

 inputs = original[:,self.shape[0] +

self.shape[1]:self.shape[0] + self.shape[1] + self.shape[2]]

 else:

 inputs = np.zeros((inputs.shape[0], self.shape[i]),

 dtype=self.dtype)

 for pre in self.back_conns[i]:

 W, b = self.get_weights(params, (pre, i))

 inputs += np.dot(activations[pre], W)

 inputs += b

 # note: we're applying a bias on each connection

to a

 # neuron (rather than one for each neuron). just

because

 # it's easier than tracking how many connections

there are

 # for each layer (but we could do it if it becomes

 # important).

 activations[i] = self.layers[i].activation(inputs)

 if deriv:

 d_activations[i] = self.layers[i].d_activation(inputs,

activations[i])

 for i, a in enumerate(activations):

 if not np.all(np.isfinite(a)):

 raise OverflowError("Non-finite nonlinearity

activation "

 "value (layer %d) \n %s" %

 (i, a[not np.isfinite(a)]))

 if deriv:

 return activations, d_activations

C-9

 return activations

 def error(self, W=None, inputs=None, targets=None):

 """Compute network error.

 :param W: network parameters (defaults to ``self.W``)

 :type W: :class:`~numpy:numpy.ndarray`

 :param inputs: input vectors (defaults to the cached

(mini)batch for

 current epoch)

 :type inputs: :class:`~numpy:numpy.ndarray`

 :param targets: target vectors (defaults to the cached

(mini)batch for

 current epoch)

 :type targets: :class:`~numpy:numpy.ndarray`

 """

 W = self.W if W is None else W

 inputs = self.inputs if inputs is None else inputs

 # get outputs

 if (W is self.W and inputs is self.inputs and

 self.activations is not None):

 # use cached activations

 activations = self.activations

 else:

 # compute activations

 activations = self.forward(inputs, W)

 # get targets

 if isinstance(inputs, hf.nl.Plant):

 # get targets from plant

 targets = inputs.get_vecs()[1]

 else:

 targets = self.targets if targets is None else targets

 # note: np.nan can be used in the target to specify places

 # where the target is not defined. those get translated to

 # zero error in the loss function.

 error = self.loss.batch_loss(activations, targets)

 return error

 def cache_minibatch(self, inputs, targets, minibatch=None):

 """Pick a subset of inputs and targets to use in minibatch,

and cache

 the activations for that minibatch."""

 if minibatch is None:

 minibatch = np.arange(inputs.shape[0])

 if not isinstance(inputs, hf.nl.Plant):

 # inputs/targets are vectors

 self.inputs = inputs[minibatch]

 self.targets = targets[minibatch]

 # cache activations

 self.activations, self.d_activations =

self.forward(self.inputs,

C-10

self.W,

deriv=True)

 else:

 # input is a dynamic plant

 if targets is not None:

 raise ValueError("Cannot specify targets when using

dynamic "

 "plant to generate inputs (plant

should "

 "generate targets itself)")

 # run plant to generate batch

 inputs.shape[0] = len(minibatch)

 self.activations, self.d_activations =

self.forward(inputs, self.W,

deriv=True)

 self.inputs, self.targets = inputs.get_vecs()

 # cast to self.dtype

 if self.inputs.dtype != self.dtype:

 warnings.warn("Input dtype (%s) not equal to self.dtype

(%s)" %

 (self.inputs.dtype, self.dtype))

 self.inputs = np.asarray(self.inputs, dtype=self.dtype)

 self.targets = np.asarray(self.targets, dtype=self.dtype)

 self.activations = [np.asarray(a, dtype=self.dtype)

 for a in self.activations]

 self.d_activations = [np.asarray(a, dtype=self.dtype)

 for a in self.d_activations]

 self.d2_loss = self.loss.d2_loss(self.activations,

self.targets)

 # allocate temporary space for intermediate values, to save on

 # memory allocations

 self.tmp_space = [np.zeros(a.shape, self.dtype)

 for a in self.activations]

 if self.use_GPU:

 # TODO: we could just allocate these on the first timestep

and

 # then do a copy rather than an allocation after that, if

this

 # ever became a significant part of the computation time

 self.load_GPU_data()

 def load_GPU_data(self):

 """Load data for the current epoch onto GPU."""

 from pycuda import gpuarray

 # clear out old data (this would happen eventually on its own,

but by

 # doing it first we make sure there is room on the GPU before

 # creating new arrays)

 if hasattr(self, "GPU_W"):

 del self.GPU_W

 del self.GPU_activations

C-11

 del self.GPU_d_activations

 del self.GPU_d2_loss

 del self.GPU_tmp_space

 self.GPU_W = gpuarray.to_gpu(self.W)

 self.GPU_activations = [gpuarray.to_gpu(a)

 for a in self.activations]

 self.GPU_d_activations = [gpuarray.to_gpu(a)

 for a in self.d_activations]

 self.GPU_d2_loss = [gpuarray.to_gpu(a) if a is not None else

None

 for a in self.d2_loss]

 self.GPU_tmp_space = [gpuarray.empty(a.shape, self.dtype)

 for a in self.activations]

 @staticmethod

 def J_dot(J, vec, transpose_J=False, out=None):

 """Compute the product of a Jacobian and some vector."""

 # In many cases the Jacobian is a diagonal matrix, so it is

more

 # efficient to just represent it with the diagonal vector.

This

 # function just lets those two be used interchangeably.

 if J.ndim == 2:

 # note: the first dimension is the batch, so ndim==2 means

 # this is a vector representation

 if out is None:

 # passing out=None fails for some reason

 return np.multiply(J, vec)

 else:

 return np.multiply(J, vec, out=out)

 else:

 if transpose_J:

 J = np.transpose(J, (0, 2, 1))

 if out is None:

 # passing out=None fails for some reason

 return np.einsum("ijk,ik->ij", J, vec)

 if out is vec:

 tmp_vec = vec.copy()

 else:

 tmp_vec = vec

 return np.einsum("ijk,ik->ij", J, tmp_vec, out=out)

 def calc_grad(self):

 """Compute parameter gradient."""

 for l in self.layers:

 if l.stateful:

 raise TypeError("Cannot use neurons with internal

state in "

 "a one-step feedforward network; use "

 "RNNet instead.")

 grad = np.zeros_like(self.W)

C-12

 # backpropagation

 # note: this uses the cached activations, so the forward

 # pass has already been run elsewhere

 # compute output error for each layer

 error = self.loss.d_loss(self.activations, self.targets)

 error = [np.zeros_like(self.activations[i]) if e is None else

e

 for i, e in enumerate(error)]

 deltas = [np.zeros_like(a) for a in self.activations]

 #change deltas 0 to reflect the new weights

 # backwards pass

 for i in range(self.n_layers - 1, -1, -1):

 for post in self.conns[i]:

 error[i] += np.dot(deltas[post],

 self.get_weights(self.W, (i,

post))[0].T)

 W_grad, b_grad = self.get_weights(grad, (i, post))

 np.dot(self.activations[i].T, deltas[post],

out=W_grad)

 np.sum(deltas[post], axis=0, out=b_grad)

 if i > 0:

 self.J_dot(self.d_activations[i], error[i],

transpose_J=True,

 out=deltas[i])

 grad /= self.inputs.shape[0]

 return grad

 def check_grad(self, calc_grad):

 """Check gradient via finite differences (for debugging)."""

 eps = 1e-6

 grad = np.zeros_like(calc_grad)

 inc_W = np.zeros_like(self.W)

 for i in range(len(self.W)):

 inc_W[i] = eps

 error_inc = self.error(self.W + inc_W, self.inputs,

self.targets)

 error_dec = self.error(self.W - inc_W, self.inputs,

self.targets)

 grad[i] = (error_inc - error_dec) / (2 * eps)

 inc_W[i] = 0

 try:

 assert np.allclose(calc_grad, grad, rtol=1e-3)

 except AssertionError:

 print("calc_grad")

 print(calc_grad)

 print("finite grad")

 print(grad)

 print("calc_grad - finite grad")

 print(calc_grad - grad)

 print("calc_grad / finite grad")

C-13

 print(calc_grad / grad)

 input("Paused (press enter to continue)")

 def calc_G(self, v, damping=0, out=None):

 """Compute Gauss-Newton matrix-vector product."""

 if out is None:

 Gv = np.zeros(self.W.size, dtype=self.dtype)

 else:

 Gv = out

 Gv.fill(0)

 # R forward pass

 R_activations = [np.zeros_like(a) for a in self.activations]

 for i in range(1, self.n_layers):

 for pre in self.back_conns[i]:

 vw, vb = self.get_weights(v, (pre, i))

 Ww, _ = self.get_weights(self.W, (pre, i))

 R_activations[i] += np.dot(self.activations[pre], vw,

 out=self.tmp_space[i])

 R_activations[i] += vb

 R_activations[i] += np.dot(R_activations[pre], Ww,

 out=self.tmp_space[i])

 self.J_dot(self.d_activations[i], R_activations[i],

 out=R_activations[i])

 # backward pass

 R_error = R_activations

 for i in range(self.n_layers - 1, -1, -1):

 if self.d2_loss[i] is not None:

 # note: R_error[i] is already set to R_activations[i]

 R_error[i] *= self.d2_loss[i]

 else:

 R_error[i].fill(0)

 for post in self.conns[i]:

 W, _ = self.get_weights(self.W, (i, post))

 R_error[i] += np.dot(R_error[post], W.T,

 out=self.tmp_space[i])

 W_g, b_g = self.get_weights(Gv, (i, post))

 np.dot(self.activations[i].T, R_error[post], out=W_g)

 np.sum(R_error[post], axis=0, out=b_g)

 if i > 0:

 self.J_dot(self.d_activations[i], R_error[i],

 out=R_error[i], transpose_J=True)

 Gv /= len(self.inputs)

 Gv += damping * v # Tikhonov damping

 return Gv

 def GPU_calc_G(self, v, damping=0, out=None):

 """Compute Gauss-Newton matrix-vector product on GPU."""

C-14

 from pycuda import gpuarray

 if out is None or not isinstance(out, gpuarray.GPUArray):

 Gv = gpuarray.zeros(self.W.shape, self.dtype)

 else:

 Gv = out

 Gv.fill(0)

 if not isinstance(v, gpuarray.GPUArray):

 GPU_v = gpuarray.to_gpu(v)

 else:

 GPU_v = v

 # R forward pass

 R_activations = self.GPU_tmp_space

 for i in range(self.n_layers):

 R_activations[i].fill(0)

 for pre in self.back_conns[i]:

 vw, vb = self.get_weights(GPU_v, (pre, i))

 Ww, _ = self.get_weights(self.GPU_W, (pre, i))

 hf.gpu.dot(self.GPU_activations[pre], vw,

 out=R_activations[i], increment=True)

 hf.gpu.iadd(R_activations[i], vb)

 hf.gpu.dot(R_activations[pre], Ww,

 out=R_activations[i], increment=True)

 hf.gpu.J_dot(self.GPU_d_activations[i], R_activations[i],

 out=R_activations[i])

 # backward pass

 R_error = R_activations

 for i in range(self.n_layers - 1, -1, -1):

 if self.GPU_d2_loss[i] is not None:

 # note: R_error[i] is already set to R_activations[i]

 R_error[i] *= self.GPU_d2_loss[i]

 else:

 R_error[i].fill(0)

 for post in self.conns[i]:

 W, _ = self.get_weights(self.GPU_W, (i, post))

 W_g, b_g = self.get_weights(Gv, (i, post))

 hf.gpu.dot(R_error[post], W, transpose_b=True,

 out=R_error[i], increment=True)

 hf.gpu.dot(self.GPU_activations[i], R_error[post],

 transpose_a=True, out=W_g)

 hf.gpu.sum_cols(R_error[post], out=b_g)

 if i > 0:

 hf.gpu.J_dot(self.GPU_d_activations[i], R_error[i],

 out=R_error[i], transpose_J=True)

 # Tikhonov damping and batch mean

 Gv._axpbyz(1.0 / len(self.inputs), GPU_v, damping, Gv)

C-15

 if isinstance(v, gpuarray.GPUArray):

 return Gv

 else:

 return Gv.get(out, pagelocked=True)

 def check_J(self):

 """Compute the Jacobian of the network via finite

differences."""

 eps = 1e-6

 N = self.W.size

 # compute the Jacobian

 J = [None for _ in self.layers]

 inc_i = np.zeros_like(self.W)

 for i in range(N):

 inc_i[i] = eps

 inc = self.forward(self.inputs, self.W + inc_i)

 dec = self.forward(self.inputs, self.W - inc_i)

 for l in range(self.n_layers):

 J_i = (inc[l] - dec[l]) / (2 * eps)

 if J[l] is None:

 J[l] = J_i[..., None]

 else:

 J[l] = np.concatenate((J[l], J_i[..., None]),

axis=-1)

 inc_i[i] = 0

 return J

 def check_G(self, calc_G, v, damping=0):

 """Check Gv calculation via finite differences (for

debugging)."""

 # compute Jacobian

 J = self.check_J()

 # second derivative of loss function

 L = self.loss.d2_loss(self.activations, self.targets)

 # TODO: check loss via finite differences

 G = np.sum([np.einsum("aji,aj,ajk->ik", J[l], L[l], J[l])

 for l in range(self.n_layers) if L[l] is not

None], axis=0)

 # divide by batch size

 G /= self.inputs.shape[0]

 Gv = np.dot(G, v)

 Gv += damping * v

 try:

 assert np.allclose(calc_G, Gv, rtol=1e-3)

 except AssertionError:

 print("calc_G")

 print(calc_G)

C-16

 print("finite G")

 print(Gv)

 print("calc_G - finite G")

 print(calc_G - Gv)

 print("calc_G / finite G")

 print(calc_G / Gv)

 input("Paused (press enter to continue)")

 def init_weights(self, shapes, coeff=1.e-4, biases=0,

init_type="sparse"):

 """Weight initialization, given shapes of weight matrices.

 Note: coeff, biases, and init_type can be specified by the

 `W_init_params` dict in :class:`.FFNet`. Each can be

 specified as a single value (for all matrices) or as a list

giving a

 value for each matrix.

 :param list shapes: list of (pre,post) shapes for each weight

matrix

 :param float coeff: scales the magnitude of the connection

weights

 :param float biases: bias values for the post of each matrix

 :param str init_type: type of initialization to use (currently

supports

 'sparse', 'uniform', 'gaussian')

 """

 # if given single parameters, expand for all matrices

 if isinstance(coeff, (int, float)):

 coeff = [coeff] * len(shapes)

 if isinstance(biases, (int, float)):

 biases = [biases] * len(shapes)

 if isinstance(init_type, str):

 init_type = [init_type] * len(shapes)

 W = [np.zeros((pre + 1, post), dtype=self.dtype)

 for pre, post in shapes]

 for i, s in enumerate(shapes):

 if init_type[i] == "sparse":

 # sparse initialization (from martens)

 num_conn = 15

 for j in range(s[1]):

 # pick num_conn random pre neurons

 indices = self.rng.choice(np.arange(s[0]),

 size=min(num_conn,

s[0]),

 replace=False)

 # connect to post

 W[i][indices, j] = self.rng.randn(indices.size) *

coeff[i]

 elif init_type[i] == "uniform":

 W[i][:-1] = self.rng.uniform(-coeff[i] /

np.sqrt(s[0]),

 coeff[i] / np.sqrt(s[0]),

 (s[0], s[1]))

 elif init_type[i] == "gaussian":

C-17

 W[i][:-1] = self.rng.randn(s[0], s[1]) * coeff[i]

 else:

 raise ValueError("Unknown weight initialization (%s)"

 % init_type)

 # set biases

 W[i][-1, :] = biases[i]

 W = np.concatenate([w.flatten() for w in W])

 return W

 def compute_offsets(self):

 """Precompute offsets for layers in the overall parameter

vector."""

 self.offsets = {}

 offset = 0

 for pre in self.conns:

 for post in self.conns[pre]:

 n_params = (self.shape[pre] + 1) * self.shape[post]

 self.offsets[(pre, post)] = (

 offset,

 offset + n_params - self.shape[post],

 offset + n_params)

 offset += n_params

 return offset

 def get_weights(self, params, conn):

 """Get weight matrix for a connection from overall parameter

vector."""

 if conn not in self.offsets:

 return None

 offset, W_end, b_end = self.offsets[conn]

 W = params[offset:W_end]

 b = params[W_end:b_end]

 '''if (conn[0] == 0):

 return W.reshape((self.shape[conn[1]],

self.shape[conn[1]])), b

 else:'''

 return W.reshape((self.shape[conn[0]], self.shape[conn[1]])),

b

 def init_loss(self, loss_type):

 """Set the loss type for this network to the given

 :class:`~.loss_funcs.LossFunction` (or a list of functions can

be

 passed to create a :class:`~.loss_funcs.LossSet`)."""

 if isinstance(loss_type, (list, tuple)):

 tmp = loss_type

 else:

 tmp = [loss_type]

 for t in tmp:

 if not isinstance(t, hf.loss_funcs.LossFunction):

C-18

 raise TypeError("loss_type (%s) must be an instance of

"

 "LossFunction" % t)

 # sanity checks

 if (isinstance(t, hf.loss_funcs.CrossEntropy) and

 np.any(self.layers[-1].activation(

 np.linspace(-80, 80, 100)[None, :]) <= 0)):

 # this won't catch everything, but hopefully a useful

warning

 raise ValueError("Must use positive activation

function "

 "with cross-entropy error")

 if (isinstance(t, hf.loss_funcs.CrossEntropy) and

 not isinstance(self.layers[-1], hf.nl.Softmax)):

 warnings.warn("Softmax should probably be used with "

 "cross-entropy error")

 if isinstance(loss_type, (list, tuple)):

 self.loss = hf.loss_funcs.LossSet(loss_type)

 else:

 self.loss = loss_type

 def run_epoch_SCG(self, inputs, targets, optimizer,

 max_epochs=100, minibatch_size=None, test=None,

 test_err=None, target_err=1e-6, plotting=False,

 file_output=None, print_period=1):

 """A stripped down version of run_epochs that just does the

update

 without any overhead.

 Can be used for optimizers where the cost to compute an update

is

 very cheap, in which case the overhead (e.g., computing test

error,

 saving weights, outputting data for plotting, etc.) becomes

 non-negligible.

 """

 if test is None:

 test_in, test_t = inputs, targets

 else:

 test_in, test_t = test[0], test[1]

 sigma0 = 1.e-6

 lamb = 1.e-6

 lamb_ = 0

 vector = self.W

 self.cache_minibatch(

 inputs, targets, range(inputs.shape[0]))

 grad_new = -self.calc_grad()

 r_new = grad_new

 success = True

 for i in range(max_epochs):

 r = np.copy(r_new)

 grad = np.copy(grad_new)

 mu = np.dot(grad, grad)

 if success:

 success = False

 sigma = sigma0 / math.sqrt(mu)

C-19

 temp = self.calc_grad()

 self.W = vector + sigma*grad

 self.activations, self.d_activations =

self.forward(inputs,

vector + sigma * grad,

deriv=True)

 self.activations = [np.asarray(a, dtype=self.dtype)

 for a in self.activations]

 self.d_activations = [np.asarray(a, dtype=self.dtype)

 for a in self.d_activations]

 s = (self.calc_grad() - temp) / sigma

 delta = np.dot(grad.T, s)

 #end

 # scale s

 zetta = lamb - lamb_

 s += zetta * grad

 delta += zetta * mu

 if delta < 0:

 s += (lamb - 2 * delta / mu) * grad

 lamb_ = 2 * (lamb - delta / mu)

 delta -= lamb * mu

 delta *= -1

 lamb = lamb_

 # end

 phi = np.dot(grad.T, r)

 alpha = phi / delta

 vector_new = vector +alpha*grad

 output = self.forward(test_in, vector)

 f_old = test_err.batch_loss(output, test_t)

 output = self.forward(test_in, vector_new)

 f_new = test_err.batch_loss(output, test_t)

 print("epoch ",i,":",f_new)

 comparison = 2 * delta * (f_old - f_new) / np.power(phi,

2)

 if comparison >= 0:

 if f_new < target_err:

 break # done!

 vector = vector_new

 f_old = f_new

 self.W = vector

 self.activations, self.d_activations =

self.forward(inputs,

vector,

deriv=True)

 self.activations = [np.asarray(a, dtype=self.dtype)

 for a in self.activations]

 self.d_activations = [np.asarray(a, dtype=self.dtype)

 for a in self.d_activations]

 r_new = -self.calc_grad()

C-20

 success = True

 lamb_ = 0

 if (i+1) % self.W.shape[0] == 0:

 grad_new = r_new

 else:

 beta = (np.dot(r_new, r_new) - np.dot(r_new, r)) /

phi

 grad_new = r_new + beta * grad

 if comparison > 0.75:

 lamb = 0.5 * lamb

 else:

 lamb_ = lamb

 # end

 if comparison < 0.25:

 lamb = 4 * lamb

 # compute update

 self.W = vector_new

 @property

 def optimizer(self):

 return self._optimizer

 @optimizer.setter

 def optimizer(self, o):

 self._optimizer = o

 o.net = self

D-1

Annex D

Brnnet.py

"""Implementation of recurrent network, including Gauss-Newton

approximation

for use in Hessian-free optimization.

.. codeauthor:: Daniel Rasmussen

<daniel.rasmussen@appliedbrainresearch.com>

Based on

Martens, J., & Sutskever, I. (2011). Learning recurrent neural

networks with

hessian-free optimization. Proceedings of the 28th International

Conference on

Machine Learning.

"""

from __future__ import print_function

import numpy as np

import hessianfree as hf

class BRNNet(hf.BFFNet):

 """Implementation of recurrent deep network (including

gradient/curvature

 computation).

 :param list rec_layers: indices of layers with recurrent

connections

 (default is to make all except first and last layers

recurrent)

 :param dict W_rec_params: parameters used to initialize recurrent

 weights (passed to :meth:`~.init_weights`)

 :param tuple truncation: a tuple `(n,k)` where backpropagation

through

 time will be executed every `n` timesteps and run backwards

for `k`

 steps (defaults to full backprop if None)

 See :class:`.FFNet` for the remaining parameters."""

 def __init__(self, shape, rec_layers=None, W_rec_params=None,

windowC=0,windowB=0,windowF=0,windowA=0,

 truncation=None, **kwargs):

 # define recurrence for each layer (needs to be done before

super

 # constructor because this is used in compute_offsets)

 if rec_layers is None:

 # assume all recurrent except first/last layer

 rec_layers = np.arange(1, len(shape) - 1)

 self.rec_layers = rec_layers

 self.winC = windowC

 self.winB = windowB

D-2

 self.winF = windowF

 self.winA = windowA

 # super constructor

 super(BRNNet, self).__init__(shape, **kwargs)

 self.truncation = truncation

 # add on recurrent weights

 if kwargs.get("load_weights", None) is None and

len(rec_layers) > 0:

 if W_rec_params is None:

 W_rec_params = dict()

 self.W = np.concatenate(

 (self.W, self.init_weights([(self.shape[l+2],

self.shape[l])

 for l in

range(self.n_layers)

 if l in rec_layers],

 **W_rec_params)))

 def forward(self, inputs, params=None, deriv=False,

init_activations=None,

 init_state=None):

 """Compute layer activations for given input and parameters.

 :param inputs: input vectors (passed to first layer)

 :type inputs: :class:`~numpy:numpy.ndarray`

 :param params: parameter vector (weights) for the network

(defaults to

 ``self.W``)

 :type params: :class:`~numpy:numpy.ndarray`

 :param bool deriv: if True then also compute the derivative of

the

 activations

 :param list init_activations: initial values for the

activations in

 each layer

 :param list init_state: initial values for the internal state

of any

 stateful nonlinearities

 """

 # input shape = [minibatch_size, seq_len, input_dim]

 # activations shape = [n_layers, minibatch_size, seq_len,

layer_size]

 params = self.W if params is None else params

 if isinstance(inputs, hf.nl.Plant):

 # reset the plant

 # TODO: allow the initial state of plant to be set?

 inputs.reset()

 batch_size = inputs.shape[0]

 sig_len = inputs.shape[1]

 activations = [np.zeros((batch_size, sig_len, l),

dtype=self.dtype)

 for l in self.shape]

 # temporary space to minimize memory allocations

D-3

 tmp_space = [np.zeros((batch_size, l), dtype=self.dtype)

 for l in self.shape]

 if deriv:

 d_activations = [None for _ in self.layers]

 for i, l in enumerate(self.layers):

 # reset any state in the nonlinearities

 l.reset(None if init_state is None else init_state[i])

 W_recs = [self.get_weights(params, (i+2, i))

 for i in range(self.n_layers)]

 #original = inputs.copy()

 for s in range(sig_len):

 for w in range(int(self.winA/2)):

 for i in range(self.n_layers):

 if i == 0:

 ff_input = inputs[:,s,w*20:w*20+self.shape[0]]

 elif i == 1:

 #ff_input = original[:, s,

self.shape[0]:self.shape[0] + self.shape[1]]

 ff_input = inputs[:, s, 20*(int(self.winA/2)-

int(self.winC/2)):20*(int(self.winA/2)+int(self.winC/2)+1)]

 elif i == 2:

 ff_input = inputs[:, s, (self.winA-

(w+self.winB)) * 20:(self.winA-w) * 20]

 #ff_input = np.flip(ff_input, 1)

 else:

 # compute feedforward input

 ff_input = np.zeros_like(activations[i][:, s])

 for pre in self.back_conns[i]:

 W, b = self.get_weights(params, (pre, i))

 ff_input += np.dot(activations[pre][:, s],

W,

 out=tmp_space[i])

 ff_input += b

 # recurrent input

 if i in self.rec_layers:

 if s > 0:

 rec_input = np.dot(activations[i+2][:, s -

1]*0.5,

 W_recs[i][0],

out=tmp_space[i])

 elif init_activations is None:

 # apply bias input on first timestep

 rec_input = W_recs[i][1]

 else:

 # use the provided activations to

initialize the

 # 'previous' timestep

 rec_input =

np.dot(init_activations[i+2]*0.5,

 W_recs[i][0],

out=tmp_space[i])

 else:

 rec_input = 0

 # apply activation function

D-4

 activations[i][:, s] =

self.layers[i].activation(ff_input +

rec_input)

 # compute derivative

 if deriv:

 d_act = self.layers[i].d_activation(ff_input +

rec_input,

activations[i][:, s])

 if d_activations[i] is None:

 # note: we can't allocate this array ahead

of time,

 # because we don't know if d_activations

will be

 # returning diagonal vectors or matrices

 d_activations[i] = np.zeros(

 np.concatenate(([batch_size],

[sig_len],

 d_act.shape[1:])),

 dtype=self.dtype)

 d_activations[i][:, s] = d_act

 for i, a in enumerate(activations):

 if not np.all(np.isfinite(a)):

 raise OverflowError("Non-finite nonlinearity

activation "

 "value (layer %d) \n %s" %

 (i, a[not np.isfinite(a)]))

 if deriv:

 return activations, d_activations

 return activations

 def calc_grad(self):

 """Compute parameter gradient."""

 grad = np.zeros_like(self.W)

 W_recs = [self.get_weights(self.W, (l+2, l))

 for l in range(self.n_layers)]

 batch_size = self.inputs.shape[0]

 sig_len = self.inputs.shape[1]

 # temporary space to minimize memory allocations

 tmp_act = [np.zeros((batch_size, l), dtype=self.dtype)

 for l in self.shape]

 tmp_grad = np.zeros_like(grad)

 if self.truncation is None:

 trunc_per = trunc_len = sig_len

 else:

 trunc_per, trunc_len = self.truncation

 for n in range(trunc_per - 1, sig_len, trunc_per):

 # every trunc_per timesteps we want to run backprop

 deltas = [np.zeros((batch_size, l), dtype=self.dtype)

 for l in self.shape]

 state_deltas = [None if not l.stateful else

D-5

 np.zeros((batch_size, self.shape[i]),

 dtype=self.dtype)

 for i, l in enumerate(self.layers)]

 # backpropagate error

 for s in range(n, np.maximum(n - trunc_len, -1), -1):

 # execute trunc_len steps of backprop through time

 error = self.loss.d_loss([a[:, s] for a in

self.activations],

 self.targets[:, s])

 error = [np.zeros_like(self.activations[i][:, s]) if e

is None

 else e for i, e in enumerate(error)]

 for l in range(self.n_layers - 1, -1, -1):

 for post in self.conns[l]:

 error[l] += np.dot(deltas[post],

 self.get_weights(self.W,

 (l,

post))[0].T,

 out=tmp_act[l])

 # feedforward gradient

 W_grad, b_grad = self.get_weights(grad, (l,

post))

 W_tmp_grad, b_tmp_grad =

self.get_weights(tmp_grad,

 (l,

post))

 W_grad += np.dot(self.activations[l][:, s].T,

 deltas[post], out=W_tmp_grad)

 b_grad += np.sum(deltas[post], axis=0,

out=b_tmp_grad)

 # add recurrent error

 if l-2 in self.rec_layers:

 error[l] += np.dot(deltas[l-2], W_recs[l-

2][0].T,

 out=tmp_act[l])

 # compute deltas

 if not self.layers[l].stateful:

 self.J_dot(self.d_activations[l][:, s],

error[l],

 transpose_J=True, out=deltas[l])

 else:

 d_input = self.d_activations[l][:, s, ..., 0]

 d_state = self.d_activations[l][:, s, ..., 1]

 d_output = self.d_activations[l][:, s, ..., 2]

 state_deltas[l] += self.J_dot(d_output,

error[l],

transpose_J=True,

 out=tmp_act[l])

 self.J_dot(d_input, state_deltas[l],

transpose_J=True,

 out=deltas[l])

D-6

 self.J_dot(d_state, state_deltas[l],

transpose_J=True,

 out=state_deltas[l])

 # gradient for recurrent weights

 if l-2 in self.rec_layers:

 W_grad, b_grad = self.get_weights(grad, (l, l-

2))

 W_tmp_grad, b_tmp_grad =

self.get_weights(tmp_grad,

 (l,

l-2))

 if s > 0:

 W_grad += np.dot(self.activations[l][:, s

- 1].T,

 deltas[l-2],

out=W_tmp_grad)

 else:

 # put remaining gradient into initial bias

 b_grad += np.sum(deltas[l-2], axis=0,

 out=b_tmp_grad)

 grad /= batch_size

 return grad

 def check_grad(self, calc_grad):

 """Check gradient via finite differences (for debugging)."""

 eps = 1e-6

 grad = np.zeros_like(calc_grad)

 sig_len = self.inputs.shape[1]

 if self.truncation is None:

 trunc_per = trunc_len = sig_len

 else:

 trunc_per, trunc_len = self.truncation

 inc_W = np.zeros_like(self.W)

 for n in range(trunc_per, sig_len + 1, trunc_per):

 start = np.maximum(n - trunc_len, 0)

 # the truncated backprop gradient is equivalent to running

the

 # network normally for the initial timesteps and then just

changing

 # the parameters for the truncation period. so that's

what we're

 # simulating here.

 if start > 0:

 prev = self.forward(self.inputs[:, :start], self.W)

 init_a = [p[:, -1] for p in prev]

 init_s = [l.state.copy() if l.stateful else None

 for l in self.layers]

 else:

 init_a = None

 init_s = None

 for i in range(len(self.W)):

D-7

 inc_W[i] = eps

 out_inc = self.forward(self.inputs[:, start:n], self.W

+ inc_W,

 init_activations=init_a,

 init_state=init_s)

 out_dec = self.forward(self.inputs[:, start:n], self.W

- inc_W,

 init_activations=init_a,

 init_state=init_s)

 error_inc = self.loss.batch_loss(out_inc,

 self.targets[:,

start:n])

 error_dec = self.loss.batch_loss(out_dec,

 self.targets[:,

start:n])

 grad[i] += (error_inc - error_dec) / (2 * eps)

 inc_W[i] = 0

 try:

 assert np.allclose(calc_grad, grad, rtol=1e-3)

 except AssertionError:

 print("calc_grad")

 print(calc_grad)

 print("finite grad")

 print(grad)

 print("calc_grad - finite grad")

 print(calc_grad - grad)

 print("calc_grad / finite grad")

 print(calc_grad / grad)

 input("Paused (press enter to continue)")

 def calc_G(self, v, damping=0, out=None):

 """Compute Gauss-Newton matrix-vector product."""

 if out is None:

 Gv = np.zeros(self.W.size, dtype=self.dtype)

 else:

 Gv = out

 Gv.fill(0)

 batch_size = self.inputs.shape[0]

 sig_len = self.inputs.shape[1]

 # temporary space to minimize memory allocations

 tmp_act = [np.zeros((batch_size, l), dtype=self.dtype)

 for l in self.shape]

 tmp_grad = np.zeros_like(Gv)

 # R forward pass

 R_states = [None if not l.stateful else

 np.zeros((batch_size, self.shape[i]),

dtype=self.dtype)

 for i, l in enumerate(self.layers)]

 R_activations = self.tmp_space

 for a in R_activations:

D-8

 a.fill(0)

 v_recs = [self.get_weights(v, (l+2, l))

 for l in range(self.n_layers)]

 W_recs = [self.get_weights(self.W, (l+2, l))

 for l in range(self.n_layers)]

 Gv_recs = [self.get_weights(Gv, (l+2, l))

 for l in range(self.n_layers)]

 v_ff = dict([(conn, self.get_weights(v, conn))

 for conn in self.offsets])

 W_ff = dict([(conn, self.get_weights(self.W, conn))

 for conn in self.offsets])

 Gv_ff = dict([(conn, self.get_weights(Gv, conn))

 for conn in self.offsets])

 for s in range(sig_len):

 for l in range(self.n_layers):

 R_act = R_activations[l][:, s]

 # input from feedforward connections

 for pre in self.back_conns[l]:

 vw, vb = v_ff[(pre, l)]

 Ww, _ = W_ff[(pre, l)]

 R_act += np.dot(self.activations[pre][:, s], vw,

 out=tmp_act[l])

 R_act += vb

 R_act += np.dot(R_activations[pre][:, s], Ww,

 out=tmp_act[l])

 # recurrent input

 if l in self.rec_layers:

 if s == 0:

 # bias input on first step

 R_act += v_recs[l][1]

 else:

 R_act += np.dot(self.activations[l+2][:, s -

1],

 v_recs[l][0], out=tmp_act[l])

 R_act += np.dot(R_activations[l+2][:, s - 1],

 W_recs[l][0], out=tmp_act[l])

 if not self.layers[l].stateful:

 self.J_dot(self.d_activations[l][:, s], R_act,

out=R_act)

 else:

 d_input = self.d_activations[l][:, s, ..., 0]

 d_state = self.d_activations[l][:, s, ..., 1]

 d_output = self.d_activations[l][:, s, ..., 2]

 R_states[l] = self.J_dot(d_state, R_states[l])

 R_states[l] += self.J_dot(d_input, R_act,

out=tmp_act[l])

 self.J_dot(d_output, R_states[l], out=R_act)

 # R backward pass

 if self.truncation is None:

 trunc_per = trunc_len = sig_len

 else:

D-9

 trunc_per, trunc_len = self.truncation

 R_error = [np.zeros((batch_size, l), dtype=self.dtype)

 for l in self.shape]

 R_deltas = [np.zeros((batch_size, l), dtype=self.dtype)

 for l in self.shape]

 for n in range(trunc_per - 1, sig_len, trunc_per):

 for i in range(self.n_layers):

 R_deltas[i].fill(0)

 if R_states[i] is not None:

 R_states[i].fill(0)

 for s in range(n, np.maximum(n - trunc_len, -1), -1):

 for l in range(self.n_layers - 1, -1, -1):

 if self.d2_loss[l] is not None:

 np.multiply(self.d2_loss[l][:, s],

 R_activations[l][:, s],

 out=R_error[l])

 else:

 R_error[l].fill(0)

 # error from feedforward connections

 for post in self.conns[l]:

 R_error[l] += np.dot(R_deltas[post],

 W_ff[(l, post)][0].T,

 out=tmp_act[l])

 # feedforward gradient

 W_g, b_g = Gv_ff[(l, post)]

 W_tmp_grad, b_tmp_grad =

self.get_weights(tmp_grad,

 (l,

post))

 W_g += np.dot(self.activations[l][:, s].T,

 R_deltas[post], out=W_tmp_grad)

 b_g += np.sum(R_deltas[post], axis=0,

out=b_tmp_grad)

 # add recurrent error

 if l-2 in self.rec_layers:

 R_error[l] += np.dot(R_deltas[l-2], W_recs[l-

2][0].T,

 out=tmp_act[l])

 # compute deltas

 if not self.layers[l].stateful:

 self.J_dot(self.d_activations[l][:, s],

R_error[l],

 transpose_J=True, out=R_deltas[l])

 else:

 d_input = self.d_activations[l][:, s, ..., 0]

 d_state = self.d_activations[l][:, s, ..., 1]

 d_output = self.d_activations[l][:, s, ..., 2]

 R_states[l] += self.J_dot(d_output,

R_error[l],

 transpose_J=True,

 out=tmp_act[l])

D-10

 self.J_dot(d_input, R_states[l],

transpose_J=True,

 out=R_deltas[l])

 self.J_dot(d_state, R_states[l],

transpose_J=True,

 out=R_states[l])

 # recurrent gradient

 if l-2 in self.rec_layers:

 W_g, b_g = Gv_recs[l-2]

 W_tmp_grad, b_tmp_grad =

self.get_weights(tmp_grad,

 (l,

l-2))

 if s > 0:

 W_g += np.dot(self.activations[l][:, s -

1].T,

 R_deltas[l-2],

out=W_tmp_grad)

 else:

 b_g += np.sum(R_deltas[l-2], axis=0,

out=b_tmp_grad)

 Gv /= batch_size

 Gv += damping * v # Tikhonov damping

 return Gv

 def load_GPU_data(self):

 """Load data for the current epoch onto GPU."""

 from pycuda import gpuarray

 def split_axes(array, n=1):

 # split a multidimensional array into a corresponding list

of lists

 # along the first n axes (this is used so that

array.__getitem__

 # isn't called repeatedly, as it is somewhat expensive for

 # gpuarrays)

 if n == 1:

 return [a for a in array]

 return [split_axes(a, n - 1) for a in array]

 # clear out old data (this would happen eventually on its own,

but by

 # doing it first we make sure there is room on the GPU before

 # creating new arrays)

 if hasattr(self, "GPU_W"):

 del self.GPU_W

 del self.GPU_activations

 del self.GPU_d_activations

 del self.GPU_d2_loss

 del self.GPU_tmp_space

 del self.GPU_states

 del self.GPU_errors

 del self.GPU_deltas

D-11

 self.GPU_W = gpuarray.to_gpu(self.W)

 # rearrange GPU data so that signal is the first axis (so

 # that each time step is a single block of memory in

GPU_calc_G)

 self.GPU_activations = [

 split_axes(gpuarray.to_gpu(np.ascontiguousarray(

 np.swapaxes(a, 0, 1))), 1)

 for a in self.activations]

 self.GPU_d_activations = [

 split_axes(gpuarray.to_gpu(np.ascontiguousarray(

 np.rollaxis(np.swapaxes(a, 0, 1), -1, 1))), 2)

 if self.layers[i].stateful else

 split_axes(gpuarray.to_gpu(np.ascontiguousarray(

 np.swapaxes(a, 0, 1))), 1)

 for i, a in enumerate(self.d_activations)]

 self.GPU_d2_loss = [

 split_axes(gpuarray.to_gpu(np.ascontiguousarray(

 np.swapaxes(a, 0, 1))), 1)

 if a is not None else None for a in self.d2_loss]

 self.GPU_tmp_space = [split_axes(gpuarray.empty((a.shape[1],

 a.shape[0],

 a.shape[2]),

 self.dtype),

1)

 for a in self.activations]

 # pre-allocate calc_G arrays

 batch_size = self.inputs.shape[0]

 self.GPU_states = [[gpuarray.empty((batch_size,

self.shape[i]),

 dtype=self.dtype) for _ in

range(2)]

 if l.stateful else None

 for i, l in enumerate(self.layers)]

 self.GPU_errors = [gpuarray.empty((batch_size, l),

 dtype=self.dtype)

 for l in self.shape]

 self.GPU_deltas = [gpuarray.empty((batch_size, l),

 dtype=self.dtype)

 for l in self.shape]

 def GPU_calc_G(self, v, damping=0, out=None):

 """Compute Gauss-Newton matrix-vector product on GPU."""

 from pycuda import gpuarray

 if out is None or not isinstance(out, gpuarray.GPUArray):

 Gv = gpuarray.zeros(self.W.shape, dtype=self.dtype)

 else:

 Gv = out

 Gv.fill(0)

 if not isinstance(v, gpuarray.GPUArray):

 GPU_v = gpuarray.to_gpu(v)

 else:

 GPU_v = v

D-12

 batch_size = self.inputs.shape[0]

 sig_len = self.inputs.shape[1]

 # R forward pass

 R_states = self.GPU_states

 R_activations = self.GPU_tmp_space

 for i in range(self.n_layers):

 R_activations[i][0].base.fill(0)

 if R_states[i] is not None:

 R_states[i][0].fill(0)

 v_recs = [self.get_weights(GPU_v, (l, l))

 for l in range(self.n_layers)]

 W_recs = [self.get_weights(self.GPU_W, (l, l))

 for l in range(self.n_layers)]

 Gv_recs = [self.get_weights(Gv, (l, l))

 for l in range(self.n_layers)]

 v_ff = dict([(conn, self.get_weights(GPU_v, conn))

 for conn in self.offsets])

 W_ff = dict([(conn, self.get_weights(self.GPU_W, conn))

 for conn in self.offsets])

 Gv_ff = dict([(conn, self.get_weights(Gv, conn))

 for conn in self.offsets])

 for s in range(sig_len):

 for l in range(self.n_layers):

 R_act = R_activations[l][s]

 # input from feedforward connections

 for pre in self.back_conns[l]:

 vw, vb = v_ff[(pre, l)]

 hf.gpu.dot(self.GPU_activations[pre][s], vw,

 out=R_act, increment=True)

 hf.gpu.iadd(R_act, vb)

 hf.gpu.dot(R_activations[pre][s], W_ff[(pre,

l)][0],

 out=R_act, increment=True)

 # recurrent input

 if l in self.rec_layers:

 if s == 0:

 # bias input on first step

 hf.gpu.iadd(R_act, v_recs[l][1])

 else:

 hf.gpu.dot(self.GPU_activations[l][s - 1],

 v_recs[l][0], out=R_act,

increment=True)

 hf.gpu.dot(R_activations[l][s - 1],

W_recs[l][0],

 out=R_act, increment=True)

 if not self.layers[l].stateful:

 if not isinstance(self.layers[l], hf.nl.Linear):

 # note: this requires a memory allocation if

 # d_activations is non-diagonal

 hf.gpu.J_dot(self.GPU_d_activations[l][s],

R_act,

 out=R_act)

 else:

D-13

 d_input = self.GPU_d_activations[l][s][0]

 d_state = self.GPU_d_activations[l][s][1]

 d_output = self.GPU_d_activations[l][s][2]

 # note: we're doing this weird thing with two

R_states

 # in order to avoid doing a copy every time

 i = s % 2

 hf.gpu.J_dot(d_state, R_states[l][i],

 out=R_states[l][1 - i])

 hf.gpu.J_dot(d_input, R_act, out=R_states[l][1 -

i],

 increment=True)

 hf.gpu.J_dot(d_output, R_states[l][1 - i],

out=R_act)

 # R backward pass

 if self.truncation is None:

 trunc_per = trunc_len = sig_len

 else:

 trunc_per, trunc_len = self.truncation

 R_error = self.GPU_errors

 R_deltas = self.GPU_deltas

 for n in range(trunc_per - 1, sig_len, trunc_per):

 for i in range(self.n_layers):

 R_deltas[i].fill(0)

 if R_states[i] is not None:

 R_states[i][n % 2].fill(0)

 for s in range(n, np.maximum(n - trunc_len, -1), -1):

 for l in range(self.n_layers - 1, -1, -1):

 if self.GPU_d2_loss[l] is not None:

 hf.gpu.multiply(self.GPU_d2_loss[l][s],

 R_activations[l][s],

out=R_error[l])

 else:

 R_error[l].fill(0)

 # error from feedforward connections

 for post in self.conns[l]:

 W, _ = W_ff[(l, post)]

 hf.gpu.dot(R_deltas[post], W, out=R_error[l],

 transpose_b=True, increment=True)

 # feedforward gradient

 W_g, b_g = Gv_ff[(l, post)]

 hf.gpu.dot(self.GPU_activations[l][s],

R_deltas[post],

 out=W_g, transpose_a=True,

increment=True)

 hf.gpu.sum_cols(R_deltas[post], out=b_g,

 increment=True)

 # add recurrent error

 if l in self.rec_layers:

 hf.gpu.dot(R_deltas[l], W_recs[l][0],

out=R_error[l],

 transpose_b=True, increment=True)

D-14

 # compute deltas

 if not self.layers[l].stateful:

 hf.gpu.J_dot(self.GPU_d_activations[l][s],

R_error[l],

 out=R_deltas[l],

transpose_J=True)

 else:

 d_input = self.GPU_d_activations[l][s][0]

 d_state = self.GPU_d_activations[l][s][1]

 d_output = self.GPU_d_activations[l][s][2]

 i = s % 2

 hf.gpu.J_dot(d_output, R_error[l],

out=R_states[l][i],

 increment=True, transpose_J=True)

 hf.gpu.J_dot(d_input, R_states[l][i],

out=R_deltas[l],

 transpose_J=True)

 hf.gpu.J_dot(d_state, R_states[l][i],

 out=R_states[l][1 - i],

transpose_J=True)

 # recurrent gradient

 if l in self.rec_layers:

 if s > 0:

 hf.gpu.dot(self.GPU_activations[l][s - 1],

 R_deltas[l], out=Gv_recs[l][0],

 transpose_a=True,

increment=True)

 else:

 hf.gpu.sum_cols(R_deltas[l],

out=Gv_recs[l][1],

 increment=True)

 # Tikhonov damping and batch mean

 Gv._axpbyz(1.0 / batch_size, GPU_v, damping, Gv)

 if isinstance(v, gpuarray.GPUArray):

 return Gv

 else:

 return Gv.get(out, pagelocked=True)

 def check_J(self, start=0, stop=None):

 """Compute the Jacobian of the network via finite

differences."""

 eps = 1e-6

 N = self.W.size

 # as in check_grad, the truncation is equivalent to running

the network

 # normally for the initial timesteps and then changing the

parameters,

 # so that's what we do here to compute the Jacobian

 if start > 0:

 prev = self.forward(self.inputs[:, :start], self.W)

 init_a = [p[:, -1] for p in prev]

 init_s = [l.state.copy() if l.stateful else None

D-15

 for l in self.layers]

 else:

 init_a = None

 init_s = None

 if stop is None:

 stop = self.inputs.shape[1]

 # compute the Jacobian

 J = [None for _ in self.layers]

 inc_i = np.zeros_like(self.W)

 for i in range(N):

 inc_i[i] = eps

 inc = self.forward(self.inputs[:, start:stop], self.W +

inc_i,

 init_activations=init_a,

init_state=init_s)

 dec = self.forward(self.inputs[:, start:stop], self.W -

inc_i,

 init_activations=init_a,

init_state=init_s)

 for l in range(self.n_layers):

 if start > 0:

 inc[l] = np.concatenate((prev[l], inc[l]), axis=1)

 dec[l] = np.concatenate((prev[l], dec[l]), axis=1)

 J_i = (inc[l] - dec[l]) / (2 * eps)

 if J[l] is None:

 J[l] = J_i[..., None]

 else:

 J[l] = np.concatenate((J[l], J_i[..., None]),

axis=-1)

 inc_i[i] = 0

 return J

 def check_G(self, calc_G, v, damping=0):

 """Check Gv calculation via finite differences (for

debugging)."""

 sig_len = self.inputs.shape[1]

 if self.truncation is None:

 trunc_per = trunc_len = sig_len

 else:

 trunc_per, trunc_len = self.truncation

 G = np.zeros((len(self.W), len(self.W)), dtype=self.dtype)

 for n in range(trunc_per, sig_len + 1, trunc_per):

 start = np.maximum(n - trunc_len, 0)

 # compute Jacobian

 # note that we do a full forward pass and a partial

backwards

 # pass, so we only truncate the backwards J matrix

 J = self.check_J(0, n)

 trunc_J = self.check_J(start, n) if start > 0 else J

D-16

 # second derivative of loss function

 L = self.loss.d2_loss([a[:, :n] for a in

self.activations],

 self.targets[:, :n])

 # TODO: check loss via finite differences

 G += np.sum([np.einsum("abji,abj,abjk->ik", trunc_J[l],

L[l], J[l])

 for l in range(self.n_layers) if L[l] is not

None],

 axis=0)

 # divide by batch size

 G /= self.inputs.shape[0]

 Gv = np.dot(G, v)

 Gv += damping * v

 try:

 assert np.allclose(calc_G, Gv, rtol=1e-3)

 except AssertionError:

 print("calc_G")

 print(calc_G)

 print("finite G")

 print(Gv)

 print("calc_G - finite G")

 print(calc_G - Gv)

 print("calc_G / finite G")

 print(calc_G / Gv)

 input("Paused (press enter to continue)")

 def compute_offsets(self):

 """Precompute offsets for layers in the overall parameter

vector."""

 ff_offset = super(BRNNet, self).compute_offsets()

 # offset for recurrent weights is end of ff weights

 offset = ff_offset

 for l in range(self.n_layers):

 if l in self.rec_layers:

 self.offsets[(l+2, l)] = (

 offset,

 offset + self.shape[l+2] * self.shape[l],

 offset + (self.shape[l+2] + 1) * self.shape[l])

 offset += (self.shape[l+2] + 1) * self.shape[l]

 return offset - ff_offset

E-1

Annex E

Readme.txt

The Requirements to run this library are:

 python 3.5

 numpy 1.9.2

 matplotlib 1.3.1

 optional: scipy 0.15.1, pycuda 2015.1.3, scikit-cuda 0.5.1,
pytest 2.7.0

To run the code make sure you have all the requisites mentoned,
navigate to the folder of BRNN.py, open a terminal and enter:

python BRNN.py

