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ABSTRACT 

 

The exponential growth of video viewing traffic on the Internet has led to the rise of 

the internet economy. Marketeers aiming to promote their content have turned their interest on 

this fairly new kind of advertisements on videos. Their main concern is that they would only 

like to promote their content on videos that will be viewed by as many people as possible. This 

requirement of knowing which video is going to attract the more viewers, has made necessary 

the developing of predictive mechanisms that would be able to predetermine the popularity and 

virality of videos.   

In order to be able to predict when a video could become popular or viral, we first 

needed to understand under which circumstances a YouTube video is most likely to flourish. 

To achieve this, information about the video on the two platforms, YouTube and Twitter, was 

collected and analyzed. Monitoring the progress of each video for a specific amount of days, 

we were able to extract a set of YouTube and Twitter features to later determine if they play 

any role in the progress of that video. Having collected all the necessary data, the next step was 

to be able to predict when a video was going to become popular, viral or both. Ideally, a 

prediction of the oncoming popularity or virality of a video, should be made within a couple of 

days since its upload. To achieve this, a powerful prediction model had to be created using 

machine learning.  

In this study, several powerful prediction models where developed using a variety of 

machine learning algorithms and methodologies. More specifically, multiple algorithms where 

tested, evaluated and compared to determine which ones produce the most accurate predictions 

on the study under consideration. The next step was to combine multiple machine learning 

algorithms and methodologies to create hybrid algorithms that were able to produce even 

higher accuracy predictions.  

Most of the algorithms used in this research where fine-tuned to increase their 

performance and evaluated in detail to determine under which circumstances each algorithm 

thrives and how suitable the algorithm is for the classification of a video. The most powerful 

models where then compared to each other to determine which one produces the most desirable 

and accurate classifications under the current circumstances. The main objective was to come 

up with a bunch of machine learning algorithms that performed better in different scenarios, 

and finally decide which one is most suitable for this research. 

Finally, another goal of this study was to create models that are able to extract the 

importance of each feature in order to have the ability to narrow down the features of each 

platform that are the most important in the classification of the video. 
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1.1 Motivation and Prior Work 

 

During the last decade, a huge part of Internet usage has shifted from traditional web to media, 

and more specifically videos [1]. This exponential growth of video viewing traffic on the 

Internet has led to the rise of the Internet economy. Marketeers aiming to promote their content 

have turned their interest on this fairly new kind of advertisements on videos. Their main 

concern is that they would only like to promote their content on videos that will be viewed by 

as many people as possible. This need to be able to know which video is going to attract the 

more viewers, has made necessary the existence of a predictive mechanism that would be able 

to predetermine the popularity and virality of videos.   

 

The definition of popularity and virality was given in David Vallety’s previous research on a 

similar topic: Characterizing and Predicting Viral-and-Popular Video Content [2]. They 

define popularity as the inherent propensity of a video to attract views on YouTube and 

virality as its potential to elicit Twitter posts from its viewers. The most valuable and 

interesting videos are those that become both viral and popular. Predicting whether a video will 

become both viral and popular has proven to be one of the most difficult tasks.  

 

In order to be able to predict when a video would become popular or viral, we first needed to 

understand under which circumstances a YouTube video is most likely to flourish. To achieve 

this, information about the video on the two platforms, YouTube and Twitter, was collected 
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and analyzed. Monitoring the progress of each video for a specific amount of days, we were 

able to extract a set of YouTube and Twitter features to later determine if they play any role in 

the popularity or virality of that video.  

 

Having collected all the necessary data, the next step was to be able to predict when a video 

was going to become popular, viral or both. In order to be of any value, this prediction should 

be made as independent as possible from the number of days the video was being monitored. 

Ideally, a prediction of the oncoming popularity or virality of a YouTube video, should be 

made within a couple of days since its upload. To achieve this need a powerful prediction 

model had to be created using machine learning. Machine learning [3] provides computers 

with the ability to learn without being explicitly programmed and focuses on the development 

of algorithms whose outcome can change when exposed to new data. 

 

In this study, several powerful prediction models where developed using a variety of machine 

learning algorithms and methodologies [15]. More specifically, multiple algorithms where 

tested, evaluated and compared to determine which one produces the most accurate predictions. 

The next step was to combine multiple machine learning algorithms and methodologies to 

create hybrid algorithms that were able to produce even higher accuracy predictions.  

 

Most of the algorithms used in this research where evaluated in detail in chapter 3 to determine 

under which circumstances each algorithm thrives and how suitable the algorithm is for the 

classification of a video as popular and viral. The most powerful models where then compared 

to each other to determine which one produces the most desirable and accurate classifications 

under the current circumstances. Machine learning algorithms analysis plays a huge role in the 

overall goal of the research. More specifically, this part of the research, which is to analyze, 

evaluate and compare machine learning algorithms allows us to use very powerful models to 

predict the popularity and virality of a YouTube video with high accuracy. This also gives us 

the ability to narrow down the features of each platform that are the most important in the 

classification of the video. 

 

Although there have been similar studies [4] that attempted to predict the virality and popularity 

of videos, there wasn’t any research or prior work regarding machine learning algorithms 

analysis that attempted to create powerful models that would make the most accurate 

predictions for this problem. This is the novelty of the presented study. 

 

 



- 3 - 

 

1.2 Goals of the Study 

 

The ultimate goal of this study was to create powerful models that would be able to make high 

accuracy predictions of virality and popularity of YouTube videos.  

 

One of the main objectives of this research was to analyze and evaluate a variety of different 

machine learning algorithms, in order to examine their strengths and weaknesses related to this 

study’s problem. The algorithms had to be fine-tuned to increase their performance and make 

them more suitable for the current research. In order to achieve even higher accuracy 

classifications, hybrid algorithms had to be created. 

 

Another important goal of the study was to compare the most promising algorithms in order to 

examine their behavior in relation to each other and determine the most suitable ones [5] for 

this problem. The objective was to come up with a bunch of machine learning algorithms that 

performed better in different scenarios, and finally decide which one is most suitable for this 

research. 

 

Finally, another goal of this study was to create classifiers that are able to extract the importance 

of each feature in the classification and prediction of popularity and virality of YouTube videos. 

 

1.3 Methodology 

 

The following diagram presents the abstract methodology of this study. 

 

 

Figure 1: Abstract diagram of the methodology used in this study 

 

Data Collection: The general idea of how the data collection system works is described in 

detail in Section 2.3. In order to be able to collect the information needed, YouTube Data API 

1. Data 
Collection

2. Labeling and 
Filtering

3. Feature 
Preparation

4. Development 
and Fine-tuning 

of Algorithms

5. Training and 
Classification

6. Evaluation of 
Algorithms

7. Comparison 
of Algorithms

8. Conclusions
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[6] and Twitter Streaming API [7] where used. The overall procedure was repeated for every 

video collected. 

 

Labeling and Filtering: Only information needed for the creation of the training features 

where kept. Out of the 130.000 videos, only a predefined percentage is used in the training 

procedure. For example, in strict labeling, the percentage used is 2.5%. This means that the 

dataset used in the training procedure consisted of the 2.5% most popular videos, the 2.5% 

most viral videos, 2.5% most recent videos and 2.5% random videos. Some videos appear in 

multiple of the above categories, meaning that the real amount of unique videos in each 

category is less than 2.5%. 

 

Feature Preparation: The raw information acquired from the datasets is processed in order to 

export features that will be used during the training of the classifiers. The features prepared are 

described in Section 2.2 

 

Development and Fine-tuning of Algorithms: After extensive research [11], various kinds 

of machine learning algorithms where developed and fine-tuned to better fit the needs of this 

research. 

 

Training and Classification: The dataset in an experiment is used to train each classifier, 

which was created using a different kind of algorithm. All the training features are fitted to the 

model in order to produce a final classification of the videos. The outcome is a bundle of 

metrics that show how well an algorithm has performed and what features where the most 

important.   

 

Evaluation of Algorithms: A selection of algorithm is evaluated in order to examine their 

performance, strengths and weaknesses using baseline tests. A more detailed description of the 

evaluation methodology is presented in Section 3.1. 

 

Comparison of Algorithms: After evaluating the algorithms, the most promising ones are 

compared between each other to determine when each algorithm performs better and why. The 

comparison methodology is described in detail in Section 4.1. 

 

Conclusions: After evaluating and comparing the algorithms, the better performing ones are 

kept for further usage and development. Each algorithm selected performs better in different 

scenarios. The comparison conclusions are presented in detail in Section 4.7 
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1.4 Contributions 

 

This study offers several contributions to the scientific community. First of all it allows any 

novice to rapidly pick up and understand basic machine learning knowledge. It explains in the 

depth how some algorithms are separated and how they operate. In addition, a variety of 

evaluation metrics are presented and a detailed explanation is given on how each one can be 

used to evaluate the performance of a machine learning algorithm.  

 

The tools developed for the purpose of this study allow for a better understanding of how each 

machine learning algorithm, discussed in this document, behaves and why. More specifically, 

the web application developed gives the ability to see several metrics regarding a specific 

algorithm. You can see how it performs under different scenarios by examining its precision-

recall graphs and its’ F1 scores presented in the web application. In addition, it allows the user 

to graphically compare two algorithms to determine which one performs better under which 

circumstances.  

 

The prediction models developed in this study can be used for any kind of binary classification 

problems and can export several kind of metrics regarding the models performance.  

 

Finally, the evaluation and the comparison of the algorithms presented in this study depicts 

how each algorithm behaves in different situations. Additionally, the conclusions extracted 

from these evaluations and comparisons contribute heavily to the scientific community, since 

they can be used for further development and adjustment of the algorithms in similar problems 

that require binary prediction models.  
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1.5 Document organization 

 

The following table contains a brief summary of what is covered in each chapter. 

 

Chapter 2 

This chapter contains some of the background knowledge and tools needed for 

this study. More specifically, a brief explanation is given on how each of the 

machine learning algorithms used works. In addition, an abstract description is 

given about the data collection procedure. This chapter also contains the 

evaluation metrics used in the research along with an explanation for each one. 

The training features are analyzed and described towards the end of this chapter. 

Finally, this chapter contains implementation details about the tools developed. 

Chapter 3 

In this chapter each algorithm is ankylosed and evaluated using a specified 

methodology. More specifically, each algorithm’s performance is tested against 

a set of defined baseline values in order to examine the quality of the classifiers. 

Chapter 4 

This chapter contains a methodology followed to compare each algorithm. A 

bundle of the highest performing algorithms was chosen and compared in order 

to extract some conclusions. Towards the end of the chapter, a set of the most 

suitable algorithms is chosen and analyzed for its strengths and weaknesses. A 

final conclusion is then made as to which algorithm performs better at which 

scenario, including this research. 

Chapter 5 

This chapter contains the overall conclusions of this study. In addition, it 

discusses future work that could be done based on a hypothesis that could lead 

to the creation of much more powerful models. 
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Chapter 2 

 

Background Knowledge and Tools 

 

2.1 Machine learning algorithms        7 

2.2 Features           15 

2.3 Implementation details         22 

2.4 Model evaluation          34 

 

 

2.1 Machine Learning Algorithms 

 

There are three types of machine learning algorithms: supervised learning, unsupervised 

learning and reinforcement learning. For the purpose of this research supervised learning was 

used, more specifically classification, to test assumptions, validate data, make predictions and 

reach to certain conclusions regarding the popularity and virality of YouTube videos.  

 

The machine learning algorithms chosen where separated into two groups:  

1. Stand-alone Algorithms 

2. Hybrid Algorithms 

 

2.1.1 Stand-alone Algorithms 

 

Stand-alone algorithms are standalone machine learning algorithms that make classifications 

using their own methodologies without any third-party assistance.  

 

2.1.1.1 Logistic Regression 

 

Logistic regression [9], despite its name, is a linear model for binary classification rather than 

regression and can be extended to multiclass classification via the OvR technique. In this 

model, the probabilities describing the possible outcomes of a single trial are modeled using a 

logistic function:  

𝑓(𝑥) =  
1

1 + 𝑒−𝑥
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The logistic function is an S-shaped curve that can take any real-valued number and map it into 

a value between 0 and 1, but never exactly at those limits. Where “e” is the base of the natural 

logarithms and “x” is the actual numerical value that you want to transform. In the case of 

logistic regression, “x” is the linear combination of weights and sample features that can be 

calculated as x = W0 + W1F1 + …. + WmFm. 

 

Due to its probabilistic nature this powerful algorithm is idle for binary classification. Strictly 

speaking the Logistic Regression algorithms classifies the input data as follows: 

 

Class =      1 𝑖𝑓 𝑓(𝑥) ≥ 0.5 

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

The logistic regression algorithm used in this study optimizes its outcome by minimizing the 

following cost function:  

 

 

 

2.1.1.2 K Nearest Neighbors 

 

Nearest Neighbors algorithms [9] are a family of machine learning algorithms that classify 

datasets based on a chosen distance metric. The K Nearest Neighbors algorithm is a typical 

example of a lazy learner. It is called lazy because it doesn’t learn a discriminative function 

from the training data but memorizes the training dataset instead. 

 

The KNN algorithm uses a simple Euclidian distance metric to determine the class of sample 

data as shown in the following equation.  

𝐷(𝑥, 𝑦) =  √∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=0

 

 

Based on this distance metric, the KNN algorithm finds the k samples in the training dataset 

that are closest to the point that we want to classify, where k is the number of neighbors chosen. 

The class label of the new data point is then determined by a majority vote among its k nearest 

neighbors. 
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Figure: KNN algorithm takes into consideration the K nearest neighbors (1, 2, 3) 

 

The main advantage of such a memory-based approach is that the classifier continually adapts 

and improves as we collect new training data. However, the downside is that the computational 

complexity for classifying new samples grows linearly with the number of samples in the 

training dataset. This means that the KNN algorithm will require more time to classify the new 

data as the size of the training dataset grows.   

 

2.1.1.3 SVM – Linear SVC 

 

Support Vector Machine (SVM) algorithms [18]  aim to maximize the distance between the 

decision boundary, which is known as margin, and the training samples that are closest to this 

boundary, which are known as support vectors. 

 

 

Figure 2: Two class classification using Support Vector Machine [9] 

  

This family of machine learning algorithms is characterized by its adaptability to various kinds 

of problems since it can use different types of kernels to separate sample training data into 

classes. 
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Support Vector Machine algorithms tend to work more effectively in high dimensional spaces. 

Binary classification, which is used in this study, requires a linear kernel to be used in the SVM 

algorithms. For the purpose of the current research, three different SVM algorithms with linear 

kernels where tested: SVC, NuSVC and Linear SVC.  

 

SVC, which stands for support vector classification, is an SVM algorithm that can use multiple 

kind of kernels to execute different types of classifications. In our case, a linear kernel was 

used for SVC. NuSVC is similar to the SVC algorithm but uses a parameter to control the 

number of support vectors. Linear SVC doesn’t have a kernel parameter since it uses a linear 

kernel by default. Linear SVC was chosen over the two other algorithms since it had better 

overall performance and was more suitable for the needs of this research.  

 

2.1.1.4 Decision Tree 

 

Decision Tree classification algorithms [9] are popular models due to their interpretability. This 

family of algorithms operates by breaking down sample training data by making decision based 

on asking a series of questions. An example of a decision tree is shown in Figure 3.  

  

 

Figure 3: Example of a decision tree structure 
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The decision algorithm starts at the root of the tree and splits the data on the feature that results 

in the largest information gain. The classification process finishes when the decision tree is 

completely built.  

 

Decision Tree algorithms are “weak learners” that’s why they are mostly used as part of other 

machine learning algorithms to improve the performance and the accuracy of a classification.  

 

2.1.2 Hybrid Algorithms 

 

Hybrid algorithms [20] are a combination of machine learning algorithms and methodologies 

that aim to enhance the accuracy of the classifications. The general idea of ensemble-hybrid 

learning is to combine “weak learners” to build a more robust model, a “strong learner”. 

 

2.1.2.1 Random Forest and Extra Trees 

 

Random forests are a collection of randomized decision trees. More specifically the algorithm 

chooses n random samples from the training data set with replacement and then proceeds to 

create a decision tree. In the decision tree created the algorithm randomly chooses a specified 

amount of features without replacement before moving to the splitting procedure and the 

classification. The algorithm repeats the procedure until a forest of a predefined number of 

trees is created. The final class labels are assigned using majority voting among the decision 

trees of the forest.  

 

Just like Random Forests Extra Trees is a collection of randomized decision trees. The process 

of the forest creation and the classification is similar to that of the Random Forest algorithm 

with an exception of an additional random step. In this algorithm randomness goes one step 

further in the way splits are computed. As in random forests, a random subset of candidate 

features is used, but instead of looking for the most discriminative thresholds, thresholds are 

drawn at random for each candidate feature and the best of these randomly-generated 

thresholds is picked as the splitting rule.  
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Figure 4: Random Forest and Extra Trees Algorithms structure example 

 

Figure 4 depicts the idea behind a random forest or an extra trees algorithm. Each randomly 

generated decision tree classifies its data, k1… kb, and then a majority vote takes place. The 

voting procedure is simple. A specific video is labeled with the classification that appeared the 

most times in all the sub trees. If a tie occurs then the first classification in acceding order is 

chosen. Typically, the larger the number of trees, the better the performance of the random 

forest or extra trees classifier and the expense of an increased computational cost.  

 

2.1.2.3 Bagging Decision Tree 

 

Bagging [9] is an ensemble learning technique that aims to improve the performance of a weak 

learner. A predefined amount of estimators classify random parts taken from the training data 

sample and the final labeling occurs after majority voting takes place. Bagging methods help 

reduce variance and overfitting [21] caused by the individual estimators.  

 

Figure 5 gives a fair representation of how bagging methods work. First an ensemble of 

decision trees with random subsets of data is created. Each decision tree contains all the features 

used in the dataset. After each individual classification, a majority vote takes place. Looking 

at all the classifications, C1…Cm, we chose the label that has appeared the most times for a 

specific video. If a tie occurs, the first labeling is chosen in acceding order.  
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Figure 5: Representation of how the Bagging methodology works [9] 

  

The Bagging Decision Tree algorithm was used to examine the extent at which the bagging 

technique contributes to the improvement of an individual estimator, in this case a Decision 

Tree.  

 

2.1.2.4 Boosting Decision Trees 

 

Boosting is the methodology that aims to optimize the overall accuracy of a weak learner by 

continually improving its classification performance. It starts with using a weak learner to 

classify some data and then adds more weak learners to the equation that focus on the wrong 

labels given by the previous classification. Each boosting iteration aims to improve the 

performance of the previous learner.   

 

2.1.2.4.1 Gradient Boosting Decision Tree 

 

Gradient Boosting [13] is an advance methodology that is used to boost the performance of 

weak learners (in this case decision trees).  

 

The algorithm bases its functionality on three factors: 

1. A loss function to be optimized. 

2. A weak learner to make predictions. 

3. An additive model to add weak learners to minimize the loss function. 

 

In each boosting iteration a new weak learner is added to the ensemble and at the end of its 

predictions the overall model’s performance is improved whereas the loss function is reduced. 
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The goal is to minimize the loss function every time a new decision tree is added. This is 

achieved by using the gradient decent methodology.  

 

2.1.2.4.2 Ada Boosting Decision Tree 

 

The core principle of Ada Boosting [23] is to fit an ensemble of weak learners (in this case 

decision trees) on repeatedly modified versions of the data. The predictions from all of them 

are then combined through a weighted majority vote to produce the final prediction.  

 

Each boosting iteration consists of applying weights [W1...Wn] to each of the training samples. 

Initially, those weights are all set to Wi = 1/N, so that the first step simply trains the weak 

learners on the original data. For each successive iteration, the sample weights are individually 

modified and the learning algorithm is reapplied to the reweighted data. The training samples 

that were incorrectly predicted by the boosted model induced at the previous step have their 

weights increased, whereas the weights are decreased for those that were predicted correctly. 

This weight change in each boosting iteration forces the week learners to focus on data that 

was misclassified in previous iterations. 

 

 

Figure 6: Adaptive boosting example [9] 

 

2.1.2.4.3 Voting – Ada and Gradient Boosting Decision Tree 

 

Voting [9] takes multiple estimator’s classifications as input and performs a voting procedure 

to decide the final classification of the training data. This methodology uses two kinds of 

voting, hard or soft. If “hard” voting is chosen, a majority voting procedure takes place between 

all the classifications of the ensemble. Else if “soft” voting is chosen, the final classification is 

deducted base on the max of the sums of the predicted probabilities.  Ada Boosting and 

Gradient Boosting both improve the performance of a decision tree algorithm and Voting 
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serves as a final improvement step for ABDT and GBDT classifications, deciding the final 

labeling that takes place. 

 

2.1.2.4.4 Voting – Ada and Gradient Boosting Decision Tree + Logistic Regression  

 

In this majority vote hybrid algorithm, Ada boosting Decision Tree, Gradient Boosting 

Decision Tree and Logistic Regression where used in an attempt to test the boundaries of the 

Voting methodology. 

 

2.1.2.4.5 Bagging Gradient Boosting Decision Tree 

 

Gradient Boosting Decision Tree classifier is a powerful model when it comes to making 

predictions with binary classification. Despite its’ high accuracy, GBDT has some flaws which 

under the Bagging model (explained in Section 2.1.2.3) seem to be reduced substantially.  

 

2.2 Features 

 

2.2.1 Training Features Description 

 

In order to train the classifiers as effectively as possible 74 distinct features where used. With 

each additional training day the count of window sensitive features (e.g. ratios, differences etc.) 

is increased accordingly.  

 

YouTube Features (31): 

 

Static Features 

category The category of the video assigned by YouTube 

artificial_category Some categories were grouped for the purposes of this 

research 

duration The duration of the video in milliseconds 

comments_sentiment_neg Statistics about video comments that were classified as 

sentimentally negative 

comments_sentiment_neu Statistics about video comments that were classified as 

sentimentally neutral 
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comments_sentiment_pos Statistics about video comments that were classified as 

sentimentally positive 

comments_sentiment_compound Statistics about video comments that were classified as 

sentimentally compound 

channel_uploads The amount of video uploads in the channel the video 

belongs to 

channel_subscribers The amount of subscribers in the channel the video 

belongs to 

channel_views The amount of total views in the channel the video 

belongs to 

Table 1: Descriptions of the static YouTube features 

 

Differences 

views_dif The difference between the accumulated views of a video at the first and 

last day of the training 

likes_dif The difference between the accumulated likes of a video at the first and last 

day of the training 

dislikes_dif The difference between the accumulated dislikes of a video at the first and 

last day of the training 

comments_dif The difference between the accumulated comments of a video at the first 

and last day of the training 

Table 2: Descriptions of the differences between YouTube features 

 

Accelerations - The ratio of a feature between day n and day n-1 

views_acc The average acceleration of the views 

likes_acc The average acceleration of the likes 

dislikes_acc The average acceleration of the dislikes 

comments_acc The average acceleration of the comments 

Table 3: Descriptions of the accelerations of several YouTube features 

 

Daily Stats - (1..n) 

views Views added to the video at the # day 

likes Likes added to the video at the #day 

dislikes Dislikes added to the video at the #day 

comments Comments added to the video at the #day 

Table 4: Descriptions of the daily statistics of several YouTube features 
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Age ratio – (1..n) 

ageRatioViews The ratio between the number of  views of a video on day # and the 

date it was uploaded (in days) 

ageRatioLikes The ratio between the number of likes of a video on day # and the 

date it was uploaded (in days) 

ageRatioDislikes The ratio between the number of dislikes of a video on day # and the 

date it was uploaded (in days) 

ageRatioComments The ratio between the number of comments of a video on day # and 

the date it was uploaded (in days) 

Table 5: Descriptions of the age ratio of several YouTube features 

 

 

Ratios - (1..n) 

ratioViews The ratio between the number of views on day # and the total likes of the 

video since upload 

ratioLikes The ratio between the number of likes on day # and the total likes of the 

video since upload 

ratioDislikes The ratio between the number of dislikes on day # and the total likes of 

the video since upload 

ratioComments The ratio between the number of comments on day # and the total likes 

of the video since upload 

Table 6: Descriptions of the ratios of several YouTube features 
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Twitter Features (43): 

 

Static Features 

user_followers_count The average amount of followers users referring to the specific 

video have 

users_verified_count The amount of verified users referring to a video 

user_friends_count The average amount of friends users referring to the specific video 

have 

Table 7: Descriptions of the static Twitter features 

 

Differences 

tw_tweets_dif The difference between the total amount of tweets referring to a 

specific video at the first and last day of the training 

tw_orig_tweets_dif The difference between the total amount of original tweets 

referring to a specific video at the first and last day of the training 

tw_retweets_dif The difference between the total amount of retweets referring to a 

specific video at the first and last day of the training 

tw_user_favorites_dif The difference between the total amount favorites the tweet 

referring to a specific video has received, at the first and last day 

of the training 

tw_eng_dif The difference between the total amount of tweets in English 

referring to a specific video at the first and last day of the training 

tw_sp_dif The difference between the total amount of tweets in Spanish 

referring to a specific video at the first and last day of the training 

tw_user_eng_dif The difference between the total amount of tweets whose user has 

set their account language to English, referring to a specific video 

at the first and last day of the training 

tw_user_sp_dif The difference between the total amount of tweets whose user has 

set their account language to Spanish, referring to a specific video 

at the first and last day of the training 

tw_user_statuses_dif The difference between the total amount of statuses posted by users 

that have referred to a specific video, at the first and last day of the 

training 

tw_hashtags_dif The difference between the total amount of hashtags used in tweets 

referring to a specific video, at the first and last day of the training 

Table 8: Descriptions of the differences between Twitter features 



- 19 - 

 

Accelerations - The ratio of a feature between day n and day n-1 

tw_tweets_acc The average acceleration of tweets referring to a specific video 

tw_orig_tweets_acc The average acceleration of original tweets referring to a specific 

video 

tw_retweets_acc The average acceleration of retweets referring to a specific video 

tw_user_favorites_acc The average acceleration of user favorites 

tw_eng_acc The average acceleration of English tweets referring to a specific 

video 

tw_sp_acc The average acceleration of Spanish tweets referring to a specific 

video 

tw_user_eng_acc The average acceleration of English users referring to a specific 

video 

tw_user_sp_acc The average acceleration of Spanish users referring to a specific 

video 

tw_user_statuses_acc The average acceleration of statuses of a User that has referred to 

a specific video 

tw_hashtags_acc The average acceleration of the number of hashtags used in tweets 

referring a specific video 

Table 9: Descriptions of the accelerations of several Twitter features 

 

Daily stats - (1..n) 

tweets_added The number of tweets added on day # 

original_tweets_added The number of original tweets added on day # 

retweets_added The number of retweets added on day # 

tweets_favorited_added The number of tweets favored on day # 

tweets_in_english_added The number of English tweets added on day # 

tweets_in_spanish_added The number of Spanish tweets added on day # 

user_eng_count The number of English users that posted a tweet on day # 

user_sp_count The number of Spanish users that posted a tweet on day # 

user_statuses_count The number of user statuses added on day # 

tweets_hashtags_added The number of additional hashtags used on day # 

Table 10: Descriptions of the daily statistics of several Twitter features 
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Ratios – (1..n) 

ratioTweets The ratio between the number of tweets on day # and the total number 

of tweets since post.  

ratioOrigTweets The ratio between the number of original tweets on day # and the total 

number of tweets since post.  

ratioRetweets The ratio between the number of retweets on day # and the total 

number of tweets since post.  

ratioUserFavorites The ratio between the number of user favorites on day # and the total 

number of user favorites since post.  

ratioTwEn The ratio between the number of English tweets on day # and the total 

number of English tweets since post.  

ratioTwSp The ratio between the number of Spanish tweets on day # and the total 

number of Spanish tweets since post.  

ratioUserEng The ratio between the number of English users on day # and the total 

number of English users since post.  

ratioUserSp The ratio between the number of Spanish users on day # and the total 

number of Spanish users since post.  

ratioUserStatuses The ratio between the number of user statuses on day # and the total 

number of user statuses since post.  

ratioHashtags The ratio between the number of hashtags used on day # and the total 

number of hashtags used since post.  

Table 11: Descriptions of the ratios of several Twitter features 
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2.2.2 Feature Importance 

 

During classification the training features are assigned multiple weights according to their 

importance in labeling the videos. Different features are more important in different scenarios. 

For this reason, the importance of each feature is exported after each classification in the form 

of a percentage, to examine how much it has contributed in the final labeling of the video. An 

example of a feature importance extraction is shown in table 12. 

 

Feature 

Importance 
Features Importance 

1 views_acc 12% 

2 views_1 11% 

3 ageRatioViews_1 9% 

4 video_duration 9% 

5 comments_1 5% 

6 channel_uploads 5% 

7 ageRatioLikes_1 4% 

8 comments_acc 4% 

9 channel_views 4% 

10 comments_sentiment_compound 3% 

11 comments_sentiment_neu 3% 

12 tw_user_followers 3% 

13 ageRatioComments_1 2% 

14 dislikes_acc 2% 

15 channel_subscribers 2% 

16 comments_sentiment_pos 2% 

17 comments_sentiment_neg 2% 

18 category 2% 

19 tw_hashtags_1 2% 

20 ageRatioDislikes_1 1% 

21 dislikes_1 1% 

… … … 

Table 12: Example of exported feature importance of several features 
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2.3 Implementation Details 

 

 

  

 

 

 

The above figure summarizes the implementation details described in this chapter. First we had 

to collect metadata for a number of YouTube videos from YouTube and Twitter. These data 

had to go through a labeling and filtering procedure to come up with a dataset containing only 

raw information regarding each video. Three tools where then developed, a Feature Manager, 

the Machine Learning Models and a Web application. Each of this tools developed for the 

needs of this study serves a different purpose which is analyzed to an extent in the subsections 

of the Implementation Details section.  

 

2.3.1 Data Collection 

Despite the fact that data collection was a huge part of this research, it doesn’t fit in the main 

context of this document, which is the analysis and comparison of machine learning algorithms 

for the needs of the current research. For this reason, only a brief explanation of the data 

collection methodology followed will be given instead of detailed one. The general idea of how 

the data collection system works is depicted in Figure 7. In order to be able to collect the 

Raw Data

Data 
Collection

Presentation (HTML,CSS,PHP)

Parses Model Output Parses User Input Presents Results

Machine Learning Models  (SCIKIT- LEARN PYTHON)

Parses Training Datasets Trains/Tests Classifiers Exports Metrics and Feature Importance

Feature Manager (JAVA)

Parses Raw Data Exports Training Features
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information needed, YouTube Data API and Twitter Streaming API where used. The overall 

procedure was repeated for every video collected. 

 

After receiving a random YouTube video mentioned in a tweet, the monitoring procedure took 

place. Each video collected was monitored for 15 consecutive days acquiring metadata about 

its progress on YouTube and Twitter. All the raw data collected where stored in a remote 

database. In addition to the metadata, a bunch of comments were collected, analyzed and stored 

for each video. 

 

After collecting the desired amount of 130.000 videos, a filtering took place. More specifically, 

only information needed for the creation of the training features where kept. Out of the 130.000 

videos, only a predefined percentage was used in the training procedure. For example, in strict 

labeling, the percentage used was 2.5%. This means that the dataset used in the training 

procedure consisted of the 2.5% most popular videos, the 2.5% most viral videos, 2.5% most 

recent videos and 2.5% random videos. Some videos appear in multiple of the above categories, 

meaning that the real amount of unique videos in each category is less than 2.5%.  

 

 

 

Figure 7: Data collection system 
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2.3.2 Feature Manager 

 

The data collected during the monitoring period consisted of raw information regarding the 

progress of about 130.000 videos on YouTube and Twitter. In order to be of any value, these 

data needed to be processed, combined and manipulated to create various training features. For 

this reason, a “Feature Manager” tool was developed using Java [19]. In this Section, a high 

level explanation is given on how this tool works.  

Input: 

 

Figure 8 contains a code snippet of a FeatureManager object being created with a set of specific 

parameters. More specifically, the FeatureManager object takes six parameters: 

1. t_window: Number of training days 

2. offset: Number of offset days 

3. l_window: Number of labeling days 

4. split_days: Defines after how many days since upload the video is classified as old 

instead  of recent 

5. ytFeatures: Binary value that specifies which YouTube features (from a predefined 

list) should be exported. 

6. twFeatures: Binary value that specifies which Twitter features (from a predefined list) 

should be exported. 

 

The raw data of the videos is parsed to the system through a CSV file and separated to their 

respective categories. Finally, the feature manager calls a procedure named “createFeatures()” 

that processes, combines, creates and exports the final training features. 

 

 

Figure 8: Code snippet of Feature Manager input and execution 
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Processing: 

 

After parsing the raw data, the feature manager goes through several methods of processing 

and combining the data to produce valuable information, which are converted to a set of 

training features at the end of the execution. Figure 9 depicts the skeleton of the Feature 

Manager tool.  

 

 

 

The ClassifierFeatures package contains 

utilities that are responsible for creating any 

kind of features ( baseline YouTube, all 

YouTube, baseline Twitter, all Twitter ) and 

labeling the videos (popular , viral) 

The models package contains all the objects 

related to specific features like: daily 

features, age ratios, YouTube related ratios 

etc. The VideoData object contains all the 

final information needed for a specific video 

The records package is used to parse 

information into the FeatureManager from 

the services developed instead of a CSV file 

Exporter parses the input data and creates a 

feature manager to export the final training 

features. The exporter can be used to 

automatically export features using different 

window values. 

Figure 9: Feature Manager Skeleton 
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Output: 

 

After all the information is created regarding a specific video, it is stored in a VideoData object. 

Finally, all the data from the collection of VideoData objects is exported into ten text files, for 

each different window combination. These files will be later used to train and test the classifiers 

for each of the machine learning algorithms presented in this study.   

 

 

The labeling files contain two rows of data. 

Each row consists of 1s and 0s. The first 

row contains the popularity labeling of the 

videos whereas the second row contains the 

virality labeling of the videos. 

 

The training files are separated into 

YouTube training features (4) and Twitter 

training features (4). The training features 

are separated into baseline (only basic 

features) and all (all features). Finally, the 

training features are separated to those 

related to older videos and those related to 

recent videos. Each row of data inside these 

files, correlates to information about a 

specific video, whereas each column 

represents the feature values of that video.  

Figure 10: Output files of FeatureManager that contain all the sets of training features 
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2.3.3 Algorithms Implementation 

 

The machine learning algorithms, methodologies, functions and tools in this research where 

developed using the Scikit-learn [14] machine learning library. 

 

Scikit – Learn (aka sklearn) is an open source collection of tools for data mining and data 

analysis. It was developed using the python programming language and it was built on top of 

other popular open source projects like NumPy, SciPy and matplotlib. Its’ usage is fairly 

permissive since it is covered by a BSD license. 

 

For the purpose of this research sklearn was used to deploy a variety of machine learning 

classification algorithms with the goal of finding the most suitable classifier for the needs of 

popularity and virality labeling in the context of the current research. Sklearn also comes with 

a bunch of useful validation tools that assist in the evaluation of various models. 

 

The Scikit – learn environment doesn’t require in-depth knowledge of machine learning 

algorithms. It is ideal for researchers that need to use the algorithms for classification and model 

validation without the need of developing the algorithms from scratch. The user has the ability 

to fine-tune the algorithms in any way needed to fit them to the context of his own project.  

 

Classification Procedure: 

In this Section, a high level explanation of how each algorithm was developed and how it 

works, will be given. The code snippets and examples presented in this Section where taken 

from the Gradient Boosting Decision Tree algorithm.  

 

Input: 

 

In order to run the algorithm, all the 

necessary information need to be parsed 

first. The information passed to the 

classifier are: training window, offset, 

labeling window, YouTube binary, Twitter 

binary and directory of training features 

files. The data are then loaded into the 

classifier using the loadData function and 

the DataLoader tool developed. 

Figure 11: Code snippet of the input data passed into the GBDT.py classifier 
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Training set preparation: 

 

After parsing all the information needed, the data sets are prepared in the loadData(…) function 

which uses the DataLoader tool developed for the purposes of this study. Before each 

classification begins, the necessary data are loaded into a “train” structure [8] to pass into the 

classification function. Figure 12 depicts three different classification function calls for 

popularity classification using the respective datasets. 

 

 

Figure 12: Code snippet of three popularity classification function calls, using different datasets each time  
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Popularity Classification and Metrics: 

 

In the popular(…) function, the classifier is defined and the classification procedure begins. 

The classifier along with the training and labeling data are passed to the classify(…) function 

in order to run the algorithm and export various metrics regarding the quality of the 

classification. Inside the popular(…) function the feature importance is calculated as well and 

exported by calling the exportImportance(…) function. Finally, the F1 scores received from 

the metrics [] are exported into the respective files and the precision-recall graphs are plotted 

and exported as well. Figure 13 shows only a small code snippet of the popular(…) function 

to give an abstract idea of how it works. 

 

 

Figure 13: Code snippet showing a small part of the popular(…) function.  
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Classification Function 

 

The classify(…) function depicted in Figure 14 contains the main functionality of the 

classification algorithm. The parameters of this function are the algorithm, the training set and 

the labeling set. It works for almost all types of algorithms used in this research, with minor 

changes. The use of the KFold validation methodology increases the accuracy of the 

classification. Within the loop, the training and labeling data are fitted to the classifier and then 

the algorithm makes a prediction. The precision and recall values are exported [17] from that 

prediction in order to calculate the F1 scores and the AUC values and later plot the precision-

recall graph. All the metrics calculated from the classification are stored into the metrics[] array 

and returned to the main program.  
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Figure 14: Code snippet of the classify(…) function used in all the algorithms with minor changes 

 

2.3.4 Presentation 

In order to assist with the evaluation and the comparison of the machine learning algorithms, a 

web application was created. This tool was developed using HTML, CSS and PHP [22]. As 

shown in Figure 15, this web application allows the user to evaluate or compare the algorithms 

and read the corresponding documentation. Also, a link to the entire code if this research is 

provided. 

 

 

Figure 15: Web application home page for evaluation and comparison of machine learning algorithms 
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Evaluation of algorithms: 

 

The user can choose an algorithm from the drop down list and enter the windows needed in his 

case, as shown in Figure 16, and then click “view results” to see the outcome of the 

classification as shown in Figure 17. 

 

 

Figure 16: Web application snapshot of the algorithm evaluation window 

 

 

Figure 17: Web application snapshot of the classification results 
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Comparison of algorithms: 

 

The comparison functionality of this web application has been very useful since the comparison 

of several algorithms has led to the extraction of valuable and interesting information. The user 

can select two algorithms that he wishes to compare. After clicking the “Generate Comparison” 

button the metrics of the algorithms are compared. The final column of this window contains 

the algorithm that has better performance for each metric in comparison. Figure 18 shows an 

example of a comparison between GBDT and Logistic Regression algorithms.  

 

 

 

Figure 18: Web application snapshot of comparison between GBDT and Logistic Regression algorithms 
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2.4 Model Evaluation 

 

Confusion Matrix 

The confusion matrix [12] is a square matrix that represents the performance of a machine 

learning algorithm. It consists of true positive, true negative, false positive and false negative 

predictions of a classifier as shown in table 13 

 

True positives (TP): Labeled 1 and their true value is 1. 

True negatives (TN): Labeled 0 and their true value is 0. 

False positives (FP): Labeled 1 but their true value is 0. 

False negatives (FN): Labeled 0 but their true value is 1. 

 

Confusion Matrix 
Predicted Class 

0 1 

True Class 
0 TN FP 

1 FN TP 

Table 13: Confusion Matrix 

 

Precision [24] is defined as the number of true positives (TP) over the number of true positives 

plus false positives (FP). It represents the frequency of correct predictions when a positive 

value (1) is predicted. 

 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

Recall [24] is defined as the number of true positives (TP) over the number of true positives 

plus the number of false negatives (FN). It represents the frequency of correct predictions when 

the actual value is positive (1). 

 

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

In order to evaluate the performance of the classification algorithms a precision-recall graph 

is formed. The higher the AUC in the precision-recall graph the more accurate the classification 

is. An example of a precision-recall graph is shown at Figure 19, which depicts the performance 

of four different classification algorithms.   
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Figure 19: Example of a precision-recall graph 

 

F1 score [24] is an additional metric that is related to precision and recall and it is used to 

evaluate the performance of the classification algorithms. F1 Score is defined as the harmonic 

average of precision and recall. A high F1 value shows high classification accuracy.  

 

𝐹1 = 2
𝑃𝑋𝑅

𝑃 + 𝑅
 

 

K-fold cross-validation 

K-fold cross-validation [9] randomly splits the training dataset into k folds without 

replacement. K-1 folds are used for training the classifier and one fold is used for testing the 

classification. This procedure is repeated k times to obtain k different classifications on the 

entire dataset. The final classification is a result of the average performance of all the 

estimators. 

For the purpose of this research a 10-fold cross-validation is used as shown in Figure 20. The 

usage of this technique improves the quality of the final classification and reduces the variance 

of the individual classifications coming from each estimator. 

 

 

Figure 20: 10-fold cross-validation explanation 
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Chapter 3 

 

Evaluation and Analysis 

 

 

3.1 Evaluation methodology         36 

3.2 Algorithm Evaluation and Analysis       38 

 

 

3.1 Evaluation Methodology 

 

Figure 21 depicts the different kinds of datasets that were used to train the classifiers and later 

evaluate the performance of the respective classification algorithm. The labeling percentage 

was separated into two categories: Strict and soft labeling. Using strict labeling means that 

only 2.5% of the most Popular and Viral videos are kept from the entire dataset. Two more 

groups of videos are then added, Recent and Random, again each group containing at most 

2.5% of the entire dataset. In soft labeling, the percentage of each group is increased to 5% 

meaning that the new dataset contains more videos but with a softer definition of popularity 

and virality. It should be noted that some of the videos can appear in multiple categories. 

 

 

Figure 21: Datasets used in the evaluation methodology 

 

In order to be able to examine an algorithm’s window sensitivity, datasets with small and large 

windows where produced as shown in table 14. 

Training - Offset -
Labeling WIndows

Labeling Percentage

Evaluation 
Methodology

Strict - 2.5%

Small 
Windows

Large 
Windows

Soft - 5%

Small 
Windows

Large 
Windows
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The final amount of videos included in the four training datasets are shown in table 15. 

 

Total Videos = 130.000 
Popular + Viral + Recent + Random 

Small Windows Large Windows 

Strict Labeling – 2.5% 11039 11344 

Soft Labeling – 5 % 21160 21761 

Table 15: The final amount of videos included in the four training datasets 

 

Evaluation Baselines 

 

In order to decide if a classification algorithm is suitable for the purpose of the current research, 

three important baselines where established:  

1. Average F1 scores of the classifications should be 0.75 at minimum. 

2. Average F1 scores shouldn’t increase more than 8% when windows are changed from 

small to large. In other words, algorithms should have low window sensitivity. 

3. All the classifications should have an AUC larger than 0.80. 

 

In addition to the baseline test, we evaluate the running time of each algorithm in the prediction 

models.  

 

Stand-alone algorithms where evaluated at first in order to decide upon which algorithm would 

be chosen for further development and performance improvement with the goal of producing 

more accurate classifications. 

 

 

 

 

 

 Training Offset Labeling 

Small Windows 1 1 1 

Large Windows 7 1 7 

Table 14: Training, offset and labeling windows used to examine window sensitivity of algorithms 
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3.2. Algorithm Evaluation and Analysis  

 

This Section contains the evaluation and analysis of various machine learning algorithms. All 

the algorithms are tested using the evaluation baselines to determine their strengths and 

weaknesses. As the evaluation of the algorithms progresses, different methodologies and 

algorithms are used in order to exploit more information regarding binary classifications in the 

context of this research. The precision-recall graphs presented in the evaluations correspond 

only to popularity predictions using both YouTube and Twitter features. 

 

3.2.1 Logistic Regression Evaluation  

 

 2.5% 5% 

111 

  

717 

  

Figure 22: Logistic Regression algorithm precision-recall graphs 

 

Precision-Recall graph explanation: 

 

Looking at the precision-recall graphs in Figure 22, it seems that the Logistic Regression 

algorithm produces extremely accurate classifications for videos that are older but mediocre 

classifications for videos that are recent. In addition, this algorithm seems to be ideal for 
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classifications containing only baseline features since it reaches AUC values up 0.99. Finally, 

increasing the amount of videos in the dataset, by using soft labeling, hasn’t improved the 

accuracy of the classifications.  

 

 

 

F1 Scores (111, 2.5%) Viral Popular Viral and Popular 

Twitter Features 0.7894 0.5078 0.5870 

YouTube Features 0.4695 0.5563 0.6068 

All Features 0.6769 0.6812 0.6478 

Mean F1 Score 0.6136 

 

 

F1 Scores (717, 2.5%) Viral Popular Viral and Popular 

Twitter Features 0.7962 0.5795 0.6163 

YouTube Features 0.5825 0.7601 0.6651 

All Features 0.6755 0.8015 0.7104 

Mean F1 Score 0.6875 

 

F1 Scores (111, 5%) Viral Popular Viral and Popular 

Twitter Features 0.7678 0.5304 0.5925 

YouTube Features 0.5198 0.5574 0.6635 

All Features 0.7048 0.6048 0.6773 

Mean F1 Score 0.6243 

 

F1 Scores (717, 5%) Viral Popular Viral and Popular 

Twitter Features 0.7874 0.5805 0.6274 

YouTube Features 0.5838 0.7583 0.6453 

All Features 0.7098 0.8227 0.7002 

Mean F1 Score 0.6906 

 

 
Figure 23: F1 scores for Logistic Regression algorithm evaluation 
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F1 Scores explanation: 

 

Looking at the F1 scores of all the classifications using Logistic Regression, it is clear that the 

algorithm underperforms mostly in cross-platform evaluations. The F1 scores exposed the low 

accuracy classifications of logistic regression which weren’t visible from the precision-recall 

graphs. 

 

Baseline Testing: 

 

(1) Average F1 Scores (>=0.75) – Failed 

All the datasets in strict and soft labeling fail to achieve a minimum average F1 score 

of 0.75 for any window. 

(2) Window Sensitivity (<=8%) – Failed 

The average F1 score in strict datasets was increased by 12% and in soft datasets it was 

increased by 11% meaning that the logistic regression algorithm is very sensitive to 

window changes. 

(3) High AUC (>=0.80) – Failed 

There is at least one classification with low AUC making the algorithm unsuitable for 

the current problem. More specifically, the algorithm seems to perform poorly when it 

comes to classifications of recent videos, which are very important for the purpose of 

this research. 

 

Running Time (111, 2.5%): 17.37 seconds. The logistic regression is an extremely fast 

classification algorithm.   

 

Additional Comments: 

Due to the probabilistic nature of the logistic regression algorithm, it was expected that a high 

accuracy classification would be produced. Despite the fact that this algorithm performs fairly 

well in binary classification problems, it failed to fit the minimum needs of this research. 
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3.2.2 K Nearest Neighbors Evaluation  
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Figure 24: K Nearest Neighbors algorithm precision-recall graphs 

 

Precision-Recall graph explanation: 

 

After looking at the precision-recall graphs of Figure 24, it can be deducted that KNN algorithm 

fails to produce high accuracy classifications for most of the cases. Curiously enough, KNN 

performs much better when only using baseline features. Increasing the amount of videos in 

the dataset, by using soft labeling, doesn’t have any effect on the accuracy of the classifications. 
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F1 Scores (111, 2.5%) Viral Popular Viral and Popular 

Twitter Features 0.7126 0.6225 0.6231 

YouTube Features 0.5553 0.7842 0.6371 

All Features 0.5903 0.7843 0.6373 

Mean F1 Score 0.6607 

 

F1 Scores (717, 2.5%) Viral Popular Viral and Popular 

Twitter Features 0.8008 0.6691 0.7177 

YouTube Features 0.6008 0.8127 0.6829 

All Features 0.6394 0.8127 0.6830 

Mean F1 Score 0.7132 

 

F1 Scores (111, 5%) Viral Popular Viral and Popular 

Twitter Features 0.7208 0.6317 0.6399 

YouTube Features 0.5737 0.7951 0.6658 

All Features 0.6046 0.7950 0.6659 

Mean F1 Score 0.6769 

 

F1 Scores (717, 5%) Viral Popular Viral and Popular 

Twitter Features 0.8082 0.6631 0.7329 

YouTube Features 0.6058 0.8226 0.6972 

All Features 0.6477 0.8201 0.6983 

Mean F1 Score 0.7218 

 

 
Figure 25: F1 scores for K Nearest Neighbors algorithm evaluation 

 

F1 Scores explanation: 

 

The F1 scores produced are generally low for most of the classifications. It is very interesting 

to notice that the amount of features doesn’t play any role at all in the quality of the 

classification using the KNN algorithm. This can be deducted by looking at the “Viral and 

Popular” f1 scores that hardly change when different amounts of features are used.  
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Baseline Testing: 

 

(1) Average F1 Scores (>=0.75) – Failed 

All the datasets in strict and soft labeling fail to achieve a minimum average F1 score 

of 0.75 for any window. 

(2) Window Sensitivity (<=8%) – Succeeded 

The average F1 score in strict datasets was increased by 8% and in soft datasets it was 

increased by 6.5% meaning that the “K Nearest Neighbors” algorithm has low window 

sensitivity. 

(3) High AUC (>=0.80) – Failed 

Most of the classifications fail to achieve the minimum AUC requirements of this 

research making the algorithm extremely unsuitable for the purpose of the current 

problem. 

 

Running Time (111, 2.5%): 11.29 seconds. The K Nearest Neighbors is an extremely fast 

classification algorithm.   

 

Additional Comments: 

 

The “K Nearest Neighbors” performance was as expected. The algorithm doesn’t seem to be 

highly dependent on window changes. The reason for this behavior is that this algorithm relies 

more on the number of neighbors (k) that it takes into account, rather than the number of 

training and labeling days or the size of the dataset.  
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3.2.3 SVM – Linear SVC Evaluation  
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Figure 26: SVM – Linear SVC algorithm precision-recall graphs 

 

Precision-Recall graph explanation: 

 

It is obvious from Figure 26, that the SVM – Linear SVC algorithm produces “chaotic” 

classifications when attempting to predict popularity of the videos. It appears to produce a good 

classification only for older videos using baseline features. Other than that, this algorithm 

doesn’t seem to fit to the problem of this research. 
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F1 Scores (111, 2.5%) Viral Popular Viral and Popular 

Twitter Features 0.7344 0.5404 0.5932 

YouTube Features 0.4454 0.6053 0.5026 

All Features 0.5816 0.6226 0.5231 

Mean F1 Score 0.5721 

 

F1 Scores (717, 2.5%) Viral Popular Viral and Popular 

Twitter Features 0.7611 0.5950 0.6446 

YouTube Features 0.4609 0.6311 0.5446 

All Features 0.5680 0.6630 0.5571 

Mean F1 Score 0.6028 

 

F1 Scores (111, 5%) Viral Popular Viral and Popular 

Twitter Features 0.7303 0.5660 0.6077 

YouTube Features 0.4553 0.6488 0.5744 

All Features 0.5749 0.6136 0.5101 

Mean F1 Score 0.5868 

 

F1 Scores (717, 5%) Viral Popular Viral and Popular 

Twitter Features 0.7580 0.5860 0.6557 

YouTube Features 0.4896 0.6508 0.5893 

All Features 0.5376 0.7072 0.5841 

Mean F1 Score 0.6176 

 

 
Figure 27: F1 scores for SVM – Linear SVC algorithm evaluation 

 

F1 Scores explanation: 

 

Looking at the F1 scores in Figure 27, it can be denoted that SVM – Linear SVC produces low 

accuracy classifications for all the datasets used. It doesn’t seem to be affected by the amount 

of features or the total number of videos in the dataset.  
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Baseline Testing: 

 

(1) Average F1 Scores (>=0.75) – Failed 

All the datasets in strict and soft labeling fail to achieve a minimum average F1 score 

of 0.75 for any window. Moreover the algorithm appears to perform extremely poorly.  

(2) Window Sensitivity (<=8%) – Succeeded 

The average F1 score in strict datasets was increased by 5.4% and in soft datasets it was 

increased by 5.2% meaning that the SVM algorithm has extremely low window 

sensitivity. This was expected due to the consistency of the algorithm. 

(3) High AUC (>=0.80) – Failed 

There’s no need for any deep analysis of the data, since it’s obvious from the 

precession-recall graphs that SVM performs extremely poorly when it comes to 

classifying videos for the purpose of this research. 

 

Running Time (111, 2.5%): 138.91 seconds. The SVM – Linear SVC algorithm is takes has 

a moderate execution time cost.  

 

Additional Comments: 

 

Despite the fact that SVM is one of the most popular classification algorithms for binary 

problems, it doesn’t seem to be suitable for the purpose of this research. Various SVM 

algorithms where tested with different kernels but no one managed to exceed the minimum 

needs for the solution of this problem.  
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3.2.4 Decision Tree Evaluation  
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Figure 28: Decision Tree algorithm precision-recall graphs 

 

Precision-Recall graph explanation: 

 

Figure 28 shows that the Decision Tree algorithm produces high accuracy classifications for 

older videos using any amount of features. In addition, it produces decent classifications for 

the rest of the cases as well. The total number slightly improves the accuracy of the 

classifications. What is important to note is that the Decision Tree algorithm produces much 

higher AUC values, therefore better classifications for larger windows. 
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F1 Scores (111, 2.5%) Viral Popular Viral and Popular 

Twitter Features 0.7639 0.6498 0.6806 

YouTube Features 0.5965 0.8308 0.6941 

All Features 0.7671 0.8368 0.7673 

Mean F1 Score 0.7319 

 

F1 Scores (717, 2.5%) Viral Popular Viral and Popular 

Twitter Features 0.8097 0.6715 0.7546 

YouTube Features 0.6486 0.8981 0.7573 

All Features 0.8319 0.9018 0.8567 

Mean F1 Score 0.7922 

 

F1 Scores (111, 5%) Viral Popular Viral and Popular 

Twitter Features 0.7657 0.6655 0.6925 

YouTube Features 0.5988 0.8420 0.7129 

All Features 0.7406 0.8430 0.7720 

Mean F1 Score 0.737 

 

F1 Scores (717, 5%) Viral Popular Viral and Popular 

Twitter Features 0.8123 0.6717 0.7596 

YouTube Features 0.6422 0.9033 0.7544 

All Features 0.8219 0.9011 0.8473 

Mean F1 Score 0.7904 

 

 
Figure 29: F1 scores for Decision Tree algorithm evaluation 

 

F1 Scores explanation: 

 

The F1 scores of the Decision Tree algorithm classifications shown in Figure 29, correlate with 

the AUC values in the precision-recall graphs. This is a reassurance that the Decision Tree 

algorithm produces high accuracy classifications for almost all the cases. When it comes to 

cross-platform predictions, the DT algorithm has lower F1 scores, therefore produces lower 
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quality classifications. Finally, it appears that this algorithm performs better while using larger 

amounts of features. This behavior was expected due to the tree structure of the algorithm.  

 

Baseline Testing: 

 

(1) Average F1 Scores (>=0.75) – Partly Failed 

Barely fails at small windows but succeeds at large windows. 

(2) Window Sensitivity (<=8%) – Partly Failed 

The average F1 score in strict datasets was increased by 8.2% and in soft datasets it was 

increased by 7.2% meaning that the Decision Tree algorithm is relatively sensitive to 

window changes but is very close to succeeding the minimum baseline tests. 

(3) High AUC (>=0.80) – Partly Failed 

The decision tree algorithm produces AUC slightly below the baseline causing the 

algorithm to fail the tests. Although it produces high accuracy classifications at most 

cases, the algorithm falls below baseline when it comes to labeling recent videos. 

 

Running Time (111, 2.5%): 18.98 seconds. The Decision Tree is an extremely fast 

classification algorithm.  

 

Additional Comments: 

 

From the window sensitivity test it is derived that while using strict datasets, the decision tree 

algorithm is slightly oversensitive (8.2%). For this reason it barely fails the three predefined 

tests. When a soft dataset is used, the algorithm succeeds in all three baseline tests, making it 

suitable for the needs of this research.  

 

After comparison of all the stand-alone algorithms, the decision tree algorithm was considered 

to be the most suitable for the purpose of this research. All hybrid algorithms where developed 

on top of decision trees to maximize performance and classification accuracy. Detailed 

comparison of all the stand-alone algorithms can be found in Section 4.2.  
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3.2.6 Random Forest Evaluation   
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Figure 30: Random Forest algorithm precision-recall graphs 

 

Precision-Recall graph explanation: 

 

The precision-recall graphs in Figure 30 show that the Random Forest algorithm produces very 

high AUC values, which could be an indicator of high accuracy classifications. The total 

number of videos doesn’t seem to affect the outcome of the classification. The window number 

on the other hand, increases substantially the AUC values, especially for classifications using 

only baseline features. 
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F1 Scores (111, 2.5%) Viral Popular Viral and Popular 

Twitter Features 0.7994 0.6818 0.7167 

YouTube Features 0.6261 0.8513 0.7197 

All Features 0.8061 0.8720 0.8020 

Mean F1 Score 0.7639 

 

F1 Scores (717, 2.5%) Viral Popular Viral and Popular 

Twitter Features 0.8662 0.7338 0.8039 

YouTube Features 0.6901 0.9298 0.7883 

All Features 0.8885 0.9322 0.8947 

Mean F1 Score 0.8364 

 

F1 Scores (111, 5%) Viral Popular Viral and Popular 

Twitter Features 0.7955 0.6986 0.7243 

YouTube Features 0.6304 0.8634 0.7367 

All Features 0.7815 0.8710 0.8096 

Mean F1 Score 0.7679 

 

F1 Scores (717, 5%) Viral Popular Viral and Popular 

Twitter Features 0.8545 0.7212 0.8071 

YouTube Features 0.6916 0.9300 0.8008 

All Features 0.8739 0.9325 0.8902 

Mean F1 Score 0.8335 

 

 
Figure 31: F1 scores for Random Forest algorithm evaluation 

 

F1 Scores explanation: 

 

Looking at the F1 scores of Figure 31, it can be denoted that the Random Forest algorithm 

produces high accuracy classifications for most cases. It is clear from the “Viral and Popular” 

F1 scores that the amount of features plays a big role in the quality of the classification.  
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Baseline Testing: 

 

(1) Average F1 Scores (>=0.75) – Succeeded 

The random algorithm produces fairly high average F1 scores for all the datasets, 

surpassing the minimum required score of the test. 

(2) Window Sensitivity (<=8%) – Failed 

The average F1 score in strict datasets was increased by 9.5% and in soft datasets it was 

increased by 8.5% meaning that the Random Forest algorithm is very sensitive to 

window changes. 

(3) High AUC (>=0.80) – Partly Failed 

In strict labeling datasets the algorithm produces AUC below the baseline when it 

comes to classifying recent videos using only the basic features. In soft labeling datasets 

though, the algorithm succeeds in all the classifications. This behavior was to be 

expected due to the very high window sensitivity of the algorithm.  

 

Running Time (111, 2.5%): 248.38 seconds. The Random Forest algorithm has a moderate 

execution time cost.  

 

Additional Comments: 

 

The Random Forest algorithm substantially improves the performance and classification 

accuracy of a Decision Tree algorithm, but it suffers from very high window sensitivity making 

it unsuitable for the minimum needs of the research. It also appears that this algorithm performs 

better when using both YouTube and Twitter features. This could be an indication that, the 

Random Forest algorithm is more suitable for a higher amount of features. This behavior was 

expected since the algorithm is built on top of a Decision Tree.   
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3.2.5 Extra Trees Evaluation 
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Figure 32: Extra Trees algorithm precision-recall graphs 

 

Precision-Recall graph explanation: 

 

Looking at Figure 32, it seems that the Extra Trees algorithm produces precision-recall graphs 

with extremely high AUC value. This could be an indication of a high accuracy classification. 

Also, it appears that the performance of the algorithm is improved when the total number of 

videos in the dataset is increased or when the window number is increased. 
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F1 Scores (111, 2.5%) Viral Popular Viral and Popular 

Twitter Features 0.7915 0.6734 0.6991 

YouTube Features 0.6232 0.8515 0.7231 

All Features 0.7996 0.8683 0.7932 

Mean F1 Score 0.7581 

 

F1 Scores (717, 2.5%) Viral Popular Viral and Popular 

Twitter Features 0.8659 0.7340 0.8058 

YouTube Features 0.6825 0.9282 0.7851 

All Features 0.8850 0.9285 0.8951 

Mean F1 Score 0.8345 

 

F1 Scores (111, 5%) Viral Popular Viral and Popular 

Twitter Features 0.7890 0.6875 0.7101 

YouTube Features 0.6293 0.8626 0.7348 

All Features 0.7800 0.8684 0.8016 

Mean F1 Score 0.7626 

 

F1 Scores (717, 5%) Viral Popular Viral and Popular 

Twitter Features 0.8548 0.7187 0.8099 

YouTube Features 0.6889 0.9301 0.7989 

All Features 0.8699 0.9321 0.8871 

Mean F1 Score 0.8323 

 

 
Figure 33: F1 scores for Extra Trees algorithm evaluation 

 

F1 Scores explanation: 

 

Figure 33 shows that the Extra Trees algorithms produces very high F1 scores for almost all 

the cases. It slightly underperforms in cross-platform predictions. It’s worth noting that the 

quality of the classifications is substantially increased when the total amount of features is 

increased. 
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Baseline Testing: 

 

(1) Average F1 Scores (>=0.75) – Succeeded 

The extra trees algorithm produces fairly high average F1 scores for all the datasets, 

surpassing the minimum required score of the test. 

(2) Window Sensitivity (<=8%) – Failed 

The average F1 score in strict datasets was increased by 10.1% and in soft datasets it 

was increased by 9.1% meaning that the Extra Trees algorithm is extremely sensitive 

to window changes. 

(3) High AUC (>=0.80) – Partly Failed 

In strict labeling datasets the algorithm produces AUC below the baseline when it 

comes to classifying recent videos using only the basic features. In soft labeling datasets 

though, the algorithm succeeds in all the classifications. This behavior was to be 

expected due to the extremely high window sensitivity of the algorithm.  

 

Running Time (111, 2.5%): 166.68 seconds. The Extra Trees algorithm has a moderate 

execution time cost.  

 

Additional Comments: 

 

The extra trees algorithm substantially improves the performance and classification accuracy 

of a Decision Tree algorithm, but it suffers from extremely high window sensitivity making it 

unsuitable for the minimum needs of the research. The major increase in the accuracy of the 

classification when more features are used is mostly attributed to the fact that Extra Trees 

consist of a bundle of Decision Trees 
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3.2.7 Bagging Decision Tree Evaluation 
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Figure 34: Bagging Decision Tree algorithm precision-recall graphs 

 

 

Precision-Recall graph explanation: 

 

The precision-recall graphs in Figure 34 show a slight increase in the AUC values when the 

total amount of videos was increase. It also shows a major increase in the AUC values when 

the larger windows where used. 
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F1 Scores (111, 2.5%) Viral Popular Viral and Popular 

Twitter Features 0.7978 0.6813 0.7157 

YouTube Features 0.6290 0.8504 0.7203 

All Features 0.8085 0.8734 0.8043 

Mean F1 Score 0.7645 

 

F1 Scores (717, 2.5%) Viral Popular Viral and Popular 

Twitter Features 0.8632 0.7255 0.8049 

YouTube Features 0.6880 0.9295 0.7882 

All Features 0.8866 0.9318 0.8954 

Mean F1 Score 0.8347 

 

F1 Scores (111, 5%) Viral Popular Viral and Popular 

Twitter Features 0.7952 0.6995 0.7268 

YouTube Features 0.6328 0.8629 0.7367 

All Features 0.7830 0.8763 0.8137 

Mean F1 Score 0.7697 

 

F1 Scores (717, 5%) Viral Popular Viral and Popular 

Twitter Features 0.8534 0.7196 0.8097 

YouTube Features 0.6971 0.9292 0.8017 

All Features 0.8731 0.9338 0.8885 

Mean F1 Score 0.8340 

 

 
Figure 35: F1 scores for Bagging Decision Tree algorithm evaluation 

 

F1 Scores explanation: 

 

Looking at the f1 scores in Figure 35, it appears the BDT algorithm produces very high F1 

scores, meaning that the accuracy of most of the classifications is high. Like most of the 

algorithms it stumbles on cross-platform predictions.   
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Baseline Testing: 

 

(1) Average F1 Scores (>=0.75) – Succeeded 

The bagging methodology improved the performance of the decision tree, producing 

average F1 scores greater than the baseline. 

(2) Window Sensitivity (<=8%) – Failed 

The average F1 score in strict datasets was increased by 9.2% and in soft datasets it was 

increased by 8.4% meaning that the Bagging Decision Tree algorithm is very sensitive 

to window changes. 

(3) High AUC (>=0.80) – Partly Failed 

In strict labeling datasets the algorithm produces AUC below the baseline when it 

comes to classifying recent videos using only the basic features. In soft labeling datasets 

though, the algorithm succeeds in all the classifications. This behavior was to be 

expected due to the very high window sensitivity of the algorithm.  

 

Running Time (111, 2.5%): 1013.85 seconds. The Bagging Decision Tree algorithm has an 

extremely high execution time cost.  

 

Additional comments: 

 

The Bagging Decision Tree algorithm improves substantially the performance and 

classification accuracy of a Decision Tree algorithm, but it suffers from very high window 

sensitivity making it unsuitable for the minimum needs of the research. The algorithm is very 

window sensitive due to the randomness embedded in the bagging methodology. The 

performance of the BDT algorithm is increased when more features are used due to the use of 

the Decision Tree structure. It is particularly interesting that the bagging methodology comes 

with an extremely high execution time cost.  
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3.2.8 Gradient Boosting Decision Tree Evaluation 
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Figure 36: Gradient Boosting Decision Tree algorithm precision-recall graphs 

 

Precision-Recall graph explanation: 

 

Figure 36 shows that the boosting methodology has improved the precision-recall graphs. 

When predicting older videos, the GBDT algorithm produces almost perfect AUC values. It 

appears that when the total number of videos is increased or when using larger windows, the 

GBDT algorithm performs much better. 
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F1 Scores (111, 2.5%) Viral Popular Viral and Popular 

Twitter Features 0.8033 0.6898 0.7220 

YouTube Features 0.6109 0.8755 0.7307 

All Features 0.8292 0.8849 0.8161 

Mean F1 Score 0.7736 

 

F1 Scores (717, 2.5%) Viral Popular Viral and Popular 

Twitter Features 0.8649 0.7363 0.8079 

YouTube Features 0.6837 0.9269 0.7969 

All Features 0.8842 0.9310 0.8931 

Mean F1 Score 0.8361 

 

F1 Scores (111, 5%) Viral Popular Viral and Popular 

Twitter Features 0.8005 0.7053 0.7268 

YouTube Features 0.6265 0.8853 0.7498 

All Features 0.8097 0.8891 0.8285 

Mean F1 Score 0.7802 

 

F1 Scores (717, 5%) Viral Popular Viral and Popular 

Twitter Features 0.8602 0.7222 0.8145 

YouTube Features 0.6928 0.9319 0.7986 

All Features 0.8747 0.9346 0.8939 

Mean F1 Score 0.8359 

 

 
Figure 37: F1 scores for Gradient Boosting Decision Tree algorithm evaluation 

 

F1 Scores explanation: 

 

It is clear from the F1 scores in Figure 37 that the boosting methodology has substantially 

improved the performance of the Decision Tree. It produces very high F1 scores, with the 

exception of cross-platform predictions. The correlation between the accuracy of the classifier 

and the amount of features is clearly visible from the “Viral and Popular” F1 scores. 
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Baseline Testing: 

 

(1) Average F1 Scores (>=0.75) – Succeeded 

Gradient boosting improved significantly the performance of the decision tree, 

producing average F1 scores much higher than the baseline. 

(2) Window Sensitivity (<=8%) – Partly Failed 

The average F1 score in strict datasets was increased by 8.1% and in soft datasets it was 

increased by 7.1% meaning that the Gradient boosting decision tree algorithm is mildly 

sensitive to window changes causing it to fail the baseline test when strict datasets are 

used.  

(3) High AUC (>=0.80) – Succeeded 

The gradient boosting decision tree algorithm produces very high AUC values despite 

its mild window oversensitivity.  

 

Running Time (111, 2.5%): 198.48 seconds. The Gradient Boosting Decision Tree algorithm 

has a moderate execution time cost.  

 

Additional comments: 

 

High average F1 scores and AUC values are an indicative of a very accurate classifier. The 

gradient boosting decision tree algorithm produces high quality classifications making it one 

of the best choices for the purpose of this research. A small drawback of this classifier is its 

mild oversensitivity to window changes. To overcome this problem some other hybrid 

algorithms are used along with GBDT which lower the classifier’s window sensitivity. These 

hybrid algorithms are evaluated in detail in the following Sections. Finally, the algorithm’s 

dependence in the amount of features used is due to the decision tree structure.  
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3.2.9 Ada Boosting Decision Tree Evaluation  
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Figure 38: Ada Boosting Decision Tree algorithm precision-recall graphs 

 

Precision-Recall graph explanation: 

 

Figure 38 shows that adaptive boosting produces high AUC values in precision-recall graphs. 

This could be an indicator of a high accuracy classification. Also, the algorithm seems to 

perform slightly better when the total number of videos is used or when larger windows are 

applied. 
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F1 Scores (111, 2.5%) Viral Popular Viral and Popular 

Twitter Features 0.7992 0.6858 0.7257 

YouTube Features 0.6077 0.8724 0.7324 

All Features 0.8261 0.8809 0.8125 

Mean F1 Score 0.7714 

 

F1 Scores (717, 2.5%) Viral Popular Viral and Popular 

Twitter Features 0.8560 0.7311 0.7951 

YouTube Features 0.6744 0.9209 0.7895 

All Features 0.8770 0.9215 0.8832 

Mean F1 Score 0.8276 

 

F1 Scores (111, 5%) Viral Popular Viral and Popular 

Twitter Features 0.8030 0.6996 0.7261 

YouTube Features 0.6278 0.8827 0.7457 

All Features 0.8061 0.8866 0.8254 

Mean F1 Score 0.7781 

 

F1 Scores (717, 5%) Viral Popular Viral and Popular 

Twitter Features 0.8551 0.7158 0.8032 

YouTube Features 0.6830 0.9294 0.7954 

All Features 0.8665 0.9291 0.8758 

Mean F1 Score 0.8281 

 

 
Figure 39: F1 scores for Ada Boosting Decision Tree algorithm evaluation 

 

F1 Scores explanation: 

 

Figure 39 shows the F1 scores of the Ada Boosting Decision Tree algorithm. It appears that 

adaptive boosting produces very high F1 scores with the exception of cross-platform 

predictions where it underperforms. It particularly interesting that the ABDT algorithm has 

reduced dependence on the amount of features despite the Decision Tree structure used within 
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the algorithm. It is also worth noting that the average F1 score doesn’t change much when 

larger windows are used. 

 

Baseline Testing: 

 

(1) Average F1 Scores (>=0.75) – Succeeded 

Adaptive boosting improved significantly the performance of the decision tree, 

producing average F1 scores much higher than the baseline. 

(2) Window Sensitivity (<=8%) – Succeeded 

The average F1 score in strict datasets was increased by 7.3% and in soft datasets it was 

increased by 6.4% meaning that the Ada boosting decision tree algorithm has extremely 

low window sensitivity.  

(3) High AUC (>=0.80) – Succeeded 

The adaptive boosting decision tree algorithm produces very high AUC values for all 

the datasets and windows of the experiments. 

 

Running Time (111, 2.5%): 238.77 seconds. The Ada Boosting Decision Tree algorithm has 

a moderate execution time cost.  

 

Additional comments: 

 

The Ada boosting decision tree algorithm managed to pass all the baseline tests, making it ideal 

for the purpose of this research. Looking at the average F1 scores and the AUC values, it can 

be concluded that ABDT produces high accuracy classifications. In addition to its’ high 

performance, ABDT has very low sensitivity to window changes making it ideal for future 

usage of the algorithm in variable windows to make popularity and virality predictions. 
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3.2.10 Voting – Ada and Gradient Boosting Decision Tree Evaluation  
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Figure 40: Voting – Ada and Gradient Boosting Decision Tree algorithm precision-recall graphs 

 

Precision-Recall graph explanation: 

 

The precision-recall graphs in Figure 40 shows that the voting between ABDT and GBDT has 

produced very high AUC values which is an indicator of a high quality classification. This 

hybrid algorithm still has a small dependence to the number of videos in the dataset and the 

size of the windows. 
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F1 Scores (111, 2.5%) Viral Popular Viral and Popular 

Twitter Features 0.8031 0.6898 0.7225 

YouTube Features 0.6110 0.8757 0.7318 

All Features 0.8294 0.8851 0.8170 

Mean F1 Score 0.7739 

 

F1 Scores (717, 2.5%) Viral Popular Viral and Popular 

Twitter Features 0.8666 0.7353 0.8062 

YouTube Features 0.6822 0.9273 0.7964 

All Features 0.8858 0.9314 0.8935 

Mean F1 Score 0.8361 

 

F1 Scores (111, 5%) Viral Popular Viral and Popular 

Twitter Features 0.8006 0.7056 0.7266 

YouTube Features 0.6263 0.8857 0.7498 

All Features 0.8098 0.8895 0.8289 

Mean F1 Score 0.7803 

 

F1 Scores (717, 5%) Viral Popular Viral and Popular 

Twitter Features 0.8603 0.7224 0.8140 

YouTube Features 0.6930 0.9318 0.7982 

All Features 0.8752 0.9346 0.8948 

Mean F1 Score 0.8360 

 

 
Figure 41: F1 scores for Voting – Ada and Gradient Boosting Decision Tree algorithm evaluation 

 

F1 Scores explanation: 

 

The F1 scores in Figure 41 show stunning results. The voting between the two boosting 

algorithm has produced very high F1 scores, which in combination with the high AUC values 

proves that this model is very powerful. It has even managed to slightly increase cross-platform 

prediction scores. Its dependence on the amount of features used is slightly reduce, as it seems 

from the “Virality and Popularity” columns.  
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Baseline Testing: 

 

(1) Average F1 Scores (>=0.75) – Succeeded 

Voting – (ABDT, GBDT) improved significantly the performance of the decision tree, 

producing average F1 scores much higher than the baseline. 

(2) Window Sensitivity (<=8%) – Succeeded 

The average F1 score in strict datasets was increased by 8% and in soft datasets it was 

increased by 7.1% meaning that the Voting – (ABDT, GBDT) algorithm has a moderate 

window sensitivity but lies below the predefined baseline.  

(3) High AUC (>=0.80) – Succeeded 

The Voting – (ABDT, GBDT) algorithm produces very high AUC values. 

 

Running Time (111, 2.5%): 303.5 seconds. The Voting – (ABDT, GBDT) algorithm has a 

very high execution time cost.  

 

Additional comments: 

 

GBDT produced extremely high F1 scores and AUC values but suffered from mild window 

sensitivity. ABDT produced very high F1 scores and AUC values as well but was characterized 

by a very low sensitivity to window changes. Voting – (ABDT, GBDT) is a hybrid algorithm 

which uses the majority vote methodology to produce high accuracy values but at the same 

time achieve low window sensitivity. It is clear from the experiment results that voting between 

the two classification algorithms has produced a very positive outcome since it has succeeded 

in all three baseline tests. The only drawback of this algorithm is its very high computational 

cost. 
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3.2.11 Voting – Ada and Gradient Boosting Decision Tree with Logistic Regression 

Evaluation 
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Figure 42: Voting – (ABDT, GBDT, LR) algorithm precision-recall graphs 

 

Precision-Recall graph explanation: 

 

The precision-recall graphs shown in Figure 42 are an indication of a high quality classification 

model. The AUC values produced are very high for almost all the cases. When the number of 

videos is increased or larger windows are used, the AUC values are slightly increased. 
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F1 Scores (111, 2.5%) Viral Popular Viral and Popular 

Twitter Features 0.8010 0.6466 0.6501 

YouTube Features 0.5980 0.8726 0.6936 

All Features 0.8243 0.8789 0.7874 

Mean F1 Score 0.7503 

 

F1 Scores (717, 2.5%) Viral Popular Viral and Popular 

Twitter Features 0.8625 0.7106 0.7285 

YouTube Features 0.6703 0.9229 0.7835 

All Features 0.8752 0.9241 0.8754 

Mean F1 Score 0.8170 

 

F1 Scores (111, 5%) Viral Popular Viral and Popular 

Twitter Features 0.7908 0.6716 0.6616 

YouTube Features 0.6150 0.8815 0.7146 

All Features 0.8009 0.8856 0.7988 

Mean F1 Score 0.7578 

 

F1 Scores (717, 5%) Viral Popular Viral and Popular 

Twitter Features 0.8560 0.7032 0.7492 

YouTube Features 0.6739 0.9271 0.7820 

All Features 0.8650 0.9309 0.8785 

Mean F1 Score 0.8184 

 

 
Figure 43: F1 scores for Voting – (ABDT, GBDT, LR) algorithm evaluation 

 

F1 Scores explanation: 

 

The F1 scores shown in Figure 43 are a solid proof of how deceiving precision-recall graphs 

can sometimes be [10, 16]. For this reason a combination of the F1 score and the AUC values 

is used in order to label a classifier as a “powerful model”. Looking at the F1 scores it is easily 

noticeable that in some cases the algorithm performs relatively bad. More specifically, it 

underperforms in cross-platform predictions and in “Viral and Popular” predictions.  
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Baseline Testing: 

 

(1) Average F1 Scores (>=0.75) – Succeeded 

Voting – (ABDT, GBDT, LR) improved the performance of the decision tree, 

producing average F1 scores slightly higher than the baseline. 

(2) Window Sensitivity (<=8%) – Partly Failed 

The average F1 score in strict datasets was increased by 8.9% and in soft datasets it was 

increased by 8% meaning that the Voting – (ABDT, GBDT, LR) algorithm has a high 

window sensitivity when it comes to more strict datasets.  

(3) High AUC (>=0.80) – Succeeded 

The Voting – (ABDT, GBDT, LR) algorithm produces high AUC values and manages 

to pass the baseline in all the datasets despite its high sensitivity to window changes. 

 

Running Time (111, 2.5%): 334.89 seconds. The Voting – (ABDT, GBDT, LR) algorithm 

has a very high execution time cost.  

 

Additional comments: 

 

Logistic regression was added as part of the voting algorithm in order to examine how far can 

majority vote improve the quality of the classification. It is clear that when using too many 

different estimators, voting can lead to low quality classifications due to overfitting. More 

estimators doesn’t always mean better classifications.  
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3.2.12 Bagging Gradient Boosting Decision Tree Evaluation 
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Figure 44: Bagging Gradient Boosting Decision Tree algorithm precision-recall graphs 

 

Precision-Recall graph explanation: 

 

As it seems from the precision-recall graphs in Figure 44, the Bagging Gradient Boosting 

Decision Tree algorithm produces very high AUC values with a smaller dependence on the 

number of videos used and the size of the window. 
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F1 Scores (111, 2.5%) Viral Popular Viral and Popular 

Twitter Features 0.8034 0.6898 0.7218 

YouTube Features 0.6108 0.8757 0.7307 

All Features 0.8291 0.8849 0.8168 

Mean F1 Score 0.7737 

 

F1 Scores (717, 2.5%) Viral Popular Viral and Popular 

Twitter Features 0.8655 0.7357 0.8081 

YouTube Features 0.6839 0.9267 0.7943 

All Features 0.8845 0.9305 0.8928 

Mean F1 Score 0.8358 

 

F1 Scores (111, 5%) Viral Popular Viral and Popular 

Twitter Features 0.8005 0.7055 0.7267 

YouTube Features 0.6265 0.8854 0.7499 

All Features 0.8096 0.8892 0.8283 

Mean F1 Score 0.7802 

 

F1 Scores (717, 5%) Viral Popular Viral and Popular 

Twitter Features 0.8603 0.7220 0.8138 

YouTube Features 0.6929 0.9318 0.7990 

All Features 0.8747 0.9346 0.8937 

Mean F1 Score 0.8357 

 

 
Figure 45: F1 scores for Bagging Gradient Boosting Decision Tree algorithm evaluation 

 

F1 Scores explanation: 

 

The F1 scores shown in Figure 45 give a clearer image of how accurate the classifications of 

the BGBDT algorithm are. The algorithm underperforms in relation to other hybrid algorithms 

but it is still a descent model for binary classifications. Looking at the “Viral and Popular” 

column of the Figure it is clear that the model performs much better when larger amounts of 

features are used.  
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Baseline Testing: 

 

(1) Average F1 Scores (>=0.75) – Succeeded 

Bagging GBDT significantly improved the performance of the decision tree, producing 

average F1 scores much higher than the baseline. 

(2) Window Sensitivity (<=8%) – Succeeded 

The average F1 score in strict datasets was increased by 8% and in soft datasets it was 

increased by 7.1% meaning that the Bagging GBDT algorithm has a moderate window 

sensitivity but lies below the predefined baseline.  

(3) High AUC (>=0.80) – Succeeded 

The Bagging GBDT produces very high AUC values making it one of the most accurate 

classifiers in this research. 

 

Running Time (111, 2.5%): 1618.67 seconds. The Bagging Gradient Boosting Decision Tree 

algorithm has an extremely high execution time cost.  

 

Additional comments: 

 

In order to improve the performance of a gradient boosting decision tree algorithm and at the 

same time reduce its’ window sensitivity, the bagging methodology was applied. The new 

Bagging GBDT hybrid algorithm produced very promising results since it appears to have 

improved the overall performance of the GBDT classifier. Despite its’ high quality 

performance, the bagging GBDT is still characterized by a moderate but acceptable window 

sensitivity. The combination of the Gradient boosting methodology and the bagging 

methodology produces very accurate classifications but the execution time required is 

extremely high. 
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Chapter 4 

 

Comparison 
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4.1 Comparison Methodology  

 

In order to examine which algorithm better suits the needs of a certain research, a comparison 

methodology was constructed. The comparison procedure consists of three different metrics 

used in the evaluation of the algorithms. Depending on the kind and needs of a research, 

different weights can be assigned to the following metrics, making one more important than 

the other. In the context of this research, average F1 score is the most important metric. 

 

The following tables depict how the algorithms chosen will be compared. The “Comparison” 

column contains the name of the best performing algorithm. 

 

Average F1 Scores Algorithm 1 Algorithm 2 Comparison 

111 – 2.5%    

717 – 2.5%    

111 – 5%    

717 – 5%    

Table 16: Example of an average F1 score comparison table. 
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Window Sensitivity Algorithm 1 Algorithm 2 Comparison 

Strict Labeling    

Soft Labeling    

Table 17: Example of window sensitivity in strict and soft labeling comparison table 

 

AUC Algorithm 1 Algorithm 2 Comparison 

All Features Old - AUC    

All Features Recent - AUC    

Baseline Features Old - AUC    

Baseline Features Recent - AUC    

Table 18: Example of AUC values for Both Popular graphs with (111, 2.5%) comparison table 

 

Running Time Algorithm 1 Algorithm 2 Comparison 

(111, 2.5%)    

Table 19: Example of Running Time for (111, 2.5%) comparison table 

 

4.2 Stand-alone Algorithms Comparison 

 

 

Average F1 

Scores 
LR KNN SVM DT Comparison 

111 – 2.5% 0.6136 0.6607 0.5721 0.7319 DT 

717 – 2.5% 0.6875 0.7132 0.6028 0.7922 DT 

111 – 5% 0.6243 0.6769 0.5868 0.737 DT 

717 – 5% 0.6906 0.7218 0.6176 0.7904 DT 

 

Window 

Sensitivity 
LR KNN SVM DT Comparison 

Strict Labeling 12% 8% 5.4% 8.2% SVM 

Soft Labeling 11% 6.5% 5.2% 7.2% SVM 

 

AUC LR KNN SVM DT Comparison 

All Features Old - AUC 0.95 0.70 0.65 0.92 LR 

All Features Recent - AUC 0.71 0.51 0.44 0.68 LR 
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Baseline Features Old - 

AUC 
0.97 0.94 0.67 0.91 LR 

Baseline Features Recent - 

AUC 
0.78 0.74 0.44 0.66 LR 

 

Running Time LR KNN SVM DT Comparison 

(111, 2.5%) 17.37 11.29 138.9 18.98 KNN 

 

 
Figure 46: Comparison between all stand-alone algorithms (LR, KNN, SVM, DT) 

 

Comparison comments on Figure 46: 

 

In this Section a comparison between all the stand-alone algorithms used takes place in order 

to examine which algorithm is more promising for further development. 

 

The stand-alone algorithms compared behaved exactly as expected. What is particularly 

interesting is that each algorithm dominated a different metric, with the exception of KNN. 

The Decision Tree algorithm produced much higher average F1 scores from the algorithms in 

comparison, proving that it is the most accurate algorithm when it comes to binary 

classifications. 

 

The SVM algorithm has the lowest window sensitivity compared to the rest of the algorithms, 

whereas Logistic Regression has the highest. SVM low window sensitivity is a product of its 

consistency as an algorithm, whereas Logistic Regression high window sensitivity is an 

outcome of its’ probabilistic nature. 

 

Logistic Regression produced the highest AUC values, showing that it performs well when it 

comes to precision-recall. What this means is that Logistic Regression appears to be a good 

standalone algorithm for binary classification but its’ poor performance on F1 Scores proves 

that AUC values could be misleading.  

 

Since the most reliable and important metric for this research is the F1 score, the Decision Tree 

algorithm was chosen for further development as it performed substantially better than the 

others. Another reason for choosing the Decision Tree is its execution time cost which is very 

low. 
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4.3 Extra Trees VS Random Forest VS Bagging Decision Tree 

 

Average F1 Scores ET RF BDT Comparison 

111 – 2.5% 0.7581 0.7639 0.7645 BDT 

717 – 2.5% 0.8345 0.8364 0.8347 RF 

111 – 5% 0.7626 0.7679 0.7697 BDT 

717 – 5% 0.8323 0.8335 0.8340 BDT 

 

Window Sensitivity ET RF BDT Comparison 

Strict Labeling 10.1% 9.5% 9.2% BDT 

Soft Labeling 9.1% 8.5% 8.4% BDT 

 

AUC ET RF BDT Comparison 

All Features Old - AUC 0.98 0.98 0.98 - 

All Features Recent - AUC 0.83 0.86 0.83 RF 

Baseline Features Old - 

AUC 
0.95 0.94 0.96 BDT 

Baseline Features Recent - 

AUC 
0.72 0.75 0.75 RF/BDT 

 

Running Time ET RF BDT Comparison 

(111, 2.5%) 166.68 248.37 1013.85 ET 

 

 
Figure 47: Comparison between all the algorithms that embed randomness to their procedure 

 

Comparison comments on Figure 47: 

 

The first hybrid algorithms produced using Decision Trees where based on methodologies that 

integrate random characteristics and/or random subsets of data. Those ensemble algorithms 

where Extra Trees, Random Forest and Bagging Decision Tree. Each algorithm integrates 

randomness to its methodology in a different extent.  

 

Comparing the average F1 Scores and AUC values of these algorithms, it is clear that both 

Bagging Decision Tree and Random Forest perform slightly better than the Extra Trees 

algorithm. 
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It is no coincidence that the Extra Trees algorithm has the highest window sensitivity of all 

three whereas the Bagging Decision Tree algorithm has the lowest. This behavior can be 

attributed to the extent of randomness in each algorithm. The Extra Trees algorithm integrates 

the most randomness in its methodology, therefore it is the most sensitive to window changes.    

 

It is worth noting that the higher the accuracy the more running time required. The bagging 

methodology appears to be very time costly. Despite its running time, the Bagging Decision 

Tree algorithm has the best overall performance out of the three, so it was chosen for further 

comparison with different hybrid algorithms implemented using various methodologies. 

 

4.4 BDT VS GBDT VS ABDT  

 

Average F1 Scores BDT GBDT ABDT Comparison 

111 – 2.5% 0.7645 0.7736 0.7714 GBDT 

717 – 2.5% 0.8347 0.8361 0.8276 GBDT 

111 – 5% 0.7697 0.7802 0.7781 GBDT 

717 – 5% 0.8340 0.8359 0.8281 GBDT 

 

Window Sensitivity BDT GBDT ABDT Comparison 

Strict Labeling 9.2% 8.1% 7.3% ABDT 

Soft Labeling 8.4% 7.1% 6.4% ABDT 

 

AUC BDT GBDT ABDT Comparison 

All Features Old - AUC 0.98 0.98 0.98 - 

All Features Recent - 

AUC 
0.83 0.84 0.82 GBDT 

Baseline Features Old - 

AUC 
0.96 0.96 0.97 ABDT 

Baseline Features Recent 

- AUC 
0.75 0.80 0.80 GBDT/ABDT 

 

Running Time BDT GBDT ABDT Comparison 

(111, 2.5%) 1013.85 198.48 238.77 GBDT 

 

 
Figure 48: Comparison between the boosting algorithms and the Bagging Decision Tree algorithm 
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Comparison comments on Figure 48: 

 

The Bagging Decision Tree algorithm is compared with two ensemble algorithms that apply 

some kind of boosting on top of the decision tree weak learner. More specifically Adaptive 

Boosting and Gradient Boosting respectively.  

 

Looking at the comparison tables, it is clear that boosting methodologies produce better overall 

results than the Bagging Decision Tree algorithm. It is worth noting that since GBDT and 

ABDT don’t integrate any kind of randomness in their methodologies, they are much less 

sensitive to window changes than BDT. 

 

Analyzing the results it is not clear which algorithm, Gradient Boosting Decision Tree or Ada 

Boosting Decision Tree, performs better. 

 

The GBDT algorithm produces slightly higher average F1 scores and AUC values than the 

ABDT algorithm. The ABDT algorithm on the other hand is substantially less sensitive to 

window changes than GBDT, which makes it particularly useful when it comes to scaling the 

problem in discussion. The running time of the two boosting algorithms is similar with the 

GBDT algorithm requiring a little less time to run than the ABDT algorithm.   

 

Depending on the nature of the problem either one of these two algorithm be chosen. 
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4.5 GBDT VS Voting – (GBDT, ABDT) 

 

 

Average F1 Scores GBDT 
Voting – (GBDT, 

ABDT) 
Comparison 

111 – 2.5% 0.7736 0.7739 Voting 

717 – 2.5% 0.8361 0.8361 - 

111 – 5% 0.7802 0.7803 Voting 

717 – 5% 0.8359 0.8360 Voting 

 

Window Sensitivity GBDT 
Voting – (GBDT, 

ABDT) 
Comparison 

Strict Labeling 8.1% 8% Voting 

Soft Labeling 7.1% 7.1% - 

 

AUC GBDT 
Voting – (GBDT, 

ABDT) 
Comparison 

All Features Old - AUC 0.98 0.98 - 

All Features Recent - AUC 0.84 0.84 - 

Baseline Features Old - 

AUC 
0.96 0.97 Voting 

Baseline Features Recent - 

AUC 
0.80 0.80 - 

 

Running 

Time 
GBDT 

Voting – (GBDT, 

ABDT) 
Comparison 

(111, 

2.5%) 
198.48 303.50 GBDT 

 

 
Figure 49: Comparison between GBDT and Voting – (GBDT, ABDT)  
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Comparison comments on Figure 49: 

 

Since the GBDT and the ABDT algorithms performed similarly, the Voting methodology was 

used to try and create a hybrid algorithm with higher average F1 Scores and AUC values and 

lower window sensitivity.  

 

The Voting – (GBDT, ABDT) hybrid algorithm managed to produce higher average F1 Scores 

from GBDT, while at the same time reducing slightly the window sensitivity. The AUC values 

where overall the same with a small exception where Voting – (GBDT, ABDT) performed 

slightly better. 

 

In addition to the above results, further comparison took place between the two algorithms, 

which contained all the scenarios examined in this research. The conclusion was that Voting – 

(GBDT, ABDT) performs better than GBDT in almost all the scenarios. The only throwback 

of Voting – (GBDT, ABDT) algorithm is its computational cost that is much higher than that 

of the GBDT algorithm. Since the GBDT uses 100 estimators whereas Voting – (GBDT, 

ABDT) uses 150, it was expected that the voting algorithm would require at least 1.5 times 

more running times than the GBDT algorithm. This hypothesis was justified by the running 

time results presented in the comparison table.  
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4.6 Voting – (GBDT, ABDT) VS Bagging GBDT 

 

 

Average F1 Scores Voting – (GBDT, ABDT) Bagging GBDT Comparison 

111 – 2.5% 0.7739 0.7737 Voting 

717 – 2.5% 0.8361 0.8358 Voting 

111 – 5% 0.7803 0.7802 Voting 

717 – 5% 0.8360 0.8357 Voting 

 

Window Sensitivity 
Voting – (GBDT, 

ABDT) 
Bagging GBDT Comparison 

Strict Labeling 8% 8% - 

Soft Labeling 7.1% 7.1% - 

 

 

AUC 
Voting – (GBDT, 

ABDT) 
Bagging GBDT Comparison 

All Features Old - AUC 0.98 0.98 - 

All Features Recent - AUC 0.84 0.84 - 

Baseline Features Old - 

AUC 
0.97 0.96 Voting 

Baseline Features Recent - 

AUC 
0.80 0.80 - 

 

Running 

Time 

Voting – (GBDT, 

ABDT) 

Bagging GBDT 
Comparison 

(111, 

2.5%) 
303.50 

1618.67 Voting – (GBDT, 

ABDT) 

 

 
Figure 50: Comparison between Voting – (GBDT, ABDT) and Bagging GBDT algorithms 

 

Comparison comments on Figure 50: 

The Bagging GBDT hybrid algorithm combines randomness and boosting in an attempt to 

produce a high quality classifier that performs better than all the other algorithms. Since it 

integrates two different kinds of demanding ensemble methodologies, it is obvious that 

Bagging GBDT comes with a very high computational cost. 
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Despite the fact that the Bagging GBDT algorithm performed very well, it failed to surpass the 

Voting – (GBDT, ABDT) algorithm in any of the metrics. It “tied” in window sensitivity and 

AUC values but underperformed in the most important metric, which is the average F1 Scores. 

Bagging GBDT has an extremely high computational cost. It requires five times more running 

time than the Voting algorithm. This execution time cost doesn’t justify the final results, 

therefore there is no reason to use the Bagging GBDT algorithm instead of the Voting – 

(GBDT, ABDT) algorithm. 

 

4.7 Comparison Conclusion 

 

After extensive research, experiments and comparison between multiple algorithms, a list with 

the most high performing hybrid algorithms was produced.  

 

The list consists of the Gradient Boosting Decision Tree, Ada Boosting Decision Tree and 

Voting – (GBDT, ABDT) hybrid algorithms. These algorithms appear to be the most suitable 

for this kind of research problems or any similar binary classification problems. 

 

The Gradient Boosting Decision Tree algorithm produces extremely accurate classifications. 

It’s the strongest boosting algorithm and has a moderate computational cost. It’s superiority to 

any other boosting algorithm is mostly denoted by the high F1 Scores and AUC values 

produced. Its drawback is that GBDT appears to be slightly “oversensitive” to window 

changes.  

 

The Ada Boosting Decision Tree algorithm produces very accurate classifications. It has a 

moderate computational cost. This hybrid algorithm is particularly powerful when window 

sensitivity is very important to the research. Its drawback is that it produces slightly lower F1 

Scores and AUC values than Gradient Boosting Decision Tree. 

 

The Voting – (GBDT, ABDT) algorithm produces extremely accurate classifications. It has 

the highest F1 Scores from all the other algorithms compared. It has moderate window 

sensitivity. Its drawback is that it comes with a very high computational cost. 

 

All the metrics mentioned in this document where taken into consideration for the final choice 

of the most suitable algorithm for this research. It was concluded that the Voting – (GBDT, 

ABDT) hybrid algorithm fits the most important needs of this kind of research and was 

chosen as the main algorithm for future work. 
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Chapter 5 

 

Discussion 

 

 

3.1 Summary and final thoughts        84 

3.2 Future work          85 

 

 

 

5.1 Summary and Final Thoughts  

 

Stand-alone algorithms are generally weak learners, meaning that they produce poor 

classifications. Decision Tree, which is a weak learner, was a good algorithm to build stronger 

and more accurate, hybrid algorithms on top of.  

 

Hybrid algorithms, which is a combination of weak learners and various methodologies, 

produced high accuracy classifications but with some drawbacks in some cases. For example, 

it was concluded that any kind of randomization procedures within the algorithm itself, 

increases its sensitivity to window changes. This oversensitivity is undesirable since the aim 

of this research is to be able to produce powerful classifications independently of the training, 

offset and labeling window.  

 

Looking at the training features, it is clear that some are more important than others. More 

specifically, any kind of acceleration or ratios appears to assist more in the classification than 

most of the “static” features.  

 

For the needs of this research, it was concluded that the Voting – (GBDT, ABDT) hybrid 

algorithm is the most suitable. It is worth noting that a set of other hybrid algorithms analyzed 

and evaluated in this study, produced high quality classifications as well and could be most 

suitable in scenarios where other metrics are more important (e.g. window sensitivity). In short, 

similar problems with slightly different needs could use one of the other powerful models 

developed and evaluated in this study.  
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Table 20 contains the Voting – (GBDT, ABDT) classifier’s F1 scores for a sample of test cases 

of this research. It is clear that there’s still room for improvement, especially in cross platform 

classifications. Looking at this table, a particularly interesting hypothesis was made. It seems 

that a different algorithms could be assigned in different subsections of the problem in hope of 

producing better classifications.  

 

F1 Scores Viral Popular Viral and Popular 

Twitter Features 0.8031 0.6898 0.7225 

YouTube Features 0.6110 0.8757 0.7318 

All Features 0.8294 0.8851 0.8170 

Table 20: Sample of Voting – (GBDT, ABDT) classifier’s F1 scores 

 

5.2 Future Work 

 

Following the hypothesis that was made from looking at table 20 in Section 5.1, it appears that 

dividing the problem into various subsections, could indeed produce much better results.  

More specifically, the overall problem could be divided into four sections: 

1. Predictions using Twitter Features 

2. Predictions using YouTube features 

3. Predictions using All Features  

4. Cross-platform predictions.  

 

A different kind of hybrid algorithm could be assigned to each subsection. Each algorithm 

could then be fine-tuned and adjusted to the specific needs of each section in order to produce 

more accurate classifications. This approach to the problem is feasible and very promising. The 

outcome could be an extremely powerful model that could make high accuracy, platform 

independent, predictions. It has been noted that when the features are “weak”, meaning that 

they don’t offer much information gain to the classifier, a more randomized approach might be 

more suitable. For example, in the case of predictions using Twitter features, which don’t offer 

much information gain, a Random Forest algorithm could be more preferable than a Boosting 

algorithm.  

 

Finally, further experimentation could take place regarding the training features. More 

specifically, features that don’t seem to be important to the classification could be removed in 

the future, whereas features that are important, could be combined to produce even more 

powerful training features.  
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