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Summary 

 

This dissertation focuses on the problem of protein secondary structure 

prediction, a problem that mainly concerns the fields of Computer Science and 

Biology. 

 

Proteins are an integral part of the human body and every living organism. 

Studying the structure and functions of proteins facilitate the process of 

manufacturing food supplements, drugs and antibiotics to further evolve the 

quality of life and healthiness of people forward. The study of existing proteins is 

the key for treating diseases and solving a number of biological problems, 

especially nowadays when technology has made the process computationally 

easier, faster and significantly cheaper. 

 

Despite the fact that for millions of proteins, the primary structure is well 

documented, only for a small fraction of those we know the secondary and tertiary 

structure. This is because the current state-of-the art methodologies and 

instruments for protein structure determination are extremely costly in terms of 

both money and time. This is incredibly serious, since the primary structure on its 

own, tells nothing about the actual function of the protein. This resulted in the 

emergence of a number of computational techniques and algorithms that attempt 

to predict the secondary and tertiary structure of a protein, given its primary, 

which do so significantly faster and cheaper. 

 

For the purpose of this dissertation, a Bidirectional Recurrent Neural Network 

(BRNN) was implemented, trained with the Hessian Free Optimization to predict 

the secondary structures of proteins. The motivation of this project is to use HFO 

on a complex problem like PSSP, which was not done before, to test the 

theoretical superior performance in terms of execution times. The results of this 

network was an overall accuracy of 78.15% for a single fold with ensembles and 

76.52 for 10-fold cross validation without ensembles, which is extremely 

promising, considering the current best methods and algorithms result in 

accuracies that are in between the 84-85% range (Wang et al., 2016). 



Περίληψη 

Ο στόχος της παρούσας εργασίας είναι η προσπάθεια επίλυσης του 

προβλήματος πρόβλεψης της δευτεροταγούς δομής πρωτεϊνών, ένα πρόβλημα 

το οποία αφορά κυρίως τους κλάδους της Πληροφορικής και Βιολογίας. 

 

Οι πρωτεΐνες είναι ένα αναπόσπαστο κομμάτι του ανθρώπινου σώματος καθώς 

και κάθε ζωντανού οργανισμού. Μελετώντας την δομή και την λειτουργία των 

πρωτεϊνών, διευκολύνεται η διαδικασία ανάπτυξης διαφόρων συμπληρωμάτων 

διατροφής, φαρμάκων και αντιβιοτικών τα οποία μπορούν να εξελίξουν ραγδαία 

την ποιότητα ζωής και την γενικότερη υγεία των ανθρώπων. Η μελέτη των 

γνωστών πρωτεϊνών είναι το κλειδί για την εύρεση θεραπείας σοβαρών 

ασθενειών καθώς και για την επίλυση σημαντικών βιολογικών προβλημάτων. 

Αυτό ισχύει ειδικότερα στα σημερινά δεδομένα, όπου η τεχνολογία έχει καταφέρει 

να κάνει τις απαιτούμενες διαδικασίες υπολογιστικά ευκολότερες, γρηγορότερες 

και σημαντικά φθηνότερες. 

 

Παρόλο το γεγονός ότι για εκατομμύρια πρωτεΐνες, η πρωτοταγής δομής τους 

είναι αρκετά ικανοποιητικά καταγεγραμμένες, μόνο για ένα πολύ μικρό κομμάτι 

από αυτές είναι γνωστή η δευτεροταγής και τριτοταγής δομής τους. Αυτό 

οφείλεται στο γεγονός ότι οι υπάρχουσες μεθοδολογίες και όργανα για 

εξακρίβωση της δομής των πρωτεϊνών είναι εξαιρετικά δαπανηρές, τόσο σε θέμα 

χρημάτων όσο και στο χρόνο που απαιτείται για να ολοκληρωθούν. Αυτό είναι 

πολύ σοβαρό πρόβλημα, διότι η πρωτοταγής δομής από μόνη της δεν παρέχει 

αρκετή πληροφορία για εξακρίβωση της λειτουργίας μια πρωτεΐνης. Αυτό είχε σαν 

αποτέλεσμα την εμφάνιση υπολογιστικών μεθοδολογιών και τεχνικών, οι οποίες 

προσπαθούν δεδομένου της πρωτοταγής δομής μια πρωτεΐνης, να προβλέψουν 

την δευτεροταγής της. 

 

Στα πλαίσια της παρούσας Διπλωματικές εργασίας, υλοποιήθηκε ένα Νευρωνικό 

Δίκτυο αμφίδρομης ανάδρασης, εκπαιδευμένο με Hessian Free Optimization, με 

σκοπό την πρόβλεψη της δευτεροταγής δομής πρωτεϊνών. Ο σκοπός της 

έρευνας είναι να εφαρμόσουν τον αλγόριθμο HFO σε ένα πιο δύσκολο πρόβλημα 

όπως το PSSP, για να εξεταστεί η θεωριτική ανώτερη επίδοση του όσων αφορά 

τον χρόνο εκτέλεσης  Το αποτέλεσμα ήταν μια ολική ακρίβεια της τάξης του 

78,15% για ένα fold με χρήση ensembles, και 76,52% με 10-fold cross validation, 



χωρίς την χρήση ensembles το οποίο είναι εξαιρετικά υποσχόμενο, δεδομένου 

ότι οι καλύτερες μεθοδολογίες και αλγόριθμοι για το πρόβλημα κυμαίνονται γύρω 

στο 84-85%. 
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1.1. The Importance and Purpose of PSSP 

 

Proteins are an integral part of every living organism. In the human body, there 

are more than 30,000 unique proteins, which perform a vast array of important 

functions inside the cells. They are responsible for DNA replicating and defending 

against infections, as well as for many other functions required to sustain life.  

 

They consist of organic compounds called amino acids connected to each other 

in longs chains. Each protein differentiates from another in structure and in 

function, depending on the serial sequence of its amino acids. This is because 

the amino acids that make up a protein interact with each other, which causes 

the protein to fold into a specific three-dimensional structure. The structure is 

always the same for a specific protein, under certain conditions, and this is what 

determines its function. 

 

Studying the structure and functions of proteins facilitate the process of 

manufacturing food supplements, drugs and antibiotics to further evolve the 

quality of life and healthiness of people forward. The study of existing proteins is 

the key for treating diseases and solving a number of biological problems, 

especially nowadays when technology has made the process computationally 

easier, faster and significantly cheaper. 

 

In order to facilitate the process of studying proteins, a hierarchical approach has 

been established to better observe the structure of the proteins in the various 

phases of their formation. There are four layers of organization, which are the 

primary structure, the secondary structure, the tertiary structure and finally, the 

quaternary structure. The primary structure is the linear sequence of the amino 

acids, namely the order in which amino acids appear in the protein when 

unfolded. The secondary structure defines the way local segments of a protein 

are oriented in space, while the tertiary structure is the three-dimensional shape 

of a protein, when the amino acid chain is folded, and is the one that determines 

the specific function of a protein. Finally, a number of tertiary structures folding 

together forms a quaternary structure. 
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Despite the fact that for millions of proteins, the primary structure is well 

documented, only for a small fraction of those we know the secondary and tertiary 

structure. This is because the current state-of-the art methodologies and 

instruments for protein structure determination are incredibly costly in terms of 

both money and time. This is incredibly serious, since the primary structure on its 

own, tells nothing about the actual function of the protein. This resulted in the 

emergence of a number of computational techniques and algorithms that attempt 

to predict the secondary and tertiary structure of a protein, given its primary, 

which do so significantly faster and cheaper. 

 

One of those techniques used on this problem - PSSP (Protein Secondary 

Structure Prediction) is the use of Machine Learning algorithms. These 

algorithms are designed based on computational statistics and mathematical 

optimization techniques, which give computer systems the ability to learn patterns 

and idiosyncrasies of data, with the goal of being able to predict and classify new 

ones. There are a number of machine learning algorithms that have been used 

over time on this problem (which are discussed in the subsequent chapter); 

however, the focus of this dissertation is on Artificial Neural Networks (ANN).  

More specifically, a bidirectional recurrent neural network (BRNN), similar to the 

one used by Baldi (1999), trained with the Hessian Free Optimization (HFO) 

(Martens 2010) was developed and optimized on this problem. 

 

The benefit of using BRNN for this problem is very clear. The way biological 

proteins fold in local segments (secondary structure) depends solely on the 

interactions and bonds that are formed by the neighboring amino acids. 

Consequently, a network, which is designed to take into account the amino acids 

located on either side (bidirectional) of the specific amino acid being classified, is 

bound to give a better prediction. 

 

The original BRNN by Baldi was trained using the backpropagation algorithm 

(Werbos 1974) and resulted in extremely good predictions at the time. However, 

it is a relatively slow algorithm which suffers from problems like overfitting and 
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getting stuck in local minima. Using Second Order Optimization Algorithms, which 

are named so because they use second order derivatives (Hessian Matrix), 

additional information is calculated by the network, which heavily improves the 

optimization process in terms of both speed and accuracy. However, calculating 

and using the Hessian Matrix is often prohibiting due to its extremely large 

memory requirements. HFO addresses the memory issues by not calculating the 

Hessian Matrix (H) but the product Hu (u is an arbitrary vector), which is 

mathematically possible with a number of techniques and costs just as much as 

a gradient calculation. This, with combination of a number of other things, 

discussed on Chapter 4, made HFO computationally possible and accurate. 

 

 

1.2  Previous Work on PSSP 

 

There is more than half a century’s worth of work on the PSSP problem. A number 

of machine learning algorithms have been developed and optimized for this 

specific problem over the years, which resulted recently in accuracies >90% 

(Shangxin et al. 2018,  Magnan et al. 2014)  in the Q3 accuracy score (Equation 

2.1.) that essentially mark the problem solved. However, the algorithms that 

managed to achieve such high accuracies (>85%) have all used additional 

information and structural templates from databases, called sequence-based 

structural similarity of a protein. This makes the learning process and 

performance extremely better, relatively to the more pure machine learning 

algorithms. Without relying on these structural templates, the three-state 

accuracy is now at 82-84%, which is still good, considering the complexity of the 

problem, however there is still room for improvement, considering the theoretical 

limit of the three state prediction of around 88-90% (Rost, Burkhard 2001). 

 

𝑄 = 100
1

𝑛
∑𝑚𝑖

𝑛

𝑖=1

 

Equation 1.1.: Equation measuring the accuracy of protein secondary structure 

predictions, where n is the number of amino acid residues and mi takes the value of 1 if 

the predicted value of the ith amino acid residue is correct and 0 otherwise  
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Figure 1.1: Number of publications for PSSP per year (Yang et al. 2016) 

 

Observing the figure 1.1 it is clear that despite its long history it was only until the 

90’s that PSSP started getting more attention. That is because some major 

breakthroughs were achieved during that period which resulted in gradually 

increasing the three-state accuracy of the problem significantly.  

 

While most methods were around the 60-63% Q3 before the 90’s, in 1993 Rost 

and Sander (Rost & Sander, 1993) achieved accuracy of 69.7%. Their predictor 

was a fully connected feed forward Neural Network with early training stopping 

conditions and made use of averaging ensembles by training multiple models. In 

1994, the same people released an automatic mail server for PSSP, called PHD 

(Rost et al., 1994) with accuracy of 71.4%.  

 

Five years later, in 1999, two other predictors achieved accuracies of 76% and 

76.5%. The first one was a Bidirectional Recurrent Neural Network trained with 

Backpropagation by Baldi (Baldi, 1999) and the second was PSIPRED by David 
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T.Jones (Jones, 1999) based on the position specific scoring matrices generated 

by PSI-BLAST.  

 

In 2007, the Structural Property prediction with Integrated Neural Network by Ofer 

Dor and Yaoqi Zhou (Dor & Zhou, 2007) achieved 80%, using multiple sequence 

alignment (MSA), representative amino acid properties, a slow learning rate, 

overfitting protection, and an optimized sliding‐window size.  

 

In 2015, the Integrated Deep neural network 2 (SPIDER2) by Heffernan 

(Heffernan et al., 2015) achieved 82% using local backbone angles, solvent 

accessible surface area of proteins and iterative deep learning. 

 

Finally, in 2016, the Deep Convolution Neural Field network (DeepCNF) by Wang 

SPeng JMa JZ (Wang et al., 2016) achieved the highest documented accuracy, 

without relying on the structural templates, of 84%. 
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2.1 Biology Background 

 

2.1.1 The Biological Role of Proteins 

 

Proteins are large, complex molecules made up of hundreds to thousands of 

smaller units called amino acids, which are attached to one another in long 

chains. Proteins are responsible for most of the functions within organisms and 

this is what classifies each protein into a specific type. For example, there are 

structural proteins, which strengthen cells, tissues and organs and defense 

proteins, namely the antibodies, which help organisms fight infection, heal 

damaged tissue and evade predators.  

 

Table 2.1 lists the most important functions of proteins, which reflect the 

importance of proteins in nearly the entirety of an organism. 

Type Function Description Example 

Enzyme 

Enzymes build and break down molecules. They are 
critical for growth, digestion, and many other processes in 
the cell. Without enzymes, chemical reactions would 
happen too slowly to sustain life. 

Lactase 

Messenger 
Messenger proteins transmit signals to coordinate 
biological processes between different cells, tissues, and 
organs. 

Growth 
Hormone 

Structural 
Structural proteins strengthen cells, tissues, organs, and 
more. 

Collagen 

Transport 
Transport proteins move molecules and nutrients around 
the body and in and out of cells. 

Hemoglobin  

Storage 
Storage proteins store nutrients and energy-rich 
molecules for later use. 

Gluten 

Signaling 
Signaling proteins allow cells to communicate with each 
other. 

Insulin 

Regulatory Regulatory proteins bind DNA to turn genes on and off. 
Androgen, 
Estrogen 

Sensory 
Sensory proteins help us learn about our environment. 
They help us detect light, sound, touch, smell, taste, pain, 
and heat. 

Opsin 

Motor 
Motor proteins keep cells moving and changing shape. 
They also transport components around inside cells. 

Dynein, 
Kinesin 

Defense 
Defense proteins help organisms fight infection, heal 
damaged tissue, and evade predators. 

Antibodies 

Table 2.1: Types of proteins and their function (http://learn.genetics.utah.edu, 
2018, May 5) 

 

http://learn.genetics.utah.edu/
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In the human body, proteins are created mostly through the consumption of 

foods. When food, which contains proteins, is consumed, the digestive system 

breaks it down into amino acids, which enter the blood stream. The cells then 

gather the necessary amino acids from the blood stream, to create the proteins it 

requires to perform any of the vast array of functions possible. A diet poor of 

proteins results in few amino acids entering the blood stream which weakens the 

immune system, causes exhaustion, dizziness and possibly a number of other 

very serious diseases. This is because the cells do not have enough amino acids 

to create the proteins required for each of the functions necessary to sustain the 

human body. 

 

Consequently, understanding the significant role of proteins in all aspects of living 

organisms is important. However, what is necessary is to understand the core 

structure and function of each protein, in order to facilitate the process of creating 

food supplements, drugs and antibiotics to further evolve the quality of life and 

healthiness of people forward. The study of existing proteins, is the key for 

treating diseases and solving a number of biological problems, especially 

nowadays when technology has made the process computationally easier and 

significantly faster. 

 

2.1.2 Amino Acids 

 

Amino acids, or as they are often called, the building blocks of life are the sole 

component of proteins. There are more than five hundred (500) naturally 

occurring amino acids known, but only twenty (20) appear in the genetic code 

and in the formation of proteins (Table 2.2). Consequently, those amino acids are 

called the essential amino acids and are found in most, but not all proteins. 

 

All amino acids are composed by one functional group of amine (-NH2) and 

carboxyl (-COOH), along with a side chain, the R group, specific to each amino 

acid. The unique side chain is what differentiates amino acids in their physical 

and chemical properties. Moreover, depending on the chemistry of their side 

chain, amino acids are classified into three (3) different categories. The first and 
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largest group of amino acids has nonpolar side chains, while the second has polar 

side chains, which are uncharged. The third one has amino acids with positive 

and negative charges on their side chain. This is extremely critical to the protein 

structure, since these side chains can interact and bond with one another based 

on their chemistry, which forms the specific part of the protein in a certain shape. 

This means that the sequence and location of amino acids in a particular protein 

determines where the bends and folds occur in its three-dimensional structure, 

(which is discussed later). Finally, every single amino acid has its amino group 

positively charged and its carboxylic group negatively charged. This facilitates the 

sequential connection between amino acids with covalent bonds. 

 

 
 

Amino 
Acid 

Abbreviatio
n 

Structure  Amino Acid 
Abbreviatio

n 
Structure 

1.  Glycine Gly G 

 

11.  
Phenylalanin

e 
Phe F 

 

2.  Alanine Ala A 

 

12.  Tyrosine Tyr Y 
 

3.  Valine Val V 

 

13.  Tryptophan Trp W 
 

4.  Leucine Leu L 
 

14.  Histidine His H 
 

5.  Isoleucine Ile I 
 

15.  Lysine Lys K 
 

6.  Methionine Met M 
 

16.  Arginine Arg R 
 

7.  Serine Ser S 

 

17.  Aspartate Asp D 

 

8.  Cysteine Cys C 

 

18.  Glutamate Glu E 
 

9.  Threonine Thr T 

 

19.  Asparagine Asn N 

 

10.  Proline Pro P 

 

20.  Glutamine Gln Q 
 

Table 2.2: List of all the 20 essential amino acids (Hausman & Cooper, 2004). 

 

The way amino acids connect to each other is by peptide bonds, in units as small 

as two or three amino acids, called dipeptides and tripeptides respectively, or in 

much longer chains called polypeptides, forming a protein molecule. This process 

https://commons.wikimedia.org/wiki/File:Glycin_-_Glycine.svg
https://commons.wikimedia.org/wiki/File:L-Phenylalanin_-_L-Phenylalanine.svg
https://commons.wikimedia.org/wiki/File:L-Alanin_-_L-Alanine.svg
https://commons.wikimedia.org/wiki/File:Tyrosin_-_Tyrosine.svg
https://commons.wikimedia.org/wiki/File:L-Valin_-_L-Valine.svg
https://commons.wikimedia.org/wiki/File:L-Tryptophan_-_L-Tryptophan.svg
https://commons.wikimedia.org/wiki/File:L-Leucin_-_L-Leucine.svg
https://commons.wikimedia.org/wiki/File:L-Histidin_-_L-Histidine.svg
https://commons.wikimedia.org/wiki/File:L-Isoleucin_-_L-Isoleucine.svg
https://commons.wikimedia.org/wiki/File:L-Lysin_-_L-Lysine.svg
https://commons.wikimedia.org/wiki/File:L-Methionin_-_L-Methionine.svg
https://commons.wikimedia.org/wiki/File:L-Arginin_-_L-Arginine.svg
https://commons.wikimedia.org/wiki/File:L-Serin_-_L-Serine.svg
https://commons.wikimedia.org/wiki/File:L-Asparagins%C3%A4ure_-_L-Aspartic_acid.svg
https://commons.wikimedia.org/wiki/File:L-Cystein_-_L-Cysteine.svg
https://commons.wikimedia.org/wiki/File:L-Glutamins%C3%A4ure_-_L-Glutamic_acid.svg
https://commons.wikimedia.org/wiki/File:L-Threonin_-_L-Threonine.svg
https://commons.wikimedia.org/wiki/File:L-Asparagin_-_L-Asparagine.svg
https://commons.wikimedia.org/wiki/File:L-Prolin_-_L-Proline.svg
https://commons.wikimedia.org/wiki/File:L-Glutamin_-_L-Glutamine.svg
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is called condensation reaction and it extracts a water molecule as it joins the 

amino group of one amino acid and the carboxyl group of a neighboring amino 

acid.  What remains of each amino acid after the junction, is called amino acid 

residue. 

 

Figure 2.1 illustrates the core structure of all amino acids and the process of 

protein formation. 

 

 

Figure 2.1: Amino acid structure and protein conformation (Nature Education 2010) 
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Each amino acid is abbreviated into a single (or triple) character from the English 

alphabet, meaning the amino acid sequence of a polypeptide can be represented 

as a sequence of characters. This sequence is considered to be the primary 

structure of the protein, which is discussed in detail later in section 2.1.3.1 As a 

result, any change in the sequence of the polypeptide, leads to the formation of 

a completely different protein, along with a completely different set of properties 

and functionalities. 

 

The way each protein is assembled is encoded in the genes of an organism, the 

DNA. More specifically, the unique amino acid sequence, which forms a protein, 

is specified by the nucleotide sequence of the gene encoding that protein. In the 

case of the human genome, there are around thirty-thousand (30,000) genes, 

each of which encodes a single, unique protein.  

 

The way it works is that the “DNA makes RNA” through a process called 

transcription and the “RNA makes proteins” through a process called translation. 

This constitutes The Central Dogma of Molecular Biology, which is illustrated in 

figure 2.2.  

 

 

Figure 2.2: The Central Dogma of Molecular Biology: DNA makes RNA makes proteins 
(Nucleic Acids Book, www.atdbio.com, 2018, May 5) 

 

 

The genetic code is basically a set of nucleotide triplets, called codons. Each 

combination of a triplet designates an amino acid, and since there are four (4) 

unique nucleotides (adenine - A, uracil - U, guanine - G, and cytosine -C), the 

total number of triplets that can be arranged is sixty-four (43 = 64). However, there 

are only twenty (20) amino acids that can be encoded naturally, which means 

some amino acids can be described by more than one codon, or some codons 

do not encode any amino acids. Those codons, which do not encode any amino 

http://www.atdbio.com/
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acids, are called the stop codons and serve as a termination signal for the 

translation process, meaning that when one is found, the polypeptide, or the 

protein, translated up to that point is released. Figure 2.3 illustrates an example 

of the translation from DNA to protein (the first few amino acids for the alpha 

subunit of the protein hemoglobin), while figure 2.4 examines the full table of 

codons, along with the amino acid or the stop signal they encode.  

 

 

Figure 2.3:  Example of the central dogma. The first few amino acids for the alpha subunit 
of hemoglobin (Madprime, 2006) 

 

.  

Figure 2.4: The amino acids specified by each codon. (Nature Education 2014) 
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2.1.3 Protein Structure 

 

In order to facilitate the process of studying proteins, a hierarchical approach has 

been established to better observe the structure of the proteins in the various 

phases of their formation, discussed previously in section 2.1.2. There are four 

layers of organization, which are the primary structure, the secondary structure, 

the tertiary structure and finally, the quaternary structure (Figure 2.5). It is 

important to note that this organization of many hierarchical structures is strictly 

used to make things easier for people to understand how proteins are formed. In 

organisms, proteins have one single structure, which is three-dimensional. 

 

Figure 2.5: Layers of protein structure (Madison 2009) 
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2.1.3.1 Primary Structure 

 

The primary structure of a protein is the discrete sequence of amino acids, which 

is basically the linear succession of amino acids in the protein, if its three-

dimensional structure was to be unfolded. Using the one-character amino acid 

abbreviations (Table 2.2), countless possibilities of protein formation exist. 

However, only a tiny subset of them has actually been studied and most of the 

information that exists today about proteins is about their primary structure. This 

is because the primary structure of a protein can easily be translated from the 

genetic material, though no useful information regarding its function can be 

extracted from it. However, various learning algorithms can be applied to it, to 

accurately predict cheaply its secondary and tertiary structure, which is also the 

main focus of this dissertation. The benefits of the secondary and tertiary 

structure are discussed subsequently, in sections 2.1.3.2 and 2.1.3.3 respectively 

 

2.1.3.2 Secondary Structure 

 
The secondary structure is the three-dimensional form of local segments of 

proteins. The most common method of describing the secondary structure of 

proteins was defined by the Dictionary of Protein Secondary Structure, or DSSP 

(Kabsch et al., 1983) in short. Single character codes are used, based on 

hydrogen bond patterns, to define the eight (8) types of secondary structure that 

the DSSP classifies. These are the α-helix (H), 3-helix (G), π-helix (I), β-strand 

(E), β-bridge (B), β-turn (T), bend (S), and random coil (C) for residues which are 

not in any of the other conformations. This last designation is unfortunate as no 

portion of protein three-dimensional structure is truly random and it is usually not 

a coil. A number of "other" secondary structures types have been proposed; 

however, they represent a small fraction of residues and may not be a general 

structural principle of proteins. It is common to group these eight (8) categories 

into three (3) to describe the nature of the shape of the specific local segment of 

the protein. First, the helix conformations that obviously contain the first three 

categories (H, G, I), and have helical form, the sheet conformations that contain 
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the β-strand (E) and β-bridge (B) categories, and finally Coil conformations which 

contain everything else.  

 

 

Figure 2.6: alpha helices form spirals (left) and beta-pleated sheets arrows 

(right) (http://ib.bioninja.com.au, 2018, May 5) 

2.1.3.3 Tertiary and Quaternary Structure 

 
The tertiary structure is the way the polypeptide chain coils and turns to form a 

complex molecular three-dimensional shape. This structure is what actually 

defines the functions and properties of the protein. Despite its great significance 

only for a very small portion of known proteins, there is a documented and fully 

defined tertiary structure. This is because of the very expensive experimental 

procedures required and it is still today a very important problem. Under certain 

conditions, such as protein temperature or pH change, the original three-

dimensional structure is destroyed and its properties and biological functions are 

altered, despite of the fact that the amino acid sequence is still the same. This 

confirms that the 3D structure of the protein is what defines its function and not 

the amino acid sequence it is made up of. However, under normal conditions, 

both secondary and tertiary structures remain the same for each protein, since 

the linear sequence of amino acids (primary structure) is always the same and 

the following structures are developed through the interactions between the R 

groups of the amino acids.  

 

http://ib.bioninja.com.au/
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Figure 2.7: The formation of protein tertiary 3D structure (http://ib.bioninja.com.au, 2018, 
May 5) 

 
 
 

The Quaternary Structure of a protein forms by multiple tertiary structures folding 

together. 

 

Figure 2.8: The Quaternary Structure of a protein (McKinnon, 2003) 

 

 
 

  

http://ib.bioninja.com.au/
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2.2 Artificial Neural Networks (ANN) Background 

 

2.2.1 Artificial Neural Networks (ANN) Origins 

 

Artificial Neural Networks (ANN) are computing systems based on biological 

neural networks, which learn patterns and tasks without explicit programming. 

The term ‘learn’ varies based on the application it is used. However, a learning 

system could be summarized as a system that progressively improves its 

performance on a task given the metrics of the application. The learning is being 

accomplished by feeding and training the network on examples and data related 

to a specific task, with the goal of ultimately being able to identify the nature of 

newer, never before seen by the network data. For example, in financial 

applications, an ANN could be trained on historic stock market data with the goal 

of predicting future stock prices.  

 

The popularity of ANN mainly resulted because of its theoretically extremely good 

properties. First of all, the Multilayer Perceptron (MLP), one of the most basic 

classes of ANN, is a Universal Function Approximator (Hornik et al., 1989). This 

essentially means that in theory ANN can reproduce all human intelligence and 

can solve any problem imaginable, with the assumption that everything can be 

reduced and modeled into a specific mathematical function. Moreover, they have 

the ability to extract useful information from inconsistent and noisy data and are 

able to generalize well from previous examples. They have minimal 

computational requirements when fully trained and due to their architecture, they 

can take advantage of parallelism, which significantly improves its training speed, 

comparing to the traditional serial computations. Finally, they are extremely 

suited to solve problems that are ill defined or problems that require enormous 

amount of processing. 

 

Artificial Neural Networks were originally created to mimic and solve problems in 

the same way that a human brain would. This is reflected by the core architecture 

of an artificial neural network. In order to fully comprehend the similarities 
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between artificial and biological neural networks a brief explanation of how both 

networks are assembled and work follows. 

 

The biological neural network is a collection of neurons that receive, process and 

transmit information between each other, through electrical and chemical signals 

via specialized connections called synapses. The ANN is essentially identical in 

terms of architecture, having nodes (artificial neurons), a simplified version of 

biological neurons in terms of functionalities, and edges, or connections instead 

of synapses, which transmit signals from one artificial neurons to another 

connected to it. A biological neuron consists of three (3) main components. The 

cell body (soma), the axons and the dendrites (Figure 2.9). Signals are 

transmitted through the axons and are received by dendrites, which in turn 

transmit it to the cell body. Finally, the cell body is responsible to process the 

aggregated signals, namely to add them together. Finally, providing that value 

exceeds a predefined threshold, the neuron fires another signal to some other 

connected neuron. Similarly, ANN work with the same concept, which is 

discussed in detail on the following chapters. 

 

 

Figure 2.9: Structure of a Biological Neuron (cs.stanford.edu, 2018, May 5) 

 

However, as ANN began gaining popularity, the attention was slowly shifted away 

from replicating the human brain and the biological neural networks. The need 

for matching and solving specific tasks, lead to the development of various ANN 

architectures, some of which deviate majorly from its initial biologically inspired 



Page 20 of 102 

 

nature. For example, the need for image recognition, lead to the development of 

an alternative ANN called Convolutional Neural Network (CNN) (Lecun et al., 

2015) which integrates a preprocessing module that is able to extract complex 

but useful features from images. These features are then fed into a classic ANN, 

a fully connected feedforward MLP (section 2.2.1), to classify and label the initial 

image. There are countless other variations of ANN to solve other specific tasks 

like speech recognition, machine translation and playing video games, some of 

which are discussed in the following section. 

 

2.2.1 ANN Variants 

 

McCulloch και Pitts (McP) 

 

The foundation of all Artificial Neural Networks, proposed by Warren McCulloch 

and Walter Pitts in 1943 (McCulloch & Pits, 1943), also known as a Binary 

Threshold Unit (Figure 2.10). The model aimed to replicate in its simplest form 

the structure and function of a single biological neuron of a neural network in the 

human brain.  In the biological terms discussed earlier, an input vector takes the 

place of the ‘dendrites’, which feeds the artificial neuron the signals, by 

performing multiplications with the weight values. The artificial neuron then sums 

those signals and transmits the added value to a threshold function, the Step (or 

Heaviside) function (Figure 2.11).There, if the value exceeds a certain threshold 

value, it outputs an output signal of 1, otherwise an output signal of 0 (Equation 

2.1) (similarly to biological neurons). Therefore, it can only be used for binary 

classification. 

 

Figure 2.10: The artificial neuron of McCulloch and Pitts (1943) 
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Figure 2.11.: The Step or Heaviside Function 

 
 

𝑦 =  {   
1   𝑖𝑓 𝑤 ∙ 𝑥 > 𝑠
0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

 
 

Equation 2.1: The output y of the network where x is the input vector, w the weight 

vector, 𝐰 ∙ 𝐱 the dot product and s the threshold 

 

The way they classify inputs depends on the weights of the connections as well 

as on the threshold value. In a simple two-dimensional scenario (2D input vector), 

the decision line is that of the Equation 2.2.  

 

𝑥2 =  − (
𝑤1

𝑤2
) 𝑥1 + (

𝑠

𝑤2
) 

Equation 2.2: Decision line of a 2D input vector 

 

For example in the case of trying to classify the AND gate, the model would have 

to have weights of W = [1, 1] and threshold of S = 1.5 (this is just an example, 

there are infinite other ways to solve this). The way the decision line would be is 

that of figure 2.12 and inputs would be classified depending on whether they are 

above the decision line (Class 1) or below (Class 0). 

 

Figure 2.12.: Decision Line of AND gate 
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Perceptron Learning Algorithm 

 

The way McP neurons learn is through a learning algorithm called Perceptron 

(Rosenblatt 1957). The idea is to present input and desired output to the network, 

calculate the output for that input and in the case of misclassification (output is 1 

but should be 0, or vice versa) adapt the weights accordingly (Algorithm 2.1). 

Although, this initially seemed promising, it was quickly proven that it could only 

solve linearly separable patterns, that is, patterns where a hyperplane can be 

found on space that can separate them. For example it could solve perfectly 

problems like the OR gate, since a straight line can separate the two classes. 

However, in problems like the XOR gate, where more than a straight line is 

needed to separate the classes, this algorithm failed (Figure 2.13). Moreover, 

there was no way to distinguish between outputs that are closer to the desired 

class due to the binary nature of the Heaviside function, which made the learning 

process more difficult, and impossible in more complicated scenarios of 

combining multiple perceptrons. This lead to more sophisticated algorithms and 

networks like the Multilayer perceptron (MLP) and the backpropagation algorithm, 

which are discussed subsequently. 

 

Algorithm 2.1: Perceptron Learning Algorithm 

 
 

Perceptron Learning Algorithm 

1. Initialize weights and threshold randomly. 

2. Present input and desired output. 

3. Calculate actual output (Equation 2.1). 

4. Adapt weights: 

if output 0, should be 1:  𝑤𝑖(𝑡 + 1) =  𝑤𝑖(𝑡) +  𝜂 ∙ 𝑥𝑖(𝑡) 

if output 1, should be 0:  𝑤𝑖(𝑡 + 1) =  𝑤𝑖(𝑡) −  𝜂 ∙ 𝑥𝑖(𝑡) 

if output is correct    :  𝑤𝑖(𝑡 + 1) =  𝑤𝑖(𝑡) 

 

where 0 ≤ 𝜂 ≤ 1 the learning rate, controlling the 

adaptation rate.  
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Figure 2.13: Linear Separability on OR gate vs Linear Inseparability on XOR Gate 

 
 
Multilayer Perceptron (MLP) 

 

Multilayer Perceptrons (MLP), or the ‘vanilla’ neural networks as they are often 

referred as, are the most popular and well-known variants of ANN. They are 

layered feedforwards networks, consisting of multiple (slightly different version 

of) McCulloch and Pitts neurons (Figure 2.14). The difference between true McP 

neurons and MLP neurons is that while the former strictly uses a threshold 

activation function (the Heaviside step function), the latter uses any arbitrary 

activation function (Table 2.3) This means that, while McP can only perform 

binary classification, MLP can either perform classification or regression, 

depending on the activation function used.  In addition, activation functions serve 

as a way to distinguish between outputs that are closer to the desired class, which 

gives an indication of the scale by which to adjust the weights to have better 

predictions. 

 

They have an input layer, an output layer and at least one hidden layer, with one 

or multiple neurons each. Each layer, apart from the output, has an independent 

‘bias’ neuron unit, which basically helps fit the predictions better to the data, with 

a constant input value of 1. The hidden layers have multiple properties and it is 

where most of the information for the learning process is being stored and 

processed. Each neuron unit in the first hidden layer defines a new decision line 

that separates classes and patterns (Figure 2.13). Moreover, adding a second 

hidden layer leads to the formation of arbitrary complex decision shapes that are 
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capable of separating any classes. Consequently, no more than two hidden 

layers are needed in a network (Kolmogorov Theorem).  

 

The process for calculating the output signal is feed forward and is similar to the 

one of McP.  Neurons in the input layer, feed their values to the first hidden layer, 

where based on the activation function, they output a signal per hidden neuron 

(Equation 2.3). Those signals are in turn fed as inputs to the next hidden or output 

layer, where the process is repeated until no layer is left. 

 

𝒚 = 𝒔(𝒘𝑻𝒙 + 𝒃)  

Equation 2.3: The output y of a single neuron where x is the input vector for that neuron, 

w the weight vector, 𝒘𝑻 ∙ 𝐱 the dot product, b the threshold and s the arbitrary activation 
function 

 
 
 

 

Figure 2.14 Multi-layer perceptron with 1 hidden layer 
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Name Plot Equation Derivative Range 

Heaviside 

 

𝑓(𝑥) = {
1 𝑖𝑓 𝑥 > 0     
 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

 𝑓′(𝑥) = {
0 𝑖𝑓 𝑥 ≠ 0  
?  𝑖𝑓 𝑥 = 0  

 {0,1} 

Logistic / 

Sigmoid 
 

𝑓(𝑥) =
1

1 + 𝑒−𝑥
 𝑓′(𝑥) = 𝑓(𝑥)(1 − 𝑓(𝑥)) (0,1) 

TanH 

 

𝑓(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 𝑓′(𝑥) =

1

𝑥2 + 1
 (-1,1) 

Rectified 

linear unit 

(ReLU)  

𝑓(𝑥) = {
0 𝑖𝑓 𝑥 < 0    
𝑥 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝑓′(𝑥) = {
0 𝑖𝑓 𝑥 < 0    
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 [0,∞) 

SoftPlus 

 

𝑓(𝑥) = ln (1 + 𝑒𝑥) 𝑓′(𝑥) =
1

1 + 𝑒−𝑥
 (0,∞) 

Gaussian 

 

𝑓(𝑥) = 𝑒−𝑥
2
 𝑓′(𝑥) = −2𝑥𝑒−𝑥

2
 (0,1) 

 
Table 2.3 : List of some of the most important activation functions. 

 

 

Gradient Descent 

 

Gradient descent, also known as steepest descent, is a mathematical 

optimization algorithm for finding the minimum of a function. It is probably one of 

the most used algorithms in training Artificial Neural Networks. The way gradient 

descent works is, similarly to its name, given a point, it take steps proportional to 

the negative of the gradient of the function at the current point. 

 

An error signal is defined (Equation 2.4) which describes how well or how bad 

the network has managed to classify the input patterns. The goal is to minimize 

this function, so as many inputs as possible be correctly classified.  
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𝑬 =
𝟏

𝟐
∑(𝒕𝒑𝒋 − 𝒐𝒑𝒋)

𝟐

𝒋

 

Equation 2.4: Mean Square Error (MSE) function, where t target output, o actual output, p 
denotes the pattern and j the neuron 

 
The main idea is to apply the Gradient Descent algorithm to the MSE function in 

order to minimize the error, namely the difference between the desired and actual 

outputs. What this means is to make a change in the weight vectors, proportional 

to the negative of the derivative of the error in the current pattern with respect to 

each weight. 

 

𝛥𝑤𝑖𝑗 = −𝑛
𝜕𝐸𝑝

𝜕𝑤𝑖𝑗
 

Equation 2.5: Weight change based on gradient descent where n learning rate 
 

Backpropagation (BP) 

 

Using the gradient descent method as is, the weights of the last hidden layer to 

the output layer are only possible to be adjusted. This is because, a desired 

output must be known in order to calculate (and minimize) the error, which is 

obviously not known in the hidden layers. Backpropagation addresses this issue 

by, as the name suggests, back-propagating the error from one layer, starting 

from the output layer, to the previous one. Two passes from all neurons are 

needed to achieve this. A forward pass, where given an input, the error is 

calculated (Equation 2.4).  Then, at a second pass, the backward pass, the error 

is back propagated to the previous layers, adjusting the weights accordingly. This 

process is repeated until all patterns have been fed into the network enough times 

to minimize the error at a point where is small enough depending on the problem 

or enough epochs (the number of times all patterns have been fed into the 

network) have passed. (Algorithm 2.2). 
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Algorithm 2.2: The Backpropagation algorithm, where dij is the error signal of 
neuron i of layer j, yij is the actual output of neuron i of layer j and dij is the target 
output of neuron i of layer j. The δik is the διj but in the previous iteration of the 
algorithm 

 
Recurrent Neural Network (RNN) 
 
Recurrent Neural Networks have the same structure as the Multilayer Perceptron 

Networks with one major difference. While MLP networks are feedforward, RNN 

have recurrent inputs, meaning the output of a hidden or output layer is fed back 

as input to itself or to another previous layer. The main idea behind this, is to 

create some sort of memory for the network which enables the output to be 

dependent not only from the current input, but also on a sequence of input data 

that were processed on previous iterations. Consequently, these ANN are used 

mainly on dynamic problems, namely time series predictions or predictions where 

the sequence of data is very important.  

 

Some of the most popular RNN architectures are the one creates by Jordan 

(1986) and the one created by Elman (1990) (Figure 2.15). The Jordan Network 

feeds its output to a context layer, which was connections to the hidden layer as 

well as back to itself, while the Elman Network feeds its hidden layer output to a 

context layer, which connects back to the hidden layer. 

Backpropagation 

Repeat: 
 For each pattern : 
  // Forward Pass 
  Calculate the output  

// Backward Pass 
  For each layer j, starting at the output: 
   For each unit i: 
      // Compute the error 

 If output neuron: 𝛿𝑖𝑗 = 𝑦𝑖𝑗(1 − 𝑦𝑖𝑗)(𝑑𝑖𝑗 − 𝑦𝑖𝑗) 

 If hidden neuron: 𝛿𝑖𝑗 = 𝑦𝑖𝑗(1 − 𝑦𝑖𝑗) 𝛿𝑖𝑘 ∙ 𝑊𝑗𝑘 

 For each weight to this unit: 
  Compute and apply Δw 
 Compute total error 
 Increment epoch counter 
Until small enough error or epoch counter exceeded 
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Figure 2.15: Jordan Network (Left), Elman Network (Right) 

 

Backpropagation through time (BPTT) 

 
Recurrent neural networks share a lot of similarities with the Multilayer Perceptron 

Networks. However, the recurrent connections make it difficult for the standard 

BP to work on this architecture. As a result, Mozer in 1989 (Mozer, 1989), 

developed a technique to unfold the network in time to enable the standard BP to 

work (Figure 2.16). What this means, is that when a recurrent layer is found, 

create as many copies of it as time stamps (number of input-output pairs), each 

of which has the same parameters. Those layers have as inputs, recursively the 

output of the previous time stamp, as well as the new input data of the current 

time stamp. The BPTT algorithm by Werbos (1990) sums the errors of each time 

stamp until the end of the input window, and recursively moves back in the 

unfolded network, adjusting the weights. 

 

Figure 2.16: Unfolding RNN through time (Headlessplatter, 2010) 
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Line Search  

 

Line search is an iterative method, used to find a minimum x* of an objective 

function (in the case of ANN, x are the weights of the network and the error 

function is the objective function.) 

 

In the simplest terms, equation 2.6 shows the basic components in calculating 

the next iteration of x, where d is the search direction and a is the step size, which 

determines how far x should move along that direction. With simple gradient 

descent, the search direction is the negative gradient of the error function, and 

the step size an arbitrary learning rate. If the step size is too big, the objective 

function might move far away from the minimum. If it is too small, the updates get 

too small which can either make the optimization process significantly slower or 

force the objective into a local minimum. Consequently, it is very important to 

determine an optimal step size of each search direction at each iteration. As a 

result, line search tries to find the optimal step size, which minimizes an objective 

function in a specific search direction at each iteration. 

 

𝒙𝒏+𝟏 = 𝒙𝒏 + 𝒂𝒏𝒅𝒏 

Equation 2.6: Weights update, where a is the step size and d the search direction 

 

A naïve approach of finding the step size is to proceed along the search direction 

in small steps, evaluating the error function until it starts increasing (Hush and 

Salas, 1988). However, there are many variations of line search, much more 

efficient, robust and accurate (Press et al., 1992; Charalambous, 1992).  
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Conjugate Gradient (CG) 

 

In order to apply line search to optimize the step size and minimize the error 

function at each iteration, a descent search direction must first be determined. In 

the case of Gradient Descent, the search direction is the negative gradient of the 

error function at each new position. However, this is generally not a good choice 

of direction. Successive gradient directions, lead to the problem illustrated in 

figure 2.17 (green) in which the weights oscillate on successive steps while 

making little to no progress towards the minimum. 

 

 

Figure 2.17: Gradient Descent (Green) and Conjugate Gradient (Red) convergence with optimal 

step size (Alexandrov 2007) 

 
 

The Conjugate gradient algorithm addresses the problem by choosing directions 

in each iteration that do not interfere with each other or undo some of the progress 

made previously. More specifically, in an N-dimensional problem, CG guarantees 

a solution in N steps, with each step attaining the minimum in its direction. Figure 

2.17 illustrates CG convergence on a 2-dimensional problem, in just two steps. 

 

The algorithm, which describes how it works in detail follows:  
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Algorithm 2.3: Conjugate Gradient Method (Bishop, 1995) 

 

 

Newtons’s Method 

 

Newton’s method is an iterative method originally created for finding 

approximations to the roots of real-valued functions. However, this method can 

also be used in optimization theory, to find a minimum or maximum of a function 

f(x). The derivative of the function at these points is obviously zero, so the local 

minima and maxima can be found by applying Newton’s Method to the derivative 

of the function to be optimized. In second-degree polynomials which are quadratic 

in nature, information of the second derivative of the function would be needed to 

work with, which essentially makes Newton’s method a second-order 

optimization algorithm. This usage of second-order derivative results in a 

Conjugate Gradient 

1. Initialize weight vector w0 randomly, set i=0 

2. Evaluate the gradient vector gi, and set the initial 

search direction di =-gi 

3. Use Line Search to find best step size a, which 

minimizes the function f(wi+adi) 

4. Update weights wi+1 = wi + adi 

5. Test stopping conditions 

6. Evaluate new gradient vector gi+1 

7. Evaluate new search direction di+1= -gi+1 + βidi, 

where βi is given by one of: 

 

βi =  
𝑔𝑖+1
𝑇 (𝑔𝑖+1−𝑔𝑖)

𝑔𝑖
𝑇𝑔𝑖

 

 

βi =  
𝑔𝑖+1
𝑇 𝑔𝑖+1

𝑔𝑖
𝑇𝑔𝑖

 

 

8. Set i=i+1 and go to step 3 

(Fletcher and Reeves) 

(Polar and Ribiere) 
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significantly faster and more accurate convergence to the minimum, comparing 

to first-order optimization methods like gradient descent. 

 

In a simple first-degree polynomial and 1-dimensional problem of a function f(x) 

and a sub-optimal initial solution x0, Newton’s method suggests the following: 

 

1. Set xi=x0 

2. Find the equation of the tangent at xi 

3. Find the point xi+1 at which the tangent line intersects with the x-axis 

4. Find the projection of xi+1 on f(x) 

5. Set xi = xi+1 and go to 2 until f(xi) < threshold 

 

 

Figure 2.18: Newton’s method in a first degree polynomial 

 
The math behind this method is pretty simple. The equation of a point-slope line 

is 

 

𝒚 − 𝒚𝟏 = 𝒎(𝒙 − 𝒙𝟏) 

Equation 2.7: The equation of a point-slope line 

 

Where m is the slope. This can be rewritten as 
  
 

𝒇(𝒙) − 𝒇(𝒙𝟏) = 𝒇′(𝒙)(𝒙 − 𝒙𝟏) 

Equation 2.8: The equation of a point-slope line using derivative instead of slope 
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However, f(x1) = 0 (point of interaction at x-axis) which finally gives the update 

rule for x as 

 

𝒙𝒊+𝟏 = 𝒙𝒊 −
𝒇(𝒙𝒊)

𝒇′(𝒙𝒊)
 

Equation 2.9: The update rule for optimizing the function 

 

However, this is just an illustrating example, used to gain the intuition behind the 

method of finding the roots of a function. What this method actually does in 

optimization theory is instead of using tangent lines at a current solution x as 

discussed earlier, it approximates the function f(x) by a local quadratic function 

around x, and take steps iteratively towards the minimum of that approximated 

function. This is repeated enough times to reach a certain threshold of the error 

or until a specific number of iterations have passed. Figure 2.19 illustrates the 

quadratic approximations around the weights at each iteration. 

 

 

Figure 2.19 Local Quadratic approximations (Rezamohammadighazi 2014) 

 

To approximate the function f(x), the second-order Taylor expansion is being 

utilized. 
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f(𝑥0 + x) ≈ f(𝑥0) + f′(𝑥0)x + f′′(𝑥0)
𝑥2

2
 

Equation 2.10: The second series Taylor approximation 

 

Obviously, an optimal x needs to be chosen so the f(𝑥0 + x) is a minimum. In 

order to do that, Newton’s method suggests to take the derivative of the Taylor 

series and set it equal to zero. 

 

d(f(𝑥0) + f
′(𝑥0)x + f

′′(𝑥0)
𝑥2

2
)

dx
= 𝑓′(𝑥0) + 𝑓

′′(𝑥0)𝑥 = 0 ⇒ 𝑥 = −
𝑓′(𝑥0)

𝑓′′(𝑥0)
 

Equation 2.11: The minimizer of Taylor’s approximation 

 

Ideally, this x should have been the absolute minimum of f(x). However, it is just 

the absolute minimum of the local approximation of f(x) around the initial solution 

of x0. In order to get to the minimum of the objective function, we just repeat the 

process. This gives the final update rule for a 1-dimensional problem, which 

eventually converges to a minimum: 

 

𝑥𝑛+1 = −
𝑓′(𝑥𝑛)

𝑓′′(𝑥𝑛)
 

Equation 2.12: The update rule for optimizing the function f(x) for a 1D problem 

 
The problem is that this algorithm only works for objective functions with a single 

dimension (𝑓:ℝ → ℝ).  

 

If the objective function, has multiple dimensions (𝑓:ℝ𝑛 → ℝ), the algorithm is 

simply modified by replacing derivatives with gradients and second derivatives 

with Hessians (the matrix of second partial derivatives, figure 2.20) 

 

 

 



Page 35 of 102 

 

𝑥𝑛+1 = −
∇f(𝑥𝑛)

𝐻(𝑓)(𝑥𝑛)
 

Equation 2.13: The final update rule for optimizing the function f(x) for multi-

dimensional problem 

 

This is the final update rule, which is the one cited as the Newton’s method. 
 

 
Figure 2.20: The Hessian matrix of the error function in regards with the weights 

 
This method seems to be extremely efficient and fast computationally, since 

unlike Gradient Descent, it does not fit a plane (derivative) at a solution and move 

forward on that plane (using the learning rate / step size) but fits a quadratic 

approximation around that solution and directly finds the minimum of that 

curvature. 

 

However, as the parameters of the function increase, it gets computationally 

impossible to calculate and store the entire hessian matrix of the function. This is 

why the standard Newton’s method cannot be applied to Neural Networks where 

there are thousands to millions of parameters. However, with some modifications, 

a different variant of the algorithm can be derived which would make the Hessian 

calculation unnecessary and thus possible to apply it to ANN training (Hessian 

Free Optimization) (Martens 2010), discussed in section 4.2. 
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3.1 PSSP Metrics 

 
The focus of the PSSP problem is to predict accurately – to some extent – the 

secondary structure of a protein, given its primary. As a result, proteins with both 

structures known have been used to train and test the ANN used in this 

dissertation.  As input, they have the primary structure of a protein encoded in 

some format, and as output, the predicted secondary structure, in a format, which 

is consistent to the actual secondary structure format of DSSP, discussed 

subsequently. 

 

In order to measure the accuracy of the models trained, two (2) different metrics 

were used in this dissertation, which are the most common for the PSSP problem. 

First, the Q3 accuracy, which simply measures the number of correctly classified 

amino acids, divided by the number of total amino acids (Equation 1.1). However, 

this method does not measure how well each separate class is predicted and 

how good is the general structure of the complete predicted protein.  

 

As a result, a different metric, the Segment Overlap (SOV) (Rost et al., 1994) 

score is also applied to address this problem. This method, instead of comparing 

each amino acid in a row, it compares segments of classes. For example, if in 

the correct secondary structure, there are four (4) helices, followed by two (2) 

coils and another four (4) helices but in the predicted structure there are simple 

ten (10) helices in a row the two metrics would produce significantly different 

accuracies. Indeed, the Q3 accuracy would be 80%, while the SOV score would 

be just 48. Note that SOV originally was not a percentage, since it could produce 

values outside of the 0-100 range. However, a modified definition of SOV (Zemla 

et al., 1999), fixed this problem using normalization techniques. 
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3.2 Protein Databases and Dictionary of Secondary Structure of 

Proteins (DSSP) 

 

There are millions of documented proteins in various protein databases such as 

Protein Information Resource (iProClass), Protein Data bank in Europe (PDBe), 

Protein Data bank in Japan (PDBj) and RCSB Protein Data Bank. In those 

databases, information regarding protein names, length, structures (primary, 

secondary, tertiary and quaternary) exists, as well as many other biological 

information related to proteins. Those databases were used to extract protein 

information to create the datasets used in PSSP. 

 

The Dictionary for Secondary Structure of Proteins (DSSP) (Kabsch et al., 1983) 

defined a standardized format of categorizing the secondary structures of a 

protein. In this format, there are eight (8) different classes of secondary 

structures, based on their shape and they are represented by a capital English 

letter. There are the α-helix (H), 3-helix (G), π-helix (I), β-strand (E), β-bridge (B), 

β-turn (T), bend (S), and random coil (C) (table 3.1) for residues which are not in 

any of the other conformations. This last designation is unfortunate as no portion 

of protein three-dimensional structure is truly random and it is usually not a coil. 

A number of "other" secondary structures types have been proposed; however, 

they represent a small fraction of residues and may not be a general structural 

principle of proteins. It is common to group these eight (8) categories into three 

(3) to describe the nature of the shape of the specific local segment of the protein, 

which is the way they are categorized in this dissertation. First, the helix (H) 

conformations that obviously contain the first three categories (H, G, I), and have 

helical form, the sheet (E) conformations that contain the β-strand (E) and β-

bridge (B) categories, and finally Coil (C) conformations which contain everything 

else.  
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Secondary Structure 8 class code 3 class code 

α-helix H 

H 3-helix G 

π-helix I 

β-strand E 
E 

β-bridge B 

β-turn T 

C bend S 

Random coil C 

 
Table 3.1. Matrix with the abbreviations of the secondary structures grouped in 8 and 3 
classes 

 

3.3 Training/Testing Set and Cross Validation 

 

The way that learning algorithms work, and more specifically supervised methods 

like ANN, is they have a set of data, called the training dataset whose purpose is 

to train the model to recognize their patterns and identify each training example 

to a given class. This is achieved by a learning algorithm like those discussed on 

Section 2.2. In order to evaluate if the model has the ability to generalize those 

patterns and that it does not just learn them by heart, another set of data is used, 

called the test dataset, completely different from the training one, which simply 

measures how well the network has classified the new, never before seen data. 

Generally a good way to split a given dataset on training and testing sets, is by 

the 80-20 rule, meaning 80% of the total data are used for training while the 

remaining 20% for testing, but depending on the problem, different splitting 

percentages may produce better results. 

 

However, most of the times, this is not good enough, since the data on a single 

test set may not give a good indication on how well the model generalizes new 

data. For this reason, a method called k-fold cross validation (Figure 3.1) is often 

used to address this issue. What this method suggests, is to split the data on k 

folds evenly, and train k different models with each model having a unique fold 
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as testing and the remaining k-1 folds as training. The average accuracy of each 

model is the cross validation accuracy. 

 

 

Figure 3.1: 10-fold cross validation with error/accuracy being the average of each iteration 

 

 

3.4 Dataset Format 

 

The datasets used in this dissertation for the purpose of training and validating 

ANN for the prediction of the secondary structure of proteins consist of three (3) 

lines per protein. The first line of each triplet has the protein name, which is useful 

in a later stage, for including additional information to the network beside the 

primary structure, using the Multiple Sequence Alignment (MSA) (Rost and 

Sander, 1993) profiles (discussed subsequently). The second line has the 

primary structure of the protein, which is essentially a sequence of amino acids, 

each of which is encoded in a single English character (Table 2.2) as discussed 

on Section 2.1. The final, third line has the correct secondary structure of the 

protein, which the model aims to predict.  
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Figure 3.2: An example of a protein representation in the training set files 

 

 

Generally, in machine learning and ANNs, the performance of the predictive 

model heavily depends on the quality of the data being utilized. It is very critical 

to the success of the machine learning solution, to create a dataset, which is well 

selected and prepared. In order to ensure this, a process often called data 

selecting and data cleaning has to be performed. In the case of PSSP, there are 

many common datasets which have been created over the years, all of which 

have followed this process. In this dissertation, the dataset used is CB513 (Cuff 

and Barton 1999), which consists of 513 unique proteins. A very brief explanation 

of the process, which was required to create it, follows. 

 

 

3.5 The CB513 Dataset 

 

The origin of the CB513 (Cuff and Barton 1999) dataset was the dataset of Heinz-

Uwe Hobohm (Pdb_Select25, 2009) in 2009. This dataset originally contained 

4019 proteins, with maximum similarity per protein pair of 25%. This is incredibly 

important in order to avoid a problem called selection bias, where the data sample 

is not truly random and there is no even representation of all classes of the 

problem. In selection bias, the trained model learns some classes better than 

others, which results in poor classification/prediction on patterns in the testing 

set, which belong to a poorly represented class on the training dataset.  

 

From the initial 4019 proteins, only 513 finally remained. This is due to three main 

reasons. First, proteins had to be in the PDB database and be encoded in the 

Protein Name Primary Structure Secondary Structure 
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DSSP format. Second, the secondary structure of those proteins should have 

been determined by the X-Ray crystallography method or by the NMR (Nuclear 

magnetic resonance) method. Finally, there was some additional specific 

requirements, regarding both the structure of amino acids in a protein as well as 

the clarity of the structure determination by the X-Rays, Those conditions had to 

be set and followed, in order to create a dataset which would actually be useful 

for the PSSP problem without negatively influencing the classifications.  

 

Finally, due to some problems in the MSA profiles (discussed subsequently), 

eight (8) distinct proteins (figure 3.3) had to be excluded from the training sets. 

Those proteins had MSA profiles with every value being 0, which would 

negatively affect the learning process, which was why it was decided for the 

purpose of this dissertation, to remove them altogether. 

 

Figure 3.3. A list of the name of the 8 excluded proteins 

 

3.6 Data Encoding and Multiple Sequence Alignment (MSA) 

profiles 

 

In ANN, and in most machine learning algorithms, the input and output of the 

model should be encoded and normalized in a real numbered value between zero 

and one (0-1) or between minus one and one (-1,1) depending on the range of 

the activation function used (Table 2.3). This is because all training examples in 

the dataset should be of equal importance. Having inputs with extremely high 

values, the network will learn and adjust to those examples in a way that it would 

be difficult for inputs with significantly smaller values to overcome. In the case of 

PSSP, the idea originally was to encode the input in twenty (20) artificial neurons, 
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with each neuron representing a unique amino acid (Table 2.2). The amino acid 

being examined at each iteration would have its neuron take the value of 1 while 

the rest the value of 0. This is called Orthogonal Encoding (Agathokleous 2009) 

(Figure 3.4). As intuitive as this method was, it did not give enough information to 

the network. As a result, a new method was suggested, which made use of 

Multiple Sequence Alignment (MSA) profiles. 

 
Figure 3.4: Orthogonal encoding of amino acids 

 

A lot of proteins have an evolutionary relationship with each other, by which they 

share a linkage and are descended from a common ancestor. Due to their 

evolutionary relationship, these proteins are supposed to have the same 

secondary and tertiary structure (Rost and Sander, 1993). As a result, MSA 

suggests aligning the amino acids of those proteins together, and encode in each 

position of their sequence the probability of each amino acid appearance. Figure 

3.5 illustrates a simple example of the process. 

 

  

Figure 3.5. Process of MSA profiling 
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In the case of adjusting those profiles for ANN use, a slightly more complicated 

encoding is needed. Figure 3.6 illustrates this in a simple matrix. In the first line, 

there are the 20 possible amino acids in a protein and in the first column the 

amino acid sequence of the specific protein being examined. Each line has the 

probabilities of which amino acid would appear in that specific position in the 

protein sequence. In the case of the example of the figure 3.5, the third from last 

line would have 0s in all 20 positions of the amino acids except from the V amino 

acid where it would have 89% (8/9) and the E amino acid 11% (1/9). Note that 

each line should add up to 100, and before feeding them into the network they 

should be divided by 100 in order to be in the 0-1 range. Using this encoding, 

each amino acid instead of having a single value of 1 in its 20 positions, it has 

multiple positive values summed up to 1 which should give a better indication to 

the network on how to predict its structure. 

 

 

Figure 3.6: MSA profile matrix (Christodoulou 2010) 

 

 

In order to create these matrices, for each protein in the datasets, its 

corresponding encoding in MSA profiles was extracted from the HSSP 

(Homology‐derived Secondary Structure of Proteins) Database. 

 

 

3.7 Sliding Window 

 

The structure of proteins in specific positions of the amino acid sequence, 

depends heavily on the bonds and interactions formed from neighboring amino 

acids. In order to capture this relation, instead of feeding into the network a single 

amino acid, a good idea is to feed multiple amino acids together. This is called a 
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sliding window. How this windows works, is essentially feeding into the network 

a fixed number (window size) of successive inputs concatenated, with the desired 

output varying depending on the application. For example, in time series 

prediction, the desired output of the window is usually the desired output of the 

immediate training example following the window. This is because, in time series 

problems, the output of a given time stamp depends solely on the previous time 

stamps.  

 

However, in the case of PSSP, the secondary structure of an amino acid depends 

on the neighboring amino acids on either side of it. Consequently, in this case, 

the middle element of the window is the one being predicted and it is its desired 

output which is the desired output of the window. It is important to note that at 

each iteration the window slides by just one position and not by its whole size. So 

for example, in a given ANN trained with a window size of three (3), in the time 

stamp t, the inputs would be x(t-1) to x(t+1). In the following iteration, the inputs 

would have been x(t) to x(t+2) and not x(t+2) to x(t+5). 

 

Figure 3.7: An example of an ANN trained with a window of size 3.(Wang et al. 2016)  

 

3.8 Ensembles 
 
In machine learning, a good way to improve the performance of your learning 

model is to make use of a method called ensemble learning. What this method 

suggests is instead of training just one model and get a single prediction, train 

multiple and combine in some way the results.  
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There are a number of ensemble methods, some of which are more advanced 

and complex than others. In this dissertation, a relatively simple and basic one 

was applied. It is called an averaging ensemble and essentially what it does is, 

as the name suggests, averages the outputs of its models. More specifically, in a 

scenario where there is a number of different models which were trained for the 

PSSP problem, the ensembling process works as follows. For each input/output 

pair, calculate the output for each model and classify it into one of the three 

classes available (H, E, and C). Using the ‘winner takes all’ method, take the 

results of each model, and the class with the most representations is the final 

class of the specific input. In the case of a tie, an arbitrary class of those 

participating in the tie is selected. 

 

This way, random errors which might have occurred in some models are 

averaged out, which results in ultimately slightly better predictions, given the 

simplicity of this ensemble method. In more advanced ensembles, significant 

improvement may be achieved but they are usually computationally more 

expensive and time consuming. 

 

 
3.9 Filtering 

 

Another way to improve the performance of a predictive model is to apply post-

processing filtering. The filtering can either be generic by applying another 

learning algorithm on the existing predictions or problem specific (Kountouris et 

al., 2012). In this dissertation, both methods were applied which resulted in 

slightly better results in the quality of the predictions (SOV score) or in the final 

raw accuracies (Q3 Score). 

 

In the first case, different training and testing sets are being created based on the 

results of the original learning algorithm. These sets are basically the original 

sets, with the only difference being that instead of having as inputs the amino 

acids, they have the class of each amino acid which was predicted by the original 

model. Those sets are then used to train a separate learning model, which slightly 
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improves the results mostly in the Q3 accuracy. In this dissertation the learning 

model used to filter the data was the Support Vector Machines (SVM) (Cristianini 

et al., 2000).  

 

The SVM algorithm, like Neural Networks, is a supervised algorithm, mainly used 

for classification. The way it works is essentially based on the idea of finding 

hyperplanes that best divide a dataset into classes, as shown in the image below. 

 

Figure 3.8. Dividing two linearly separable classes 

 

However, if the data are not linearly separable, as discussed in section 2.2, SVM 

tries to map the data into a higher dimension, using non-linear kernel functions 

that simply compute inner products, which is extremely cheap and effective. After 

this non-linear transformation into a higher dimension, the data are more likely to 

become linearly separable as illustrated in figure 3.9 

 

Figure 3.9. Transforming the feature vectors non-linearly to higher dimensions, results in 
the data becoming linearly seperable 

 

In the second case, a specific set of external rules are being applied which are 

problem specific to the PSSP problem. Those rules were derived by empirical 

observations and mainly aim to fix the quality of the predictions instead of the 

overall accuracy.  
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More specifically, they include the following rules: 

 

1. Single 'H' or 'E' are replaced with 'C' 

2. Sequence 'HEEH' is replaced with 'HHHH' 

3. Sequence 'HEH' is replaced with 'HHH' 

4. Sequence '!HH!' is replaced with '!CC!' 

Where H, E and C are the three predicting classes of table 3.1. 

 

These rules are computationally extremely cheap since they consist of simple 

conditional statements, which improve the SOV score, while occasionally 

decreasing slightly the Q3 score. 
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4.1 Selecting a suitable ANN for PSSP 

 

The way the PSSP problem in this dissertation is defined (Chapter 3) makes it a 

classification problem suitable for ANN training. There are a number of ANN 

architecture options, each of which has its benefits, which facilitate different types 

of classification problems. For example, for problems with just two linearly 

separable classes, a simple perceptron would be the best option for it, given its 

extreme simplicity, which results in a superior performance in terms of training 

time. However, as the complexity of the problem rises, more complex 

architectures and learning algorithms are required for effective predictions, such 

as MLPs and RNNs trained with their respective BP algorithms (Section 2.2). 

 

The way biological proteins fold in local segments (secondary structure) depends 

solely on the interactions and bonds that are formed by the neighboring amino 

acids. A network, which is designed to take into account this information, namely 

to have as input not just the amino acid being classified, but also the amino acids 

located on either side of it, in a way that makes sense, is theoretically bound to 

give a better prediction. As a result, a different variation of ANN from those 

discussed in section 2.2 has been used which makes use of this information. 

 

The way this new network is designed is essentially combining existing network 

architectures of feedforward MLP and recurrent ANN discussed earlier. More 

specifically, it is composed of three (3) separate modules/networks, two of which 

are recurrent networks with the other one being a simple feedforward MLP 

(Figure 4.1). The first recurrent network has as input the sequence of amino acids 

preceding the amino acid being classified while the second has the sequence of 

amino acids following it. This creates a bidirectional memory for the network, 

which facilitates the correlation of amino acids located on either side of the one 

being predicted, hence its name of Bidirectional Recurrent Neural Network 

(BRNN), originally proposed and designed by Baldi in 1999 (Baldi et al., 1999). 
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Figure 4.1.: Baldi’s Bidirectional Recurrent Neural Network (1999) 

         

 

 

4.2 Bidirectional Recurrent Neural Network (BRNN) 

 

The Bidirectional Recurrent Neural Network (BRNN) (Baldi et al., 1999) is 

designed for non-casual problems, namely problems where outputs at discrete 

times depend on future inputs as well. This is very important for problems like the 

PSSP where there is a correlation between the secondary structure of a specific 

amino acid and the sequence of amino acids that are bidirectionally located next 

to it in the unfolded structure of the protein.  

 

The main idea of the architecture is that there are two separate recurrent 

networks whose outputs are aggregated and joined by another feedforward MLP  

which determines the final output of the BRNN. More specifically, there are a 

forward (F) and backward (B) RNN which work separately using their own hidden 

layer(s). Their outputs, along with the output of the hidden layer of the MLP are 
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used to calculate the final output of the network, which is the final predicted 

secondary structure of the amino acid being examined (Equation 4.1).  

 

𝑌𝑡 = 𝑛(𝐹𝑡 , 𝐼𝑡 , 𝐵𝑡) 

Equation 4.1.: The output of the network, where n() is realized by the MLP, Ft is the 

output of the Forward RNN, It is the current input of the network and Bt is the output 

of the Backward RNN. 

 

The BRNN has as input in time t a sequence (input window) of amino acids which 

is used to better classify the amino acid located in the center of this sequence. 

The time in this case is essentially the location of the amino acid in the primary 

structure of the protein. As a result, the time stamps of the network are limited to 

the 0-T range where T is the length of the primary structure of the protein. The 

input window has a fixed size for the entirety of the training process, which is 

always centered on the amino acid at location t.  

 

The amino acids in the input window which precede and follow the amino acid in 

location t, are fed into two non-linear functions φ() (Equation 4.2) and β() 

(Equation 4.3), which are realized by the Forward and Backward RNN 

respectively. The forward RNN has as input the sequence of amino acids which 

is in the input window and precedes the amino acid t with a left-to-right order. 

Respectively, the backward RNN has as input the sequence of amino acids that 

is in the input window and follows the amino acid t with a right-to-left order. Being 

recurrent networks, they both have an additional input, which is their own output 

of the previous iteration.  Consequently, these networks form some sort of a 

bidirectional memory for the network with which it can correlate the sequential 

relation between successive amino acids.  

 

The way the data are fed into each recurrent network can either be one by one 

amino acid, or as a sequence of amino acids which has a fixed length, smaller 

than the number of amino acids that precede or follow the centered amino acid 

in the input window. In the edge cases, namely for t < 0 or t > (total number of 
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amino acids) a padding of zero-valued vectors are used for each position outside 

of the allowed range. 

 

The unfolded network in time, which illustrates the successive inputs to the 

network, is presented in figure 4.2. 

 

𝐹𝑡 = 𝜑(𝐹𝑡−1,𝑈𝑡) 

Equation 4.2:  The output of the forward RNN, which is a non-linear function of its 

previous output (Ft-1) and its current input, encoded by the unit Ut of figure 4.1. 

 

 

𝐵𝑡 = 𝛽(𝐵𝑡+1,𝑈𝑡) 

Equation 4.3:  The output of the backward RNN, which is a non-linear function of 

its previous output (Bt+1) and its current input, encoded by the unit Ut of figure 4.1. 

 

 

Figure 4.2. The BRNN unfolded in time (Agathokleous, 2009) 
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4.3 Hessian Free Optimization (HFO) 
 
 

4.3.1 Introduction to HFO 
 
 
Hessian Free Optimization (HFO) (Martens, 2010) is a second order optimization 

algorithm of real-valued objective functions. It is a variation of the standard 

Newton’s method, discussed in section 2.2, which uses local quadratic 

approximations to generate update proposals. As mentioned in that section, on 

problems with high dimensionality, namely large neural networks with many 

hidden layers, first order optimization algorithms like Gradient Descent can be 

extremely slow and ineffective. This is due to a problem called the Vanishing 

Gradient. In Gradient Descent, the updates are proportional to the gradient of the 

error function back propagated through the layers. Each time it is 

backpropagated, the gradient decreases, meaning that for many-layered or 

recurrent ANNs, the gradient becomes vanishingly small which results in the front 

layers having close to zero information on how to update their weights, meaning 

slow to completely ineffective training. 

 

The advantage of using a second order optimization algorithm like Newton’s 

method or HFO is that these algorithms consider the curvature of the error 

surface (Hessian Matrix) in their optimization process which results in extremely 

better step-wise performance. More specifically, instead of fitting a plane at an 

initial solution and then determining the step-wise jump like first order algorithms, 

second order methods find a tightly fitting quadratic curve at that point and directly 

find the minimum of that curvature, which is supremely fast and efficient. 

 

However, computing the Hessian Matrix for a large ANN with thousands to 

millions of parameters is not always possible due to the extremely high memory 

requirements needed to store it. This is why, while there have been a number of 

Newton’s variations like Newton-CG, CG-Steihaug, Newton-Lanczos (Nash, 

1984), and Truncated Newton (Nash 2000), none of them have been applied 

effectively to machine learning and neural networks, or their applications have 

been extremely limited (Martens and Sutskever, 2012). 
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The Hessian Free method, however proposes solutions to these memory 

requirements, which enable it to be effective for Neural Network training. First of 

all, it does not compute and store the whole Hessian Matrix (H), but instead just 

the dot product of it with an arbitrary vector (u) (Hu), using mathematical methods 

like finite differences which cost as much as a single gradient evaluation. This 

works really well for HFO since it does not require explicit use of the Hessian but 

rather many dot products with it and arbitrary vectors. Secondly, the local 

quadratic objectives, which second-order methods approximate, can be 

efficiently optimized using the linear conjugate gradient (CG), discussed in 

section 2.2 in order to compensate for the lack of the Hessian Matrix needed in 

Newton’s method. While the CG method needs N iterations to converge, where 

N is the number of parameters of the network, there are a number of stopping 

criteria, which terminate it at early stages when significant progress in the 

minimization process has been made. This is extremely important since it is 

clearly impractical to wait for a complete CG convergence when there is a very 

low margin of further minimization. 

 

It is important to note that even though in HFO no Hessian Matrix is calculated 

there are no approximations done and the Hu product is calculated accurately. 

The only difference between HFO and Newton’s method is that while standard 

Newton’s method performs a complete optimization to the approximated 

quadratic, HFO does not via the un-converged CG discussed earlier (Martens, 

2010). However, the efficiency related benefits of avoiding a full Hessian Matrix 

calculation and inversion are clear and more than make up for the extremely small 

difference in accuracy by the not fully converged CG. 

 

Finally, although the Hu product can be calculated efficiently and accurately, it is 

not the one usually used in HFO. Instead, the Gu product is used, where G is the 

Gauss-Newton matrix, an approximation of the Hessian Matrix (Schraudolph, 

2002). While it seems pointless to use an approximation instead of the correct 

curvature matrix when there is no problem in efficiency, Gauss-Newton avoids 

some of the problems that the Hessian may face, which cause the algorithm to 
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be completely ineffective. In fact, even when those problems do not occur, the 

use of the G matrix consistently results in better search directions utilizing half 

the memory and running twice as fast, comparing to the usage of the Hessian 

matrix (Martens, 2010) 

 

4.3.2 Detailed Analysis of HFO 
 
 
The HFO method is a minimization algorithm of a twice-differentiable objective 

function 𝑓:ℝ𝑛 → ℝ with regards to a vector of parameters 𝑤 ∈ ℝ𝑛. Like Newton’s 

method, it is based on the idea of iteratively optimizing a sequence of local 

quadratic approximations of the objective function in order to produce updates to 

w. 

 

In the simplest situation, given the previous parameters wt−1, iteration t produces 

a new wt by minimizing a local quadratic model Mt−1(δ) of the objective f(wt−1 + δ), 

which is formed using gradient and curvature information local to wk−1 (Equation 

4.4) 

 

𝑓(𝑤𝑡−1 + 𝛿) ≅ 𝑀𝑡−𝑡(𝛿) = 𝑓(𝑤𝑡−1) + ∇𝑓(𝑤𝑡−1)
𝑇𝛿 +

1

2
𝛿𝛵𝛣𝑡−1𝛿 

Equation 4.4: The local quadratic approximation of the objective f(wt-1+δ) where  

Bt-1 is the curvature matrix, which is usually the Hessian (H) 

 

Minimizing the quadratic means that an optimal search direction δ* is found with 

which the new update is calculated based on Equation 4.5 

 

𝑤𝑡 = 𝑤𝑡−1 + 𝑎𝛿𝑡
∗ 

Equation 4.5: The new weight update, where 𝛅𝐭
∗ is the minimizer of the quadratic 

of equation 4.4 and α ∈ [0, 1] is the step size, calculated by line search, discussed 

in section 2.2. 

 

Solving the system in equation 4.4 in order to find the minimizer δ* like proposed 

by the standard Newton’s method is computationally impractical and for some 
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networks even impossible if you consider the complexity it requires of O(n3) 

(Martens and Sutskever, 2012). In order to avoid this, the linear Conjugate 

Gradient (CG) (section 2.2) is being used which partially optimizes the quadratic 

M. The resulting approximate minimizer δ* is then used to update the weights w 

(Equation 4.5).   

 

Conjugate Gradient for HFO 

 

Conjugate Gradient is a specialized optimizer created specifically for quadratic 

objectives of the form 𝑞(𝑥) =
1

2
𝑥𝑇𝐴𝑥 − 𝑏𝑇𝑥  where A ∈ ℝ𝑛𝑥𝑛 is positive definite 

(𝑥𝑇𝐴𝑥 > 0  ∀  non zero column vector x) and b ∈ ℝ𝑛. To apply CG to equation 4.4 

of the quadratic model, we take x = δ, A = Bt−1 and b = ∇f(wt−1), noting that the 

constant term f(wt−1) can be ignored. 

 

Conjugate Gradient in the worst case converges in N steps, however depending 

on the structure of the curvature matrix B, it often converges in significantly less 

iterations and even if it does not converge, it tends to make very good partial 

progress (Martens and Sutskever, 2012). In fact, there is a method called 

preconditioning, which accelerates the CG convergence by transforming the 

coordinate system using a preconditioning matrix P. The CG algorithm using 

preconditioning is described in algorithm 4.1.  

 

In order for CG to terminate optimally, there are a number of stopping criteria, 

which balance the quality of the solution with the number of iterations required to 

obtain it. Martens proposed an approach, which measures the relative progress 

of optimizing M, computed as of equation 4.6 (Martens and Sutskever, 2012). 

 

𝑠𝑗 =
𝑀(𝑥𝑗) − 𝑀(𝑥𝑗−𝑘)

𝑀(𝑥𝑗)
 

Equation 4.6: The measurement of progress suggested by Martens, where xj is the 

jth iterate of CG and k is the size of the window over witch the progress is 

calculated. (Martens and Sutskever, 2012). 
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CG can be terminated when sj is below some constant value (e.g. 0.0001). 

However, deciding when to terminate can be an extremely more complex and 

complicated process and thus a number of more advanced stopping criteria are 

available, with some even having nothing to do with the value of M. 

 

 
Algorithm 4.1. The preconditioned CG. Noting that for minimizing the HFO 
quadratic we have x = δ, A = Bt−1 and b = ∇f(wt−1), P the preconditioning matrix 
(Martens and Sutskever, 2012) 
 
 

Damping  
 
The CG algorithm described previously, requires the curvature matrix B to be 

positive-definite. However, in the case of Neural Networks where the objective 

function is usually non-convex, B may not be positive-definite, which means that 

the minimizer of M may not exist and thus the CG method becomes not 

applicable. Moreover, the minimizer δ* of the quadratic approximation M can be 

very large and “aggressive” in the early stages of the optimization, which means 

that is often located far beyond the region where the quadratic approximation is 

reasonably trust-worthy. These are general problems of 2nd order optimization for 

which a method called ‘damping‘ addresses.  
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Damping methods essentially restrict the optimization of M to a “trust region” by 

augmenting M with penalty terms, which are designed to encourage the minimizer 

of M to remain somewhere where M is a good approximation of the objective 

function.  

 

There are a number of damping methods proposed by Martens, which are 

applicable to HFO (Martens and Sutskever, 2012). However, the one used in this 

dissertation is the Tikhonov Damping with the Levenberg-Marquardt heuristic 

(Nocedal and Wright, 1999).  

 

Tikhonov regularization or Tikhonov damping is one of the most well-known 

damping methods, which works by penalizing the quadratic model by introducing 

an additional quadratic penalty term into the quadratic model M. Thus, instead of 

minimizing M, we minimize a “damped” quadratic 

 

 

Equation 4.7: The new damped quadratic, where �̂� = 𝑩 + 𝝀𝜤 and λ ≥ 0 is a scalar 

parameter determining the “strength” of the damping.  

 

Picking a good value of λ is critical to the success of the Tikhonov damping. 

Picking a too high value of λ results in updates which resemble gradient descent 

with extremely small learning rate that essentially take away all the benefits of 2nd 

order optimizations discussed previously (Martens and Sutskever, 2012). Too 

small, and CG will aggressively optimize the quadratic, resulting in very large 

weight updates that may increase the objective instead of decreasing it. This can 

be clearly observed by the difference in CG iterations needed per HFO iteration, 

based on the initial damping value of λ in the experiments section of the 

dissertation. 

 

Dynamically adjusting the value of λ during optimization is just as important 

however, in order for it to constantly keep up with the changing local curvature 
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properties of the objective function f. A good method for addressing this issue is 

the Levenberg-Marquardt heuristic. This heuristic defines a reduction ratio, which 

measures the ratio of the reduction in the objective produced by the update δ, to 

the reduction predicted by the quadratic model. 

 

 

Equation 4.8: The reduction ratio measuring the reduction of the objective function 

comparing to the quadratic 

 
When ρ is much smaller than 1, the quadratic model overestimates the amount 

of reduction needed, so the value of λ should increase in order for future updates 

to be more reliable and smaller, as discussed previously. Contrary, when ρ is 

closer to 1, the quadratic model has a decent minimizer and so λ can be reduced 

since there is some margin for allowing larger and more substantial updates. 

 

More specifically the Levenberg-Marquardt heuristic proposes two explicit rules 

to dynamically adapt the value of λ: 

 

1. If ρ > 3/4 then λ ← 2/3λ 

 

2. If ρ < 1/4 then λ ← 3/2λ 

 

else λ ← λ 

 

Despite the clear benefits of damping, it is important to note that they are very 

tricky and must be used with care. If they are overused, they produce extremely 

reliable updates, which are simultaneously useless since they are too small. 

Moreover, if they are not properly calibrated they can produce updates which give 

the best reductions of the objective function in early stages but may not result in 

the best global optimization performance in the end. 
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Gauss-Newton Matrix 

 
There is a significant problem, briefly mentioned previously, regarding the use of 

the Hessian as the curvature matrix. The problem is the inability to apply the CG 

algorithm to the quadratic model if the curvature matrix is not positive-definite, 

which the Hessian sometimes tends to be. While the damping methods address 

this issue in a way, there is a more direct solution to deal with this.  

 

Instead of using the Hessian Matrix as the curvature matrix, another matrix can 

be used which is guaranteed to always be positive semi-definite. This new matrix 

is the generalized Gauss-Newton matrix, which is an approximation of the 

Hessian (Schraudolph, 2002). The benefits of using this matrix do not only lie in 

the fact that it is always positive semi-definite but actually in practice, it tends to 

work much better both in regards in efficiency and in performance, than the 

Hessian. This even applies to situations where Hessian is positive-definite and 

there is no problem in using it as the curvature matrix. However, the use of the 

Gauss-Newton matrix does not eliminate the need for damping, but when 

combining them both, HFO produces much better updates with significantly less 

damping. 

 

Evaluating the Hessian-Vector Multiplication 

 

There have been many references in this dissertation stating that no explicit 

evaluation and storing of the Hessian is being done for HFO. Instead, dot 

products with the Hessian and arbitrary vectors v ∈ ℝ𝑛 are being computed and 

utilized, which cost as much as a gradient evaluation.   

 

If you consider the Hessian to be the Jacobian matrix (first order derivatives 

matrix) of the gradient, by the definition of directional derivatives, the H(w)v 

product is the directional derivative of the gradient ∇f(w) in the direction v, which 

gives 

 



Page 62 of 102 

 

 

Equation 4.9: H(w)v is the directional derivate of the gradient in the direction v 

 
While this may imply a finite-differences algorithm for computing Hv at the cost of 

a single gradient evaluation, in practice finite-differences suffer from numerical 

errors, which are extremely undesirable in neural network training. 

 

Consequently, another method is being used which avoids those errors.  This 

method is called ‘Forward Differentiation’, originally proposed by Wengert 

(Wengert, 1964) and later adjusted to neural network training by Pearlmutter 

(Pearlmutter, 1994).  

 

The idea behind forward differentiation is to make repeated use of the chain rule 

to the value of every node of the gradient, like in the BP algorithm described in 

section 2.2. More precisely an Rv(X) operator is defined, which denotes the 

directional derivative of X in direction v. 

 

 

Equation 4.10: The Rv(X)  operator being the directional derivative of X in the 

direction v 

 

Since the R operator is a derivative operator, it obeys the usual rules of 

differentiation: 

 

 

Equation 4.11: The standard rules of differentiation 
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By applying these rules recursively to the gradient calculation algorithm, in a way 

analogous to back-propagation, the Hv product can be efficiently computed. 

 

Algorithm 4.2 shows the algorithm for a simple gradient evaluation, while 

Algorithm 4.3 shows the modification of the gradient algorithm by applying the 

rules of differentiation to compute the Hv product. Similarly, algorithm 4.4 shows 

the algorithm for the Gv product, which is similar to Hv but simpler. 

 

 

Algorithm 4.2: An algorithm for computing the gradient of a feedforward neural network, 
where L(yl;tl) is one of the loss functions of table 4.1 (Martens and Sutskever, 2012) 

 

 
 
Algorithm 4.3: An algorithm for computing the H(w)v product in a feedforward neural 
network, where L(yl;tl) is one of the loss functions of table 4.1 (Martens and Sutskever, 
2012) 
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Algorithm 4.4: An algorithm for computing the G(w)v product in a feedforward neural 
network, where L(yl;tl) is one of the loss functions of table 4.1 (Martens and Sutskever, 
2012) 

 

 
Table 4.1 : Typical losses with their derivatives and Hessians. 

 
4.4 System Implementation 
 
For the purpose of this dissertation, a library for the Hessian Free Optimization 

was used, which was implemented by   in 2015 (Rasmussen, 2015) based on 

the papers of Martens and Sutskever (Martens, 2010; Martens and Sutskever, 

2011). It made use of many optimization tricks that were suggested in those 

papers and the structure of the library was ideal for the needs of this dissertation. 

 

First of all, both Feedforward and Recurrent Neural Networks were supported for 

HFO training, which were needed for implementing the Bidirectional network 

described in section 4.1. Moreover, the connections between the layers were not 

restrictive, meaning that it was possible to interconnect arbitrary layers, which 

was also necessary for constructing the BRNN connections. Finally, all the 

standard nonlinearities and loss functions were built-in, which is great for 

experimentation. 
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However, the RNN recursion was later discovered that it was possible only within 

a single layer, namely connections from a layer back to itself. For this reason, 

some functions of the library were modified to allow multi-layer recursion from 

arbitrary layers. Moreover, there was support for a single input layer (which is 

standard in ANN), but BRRN requires three different inputs for each separate 

network. As a result, the function which implements the forward pass was 

modified to allow the input layer to be split into three different vectors, with each 

vector being fed into a different hidden layer. 

 

The way the RNN in this library is implemented requires the use of minibatches. 

In minibatch training, the training set is split into smaller batches (subsets) and 

the weight updates are done after all examples in a single batch are through. 

Generally, there are two more ways of training. The online method, where the 

weight updates are computed and applied every time a training example is fed 

into the network, and the batch method, where all the training examples in the 

dataset are used to calculate the weight update. Consequently, minibatching is 

somewhere in the middle of the two methods, trying to balance the benefits of 

both. Having a larger minibatch size (approaching the batch method), the 

convergence of the learning algorithm is usually more accurate but significantly 

slower and requires much more memory. Contrary, in a smaller minibatch size 

(approaching the online method), the convergence is usually faster but a lot less 

accurate. 

 

In the case of PSSP, a minibatch size was chosen in a way to include as much 

information as possible, without splitting proteins in half, which would have a 

negative result in the predictions. More specifically, the number of training 

examples in a mini batch was chosen to be the number of amino acids in the 

longest amino acid chain of a protein included in the datasets used, which was 

753. This way, all information regarding a single protein would be used to make 

the adjustments to the weights of the network. For smaller sized proteins, with 

less amino acids, a padding of 0s was added to even out the batches.  
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5. Results and Discussion 
 
 

In order to find the optimal parameters of the Bidirectional Recurrent network 

many experimentations have been conducted, using different values for the 

hyper-parameters. 

 

Before experimenting with the final BRNN though, the built-in Feedforward and 

Recurrent neural networks had to be tested, in order to verify their ability to work 

and learn properly using HFO, the PSSP problem. Otherwise, there was no point 

in modifying them into a BRNN, since that would not work either. 

 

It is also important to note that in order to get the best accuracy in a given model, 

it a critical to stop the learning process when the testing error starts getting higher 

instead of decreasing at each iteration. This is called overfitting where the model 

starts learning the training examples by heart and fails to generalize for unseen 

data. It can be clearly observed in figure 5.1 at iteration around 37 until the end. 

To address this issue, a condition was implemented to check whether the testing 

error at a given iteration is higher than the one at a number of iterations 

previously. After some experimentations, it was observed the fluctuations did not 

really last for more than 5-10 iterations before converging into overfitting or 

escaping a local minimum and start decreasing again. For this reason, the 

number of previous iterations for comparing the testing error was set at 10. 

However, the last 10 iterations of possible overfitting before being terminated 

have extremely bad effects on the final accuracy for the network. Consequently, 

the best weights up until a given iteration of the network are being stored in order 

to restore the network in its optimal iteration to counter the overfitting of those 10 

iterations, when the training is over. 
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5.1 Feedforward Neural Network Experimentations 

 

Beginning with the Feedforward network, the parameters that had to be tuned 

were fairly straightforward. As is standard in FF neural networks, the number of 

neurons in hidden layers as well as the nonlinearities and loss functions used are 

the major architectural parameters that need to be optimized. In terms of the HFO 

parameters, fortunately there are not many. There are mainly only two, which is 

the initial damping λ described in section 4.2 and the maximum number of 

Conjugate Gradient iterations, which was set at a fixed 500, but in practice rarely 

exceeded the 300 mark. Finally, the last parameter which had to be tuned for 

every type of network was the window size discussed in section 3.7. 

 

The training for FFN was done using batch learning, meaning that every single 

training example was fed into the network before adjusting and updating the 

weights. This is because simple FFN do not require much memory and batch 

learning usually results in better performance. 

 

 

Parameter Value 

Window Size 11 

Number of Hidden Layers 1 

Hidden Layer 1 Neurons 75 

Nonlinearity Softmax 

Loss Function Cross Entropy 

Damping factor λ 45 

Maximum CG Iterations 500 

Table 5.1: The parameters for the first experiment on FFN 
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Figure 5.1: The graph of the testing error, with regards to the number of iteration 

 

 
Beginning the experimentations with the default settings of the library, as 

mentioned in the table above and an initial window size of 11, it is clear that the 

algorithm works extremely well. The Q3 accuracy with these settings is 73.5%, 

which not only validates the correctness of the implementation for the FFN, but 

also is a really decent accuracy overall, considering the simplicity of the 

feedforward network with a single hidden layer. However, as it turned out this 

combination of softmax nonlinearity and cross entropy loss function required an 

unexpected amount of memory, which made it impossible to experiment with 

more complex architectures (e.g. more neurons and hidden layers) or with a 

bigger window size. 

 

As a result, the forthcoming experiments were conducted with the other 

nonlinearities available (ReLU and Logistic/Sigmoid) and with the Squared Error 

loss function.  
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Parameter Value 

Window Size 11 

Number of Hidden Layers 1 

Hidden Layer 1 Neurons 75 

Nonlinearity ReLU 

Loss Function Squared Error 

Damping factor λ 45 

Maximum CG Iterations 500 

Table 5.2: The parameters for the second experiment on FFN 

  

 

 

Figure 5.2: The graph of the testing error, with regards to the number of iteration 

 

While it seems that the testing error was significantly reduced (~0.24, Figure 5.2) 

by the ReLU functions comparing to the error in the first example (~0.62, Figure 

5.1) using the Softmax function, it is not true, since the errors in the two examples 
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are not comparable. In the first case the loss function used was the Cross entropy 

error and in the second the Squared Error, which both use different metrics to 

calculate the error of the network. In fact, the Q3 accuracy of this method is just 

73.1%, which is slightly lower than the 73.5% of the first experiment. 

 
 

Parameter Value 

Window Size 11 

Number of Hidden Layers 1 

Hidden Layer 1 Neurons 75 

Nonlinearity Logistic 

Loss Function Squared Error 

Damping factor λ 45 

Maximum CG Iterations 500 

Table 5.3: The parameters for the third experiment on FFN 

 

 
Figure 5.3: The graph of the testing error, with regards to the number of iteration 
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It is clear that the Logisitc function works best with the Squared error for this 

problem (Table 5.3). The testing error was reduced to ~0.18 with the Q3 accuracy 

being 75.1% (Figure 5.3). 

 

Parameter Value 

Window Size 13 

Number of Hidden Layers 1 

Hidden Layer 1 Neurons 90 

Nonlinearity Logistic 

Loss Function Squared Error 

Damping factor λ 10 

Maximum CG Iterations 500 

Table 5.4: The parameters for the best experiment on FFN 

 

 
Figure 5.4: The graph of the testing error, in regards to the number of iteration 
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After many experimentations, which are not discussed individually since FFN is 

not the purpose of this dissertation, but rather BRRN, the best accuracy taken 

was 76.01% using the above configurations (Table 5.4). More information about 

the neighboring amino acids are given to the network by having a slightly bigger 

window size, which required an increase in the number of hidden neurons as well 

in order to be able to store more complex relations. However, since the network 

by design is very simple, increasing the window too much results in worse results 

since it simply learns the training examples by heart and fails to generalize. The 

optimal window for FFN was found to be 13 and any bigger than that resulted in 

significantly worse results (72-74%) 

 

 

Figure 5.5: The confusion matrix, describing the predictions and mispredictions of the 

FFN. 

 

However, observing figure 5.5, it is clear that the network, despite its relatively 

good accuracy, is unable to predict the E class effectively (62.28% comparing to 

~80% of the other classes). A reason as to why this is happening could be that 

the ‘E’ class could potentially by formed with specific long-range dependancies 

and interactions with amino acids not close to the predicted one, which FFN, 

given its simplicity and relatively small window size, is unable to attain. 

Since every nonlinearity and loss function implemented seemed to work fine for 

FFN, it was time to test the Recurrent networks if they work just as well. 
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5.2 Recurrent Neural Network Experimentations 

 

The way RNN are implemented in the library used is that each layer can be 

defined as recurrent by feeding its input back to itself, or not, by behaving as a 

standard feedforward layer. Therefore, along with the parameters that had to be 

tuned for the feedforward network, the RNN has to also define the layers which 

should be recurrent. The default is to make all layers except the input layer and 

output layer recurrent, which is what is being done in the following 

experimentations. 

 

By design, recurrent neural networks are able to correlate and take into account 

previous examples in their predictions. For this reason, the input window has 

been modified to have the amino acid being predicted on the far right edge of the 

window. This way, the network would have input in a given time only the amino 

acids following it, since the ones preceding it would have already passed into the 

network and fed back into it as a recurrent input.  

 

The training for RNN was done using minibatch learning, discussed in section 

4.4. The way the error is calculated in this method is by summing all the individual 

errors from each example in a batch so it seems to be much higher than it actually 

is, comparing to the previous errors from FFN. 

Parameter Value 

Window Size 15 

Number of Hidden Layers 1 

Hidden Layer 1 Neurons 90 

Nonlinearity ReLU / Logistic 

Loss Function Squared Error 

Damping factor λ 45 

Maximum CG Iterations 500 
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Table 5.5: The parameters for the experiment on RNN in terms of activation functions 

 

Figure 5.6: The graph of the testing error, with regards to the number of iteration for the 

ReLU and Logistic activation functions 

 
Starting off with the default parameters again (Table 5.5), but not including the 

Softmax activation with the Cross Entropy error for the same reasons discussed 

earlier. Using the parameters on the table above, the testing error taken using 

both ReLU and Logistic activation functions with a window size of 15 was just 

34.2 and 33.8 with final accuracies 66.5% and 67.1% respectively (Figure 5.6).  

 

Despite the fact that RNN by design does take into account previous examples 

in its predictions, adjusting the window to not indlude them as input turns out that 

it was not a good idea. Given their importance in the determination of a specific 

amino acid’s secondary structure, the RNN recursive memory is not enough to 

justify excluding those examples altogether from the input. For this reason, the 

forthcoming experiments were conducted using the window method done in FFN 

as well, namely having the amino acid in the center of the window being the one 

getting predicted, in order to include both following and preceding amino acids in 

the prediction of a single amino acid. 
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Parameter Value 

Window Size 11 / 15 / 21 

Number of Hidden Layers 1 

Hidden Layer 1 Neurons 75 / 90 / 110 

Nonlinearity ReLU 

Loss Function Squared Error 

Damping factor λ 45 

Maximum CG Iterations 500 

Table 5.6: The parameters for the experiment on RNN in terms of window size and the 

ReLU activation function 

 

 

 

Figure 5.7: The graph of the testing error, with regards to the number of iteration for 

different window sizes and the ReLU activation 
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It is clear that adjusting the window sequence to have the amino acid being 

predicted in the center, greatly improves the performance of the network and the 

final accuracies. With the parameters used on the table 5.6, the testing error 

taken using the ReLU activation function with a window size of 11 was 26.4, with 

15 it was 26.2 and finally with a window size of 21 it was 25.98 with final 

accuracies 74.5%, 75.42% and 75.82% respectively (Figure 5.7). The best 

results were taken with a window size of 21 which is bigger than the one for FFN. 

This is because RNN has a slightly more complex architecture, with which it can 

calculate and store more complicated relations.  

Parameter Value 

Window Size 11 / 15 / 21 

Number of Hidden Layers 1 

Hidden Layer 1 Neurons 75 / 90 / 110 

Nonlinearity Logistic 

Loss Function Squared Error 

Damping factor λ 45 

Maximum CG Iterations 500 

Table 5.7: The parameters for the experiment on RNN in terms of window size and the 

Logistic activation function 

 

Figure 5.8: The graph of the testing error, with regards to the number of iteration for 

different window sizes and the Logistic activation function 
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Testing the network with the same parameters but with the Logistic activation 

function (Table 5.7), results in slightly better accuracies, about ~0.4-0.7% higher 

in each case, comparing with the ReLU function. More specifically, with a window 

size of 11 the accuracy was 74.9%, with 15 it wad 75.91% and with 21 it was 

76.21% (Figure 5.8). It is clear that RNN was also implemented correctly for both 

activation functions and it is able to learn more than decently the PSSP problem, 

which is great, considering that both FFN and RNN networks have to be correct 

in order to be formed into the Bidirectional network. 

Parameter Value 

Window Size 21 

Number of Hidden Layers 1 

Hidden Layer 1 Neurons 120 

Nonlinearity Logistic 

Loss Function Squared Error 

Damping factor λ 0.1 

Maximum CG Iterations 500 

Table 5.8: The parameters for the best experiment on RNN 

 

Figure 5.9: The graph of the testing error, with regards to the number of iteration for the 

best experiment on RNN 
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From the previous examples, it was clear that the logistic function, using a window 

size of 21 resulted in the best accuracies. Experimenting with the damping value 

λ, (Table 5.8) the optimal accuracy for RNN was 76.62%. (Figure 5.9) 

 

A significantly smaller damping value (0.1, comparing to the default of 45) gave 

the optimal results in both network architectures.  This means that the quadratic 

approximations that HFO calculates are fairly reliable which results in the CG 

producing larger and substantial updates by being more aggressive, as 

discussed in section 4.3. This can be clearly observed by figure 5.10, which 

shows that not only does the λ value start at a lower point, but keeps decreasing 

using the Levenberg-Marquardt heuristic. This confirms that throughout the 

training the quadratic models are fairly accurate, which is reflected by the final 

accuracies. Otherwise, the damping would increase, producing smaller updates, 

which would produce much lower accuracies.  

 

 

Figure 5.10: The graph of the the damping value of λ, with regards to the number of 

HFO iteration 
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5.3 Bidirectional Recurrent Neural Network Experimentations 
 
 
After testing and validating the correct implementation and ability to learn the 

PSSP problem for both Feedforward and Recurrent network architectures, it was 

time to test the modifications described in section 4.4, which formed the BRNN. 

 

In BRRN there are much more parameters that have to be tuned, since there are 

3 individual networks with their hidden layers and neurons. Moreover, there is 

another window which is used for the recurrent networks to feed their input layers 

with a subsequence of the initial window’s amino acids at each time stamp, as 

described in section 4.2. Moreover, since the Logistic nonlinerity consistently 

resulted in better results, comparing to the ReLU, it is the only one being used in 

the following experiments.  

 

Parameter Value 

Window Size 21 

Recurrent Window size 1 / 3 / 5 

Backward Hidden Layer 1 Neurons 50 

Backward Hidden Layer 2 Neurons 30 

Forward Hidden Layer 1 Neurons 50 

Forward Hidden Layer 2 Neurons 30 

MLP Hidden Layer Neurons 80 

Nonlinearity Logistic 

Loss Function Squared Error 

Damping factor λ 45 

Maximum CG Iterations 500 

Table 5.9: The parameters for the experiment on BRNN in terms of recurrent window 

size 
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Figure 5.11: The graph of the testing error, with regards to the number of iteration in 

terms of recurrent window size 

 

Starting the experiments with some arbitary hidden layer sizes, and changing the 

recurrent window size in order to find an optimal in the range of 1 / 3 / 5 (Table 

5.9) it is clear that the window size of 3 gives the better predictions (Figure 5.11). 

More specifically, the window size of 1 has accuracy of 74.81%, the window size 

of 3 has 76.01% and the window size of 5 has 73.97%. Feeding too much 

information into the network at a time, results in even worse results than feeding 

it with significantly less. This is extremely important to highlight, since more 

information does not always mean better predictions. 
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Parameter Value 

Window Size 11 / 21 / 31 

Recurrent Window size 3 

Backward Hidden Layer 1 Neurons 50 

Backward Hidden Layer 2 Neurons 30 

Forward Hidden Layer 1 Neurons 50 

Forward Hidden Layer 2 Neurons 30 

MLP Hidden Layer Neurons 80 

Nonlinearity Logistic 

Loss Function Squared Error 

Damping factor λ 45 

Maximum CG Iterations 500 

Table 5.10: The parameters for the experiment on BRNN in terms of window size 

 

Figure 5.12: The graph of the testing error, with regards to the number of iteration in 

terms of the window size 
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Similary to the previous example, feeding too much information to the network 

does not always mean better performance with higher accuracies. For a window 

size of 11(Table 5.10) the accuracy of the network was 74.85%, for 21 it was 

76.05% and for 31 it was 74.73%. (Figure 5.12) 

 

 

Parameter Value 

Window Size 21 

Recurrent Window size 3 

Backward Hidden Layer 1 Neurons 50 

Backward Hidden Layer 2 Neurons 30 

Forward Hidden Layer 1 Neurons 50 

Forward Hidden Layer 2 Neurons 30 

MLP Hidden Layer Neurons 80 

Nonlinearity Logistic 

Loss Function Squared Error 

Damping factor λ 0.01 / 1 / 20 / 45 

Maximum CG Iterations 500 

 

Table 5.11: The parameters for the experiment on BRNN in terms of the damping 

parameter λ 

 

 

 

 



Page 84 of 102 

 

 

Figure 5.13: The graph of the testing error, with regards to the number of iteration in 

terms of the damping parameter λ 

 

 

Continuting with maybe the most important parameter in terms of both 

performance and execution time optimization that had to be tuned was the 

damping parameter λ. (Table 5.11).  As discussed in section 4.3, picking a too 

high value of λ results in more reliable updates, which can be extremely small 

and inefficient. Too small, and CG will aggressively optimize the quadratic, 

resulting in very large weight updates. Figures 5.13, 5.14 and 5.15 clearly 

demonstrate this theory, where at a higher value of 45 the HFO computes less 

CG iterations per HFO iteration, which results in smaller updates and higher 

execution time. As the damping becomes lower, the updates become larger by 

calculating significantly more CG iterations and lowering the execution time. It is 

important to find a balance between the two, which in the case of this problem, 

the balance of the λ value was at 1. This resulted in a final accuracy of 76.45%, 

compared to 75.82%, 76.11% and 76.07% for damping 0.01, 20 and 45 

respectively. 
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Figure 5.14: The graph of the CG iterations per HFO iteration with different values of 

damping  

 

 
 
Figure 5.15: The graph of the execution times with different values of damping 
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Parameter Value 

Window Size 21 

Recurrent Window size 3 

Backward Hidden Layer 1 Neurons 25 

Backward Hidden Layer 2 Neurons 13 

Forward Hidden Layer 1 Neurons 25 

Forward Hidden Layer 2 Neurons 13 

MLP Hidden Layer Neurons 50 

Nonlinearity Logistic 

Loss Function Squared Error 

Damping factor λ 1 

Maximum CG Iterations 500 

 

Table 5.12: The parameters for the best experiment on BRNN. 

 
Figure 5.16: The graph of the testing error for the best experiment on BRNN. 
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The final parameters that were adjusted to produce the best results in BRNN 

were the number of neurons in each hidden layer for both the recurrent networks 

and the feedforward one (Table 5.12). It seems that the network does not require 

many neurons to make better predictions. This is probably because of the input, 

due to the MSA profiles, which are mostly 0s which the network can learn to 

encode in significantly less neurons. In fact, comparing to the previous 

experiments, they only require less than half of it, which significantly reduced the 

training duration from 10-11 hours depending on the damping value to just 7-8. 

The final accuracy of the network was 76.91%, which is extremely good.  

 

5.4 Cross Validation, Filtering and Ensembles 

 

However, good results taken from a single testing set does not indicate whether 

the network is indeed a good predicting model, or whether the testing set used 

was just favoring its performance. For this reason, the 10-fold cross validation is 

being used to validate the good generalization properties of it, as discussed in 

chapter 3. 

 

The parameters used are the same of Table 5.12 which gave the best accuracies 

overall. 

 

Figure 5.17: The graph of the testing error for all the folds in cross validation. 
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 Q3 (%) QH (%) QE (%) QC (%) SOV 

Fold0 76.81 79.11 69.72 79.37 70.01 

Fold1 74.91 71.02 68.12 80.1 71.02 

Fold2 76.32 74.02 69.01 78.2 71.58 

Fold3 76.02 78.01 68.12 76.52 71.02 

Fold4 75.72 76.52 70.02 77.01 73.54 

Fold5 75.01 78.52 68.51 75.12 70.92 

Fold6 77.01 79.11 68.12 78.78 72.41 

Fold7 75.95 77.91 71.74 75.03 73.68 

Fold8 74.75 76.42 67.25 77.12 70.36 

Fold9 75.52 77.14 71.12 74.15 73.22 

Average 75.8 76.74 69.17 77.14 71.78 

Table 5.13: The results of the 10-fold cross validation for the overall Q3 accuracy, the 

accuracy for each class and the overal SOV of each fold as well as the average results for 

all folds. 

 

Observing figure 5.17, illustrating the training process for all folds, it seems that 

each fold learns with a similar pace. It is clear that the model works for all folds, 

however the overall accuracy dropped by about 1% to 75.8%, which is expected 

since the model was optimized for the first fold. Slightly different parameters 

would produce better results for the other folds which could potentially improve 

the overall accuracy for the cross validation. However, due to the high amounts 

of execution time, it was not possible to find the optimal parameters that would 

benefit all the folds overall. 

 

Table 5.13 gives a better insight on the quality of the results, instead of a simple 

Q3 accuracy. Observing the accuracies for each class as well as the SOV 

accuracy, it is clear that while the Helix and Coil classes are getting predicted 
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fairly accurately, the sheet conformations not so much, which negatively affects 

the overall SOV performance of the network. 

 

However, as discussed in Chapter 3 there are a number of ways to improve either 

the Q3 accuracy using post-processing filtering with SVMs, or the SOV accuracy 

using the external rules. 

 

 Q3 (%) QH (%) QE (%) QC (%) SOV 

Fold0 77.26 79.52 69.92 79.12 69.82 

Fold1 76.12 74.02 68.01 79.02 70.76 

Fold2 76.91 75.02 69.51 78.11 71.42 

Fold3 77.01 79.23 69.12 76.72 71.31 

Fold4 76.12 76.82 69.92 77.13 73.14 

Fold5 75.94 78.91 68.11 75.92 70.75 

Fold6 77.41 79.33 68.54 78.81 72.31 

Fold7 76.22 77.61 71.94 76.03 73.81 

Fold8 75.35 76.51 68.25 77.11 70.61 

Fold9 76.82 79.14 70.12 75.15 72.12 

Average 76.52 77.61 69.34 77.31 71.61 

Table 5.14: The results of the 10-fold cross validation for the overall Q3 accuracy, the 

accuracy for each class and the overal SOV of each fold as well as the average results for 

all folds, after applying the SVM filtering 

 

Applying the SVM filtering for each fold in the cross validation results, an increase 

of about 0.7% was achieved for the overall Q3 accuracy, while the SOV 

decreased by just under 0.2 (Table 5.14). It is important to find a balance between 

the overall accuracy of the network and the SOV accuracy, which are both 

significant. 
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 Q3 (%) QH (%) QE (%) QC (%) SOV 

Fold0 76.91 79.81 69.52 79.40 70.51 

Fold1 75.91 74.12 67.84 79.14 71.32 

Fold2 76.42 75.32 69.47 78.33 71.99 

Fold3 76.57 79.31 68.52 76.81 71.83 

Fold4 76.01 76.89 69.81 77.17 73.51 

Fold5 75.59 78.99 67.97 76.01 71.42 

Fold6 76.94 79.41 68.01 78.91 72.83 

Fold7 76.11 77.71 71.21 76.52 74.01 

Fold8 75.22 76.71 67.58 77.23 71.04 

Fold9 76.51 79.22 70.01 75.27 72.57 

Average 76.22 77.75 68.99 77.48 72.1 

 

Table 5.15: The results of the 10-fold cross validation for the overall Q3 accuracy, the 

accuracy for each class and the overal SOV of each fold as well as the average results for 

all folds, after applying the external rules. 

 

Applying the external rules filtering for each fold in the cross validation results, an 

increase of about 0.5 was achieved for the overall SOV accuracy, while the Q3 

decreased by just 0.3 (Table 5.15). 

 

When deciding what is important in the final predictions of the secondary structure 

of a protein, whether that would be the raw accuracy overall or the individual 

accuracy of each class, or just the segment overlap, describing the general 

structure of the protein, it is critical to choose a suitable post processing filtering 

method. For the first cases, the SVM filter usually results in better overall 

predictions, while the empirical external rules are better for a better general 

structure instead of just individual amino acids. 
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Finally, the last method used to improve the performance was the ensembles. 

However, since there was not enough time to create multiple ensembles for each 

fold, the process was applied only for a single fold (Fold 0). 

The ensemble files used for figure 5.18 were the results after using SVMs, while 

the files for figure 5.19 were the results after using the external rules. 

 

Figure 5.18: The graph of the Q3 accuracy, depending on the quantity of ensemble files 

used 

  

Figure 5.19: The graph of the SOV accuracy, depending on the quantity of ensemble 

files used 
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Observing figures 5.18 and 5.19, the accuracies in both cases improved for the 

first 4-6 ensemble files but then they remain relatively the same. This is important 

to highlight, since creating a huge set of files for ensembling purposes will not 

drastically improve the predictions, since the predicting model is the same, which 

more or less has the same predicting patterns at every completed training 

iteration. However, ensembles do pick up on random misclassifications, but 

ultimately only slightly improve the overall performance. In the case of this 

problem, ensembles improved the Q3 accuracy by about ~1% to 78.15 while the 

SOV accuracy by about ~0.25 to 70.76. 

 

 

Figure 5.20: The 10 worst-predicted proteins (Protein name / Q3 accuracy / Secondary structure / 

Predicted Secondary structure) 

 

 
Figure 5.21: The 10 best-predicted proteins (Protein name / Q3 accuracy / Secondary structure / 

Predicted Secondary structure) 

 

Figures 5.20 and 5.21 show the 10 worst/best-predicted proteins of the whole 

dataset, taken using cross validation and the BRRN network with the parameters 

of table 5.12. It seems that some of the worst proteins are much smaller in length, 

while some of the best are much larger. However, proteins with any length are 
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found in both figures, which makes it hard to conclude in a specific reasoning 

behind why those specific proteins are the ones being the best/worst-predicted 

ones. 

 

 
Figure 5.22: The Average Q3 accuracy in terms of protein length. 

 
 

Finally, observing the average accuracy per protein length of Figure 5.22 it is 

clear that the network fails to predict accurately the proteins which have a smaller 

size (<50) at an average ~68.5% Q3 accuracy comparing to proteins which are 

larger (50-300) at an average ~76% Q3 accuracy. Interestingly, when proteins 

are significantly larger (>300) the accuracy falls about 2%, which does not 

necessarily mean that there could be a specific reasoning behind this, but it’s 

probably due to the small sample of proteins (only 37). The fact that there is also 

a small sample for smaller proteins (34), however, does not justify the significantly 

lower accuracies of it too. 
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Chapter 6 

 

Conclusion and Future Work 

 

 

6.1 Conclusion         95 

6.2 Future Work         96 
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6.1 Conclusion 
 
 

The purpose of this dissertation was the problem of Protein Secondary Structure 

Prediction (PSSP), using learning algorithms that aim to predict the secondary 

structure of a protein based on its primary. The importance of this lies on the fact 

that the experimental methods and instruments that actually determine it are 

incredible costly, whereas learning methods are not. Moreover, being able to 

predict the functions of a protein through its secondary structure, enables the 

manufacturing of pharmaceutical drugs, food complements and antibiotics. 

 

In this thesis, a Bidirectional Recurrent Neural Network (BRNN) was trained using 

the Hessian Free Optimization (HFO). The results taken were extremely 

promising at about 78.15% Q3 accuracy using a single fold with ensembles and 

SVM filtering and about 76.52% using 10-fold cross validation with SVM filtering 

but not ensembles, due to the high amounts of training time. Finally, the highest 

SOV score achieved for cross validation was 72.1 which is fairly decent. It is 

important to highlight that even though some of published results have higher 

accuracies (84-85%), they use different datasets, which are much larger than CB 

513, which means that they are not completely comparable. However, there is 

still room for improvement, discussed in the following section. 
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10-fold 

Cross 

Validation 

75.58 71.78 76.52 76.22 71.61 72.1 - - 

One fold 76.81 70.01 77.26 76.91 69.82 70.51 78.15 70.76 

Table 6.1 The final results of the dissertation 
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6.1 Future Work 
 
 
Even though the results were fairly good, considering they were just 6-7% lower 

than the current best Q3 accuracies, there is still some margin for improvement. 

 

First of all, the complete dataset used was split into ten folds for the purpose of 

the 10-fold cross validation. Therefore, necessarily, one of those folds was used 

to optimize the parameters for the model. However, the correct thing to do is to 

have a separate file for this process, containing proteins which are not included 

in any of the folds used for the cross validation. This is because in order to have 

an objective validation for the good generalization properties of the model, it is 

necessary to not have the optimized fold influence the final results of the cross 

validation. For this reason, the dataset should be split into 11 folds instead, where 

the addition fold should be used solely for optimizing the parameters and not be 

included in the cross validation. 

 

Morever, the results taken from feedforward networks were extremely promising, 

given their simple architecture and superior performance in execution time. 

Therefore, a proper methodology should be used to validate its performance 

using cross validation. Moreover, additional filtering, similar to the one used for 

BRNN in this dissertation (SVM, external empirical rules and ensembles), should 

also be applied to find the limits in the accuracies of the network. Finally, given 

the extremely promising results taken from Convolutional Neural Networks which 

used a simple Gradient descent optimizer for its feedforward network in the end 

(Διονυσίου, 2018), there is some possibility that even better results could be 

achieved if the HFO optimizer was used instead. 

 

Due to lack of time and the extremely high amounts of training time required for 

BRNNs, no ensembling was done for the cross validation. This could potentially 

increase the overall accuracy by ~1-1.5%. Moreover, the averaging ensemble 

method used is the simplest form of ensembles. Using a more complex ensemble 

like AdaBoost (Rätsch et al., 2001) or Random Forest (Chan et al, 2008) could 
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also potentially increase the final performance of the network. Finally, in this 

thesis the ensemble files used were all derived from the same network trained 

with the same parameters. Combining different architecture trained with different 

learning algorithms which store different kinds of relations, could also increase 

the quality of the results.  

 

The current implementation used for BRNN and HFO, required extremely large 

amounts of memory. This prevented the training of an existing, significantly larger 

dataset, derived from PISCES, which is a protein sequence culling server (Wang 

et al, 2003). In general, training a learning algorithm with a much larger dataset 

often results in better predictions. Consequently, it is important to try to optimize 

the implementation to require less memory or use a machine with higher memory 

capabilities in order to get results with HFO on a much larger dataset.  

 

Finally, the benefits of using HFO lie on its superior performance in terms of 

execution times. In order to verify this, proper comparisons should be conducted 

with other second order algorithms like Scaled Conjugate Gradient, which are 

implemented on BRNN as well. (Agathokleous, 2016)  
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Annex A 

 

BRNN.py 

 

import hessianfree as hf 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

import storeProteins 

import datetime 

import os 

import random 

import pickle 

import sys 

 

 

def trainRNN(trainingData, trainingOutput, testingData, testingOutput, 

window): 

     

    optimizer = hf.opt.HessianFree(CG_iter=250, init_damping=45) 

    rnn = hf.RNNet( 

        shape=[20 * window, 120, 3], 

        layers=hf.nl.Logistic(), 

        loss_type=[hf.loss_funcs.SquaredError(), 

                   hf.loss_funcs.StructuralDamping(1e-4, 

                                                   

optimizer=optimizer)], debug=False, 

        rng=np.random.RandomState(0)) 

 

 

    rnn.run_epochs(trainingData, trainingOutput, 

                   optimizer=optimizer, test=(testingData, 

testingOutput), 

                   max_epochs=100, 

                   test_err=hf.loss_funcs.SquaredError()) 

 

    return rnn 

 

def trainFFN (trainingData, trainingOutput,testingData, testingOutput 

, window, plots=True,seed=0,fold=0): 

     

    ff = hf.FFNet([20 * window, 75, 3], 

                  layers=hf.nl.Logistic(), 

                  loss_type=hf.loss_funcs.SquaredError()) 

    pre = seed 

    ff.run_epochs(trainingData, trainingOutput, 

                  optimizer=hf.opt.HessianFree(CG_iter=500, 

init_damping=45), 

                  max_epochs=150, plotting=plots, 

file_output="Results/Fold"+str(fold)+"/BRRN_PLOT_"+str(pre),test=(test

ingData, testingOutput)) 

    return ff 

 

def trainBRNN(trainingData, trainingOutput,testingData, testingOutput, 

window, plots=True,seed = 0,fold=0,d=45): 
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    optimizer = hf.opt.HessianFree(CG_iter=500, init_damping=d) 

    brnn = hf.BRNNet([20 * 3, 20 * 13, 20 * 3, 65, 30, 30, 15, 15, 3], 

                     layers=hf.nl.Logistic(), 

                     windowC=13, windowF=3, windowB=3, windowA=21, 

                     loss_type=[hf.loss_funcs.SquaredError(), 

                                hf.loss_funcs.StructuralDamping(1e-4, 

                                                                

optimizer=optimizer)], 

                     conns={0: [4], 1: [3], 2: [5], 4: [6], 5: [7], 3: 

[8], 6: [8], 7: [8]}, 

                     rec_layers=[4, 5]) 

    pre = seed 

    brnn.run_epochs(trainingData, trainingOutput, 

                  optimizer=optimizer, 

                  max_epochs=150, plotting=plots, 

file_output="Results/Fold"+str(fold)+'/damping ' + '{0:.5f}'.format(d) 

+ "/BRRN_PLOT_"+str(pre), test=(testingData, testingOutput), 

test_err=hf.loss_funcs.SquaredError(),) 

    return brnn 

 

def getFFNAccuracy(testingData,testingOutput,ff,proteins, plots = 

True,fold=0): 

    outputs = ff.forward(testingData)[-1] 

    accuracy = 0 

    count = [0,0,0] 

    countTotal = [0,0,0] 

    correctProts = ['C', 'E', 'H'] 

    f = open("Results/Fold" + str(fold)+ "/" + 

datetime.datetime.now().strftime("BRNN_%Y%m%d%H%M%S")+ '.txt', "w+") 

    np.set_printoptions(precision=3, suppress=True) 

    c = len(proteins[2]) 

    counter = 0 

    pos =0 

    for i in range(len(outputs)): 

        max = outputs[i][0] 

        index = 0 

        prot = "" 

        if (outputs[i][1] > max): 

            max = outputs[i][1] 

            index = 1 

        if (outputs[i][2] > max): 

            max = outputs[i][2] 

            index = 2 

        if testingOutput[i][index] == 1: 

            accuracy += 1 

            count[index] += 1 

        prot += correctProts[index] 

        counter += 1 

        if counter == c: 

            proteins[pos * 4 + 3] = prot 

            prot = "" 

            counter = 0 

            pos += 1 

            if i<len(outputs)-1: 

                c = len(proteins[pos*4+2]) 

        f.write(str(outputs[i])[1:-1] + ' ' + 

str(testingOutput[i])[1:-1] + '\n') 

        countTotal[np.where(testingOutput[i]==1)[0][0]] = 

countTotal[np.where(testingOutput[i]==1)[0][0]]+1 

    acc = accuracy * 100 / (len(testingOutput)) 
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    print("Accuracy: ", accuracy * 100 / (len(testingOutput)), "%") 

    print("Accuracy Coil: ", count[0]*100.0/ countTotal[0], "%") 

    print("Accuracy E: ", count[1] * 100.0 / countTotal[1], "%") 

    print("Accuracy H: ", count[2] * 100.0 / countTotal[2], "%") 

    return acc,proteins 

 

 

 

def getRNNAccuracy(testingData, testingOutput, rnn, 

proteins,plots=True,fold=0,d = 45): 

    outputs = rnn.forward(testingData)[-1] 

    accuracy = 0 

    count = [0,0,0] 

    countTotal = [0,0,0] 

    correctProts = ['C','E','H'] 

    f = open("Results/Fold" + str(fold)+ "/damping " + str(d) + '/' + 

datetime.datetime.now().strftime("BRNN_%Y%m%d%H%M")+ '.txt', "w+") 

    np.set_printoptions(precision=3, suppress=True) 

    for i in range(len(outputs)): 

        prot = "" 

        for j in range(len(outputs[i])): 

            if (1 not in testingOutput[i][j]): 

                break; 

            max = outputs[i][j][0] 

            index = 0 

            if (outputs[i][j][1] > max): 

                max = outputs[i][j][1] 

                index = 1 

            if (outputs[i][j][2] > max): 

                max = outputs[i][j][2] 

                index = 2 

            if testingOutput[i][j][index] == 1: 

                accuracy += 1 

                count[index] += 1 

            if testingOutput[i][j][0] == 1: 

                countTotal[0] +=1 

            elif testingOutput[i][j][1] == 1: 

                countTotal[1] +=1 

            elif testingOutput[i][j][2] == 1: 

                countTotal[2] +=1 

            f.write(str(outputs[i][j])[1:-1] + ' ' + 

str(testingOutput[i][j])[1:-1] + '\n') 

            prot +=correctProts[index] 

        proteins[i*4+3] = prot 

 

    acc = accuracy * 100 / (countTotal[0]+countTotal[1]+countTotal[2]) 

    print("Accuracy: ", accuracy * 100 / 

(countTotal[0]+countTotal[1]+countTotal[2]), "%") 

    print("Accuracy Coil: ", (count[0]*100.0/ countTotal[0]) if 

(countTotal[0] > 0) else 100, "%") 

    print("Accuracy E: ", count[1] * 100.0 / countTotal[1] if 

countTotal[1] >0 else 100, "%") 

    print("Accuracy H: ", count[2] * 100.0 / countTotal[2] if 

countTotal[2] >0 else 100, "%") 

 

    return acc, proteins 

 

 

def createSet(file,window,batch=None,cutoff=None): 

    open_file = open(file, "r") 
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    lines = open_file.readlines() 

 

    protObj = storeProteins.storeProteins() 

    size = 1 

    prot = lines[0:] 

    proteins = protObj.readProteins(prot, window - 1,batch,cutoff) 

    print("Helix: ",protObj.h) 

    print("Extended strand: ", protObj.e) 

    print("Coil: ", protObj.c) 

    print("Zeroes(padding): ", protObj.padding) 

    data = [] 

    pos = 0 

    i = 0 

    temp = [] 

    if cutoff is not None: 

        batch = cutoff*20+(window-1)*20 

    while i <= (len(protObj.data) - 20 * (window)): 

        data.append(protObj.data[i:i + 20 * window]) 

        if (batch is not None and i> 0 and  ((i+ (window) * 20 ) % 

(batch*size) == 0)): 

            i += int(window) * 20 

            temp.append(data) 

            data= [] 

            continue 

        elif (protObj.endOfProtein[pos] == i + (window) * 20): 

            pos += 1 

            i += int(window) * 20 

            continue; 

        i += 20 

 

    if batch is None: 

        data = np.array(data) 

        output = np.array(protObj.yt) 

    else: 

        output = [] 

        for i in range(0,len(protObj.yt),protObj.maxProtein*size): 

            output.append(protObj.yt[i:i+protObj.maxProtein*size]) 

        output = np.array(output) 

        if len(data) > 0: 

            print(len(data)) 

            print(protObj.maxProtein*size - len(data)) 

            temp.append(data) 

            print("remaining") 

        data = np.array([np.array(t) for t in temp]) 

    return data, output, proteins 

 

window = 21 

#cb 513 

batch_size = 753*20+(window-1)*20 

cutoff = None 

 

fold = 0 

damping = 1 

 

startTime = datetime.datetime.now().strftime("%H:%M %Y-%m-%d") 

print(startTime) 

pre = random.randint(1,1000000) 

 

#These files for full dataset 
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testingData,testingOutput, proteinsTest = createSet("TestSets/testSet" 

+ str(fold),window,batch_size,cutoff) 

trainingData,trainingOutput, proteinsTrain = 

createSet("TrainingSets/trainSet"+str(fold),window,batch_size,cutoff) 

 

#These files for just one protein for testing 

#trainingData,trainingOutput,proteinsTrain = 

createSet("TrainingSets/msaProteinsTrainBigDataset_afterProcess.txt",w

indow,batch_size,cutoff) 

#testingData,testingOutput, proteinsTest = 

createSet("TrainingSets/msaProteinsTrainBigDataset_afterProcess.txt",w

indow,batch_size,cutoff) 

 

#ffn = trainFFN(trainingData, trainingOutput, testingData, 

testingOutput, window,seed=pre) 

#rnn = trainRNN(trainingData, trainingOutput, testingData, 

testingOutput, window) 

rnn = trainBRNN(trainingData, trainingOutput, testingData, 

testingOutput, window,seed=pre,fold=fold,d = damping) 

 

 

#Set the weights to the weight of the best epoch for ffn 

'''ffn.W = ffn.best_W.copy() 

np.save("Results/Fold" + str(fold) + "/damping " + str(damping) + '/' 

+ str(pre) +"_weights.npy", ffn.W) 

with open("Results/Fold" + str(fold) + "/damping " + str(damping) + 

'/' + "/" + str(pre) + "_brnn_settings.pkl", "wb") as f: 

    pickle.dump(ffn.shape, f) 

accTest,proteinsTest = getFFNAccuracy(testingData, testingOutput, ffn, 

proteinsTest,fold=fold) 

accTrain, proteinsTrain= getFFNAccuracy(trainingData, trainingOutput, 

ffn, proteinsTrain,fold=fold) 

endTime = datetime.datetime.now().strftime("%H:%M %Y-%m-%d") 

 

print(endTime) 

outputs = ffn.forward(trainingData)[-1] 

outputs2 = ffn.forward(testingData)[-1]''' 

 

#Set the weights to the weight of the best epoch for rnn 

rnn.W = rnn.best_W.copy() 

np.save("Results/Fold" + str(fold) + "/damping " + 

'{:.5f}'.format(damping) + '/' + str(pre) +"_weights.npy", rnn.W) 

with open("Results/Fold" + str(fold) + "/damping " + 

'{0:.5f}'.format(damping) + '/' + "/" + str(pre) + 

"_brnn_settings.pkl", "wb") as f: 

    pickle.dump(rnn.shape, f) 

 

accTest,proteinsTest = getRNNAccuracy(testingData, testingOutput, rnn, 

proteinsTest,fold=fold,d=damping) 

accTrain, proteinsTrain= getRNNAccuracy(trainingData, trainingOutput, 

rnn, proteinsTrain,fold=fold,d=damping) 

endTime = datetime.datetime.now().strftime("%H:%M %Y-%m-%d") 

print(endTime) 

outputs = rnn.forward(trainingData)[-1] 

outputs2 = rnn.forward(testingData)[-1] 

 

 

# Save predictions 
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f= open('Results/Fold' + str(fold) +  "/damping " + 

'{0:.5f}'.format(damping) + '/' +  'train-' + str(accTrain) + str(pre) 

+ ".txt","w+") 

f2= open('Results/Fold' + str(fold)  + "/damping " + 

'{0:.5f}'.format(damping) + '/' +  'test-'+ str(accTest) + str(pre) 

+".txt","w+") 

 

for p in proteinsTrain: 

    f.write(p + '\n') 

 

for p in proteinsTest: 

    f2.write(p + '\n') 
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Annex B 

 

storeProteins.py 

 

## 

# Read data from file and organize them into input 

# and target output 

## 

from numpy import * 

 

 

class storeProteins: 

 

    def __init__(self): 

        self.sizeOfAminoacids = 0  # for training data 

        self.sizeOfCleanAminoacids = 0  # for targets 

        self.aminoacids = [] 

        self.data = [] 

        self.yt = [] 

        self.maxProtein = 753 

        self.h = 0 

        self.c = 0 

        self.e = 0 

        self.extra = 0 

        self.padding = 0 

        self.endOfProtein = [] 

 

    ## 

    # Read data from file and finds there MSA representation. Adds 

zeros, equal to the window size, at the beginning 

    # and the end of the protein. Returns an array with the output 

format of the program 

    # (Protein name\nPrimary Structure\nCorrect secondary structure\n 

+\n) where + is to be replaced with the predicted 

    # secondary structure. If the sequence has unknown symbols i.e. 

'!' it removes them from the sequence. 

    ## 

    def readProteins(self, lines, window,batch_size=None,cutoff=None): 

        wrongProteins = ['1coiA_1-29','1mctI_1-28','1tiiC_195-

230','2erlA_1-40','1ceoA_202-254','1mrtA_31-61','1wfbB_1-37','6rlxC_-

2-20'] 

        proteins = [] 

        leadingZeros = zeros((1, window * 10)) # half window frond and 

back 

        if cutoff is not None: 

            self.maxProtein = cutoff 

        for i in range(0, len(lines), 3): 

 

            name = lines[i].rstrip() 

            if (name in wrongProteins): 

                print (name) 

                continue; 

            proteins.append(name) 

 

            secondary = lines[i + 2].rstrip() 

            proteins.append(lines[i + 1].rstrip().replace('!', ''))  # 

protein's first structure 
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            proteins.append(secondary.replace('!', ''))  # protein's 

secondary structure 

            proteins.append('')  # protein's predicted secondary 

structure which will be added later in the + field 

 

            try: 

                msa = loadtxt("msaFiles/" + name + '.hssp') 

            except FileNotFoundError: 

                print(name, " protein not found") 

 

            # followingZeros = zeros((1, (753-(len(msa))) * 20)) # 

padding 

 

            protein =  (msa * 1.0) / 100.0 

 

            if batch_size is not None: 

                protein = concatenate((protein, tile(zeros(20), 

(self.maxProtein-len(protein),1)))) 

            if cutoff is not None: 

                self.extra = cutoff - (len(protein) % cutoff) 

 

                protein = concatenate((protein,tile(zeros(20),(cutoff 

- (len(protein) % cutoff),1)))) 

                #protein = append(protein, zeros(20)*(cutoff - 

(len(protein) % cutoff))) 

                temp = protein.copy() 

                for i in range(cutoff, len(protein), cutoff): 

                    temp = concatenate((temp[:i + int(i / cutoff - 1) 

* window], protein[i - int(window / 2):i], 

                                        temp[i + int(i / cutoff - 1) * 

window:i + int(i / cutoff - 1) * window + int(window / 2)], 

                                        temp[i + int(i / cutoff - 1) * 

window:])) 

                    #temp = concatenate((temp[:i+int(i/cutoff-

1)*window],protein[i-int(window/2):i] , temp[i+int(i/cutoff-

1)*window:])) 

                protein = temp 

 

            # Placing half windows on the front and the back of a 

protein makes the predicted amino acid being on the center of each 

window 

            self.data = append(self.data, leadingZeros) 

            self.data = append(self.data, protein) 

            self.data = append(self.data, leadingZeros) 

             

            #self.data = append(self.data, leadingZeros) 

            #self.data = append(self.data, leadingZeros) 

            if cutoff is None: 

                self.endOfProtein = append(self.endOfProtein, 

len(self.data)) 

            else: 

                for i in range(cutoff,len(protein),cutoff): 

                    self.endOfProtein = append(self.endOfProtein, 

len(self.data-len(protein)+i)) 

            # self.data = append(self.data, followingZeros) # padding 

 

            self.sizeOfAminoacids += len(msa) + window 

            # self.sizeOfAminoacids += 753 + window 

            self.sizeOfCleanAminoacids += len(msa) 



B-3 

 

            # self.sizeOfCleanAminoacids += 753 

            self.normilizeOutput(secondary, window,batch_size,cutoff) 

            # self.normilizeOutput(secondary, window, followingZeros) 

 

        return proteins 

 

    ## 

    # Converts the secondary structure class in to neuron activation. 

    ## 

    def normilizeOutput(self, secondary, 

window,batch_size=None,cutoff=None): 

 

        se = secondary.split() 

 

        for i in range(0, window, 1): 

            # self.yt.append([0, 0, 0]) 

            self.aminoacids.append("10") 

        count = 0 

        for t in se[0]: 

             

            if t == "C": 

                self.yt.append([1, 0, 0]) 

                self.c += 1 

                self.aminoacids.append(t) 

             

            elif t == "E": 

                self.yt.append([0, 1, 0]) 

                self.e += 1 

                self.aminoacids.append(t) 

         

            elif t == "H": 

                self.yt.append([0, 0, 1]) 

                self.h += 1 

                self.aminoacids.append(t) 

             

            else: 

                count +=1 

                continue  # ignores if there is a ! or anything except 

the three above 

 

        if batch_size is not None: 

            self.padding += self.maxProtein-len(se[0])+count 

            for i in range(self.maxProtein-len(se[0])+count): 

                self.yt.append([0,0,0]) 

 

        if cutoff is not None: 

            for i in range(self.extra): 

                self.yt.append([0,0,0]) 
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Annex C 

 
Bffnet.py 
 
"""Implementation of feedforward network, including Gauss-Newton 

approximation 

for use in Hessian-free optimization. 

 

.. codeauthor:: Daniel Rasmussen 

<daniel.rasmussen@appliedbrainresearch.com> 

 

Based on 

Martens, J. (2010). Deep learning via Hessian-free optimization. In 

Proceedings 

of the 27th International Conference on Machine Learning. 

""" 

 

from __future__ import print_function 

 

from collections import defaultdict, OrderedDict 

import pickle 

import warnings 

 

import numpy as np 

import math 

import hessianfree as hf 

 

 

class BFFNet(object): 

    """Implementation of feed-forward network (including 

gradient/curvature 

    computation). 

 

    :param list shape: the number of neurons in each layer 

    :param layers: nonlinearity to use in the network (or a list 

giving a 

        nonlinearity for each layer) 

    :type layers: :class:`~.nonlinearities.Nonlinearity` or `list` 

    :param dict conns: dictionary of the form `{layer_x:[layer_y, 

layer_z], 

        ...}` specifying the connections between layers (default is to 

        connect in series) 

    :param loss_type: loss function (or list of loss functions) used 

to 

        evaluate network 

    :type loss_type: :class:`~.loss_funcs.LossFunction` or `list` 

    :param dict W_init_params: parameters passed to 

:meth:`.init_weights` 

        (see parameter descriptions in that function) 

    :param bool use_GPU: run curvature computation on GPU (requires 

        PyCUDA and scikit-cuda) 

    :param load_weights: load initial weights from given array or 

filename 

    :type load_weights: `str` or :class:`~numpy:numpy.ndarray` 

    :param bool debug: activates expensive features to help with 

debugging 

    :param rng: used to generate any random numbers for this network 

(use 
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        this to control the seed) 

    :type rng: :class:`~numpy:numpy.random.RandomState` 

    :param dtype: floating point precision used throughout the network 

    :type dtype: :class:`~numpy:numpy.dtype` 

    """ 

 

    def __init__(self, shape, layers=hf.nl.Logistic(), conns=None, 

                 loss_type=hf.loss_funcs.SquaredError(), 

W_init_params=None, 

                 use_GPU=False, load_weights=None, debug=False, 

rng=None, 

                 dtype=np.float64): 

 

        self.debug = debug 

        self.shape = shape 

        self.n_layers = len(shape) 

        self.dtype = np.float64 if debug else dtype 

        self.mask = None 

        self._optimizer = None 

        self.rng = np.random.RandomState() if rng is None else rng 

 

        # note: this isn't used internally, it is just here so that an 

        # external process with a handle to this object can tell what 

epoch 

        # it is on 

        self.epoch = None 

 

        self.inputs = None 

        self.targets = None 

        self.activations = None 

        self.d_activations = None 

 

        # initialize layer nonlinearities 

        if not isinstance(layers, (list, tuple)): 

            if isinstance(layers, hf.nl.Nonlinearity) and 

layers.stateful: 

                warnings.warn("Multiple layers sharing stateful 

nonlinearity, " 

                              "consider creating a separate instance 

for each " 

                              "layer.") 

            layers = [layers for _ in range(self.n_layers)] 

            layers[0] = layers[1] = layers[2] = hf.nl.Linear() 

 

        if len(layers) != len(shape): 

            raise ValueError("Number of nonlinearities (%d) does not 

match " 

                             "number of layers (%d)" % 

                             (len(layers), len(shape))) 

 

        self.layers = [] 

        for t in layers: 

            if isinstance(t, str): 

                # look up the nonlinearity with the given name 

                t = getattr(hf.nl, t)() 

            if not isinstance(t, hf.nl.Nonlinearity): 

                raise TypeError("Layer type (%s) must be an instance 

of " 

                                "nonlinearities.Nonlinearity" % t) 

            self.layers += [t] 
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        # initialize loss function 

        self.init_loss(loss_type) 

 

        # initialize connections 

        if conns is None: 

            # set up the feedforward series connections 

            conns = {} 

            for pre, post in zip(np.arange(self.n_layers - 1), 

                                 np.arange(1, self.n_layers)): 

                conns[pre] = [post] 

 

        self.conns = OrderedDict(sorted(conns.items(), key=lambda x: 

x[0])) 

        # note: conns is an ordered dict sorted by layer so that we 

can 

        # reliably loop over the items (in compute_offsets and 

init_weights) 

 

        # maintain a list of backwards connections as well (for 

efficient 

        # lookup in the other direction) 

        self.back_conns = defaultdict(list) 

        for pre in conns: 

            for post in conns[pre]: 

                self.back_conns[post] += [pre] 

 

                if pre >= post: 

                    raise ValueError("Can only connect from lower to 

higher " 

                                     "layers (%s >= %s)" % (pre, 

post)) 

 

        # add empty connection for first/last layer (just helps smooth 

the code 

        # elsewhere) 

        self.conns[self.n_layers - 1] = [] 

        self.back_conns[0] = [] 

 

        # compute indices for the different connection weight matrices 

in the 

        # overall parameter vector 

        self.compute_offsets() 

 

        # initialize connection weights 

        if load_weights is None: 

            if W_init_params is None: 

                W_init_params = {} 

            self.W = self.init_weights( 

                [(self.shape[pre], self.shape[post]) 

                 for pre in self.conns for post in self.conns[pre]], 

                **W_init_params) 

        else: 

            if isinstance(load_weights, np.ndarray): 

                self.W = load_weights 

            else: 

                # load weights from file 

                self.W = np.load(load_weights) 

 

            if len(self.W) != np.max(list(self.offsets.values())): 
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                raise IndexError( 

                    "Length of loaded weights (%s) does not match 

expected " 

                    "length (%s)" % (len(self.W), 

                                     

np.max(list(self.offsets.values())))) 

 

            if self.W.dtype != self.dtype: 

                raise TypeError("Loaded weights dtype (%s) doesn't 

match " 

                                "self.dtype (%s)" % (self.W.dtype, 

self.dtype)) 

 

        # initialize GPU 

        if use_GPU: 

            try: 

                import pycuda 

                import skcuda 

            except Exception as e: 

                print(e) 

                raise ImportError("PyCuda/scikit-cuda not installed. " 

                                  "Set use_GPU=False.") 

 

            hf.gpu.init_kernels() 

 

        self.use_GPU = use_GPU 

 

    def run_epochs(self, inputs, targets, optimizer, 

                   max_epochs=100, minibatch_size=None, test=None, 

                   test_err=None, target_err=1e-6, plotting=False, 

                   file_output=None, print_period=1): 

        """Apply the given optimizer with a sequence of (mini)batches. 

 

        :param inputs: input vectors (or a 

:class:`~.nonlinearities.Plant` that 

            will generate the input vectors dynamically) 

        :type inputs: :class:`~numpy:numpy.ndarray` or 

            :class:`~.nonlinearities.Plant` 

        :param targets: target vectors corresponding to each input 

vector (or 

            None if a plant is being used) 

        :type targets: :class:`~numpy:numpy.ndarray` 

        :param optimizer: computes the weight update each epoch (see 

            optimizers.py) 

        :param int max_epochs: the maximum number of epochs to run 

        :param int minibatch_size: the size of the minibatch to use in 

each epoch 

            (or None to use full batches) 

        :param tuple test: tuple of (inputs,targets) to use as the 

test data 

            (if None then the same inputs and targets as training will 

be used) 

        :param test_err: a custom error function to be applied to 

            the test data (e.g., classification error) 

        :type test_err: :class:`~.loss_funcs.LossFunction` 

        :param float target_err: run will terminate if this test error 

is 

            reached 

        :param str file_output: output files from the run will use 

this as a 
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            prefix (if None then don't output files) 

        :param bool plotting: if True then data from the run will be 

output to 

            a file, which can be displayed via dataplotter.py 

        :param int print_period: print out information about the run 

every `x` 

            epochs 

        """ 

 

        test_errs = [] 

        self.best_W = None 

        self.best_error = None 

 

        # compute test error 

        if test is None: 

            test_in, test_t = inputs, targets 

        else: 

            test_in, test_t = test[0], test[1] 

 

        prefix = "HF" if file_output is None else file_output 

        minibatch_size = minibatch_size or inputs.shape[0] 

        plots = defaultdict(list) 

        self.optimizer = optimizer 

 

        if isinstance(optimizer, hf.opt.SCG): 

            if test_err is None: 

                err = self.error(self.W, test_in, test_t) 

            else: 

                output = self.forward(test_in, self.W) 

                err = test_err.batch_loss(output, test_t) 

            test_errs += [err] 

        for i in range(max_epochs): 

            self.epoch = i 

            printing = print_period is not None and (i % print_period 

== 0 or 

                                                     self.debug) 

            #printing = False; 

            print("=" * 40) 

            print("epoch", i) 

 

            # run minibatches 

            indices = self.rng.permutation(inputs.shape[0]) 

            #indices = range(inputs.shape[0]) 

            for start in range(0, inputs.shape[0], minibatch_size): 

                # generate minibatch and cache activations 

                self.cache_minibatch( 

                    inputs, targets, indices[start:start + 

minibatch_size]) 

 

                # validity checks 

                if self.inputs.shape[-1] != self.winA*20: 

                    raise ValueError( 

                        "Input dimension (%d) does not match number of 

input " 

                        "nodes (%d)" % (self.inputs.shape[-1], 

self.shape[0])) 

                if self.targets.shape[-1] != self.shape[-1]: 

                    raise ValueError( 

                        "Target dimension (%d) does not match number 

of " 
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                        "output nodes (%d)" % (self.targets.shape[-1], 

                                               self.shape[-1])) 

 

                assert self.activations[-1].dtype == self.dtype 

                # compute update 

                print(prefix) 

                update = optimizer.compute_update(printing,prefix) 

                #compute update SCG 

                #update = 

optimizer.compute_update(printing,inputs,targets,indices[start:start + 

minibatch_size]) 

                assert update.dtype == self.dtype 

 

                # apply mask 

                if self.mask is not None: 

                    update[self.mask] = 0 

 

                # update weights 

                self.W += update 

 

                # invalidate cached activations (shouldn't be 

necessary, 

                # but doesn't hurt) 

                #self.activations = None 

                #self.d_activations = None 

                #self.GPU_activations = None 

 

 

 

            if test_err is None: 

                err = self.error(self.W, test_in, test_t) 

            else: 

                output = self.forward(test_in, self.W) 

                err = test_err.batch_loss(output, test_t) 

            test_errs += [err] 

            if isinstance(optimizer,hf.opt.SCG): 

                print("Object of SCG") 

                comparison = 2 * optimizer.delta * (test_errs[-2] - 

test_errs[-1]) / np.power(optimizer.phi, 2) 

                print(test_errs[-2],test_errs[-1]) 

                if comparison >= 0: 

                    if test_errs[-1] < target_err: 

                        break  # done! 

 

                    vector = np.copy(self.W) 

                    f_old = test_errs[-1] 

                    self.activations, self.d_activations = 

self.forward(inputs[indices[start:start + minibatch_size]], 

                                                                                    

self.W, 

                                                                                    

deriv=True) 

                    self.activations = [np.asarray(a, 

dtype=self.dtype) 

                                            for a in self.activations] 

                    self.d_activations = [np.asarray(a, 

dtype=self.dtype) 

                                              for a in 

self.d_activations] 

                    self.r_new = -self.calc_grad() 
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                    self.success = True 

                    self.lamb_ = 0 

 

                    if (i+1) % self.W.shape[0] == 0: 

                        optimizer.grad_new = optimizer.r_new 

                    else: 

                        beta = (np.dot(optimizer.r_new, 

optimizer.r_new) - np.dot(optimizer.r_new, optimizer.r)) / 

optimizer.phi 

                        optimizer.grad_new = optimizer.r_new + beta * 

optimizer.grad 

 

                    if comparison > 0.75: 

                        optimizer.lamb = 0.5 * optimizer.lamb 

                else: 

                    optimizer.lamb_ = optimizer.lamb 

                    # end 

 

                if comparison < 0.25: 

                    optimizer.lamb = 4 * optimizer.lamb 

            if printing: 

                print("test error", test_errs[-1]) 

            print("test error", test_errs[-1]) 

            # save the weights with the best error 

            if self.best_W is None or test_errs[-1] < self.best_error: 

                self.best_W = self.W.copy() 

                self.best_error = test_errs[-1] 

 

            # dump plot data 

            if plotting: 

                plots["update norm"] += [np.linalg.norm(update)] 

                plots["W norm"] += [np.linalg.norm(self.W)] 

                plots["test error (log)"] += [test_errs[-1]] 

 

                if hasattr(optimizer, "plots"): 

                    plots.update(optimizer.plots) 

 

                with open("%s_plots.pkl" % prefix, "wb") as f: 

                    pickle.dump(plots, f) 

 

            # dump weights 

            '''if file_output is not None: 

                np.save("%s_weights.npy" % prefix, self.W)''' 

 

            # check for termination 

            if test_errs[-1] < target_err: 

                if print_period is not None: 

                    print("target error reached") 

                break 

            if test is not None and i > 10 and test_errs[-5] < 

test_errs[-1]: 

                if print_period is not None: 

                    print("overfitting detected, terminating") 

                break 

 

    def forward(self, inputs, params=None, deriv=False): 

        """Compute layer activations for given input and parameters. 

 

        :param inputs: input vectors (passed to first layer) 
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        :type inputs: :class:`~numpy:numpy.ndarray` 

        :param params: parameter vector (weights) for the network 

(defaults to 

            ``self.W``) 

        :type params: :class:`~numpy:numpy.ndarray` 

        :param bool deriv: if True then also compute the derivative of 

the 

            activations 

        """ 

 

        params = self.W if params is None else params 

 

        if isinstance(inputs, hf.nl.Plant): 

            inputs.reset() 

 

        activations = [None for _ in range(self.n_layers)] 

        if deriv: 

            d_activations = [None for _ in range(self.n_layers)] 

        original = inputs.copy() 

        for i in range(self.n_layers): 

            if i == 0: 

                if isinstance(inputs, hf.nl.Plant): 

                    inputs = inputs(None) 

                else: 

                    inputs = original[:,0:self.shape[0]] 

            elif i == 1: 

                inputs = original[:,self.shape[0]:self.shape[0] + 

self.shape[1]] 

            elif i==2: 

                inputs = original[:,self.shape[0] + 

self.shape[1]:self.shape[0] + self.shape[1] + self.shape[2]] 

            else: 

                inputs = np.zeros((inputs.shape[0], self.shape[i]), 

                                  dtype=self.dtype) 

                for pre in self.back_conns[i]: 

                    W, b = self.get_weights(params, (pre, i)) 

                    inputs += np.dot(activations[pre], W) 

                    inputs += b 

                    # note: we're applying a bias on each connection 

to a 

                    # neuron (rather than one for each neuron). just 

because 

                    # it's easier than tracking how many connections 

there are 

                    # for each layer (but we could do it if it becomes 

                    # important). 

            activations[i] = self.layers[i].activation(inputs) 

 

            if deriv: 

                d_activations[i] = self.layers[i].d_activation(inputs, 

                                                               

activations[i]) 

        for i, a in enumerate(activations): 

            if not np.all(np.isfinite(a)): 

                raise OverflowError("Non-finite nonlinearity 

activation " 

                                    "value (layer %d) \n %s" % 

                                    (i, a[not np.isfinite(a)])) 

        if deriv: 

            return activations, d_activations 
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        return activations 

 

    def error(self, W=None, inputs=None, targets=None): 

        """Compute network error. 

 

        :param W: network parameters (defaults to ``self.W``) 

        :type W: :class:`~numpy:numpy.ndarray` 

        :param inputs: input vectors (defaults to the cached 

(mini)batch for 

            current epoch) 

        :type inputs: :class:`~numpy:numpy.ndarray` 

        :param targets: target vectors (defaults to the cached 

(mini)batch for 

            current epoch) 

        :type targets: :class:`~numpy:numpy.ndarray` 

        """ 

 

        W = self.W if W is None else W 

        inputs = self.inputs if inputs is None else inputs 

 

        # get outputs 

        if (W is self.W and inputs is self.inputs and 

                    self.activations is not None): 

            # use cached activations 

            activations = self.activations 

        else: 

            # compute activations 

            activations = self.forward(inputs, W) 

 

        # get targets 

        if isinstance(inputs, hf.nl.Plant): 

            # get targets from plant 

            targets = inputs.get_vecs()[1] 

        else: 

            targets = self.targets if targets is None else targets 

 

        # note: np.nan can be used in the target to specify places 

        # where the target is not defined. those get translated to 

        # zero error in the loss function. 

        error = self.loss.batch_loss(activations, targets) 

 

        return error 

 

    def cache_minibatch(self, inputs, targets, minibatch=None): 

        """Pick a subset of inputs and targets to use in minibatch, 

and cache 

        the activations for that minibatch.""" 

 

        if minibatch is None: 

            minibatch = np.arange(inputs.shape[0]) 

 

        if not isinstance(inputs, hf.nl.Plant): 

            # inputs/targets are vectors 

            self.inputs = inputs[minibatch] 

            self.targets = targets[minibatch] 

 

            # cache activations 

            self.activations, self.d_activations = 

self.forward(self.inputs, 
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self.W, 

                                                                

deriv=True) 

        else: 

            # input is a dynamic plant 

            if targets is not None: 

                raise ValueError("Cannot specify targets when using 

dynamic " 

                                 "plant to generate inputs (plant 

should " 

                                 "generate targets itself)") 

 

            # run plant to generate batch 

            inputs.shape[0] = len(minibatch) 

            self.activations, self.d_activations = 

self.forward(inputs, self.W, 

                                                                

deriv=True) 

            self.inputs, self.targets = inputs.get_vecs() 

 

        # cast to self.dtype 

        if self.inputs.dtype != self.dtype: 

            warnings.warn("Input dtype (%s) not equal to self.dtype 

(%s)" % 

                          (self.inputs.dtype, self.dtype)) 

        self.inputs = np.asarray(self.inputs, dtype=self.dtype) 

        self.targets = np.asarray(self.targets, dtype=self.dtype) 

        self.activations = [np.asarray(a, dtype=self.dtype) 

                            for a in self.activations] 

        self.d_activations = [np.asarray(a, dtype=self.dtype) 

                              for a in self.d_activations] 

        self.d2_loss = self.loss.d2_loss(self.activations, 

self.targets) 

 

        # allocate temporary space for intermediate values, to save on 

        # memory allocations 

        self.tmp_space = [np.zeros(a.shape, self.dtype) 

                          for a in self.activations] 

 

        if self.use_GPU: 

            # TODO: we could just allocate these on the first timestep 

and 

            # then do a copy rather than an allocation after that, if 

this 

            # ever became a significant part of the computation time 

            self.load_GPU_data() 

 

    def load_GPU_data(self): 

        """Load data for the current epoch onto GPU.""" 

 

        from pycuda import gpuarray 

 

        # clear out old data (this would happen eventually on its own, 

but by 

        # doing it first we make sure there is room on the GPU before 

        # creating new arrays) 

        if hasattr(self, "GPU_W"): 

            del self.GPU_W 

            del self.GPU_activations 
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            del self.GPU_d_activations 

            del self.GPU_d2_loss 

            del self.GPU_tmp_space 

 

        self.GPU_W = gpuarray.to_gpu(self.W) 

        self.GPU_activations = [gpuarray.to_gpu(a) 

                                for a in self.activations] 

        self.GPU_d_activations = [gpuarray.to_gpu(a) 

                                  for a in self.d_activations] 

        self.GPU_d2_loss = [gpuarray.to_gpu(a) if a is not None else 

None 

                            for a in self.d2_loss] 

        self.GPU_tmp_space = [gpuarray.empty(a.shape, self.dtype) 

                              for a in self.activations] 

 

    @staticmethod 

    def J_dot(J, vec, transpose_J=False, out=None): 

        """Compute the product of a Jacobian and some vector.""" 

 

        # In many cases the Jacobian is a diagonal matrix, so it is 

more 

        # efficient to just represent it with the diagonal vector.  

This 

        # function just lets those two be used interchangeably. 

 

        if J.ndim == 2: 

            # note: the first dimension is the batch, so ndim==2 means 

            # this is a vector representation 

            if out is None: 

                # passing out=None fails for some reason 

                return np.multiply(J, vec) 

            else: 

                return np.multiply(J, vec, out=out) 

        else: 

            if transpose_J: 

                J = np.transpose(J, (0, 2, 1)) 

 

            if out is None: 

                # passing out=None fails for some reason 

                return np.einsum("ijk,ik->ij", J, vec) 

 

            if out is vec: 

                tmp_vec = vec.copy() 

            else: 

                tmp_vec = vec 

 

            return np.einsum("ijk,ik->ij", J, tmp_vec, out=out) 

 

    def calc_grad(self): 

        """Compute parameter gradient.""" 

 

        for l in self.layers: 

            if l.stateful: 

                raise TypeError("Cannot use neurons with internal 

state in " 

                                "a one-step feedforward network; use " 

                                "RNNet instead.") 

 

        grad = np.zeros_like(self.W) 
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        # backpropagation 

        # note: this uses the cached activations, so the forward 

        # pass has already been run elsewhere 

 

        # compute output error for each layer 

        error = self.loss.d_loss(self.activations, self.targets) 

 

        error = [np.zeros_like(self.activations[i]) if e is None else 

e 

                 for i, e in enumerate(error)] 

 

        deltas = [np.zeros_like(a) for a in self.activations] 

        #change deltas 0 to reflect the new weights 

        # backwards pass 

        for i in range(self.n_layers - 1, -1, -1): 

            for post in self.conns[i]: 

                error[i] += np.dot(deltas[post], 

                                   self.get_weights(self.W, (i, 

post))[0].T) 

 

                W_grad, b_grad = self.get_weights(grad, (i, post)) 

                np.dot(self.activations[i].T, deltas[post], 

out=W_grad) 

                np.sum(deltas[post], axis=0, out=b_grad) 

 

            if i > 0: 

                self.J_dot(self.d_activations[i], error[i], 

transpose_J=True, 

                           out=deltas[i]) 

 

        grad /= self.inputs.shape[0] 

 

        return grad 

 

    def check_grad(self, calc_grad): 

        """Check gradient via finite differences (for debugging).""" 

 

        eps = 1e-6 

        grad = np.zeros_like(calc_grad) 

        inc_W = np.zeros_like(self.W) 

        for i in range(len(self.W)): 

            inc_W[i] = eps 

 

            error_inc = self.error(self.W + inc_W, self.inputs, 

self.targets) 

            error_dec = self.error(self.W - inc_W, self.inputs, 

self.targets) 

            grad[i] = (error_inc - error_dec) / (2 * eps) 

 

            inc_W[i] = 0 

        try: 

            assert np.allclose(calc_grad, grad, rtol=1e-3) 

        except AssertionError: 

            print("calc_grad") 

            print(calc_grad) 

            print("finite grad") 

            print(grad) 

            print("calc_grad - finite grad") 

            print(calc_grad - grad) 

            print("calc_grad / finite grad") 
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            print(calc_grad / grad) 

            input("Paused (press enter to continue)") 

 

    def calc_G(self, v, damping=0, out=None): 

        """Compute Gauss-Newton matrix-vector product.""" 

 

        if out is None: 

            Gv = np.zeros(self.W.size, dtype=self.dtype) 

        else: 

            Gv = out 

            Gv.fill(0) 

 

        # R forward pass 

        R_activations = [np.zeros_like(a) for a in self.activations] 

        for i in range(1, self.n_layers): 

            for pre in self.back_conns[i]: 

                vw, vb = self.get_weights(v, (pre, i)) 

                Ww, _ = self.get_weights(self.W, (pre, i)) 

 

                R_activations[i] += np.dot(self.activations[pre], vw, 

                                           out=self.tmp_space[i]) 

                R_activations[i] += vb 

                R_activations[i] += np.dot(R_activations[pre], Ww, 

                                           out=self.tmp_space[i]) 

 

            self.J_dot(self.d_activations[i], R_activations[i], 

                       out=R_activations[i]) 

 

        # backward pass 

        R_error = R_activations 

 

        for i in range(self.n_layers - 1, -1, -1): 

            if self.d2_loss[i] is not None: 

                # note: R_error[i] is already set to R_activations[i] 

                R_error[i] *= self.d2_loss[i] 

            else: 

                R_error[i].fill(0) 

 

            for post in self.conns[i]: 

                W, _ = self.get_weights(self.W, (i, post)) 

 

                R_error[i] += np.dot(R_error[post], W.T, 

                                     out=self.tmp_space[i]) 

 

                W_g, b_g = self.get_weights(Gv, (i, post)) 

                np.dot(self.activations[i].T, R_error[post], out=W_g) 

                np.sum(R_error[post], axis=0, out=b_g) 

 

            if i > 0: 

                self.J_dot(self.d_activations[i], R_error[i], 

                           out=R_error[i], transpose_J=True) 

 

        Gv /= len(self.inputs) 

 

        Gv += damping * v  # Tikhonov damping 

 

        return Gv 

 

    def GPU_calc_G(self, v, damping=0, out=None): 

        """Compute Gauss-Newton matrix-vector product on GPU.""" 
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        from pycuda import gpuarray 

 

        if out is None or not isinstance(out, gpuarray.GPUArray): 

            Gv = gpuarray.zeros(self.W.shape, self.dtype) 

        else: 

            Gv = out 

            Gv.fill(0) 

 

        if not isinstance(v, gpuarray.GPUArray): 

            GPU_v = gpuarray.to_gpu(v) 

        else: 

            GPU_v = v 

 

        # R forward pass 

        R_activations = self.GPU_tmp_space 

 

        for i in range(self.n_layers): 

            R_activations[i].fill(0) 

            for pre in self.back_conns[i]: 

                vw, vb = self.get_weights(GPU_v, (pre, i)) 

                Ww, _ = self.get_weights(self.GPU_W, (pre, i)) 

 

                hf.gpu.dot(self.GPU_activations[pre], vw, 

                           out=R_activations[i], increment=True) 

                hf.gpu.iadd(R_activations[i], vb) 

                hf.gpu.dot(R_activations[pre], Ww, 

                           out=R_activations[i], increment=True) 

 

            hf.gpu.J_dot(self.GPU_d_activations[i], R_activations[i], 

                         out=R_activations[i]) 

 

        # backward pass 

        R_error = R_activations 

 

        for i in range(self.n_layers - 1, -1, -1): 

            if self.GPU_d2_loss[i] is not None: 

                # note: R_error[i] is already set to R_activations[i] 

                R_error[i] *= self.GPU_d2_loss[i] 

            else: 

                R_error[i].fill(0) 

 

            for post in self.conns[i]: 

                W, _ = self.get_weights(self.GPU_W, (i, post)) 

                W_g, b_g = self.get_weights(Gv, (i, post)) 

 

                hf.gpu.dot(R_error[post], W, transpose_b=True, 

                           out=R_error[i], increment=True) 

 

                hf.gpu.dot(self.GPU_activations[i], R_error[post], 

                           transpose_a=True, out=W_g) 

 

                hf.gpu.sum_cols(R_error[post], out=b_g) 

 

            if i > 0: 

                hf.gpu.J_dot(self.GPU_d_activations[i], R_error[i], 

                             out=R_error[i], transpose_J=True) 

 

        # Tikhonov damping and batch mean 

        Gv._axpbyz(1.0 / len(self.inputs), GPU_v, damping, Gv) 
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        if isinstance(v, gpuarray.GPUArray): 

            return Gv 

        else: 

            return Gv.get(out, pagelocked=True) 

 

    def check_J(self): 

        """Compute the Jacobian of the network via finite 

differences.""" 

 

        eps = 1e-6 

        N = self.W.size 

 

        # compute the Jacobian 

        J = [None for _ in self.layers] 

        inc_i = np.zeros_like(self.W) 

        for i in range(N): 

            inc_i[i] = eps 

 

            inc = self.forward(self.inputs, self.W + inc_i) 

            dec = self.forward(self.inputs, self.W - inc_i) 

 

            for l in range(self.n_layers): 

                J_i = (inc[l] - dec[l]) / (2 * eps) 

                if J[l] is None: 

                    J[l] = J_i[..., None] 

                else: 

                    J[l] = np.concatenate((J[l], J_i[..., None]), 

axis=-1) 

 

            inc_i[i] = 0 

 

        return J 

 

    def check_G(self, calc_G, v, damping=0): 

        """Check Gv calculation via finite differences (for 

debugging).""" 

 

        # compute Jacobian 

        J = self.check_J() 

 

        # second derivative of loss function 

        L = self.loss.d2_loss(self.activations, self.targets) 

        # TODO: check loss via finite differences 

 

        G = np.sum([np.einsum("aji,aj,ajk->ik", J[l], L[l], J[l]) 

                    for l in range(self.n_layers) if L[l] is not 

None], axis=0) 

 

        # divide by batch size 

        G /= self.inputs.shape[0] 

 

        Gv = np.dot(G, v) 

        Gv += damping * v 

 

        try: 

            assert np.allclose(calc_G, Gv, rtol=1e-3) 

        except AssertionError: 

            print("calc_G") 

            print(calc_G) 
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            print("finite G") 

            print(Gv) 

            print("calc_G - finite G") 

            print(calc_G - Gv) 

            print("calc_G / finite G") 

            print(calc_G / Gv) 

            input("Paused (press enter to continue)") 

 

    def init_weights(self, shapes, coeff=1.e-4, biases=0, 

init_type="sparse"): 

        """Weight initialization, given shapes of weight matrices. 

 

        Note: coeff, biases, and init_type can be specified by the 

        `W_init_params` dict in :class:`.FFNet`.  Each can be 

        specified as a single value (for all matrices) or as a list 

giving a 

        value for each matrix. 

 

        :param list shapes: list of (pre,post) shapes for each weight 

matrix 

        :param float coeff: scales the magnitude of the connection 

weights 

        :param float biases: bias values for the post of each matrix 

        :param str init_type: type of initialization to use (currently 

supports 

            'sparse', 'uniform', 'gaussian') 

        """ 

        # if given single parameters, expand for all matrices 

        if isinstance(coeff, (int, float)): 

            coeff = [coeff] * len(shapes) 

        if isinstance(biases, (int, float)): 

            biases = [biases] * len(shapes) 

        if isinstance(init_type, str): 

            init_type = [init_type] * len(shapes) 

 

 

        W = [np.zeros((pre + 1, post), dtype=self.dtype) 

             for pre, post in shapes] 

 

        for i, s in enumerate(shapes): 

            if init_type[i] == "sparse": 

                # sparse initialization (from martens) 

                num_conn = 15 

 

                for j in range(s[1]): 

                    # pick num_conn random pre neurons 

                    indices = self.rng.choice(np.arange(s[0]), 

                                              size=min(num_conn, 

s[0]), 

                                              replace=False) 

 

                    # connect to post 

                    W[i][indices, j] = self.rng.randn(indices.size) * 

coeff[i] 

            elif init_type[i] == "uniform": 

                W[i][:-1] = self.rng.uniform(-coeff[i] / 

np.sqrt(s[0]), 

                                             coeff[i] / np.sqrt(s[0]), 

                                             (s[0], s[1])) 

            elif init_type[i] == "gaussian": 
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                W[i][:-1] = self.rng.randn(s[0], s[1]) * coeff[i] 

            else: 

                raise ValueError("Unknown weight initialization (%s)" 

                                 % init_type) 

 

            # set biases 

            W[i][-1, :] = biases[i] 

 

        W = np.concatenate([w.flatten() for w in W]) 

 

        return W 

 

    def compute_offsets(self): 

        """Precompute offsets for layers in the overall parameter 

vector.""" 

 

        self.offsets = {} 

        offset = 0 

        for pre in self.conns: 

            for post in self.conns[pre]: 

                n_params = (self.shape[pre] + 1) * self.shape[post] 

                self.offsets[(pre, post)] = ( 

                    offset, 

                    offset + n_params - self.shape[post], 

                    offset + n_params) 

                offset += n_params 

 

        return offset 

 

    def get_weights(self, params, conn): 

        """Get weight matrix for a connection from overall parameter 

vector.""" 

 

        if conn not in self.offsets: 

            return None 

 

        offset, W_end, b_end = self.offsets[conn] 

        W = params[offset:W_end] 

        b = params[W_end:b_end] 

        '''if (conn[0] == 0): 

            return W.reshape((self.shape[conn[1]], 

self.shape[conn[1]])), b 

        else:''' 

        return W.reshape((self.shape[conn[0]], self.shape[conn[1]])), 

b 

 

    def init_loss(self, loss_type): 

        """Set the loss type for this network to the given 

        :class:`~.loss_funcs.LossFunction` (or a list of functions can 

be 

        passed to create a :class:`~.loss_funcs.LossSet`).""" 

 

        if isinstance(loss_type, (list, tuple)): 

            tmp = loss_type 

        else: 

            tmp = [loss_type] 

 

        for t in tmp: 

            if not isinstance(t, hf.loss_funcs.LossFunction): 
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                raise TypeError("loss_type (%s) must be an instance of 

" 

                                "LossFunction" % t) 

 

            # sanity checks 

            if (isinstance(t, hf.loss_funcs.CrossEntropy) and 

                    np.any(self.layers[-1].activation( 

                        np.linspace(-80, 80, 100)[None, :]) <= 0)): 

                # this won't catch everything, but hopefully a useful 

warning 

                raise ValueError("Must use positive activation 

function " 

                                 "with cross-entropy error") 

            if (isinstance(t, hf.loss_funcs.CrossEntropy) and 

                    not isinstance(self.layers[-1], hf.nl.Softmax)): 

                warnings.warn("Softmax should probably be used with " 

                              "cross-entropy error") 

 

        if isinstance(loss_type, (list, tuple)): 

            self.loss = hf.loss_funcs.LossSet(loss_type) 

        else: 

            self.loss = loss_type 

 

    def run_epoch_SCG(self, inputs, targets, optimizer, 

                   max_epochs=100, minibatch_size=None, test=None, 

                   test_err=None, target_err=1e-6, plotting=False, 

                   file_output=None, print_period=1): 

        """A stripped down version of run_epochs that just does the 

update 

        without any overhead. 

 

        Can be used for optimizers where the cost to compute an update 

is 

        very cheap, in which case the overhead (e.g., computing test 

error, 

        saving weights, outputting data for plotting, etc.) becomes 

        non-negligible. 

        """ 

 

        if test is None: 

            test_in, test_t = inputs, targets 

        else: 

            test_in, test_t = test[0], test[1] 

 

        sigma0 = 1.e-6 

        lamb = 1.e-6 

        lamb_ = 0 

        vector = self.W 

        self.cache_minibatch( 

            inputs, targets, range(inputs.shape[0])) 

        grad_new = -self.calc_grad() 

        r_new = grad_new 

        success = True 

        for i in range(max_epochs): 

            r = np.copy(r_new) 

            grad = np.copy(grad_new) 

            mu = np.dot(grad, grad) 

            if success: 

                success = False 

                sigma = sigma0 / math.sqrt(mu) 
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                temp = self.calc_grad() 

                self.W = vector + sigma*grad 

                self.activations, self.d_activations = 

self.forward(inputs, 

                                                                                

vector + sigma * grad, 

                                                                                

deriv=True) 

                self.activations = [np.asarray(a, dtype=self.dtype) 

                                        for a in self.activations] 

                self.d_activations = [np.asarray(a, dtype=self.dtype) 

                                          for a in self.d_activations] 

                s = (self.calc_grad() - temp) / sigma 

                delta = np.dot(grad.T, s) 

 

            #end 

                # scale s 

            zetta = lamb - lamb_ 

            s += zetta * grad 

            delta += zetta * mu 

 

            if delta < 0: 

                s += (lamb - 2 * delta / mu) * grad 

                lamb_ = 2 * (lamb - delta / mu) 

                delta -= lamb * mu 

                delta *= -1 

                lamb = lamb_ 

            # end 

 

            phi = np.dot(grad.T, r) 

            alpha = phi / delta 

 

            vector_new = vector +alpha*grad 

            output = self.forward(test_in, vector) 

            f_old = test_err.batch_loss(output, test_t) 

 

            output = self.forward(test_in, vector_new) 

            f_new = test_err.batch_loss(output, test_t) 

            print("epoch ",i,":",f_new) 

            comparison = 2 * delta * (f_old - f_new) / np.power(phi, 

2) 

 

            if comparison >= 0: 

                if f_new < target_err: 

                    break  # done! 

 

                vector = vector_new 

                f_old = f_new 

                self.W = vector 

                self.activations, self.d_activations = 

self.forward(inputs, 

                                                                    

vector, 

                                                                    

deriv=True) 

                self.activations = [np.asarray(a, dtype=self.dtype) 

                                    for a in self.activations] 

                self.d_activations = [np.asarray(a, dtype=self.dtype) 

                                      for a in self.d_activations] 

                r_new = -self.calc_grad() 
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                success = True 

                lamb_ = 0 

 

                if (i+1) % self.W.shape[0] == 0: 

                    grad_new = r_new 

                else: 

                    beta = (np.dot(r_new, r_new) - np.dot(r_new, r)) / 

phi 

                    grad_new = r_new + beta * grad 

 

                if comparison > 0.75: 

                    lamb = 0.5 * lamb 

            else: 

                lamb_ = lamb 

            # end 

 

            if comparison < 0.25: 

                lamb = 4 * lamb 

 

            # compute update 

 

        self.W = vector_new 

 

 

    @property 

    def optimizer(self): 

        return self._optimizer 

 

    @optimizer.setter 

    def optimizer(self, o): 

        self._optimizer = o 

        o.net = self 
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Annex D 

 
Brnnet.py 
 
"""Implementation of recurrent network, including Gauss-Newton 

approximation 

for use in Hessian-free optimization. 

 

.. codeauthor:: Daniel Rasmussen 

<daniel.rasmussen@appliedbrainresearch.com> 

 

Based on 

Martens, J., & Sutskever, I. (2011). Learning recurrent neural 

networks with 

hessian-free optimization. Proceedings of the 28th International 

Conference on 

Machine Learning. 

""" 

 

from __future__ import print_function 

 

import numpy as np 

 

import hessianfree as hf 

 

 

class BRNNet(hf.BFFNet): 

    """Implementation of recurrent deep network (including 

gradient/curvature 

    computation). 

 

    :param list rec_layers: indices of layers with recurrent 

connections 

            (default is to make all except first and last layers 

recurrent) 

    :param dict W_rec_params: parameters used to initialize recurrent 

        weights (passed to :meth:`~.init_weights`) 

    :param tuple truncation: a tuple `(n,k)` where backpropagation 

through 

        time will be executed every `n` timesteps and run backwards 

for `k` 

        steps (defaults to full backprop if None) 

 

    See :class:`.FFNet` for the remaining parameters.""" 

 

    def __init__(self, shape, rec_layers=None, W_rec_params=None, 

windowC=0,windowB=0,windowF=0,windowA=0, 

                 truncation=None, **kwargs): 

 

        # define recurrence for each layer (needs to be done before 

super 

        # constructor because this is used in compute_offsets) 

        if rec_layers is None: 

            # assume all recurrent except first/last layer 

            rec_layers = np.arange(1, len(shape) - 1) 

        self.rec_layers = rec_layers 

        self.winC = windowC 

        self.winB = windowB 
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        self.winF = windowF 

        self.winA = windowA 

        # super constructor 

        super(BRNNet, self).__init__(shape, **kwargs) 

 

        self.truncation = truncation 

 

        # add on recurrent weights 

        if kwargs.get("load_weights", None) is None and 

len(rec_layers) > 0: 

            if W_rec_params is None: 

                W_rec_params = dict() 

            self.W = np.concatenate( 

                (self.W, self.init_weights([(self.shape[l+2], 

self.shape[l]) 

                                            for l in 

range(self.n_layers) 

                                            if l in rec_layers], 

                                           **W_rec_params))) 

 

 

    def forward(self, inputs, params=None, deriv=False, 

init_activations=None, 

                init_state=None): 

        """Compute layer activations for given input and parameters. 

 

        :param inputs: input vectors (passed to first layer) 

        :type inputs: :class:`~numpy:numpy.ndarray` 

        :param params: parameter vector (weights) for the network 

(defaults to 

            ``self.W``) 

        :type params: :class:`~numpy:numpy.ndarray` 

        :param bool deriv: if True then also compute the derivative of 

the 

            activations 

        :param list init_activations: initial values for the 

activations in 

            each layer 

        :param list init_state: initial values for the internal state 

of any 

            stateful nonlinearities 

        """ 

 

        # input shape = [minibatch_size, seq_len, input_dim] 

        # activations shape = [n_layers, minibatch_size, seq_len, 

layer_size] 

 

        params = self.W if params is None else params 

        if isinstance(inputs, hf.nl.Plant): 

            # reset the plant 

            # TODO: allow the initial state of plant to be set? 

            inputs.reset() 

 

        batch_size = inputs.shape[0] 

        sig_len = inputs.shape[1] 

        activations = [np.zeros((batch_size, sig_len, l), 

dtype=self.dtype) 

                       for l in self.shape] 

 

        # temporary space to minimize memory allocations 
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        tmp_space = [np.zeros((batch_size, l), dtype=self.dtype) 

                     for l in self.shape] 

 

        if deriv: 

            d_activations = [None for _ in self.layers] 

 

        for i, l in enumerate(self.layers): 

            # reset any state in the nonlinearities 

            l.reset(None if init_state is None else init_state[i]) 

 

        W_recs = [self.get_weights(params, (i+2, i)) 

                  for i in range(self.n_layers)] 

        #original = inputs.copy() 

        for s in range(sig_len): 

            for w in range(int(self.winA/2)): 

                for i in range(self.n_layers): 

 

                    if i == 0: 

                        ff_input = inputs[:,s,w*20:w*20+self.shape[0]] 

                    elif i == 1: 

                        #ff_input = original[:, s, 

self.shape[0]:self.shape[0] + self.shape[1]] 

                        ff_input = inputs[:, s, 20*(int(self.winA/2)-

int(self.winC/2)):20*(int(self.winA/2)+int(self.winC/2)+1)] 

                    elif i == 2: 

                        ff_input = inputs[:, s, (self.winA-

(w+self.winB)) * 20:(self.winA-w) * 20] 

                        #ff_input = np.flip(ff_input, 1) 

                    else: 

                        # compute feedforward input 

                        ff_input = np.zeros_like(activations[i][:, s]) 

                        for pre in self.back_conns[i]: 

                            W, b = self.get_weights(params, (pre, i)) 

 

                            ff_input += np.dot(activations[pre][:, s], 

W, 

                                               out=tmp_space[i]) 

                            ff_input += b 

 

                    # recurrent input 

                    if i in self.rec_layers: 

                        if s > 0: 

                            rec_input = np.dot(activations[i+2][:, s - 

1]*0.5, 

                                               W_recs[i][0], 

out=tmp_space[i]) 

                        elif init_activations is None: 

                            # apply bias input on first timestep 

                            rec_input = W_recs[i][1] 

                        else: 

                            # use the provided activations to 

initialize the 

                            # 'previous' timestep 

                            rec_input = 

np.dot(init_activations[i+2]*0.5, 

                                               W_recs[i][0], 

out=tmp_space[i]) 

                    else: 

                        rec_input = 0 

                    # apply activation function 
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                    activations[i][:, s] = 

self.layers[i].activation(ff_input + 

                                                                     

rec_input) 

                    # compute derivative 

                    if deriv: 

                        d_act = self.layers[i].d_activation(ff_input + 

rec_input, 

                                                            

activations[i][:, s]) 

                        if d_activations[i] is None: 

                            # note: we can't allocate this array ahead 

of time, 

                            # because we don't know if d_activations 

will be 

                            # returning diagonal vectors or matrices 

                            d_activations[i] = np.zeros( 

                                np.concatenate(([batch_size], 

[sig_len], 

                                                d_act.shape[1:])), 

                                dtype=self.dtype) 

                        d_activations[i][:, s] = d_act 

 

        for i, a in enumerate(activations): 

            if not np.all(np.isfinite(a)): 

                raise OverflowError("Non-finite nonlinearity 

activation " 

                                    "value (layer %d) \n %s" % 

                                    (i, a[not np.isfinite(a)])) 

 

        if deriv: 

            return activations, d_activations 

 

        return activations 

 

    def calc_grad(self): 

        """Compute parameter gradient.""" 

 

        grad = np.zeros_like(self.W) 

        W_recs = [self.get_weights(self.W, (l+2, l)) 

                  for l in range(self.n_layers)] 

        batch_size = self.inputs.shape[0] 

        sig_len = self.inputs.shape[1] 

 

        # temporary space to minimize memory allocations 

        tmp_act = [np.zeros((batch_size, l), dtype=self.dtype) 

                   for l in self.shape] 

        tmp_grad = np.zeros_like(grad) 

 

        if self.truncation is None: 

            trunc_per = trunc_len = sig_len 

        else: 

            trunc_per, trunc_len = self.truncation 

 

        for n in range(trunc_per - 1, sig_len, trunc_per): 

            # every trunc_per timesteps we want to run backprop 

 

            deltas = [np.zeros((batch_size, l), dtype=self.dtype) 

                      for l in self.shape] 

            state_deltas = [None if not l.stateful else 
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                            np.zeros((batch_size, self.shape[i]), 

                                     dtype=self.dtype) 

                            for i, l in enumerate(self.layers)] 

 

            # backpropagate error 

            for s in range(n, np.maximum(n - trunc_len, -1), -1): 

                # execute trunc_len steps of backprop through time 

 

                error = self.loss.d_loss([a[:, s] for a in 

self.activations], 

                                         self.targets[:, s]) 

                error = [np.zeros_like(self.activations[i][:, s]) if e 

is None 

                         else e for i, e in enumerate(error)] 

 

                for l in range(self.n_layers - 1, -1, -1): 

                    for post in self.conns[l]: 

                        error[l] += np.dot(deltas[post], 

                                           self.get_weights(self.W, 

                                                            (l, 

post))[0].T, 

                                           out=tmp_act[l]) 

 

                        # feedforward gradient 

                        W_grad, b_grad = self.get_weights(grad, (l, 

post)) 

                        W_tmp_grad, b_tmp_grad = 

self.get_weights(tmp_grad, 

                                                                  (l, 

post)) 

                        W_grad += np.dot(self.activations[l][:, s].T, 

                                         deltas[post], out=W_tmp_grad) 

                        b_grad += np.sum(deltas[post], axis=0, 

out=b_tmp_grad) 

 

                    # add recurrent error 

                    if l-2 in self.rec_layers: 

                        error[l] += np.dot(deltas[l-2], W_recs[l-

2][0].T, 

                                           out=tmp_act[l]) 

 

                    # compute deltas 

                    if not self.layers[l].stateful: 

                        self.J_dot(self.d_activations[l][:, s], 

error[l], 

                                   transpose_J=True, out=deltas[l]) 

                    else: 

                        d_input = self.d_activations[l][:, s, ..., 0] 

                        d_state = self.d_activations[l][:, s, ..., 1] 

                        d_output = self.d_activations[l][:, s, ..., 2] 

 

                        state_deltas[l] += self.J_dot(d_output, 

error[l], 

                                                      

transpose_J=True, 

                                                      out=tmp_act[l]) 

                        self.J_dot(d_input, state_deltas[l], 

transpose_J=True, 

                                   out=deltas[l]) 
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                        self.J_dot(d_state, state_deltas[l], 

transpose_J=True, 

                                   out=state_deltas[l]) 

 

                    # gradient for recurrent weights 

                    if l-2 in self.rec_layers: 

                        W_grad, b_grad = self.get_weights(grad, (l, l-

2)) 

                        W_tmp_grad, b_tmp_grad = 

self.get_weights(tmp_grad, 

                                                                  (l, 

l-2)) 

                        if s > 0: 

                            W_grad += np.dot(self.activations[l][:, s 

- 1].T, 

                                             deltas[l-2], 

out=W_tmp_grad) 

                        else: 

                            # put remaining gradient into initial bias 

                            b_grad += np.sum(deltas[l-2], axis=0, 

                                             out=b_tmp_grad) 

 

        grad /= batch_size 

 

        return grad 

 

    def check_grad(self, calc_grad): 

        """Check gradient via finite differences (for debugging).""" 

 

        eps = 1e-6 

        grad = np.zeros_like(calc_grad) 

 

        sig_len = self.inputs.shape[1] 

        if self.truncation is None: 

            trunc_per = trunc_len = sig_len 

        else: 

            trunc_per, trunc_len = self.truncation 

 

        inc_W = np.zeros_like(self.W) 

 

        for n in range(trunc_per, sig_len + 1, trunc_per): 

            start = np.maximum(n - trunc_len, 0) 

 

            # the truncated backprop gradient is equivalent to running 

the 

            # network normally for the initial timesteps and then just 

changing 

            # the parameters for the truncation period.  so that's 

what we're 

            # simulating here. 

            if start > 0: 

                prev = self.forward(self.inputs[:, :start], self.W) 

                init_a = [p[:, -1] for p in prev] 

                init_s = [l.state.copy() if l.stateful else None 

                          for l in self.layers] 

            else: 

                init_a = None 

                init_s = None 

 

            for i in range(len(self.W)): 
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                inc_W[i] = eps 

 

                out_inc = self.forward(self.inputs[:, start:n], self.W 

+ inc_W, 

                                       init_activations=init_a, 

                                       init_state=init_s) 

                out_dec = self.forward(self.inputs[:, start:n], self.W 

- inc_W, 

                                       init_activations=init_a, 

                                       init_state=init_s) 

 

                error_inc = self.loss.batch_loss(out_inc, 

                                                 self.targets[:, 

start:n]) 

 

                error_dec = self.loss.batch_loss(out_dec, 

                                                 self.targets[:, 

start:n]) 

 

                grad[i] += (error_inc - error_dec) / (2 * eps) 

 

                inc_W[i] = 0 

 

        try: 

            assert np.allclose(calc_grad, grad, rtol=1e-3) 

        except AssertionError: 

            print("calc_grad") 

            print(calc_grad) 

            print("finite grad") 

            print(grad) 

            print("calc_grad - finite grad") 

            print(calc_grad - grad) 

            print("calc_grad / finite grad") 

            print(calc_grad / grad) 

            input("Paused (press enter to continue)") 

 

    def calc_G(self, v, damping=0, out=None): 

        """Compute Gauss-Newton matrix-vector product.""" 

 

        if out is None: 

            Gv = np.zeros(self.W.size, dtype=self.dtype) 

        else: 

            Gv = out 

            Gv.fill(0) 

 

        batch_size = self.inputs.shape[0] 

        sig_len = self.inputs.shape[1] 

 

        # temporary space to minimize memory allocations 

        tmp_act = [np.zeros((batch_size, l), dtype=self.dtype) 

                   for l in self.shape] 

        tmp_grad = np.zeros_like(Gv) 

 

        # R forward pass 

        R_states = [None if not l.stateful else 

                    np.zeros((batch_size, self.shape[i]), 

dtype=self.dtype) 

                    for i, l in enumerate(self.layers)] 

        R_activations = self.tmp_space 

        for a in R_activations: 
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            a.fill(0) 

 

        v_recs = [self.get_weights(v, (l+2, l)) 

                  for l in range(self.n_layers)] 

        W_recs = [self.get_weights(self.W, (l+2, l)) 

                  for l in range(self.n_layers)] 

        Gv_recs = [self.get_weights(Gv, (l+2, l)) 

                   for l in range(self.n_layers)] 

        v_ff = dict([(conn, self.get_weights(v, conn)) 

                     for conn in self.offsets]) 

        W_ff = dict([(conn, self.get_weights(self.W, conn)) 

                     for conn in self.offsets]) 

        Gv_ff = dict([(conn, self.get_weights(Gv, conn)) 

                      for conn in self.offsets]) 

 

        for s in range(sig_len): 

            for l in range(self.n_layers): 

                R_act = R_activations[l][:, s] 

 

                # input from feedforward connections 

                for pre in self.back_conns[l]: 

                    vw, vb = v_ff[(pre, l)] 

                    Ww, _ = W_ff[(pre, l)] 

 

                    R_act += np.dot(self.activations[pre][:, s], vw, 

                                    out=tmp_act[l]) 

                    R_act += vb 

                    R_act += np.dot(R_activations[pre][:, s], Ww, 

                                    out=tmp_act[l]) 

 

                # recurrent input 

                if l in self.rec_layers: 

                    if s == 0: 

                        # bias input on first step 

                        R_act += v_recs[l][1] 

                    else: 

                        R_act += np.dot(self.activations[l+2][:, s - 

1], 

                                        v_recs[l][0], out=tmp_act[l]) 

                        R_act += np.dot(R_activations[l+2][:, s - 1], 

                                        W_recs[l][0], out=tmp_act[l]) 

 

                if not self.layers[l].stateful: 

                    self.J_dot(self.d_activations[l][:, s], R_act, 

out=R_act) 

                else: 

                    d_input = self.d_activations[l][:, s, ..., 0] 

                    d_state = self.d_activations[l][:, s, ..., 1] 

                    d_output = self.d_activations[l][:, s, ..., 2] 

 

                    R_states[l] = self.J_dot(d_state, R_states[l]) 

 

                    R_states[l] += self.J_dot(d_input, R_act, 

out=tmp_act[l]) 

                    self.J_dot(d_output, R_states[l], out=R_act) 

 

        # R backward pass 

        if self.truncation is None: 

            trunc_per = trunc_len = sig_len 

        else: 
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            trunc_per, trunc_len = self.truncation 

 

        R_error = [np.zeros((batch_size, l), dtype=self.dtype) 

                   for l in self.shape] 

        R_deltas = [np.zeros((batch_size, l), dtype=self.dtype) 

                    for l in self.shape] 

 

        for n in range(trunc_per - 1, sig_len, trunc_per): 

            for i in range(self.n_layers): 

                R_deltas[i].fill(0) 

                if R_states[i] is not None: 

                    R_states[i].fill(0) 

 

            for s in range(n, np.maximum(n - trunc_len, -1), -1): 

                for l in range(self.n_layers - 1, -1, -1): 

                    if self.d2_loss[l] is not None: 

                        np.multiply(self.d2_loss[l][:, s], 

                                    R_activations[l][:, s], 

                                    out=R_error[l]) 

                    else: 

                        R_error[l].fill(0) 

 

                    # error from feedforward connections 

                    for post in self.conns[l]: 

                        R_error[l] += np.dot(R_deltas[post], 

                                             W_ff[(l, post)][0].T, 

                                             out=tmp_act[l]) 

 

                        # feedforward gradient 

                        W_g, b_g = Gv_ff[(l, post)] 

                        W_tmp_grad, b_tmp_grad = 

self.get_weights(tmp_grad, 

                                                                  (l, 

post)) 

                        W_g += np.dot(self.activations[l][:, s].T, 

                                      R_deltas[post], out=W_tmp_grad) 

                        b_g += np.sum(R_deltas[post], axis=0, 

out=b_tmp_grad) 

 

                    # add recurrent error 

                    if l-2 in self.rec_layers: 

                        R_error[l] += np.dot(R_deltas[l-2], W_recs[l-

2][0].T, 

                                             out=tmp_act[l]) 

 

                    # compute deltas 

                    if not self.layers[l].stateful: 

                        self.J_dot(self.d_activations[l][:, s], 

R_error[l], 

                                   transpose_J=True, out=R_deltas[l]) 

                    else: 

                        d_input = self.d_activations[l][:, s, ..., 0] 

                        d_state = self.d_activations[l][:, s, ..., 1] 

                        d_output = self.d_activations[l][:, s, ..., 2] 

 

                        R_states[l] += self.J_dot(d_output, 

R_error[l], 

                                                  transpose_J=True, 

                                                  out=tmp_act[l]) 
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                        self.J_dot(d_input, R_states[l], 

transpose_J=True, 

                                   out=R_deltas[l]) 

                        self.J_dot(d_state, R_states[l], 

transpose_J=True, 

                                   out=R_states[l]) 

 

                    # recurrent gradient 

                    if l-2 in self.rec_layers: 

                        W_g, b_g = Gv_recs[l-2] 

                        W_tmp_grad, b_tmp_grad = 

self.get_weights(tmp_grad, 

                                                                  (l, 

l-2)) 

                        if s > 0: 

                            W_g += np.dot(self.activations[l][:, s - 

1].T, 

                                          R_deltas[l-2], 

out=W_tmp_grad) 

                        else: 

                            b_g += np.sum(R_deltas[l-2], axis=0, 

out=b_tmp_grad) 

 

        Gv /= batch_size 

 

        Gv += damping * v  # Tikhonov damping 

 

        return Gv 

 

    def load_GPU_data(self): 

        """Load data for the current epoch onto GPU.""" 

 

        from pycuda import gpuarray 

 

        def split_axes(array, n=1): 

            # split a multidimensional array into a corresponding list 

of lists 

            # along the first n axes (this is used so that 

array.__getitem__ 

            # isn't called repeatedly, as it is somewhat expensive for 

            # gpuarrays) 

            if n == 1: 

                return [a for a in array] 

 

            return [split_axes(a, n - 1) for a in array] 

 

        # clear out old data (this would happen eventually on its own, 

but by 

        # doing it first we make sure there is room on the GPU before 

        # creating new arrays) 

        if hasattr(self, "GPU_W"): 

            del self.GPU_W 

            del self.GPU_activations 

            del self.GPU_d_activations 

            del self.GPU_d2_loss 

            del self.GPU_tmp_space 

            del self.GPU_states 

            del self.GPU_errors 

            del self.GPU_deltas 
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        self.GPU_W = gpuarray.to_gpu(self.W) 

 

        # rearrange GPU data so that signal is the first axis (so 

        # that each time step is a single block of memory in 

GPU_calc_G) 

        self.GPU_activations = [ 

            split_axes(gpuarray.to_gpu(np.ascontiguousarray( 

                np.swapaxes(a, 0, 1))), 1) 

            for a in self.activations] 

 

        self.GPU_d_activations = [ 

            split_axes(gpuarray.to_gpu(np.ascontiguousarray( 

                np.rollaxis(np.swapaxes(a, 0, 1), -1, 1))), 2) 

            if self.layers[i].stateful else 

            split_axes(gpuarray.to_gpu(np.ascontiguousarray( 

                np.swapaxes(a, 0, 1))), 1) 

            for i, a in enumerate(self.d_activations)] 

 

        self.GPU_d2_loss = [ 

            split_axes(gpuarray.to_gpu(np.ascontiguousarray( 

                np.swapaxes(a, 0, 1))), 1) 

            if a is not None else None for a in self.d2_loss] 

 

        self.GPU_tmp_space = [split_axes(gpuarray.empty((a.shape[1], 

                                                         a.shape[0], 

                                                         a.shape[2]), 

                                                        self.dtype), 

1) 

                              for a in self.activations] 

 

        # pre-allocate calc_G arrays 

        batch_size = self.inputs.shape[0] 

        self.GPU_states = [[gpuarray.empty((batch_size, 

self.shape[i]), 

                                           dtype=self.dtype) for _ in 

range(2)] 

                           if l.stateful else None 

                           for i, l in enumerate(self.layers)] 

        self.GPU_errors = [gpuarray.empty((batch_size, l), 

                                          dtype=self.dtype) 

                           for l in self.shape] 

        self.GPU_deltas = [gpuarray.empty((batch_size, l), 

                                          dtype=self.dtype) 

                           for l in self.shape] 

 

    def GPU_calc_G(self, v, damping=0, out=None): 

        """Compute Gauss-Newton matrix-vector product on GPU.""" 

 

        from pycuda import gpuarray 

 

        if out is None or not isinstance(out, gpuarray.GPUArray): 

            Gv = gpuarray.zeros(self.W.shape, dtype=self.dtype) 

        else: 

            Gv = out 

            Gv.fill(0) 

 

        if not isinstance(v, gpuarray.GPUArray): 

            GPU_v = gpuarray.to_gpu(v) 

        else: 

            GPU_v = v 
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        batch_size = self.inputs.shape[0] 

        sig_len = self.inputs.shape[1] 

 

        # R forward pass 

        R_states = self.GPU_states 

        R_activations = self.GPU_tmp_space 

        for i in range(self.n_layers): 

            R_activations[i][0].base.fill(0) 

            if R_states[i] is not None: 

                R_states[i][0].fill(0) 

 

        v_recs = [self.get_weights(GPU_v, (l, l)) 

                  for l in range(self.n_layers)] 

        W_recs = [self.get_weights(self.GPU_W, (l, l)) 

                  for l in range(self.n_layers)] 

        Gv_recs = [self.get_weights(Gv, (l, l)) 

                   for l in range(self.n_layers)] 

        v_ff = dict([(conn, self.get_weights(GPU_v, conn)) 

                     for conn in self.offsets]) 

        W_ff = dict([(conn, self.get_weights(self.GPU_W, conn)) 

                     for conn in self.offsets]) 

        Gv_ff = dict([(conn, self.get_weights(Gv, conn)) 

                      for conn in self.offsets]) 

 

        for s in range(sig_len): 

            for l in range(self.n_layers): 

                R_act = R_activations[l][s] 

 

                # input from feedforward connections 

                for pre in self.back_conns[l]: 

                    vw, vb = v_ff[(pre, l)] 

                    hf.gpu.dot(self.GPU_activations[pre][s], vw, 

                               out=R_act, increment=True) 

                    hf.gpu.iadd(R_act, vb) 

                    hf.gpu.dot(R_activations[pre][s], W_ff[(pre, 

l)][0], 

                               out=R_act, increment=True) 

 

                # recurrent input 

                if l in self.rec_layers: 

                    if s == 0: 

                        # bias input on first step 

                        hf.gpu.iadd(R_act, v_recs[l][1]) 

                    else: 

                        hf.gpu.dot(self.GPU_activations[l][s - 1], 

                                   v_recs[l][0], out=R_act, 

increment=True) 

                        hf.gpu.dot(R_activations[l][s - 1], 

W_recs[l][0], 

                                   out=R_act, increment=True) 

 

                if not self.layers[l].stateful: 

                    if not isinstance(self.layers[l], hf.nl.Linear): 

                        # note: this requires a memory allocation if 

                        # d_activations is non-diagonal 

                        hf.gpu.J_dot(self.GPU_d_activations[l][s], 

R_act, 

                                     out=R_act) 

                else: 
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                    d_input = self.GPU_d_activations[l][s][0] 

                    d_state = self.GPU_d_activations[l][s][1] 

                    d_output = self.GPU_d_activations[l][s][2] 

 

                    # note: we're doing this weird thing with two 

R_states 

                    # in order to avoid doing a copy every time 

                    i = s % 2 

                    hf.gpu.J_dot(d_state, R_states[l][i], 

                                 out=R_states[l][1 - i]) 

                    hf.gpu.J_dot(d_input, R_act, out=R_states[l][1 - 

i], 

                                 increment=True) 

                    hf.gpu.J_dot(d_output, R_states[l][1 - i], 

out=R_act) 

 

        # R backward pass 

        if self.truncation is None: 

            trunc_per = trunc_len = sig_len 

        else: 

            trunc_per, trunc_len = self.truncation 

 

        R_error = self.GPU_errors 

        R_deltas = self.GPU_deltas 

 

        for n in range(trunc_per - 1, sig_len, trunc_per): 

            for i in range(self.n_layers): 

                R_deltas[i].fill(0) 

                if R_states[i] is not None: 

                    R_states[i][n % 2].fill(0) 

 

            for s in range(n, np.maximum(n - trunc_len, -1), -1): 

                for l in range(self.n_layers - 1, -1, -1): 

                    if self.GPU_d2_loss[l] is not None: 

                        hf.gpu.multiply(self.GPU_d2_loss[l][s], 

                                        R_activations[l][s], 

out=R_error[l]) 

                    else: 

                        R_error[l].fill(0) 

 

                    # error from feedforward connections 

                    for post in self.conns[l]: 

                        W, _ = W_ff[(l, post)] 

                        hf.gpu.dot(R_deltas[post], W, out=R_error[l], 

                                   transpose_b=True, increment=True) 

 

                        # feedforward gradient 

                        W_g, b_g = Gv_ff[(l, post)] 

                        hf.gpu.dot(self.GPU_activations[l][s], 

R_deltas[post], 

                                   out=W_g, transpose_a=True, 

increment=True) 

                        hf.gpu.sum_cols(R_deltas[post], out=b_g, 

                                        increment=True) 

 

                    # add recurrent error 

                    if l in self.rec_layers: 

                        hf.gpu.dot(R_deltas[l], W_recs[l][0], 

out=R_error[l], 

                                   transpose_b=True, increment=True) 
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                    # compute deltas 

                    if not self.layers[l].stateful: 

                        hf.gpu.J_dot(self.GPU_d_activations[l][s], 

R_error[l], 

                                     out=R_deltas[l], 

transpose_J=True) 

                    else: 

                        d_input = self.GPU_d_activations[l][s][0] 

                        d_state = self.GPU_d_activations[l][s][1] 

                        d_output = self.GPU_d_activations[l][s][2] 

 

                        i = s % 2 

                        hf.gpu.J_dot(d_output, R_error[l], 

out=R_states[l][i], 

                                     increment=True, transpose_J=True) 

                        hf.gpu.J_dot(d_input, R_states[l][i], 

out=R_deltas[l], 

                                     transpose_J=True) 

                        hf.gpu.J_dot(d_state, R_states[l][i], 

                                     out=R_states[l][1 - i], 

transpose_J=True) 

 

                    # recurrent gradient 

                    if l in self.rec_layers: 

                        if s > 0: 

                            hf.gpu.dot(self.GPU_activations[l][s - 1], 

                                       R_deltas[l], out=Gv_recs[l][0], 

                                       transpose_a=True, 

increment=True) 

                        else: 

                            hf.gpu.sum_cols(R_deltas[l], 

out=Gv_recs[l][1], 

                                            increment=True) 

 

        # Tikhonov damping and batch mean 

        Gv._axpbyz(1.0 / batch_size, GPU_v, damping, Gv) 

 

        if isinstance(v, gpuarray.GPUArray): 

            return Gv 

        else: 

            return Gv.get(out, pagelocked=True) 

 

    def check_J(self, start=0, stop=None): 

        """Compute the Jacobian of the network via finite 

differences.""" 

 

        eps = 1e-6 

        N = self.W.size 

 

        # as in check_grad, the truncation is equivalent to running 

the network 

        # normally for the initial timesteps and then changing the 

parameters, 

        # so that's what we do here to compute the Jacobian 

 

        if start > 0: 

            prev = self.forward(self.inputs[:, :start], self.W) 

            init_a = [p[:, -1] for p in prev] 

            init_s = [l.state.copy() if l.stateful else None 
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                      for l in self.layers] 

        else: 

            init_a = None 

            init_s = None 

 

        if stop is None: 

            stop = self.inputs.shape[1] 

 

        # compute the Jacobian 

        J = [None for _ in self.layers] 

        inc_i = np.zeros_like(self.W) 

        for i in range(N): 

            inc_i[i] = eps 

 

            inc = self.forward(self.inputs[:, start:stop], self.W + 

inc_i, 

                               init_activations=init_a, 

init_state=init_s) 

            dec = self.forward(self.inputs[:, start:stop], self.W - 

inc_i, 

                               init_activations=init_a, 

init_state=init_s) 

 

            for l in range(self.n_layers): 

                if start > 0: 

                    inc[l] = np.concatenate((prev[l], inc[l]), axis=1) 

                    dec[l] = np.concatenate((prev[l], dec[l]), axis=1) 

 

                J_i = (inc[l] - dec[l]) / (2 * eps) 

                if J[l] is None: 

                    J[l] = J_i[..., None] 

                else: 

                    J[l] = np.concatenate((J[l], J_i[..., None]), 

axis=-1) 

 

            inc_i[i] = 0 

 

        return J 

 

    def check_G(self, calc_G, v, damping=0): 

        """Check Gv calculation via finite differences (for 

debugging).""" 

 

        sig_len = self.inputs.shape[1] 

        if self.truncation is None: 

            trunc_per = trunc_len = sig_len 

        else: 

            trunc_per, trunc_len = self.truncation 

 

        G = np.zeros((len(self.W), len(self.W)), dtype=self.dtype) 

 

        for n in range(trunc_per, sig_len + 1, trunc_per): 

            start = np.maximum(n - trunc_len, 0) 

 

            # compute Jacobian 

            # note that we do a full forward pass and a partial 

backwards 

            # pass, so we only truncate the backwards J matrix 

            J = self.check_J(0, n) 

            trunc_J = self.check_J(start, n) if start > 0 else J 
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            # second derivative of loss function 

            L = self.loss.d2_loss([a[:, :n] for a in 

self.activations], 

                                  self.targets[:, :n]) 

            # TODO: check loss via finite differences 

 

            G += np.sum([np.einsum("abji,abj,abjk->ik", trunc_J[l], 

L[l], J[l]) 

                         for l in range(self.n_layers) if L[l] is not 

None], 

                        axis=0) 

 

        # divide by batch size 

        G /= self.inputs.shape[0] 

 

        Gv = np.dot(G, v) 

        Gv += damping * v 

 

        try: 

            assert np.allclose(calc_G, Gv, rtol=1e-3) 

        except AssertionError: 

            print("calc_G") 

            print(calc_G) 

            print("finite G") 

            print(Gv) 

            print("calc_G - finite G") 

            print(calc_G - Gv) 

            print("calc_G / finite G") 

            print(calc_G / Gv) 

            input("Paused (press enter to continue)") 

 

    def compute_offsets(self): 

        """Precompute offsets for layers in the overall parameter 

vector.""" 

 

        ff_offset = super(BRNNet, self).compute_offsets() 

 

        # offset for recurrent weights is end of ff weights 

        offset = ff_offset 

        for l in range(self.n_layers): 

            if l in self.rec_layers: 

                self.offsets[(l+2, l)] = ( 

                    offset, 

                    offset + self.shape[l+2] * self.shape[l], 

                    offset + (self.shape[l+2] + 1) * self.shape[l]) 

                offset += (self.shape[l+2] + 1) * self.shape[l] 

 

        return offset - ff_offset 
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Annex E 

 
Readme.txt 
 
The Requirements to run this library are: 

 python  3.5 

 numpy 1.9.2 

 matplotlib 1.3.1 

 optional: scipy 0.15.1, pycuda 2015.1.3, scikit-cuda 0.5.1, 
pytest 2.7.0 

 
To run the code make sure you have all the requisites mentoned, 
navigate to the folder of BRNN.py, open a terminal and enter:  

python BRNN.py 


