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ABSTRACT 

 

The anticipated fifth generation of mobile networks has set ambitious goals for higher 

capacity, higher data rate, lower latency, lower power consumption and ubiquitous high-

speed connectivity for an ever-increasing number of users. The dense deployment of a 

massive number of small cells will have a pivotal role in 5G as one of the most promising 

technologies towards realizing its target specifications. This thesis investigates an 

approach where a subset of User Equipment (UEs) is dynamically selected to serve as the 

base stations of other users. These UEs are referred as UE-based Virtual Small Cell Base 

Stations (UE-VBSs) and they can be used in a targeted manner to effectively relieve 

traffic in hot spot areas, increase coverage, and spectral efficiency. UE-VBSs can remove 

the constraint of the static deployment of existing Small Cell technologies and bring 

renaissance to wireless communication networks as a major technological breakthrough. 

 

The first chapter is an introduction in the 5G cellular mobile networks, where the 

technologies and challenges of 5G are introduced. Moreover, the concept of small cells 

along with their benefits and challenges is discussed. In the second chapter, the work 

related to my thesis is exanimated. Then the background of clustering theory is explored, 

and an overview of some popular clustering algorithms is presented. In the third chapter 

I evaluate the performance of the UE-VBSs technology. In addition, I compare different 

clustering techniques, trying to find the most suitable algorithm for clustering an ultra-

dense network which utilizes UE-VBSs. The final chapter is a conclusion and comments 

on the work done. 
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1.1 Cellular network concept 

 

Wireless mobile networks use radio waves (electromagnetic waves) to transmit data 

between devices (e.g. mobile devices and base stations). In a cellular network a 

geographical area is divided into smaller sub-areas called cells, each served by a base 

station (BS). A mobile device located in the cell’s area joins the network through the BS. 

When combined, these cells provide radio coverage over a broad area. Continuous 

coverage is achieved by handover (i.e. the transfer of a connection from one BS to another 

as a mobile device crosses cell borders). The key feature of cellular networks is the 

capability to reuse frequency bands for increasing coverage and capacity.  

  

1.2 Evolution of cellular networks 

 

Every new generation of wireless networks delivers more functionalities and evolves in 

terms of data rate, capacity, coverage, quality of service (QoS), mobility, and spectral 

efficiency. Starting from the 1st generation in early 1980’s we are now awaiting the 

arrival of the 5th generation (5G) of mobile networks with the ambitious timeline of the 

early 2020s for widespread launch. 
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The 1st generation (AMPS, TACS, NMT) mobile networks emphasised on speech-related 

services. They used analog signal, applied circuit switching and were based on FDMA 

(Frequency-Division Multiple Access) multiplexing scheme. 1G faced major problems 

like poor voice quality, poor battery life and no security. Moreover, 1G networks were 

incompatible with each other due to national specifications as they were developed with 

national scope.  

 

The 2nd generation (GSM) was established in the 1990’s and the main difference between 

its predecessor is that 2G used digital signals. 2G also applied circuit switching was based 

on TDMA/FDMA multiplexing scheme. 2G, besides the traditional speech service, 

provided various new features such as text (e.g. SMS), picture and multimedia messages.  

 

Between the 2nd and the 3rd generation 2.5G (GPRS) was introduced. 2.5G applied 

packet switching along with circuit switching. It provided features such as web browsing 

and email services. However, it was unable to handle complex data such as videos, it 

required strong digital signals and it had very limited support for the Internet. 

 

The 3rd generation (UMTS, HSPA) was introduced around 2000 and it was based on 

WCDMA (Wideband Code Division Multiple Access). 3G featured faster web browsing, 

video conferencing and 3d gaming. It used both circuit and packet switching until 3.5G. 

Since 3.5G, the following generations are only using packet switching. 3.5G further 

improved the data rates but it still had limited support for high-speed Internet.  

 

4th generation (LTE, LTE-Advanced) launched around 2012 and was based on OFDMA 

(Orthogonal Frequency-Division Multiple Access). 4G provides data speeds of up to 100 

Mbps, offers high security and high QoS.  4G features amended mobile web access, high-

definition mobile TV and enhanced gaming services.  Despite their potential, 4G 

networks face serious limitations as will be discussed in the next section. 
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Figure 1. Evolution of cellular networks [1] 

 

 

1.3 Motivation towards 5G 

 

1.3.1 5G Vision 

 

The vision of 50 billion connected devices by the end of 2020 [2] and the anticipated 

1000x data traffic growth [3] necessitate a fifth-generation mobile network. Compelling 

services such as high-resolution video streaming (In 2022, video will account for around 

75% of mobile data traffic [4]) and emerging technologies like autonomous cars demand 

higher capacity, higher data rate, lower end-to-end (E2E) latency, reliability and 

robustness on the network [5]. Moreover, consumers desire reduced cost, consistent 

quality of experience (QoE) and ubiquitous high-speed connectivity.  

 

All these create unprecedented challenges to overcome and along with the unmanageable 

limitations of the current conventional systems are pushing towards migration to the sate-

of-the-art 5G network. 5G will see a radical shift on how cellular networks are designed 

and used. Subsequently its capabilities will evolve over time and is forecast to cover 

around a third of the global population by 2025, with adoption reaching 1.1 billion 

connections [6]. 
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Figure 2. Roadmap and timeline for 5G [7] 

 

1.3.2 Limitations of the conventional cellular systems 

 

In previous generations of cellular networks, mobile phones were practically the only 

type of device expected to be supported. However, the introduction of a vast variety of 

devices and applications like Internet of Things (IoT), and tactile Internet [8] will lead us 

to the aforementioned 50 billion ubiquitous devices. The large amount and diversity of 

communicating machines creates new requirements and characteristics which the current 

technologies seem unable to manage efficiently. 

 

For instance, extremely low latency is a primary concern for life-critical systems (e.g. 

vehicle-to-vehicle communications), real-time applications (e.g. e-commerce 

transactions, cloud-based gaming) and services with zero delay tolerance (e.g. e-health). 

However, all the existing technologies of cellular networks are far from achieving the 

zero latency. 

 

The thousand-fold increase in total mobile traffic requires researchers to seek greater 

capacity and find new wireless spectrum beyond the 4G standard [9]. Furthermore, the 

utilization of current radio spectra needs to be improved to solve the spectrum shortage 

problem.  
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A BS (Base Station) in conventional cellular networks is designed to support peak time 

traffic and only its associated UEs (User Equipment) can use its processing power. 

Additionally, base stations consume a constant power, regardless of the traffic load. 

However, a heavy loaded BS on a business area during working hours becomes idle 

during nighttime. On the opposite side an over-subscribed BS in a residential area during 

weekends or holidays becomes lightly loaded in working days. This effect necessitates 

better utilization of BS processing power (e.g. when a BS is almost idle, its coverage 

should expand in a larger geographical area) [10]. 

 

Moreover, current cellular networks do not separate indoor and outdoor users although, 

more than 70 percent of data consumption occurs indoors; in homes, offices, malls and 

other public places [3]. In addition, most of the wireless users stay inside for 

approximately 80 percent and outside for approximately 20 percent of the time [11]. 

 

 

1.4 5G Challenges 

 

Ultra-high data rate and network capacity 

New technologies, applications and architectures demand matching capacity and data 

transfer capabilities. Therefore, in order to provide 1000x capacity/km2 and ultra-fast data 

transmissions of 10 Gbps peak data rate and 100 Mbps cell edge data rate (100 times 

faster than 4G LTE) [8], the 5G system will have to combine several innovative solutions. 

 

Reduced Latency 

It is mandatory for networks to have almost zero end-to-end latency (1 ms) with high 

availability and reliability to enable new real-time applications. For instance, remote 

controlled robots for medical applications, safety-critical applications built around 

vehicle-to-vehicle (V2V) and vehicle-to infrastructure (V2I) communication, augmented 

and virtual reality applications. All these applications require rapid feedback control 

cycles and very quick request-response cycles [5]. The need in latency reduction requires 

technological innovation in air interface, hardware, waveform design and a flexible 

architecture in the higher layers of the network [8]. 
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QoS, mobility and coverage. 

Users require guaranteed QoS (99.99% availability and 100% coverage [10]). Thus, 5G 

must provide the same device connectivity and uninterrupted communication services at 

home, in the office or on the move. In addition robust communication is essential in 

disaster areas, remote areas, local traffic demands and in places with potential poor 

coverage (blind spots) [12]. 5G should support high-speed mobility (up to 500 km/h) for 

railways and V2V communications. Another scenario is extreme user density like 

shopping malls, open air festivals and stadiums where great user experience must be 

maintained. A further challenge for 5G is to manage the mobility of the users with low 

battery consumption for their UE. 

 

Energy efficiency, Cost Reduction 

The intelligent use of energy is a major target for 5G (90% less energy). Many times, 

technologies that improve rate, capacity and coverage lead to energy efficiency drop.  

When the energy spent by the infrastructure increases, operation expenditures (OpEx) 

increase for the network operator which indirectly affect the expenses of the consumers. 

Also, high computational communication strategies reduce the battery lifetime of UE 

[13].  

 

Spectral efficiency, new spectrum allocation 

Wireless systems are facing a bottleneck in spectrum resources due to the extremely 

scarce available spectrum. Hence, spectrum needs to be utilized more efficiently in order 

to provide higher system capacities in the radio interface of the wireless systems. 

An additional vital issue of 5G is the allocation of new spectrum as the thousand-fold 

traffic growth cannot be managed by only enhancing the spectral efficiency. Qualcomm 

and NSN believe that 10 times more spectrum is needed to meet the demand [14]. 

Opportunities for more spectra include higher frequency bands (e.g. millimeter-wave, 

mmW), unlicensed spectrum, and aggregation of fragmented spectrum resources [5]. 

 

Improved security and privacy 

Services like mobile payment and cloud storage introduce great challenges on data 

security and user privacy. The huge number of new types of all-time connected devices 

is threatened by several types of attacks like impersonation, denial-of-service (DoS), 
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eavesdropping, etc. In addition, the high-speed transfer of a vast volume of data in secure 

manners is critical while preventing malicious files to penetrate. Moreover, current 

authentication mechanisms use an authentication server that takes hundreds of 

milliseconds delay. However, due to the reduced latency requirement of 5G, 

authentication of network devices becomes extremely challenging  [10]. 

 

Massive deployment of sensors and actuators  

Small sensors and actuators are mounted to stationary or movable objects and enable a 

wide range of applications by monitoring, alerting or actuating. 5G networks must 

integrate the communication of ubiquitous things and manage the overhead created by 

the vast number of devices [12]. 

 

1.5 5G Technologies 

 

Figure 3. Generic 5G network architecture [15] 

 

Millimeter wave spectrum 

The current wireless bandwidth is not able to support a huge number of users in 5G 

networks. Due to the need for more capacity in mobile broadband, researchers are looking 

for a new wireless spectrum beyond the 4G standard. According to recent studies 

millimeter wave frequencies would be able to increase the radio spectrum band from 700 

MHz to 2.6 GHz. Using the millimeter wave frequencies, we will achieve a higher 
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bandwidth, which also means higher data transfer rates. The great capacity that this 

technology offers would offer high-rate machine-type communications (MTC) 

applications, and the short range of mm-wave could benefit D2D situations. Moreover 

mm-wave would possibly extend the IoT (Internet of Things) devices’ lifetime by saving 

a significant amount of energy. This happens by constructing very short over-the-air data 

packets, so this allows an even more aggressive duty cycling of MTC devices [16]. 

 

Wireless software-defined network (SDN) 

SDN partitions the data plane functions (traffic forwarding between network devices) 

from the control plane functions (decisions about the routing of traffic). SDN features a 

logically centralized entity (i.e., the SDN Controller) which makes the network control 

functions programmable. This strategy provides network abstraction, therefore allows 

flexible network reconfiguration and adjustments [16]. Moreover, it reduces the need of 

complex hardware procedures and it makes the network cheaper to deploy and manage.  

In addition, SDN makes the infrastructure easier to adapt to the IoT and Cloud Computing 

[14] and enhances the scalability of the network. 

 

Network function virtualization (NFV) 

Network Function Virtualization (NFV) is a complementary technology of SDN, destined 

to impact future 5G networks. NFV decouples network functions from dedicated 

hardware and moves them into more general computing and storage platforms like servers 

[16]. This is achieved by virtualizing a set of network functions such as DNS, traffic load 

management, network address translation, firewalls etc. Moreover, NFV aims to 

centralize the base band processing within the RAN (Cloud Radio Access Network - 

CRAN) [13]. With the NFV, network operators reduce their OpEx and CapEx (Capital 

Expenditure) while requiring less time and effort to deploy new services. 

 

The combination of NFV and SDN solutions will radically change the way network 

services are provided. For instance, when a given data center is unable to manage an 

extreme user density scenario (e.g. an open-air festival), supplementary capacity can be 

borrowed from other data centers. Also, when an application demands more processing 

power, it can dynamically allocate more recourses within a data center [17]. 
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Figure 4. Overall architecture of NFV [8] 

 

Massive MIMO  

Massive MIMO (mMIMO) is the evolution of the current MIMO technology and aims to 

maximize the advantages of MIMO. Arrays (linear, rectangular or cylindrical arrays) with 

hundreds of antennas are mounted on a BS to simultaneously serve many UEs in the same 

time-frequency resource [10]. mMIMO improves the spectral efficiency because data 

transmission can be realized in multiple orthogonal spatial dimensions [17]. It decreases 

the latency on the air interface, it improves the radiated energy efficiency by 100 times 

and it increases the capacity by more than 10 times [1].In addition, mMIMO can be 

utilized to expand the coverage of high frequency bands by relying on beamforming gains 

[5]. 

 

Figure 5. Evolution from 4G MIMO to 5G mMIMO [18] 
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Device-to-Device (D2D) communications 

In conventional cellular networks, all the communications occur through a BS and 

devices cannot directly communicate in the licensed cellular bandwidth [19]. D2D is a 

direct communication between devices which allows exchange of user plane traffic 

without involving or with a controlled involvement of a BS [1]. The proximity of devices 

can enable reuse of radio resources, low power consumption, low delay and high data 

rate. Moreover, network-controlled device-to-device technique can achieve local offload 

and increase the system throughput [20]. Although D2D communications have great 

potential, they create new challenges such as more interference situations. D2D 

communications is in an early phase of research and their standards and frameworks are 

yet to be defined [10].  

There are four main types of D2D communication [1]: 

1. Device relaying with base station-controlled link formation 

2. Direct device to device communication with base station-controlled link 

formation 

3. Device relaying with device-controlled link formation 

4. Direct device to device communication with device-controlled link formation 

Big data-driven network intelligence  

The upcoming 5G cellular infrastructure with its support for Big Data will enable various 

smart improvements. Excessive amounts of data (user-centric, network-centric and 

context-centric) will be generated everywhere by both people and machines [14]. Then 

useful data like people’s preferences, traffic conditions, eNB configuration information, 

interference information, handover reports, fault status, link utilization, call drop ratio etc. 

will be collected and analyzed in real‐time by the network cloud to infer valuable insights 

[21]. The amassed information can give helpful contribution for network planning, 

resource management, traffic routing, mobility management and offload decisions [5]. 

 

Ultra-densification 

Current dense wireless networks are suggested as a supplement for cellular networks and 

are deployed in hotspot and indoor situations. However, the 5G ultra-dense cellular 

network, with the help of the innovations of mMIMO and mmWave is proposed to deploy 

in general cellular situations [22].  The BSs that are used for 4G are unable to hold on 

with the estimated mobile data traffic that is 15 exabytes by the time of 2018. Hence, to 
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offload the congested data flow in base stations, spatial densification is proposed. By 

using this method more layers of cells will be created and with the intelligent   handling 

of shared spectrum resources the capacity will further increase [8]. Nevertheless, 

researches show that densification is limited by the backhaul network capacity and 

backhaul energy efficiency restrictions [22] 

 

Cloud Radio Access Network (C-RAN) 

The main idea of C-RAN is a network topology where most of the processing of a macro 

base station (MBS) is executed in the cloud [10]. 

The three main components of C-RAN as shown in Figure 6 are: 

▪ Distributed network consisting of a Remote Radio Unit (RRU, performs radio 

functions) and an antenna. 

▪ Optical transmission network which connects the RRU and the Bandwidth-Based 

Unit (BBU, implements baseband processing using baseband processors). 

▪ Concentrated base band processing pool comprising of high performance general 

processor and real-time virtual technology. 

The dense deployment of RRUs shortens the distance between a UE and an RRU, thus, 

reduces the transmission power consumption. Consequently, UE battery life will be 

prolonged, and the power consumption of wireless access networks will be reduced. 

Conclusively, C-RAN provides a dynamic, scalable architecture, accelerates the speed 

and reduces the cost of the operational network development [23]. 
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Figure 6. C-RAN architecture [23] 

 

 

Table 1. Summarized requirements and corresponding enabling solutions for 5G 

 

 

 

 

 

 

Requirements Enabling solutions 

Ultra-high data rate and network 

capacity 

10 Gbps peak data rate; 

100 Mbps cell edge data rate; 

1000x capacity/km2 

 

mmWave 

mMIMO 

Ultra-densification 

C-RAN 

Reduced latency 

1 ms E2E latency 

D2D, Big data 

NFV, mmWave 

Spectral efficiency mmWave, mMIMO 

Ultra-densification, D2D 

Energy efficiency 

1000 times decrease in energy 

consumption per bit; 

Ultra-densification 

D2D 

 

High scalability mMIMO, SDN, NFV, C-RAN 

QoS, mobility and coverage. 

99.99% availability 100% coverage 

high-speed mobility (up to 500 km/h) 

Ultra-densification 

D2D  

SDN, NFV 

C-RAN 

Improved security and privacy SDN, NFV, Big data 
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1.6 Small cells 

 

A small cell is a low-powered, low-cost, self-organizing base station or access point. The 

range of a small cell varies between 10 meters and few kilometers. They are placed in 

opportunistic positions to fill coverage gaps and to provide access to the users in densely-

populated regions. The key features of small cells for the consumers are: improved QoS 

especially for indoor environments, better coverage and capacity, extended battery life. 

From the operator perspective the key features are reduced CAPEX and OPEX. In legacy 

network systems, the coverage was provided mostly by macrocells. However, to achieve 

high throughput to an ever-increasing number of users, the areal reuse must be exploited 

(i.e. utilize small cells)[17].  

 

Network Densification 

Network densification refers to the dense deployment of a massive number small cells. 

 

1.6.1 Types of small cells 

 

Small cells is an umbrella term which includes femtocells, picocells, and microcells.  

 

Femtocells are user-deployed access points with less than 50 meters range. They can 

operate in closed, open, or hybrid access mode. In closed access mode (usually used in 

residential scenarios), only a set of enlisted users who belong in the Closed Subscriber 

Group (CGS) are permitted to connect to the femtocell. In hybrid access mode (usually 

used in small business scenarios), all users can access the femtocell, but the subscriber 

group is prioritized. They open access mode is mostly used in public places like airports. 

[24] 

 

Picocells are deployed by operators for covering small areas, such as street corners and 

indoor areas (e.g. shopping malls, offices, metro stations) where the macrocell penetration 

is inadequate. They have less than 500 meters radius, they serve few tens of users and 

their access is open to all UEs. 
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Microcells are outdoor base stations with a few hundred meters. They are often installed 

temporarily during sporting events and other occasions where extra capacity is known to 

be needed at a specific location in advance. Sometimes they are deployed indoors to 

provide coverage in areas above the range of a picocell [25]. 

Relay Nodes (RNs) are low-power base stations, deployed at cell edges for enhanced 

coverage and capacity. When UEs at cell edge fail to access the macrocell eNodeB, they 

connect with a RN which in turn is connected with its donor eNodeB (DeNB) via a radio 

interface [25]. In particular, a RN receives the signal from UEs and retransmits it over the 

wireless backhaul link between the RN and the DeNB. 

 

 

Figure 7. Macrocell and different types of small cells with their corresponding 

output power and coverage radius [8]. 

 

1.6.2 Benefits 

 

As the macrocell network capacity reached very close to their optimal theoretical limits, 

the next performance leap was achieved by adopting small cells. LTE networks advanced 

to incorporate small cells such as femtocells, picocells and relay nodes [26]. 

Small cells brought the mobile network close to the user, thus reduced the distance 

between the transmitter and the receiver. This results in a higher-quality link and 
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improved spectral efficiency. Moreover, due to the proximity of UEs and BSs there is 

reduced power consumption at the BSs and battery savings at the UEs. In addition, lower 

transmit power results in less adjacent channel and co-channel interferences. Small cells 

exploit high frequencies, as the high attenuation they suffer is not a disadvantage, but a 

facilitator to allow effective separation between neighboring cells [5]. Small cells allow 

operators to follow the traffic requirements by deploying or activating base stations on 

demand, thus support the users in extremely crowded situations like football stadiums, 

open air festivals and shopping malls. Also, by dynamically switching small cells on and 

off network operators can save energy without downgrading network performance [5]. 

Furthermore, by utilizing small cells, the cellular systems are more robust against the 

failure of single components. Finally, small cells achieve enhanced in-building and cell-

edge coverage.  

 

Figure 8. A multi-tier network composed of macrocells, picocells, femtocells and 

relay nodes 

 

 

1.6.3 Challenges in ultra-dense small cell deployment 

 

Although small cells are beneficial to cellular networks, their densification and 

randomness result in a completely different operational environment. In this environment 

many challenges emerge and need to be resolved in order to exploit the maximum benefits 

of small cells. 
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Interference  

As the number of cells increases, there is greater potential for interference [25]. In 

addition, the various transmit powers, the CSG access of femtocells, and the ad hoc 

deployment of access points further complicate the interference mitigation mechanisms. 

Particularly, frequencies and power levels need to be carefully adjusted to balance 

interference and coverage of the different cells in the multi-tier cellular network. 

Interference can be categorized in co-tier interference and cross-tier interference. Cross-

tier interference occurs among network nodes that belong in different tiers, for example 

picocells and macrocells. On the other hand, co-tier interference appears between nodes 

that belong in the same tier. 

 

Mobility 

A heterogeneous network (HetNet) consists of macrocells and small cells. While small 

cells improve capacity and coverage, macrocells can support high mobility. A mobility 

management mechanism is required, where UEs connect to the proper cells depending on 

their speed. Static UEs should be serviced by the ultra-dense small cells and mobile UEs 

should be handed over to the macrocells [27]. 

 

Backhaul 

5G ultra-dense networks are anticipated to achieve throughput of gigabit levels [28]. This 

traffic must be effectively forwarded by reliable and low latency backhaul connections to 

the core network. Mobile operators consider small cell backhaul to be more challenging 

than macrocell backhaul because since small cells are frequently placed in hard‐to‐reach 

spaces near streets instead of clear area [14]. The backhaul requirements vary according 

to the position of small cells, the traffic supported by the cell, the target QoS, and the cost 

of installing a backhaul connection. Hence there is no best solution for the backhaul of 

small cells [29]. Most operators must use a mix of wired and wired solutions with cautious 

planning and administration to avoid restricting capacity by inadequate backhaul 

connections. 

 

Other important challenges of the ultra-dense small cell depoloyment are Complexity 

(computational and implementation complexity), network topology control, congestion 
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control and radio resource management (RRM). 5G needs to address all the 

aforementioned challenges in order to realize the potential of the small cells technology. 
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2.1  Related work 

 

2.1.1 CelEc framework for reconfigurable small cells  

 

The Cella Ecosystem (CelEc) [30] is a proposal to support the upcoming ultra-dense 5G 

networks. Conventional small cells follow a static deployment, which cannot deal 

effectively with the short term changing dynamics of mobile traffic. However, the CelEc 

framework establishes a mobile small cell, the Cella cell, to cope with the mobile traffic 

patterns. The Cella cell is the smallest, portable and reconfigurable cell, which can be 

deployed in real time, in an effortless and adjustable way. The Cella cell utilizes UEs 

which are already densely distributed as an integrated part of the mobile network 

infrastructure. The UEs used in a Cella cell are recruited by network operators under a 

“leasing service contract” and are called CelEc Devices (CelDes). A CelDe has macro 

base station’s functionalities and can provide services to other UEs on demand, according 

to the network requirements. The massive deployment of Cella cells, has the ability to fill 

coverage holes, improve network capacity, increase data rates, spectral and energy 

efficiency.  
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Figure 9. Left: All connections are handled by the BS. Right: Most of direct 

connections are handled by CelDes [30]. 

 

 

2.1.2 Virtual Small Cells Formation in 5G Networks 

 

The virtual small cell formation approach for 5G networks is proposed in [31]. In this 

approach, a subset of qualified UEs is selected to serve as the base stations of virtual small 

cells in connecting other UEs to the macrocell base stations. With this technique, the 

number of required communication links to the macrocell base stations for connecting all 

users directly or through small cells is reduced. More specifically, the number of 

connections to the macrocell base stations becomes proportional to the logarithm of the 

user density. Thus, utilization of virtual small cells can significantly increase the overall 

network capacity. The realization of conventional small cells is mainly achieved in the 

form of increasing the cellular infrastructure. This approach implies significant costs and 

complexity. Moreover, such static networks would not be able to follow the dynamic 

traffic flow of the small cells cost-effectively. On the other hand, a UE-based small cell 

formation is an almost costless, dynamic, and ready-to-use solution. 

 

2.1.3 Selection of UE-VBS using Affinity Propagation Clustering 

 

The paper “Selection of UE-based Virtual Small Cell Base Stations using Affinity 

Propagation Clustering” proposes the dynamic clustering of virtual small cells and the 

activation of UE-VBSs (UE Virtual small cell Base Stations) using the affinity 

propagation clustering technique. The objective is to choose the ideal number of UE-

VBSs for activation and then cluster the UEs. Every cluster represents a Virtual Small 
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Cell and every cluster center represents the UE-VBS which will server all the UEs in that 

cluster. The original parameters and procedures of affinity propagation are modified to 

meet the specific requirements of forming the virtual small cells and choosing the active 

UE-VBSs. The Received Signal Strength (RSS) is the similarity parameter between the 

eligible UE-VBSs and UEs. The UEs measure the RSS from every eligible UE-VBS in 

their proximity. Each UE will connect with the UE-VBS from which it receives the 

maximum RSS. In contrast with the original Affinity Propagation algorithm which passes 

messages between all points, the modified algorithm passes messages only between the 

UEs and the eligible UE-VBSs.  

 

 

Figure 10. Network that uses UE-VBSs (Black Nodes) 

 

 

2.1.4 Network-assisted Outband D2D-clustering in 5G Cellular Networks  

 

In this approach [32] UEs form clusters where only the UE with the best channel condition 

(i.e. the cluster head) is connected directly with the eNodeB. This way, a cluster can be 

seen as a UE whose SNR is the highest of the SNR of cluster members. The rest of the 

UEs in the cluster, utilize Outband D2D connections to relay their traffic.  Specifically, 

in Outband D2D, UEs can use both Cellular and WLAN technologies. The eNodeB 

communicates with the cluster head via cellular connection (e.g. LTE) while the rest of 

the UEs use unlicensed spectrum such us mm-Wave and WiFi Direct for intra-cluster 

communications. Simulations prove that by clustering UEs this way, cellular networks 

can achieve higher spectral and energy efficiency as well as lower signaling overhead. 

Consequently, clustering is suitable for the 5G ultra dense networks where energy and 

spectral efficiency is essential. Moreover, in this paper, the analysis outcomes indicate 

that joining a cluster not only is advantageous for the general system performance but 

also for all individual members. Precisely, their proposal boosts the network’s capacity 
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by up to 76% with clusters of just five UEs. Additionally, network operators can …. users 

to support the cellular network. Users will be rewarded according to their contribution. In 

addition, network operators can motivate their users to relay each other’s traffic by 

rewarding them according to their contributions. 

 

Figure 11. Example of D2D clustering [32] 

 

 

2.2 Cluster analysis 

 

Cluster analysis or clustering is the process of organizing objects into groups (i.e. clusters) 

whose members are similar in some way. Given a set of objects, we can use a clustering 

algorithm to classify each object into a specific group. Theoretically, objects that are in 

the same group should have similar properties, while objects in different groups should 

have highly dissimilar properties.  

 

 

Figure 12. An example of clustering [33] 

 

A good quality clustering will produce clusters where intra-cluster similarity is high wile 

inter-cluster similarity is low [34]. In a classic clustering problem, we have a set of n input 

objects from an arbitrary metric space and want to divide them into k clusters [35]. 

Typical applications of clustering concern low-dimensional Euclidean spaces (i.e. “a 

space in any finite number of dimensions, in which points are designated by coordinates 

(one for each dimension) and the distance between two points is given by a distance 

formula”). Nevertheless, modern applications involve high-dimensional Euclidean 
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spaces and spaces that are not Euclidean. Clustering problems arise in many different 

scientific areas such as data mining, machine learning, image processing, pattern 

recognition etc. 

 

Figure 13. Taxonomy of clustering approaches [36]. 

 

As shown in the figure above, clustering can be divided in hierarchical and partitional. A 

partitional or flat clustering algorithm (e.g. k-means) is essentially a division of the data 

set into clusters (subsets), so that each data point is in precisely one subset. Given a set of 

data objects and the number k, it finds a partition into k clusters that optimizes the given 

partitioning principle. On the other hand, hierarchical clustering does not assume a 

particular value k. It is a set of nested clusters that can be visualized using a tree structure 

(dendrogram) as seen in the figure below.  

 

 

Figure 14. Nested cluster diagram and hierarchical tree diagram.  
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From this dendrogram it is possible to view partitions at different levels of granularities. 

The key operation of hierarchical clustering is repetitive combination (each combination 

is represented by a horizontal line in the dendrogram) of two nearest clusters. There are 

two types of hierarchical clustering, Agglomerative (“Bottom-up”) and Divisive (“Top-

down”). Agglomerative algorithms start by treating each data point as a single cluster and 

then continuously merge (or agglomerate) pairs of clusters until all clusters have been 

combined into a single cluster that contains all data points. Divisive algorithms start with 

one, all-inclusive cluster and then recursively removes the “outsider” points from the least 

cohesive cluster until all points belong in their own singleton cluster. Divisive algorithms 

are more computationally intensive, so they are less widely used than agglomerative 

methods. 

 

Partitional clustering results in a single partitioning whereas hierarchical clustering can 

give different partitioning according on the level-of-resolution that the underlying 

application requires. Partitional clustering necessitates the number of clusters to be given 

in advance, but hierarchical clustering doesn’t. Lastly, partitional clustering is often more 

efficient in terms of computational and storage while hierarchical clustering can get slow 

and consume a lot of storage as it must make a lot of merge and split decisions. 

Nonetheless there is no clear agreement on which of the two approaches achieves the 

better clustering. 

 

2.2.1 K-Means clustering 

 

K-means clustering algorithm was first proposed by Macqueen in 1967 [37]. It is an 

uncomplicated partitioning algorithm. Which means, it partitions the given dataset into a 

predefined number (k) of groups. K-Means determines a set of k points, called centres, 

which may not be necessarily a point in the dataset. The centres are chosen, such that the 

mean squared distance from each data point to its nearest centre is minimized. In multiple 

real applications the clustering technique that is used is the k-means algorithm with 

multiple restarts [36]. With this method the algorithm can be run and measured with many 

different k values and initializations. This performs well when the number of clusters 

is small and chances are great that at least one initialization is near to a good solution. 

However, the fact that k-means algorithm’s performance heavily depends on the initial 
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starting conditions is a significant disadvantage for large datasets. Also, K-means is 

unable to represent density-based clusters. 

 

Figure 15. Outline of K-Means algorithms [34] 

 

 

2.2.2 Affinity Propagation 

 

The Affinity Propagation algorithm was published by Brendan Frey and Delbert Dueck 

in 2007. In Affinity propagation (AP) all the datapoints are potential cluster centres 

(exemplars). The result of AP is a set of exemplars, from which clusters can be derived 

by assigning each point to the cluster of its nearest exemplar. In contrast with K-means, 

in AP the number of clusters is not required as input. AP takes as input a set (n x n) of 

similarity values between all pairs of data points. The similarity value S(i,k) indicates 

how well the data point k is suited to be the exemplar for data point i. The AP algorithm 

works by exchanging the following messages between data points [38]: 

 

1) “Responsibilities” r(i, k)  are sent from data point i for how well-suited point k is to 

serve as the exemplar for point i. Responsibility values are computed as shown in figure 

below. The availability values are initially zero. 
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Figure 16. (left) visual representation of sending responsibility, (right) the rule for 

computing the responsibility values [39]. 

2) “Availabilities” a(i, k) are sent from candidate exemplar point k for how appropriate it 

would be for point i to choose point k as its exemplar. Availability values are computed 

as shown in figure below. Self-availabilities a(k,k) are computed differently. 

 

 

 

Figure 17. (left) visual representation of sending availability, (right) the rules for 

computing the availability values [39]. 

 

These messages are iteratively transmitted until an unchanging set of m exemplars emerge 

(convergence) or until a predefined maximum number of iterations. The corresponding 

clusters of the m exemplars are the solution of AP clustering. The major disadvantage of 

AP is its complexity which makes it suitable for small to medium sized datasets. It has 

time complexity of 𝑂(𝑘 × 𝑁2), where N is the number of data points and k is the number 

of iterations. Furthermore, the memory complexity is 𝑂(𝑁2) if a dense similarity matrix 

is used. 

 

2.2.3 Mean-Shift 

 

Mean shift clustering attempts to find dense areas of data points. Like K-Means and 

affinity propagation, it is a centroid based algorithm (its goal is to locate the centre point 

of each cluster). However, it can return clusters instead of partitions. Mean shift detects 

the centre points of each cluster by updating candidates to be the mean of the points within 

the sliding-window. Again, unlike K-means it’s not needed to specify the number of 
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clusters. Another advantage of Mean-shift is that the cluster heads converge near the 

points with the maximum density. The density is specified by a probability density 

function and mean-shift tries to place the centroids of the clusters at the maxima of this 

function. Moreover, the most significant parameter of this algorithm is the bandwidth of 

the kernel used in the kernel density estimation method. The kernel is being shifted 

repetitively to a higher density area on every iteration until convergence. Nevertheless, 

mean shift outcomes can differ when the bandwidth parameter is changed, which makes 

its selection difficult but not as difficult as guessing the number of clusters. 

 

2.2.4 Density-Based Spatial Clustering of Applications with Noise (DBSCAN)  

 

Like Mean-Shift, DBSCAN [40] is a density-based clustering algorithm, but with some 

noteworthy privileges. It extracts the dense clusters while the sparse (with density below 

a given threshold) data points are left as noise. The density threshold is the minimum 

number of data points (MinPts) in a sphere of radius epsilon (ε). All points within distance 

ε are neighbourhood points. The algorithm starts with an arbitrary point and visits all 

points iteratively. If there are enough (>= MinPts) points within the neighbourhood of the 

current point, then the clustering process begins. All the points within distance ε are added 

in the cluster and then this is repeated for all the new points in the cluster. Afterwards, a 

new unvisited point is selected, and a new cluster or noise points are detected. In the end 

of this procedure all points will either belong in a cluster or will be marked as noise. 

DBSCAN is a deterministic algorithm if the same dataset is given in the same order, but 

the results may vary when the same dataset is given in a different order [41].  Moreover, 

it can give arbitrarily shaped and sized clusters, as well as identify points as outliers 

instead of just throwing them into a cluster. However, the algorithm becomes unstable 

when detecting border objects of adjacent clusters [40] and there are algorithms that 

perform better when clusters are of varying density. 
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Figure 18. DBSCAN example 

 

 

2.2.5 Hierarchical DBSCAN (HDBSCAN) 

 

HDBSCAN [42] was published in 2015. A part of the people who published the 

aforementioned DBSCAN algorithm, also worked on HDBSCAN. It extends DBSCAN 

by inheriting its advantages and overcoming its limitations with varying density clusters. 

HDBSCAN takes as an input the parameter Mpts which is also inherited from DBSCAN 

(MinPts). The algorithm works by firstly transforming the space according to the density 

(with respect to the parameter Mpts). Then it constructs the Minimum Spanning Tree 

(MST) of the distance weighted graph. Afterwards it builds a dendrogram with the cluster 

hierarchy. The next step is where DBSCAN uses the epsilon (ε) value as a cut level of the 

dendrogram, which leads to a single fixed density level. However, HDBSCAN does not 

require the epsilon value as input. Instead it uses a procedure that allows the dendrogram 

to be cut at different levels, thus achieve varying density clusters. This procedure takes a 

parameter that defines the minimum cluster size (MClusterSize). This procedure condenses 

the dendrogram by using the MClusterSize to find points that will be marked as noise or will 

split to form a new cluster. In the final step, the algorithm extracts the clusters from the 

condensed tree based on cluster stability. The MClusterSize is not a hard to choose parameter, 

as giving the minimum cluster size is practically rational. On the other hand, the epsilon 

value of DBSCAN is an unintuitive parameter. In conclusion, HDBSCAN overcomes its 

predecessor by achieving varying density clusters and by trading an unintuitive input 
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parameter with an easier to choose parameter. Nevertheless, it still requires the Mpts 

parameter that again is not instinctive.  

 

 

Figure 19. Main steps of the HDBSCAN algorithm [42] 

 

 

2.2.6 Agglomerative Clustering 

 

Agglomerative Clustering is a set of closely associated clustering techniques [43]. It is a 

“Bottom-up” hierarchical clustering algorithm. It begins with each point being a cluster 

on its own. Then clusters are recursively merged (agglomerated) according to how 

“close” they are, until all clusters have been combined into a single cluster. In the 

dendrogram visualization, the root is the cluster with all the data points and the leaves are 

the clusters with only one data point. The merging of clusters stops when further merging 

results to undesirable clusters. For instance, there may be a measure of how condense the 

clusters are and merging two clusters surpasses the measure. Alternatively, there may be 

a predefined number of clusters. There are many possible definitions of the cluster 

proximity (i.e. how “close” two clusters are) and each definition discriminates the various 

agglomerative algorithms. Notably, the computation of the cluster proximity (or linkage 

distance) is the key operation of agglomerative clustering and it is not an easy task. 

 

Proximity methods: 

 

Single-link (or single-linkage or MIN) distance of clusters C1 and C2 is the minimum 

distance between any data point in C1 and any data point in C2. Single-linkage can handle 
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non-elliptical shapes. However, it is sensitive to noise and outliers and results in chaining, 

which means clusters can get very large. 

 

Complete‐link (or complete-linkage or MAX) distance of clusters C1 and C2 is the 

maximum distance between any data point in C1 and any data point in C2. Complete-

linkage produces more balanced clusters and is less susceptible to noise. Nonetheless, it 

can break big clusters and merge small clusters with larger ones, thus favors globular 

shapes (all clusters tend to have the same diameter). 

 

Group average distance between clusters C1 and C2 is the average distance between any 

data point in C1 and any data point in C2. It is an intermediate approach between complete 

and single linkage. Group average is less susceptible to noise and outliers, but it is biased 

towards globular cluster. 

 

 

Figure 20. Graph-based definitions of cluster proximity [43] 

 

Single-link, Complete‐link and Group average are graph-based proximities. There is also  

Ward’s method which is a prototype-based proximity. The prototype of a cluster is often 

the centroid (i.e. the average of all data points in the cluster). If a centroid has no meaning 

in the dataset then the prototype can be a medoid (i.e. the most representative data point 

of the cluster) [43]. 

 

Ward’s distance between clusters C1 and C2 is the difference between the Sum of 

Squared Error (SSE) of the result from merging the two clusters and the total SSE of the 

two clusters separated (𝑑C1, C2 = 𝑆𝑆𝐸C1∪C2 – 𝑆𝑆𝐸C1 – 𝑆𝑆𝐸C2). Similar to group average, it 

is less susceptible to noise and outliers, but it minimizes the variance of the clusters being 

merged. 
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Agglomerative methods are typically used when the underlying application requires a 

hierarchy. Moreover, some studies suggest that they can produce higher-quality clusters. 

On the other hand, agglomerative clustering algorithms are computational and in terms 

of storage expensive. Also, the fact that all merges are final and cannot be undone can 

generate problems for high-dimensional and noisy data. 

 

 

Figure 21. Standard Agglomerative Clustering [44] 

 

2.2.7 Spectral Clustering 

 

The central idea of Spectral Clustering is to utilize the spectrum of the similarity matrix 

of the data and perform dimensionality reduction [45]. Then standard clustering is used 

in fewer dimensions. First, Spectral Clustering forms an n×n affinity matrix A, where n 

is the total number of data points. Then it builds the Laplacian matrix L from the 

normalized matrix of A [45]. Afterwards, Spectral Clustering looks at the eigenvectors of 

the Laplacian matrix L and tries to find a good (low dimensional) embedding of the graph 

into Euclidean space [46]. Finally, a standard clustering algorithm like k-means is run. 

Spectral Clustering is efficient if the affinity matrix A is sparse and when the number of 

clusters is relatively small. It is useful in hard non-convex clustering problems and it is 

extensively used in image segmentation. 

 

 

2.2.8 Ordering Points To Identify the Clustering Structure (OPTICS) 

 

OPTICS [47] is another density-based clustering algorithm. Just like HDBSCAN it 

addresses the DBSCAN's problem with varying density clusters. However, like 

DBSCAN, OPTICS requires the two parameters, ε (in OPTICS ε is only an upper limit 

for the neighborhood size used to reduce computational complexity) and MinPts. OPTICS 
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does not create one explicit clustering. Instead, it produces a cluster-ordering of the data 

points with respect to its density-based clustering structure containing the information 

about every clustering level of the data set up to a generating distance ε [48]. 

 

 

 

Figure 22. OPTICS distances 

 

OPTICS defines a reachability-distance value for each data point. This value specifies the 

distance to the next data point in the ordering. Depending on what reachability threshold 

is used, a larger or smaller number of clusters is generated.  Moreover, large reachability 

values represent the boundaries between clusters. The result of OPTICS (i.e. the cluster 

ordering) is visualized graphically by a reachability plot to support  the analysis of the 

cluster structure [49]. In this plot the clustered points are ordered along the x-axis 

according to the cluster ordering computed by OPTICS and the reachability values 

assigned to each point are plotted along the abscissa. Data points having a small 

reachability value are closer, thus more similar to their predecessor points [50]. Valleys 

in the reachability plot correspond to clusters, which can be hierarchically nested [48]. 
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Figure 23. Reachability plot (right) computed by OPTICS for a sample data set 

(left) [50]. 

 

The time complexity of OPTICS algorithm is O (n log n). 

 

OPTICSxi 

 

The OPTICSxi algorithm has an extra parameter, xi, which is the contrast parameter that 

established the relative decrease in density. This parameter directly controls the number 

of clusters we will obtain. In this algorithm the ε parameter becomes less important but 

still needs to be given a value. The idea of varying densities is implemented by having a 

range of ε parameters. By setting the xi parameter we set the density variation we accept 

to consider that group a cluster.  

 

 

2.2.9 Locally Scaled Density Based Clustering (LSDBC) 

 

The LSDBC paper [51] introduces the notion of local scaling in density based clustering, 

that decides the density threshold according to the local statistics of the data. A k-nearest-

neighbor density estimation is used to discover the local maxima of density which are 

used as cluster centers. Each cluster is expanded until the density falls below a predefined 

ratio of the center point’s density. This clustering technique can produce clusters of 

arbitrary shape with noisy backgrounds that include density gradients. LSDBC has two 

input parameters, k, which is the order of nearest neighbor to consider for each data point 

for density calculation and α, that controls the boundary of the current cluster expansion 

based on its density. LSDBC uses the idea of local scaling. The local scaling technique is 

also successfully used by spectral clustering which is discussed above. The idea is to scale 

every data point with a factor proportional to its distance to its kth neighbor. By ordering 

points according to their distance to their kth neighbor, a measure of how dense the area 

around each data point is given. Afterwards, starting from higher density points, densely 

populated areas are cluster together. This clustering technique does not require fine tuning 

of its parameters and is more robust. 
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3.1 Problem statement 

 

I consider an ultra-dense 5G network where a subset of UEs will be selected to act as 

virtual small cell base stations (UE-VBSs) on a dynamic schedule. The purpose of the 

UE-VBSs is to aid the BS when it is congested, by forming clusters of UEs served by a 

UE-VBS. As mentioned in the topics 2.1.1 and 2.1.2, a UE-based small cell formation is 

an almost costless, dynamic, and ready-to-use solution. Furthermore, it can improve 

network capacity, increase data rates, and enhance spectral and energy efficiency. 

 

Firstly, I evaluate the performance of UE-VBSs using a network simulation tool. Then I 

compare different clustering methods which will be used to divide the UEs into groups 

where only one UE (i.e. the UE-VBS) will be directly connected with the main BS while 

the rest UEs in the cluster will communicate through their UE-VBS. The goal is to find 

the optimal way to cluster the UEs in order to maximize the benefits of virtual small cells.  
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3.2 Virtual small cell’s performance evaluation using OPNET modeler 

 

3.2.1 OPNET Modeler 

 

OPNET (Optimized Network Engineering Tools) Modeler is a powerful tool for network 

modeling and simulation, which is used by universities and researchers worldwide. I 

worked with the version 17.5 of OPNET Modeler that supports protocols of LTE which 

were implemented conforming to the 3GPP Rel. 8 specification. The LTE model in 

OPNET provides high flexibility and supports different scenarios and configurations. 

Moreover, the LTE model takes advantage of powerful statistical evaluations tools, 

together with the graphical user interface of the OPNET simulator. The basic nodes of 

LTE architecture in OPNET are UE, eNodeB and Evolve Packet Core (EPC). In the 

uplink direction the data flows form the UE to the eNodeB, then through the EPC and 

ends up at the server. In the downlink direction the data flows in the opposite direction.  

The eNodeB is connected with the UEs via the radio bearers and with the EPC via 

backhaul connection. 

 

Figure 24. LTE nodes in OPNET Modeler 

 

 

3.2.2 Simulation description 

 

The following simulation aims to evaluate the gains of the utilization of VBSs (Virtual 

Base Station - a UE playing the role of a base station) in an LTE environment. I compare 

two scenarios with the same topology. One of these scenarios uses VBSs, in contrast with 

the other that deploys conventional communication links between the UEs and the 

eNodeB. 
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3.2.3 Simulation topology  

 

Figure 25. OPNET Simulation topology 

 

The simulation consists of the following two scenarios:  

1. Virtual Base Station Disabled Scenario 

2. Virtual Base Station Enabled Scenario 

 

There is one eNodeB and 24 UEs in the coverage area of the eNodeB. Three UEs are 

scattered randomly within the range of the eNodeB, the rest 18 UEs are forming two 

clusters of 9 UEs (blue and red, as seen in the figure). The UEs belonging in the same 

cluster are close to each other. In the VBS Enabled Scenario, in each cluster, a UE is 

manually selected to serve as the VBS of the remaining UEs of the cluster. My scenario 

topology follows the D2D cluster model (as seen in the figure below) proposed in [52] 

where UEs are normally distributed around each cluster center. All the UEs have a 

distance of up to 10 meters from their serving VBS. All the UEs are sending/receiving 20 

Kbps traffic to/from the server. The pathloss model that is used is Urban Microcell 

(3GPP). The transmission bandwidth configurations for the LTE air interface are set to 

LTE 20 MHz FDD for both UL SC-FDMA and DL OFDMA channels. 
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Figure 26. D2D cluster model where UEs are normally distributed around each 

cluster center [52]. 

 

Figure 27. UE and eNodeB PHY (Physical layer) parameters 

 

 

3.2.4 Results  

 

 

 

Figure 28. eNodeB Uplink Throughput 
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Figure 29. eNodeB Downlink Throughput 

 

 

Figure 30. eNodeB LTE Delay 

 

Figure 31. eNodeB Downlink Packets Dropped 
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Figure 32. eNodeB Uplink Packets Dropped 

 

 

Figure 33. eNodeB PDCCH Utilization 

 

 

Figure 34. eNodeB PDSCH Utilization 
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Figure 35. eNodeB PUSCH Utilization 

 

Figure 36. eNodeB Downlink SNR 

 

 

Figure 37. eNodeB Uplink SNR 

 

0

5

10

15

20

25

30

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

U
ti

liz
at

io
n

 (
%

)

Time (sec)

eNodeB PUSCH Utilization

2 Active UE-VBS No Active UE-VBS

0.00

1.00

2.00

3.00

4.00

5.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

SN
R

 (
d

B
)

Time (sec)

eNodeB Downlink SNR

2 Active UE-VBS No Active UE-VBS

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

SN
R

 (
d

B
)

Time (sec)

eNodeB Uplink SNR

2 Active UE-VBS No Active UE-VBS



 

40 

 

 

Figure 38. UE05 Uplink SNR 

 

Figure 39. UE05 Downlink SNR 

 

Figure 40. UE05 Pathloss 
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Figure 41. UE05 Tx Power 

 

 

Figure 42. UE05 Associated eNodeB RSRP (dBm) 

 

Figure 43. UE05 Associated eNodeB RSRQ (dB) 
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Result statistics description 

 

RSRP  

Reference Signal Received Power (RSRP) is the average received power of a single 

received signal. UE evaluates the power of the recourse elements that are used to transfer 

the signal and takes the average value. 

RSRQ  

Reference Signal Received Quality (RSRQ) shows the quality of the received reference 

signal. It gives additional information when RSRP is not enough to make a reliable cell 

selection decision. 

Uplink SNR 

This statistic records the uplink SNR values (in dB) for packet transmissions through the 

physical layer. For UE nodes, this statistic represents the SNR measured at the eNodeB 

for all packets arriving from a particular UE. For eNodeB nodes, this statistic represents 

the SNR measured at the eNodeB for packets arriving from all UE nodes in the cell. 

Downlink SNR 

This statistic records the downlink SNR values (in dB) for packet transmissions through 

the physical layer. For UE nodes, this statistic represents the SNR measured at a particular 

UE for all packets arriving from the eNodeB. For eNodeB nodes, this statistic represents 

the SNR measured at all UE nodes in the cell/sector for all packets arriving from the 

eNodeB. 

Uplink packets dropped 

This statistic records the uplink packets dropped (in packets/second) due to physical layer 

impairments. For UE nodes, this statistic represents the packet drops measured at eNodeB 

for all packets arriving from a particular UE. For eNodeB nodes, this statistic represents 

the packet drops measured at the eNodeB for all packets arriving from all UE nodes in 

the cell. 

Downlink packets dropped 

This statistic records the packets dropped in the downlink (in packets/second) due to 

physical layer impairments. For UE nodes, this statistic represents the packet drops 

measured at a particular UE for all packets arriving from the eNodeB. For eNodeB nodes, 

this statistic represents the packet drops measured at all UE nodes in the cell/sector for all 

packets arriving from the eNodeB. 
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LTE delay 

LTE delay in seconds for all traffic arriving at this node that is delivered to higher layers. 

Delay is measure from the time the traffic arrives to the LTE layer of the eNodeB 

(downlink) or UE (uplink) until it is delivered to the higher layer of the corresponding 

UE (downlink) or eNodeB (uplink). 

PDCCH utilization 

This statistic records the channel utilization percentage of Physical Downlink Control 

Channel (PDCCH). Even though the size of PDCCH is reduced due to PDCCH resizing 

in some subframes when possible, the utilization is computed considering the full size of 

PDCCH. 

PDSCH utilization 

This statistic records the total percentage of Physical Downlink Shared Channel (PDSCH) 

channel utilization. 

PUSCH utilization 

This statistic records the total percentage of Physical Uplink Shared Channel (PUSCH) 

channel utilization. 

Tx power 

Current transmission power per each sub-channel in dBm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.



 

44 

 

 

Table 2. UE Power Consumption 

 

Table 3. UE-VBS Power Consumption 

 

Table 4. eNodeB Tx Power Consumption 

 

 

 

 

 

 

 

 

 

  No Active UE-VBS 2 Active UE-VBS 

UE Total Power 

Consumption (mWh) 

Estimated 

Life Time (hours) 

Total Power 

Consumption (mWh) 

Estimated 

Life Time (hours) 

UE_01 93.82 5.86 2.53 217.24 

UE_02 7.77 70.74 2.38 231.24 

UE_03 3.58 153.52 2.43 226.19 

UE_04 19.37 28.39 2.26 243.6 

UE_05 59.66 9.22 2.33 235.57 

UE_06 20.91 26.3 2.24 246.03 

UE_08 2.72 202.27 2.38 231.09 

UE_09 116.34 4.73 3.13 175.9 

UE_10 47.59 11.56 2.36 232.68 

UE_12 2.32 237.25 2.24 245 

UE_13 6.28 87.52 2.24 245.9 

UE_14 2.47 222.82 2.21 248.89 

UE_15 2.47 223.06 2.15 256.2 

UE_16 3.99 137.83 5.07 108.49 

UE_17 55.7 9.87 2.39 230.26 

UE_18 7.99 68.84 2.22 248.27 

UE_19 2.42 226.95 2.32 236.89 

UE_20 2.32 236.95 2.38 231.48 

UE_21 2.45 224.47 2.27 242.41 

UE_22 2.48 222.07 2.2 249.79 

UE_23 2.39 230.23 2.34 234.82 

 
No Active UE-VBS 2 Active UE-VBS 

UE Total Power 

Consumption (mWh) 

Estimated  

Life Time (hours) 

Total Power 

Consumption (mWh) 

Estimated  

Life Time (hours) 

UE_07 2.87 191.64 105.09 5.22 

UE_11 5.57 98.81 108.26 5.08 

 
No Active UE-VBS 2 Active UE-VBS 

 
Tx Power Consumption (mWh) Tx Power Consumption (mWh) 

eNodeB 38.5 16.95 
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3.2.5 Conclusions 

 

In this performance evaluation, I used OPNET modeler to analyze and compare the 

performance of a network that utilizes the proposed virtual small cell approach against a 

conventional network where all connections are directly between the UEs and the BS.  

My simulations confirmed that by enabling the use of a subset of the UEs as VBSs the 

throughput increases both in the UL (uplink) and the DL (downlink) directions. 

Moreover, the delay decreases significantly both in UL and DL. In addition, by enabling 

the VBSs the amount of the dropped packets at the eNodeB decreases dramatically. The 

signal to noise ratio (SNR) increases at the eNodeB as well as at the UEs. What is more, 

with the utilization of UE-VBSs, the received signal quality increases importantly at UEs.  

The pathloss is reduced and the transmit power of UEs is less. Due to the lower 

transmission powers, the power consumptions at UEs and at the eNodeB are minimized. 

Thus, the battery life time of UEs are prolonged as seen in the table 2. There are also 

power savings at the eNodeB and consequently money saving for the network operators. 

In addition, the utilization of channels at the eNodeB is reduced, thus more resources are 

freed up and the capacity can be increased. 

 

The number of required communication links to the eNodeB decreases. Hence, the radio 

resources are shared between fewer communication links at the eNodeB, so bandwidth 

allocation and utilization are done more efficiently. Furthermore, the signaling overheads 

are offloaded from the eNodeB to the VBSs. By using a separate spectrum such as WiFi, 

Bluetooth, or mmWave for the short-distance intra-small cell communications the cellular 

network spectrum could be released only for the direct eNodeB communications. 

Therefore, the overall network capacity could further increase. On the other hand, a 

drawback of the virtual small cell concept is that the battery consumption of the UEs that 

act as VBSs increases. Another important challenge is the security and privacy of data, 

as the user’s data will not be transmitted directly to a BS but through another User’s 

device. 
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3.3 Clustering of virtual small cells 

 

In the following scenario, there is one macro BS and 1000 UEs distributed in the coverage 

are of the BS.  For the spatial distribution of UEs Poisson Cluster Process (PCP) was 

used. PCP is accounted by 3GPP to be suitable for user and BS distributions [53] and is 

also favoured for modelling small cell base stations in user hotspots. Hence PCP is 

appropriate for our scenario as we consider an ultra-dense cellular network. I use various 

clustering algorithms to organize the UEs into groups, where in every group one UE will 

be an active UE-VBS. Then, I compare the different algorithms according to their results, 

their required inputs, complexity, time, scalability etc. Afterwards, I benchmark the 

performance and scaling of the various clustering techniques using big datasets. 

 

 

Figure 44. PCP distribution of UEs 

 

 

3.3.1 Clustering in Python 

 

For the comparison of different clustering algorithms, I used Python and especially the 

scikit-learn (version v0.19.1) module. Python is a general-purpose interpreted, high-level 

programming language, released in 1991 and created by Guido van Rossum. Scikit-learn 

[46] is a well-known module of Python that emphasizes on machine learning. It was 

started in 2007 by David Cournapeau and since then many volunteers contribute on its 
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development and maintenance. The Scikit-learn module is open-source and it is 

distributed under the simplified BSD, encouraging its use by academia. It provides easy 

to use and effective tools for data analysis and data mining. I particularly used the 

clustering tools of Scikit-learn for my experiments. 

 

 

3.3.2 Contrast and comparison of different clustering approaches 

 

Clustering has been a field of research for many decades and numerous algorithms are 

still being developed. Consequently, there are too many algorithms to be investigated 

even briefly [54]. I explored the most well-known and generally used clustering 

algorithms and I tried them on my dataset for the clustering of an ultra-dense network that 

utilizes the proposed UE-VBS technology. For each algorithm I present its strengths and 

weaknesses, its input parameters and most importantly its result and whether it is suitable 

for our proposed technology. Due to the low insight provided by numerical metrics, a 

visual representation of the clusters is very useful. There are no optimal standards for 

comparing cluster results, thus I used the visual representation of the cluster results as the 

main method for evaluating the results and finding the best choice. Moreover, for every 

algorithm I experimented and adjusted its input parameters in order to achieve a better 

outcome. As a result, I realized that its crucial for a clustering algorithm to have intuitive 

input parameters, so that the user can set the right values and achieve the optimal outcome. 

For the algorithms that require the number of clusters (n) to be given as input, I set n = 

45 because this was the result of a related work on the same dataset.  
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K-Means 

 

 

Figure 45. K-Means clustering result 

 

The only required input parameter of k-means is the value of k (n_clusters in python scikit 

learn) which is the number of clusters (and centroids). I ran the algorithm with k = 45. 

The complexity of k-means is  𝑂(𝑘 × 𝑛 × 𝑇) in average case and 𝑂(𝑛
(𝑘+

2

𝑝
)
) in worst case 

[55], where k is the number of clusters, n is the number of data points, T is the iteration 

number and p is the dataset dimension. Hence, k-means has the advantage of being fast, 

as it is a simple algorithm that is making relatively few computations (computes the 

distances between data points and centroids). In addition, there are optimizations which 

make k-means particularly efficient that only a few clustering algorithms can compete. 

However, many times it is useful to restart k-means numerous times [46] as its 

performance depends on the initial starting conditions. Thus, k-means lacks consistency 

and stability. This is because the algorithm begins with a random choice of centroids, so 

it may give different clustering results on different runs. Another weakness of k-means is 

that the number of clusters must be specified in advance, making it useless if the goal is 
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to let the algorithm figure the number by itself. Furthermore, k-means doesn’t recognize 

data points as noise and adds them in a cluster no matter if they don’t belong in it. This 

can result in cases where a point far away from the cluster ends up being a part of the 

cluster. 

 

Regarding the result on my case, k-means achieved a decent clustering. Nonetheless, I 

already knew the desired number of clusters for my dataset but in a real-world scenario 

this will not be possible. Also, it can be seen from the figure above that a lot of the data 

points should be recognized as outliers as they are too far from the cluster center. 

Additionally, I observe that k-means is unable to represent density-based clusters, but 

clusters with high density are of primary importance for our scenario. Moreover, cluster 

centers (centroids) in k-means may not be necessarily a point in the dataset, but in our 

scenario, it would be useful to have a data point as a cluster center, so it can be the enabled 

UE-VBS. Nevertheless, with truly big amount of data, K-Means might be the only option 

for clustering the data. 

 

 

Mean Shift 

 

Figure 46. Mean Shift clustering result 



 

50 

 

The most important required input parameter of Mean Shift is the bandwidth of the kernel. 

Another parameter in the implementation of scikit-learn is the cluster_all parameter. 

When cluster_all is set to True, then orphan data points that are not within any kernel are 

assigned to the closest kernel [46]. Otherwise orhpans are not a member of any cluster 

(i.e. they are outliers). I ran the algorithm with parameters bandwidth=0.06 and 

cluster_all=False. The complexity of Mean Shift in the scikit-learn implementation is 

𝑂(𝑇 × 𝑁 × log 𝑛) in lower dimensions and 𝑂(𝑇 × 𝑛2) in higher dimensions [46] where 

n is the number of data points and T is the number of iterations. The bandwidth of the 

kernel is easier to guess compared to guessing the number of clusters because it has a 

physical meaning. However, it needs to be chosen carefully for a successful clustering as 

with a different bandwidth the results can vary a lot. A strength of Mean Shift is that 

cluster centers converge towards points with maximum density, which is high desirable 

for our dataset. On the other hand, mean shift is fairly slow and is not highly scalable. 

 

From the figure above, it can be seen that mean shift failed to achieve a good clustering 

on my data set. There are a lot of cluster centers that should be outliers. Also, there are 

some big clusters that would be better to split to more clusters. Moreover, maybe mean 

shift placed some cluster centers in high density areas, but the overall cluster is not highly 

dense. 
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Affinity Propagation 

 

Figure 47. Affinity Propagation clustering result 

 

The two important parameters of affinity propagation are the “preference” that controls 

the number of cluster heads (exemplars) and the “damping” factor which avoids 

numerical oscillations when updating the responsibility and availability messages [46]. I 

ran the algorithm with parameters preference= -0.04, damping=0.58. In the Scikit-learn 

implementation the default preference is the median dissimilarity, but it yields a very 

large number of clusters, so I set a different value that results in a better clustering. 

The complexity of affinity propagation, which it is its main weakness, is quadratic in the 

number of data points. More precisely, 𝑂(𝑇 × 𝑛2), where n is the number of data points 

and T is the number of iterations. Hence affinity propagation tends to be very slow, 

especially on big data sets, because its basic operations are computationally expensive. 

While Affinity Propagation eradicates the number of clusters as an input parameter, it 

requires two other parameters. Another disadvantage of affinity propagation is that it adds 

all the points into cluster and does not create any noise or outlier points because it is a 

portioning algorithm. Also, it is an algorithm that assume that clusters are globular. 
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Agglomerative Clustering 

 

 

 
 

Figure 48. Agglomerative clustering result 

 

The most important parameters of agglomerative clustering are the number of clusters 

(n_clusters), the metric used to compute the linkage (affinity) and the linkage criterion 

which defines the proximity method to be used. I ran the algorithm with n_clusters = 45, 

linkage = “ward” and affinity = “euclidean”. These parameters are more detailed 

described in agglomerative clustering in the Cluster analysis section of this thesis. 

Agglomerative clustering can scale to large datasets only with a use of a connectivity 

matrix because otherwise it considers all possible merges at every step [46]. An advantage 

of agglomerative clustering is that you can inspect its dendrogram and try to find a cut in 

the hierarchical structure that yields to a good clustering. Although, this advantage comes 

at the cost of higher complexity of 𝑂(𝑛3) . The scikit-learn implementation takes a 

different approach and requires the number of clusters as input which is a big drawback. 

Some other benefits of this algorithm are that it does not assume clusters as globular and 

its performance can be good especially with the “fastcluster” implementation of sklearn. 
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Like the three previous algorithms, this one too is adding noise points in our clusters and 

does not support outliers. In addition, agglomerative clustering does not provide a cluster 

head. 

 

DBSCAN 

 

Figure 49. DBSCAN clustering result 

 

DBSCAN has two important parameters, the epsilon value (ε or eps in sklearn) and 

MinPts (or min_samples in sklearn). The ε value is the minimum distance among two 

points for them to be in the same neighborhood. MinPts is the minimum number of 

datapoints in a neighborhood for a data point to be a core point. In other words, these two 

values define the density threshold (i.e. the minimum number of data points (MinPts) in 

a sphere of radius ε). I ran the algorithm with eps=0.06 and min_samples=3. DBSCAN, 

as defined by its name (Density-Based Spatial Clustering of Applications with Noise), 

creates clusters from data points with high density and recognizes sparse background 

points (noise) as outliers. It is a good algorithm for data with clusters of similar density. 

On the other hand, for clusters with varying density it does not perform well, thus 

HDBSCAN was introduced. Some benefits of DBSCAN is that it does not require a 
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predefined number of clusters, clusters are not globular, and it can find arbitrarily sized 

and shaped clusters quite well. Another advantage of DBSCAN is its performance which 

makes it able to handle large datasets.  

 

The combination of MinPts and ε provides the user the choice of density and the algorithm 

finds only the clusters equal or above this density. This can either be a strength of 

DBSCAN if the user knows the right density for the underlying application, or a weakness 

if the user has to experiment with different combinations of MinPts and ε. 

 

In the basic case, the time complexity of the DBSCAN algorithm is 𝑂(𝑛 × 𝑡) , where n 

is the number of data points and t is the time required to find the points in the ε 

neighborhood. In the worst case its complexity is 𝑂(𝑛2) . Nevertheless, with the 

utilization of efficient data structures like kd-trees, the complexity for low dimensional 

data can be 𝑂(𝑛 ×  𝑙𝑜𝑔𝑛) [54]. The general storage complexity of DBSCAN is 𝑂(𝑛) 

because it keeps only a few information for every data point. 

 

From the clustering of DBSCAN on my dataset, I observe that it successfully found the 

areas with high density and ignored the sparse data points. This is a desirable result 

because the dense UEs will form clusters where only one UE (i.e. the UE-VBS) will 

connect with the BS and the rest UEs will form intra-cell connections. On the other 

hand, sparse UEs will be preferred to form direct connections with the BS. The fact that 

DBSCAN can form arbitrary shaped cluster is not desirable in our scenario, as it would 

be better for the clusters to have round shapes so the UE-VBS can be in the center and 

the rest of the UEs around it. 
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HDBSCAN 

 

 

 
 

Figure 50. HDBSCAN clustering result 

 

HDBSCAN is a conversion of DBSCAN into a robust hierarchical clustering algorithm. 

Unlike DBSCAN it does not require ε as an input value. Instead it performs DBSCAN 

with different ε values and finds the clustering with the best stability over ε [56]. 

HDBSCAN is not implemented in sklearn module, but there is an hdbscan standalone 

module in python. Its input parameters are MinPts (min_samples) which is inherited from 

DBSCAN and has the same role in the algorithm and min_cluster_size which is the 

minimum cluster size. I ran the algorithm with the parameters min_cluster_size=5, 

min_samples = 3.The improvements of  HDBSCAN  over DBSCAN is the improved 

performance on low dimensional data, the allowance of clusters with varying densities 

and the robustness to parameter selection [56]. 

 

In the figure above, it can be confirmed indeed that HDBSCAN allowed clusters of 

varying density. Thus, it found some bigger clusters and less outliers in comparison with 

DBSCAN. This was intended by the developers of this algorithm, but in my scenario, this 
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is not advantageous. It is much preferred to find only the clusters with a specified high 

density, so as the UEs to be really close to their UE-VBS and maximize the benefits of 

the virtual small cell technology. Moreover, just like in the previous algorithm, as it would 

be better for the clusters to have round shapes. 

 

 

Spectral Clustering 

 

 

Figure 51. Spectral clustering result 

 

 

The most important parameters of Spectral clustering are the number of clusters 

(n_clusters), the eigenvalue decomposition strategy to use (eigen_solver) and the affinity 

metric (affinity) [46]. The sklearn module also provides the n_neighbors parameter which 

is the number of neighbors that will be used when building the affinity matrix with the 

closest neighbors method. I ran the algorithm with the parameters n_clusters=45, 

eigen_solver='arpack' and affinity="nearest_neighbors". Spectral Clustering is efficient 

if the affinity matrix A is sparse and when the number of clusters is relatively small. 
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From the results of Spectral Clustering on my data set, it can be seen that it is another 

algorithm that lets noise points pollute the clusters. Moreover, Spectral Clustering 

requires the number of clusters as an input parameter which is a major drawback. The 

advantage of this algorithm is the dimensionality reduction, which is not necessarily 

needed in my scenario. In addition, Spectral Clustering in sklearn uses the k-means 

algorithm to cluster the data after the dimensionality reduction. Thus, it inherits all the 

limitations of k-means. 

 

 

 

 

 

Run K-

Means 

Mean 

Shift 

Affinity 

Propagation 

Agglomerative 

Clustering 
DBSCAN HDBSCAN 

Spectral 

Clustering 

1 0.150552 0.875353 0.902957 0.044311 0.006121 0.020036 0.362166 

2 0.133137 0.876363 0.837579 0.028037 0.004011 0.020206 0.318985 

3 0.148614 0.913842 0.835922 0.029230 0.005089 0.024038 0.384284 

4 0.155409 0.893479 0.864550 0.027658 0.004005 0.020026 0.321140 

5 0.136215 0.921729 0.834449 0.027771 0.004004 0.020027 0.313796 

6 0.141427 0.884071 1.140028 0.024770 0.004007 0.020305 0.318687 

7 0.140808 0.973454 0.874665 0.028003 0.008014 0.021536 0.324338 

8 0.145943 0.942506 0.895740 0.026045 0.004140 0.020707 0.336871 

9 0.143549 0.881305 0.844976 0.027998 0.002250 0.021122 0.323387 

10 0.149394 0.887020 0.865153 0.024032 0.004003 0.020026 0.319829 

Average 0.144505 0.904912 0.889602 0.028786 0.004564 0.020803 0.332348 

 

Table 5. Run Time for each algorithm in Seconds 
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Algorithm 
Input 

Parameters 
Scalability Usecase Metrics  

K-Means Number of 

clusters 

Very 

large number of 

data points. 

 

Medium number 

of clusters. 

General-

purpose, Even 

cluster size, Flat 

geometry, Not 

too many 

clusters. 

Distances 

between points 

Mean-shift Kernel 

Bandwidth 

Medium number 

of data points. 

Many clusters, 

Uneven cluster 

size, Non-flat 

geometry. 

Distances 

between points 

Affinity 

propagation 

Damping, 

Sample 

Preference 

Not scalable on 

the number of 

data points. 

Many clusters, 

Uneven cluster 

size, Non-flat 

geometry 

Graph distance 

(e.g. nearest-

neighbor graph) 

Agglomerative 

clustering 

Number of 

clusters, 

Linkage 

metric, 

Linkage 

criterion 

Medium number 

of data points 

and number of 

clusters. 

Many clusters, 

Connectivity 

constraints, 

Non-Euclidean 

distances 

Any pairwise 

distance 

DBSCAN Maximum 

radius of the 

neighborhood. 

Minimum 

number of 

datapoints in a 

neighborhood.   

Very 

large number of 

data points, 

medium number 

of clusters. 

Non-flat 

geometry, 

Uneven cluster 

sizes 

Distances 

between nearest 

points 

HDBSCAN Minimum 

cluster size, 

Minimum 

number of 

datapoints in a 

neighborhood 

Very large 

number of data 

points, medium 

number of 

clusters. 

Non-flat 

geometry, 

Uneven cluster 

sizes 

Distances 

between nearest 

points 

Spectral 

clustering 

Number of 

clusters 

Medium number 

of data points, 

small number of 

clusters. 

Few clusters, 

even cluster 

size, non-flat 

geometry 

Graph distance 

(e.g. nearest-

neighbour 

graph) 

 

Table 6. Summarized comparison of the clustering algorithms [46] 
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3.3.3 Benchmarking performance and scaling of different clustering approaches 

 

Performance and scaling depend on the clustering algorithm as well as the 

implementation. The programming language and the data structures can have a high 

influence on the performance of the clustering technique. Instead of just analyzing the 

algorithms and their implementations to derive the asymptotic time and space complexity, 

it is better to run them and get empirical results. Specifically, I ran together all the seven 

clustering implementations in python (sklearn) that I compared in the previous section. 

Then I collected all the requisite data and used the seaborn library, which provides an 

interface for drawing statistical graphics, to visualize the results.  

 

I ran each clustering technique many times with different dataset sizes. In addition, for 

each data size I created several different random datasets and extracted the average 

performance to get more reliable statistics. Because some algorithms are not scalable, I 

divided the performance benchmarking in three parts. Firstly, I ran all the algorithms with 

medium sized datasets. Then I aborted the algorithms that performed poorly and ran the 

remaining algorithms with bigger sized datasets. Finally, I ran the fastest algorithms with 

even bigger datasets. 

 

Figure 52. Performance comparison of clustering techniques 
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Firstly, I ran all the seven clustering techniques (K-Means, Mean-shift, Affinity 

propagation, Agglomerative clustering, DBSCAN, HDBSCAN and Spectral Clustering) 

with datasets of sizes from 0 to 32,000 data points. The results are shown in the figure 

above. It is confirmed that Affinity Propagation is not scalable on the number of data 

points as it took over two minutes to cluster 5,000 points. The second slowest 

implementation is Spectral Clustering which took more than two minutes to cluster the 

10,000-point dataset. The rest of the algorithms achieved much higher performance. 

However, Agglomerative Clustering started to get slower after the 10,000-point dataset 

and is ranked as the third slowest implementation. The fourth slowest is Mean Shift 

whereas the rest of the implementations (K-Means, DBSCAN and HDBSCAN) were 

really fast on these datasets. Notably, for practical purposes Affinity Propagation and 

Spectral Clustering cannot be used to cluster datasets with more than 10,000 points (if 

time is a constrain). 

 

 

 

Figure 53. Performance comparison of the fastest clustering techniques 

 

 

Consequently, I ran again all the implementations except Affinity Propagation and 

Spectral Clustering to see how they will perform on bigger datasets. The difference in the 

performance of DBSCAN and HDBSCAN in contrast with the performance of K-Means 

has slightly started to show up. As the number of points in the datasets increases, 
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DBSCAN and HDBSCAN take longer time to cluster them. On the other hand, K-Means 

is still managing to cluster the 60,000-point dataset in under one second. Agglomerative 

Clustering took more than two minutes to cluster the 45,000-point dataset, thus it is 

another outsider in terms of performance and scaling. Mean Shift is still managing to be 

in the four faster implementations. Nevertheless, Mean Shift is slower than the remaining 

three competitors (K-Means, DBSCAN and HDBSCAN). 

 

 

 

Figure 54. Further Performance comparison of the fastest clustering techniques 

 

Finally, I ran the four fastest algorithms (K-Means, DBSCAN, HDBSCAN and Mean 

Shift) with even larger datasets (up to 200,000 points). Here we can see that HDBSCAN 

scales better than its predecessor DBSCAN and what has been discussed in the theory is 

confirmed in practice. Moreover, at the 175,000-point dataset DBSCAN and Mean Shift 

took the same amount of time to cluster the points. In summation, K-Means is the fastest 

and most scalable algorithm and HDBSCAN the second one. 
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3.3.4 Comparison conclusions 

 

I evaluated and compared the performance of seven well-known and generally used 

clustering algorithms: K-Means, Mean-shift, Affinity propagation, Agglomerative 

clustering, DBSCAN, HDBSCAN and Spectral Clustering. For the comparison I used a 

dataset with 1000 points distributed with Poisson Cluster Process (PCP). Also, I 

benchmarked the performance and scaling of the algorithms. 

 

The evaluation of clustering algorithms is not a trivial task because each algorithm has its 

strengths and weaknesses and needs to be run with varied parameter settings. The choice 

of the best clustering algorithm depends on the particular purpose and application. In my 

case the purpose is the clustering of an ultra-dense network that utilizes the proposed UE-

VBS technology. In each cluster, only one UE (i.e. the UE-VBS) will be directly 

connected with the main BS while the rest UEs in the cluster will communicate through 

their UE-VBS. Hence, for my application a good algorithm will produce clusters based 

on the density of points (UEs). Moreover, it is desired for the clusters to have a round 

shape so the active UE-VBS can be in the middle and the rest of the UEs around it. 

Another requirement is for the algorithm to give us the choice to specify the distance 

between the UEs of each cluster. Moreover, it would be useful if we could specify the 

minimum and maximum number of UEs in a cluster. In addition, the algorithm must be 

efficient enough, so it can be scaled to big datasets and used in real-time applications. 

 

With the aforementioned requirements in mind and the score of each algorithm in terms 

of their results, required inputs, complexity, time and scalability the two algorithms that 

stood out are DBSCAN and HDBSCAN. DBSCAN was the most suitable clustering 

method for my scenario. My comparative study showed that DBSCAN took the least time 

to form clusters. Moreover, in the benchmarking analysis, DBSCAN was in the top three 

most scalable and efficient algorithms. In addition, it successfully found the noise points 

and marked them as outliers. Also, it allows us to define the maximum radius of the 

neighborhood of points as well as the minimum number of datapoints in a neighborhood. 

However, as the number of points in the dataset increased, DBSCAN started to slow 

down. On the other hand, HDBSCAN performed much better. In addition, HDBSCAN 

allows clusters of varying density and has better input parameters than DBSCAN. 
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A notable conclusion derived from my experimental results is that a density-based 

clustering technique is most fitting for the clustering of Virtual Small Cells. 

 

3.3.5 Density-based Clustering algorithms 

 

As my comparison of various clustering algorithms in the previous section showed that a 

density-based clustering technique can produce good clusters for a UE-VBS network, I 

decided to explore more density-based clustering algorithms. Unfortunately, there are no 

libraries in python for density-based clustering algorithms other than DBSCAN and 

HDBSCAN. Thus, I used the ELKI (Environment for Developing KDD-Applications 

Supported by Index-Structures) tool to further explore density-based clustering 

algorithms. 

 

ELKI is an open source data mining software written in Java which emphasizes on the 

research of unsupervised methods in cluster analysis and outlier detection. ELKI achieves 

high performance and scalability using data index structures that provides major 

performance gains. It provides a large set of highly parameterizable algorithms, to allow 

the evaluation and benchmarking of algorithms by researchers and students [57].  

 

 

Figure 55. Density estimation overlay of my dataset in ELKI 
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In density‐based clustering, a cluster is a group of data points spread over a contiguous 

region of high-density points. Density‐based clusters are dense areas separated from each 

other by sparser areas (low density of points). The data points positioned in the sparse 

areas are normally marked as outlier points (noise)  [58] and are not assigned to any 

cluster. The density of the areas of outlier points is lower than the density in any of the 

clusters. Moreover, in density-based clustering, for each cluster, the neighborhood of a 

given radius has to contain at least a minimum number of data points [37]. The key idea, 

is to keep expanding a cluster as long as the density and the number of points in the 

neighborhood exceeds some threshold [50]. Provided an index structure that supports 

region queries (which ELKI utilizes), density-based clusters can be efficiently formed by 

executing at most one region query per data point [48]. Furthermore, because of their 

local nature, dense connected areas in can have arbitrary shaped clusters. Additionally, in 

density-based clustering the number of clusters does not need to be specified beforehand. 

However, finding the correct parameters for standard density-based clustering can be 

challenging. 

 

LSDBC 

 

Figure 56. LSDBC clustering result 
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In LSDBC A k-nearest-neighbor density estimation is used to discover the local maxima 

of density which are used as cluster centers. Each cluster is expanded until the density 

falls below a predefined ratio of the center point’s density. LSDBC has two input 

parameters, k, which is the order of nearest neighbor to consider for each data point for 

density calculation and α, that controls the boundary of the current cluster expansion 

based on its density. I run the algorithm on my dataset using the ELKI data mining 

software with parameters k = 5 and a = 0,1 and it took 37ms time to cluster the dataset.  

LSDBC can produce clusters of arbitrary shape with noisy backgrounds that include 

density gradients. Also, it does not require fine tuning of its parameters and is more robust 

than DBSCAN. This clustering technique succeeded in finding dense clusters and 

recognizing noise points. However, there are some dense areas that should be a cluster 

but are marked as noise. 

 

 

OPTICSxi 

 

 

 

 

Figure 57. OPTICSXi clustering result 
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Figure 58. OPTICS reachability plot 

 

OPTICS is a density-based algorithm that tries to overcome the problems of DBSCAN 

with varying density clusters and with the high sensitivity to the choice of parameter 

values. The OPTICS algorithm does not produce a strict cluster partition, but an 

augmented ordering of the dataset. To produce the cluster partition, I used OPTICSxi, 

which is an algorithm that produces a classification based on the output of OPTICS. 

OPTICSxi has three input parameters, xi, ε and MinPts. Unlike DBSCAN, the ε parameter 

is meant as a “maximum” distance to consider instead of a specific distance (a range of 

distances is considered in the OPTICS algorithm, up to ε). A large ε can be chosen, 

however this will increase the time until the convergence of the algorithm. The MinPts 

parameter has the same meaning with DBSCAN (i.e. the minimum number of data points 

required to form a cluster). The xi parameter is the contrast parameter that established the 

relative decrease in density. This parameter directly controls the number of clusters that 

will be obtained. In OPTICS the ε parameter becomes less important but still needs to be 

given a value. The idea of varying densities is implemented by having a range of ε 

parameters. By setting the xi parameter we set the density variation we accept to consider 

a group as a cluster.  

 

I run the algorithm on my dataset using the ELKI data mining software with parameters 

ε = 0,03, MinPts = 4 and xi = 0,01 and it took 52ms time to cluster the dataset. Because 

the algorithm focuses on density variation, instead of a global value of density (like 

DBSCAN), it is possible for areas that have a very low density to become a cluster, just 

because they have a density variation from their surrounds that is higher than the given 

threshold. Correspondingly, it is possible to have dense areas that are not detected as 

clusters because there is a smooth density variation from their surroundings. From the 

results of OPTICSxi on my dataset it can be seen that it successfully found some dense 
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clusrers. However, the aforementioned problems occurred as there are areas with low 

density that should not be a cluster and also there are some dense areas that were not 

detected as clusters. 

 

 

3.3.6 Similarity parameter 

 

In my comparison of different clustering techniques, I used the distance between the data 

points as the similarity parameter. However, in a real-world scenario it would be more 

appropriate to add more attributes in the similarity parameter. In the paper “Selection of 

UE-based Virtual Small Cell Base Stations using Affinity Propagation Clustering” [59] 

the strength of the received signal between the UE-VBSs and the UEs is taken as the 

similarity parameter. Each UE is associated with the UE-VBS from which it receives the 

signal with the maximum power. The detailed formula of the received signal strength can 

be seen in the figure below. 

 

 

 

Figure 59. Equation of the received power (dBm) as a similarity parameter [59] 

 

Where 𝑃𝑗
𝑡 is the transmit power of the 𝑗𝑡ℎ UE-VBS, 𝑃𝑖𝑗

𝑟  is the received power at the 

𝑖𝑡ℎUE from the jth UE-VBS, 𝑑𝑖𝑗 is the distance from the 𝑗𝑡ℎ UE-VBS, 𝜎 is the noise and 

𝛼, 𝛽 have channel dependent values. 

 

 

 

3.3.7 Intra-cluster communication 

 

For the intra-cluster communications (i.e. the communications between the active UE-

VBS and its associated UEs) a separate spectrum can be utilized. Direct D2D 

communication is the communication among UEs that does not involve a BS in their 

communication path. By using a different communication technology for the intra-cluster 
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communications, the cellular network spectrum can be released for the UE-VBS to BS 

and for the outlier UEs to BS connections.  

 

Figure 60. Network comprised of Clusters of UE-VBS and UEs 

 

The most generally accepted contestants for D2D communications are Bluetooth and Wi‐

Fi that operate in the 2.4 GHz unlicensed spectrum [60]. However, the deployment of Wi‐

Fi and Bluetooth D2D communications can be unmanageable and cannot guarantee 

acceptable QoS. Thus WiFi-Direct and LTE-Direct technologies were introduced.  

 

Wi‐Fi‐Direct 

Wi‐Fi‐Direct enables D2D communication without requiring Wi‐Fi infrastructure and 

with negligible client interaction. It allows a device to act as a network controller and 

allows multiple devices to exchange data between them [60]. Wi-Fi Direct can reach 

about ~20Mbps at less than 1m distance between the UEs, and decreases to 0 at ~41m 

distance [61]. WiFi-Direct allows efficient D2D connections in unlicensed bands and 

unlike LTE, it is an uncomplicated protocol, thus it has less energy consumption. 

Moreover, it enables higher spatial reuse than LTE, because it works in shorter distances. 

Nowadays most mobile devices have multi-radio capabilities, so they can simultaneously 
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use both WiFi and LTE [49]. Finally, WiFi-Direct permits a UE to have the role of either 

a client or an access point (AP). 

 

LTE Direct 

LTE Direct is a D2D technology that uses licensed LTE spectrum. The LTE Direct 

protocol was introduced in 3GPP Release 12 specification. In LTE Direct, the network 

functionalities like D2D connection setup, resource allocation and power control are 

implement at the eNodeB [61]. Nevertheless, when the link between two UEs is 

established, they can communicate without any eNodeB involvement. LTE Direct has the 

ability to maintain privacy, battery efficiency, better throughput and less spectrum 

utilization. Moreover, it can enable D2D location-based applications and services. 

 

Scientific simulations showed that both the utilization of WiFi-Direct and LTE-Direct for 

aggregating the data in a single UE through intra-cluster communications outperform the 

standard LTE uploading where each UE transmits its own data to the eNodeB [61]. More 

precisely, the simulations showed that LTE-Direct can achieve higher energy efficiency 

when the number of UEs is relatively high and WiFi-Direct can achieve higher energy 

efficiency when the amount of data is small.  
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Chapter 4 

Conclusion 
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4.1 Conclusions 

 

This thesis initially made an introduction to the anticipated fifth generation of mobile 

networks and its ambitious goals, emerging technologies and challenges. Then, the 

concept of small cells, their benefits and challenges were discussed. It was highlighted 

that the dense deployment of a massive number small cells will be one of the most 

promising technologies towards realizing the target specifications of 5G. As the 

conventional deployment of small cells is static, it is unable to cope with the mobile traffic 

dynamics. Thus, a different approach of small cells was investigated where a subset of 

User Equipment (UE) is dynamically selected to serve as the base stations of other users. 

These UEs are referred as UE-based Virtual Small Cell Base Stations (UE-VBSs) and 

they can be used in a targeted manner to effectively relieve traffic in hot spot areas, 

increase coverage, and spectral efficiency. UE-VBSs can remove the constraint of the 

static deployment of existing Small Cell technologies and bring renaissance to wireless 

communication networks as a major technological breakthrough. 

 

One of the goals of this thesis was to evaluate the performance of the UE-VBSs 

technology. To achieve this, I used OPNET modeler to analyze and compare the 

performance of a network that utilizes the UE-VBSs technology against a conventional 

network where all connections are directly between the UEs and the BS. My simulations 

confirmed that by enabling the use of a subset of the UEs as VBSs the performance of the 

network is significantly enhanced.  

 

The second goal of this thesis was to investigate different clustering techniques in order 

to find the most suitable algorithm for clustering an ultra-dense network which utilizes 
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UE-VBSs. Towards this goal, I studied and presented the background of clustering theory 

and overviewed some of the most popular clustering algorithms. Afterwards, I evaluated 

and compared the performance of seven well-known and generally used clustering 

algorithms: K-Means, Mean-shift, Affinity propagation, Agglomerative clustering, 

DBSCAN, HDBSCAN and Spectral Clustering. For the comparison I used a dataset with 

1000 points distributed with Poisson Cluster Process (PCP). Additionally, I benchmarked 

the performance and scaling of the algorithms using large datasets. 

 

With these requirements of my particular application in mind and the score of each 

algorithm in terms of their results, required inputs, complexity, time and scalability the 

two algorithms that stood out are DBSCAN and HDBSCAN. Therefore, I decided to 

explore more density-based clustering algorithms. Density‐based clustering algorithms 

are efficient, so they can scale to big datasets. Moreover, they can find arbitrary shaped 

clusters and they do not require the number of clusters to be specified beforehand. The 

two clustering algorithms that I tested are OPTICS and LSDBC. Both algorithms 

produced satisfactory clustering results. Thus, along with DBSCAN and HDBSCAN, 

they are the most suitable algorithms for clustering a network that uses UE-VBSs, while 

each one has some strengths and some weaknesses over the others. 

 

The paper “Selection of UE-based Virtual Small Cell Base Stations using Affinity 

Propagation Clustering” proposes the dynamic clustering of virtual small cells and the 

activation of UE-VBSs using a modified version of the affinity propagation clustering 

technique. The UEs measure the RSS (Received Signal Strength) from every eligible UE-

VBS in their proximity. Each UE will connect with the UE-VBS from which it receives 

the maximum RSS. In contrast with the original Affinity Propagation algorithm which 

passes messages between all points, the modified algorithm passes messages only 

between the UEs and the eligible UE-VBSs. Nevertheless, Affinity Propagation, as 

proved in my study, tends to be very slow, especially on big data sets because its basic 

operations are computationally expensive. 

 

Concluding, the most suitable technique for clustering an ultra-dense network which 

utilizes UE-VBSs is a two-step method. In the first step a density-based clustering 

algorithm will be used on the initial big dataset to efficiently extract the dense areas of 
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UEs and detect outlier UEs. In the second step, the modified affinity propagation 

algorithm will be used in each dense area provided from the previous step to choose the 

active UE-VBSs and connect every UE with its associated UE-VBS. 

 

 

4.2 Future Work                         

 

As a future work I propose the further study of the four density-based (DBSCAN, 

HDBSCAN, LSDBC and OPTICS) on bigger datasets with PCP distribution. Also, it 

would be interesting to see how these algorithms behave with the Received Signal 

Strength as a similarity parameter instead of the distance. In addition, the aforementioned 

two-step clustering method can be tested in a real-world scenario. Finally, the OPNET 

simulations can be extended for scenarios with more UEs and UEs with mobility. 
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Appendix A - Abbreviations 
 

3GPP   Third-Generation Partnership Project 

DeNB  Donor eNB 

AMPS  Advanced Mobile Phone System 

BBU   Bandwidth-Based Unit  

BS  Base Station 

CaPex   Capital Expenditure 

CGS   Closed Subscriber Group  

C-RAN Cloud Radio Access Network 

D2D  Device to Device 

DNS   Domain Name System 

DoS   Denial of Service 

E2E   End-to-End 

EDGE  Enhanced Data Rates for GSM Evolution 

eNB  evolved NodeB. 

GPRS   General Packet Radio Service 

GSM   Global System for Mobile Communications 

HSPA   High Speed Packet Access 

IoT   Internet of Things 

LTE  Long Term Evolution. 

MBS  Macrocell Base Station 

mmWave  millimeter-Wave, 

MTC  Machine-Type Communication 

NFV  Network Function Virtualization 

NMT  Nordic Mobile Telephone 

OFDMA  Orthogonal Frequency Division Multiple Access 

OpEx  Operation Expenditure 

PCP  Poisson Cluster Process 

PDCCH  Physical Downlink Control Channel 

PDSCH  Physical Downlink Shared Channel 

PUSCH  Physical Uplink Shared Channel 

QoE  Quality of Experience 
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QoS  Quality of Service 

RAN  Radio Access Network 

RRU   Remote Radio Unit 

RSRP  Reference Signal Received Power 

RSRQ  Reference Signal Received Quality 

SDN  Software Defined Network 

SNR   Signal to Noise Ratio 

TACS   Total Access Communications System 

UE  User Equipment 

UMTS  Universal Mobile Telecommunications System 

V2I  Vehicle-to-Infrastructure 

V2V  Vehicle-to-Vehicle 


