
i

Diploma Project

PREDICTION OF VIRALITY AND POPULARITY OF YOUTUBE

VIDEOS ON TWITTER:

MACHINE LEARNING ALGORITHMS ANALYSIS

Giorgos Demosthenous

UNIVERSITY OF CYPRUS

DEPARTMENT OF COMPUTER SCIENCE

May 2017

ii

UNIVERSITY OF CYPRUS

DEPARTMENT OF COMPUTER SCIENCE

Prediction of Virality and Popularity of YouTube Videos on Twitter:

Machine Learning Algorithms Analysis

Giorgos Demosthenous

Supervisor

Chryssis Georgiou

This diploma project was submitted to fulfil a part of the requirements of acquiring the

Computer Science Degree of the University of Cyprus

May 2017

iii

ACKNOWLEDGEMENTS

I wish to express my sincere thanks to Dr. Georgiou Chryssis, Associate Professor at the

Department of Computer Science of the University of Cyprus for being my mentor and helping

me in every stage of my thesis. I am extremely thankful and indebted to him for sharing his

expertise and giving me the chance to further develop my skills in one of my favorite topics,

which is machine learning.

I am also grateful to Dr. Pallis George, Assistant Professor at the Computer Science

Department of University of Cyprus, for providing me with all the necessary knowledge needed

to begin learning about the technologies that were necessary for the implementation of the tools

in my study.

I would also like to thank Georgiou Zacharias, who was working in a different topic of the

same research as me, for the way he pushed me to acquire new and very valuable knowledge

for certain technologies. With his help, we were able to solve the common problem that was

the collection of the data needed for our research.

Finally, I would like to thank Evi Fasouliotou for supporting me and my parents for

encouraging me during my final year at the University of Cyprus.

iv

ABSTRACT

The exponential growth of video viewing traffic on the Internet has led to the rise of

the internet economy. Marketeers aiming to promote their content have turned their interest on

this fairly new kind of advertisements on videos. Their main concern is that they would only

like to promote their content on videos that will be viewed by as many people as possible. This

requirement of knowing which video is going to attract the more viewers, has made necessary

the developing of predictive mechanisms that would be able to predetermine the popularity and

virality of videos.

In order to be able to predict when a video could become popular or viral, we first

needed to understand under which circumstances a YouTube video is most likely to flourish.

To achieve this, information about the video on the two platforms, YouTube and Twitter, was

collected and analyzed. Monitoring the progress of each video for a specific amount of days,

we were able to extract a set of YouTube and Twitter features to later determine if they play

any role in the progress of that video. Having collected all the necessary data, the next step was

to be able to predict when a video was going to become popular, viral or both. Ideally, a

prediction of the oncoming popularity or virality of a video, should be made within a couple of

days since its upload. To achieve this, a powerful prediction model had to be created using

machine learning.

In this study, several powerful prediction models where developed using a variety of

machine learning algorithms and methodologies. More specifically, multiple algorithms where

tested, evaluated and compared to determine which ones produce the most accurate predictions

on the study under consideration. The next step was to combine multiple machine learning

algorithms and methodologies to create hybrid algorithms that were able to produce even

higher accuracy predictions.

Most of the algorithms used in this research where fine-tuned to increase their

performance and evaluated in detail to determine under which circumstances each algorithm

thrives and how suitable the algorithm is for the classification of a video. The most powerful

models where then compared to each other to determine which one produces the most desirable

and accurate classifications under the current circumstances. The main objective was to come

up with a bunch of machine learning algorithms that performed better in different scenarios,

and finally decide which one is most suitable for this research.

Finally, another goal of this study was to create models that are able to extract the

importance of each feature in order to have the ability to narrow down the features of each

platform that are the most important in the classification of the video.

v

CONTENTS

Chapter 1 Introduction…………………………………………………………….. 1

 1.1 Motivation and Prior Work………………………………………….. 1

 1.2 Goals of the study….………………………………………………… 3

 1.3 Methodology….…………………………………………………….... 3

 1.4 Contributions…………………………………………………………. 5

 1.5 Document Organization…………………………………………….... 6

Chapter 2 Background Knowledge and Tools……………………….………….... 7

 2.1 Machine Learning Algorithms……………………………………….. 7

 2.1.1 Stand-alone Algorithms…………………………………….. 7

 2.1.1.1 Logistic Regression………………………………. 7

 2.1.1.2 K Nearest Neighbors……………………………... 8

 2.1.1.3 SVM – Linear SVC…………………………...….. 9

 2.1.1.4 Decision Tree…………………………………...... 10

 2.1.2 Hybrid Algorithms………………………………………..... 11

 2.1.2.1 Random Forest and Extra Trees………………….... 11

 2.1.2.3 Bagging Decision Tree…………………………... 12

 2.1.2.4 Boosting Decision Trees………………………….. 13

 2.1.2.4.1 Gradient Boosting Decision Tree ……… 13

 2.1.2.4.2 Ada Boosting Decision Tree…………… 14

 2.1.2.4.3 Voting – (ABDT, GBDT)……………… 14

 2.1.2.4.4 Voting – (ABDT, GBDT, LR)……….… 15

 2.1.2.4.5 Bagging GBDT………………….……... 15

2.2 Features……………………………………………………………... 15

 2.2.1 Training Features Description…………………………….. 15

 2.2.2 Feature Importance………………………………………... 21

2.3 Implementation Details…………………………………………….... 22

 2.3.1 Data Collection……………………………………………. 22

 2.3.2 Feature Manager……………………………………….….. 24

 2.3.3 Algorithms Implementation……………………….………. 27

 2.3.4 Presentation………………………………………………... 31

2.4 Model Evaluation…………………………………………….……… 34

vi

Chapter 3 Evaluation and Analysis………………………………………...... 36

 3.1 Evaluation Methodology………………………………………….... 36

 3.2 Algorithm Evaluation and Analysis……………………………….... 38

 3.2.1 Logistic Regression………………………………………. 38

 3.2.2 K Nearest Neighbors……………………………………… 41

 3.2.3 SVM – Linear SVC………………………………………. 44

 3.2.4 Decision Tree……………………………………………... 47

 3.2.5 Random Forest……………………………………………. 50

 3.2.6 Extra Trees………………………………………………... 53

 3.2.7 Bagging Decision Tree……………………………………. 56

 3.2.8 Gradient Boosting Decision Tree…………………………. 59

 3.2.9 Ada Boosting Decision Tree……………………………… 62

 3.2.10 Voting – Ada and Gradient Boosting Decision Tree……. 65

 3.2.11 Voting – Ada and Gradient Boosting Decision Tree

 with Logistic Regression……………………………………68

 3.2.12 Bagging Gradient Boosting Decision Tree………………. 71

Chapter 4 Comparison……………………………….……………………………. 74

4.1 Comparison Methodology…………………………………………… 74

4.2 Stand-alone Algorithms Comparison………………………………… 75

4.3 Extra Trees VS Random Forest VS Bagging Decision Tree………… 77

4.4 BDT VS GBDT VS ABDT…………………………………………... 78

4.5 GBDT VS Voting – (GBDT, ABDT) ……………………………….. 80

4.6 Voting – (GBDT, ABDT) VS Bagging GBDT………………………. 82

4.7 Comparison Conclusion………………………………………………. 83

Chapter 5 Discussion….……………………………………………………………… 84

5.1 Summary and final thoughts………………………………………....... 84

5.2 Future Work…………………………………………………………… 85

References ………………………………………………………………………………... 86

vii

LIST OF TABLES AND FIGURES

Table 1: Descriptions of the static YouTube features
Table 2: Descriptions of the differences between YouTube features

Table 3: Descriptions of the accelerations of several YouTube features
Table 4: Descriptions of the daily statistics of several YouTube features
Table 5: Descriptions of the age ratio of several YouTube features
Table 6: Descriptions of the ratios of several YouTube features
Table 7: Descriptions of the static Twitter features

Table 8: Descriptions of the differences between Twitter features
Table 9: Descriptions of the accelerations of several Twitter features
Table 10: Descriptions of the daily statistics of several Twitter features
Table 11: Descriptions of the ratios of several Twitter features
Table 12: Example of exported feature importance of several features

Table 13: Confusion Matrix

Table 14: Training, offset and labeling windows used to examine window sensitivity of

algorithms
Table 15: The final amount of videos included in the four training datasets
Table 16: Example of an average F1 score comparison table.
Table 17: Example of window sensitivity in strict and soft labeling comparison table

Table 18: Example of AUC values for Both Popular graphs with (111, 2.5%) comparison

table
Table 19: Example of Running Time for (111, 2.5%) comparison table

Table 20: Sample of Voting – (GBDT, ABDT) classifier’s F1 scores

Figure 1: Abstract diagram of the methodology used in this study
Figure 2: Two class classification using Support Vector Machine

Figure 3: Example of a decision tree structure
Figure 4: Random Forest Algorithm structure example

Figure 5: Representation of how the Bagging methodology works
Figure 6: Adaptive boosting example

Figure 7: Data collection system
Figure 8: Code snippet of Feature Manager input and execution
Figure 9: Feature Manager Skeleton
Figure 10: Output files of FeatureManager that contain all the sets of training features

Figure 11: Code snippet of the input data passed into the GBDT.py classifier
Figure 12: Code snippet of three popularity classification function calls, using different

datasets each time
Figure 13: Code snippet showing a small part of the popular(…) function.
Figure 14: Code snippet of the classify(…) function used in all the algorithms with minor

changes
Figure 15: Web application home page for evaluation and comparison of machine learning

algorithms
Figure 16: Web application snapshot of the algorithm evaluation window
Figure 17: Web application snapshot of the classification results
Figure 18: Web application snapshot of comparison between GBDT and Logistic Regression

algorithms

Figure 19: Example of a precision-recall graph
Figure 20: 10-fold cross-validation explanation
Figure 21: Datasets used in the evaluation methodology

Figure 22: Logistic Regression algorithm precision-recall graphs
Figure 23: F1 scores for Logistic Regression algorithm evaluation

viii

Figure 24: K Nearest Neighbors algorithm precision-recall graphs
Figure 25: F1 scores for K Nearest Neighbors algorithm evaluation
Figure 26: SVM – Linear SVC algorithm precision-recall graphs

Figure 27: F1 scores for SVM – Linear SVC algorithm evaluation
Figure 28: Decision Tree algorithm precision-recall graphs

Figure 29: F1 scores for Decision Tree algorithm evaluation
Figure 30: Random Forest algorithm precision-recall graphs
Figure 31: F1 scores for Random Forest algorithm evaluation
Figure 32: Extra Trees algorithm precision-recall graphs
Figure 33: F1 scores for Extra Trees algorithm evaluation

Figure 34: Bagging Decision Tree algorithm precision-recall graphs
Figure 35: F1 scores for Bagging Decision Tree algorithm evaluation
Figure 36: Gradient Boosting Decision Tree algorithm precision-recall graphs
Figure 37: F1 scores for Gradient Boosting Decision Tree algorithm evaluation
Figure 38: Ada Boosting Decision Tree algorithm precision-recall graphs

Figure 39: F1 scores for Ada Boosting Decision Tree algorithm evaluation

Figure 40: Voting – Ada and Gradient Boosting Decision Tree algorithm precision-recall

graphs
Figure 41: F1 scores for Voting – Ada and Gradient Boosting Decision Tree algorithm

evaluation
Figure 42: Voting – (ABDT, GBDT, LR) algorithm precision-recall graphs

Figure 43: F1 scores for Voting – (ABDT, GBDT, LR) algorithm evaluation
Figure 44: Bagging Gradient Boosting Decision Tree algorithm precision-recall graphs
Figure 45: F1 scores for Bagging Gradient Boosting Decision Tree algorithm evaluation

Figure 46: Comparison between all stand-alone algorithms (LR, KNN, SVM, DT)
Figure 47: Comparison between all the algorithms that embed randomness to their procedure

Figure 48: Comparison between the boosting algorithms and the Bagging Decision Tree

algorithm
Figure 49: Comparison between GBDT and Voting – (GBDT, ABDT)

Figure 50: Comparison between Voting – (GBDT, ABDT) and Bagging GBDT algorithms

ix

LIST OF ABBREVIATIONS AND ACRONYMS

DT: Decision Tree

LR: Logistic Regression

ET: Extra Trees

RF: Random Forest

KNN: K Nearest Neighbors

BDT: Bagging Decision Tree

GBDT: Gradient Boosting Decision Tree

ABDT: Ada Boosting Decision Tree

BGBDT: Bagging Gradient Boosting Decision Tree

SVM: Support Vector Machine

- 1 -

Chapter 1

Introduction

1.1 Motivation and Prior Work 1

1.2 Goals of the study 3

1.3 Methodology 3

1.4 Contributions 5

1.5 Document organization 6

1.1 Motivation and Prior Work

During the last decade, a huge part of Internet usage has shifted from traditional web to media,

and more specifically videos [1]. This exponential growth of video viewing traffic on the

Internet has led to the rise of the Internet economy. Marketeers aiming to promote their content

have turned their interest on this fairly new kind of advertisements on videos. Their main

concern is that they would only like to promote their content on videos that will be viewed by

as many people as possible. This need to be able to know which video is going to attract the

more viewers, has made necessary the existence of a predictive mechanism that would be able

to predetermine the popularity and virality of videos.

The definition of popularity and virality was given in David Vallety’s previous research on a

similar topic: Characterizing and Predicting Viral-and-Popular Video Content [2]. They

define popularity as the inherent propensity of a video to attract views on YouTube and

virality as its potential to elicit Twitter posts from its viewers. The most valuable and

interesting videos are those that become both viral and popular. Predicting whether a video will

become both viral and popular has proven to be one of the most difficult tasks.

In order to be able to predict when a video would become popular or viral, we first needed to

understand under which circumstances a YouTube video is most likely to flourish. To achieve

this, information about the video on the two platforms, YouTube and Twitter, was collected

- 2 -

and analyzed. Monitoring the progress of each video for a specific amount of days, we were

able to extract a set of YouTube and Twitter features to later determine if they play any role in

the popularity or virality of that video.

Having collected all the necessary data, the next step was to be able to predict when a video

was going to become popular, viral or both. In order to be of any value, this prediction should

be made as independent as possible from the number of days the video was being monitored.

Ideally, a prediction of the oncoming popularity or virality of a YouTube video, should be

made within a couple of days since its upload. To achieve this need a powerful prediction

model had to be created using machine learning. Machine learning [3] provides computers

with the ability to learn without being explicitly programmed and focuses on the development

of algorithms whose outcome can change when exposed to new data.

In this study, several powerful prediction models where developed using a variety of machine

learning algorithms and methodologies [15]. More specifically, multiple algorithms where

tested, evaluated and compared to determine which one produces the most accurate predictions.

The next step was to combine multiple machine learning algorithms and methodologies to

create hybrid algorithms that were able to produce even higher accuracy predictions.

Most of the algorithms used in this research where evaluated in detail in chapter 3 to determine

under which circumstances each algorithm thrives and how suitable the algorithm is for the

classification of a video as popular and viral. The most powerful models where then compared

to each other to determine which one produces the most desirable and accurate classifications

under the current circumstances. Machine learning algorithms analysis plays a huge role in the

overall goal of the research. More specifically, this part of the research, which is to analyze,

evaluate and compare machine learning algorithms allows us to use very powerful models to

predict the popularity and virality of a YouTube video with high accuracy. This also gives us

the ability to narrow down the features of each platform that are the most important in the

classification of the video.

Although there have been similar studies [4] that attempted to predict the virality and popularity

of videos, there wasn’t any research or prior work regarding machine learning algorithms

analysis that attempted to create powerful models that would make the most accurate

predictions for this problem. This is the novelty of the presented study.

- 3 -

1.2 Goals of the Study

The ultimate goal of this study was to create powerful models that would be able to make high

accuracy predictions of virality and popularity of YouTube videos.

One of the main objectives of this research was to analyze and evaluate a variety of different

machine learning algorithms, in order to examine their strengths and weaknesses related to this

study’s problem. The algorithms had to be fine-tuned to increase their performance and make

them more suitable for the current research. In order to achieve even higher accuracy

classifications, hybrid algorithms had to be created.

Another important goal of the study was to compare the most promising algorithms in order to

examine their behavior in relation to each other and determine the most suitable ones [5] for

this problem. The objective was to come up with a bunch of machine learning algorithms that

performed better in different scenarios, and finally decide which one is most suitable for this

research.

Finally, another goal of this study was to create classifiers that are able to extract the importance

of each feature in the classification and prediction of popularity and virality of YouTube videos.

1.3 Methodology

The following diagram presents the abstract methodology of this study.

Figure 1: Abstract diagram of the methodology used in this study

Data Collection: The general idea of how the data collection system works is described in

detail in Section 2.3. In order to be able to collect the information needed, YouTube Data API

1. Data
Collection

2. Labeling and
Filtering

3. Feature
Preparation

4. Development
and Fine-tuning

of Algorithms

5. Training and
Classification

6. Evaluation of
Algorithms

7. Comparison
of Algorithms

8. Conclusions

- 4 -

[6] and Twitter Streaming API [7] where used. The overall procedure was repeated for every

video collected.

Labeling and Filtering: Only information needed for the creation of the training features

where kept. Out of the 130.000 videos, only a predefined percentage is used in the training

procedure. For example, in strict labeling, the percentage used is 2.5%. This means that the

dataset used in the training procedure consisted of the 2.5% most popular videos, the 2.5%

most viral videos, 2.5% most recent videos and 2.5% random videos. Some videos appear in

multiple of the above categories, meaning that the real amount of unique videos in each

category is less than 2.5%.

Feature Preparation: The raw information acquired from the datasets is processed in order to

export features that will be used during the training of the classifiers. The features prepared are

described in Section 2.2

Development and Fine-tuning of Algorithms: After extensive research [11], various kinds

of machine learning algorithms where developed and fine-tuned to better fit the needs of this

research.

Training and Classification: The dataset in an experiment is used to train each classifier,

which was created using a different kind of algorithm. All the training features are fitted to the

model in order to produce a final classification of the videos. The outcome is a bundle of

metrics that show how well an algorithm has performed and what features where the most

important.

Evaluation of Algorithms: A selection of algorithm is evaluated in order to examine their

performance, strengths and weaknesses using baseline tests. A more detailed description of the

evaluation methodology is presented in Section 3.1.

Comparison of Algorithms: After evaluating the algorithms, the most promising ones are

compared between each other to determine when each algorithm performs better and why. The

comparison methodology is described in detail in Section 4.1.

Conclusions: After evaluating and comparing the algorithms, the better performing ones are

kept for further usage and development. Each algorithm selected performs better in different

scenarios. The comparison conclusions are presented in detail in Section 4.7

- 5 -

1.4 Contributions

This study offers several contributions to the scientific community. First of all it allows any

novice to rapidly pick up and understand basic machine learning knowledge. It explains in the

depth how some algorithms are separated and how they operate. In addition, a variety of

evaluation metrics are presented and a detailed explanation is given on how each one can be

used to evaluate the performance of a machine learning algorithm.

The tools developed for the purpose of this study allow for a better understanding of how each

machine learning algorithm, discussed in this document, behaves and why. More specifically,

the web application developed gives the ability to see several metrics regarding a specific

algorithm. You can see how it performs under different scenarios by examining its precision-

recall graphs and its’ F1 scores presented in the web application. In addition, it allows the user

to graphically compare two algorithms to determine which one performs better under which

circumstances.

The prediction models developed in this study can be used for any kind of binary classification

problems and can export several kind of metrics regarding the models performance.

Finally, the evaluation and the comparison of the algorithms presented in this study depicts

how each algorithm behaves in different situations. Additionally, the conclusions extracted

from these evaluations and comparisons contribute heavily to the scientific community, since

they can be used for further development and adjustment of the algorithms in similar problems

that require binary prediction models.

- 6 -

1.5 Document organization

The following table contains a brief summary of what is covered in each chapter.

Chapter 2

This chapter contains some of the background knowledge and tools needed for

this study. More specifically, a brief explanation is given on how each of the

machine learning algorithms used works. In addition, an abstract description is

given about the data collection procedure. This chapter also contains the

evaluation metrics used in the research along with an explanation for each one.

The training features are analyzed and described towards the end of this chapter.

Finally, this chapter contains implementation details about the tools developed.

Chapter 3

In this chapter each algorithm is ankylosed and evaluated using a specified

methodology. More specifically, each algorithm’s performance is tested against

a set of defined baseline values in order to examine the quality of the classifiers.

Chapter 4

This chapter contains a methodology followed to compare each algorithm. A

bundle of the highest performing algorithms was chosen and compared in order

to extract some conclusions. Towards the end of the chapter, a set of the most

suitable algorithms is chosen and analyzed for its strengths and weaknesses. A

final conclusion is then made as to which algorithm performs better at which

scenario, including this research.

Chapter 5

This chapter contains the overall conclusions of this study. In addition, it

discusses future work that could be done based on a hypothesis that could lead

to the creation of much more powerful models.

- 7 -

Chapter 2

Background Knowledge and Tools

2.1 Machine learning algorithms 7

2.2 Features 15

2.3 Implementation details 22

2.4 Model evaluation 34

2.1 Machine Learning Algorithms

There are three types of machine learning algorithms: supervised learning, unsupervised

learning and reinforcement learning. For the purpose of this research supervised learning was

used, more specifically classification, to test assumptions, validate data, make predictions and

reach to certain conclusions regarding the popularity and virality of YouTube videos.

The machine learning algorithms chosen where separated into two groups:

1. Stand-alone Algorithms

2. Hybrid Algorithms

2.1.1 Stand-alone Algorithms

Stand-alone algorithms are standalone machine learning algorithms that make classifications

using their own methodologies without any third-party assistance.

2.1.1.1 Logistic Regression

Logistic regression [9], despite its name, is a linear model for binary classification rather than

regression and can be extended to multiclass classification via the OvR technique. In this

model, the probabilities describing the possible outcomes of a single trial are modeled using a

logistic function:

𝑓(𝑥) =
1

1 + 𝑒−𝑥

- 8 -

The logistic function is an S-shaped curve that can take any real-valued number and map it into

a value between 0 and 1, but never exactly at those limits. Where “e” is the base of the natural

logarithms and “x” is the actual numerical value that you want to transform. In the case of

logistic regression, “x” is the linear combination of weights and sample features that can be

calculated as x = W0 + W1F1 + …. + WmFm.

Due to its probabilistic nature this powerful algorithm is idle for binary classification. Strictly

speaking the Logistic Regression algorithms classifies the input data as follows:

Class = 1 𝑖𝑓 𝑓(𝑥) ≥ 0.5

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The logistic regression algorithm used in this study optimizes its outcome by minimizing the

following cost function:

2.1.1.2 K Nearest Neighbors

Nearest Neighbors algorithms [9] are a family of machine learning algorithms that classify

datasets based on a chosen distance metric. The K Nearest Neighbors algorithm is a typical

example of a lazy learner. It is called lazy because it doesn’t learn a discriminative function

from the training data but memorizes the training dataset instead.

The KNN algorithm uses a simple Euclidian distance metric to determine the class of sample

data as shown in the following equation.

𝐷(𝑥, 𝑦) = √∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=0

Based on this distance metric, the KNN algorithm finds the k samples in the training dataset

that are closest to the point that we want to classify, where k is the number of neighbors chosen.

The class label of the new data point is then determined by a majority vote among its k nearest

neighbors.

- 9 -

Figure: KNN algorithm takes into consideration the K nearest neighbors (1, 2, 3)

The main advantage of such a memory-based approach is that the classifier continually adapts

and improves as we collect new training data. However, the downside is that the computational

complexity for classifying new samples grows linearly with the number of samples in the

training dataset. This means that the KNN algorithm will require more time to classify the new

data as the size of the training dataset grows.

2.1.1.3 SVM – Linear SVC

Support Vector Machine (SVM) algorithms [18] aim to maximize the distance between the

decision boundary, which is known as margin, and the training samples that are closest to this

boundary, which are known as support vectors.

Figure 2: Two class classification using Support Vector Machine [9]

This family of machine learning algorithms is characterized by its adaptability to various kinds

of problems since it can use different types of kernels to separate sample training data into

classes.

- 10 -

Support Vector Machine algorithms tend to work more effectively in high dimensional spaces.

Binary classification, which is used in this study, requires a linear kernel to be used in the SVM

algorithms. For the purpose of the current research, three different SVM algorithms with linear

kernels where tested: SVC, NuSVC and Linear SVC.

SVC, which stands for support vector classification, is an SVM algorithm that can use multiple

kind of kernels to execute different types of classifications. In our case, a linear kernel was

used for SVC. NuSVC is similar to the SVC algorithm but uses a parameter to control the

number of support vectors. Linear SVC doesn’t have a kernel parameter since it uses a linear

kernel by default. Linear SVC was chosen over the two other algorithms since it had better

overall performance and was more suitable for the needs of this research.

2.1.1.4 Decision Tree

Decision Tree classification algorithms [9] are popular models due to their interpretability. This

family of algorithms operates by breaking down sample training data by making decision based

on asking a series of questions. An example of a decision tree is shown in Figure 3.

Figure 3: Example of a decision tree structure

- 11 -

The decision algorithm starts at the root of the tree and splits the data on the feature that results

in the largest information gain. The classification process finishes when the decision tree is

completely built.

Decision Tree algorithms are “weak learners” that’s why they are mostly used as part of other

machine learning algorithms to improve the performance and the accuracy of a classification.

2.1.2 Hybrid Algorithms

Hybrid algorithms [20] are a combination of machine learning algorithms and methodologies

that aim to enhance the accuracy of the classifications. The general idea of ensemble-hybrid

learning is to combine “weak learners” to build a more robust model, a “strong learner”.

2.1.2.1 Random Forest and Extra Trees

Random forests are a collection of randomized decision trees. More specifically the algorithm

chooses n random samples from the training data set with replacement and then proceeds to

create a decision tree. In the decision tree created the algorithm randomly chooses a specified

amount of features without replacement before moving to the splitting procedure and the

classification. The algorithm repeats the procedure until a forest of a predefined number of

trees is created. The final class labels are assigned using majority voting among the decision

trees of the forest.

Just like Random Forests Extra Trees is a collection of randomized decision trees. The process

of the forest creation and the classification is similar to that of the Random Forest algorithm

with an exception of an additional random step. In this algorithm randomness goes one step

further in the way splits are computed. As in random forests, a random subset of candidate

features is used, but instead of looking for the most discriminative thresholds, thresholds are

drawn at random for each candidate feature and the best of these randomly-generated

thresholds is picked as the splitting rule.

- 12 -

Figure 4: Random Forest and Extra Trees Algorithms structure example

Figure 4 depicts the idea behind a random forest or an extra trees algorithm. Each randomly

generated decision tree classifies its data, k1… kb, and then a majority vote takes place. The

voting procedure is simple. A specific video is labeled with the classification that appeared the

most times in all the sub trees. If a tie occurs then the first classification in acceding order is

chosen. Typically, the larger the number of trees, the better the performance of the random

forest or extra trees classifier and the expense of an increased computational cost.

2.1.2.3 Bagging Decision Tree

Bagging [9] is an ensemble learning technique that aims to improve the performance of a weak

learner. A predefined amount of estimators classify random parts taken from the training data

sample and the final labeling occurs after majority voting takes place. Bagging methods help

reduce variance and overfitting [21] caused by the individual estimators.

Figure 5 gives a fair representation of how bagging methods work. First an ensemble of

decision trees with random subsets of data is created. Each decision tree contains all the features

used in the dataset. After each individual classification, a majority vote takes place. Looking

at all the classifications, C1…Cm, we chose the label that has appeared the most times for a

specific video. If a tie occurs, the first labeling is chosen in acceding order.

- 13 -

Figure 5: Representation of how the Bagging methodology works [9]

The Bagging Decision Tree algorithm was used to examine the extent at which the bagging

technique contributes to the improvement of an individual estimator, in this case a Decision

Tree.

2.1.2.4 Boosting Decision Trees

Boosting is the methodology that aims to optimize the overall accuracy of a weak learner by

continually improving its classification performance. It starts with using a weak learner to

classify some data and then adds more weak learners to the equation that focus on the wrong

labels given by the previous classification. Each boosting iteration aims to improve the

performance of the previous learner.

2.1.2.4.1 Gradient Boosting Decision Tree

Gradient Boosting [13] is an advance methodology that is used to boost the performance of

weak learners (in this case decision trees).

The algorithm bases its functionality on three factors:

1. A loss function to be optimized.

2. A weak learner to make predictions.

3. An additive model to add weak learners to minimize the loss function.

In each boosting iteration a new weak learner is added to the ensemble and at the end of its

predictions the overall model’s performance is improved whereas the loss function is reduced.

- 14 -

The goal is to minimize the loss function every time a new decision tree is added. This is

achieved by using the gradient decent methodology.

2.1.2.4.2 Ada Boosting Decision Tree

The core principle of Ada Boosting [23] is to fit an ensemble of weak learners (in this case

decision trees) on repeatedly modified versions of the data. The predictions from all of them

are then combined through a weighted majority vote to produce the final prediction.

Each boosting iteration consists of applying weights [W1...Wn] to each of the training samples.

Initially, those weights are all set to Wi = 1/N, so that the first step simply trains the weak

learners on the original data. For each successive iteration, the sample weights are individually

modified and the learning algorithm is reapplied to the reweighted data. The training samples

that were incorrectly predicted by the boosted model induced at the previous step have their

weights increased, whereas the weights are decreased for those that were predicted correctly.

This weight change in each boosting iteration forces the week learners to focus on data that

was misclassified in previous iterations.

Figure 6: Adaptive boosting example [9]

2.1.2.4.3 Voting – Ada and Gradient Boosting Decision Tree

Voting [9] takes multiple estimator’s classifications as input and performs a voting procedure

to decide the final classification of the training data. This methodology uses two kinds of

voting, hard or soft. If “hard” voting is chosen, a majority voting procedure takes place between

all the classifications of the ensemble. Else if “soft” voting is chosen, the final classification is

deducted base on the max of the sums of the predicted probabilities. Ada Boosting and

Gradient Boosting both improve the performance of a decision tree algorithm and Voting

- 15 -

serves as a final improvement step for ABDT and GBDT classifications, deciding the final

labeling that takes place.

2.1.2.4.4 Voting – Ada and Gradient Boosting Decision Tree + Logistic Regression

In this majority vote hybrid algorithm, Ada boosting Decision Tree, Gradient Boosting

Decision Tree and Logistic Regression where used in an attempt to test the boundaries of the

Voting methodology.

2.1.2.4.5 Bagging Gradient Boosting Decision Tree

Gradient Boosting Decision Tree classifier is a powerful model when it comes to making

predictions with binary classification. Despite its’ high accuracy, GBDT has some flaws which

under the Bagging model (explained in Section 2.1.2.3) seem to be reduced substantially.

2.2 Features

2.2.1 Training Features Description

In order to train the classifiers as effectively as possible 74 distinct features where used. With

each additional training day the count of window sensitive features (e.g. ratios, differences etc.)

is increased accordingly.

YouTube Features (31):

Static Features

category The category of the video assigned by YouTube

artificial_category Some categories were grouped for the purposes of this

research

duration The duration of the video in milliseconds

comments_sentiment_neg Statistics about video comments that were classified as

sentimentally negative

comments_sentiment_neu Statistics about video comments that were classified as

sentimentally neutral

- 16 -

comments_sentiment_pos Statistics about video comments that were classified as

sentimentally positive

comments_sentiment_compound Statistics about video comments that were classified as

sentimentally compound

channel_uploads The amount of video uploads in the channel the video

belongs to

channel_subscribers The amount of subscribers in the channel the video

belongs to

channel_views The amount of total views in the channel the video

belongs to

Table 1: Descriptions of the static YouTube features

Differences

views_dif The difference between the accumulated views of a video at the first and

last day of the training

likes_dif The difference between the accumulated likes of a video at the first and last

day of the training

dislikes_dif The difference between the accumulated dislikes of a video at the first and

last day of the training

comments_dif The difference between the accumulated comments of a video at the first

and last day of the training

Table 2: Descriptions of the differences between YouTube features

Accelerations - The ratio of a feature between day n and day n-1

views_acc The average acceleration of the views

likes_acc The average acceleration of the likes

dislikes_acc The average acceleration of the dislikes

comments_acc The average acceleration of the comments

Table 3: Descriptions of the accelerations of several YouTube features

Daily Stats - (1..n)

views Views added to the video at the # day

likes Likes added to the video at the #day

dislikes Dislikes added to the video at the #day

comments Comments added to the video at the #day

Table 4: Descriptions of the daily statistics of several YouTube features

- 17 -

Age ratio – (1..n)

ageRatioViews The ratio between the number of views of a video on day # and the

date it was uploaded (in days)

ageRatioLikes The ratio between the number of likes of a video on day # and the

date it was uploaded (in days)

ageRatioDislikes The ratio between the number of dislikes of a video on day # and the

date it was uploaded (in days)

ageRatioComments The ratio between the number of comments of a video on day # and

the date it was uploaded (in days)

Table 5: Descriptions of the age ratio of several YouTube features

Ratios - (1..n)

ratioViews The ratio between the number of views on day # and the total likes of the

video since upload

ratioLikes The ratio between the number of likes on day # and the total likes of the

video since upload

ratioDislikes The ratio between the number of dislikes on day # and the total likes of

the video since upload

ratioComments The ratio between the number of comments on day # and the total likes

of the video since upload

Table 6: Descriptions of the ratios of several YouTube features

- 18 -

Twitter Features (43):

Static Features

user_followers_count The average amount of followers users referring to the specific

video have

users_verified_count The amount of verified users referring to a video

user_friends_count The average amount of friends users referring to the specific video

have

Table 7: Descriptions of the static Twitter features

Differences

tw_tweets_dif The difference between the total amount of tweets referring to a

specific video at the first and last day of the training

tw_orig_tweets_dif The difference between the total amount of original tweets

referring to a specific video at the first and last day of the training

tw_retweets_dif The difference between the total amount of retweets referring to a

specific video at the first and last day of the training

tw_user_favorites_dif The difference between the total amount favorites the tweet

referring to a specific video has received, at the first and last day

of the training

tw_eng_dif The difference between the total amount of tweets in English

referring to a specific video at the first and last day of the training

tw_sp_dif The difference between the total amount of tweets in Spanish

referring to a specific video at the first and last day of the training

tw_user_eng_dif The difference between the total amount of tweets whose user has

set their account language to English, referring to a specific video

at the first and last day of the training

tw_user_sp_dif The difference between the total amount of tweets whose user has

set their account language to Spanish, referring to a specific video

at the first and last day of the training

tw_user_statuses_dif The difference between the total amount of statuses posted by users

that have referred to a specific video, at the first and last day of the

training

tw_hashtags_dif The difference between the total amount of hashtags used in tweets

referring to a specific video, at the first and last day of the training

Table 8: Descriptions of the differences between Twitter features

- 19 -

Accelerations - The ratio of a feature between day n and day n-1

tw_tweets_acc The average acceleration of tweets referring to a specific video

tw_orig_tweets_acc The average acceleration of original tweets referring to a specific

video

tw_retweets_acc The average acceleration of retweets referring to a specific video

tw_user_favorites_acc The average acceleration of user favorites

tw_eng_acc The average acceleration of English tweets referring to a specific

video

tw_sp_acc The average acceleration of Spanish tweets referring to a specific

video

tw_user_eng_acc The average acceleration of English users referring to a specific

video

tw_user_sp_acc The average acceleration of Spanish users referring to a specific

video

tw_user_statuses_acc The average acceleration of statuses of a User that has referred to

a specific video

tw_hashtags_acc The average acceleration of the number of hashtags used in tweets

referring a specific video

Table 9: Descriptions of the accelerations of several Twitter features

Daily stats - (1..n)

tweets_added The number of tweets added on day #

original_tweets_added The number of original tweets added on day #

retweets_added The number of retweets added on day #

tweets_favorited_added The number of tweets favored on day #

tweets_in_english_added The number of English tweets added on day #

tweets_in_spanish_added The number of Spanish tweets added on day #

user_eng_count The number of English users that posted a tweet on day #

user_sp_count The number of Spanish users that posted a tweet on day #

user_statuses_count The number of user statuses added on day #

tweets_hashtags_added The number of additional hashtags used on day #

Table 10: Descriptions of the daily statistics of several Twitter features

- 20 -

Ratios – (1..n)

ratioTweets The ratio between the number of tweets on day # and the total number

of tweets since post.

ratioOrigTweets The ratio between the number of original tweets on day # and the total

number of tweets since post.

ratioRetweets The ratio between the number of retweets on day # and the total

number of tweets since post.

ratioUserFavorites The ratio between the number of user favorites on day # and the total

number of user favorites since post.

ratioTwEn The ratio between the number of English tweets on day # and the total

number of English tweets since post.

ratioTwSp The ratio between the number of Spanish tweets on day # and the total

number of Spanish tweets since post.

ratioUserEng The ratio between the number of English users on day # and the total

number of English users since post.

ratioUserSp The ratio between the number of Spanish users on day # and the total

number of Spanish users since post.

ratioUserStatuses The ratio between the number of user statuses on day # and the total

number of user statuses since post.

ratioHashtags The ratio between the number of hashtags used on day # and the total

number of hashtags used since post.

Table 11: Descriptions of the ratios of several Twitter features

- 21 -

2.2.2 Feature Importance

During classification the training features are assigned multiple weights according to their

importance in labeling the videos. Different features are more important in different scenarios.

For this reason, the importance of each feature is exported after each classification in the form

of a percentage, to examine how much it has contributed in the final labeling of the video. An

example of a feature importance extraction is shown in table 12.

Feature

Importance
Features Importance

1 views_acc 12%

2 views_1 11%

3 ageRatioViews_1 9%

4 video_duration 9%

5 comments_1 5%

6 channel_uploads 5%

7 ageRatioLikes_1 4%

8 comments_acc 4%

9 channel_views 4%

10 comments_sentiment_compound 3%

11 comments_sentiment_neu 3%

12 tw_user_followers 3%

13 ageRatioComments_1 2%

14 dislikes_acc 2%

15 channel_subscribers 2%

16 comments_sentiment_pos 2%

17 comments_sentiment_neg 2%

18 category 2%

19 tw_hashtags_1 2%

20 ageRatioDislikes_1 1%

21 dislikes_1 1%

… … …

Table 12: Example of exported feature importance of several features

- 22 -

2.3 Implementation Details

The above figure summarizes the implementation details described in this chapter. First we had

to collect metadata for a number of YouTube videos from YouTube and Twitter. These data

had to go through a labeling and filtering procedure to come up with a dataset containing only

raw information regarding each video. Three tools where then developed, a Feature Manager,

the Machine Learning Models and a Web application. Each of this tools developed for the

needs of this study serves a different purpose which is analyzed to an extent in the subsections

of the Implementation Details section.

2.3.1 Data Collection

Despite the fact that data collection was a huge part of this research, it doesn’t fit in the main

context of this document, which is the analysis and comparison of machine learning algorithms

for the needs of the current research. For this reason, only a brief explanation of the data

collection methodology followed will be given instead of detailed one. The general idea of how

the data collection system works is depicted in Figure 7. In order to be able to collect the

Raw Data

Data
Collection

Presentation (HTML,CSS,PHP)

Parses Model Output Parses User Input Presents Results

Machine Learning Models (SCIKIT- LEARN PYTHON)

Parses Training Datasets Trains/Tests Classifiers Exports Metrics and Feature Importance

Feature Manager (JAVA)

Parses Raw Data Exports Training Features

- 23 -

information needed, YouTube Data API and Twitter Streaming API where used. The overall

procedure was repeated for every video collected.

After receiving a random YouTube video mentioned in a tweet, the monitoring procedure took

place. Each video collected was monitored for 15 consecutive days acquiring metadata about

its progress on YouTube and Twitter. All the raw data collected where stored in a remote

database. In addition to the metadata, a bunch of comments were collected, analyzed and stored

for each video.

After collecting the desired amount of 130.000 videos, a filtering took place. More specifically,

only information needed for the creation of the training features where kept. Out of the 130.000

videos, only a predefined percentage was used in the training procedure. For example, in strict

labeling, the percentage used was 2.5%. This means that the dataset used in the training

procedure consisted of the 2.5% most popular videos, the 2.5% most viral videos, 2.5% most

recent videos and 2.5% random videos. Some videos appear in multiple of the above categories,

meaning that the real amount of unique videos in each category is less than 2.5%.

Figure 7: Data collection system

- 24 -

2.3.2 Feature Manager

The data collected during the monitoring period consisted of raw information regarding the

progress of about 130.000 videos on YouTube and Twitter. In order to be of any value, these

data needed to be processed, combined and manipulated to create various training features. For

this reason, a “Feature Manager” tool was developed using Java [19]. In this Section, a high

level explanation is given on how this tool works.

Input:

Figure 8 contains a code snippet of a FeatureManager object being created with a set of specific

parameters. More specifically, the FeatureManager object takes six parameters:

1. t_window: Number of training days

2. offset: Number of offset days

3. l_window: Number of labeling days

4. split_days: Defines after how many days since upload the video is classified as old

instead of recent

5. ytFeatures: Binary value that specifies which YouTube features (from a predefined

list) should be exported.

6. twFeatures: Binary value that specifies which Twitter features (from a predefined list)

should be exported.

The raw data of the videos is parsed to the system through a CSV file and separated to their

respective categories. Finally, the feature manager calls a procedure named “createFeatures()”

that processes, combines, creates and exports the final training features.

Figure 8: Code snippet of Feature Manager input and execution

- 25 -

Processing:

After parsing the raw data, the feature manager goes through several methods of processing

and combining the data to produce valuable information, which are converted to a set of

training features at the end of the execution. Figure 9 depicts the skeleton of the Feature

Manager tool.

The ClassifierFeatures package contains

utilities that are responsible for creating any

kind of features (baseline YouTube, all

YouTube, baseline Twitter, all Twitter) and

labeling the videos (popular , viral)

The models package contains all the objects

related to specific features like: daily

features, age ratios, YouTube related ratios

etc. The VideoData object contains all the

final information needed for a specific video

The records package is used to parse

information into the FeatureManager from

the services developed instead of a CSV file

Exporter parses the input data and creates a

feature manager to export the final training

features. The exporter can be used to

automatically export features using different

window values.

Figure 9: Feature Manager Skeleton

- 26 -

Output:

After all the information is created regarding a specific video, it is stored in a VideoData object.

Finally, all the data from the collection of VideoData objects is exported into ten text files, for

each different window combination. These files will be later used to train and test the classifiers

for each of the machine learning algorithms presented in this study.

The labeling files contain two rows of data.

Each row consists of 1s and 0s. The first

row contains the popularity labeling of the

videos whereas the second row contains the

virality labeling of the videos.

The training files are separated into

YouTube training features (4) and Twitter

training features (4). The training features

are separated into baseline (only basic

features) and all (all features). Finally, the

training features are separated to those

related to older videos and those related to

recent videos. Each row of data inside these

files, correlates to information about a

specific video, whereas each column

represents the feature values of that video.

Figure 10: Output files of FeatureManager that contain all the sets of training features

- 27 -

2.3.3 Algorithms Implementation

The machine learning algorithms, methodologies, functions and tools in this research where

developed using the Scikit-learn [14] machine learning library.

Scikit – Learn (aka sklearn) is an open source collection of tools for data mining and data

analysis. It was developed using the python programming language and it was built on top of

other popular open source projects like NumPy, SciPy and matplotlib. Its’ usage is fairly

permissive since it is covered by a BSD license.

For the purpose of this research sklearn was used to deploy a variety of machine learning

classification algorithms with the goal of finding the most suitable classifier for the needs of

popularity and virality labeling in the context of the current research. Sklearn also comes with

a bunch of useful validation tools that assist in the evaluation of various models.

The Scikit – learn environment doesn’t require in-depth knowledge of machine learning

algorithms. It is ideal for researchers that need to use the algorithms for classification and model

validation without the need of developing the algorithms from scratch. The user has the ability

to fine-tune the algorithms in any way needed to fit them to the context of his own project.

Classification Procedure:

In this Section, a high level explanation of how each algorithm was developed and how it

works, will be given. The code snippets and examples presented in this Section where taken

from the Gradient Boosting Decision Tree algorithm.

Input:

In order to run the algorithm, all the

necessary information need to be parsed

first. The information passed to the

classifier are: training window, offset,

labeling window, YouTube binary, Twitter

binary and directory of training features

files. The data are then loaded into the

classifier using the loadData function and

the DataLoader tool developed.

Figure 11: Code snippet of the input data passed into the GBDT.py classifier

- 28 -

Training set preparation:

After parsing all the information needed, the data sets are prepared in the loadData(…) function

which uses the DataLoader tool developed for the purposes of this study. Before each

classification begins, the necessary data are loaded into a “train” structure [8] to pass into the

classification function. Figure 12 depicts three different classification function calls for

popularity classification using the respective datasets.

Figure 12: Code snippet of three popularity classification function calls, using different datasets each time

- 29 -

Popularity Classification and Metrics:

In the popular(…) function, the classifier is defined and the classification procedure begins.

The classifier along with the training and labeling data are passed to the classify(…) function

in order to run the algorithm and export various metrics regarding the quality of the

classification. Inside the popular(…) function the feature importance is calculated as well and

exported by calling the exportImportance(…) function. Finally, the F1 scores received from

the metrics [] are exported into the respective files and the precision-recall graphs are plotted

and exported as well. Figure 13 shows only a small code snippet of the popular(…) function

to give an abstract idea of how it works.

Figure 13: Code snippet showing a small part of the popular(…) function.

- 30 -

Classification Function

The classify(…) function depicted in Figure 14 contains the main functionality of the

classification algorithm. The parameters of this function are the algorithm, the training set and

the labeling set. It works for almost all types of algorithms used in this research, with minor

changes. The use of the KFold validation methodology increases the accuracy of the

classification. Within the loop, the training and labeling data are fitted to the classifier and then

the algorithm makes a prediction. The precision and recall values are exported [17] from that

prediction in order to calculate the F1 scores and the AUC values and later plot the precision-

recall graph. All the metrics calculated from the classification are stored into the metrics[] array

and returned to the main program.

- 31 -

Figure 14: Code snippet of the classify(…) function used in all the algorithms with minor changes

2.3.4 Presentation

In order to assist with the evaluation and the comparison of the machine learning algorithms, a

web application was created. This tool was developed using HTML, CSS and PHP [22]. As

shown in Figure 15, this web application allows the user to evaluate or compare the algorithms

and read the corresponding documentation. Also, a link to the entire code if this research is

provided.

Figure 15: Web application home page for evaluation and comparison of machine learning algorithms

- 32 -

Evaluation of algorithms:

The user can choose an algorithm from the drop down list and enter the windows needed in his

case, as shown in Figure 16, and then click “view results” to see the outcome of the

classification as shown in Figure 17.

Figure 16: Web application snapshot of the algorithm evaluation window

Figure 17: Web application snapshot of the classification results

- 33 -

Comparison of algorithms:

The comparison functionality of this web application has been very useful since the comparison

of several algorithms has led to the extraction of valuable and interesting information. The user

can select two algorithms that he wishes to compare. After clicking the “Generate Comparison”

button the metrics of the algorithms are compared. The final column of this window contains

the algorithm that has better performance for each metric in comparison. Figure 18 shows an

example of a comparison between GBDT and Logistic Regression algorithms.

Figure 18: Web application snapshot of comparison between GBDT and Logistic Regression algorithms

- 34 -

2.4 Model Evaluation

Confusion Matrix

The confusion matrix [12] is a square matrix that represents the performance of a machine

learning algorithm. It consists of true positive, true negative, false positive and false negative

predictions of a classifier as shown in table 13

True positives (TP): Labeled 1 and their true value is 1.

True negatives (TN): Labeled 0 and their true value is 0.

False positives (FP): Labeled 1 but their true value is 0.

False negatives (FN): Labeled 0 but their true value is 1.

Confusion Matrix
Predicted Class

0 1

True Class
0 TN FP

1 FN TP

Table 13: Confusion Matrix

Precision [24] is defined as the number of true positives (TP) over the number of true positives

plus false positives (FP). It represents the frequency of correct predictions when a positive

value (1) is predicted.

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Recall [24] is defined as the number of true positives (TP) over the number of true positives

plus the number of false negatives (FN). It represents the frequency of correct predictions when

the actual value is positive (1).

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

In order to evaluate the performance of the classification algorithms a precision-recall graph

is formed. The higher the AUC in the precision-recall graph the more accurate the classification

is. An example of a precision-recall graph is shown at Figure 19, which depicts the performance

of four different classification algorithms.

- 35 -

Figure 19: Example of a precision-recall graph

F1 score [24] is an additional metric that is related to precision and recall and it is used to

evaluate the performance of the classification algorithms. F1 Score is defined as the harmonic

average of precision and recall. A high F1 value shows high classification accuracy.

𝐹1 = 2
𝑃𝑋𝑅

𝑃 + 𝑅

K-fold cross-validation

K-fold cross-validation [9] randomly splits the training dataset into k folds without

replacement. K-1 folds are used for training the classifier and one fold is used for testing the

classification. This procedure is repeated k times to obtain k different classifications on the

entire dataset. The final classification is a result of the average performance of all the

estimators.

For the purpose of this research a 10-fold cross-validation is used as shown in Figure 20. The

usage of this technique improves the quality of the final classification and reduces the variance

of the individual classifications coming from each estimator.

Figure 20: 10-fold cross-validation explanation

- 36 -

Chapter 3

Evaluation and Analysis

3.1 Evaluation methodology 36

3.2 Algorithm Evaluation and Analysis 38

3.1 Evaluation Methodology

Figure 21 depicts the different kinds of datasets that were used to train the classifiers and later

evaluate the performance of the respective classification algorithm. The labeling percentage

was separated into two categories: Strict and soft labeling. Using strict labeling means that

only 2.5% of the most Popular and Viral videos are kept from the entire dataset. Two more

groups of videos are then added, Recent and Random, again each group containing at most

2.5% of the entire dataset. In soft labeling, the percentage of each group is increased to 5%

meaning that the new dataset contains more videos but with a softer definition of popularity

and virality. It should be noted that some of the videos can appear in multiple categories.

Figure 21: Datasets used in the evaluation methodology

In order to be able to examine an algorithm’s window sensitivity, datasets with small and large

windows where produced as shown in table 14.

Training - Offset -
Labeling WIndows

Labeling Percentage

Evaluation
Methodology

Strict - 2.5%

Small
Windows

Large
Windows

Soft - 5%

Small
Windows

Large
Windows

- 37 -

The final amount of videos included in the four training datasets are shown in table 15.

Total Videos = 130.000
Popular + Viral + Recent + Random

Small Windows Large Windows

Strict Labeling – 2.5% 11039 11344

Soft Labeling – 5 % 21160 21761

Table 15: The final amount of videos included in the four training datasets

Evaluation Baselines

In order to decide if a classification algorithm is suitable for the purpose of the current research,

three important baselines where established:

1. Average F1 scores of the classifications should be 0.75 at minimum.

2. Average F1 scores shouldn’t increase more than 8% when windows are changed from

small to large. In other words, algorithms should have low window sensitivity.

3. All the classifications should have an AUC larger than 0.80.

In addition to the baseline test, we evaluate the running time of each algorithm in the prediction

models.

Stand-alone algorithms where evaluated at first in order to decide upon which algorithm would

be chosen for further development and performance improvement with the goal of producing

more accurate classifications.

 Training Offset Labeling

Small Windows 1 1 1

Large Windows 7 1 7

Table 14: Training, offset and labeling windows used to examine window sensitivity of algorithms

- 38 -

3.2. Algorithm Evaluation and Analysis

This Section contains the evaluation and analysis of various machine learning algorithms. All

the algorithms are tested using the evaluation baselines to determine their strengths and

weaknesses. As the evaluation of the algorithms progresses, different methodologies and

algorithms are used in order to exploit more information regarding binary classifications in the

context of this research. The precision-recall graphs presented in the evaluations correspond

only to popularity predictions using both YouTube and Twitter features.

3.2.1 Logistic Regression Evaluation

 2.5% 5%

111

717

Figure 22: Logistic Regression algorithm precision-recall graphs

Precision-Recall graph explanation:

Looking at the precision-recall graphs in Figure 22, it seems that the Logistic Regression

algorithm produces extremely accurate classifications for videos that are older but mediocre

classifications for videos that are recent. In addition, this algorithm seems to be ideal for

- 39 -

classifications containing only baseline features since it reaches AUC values up 0.99. Finally,

increasing the amount of videos in the dataset, by using soft labeling, hasn’t improved the

accuracy of the classifications.

F1 Scores (111, 2.5%) Viral Popular Viral and Popular

Twitter Features 0.7894 0.5078 0.5870

YouTube Features 0.4695 0.5563 0.6068

All Features 0.6769 0.6812 0.6478

Mean F1 Score 0.6136

F1 Scores (717, 2.5%) Viral Popular Viral and Popular

Twitter Features 0.7962 0.5795 0.6163

YouTube Features 0.5825 0.7601 0.6651

All Features 0.6755 0.8015 0.7104

Mean F1 Score 0.6875

F1 Scores (111, 5%) Viral Popular Viral and Popular

Twitter Features 0.7678 0.5304 0.5925

YouTube Features 0.5198 0.5574 0.6635

All Features 0.7048 0.6048 0.6773

Mean F1 Score 0.6243

F1 Scores (717, 5%) Viral Popular Viral and Popular

Twitter Features 0.7874 0.5805 0.6274

YouTube Features 0.5838 0.7583 0.6453

All Features 0.7098 0.8227 0.7002

Mean F1 Score 0.6906

Figure 23: F1 scores for Logistic Regression algorithm evaluation

- 40 -

F1 Scores explanation:

Looking at the F1 scores of all the classifications using Logistic Regression, it is clear that the

algorithm underperforms mostly in cross-platform evaluations. The F1 scores exposed the low

accuracy classifications of logistic regression which weren’t visible from the precision-recall

graphs.

Baseline Testing:

(1) Average F1 Scores (>=0.75) – Failed

All the datasets in strict and soft labeling fail to achieve a minimum average F1 score

of 0.75 for any window.

(2) Window Sensitivity (<=8%) – Failed

The average F1 score in strict datasets was increased by 12% and in soft datasets it was

increased by 11% meaning that the logistic regression algorithm is very sensitive to

window changes.

(3) High AUC (>=0.80) – Failed

There is at least one classification with low AUC making the algorithm unsuitable for

the current problem. More specifically, the algorithm seems to perform poorly when it

comes to classifications of recent videos, which are very important for the purpose of

this research.

Running Time (111, 2.5%): 17.37 seconds. The logistic regression is an extremely fast

classification algorithm.

Additional Comments:

Due to the probabilistic nature of the logistic regression algorithm, it was expected that a high

accuracy classification would be produced. Despite the fact that this algorithm performs fairly

well in binary classification problems, it failed to fit the minimum needs of this research.

- 41 -

3.2.2 K Nearest Neighbors Evaluation

 2.5% 5%

111

717

Figure 24: K Nearest Neighbors algorithm precision-recall graphs

Precision-Recall graph explanation:

After looking at the precision-recall graphs of Figure 24, it can be deducted that KNN algorithm

fails to produce high accuracy classifications for most of the cases. Curiously enough, KNN

performs much better when only using baseline features. Increasing the amount of videos in

the dataset, by using soft labeling, doesn’t have any effect on the accuracy of the classifications.

- 42 -

F1 Scores (111, 2.5%) Viral Popular Viral and Popular

Twitter Features 0.7126 0.6225 0.6231

YouTube Features 0.5553 0.7842 0.6371

All Features 0.5903 0.7843 0.6373

Mean F1 Score 0.6607

F1 Scores (717, 2.5%) Viral Popular Viral and Popular

Twitter Features 0.8008 0.6691 0.7177

YouTube Features 0.6008 0.8127 0.6829

All Features 0.6394 0.8127 0.6830

Mean F1 Score 0.7132

F1 Scores (111, 5%) Viral Popular Viral and Popular

Twitter Features 0.7208 0.6317 0.6399

YouTube Features 0.5737 0.7951 0.6658

All Features 0.6046 0.7950 0.6659

Mean F1 Score 0.6769

F1 Scores (717, 5%) Viral Popular Viral and Popular

Twitter Features 0.8082 0.6631 0.7329

YouTube Features 0.6058 0.8226 0.6972

All Features 0.6477 0.8201 0.6983

Mean F1 Score 0.7218

Figure 25: F1 scores for K Nearest Neighbors algorithm evaluation

F1 Scores explanation:

The F1 scores produced are generally low for most of the classifications. It is very interesting

to notice that the amount of features doesn’t play any role at all in the quality of the

classification using the KNN algorithm. This can be deducted by looking at the “Viral and

Popular” f1 scores that hardly change when different amounts of features are used.

- 43 -

Baseline Testing:

(1) Average F1 Scores (>=0.75) – Failed

All the datasets in strict and soft labeling fail to achieve a minimum average F1 score

of 0.75 for any window.

(2) Window Sensitivity (<=8%) – Succeeded

The average F1 score in strict datasets was increased by 8% and in soft datasets it was

increased by 6.5% meaning that the “K Nearest Neighbors” algorithm has low window

sensitivity.

(3) High AUC (>=0.80) – Failed

Most of the classifications fail to achieve the minimum AUC requirements of this

research making the algorithm extremely unsuitable for the purpose of the current

problem.

Running Time (111, 2.5%): 11.29 seconds. The K Nearest Neighbors is an extremely fast

classification algorithm.

Additional Comments:

The “K Nearest Neighbors” performance was as expected. The algorithm doesn’t seem to be

highly dependent on window changes. The reason for this behavior is that this algorithm relies

more on the number of neighbors (k) that it takes into account, rather than the number of

training and labeling days or the size of the dataset.

- 44 -

3.2.3 SVM – Linear SVC Evaluation

 2.5% 5%

111

717

Figure 26: SVM – Linear SVC algorithm precision-recall graphs

Precision-Recall graph explanation:

It is obvious from Figure 26, that the SVM – Linear SVC algorithm produces “chaotic”

classifications when attempting to predict popularity of the videos. It appears to produce a good

classification only for older videos using baseline features. Other than that, this algorithm

doesn’t seem to fit to the problem of this research.

- 45 -

F1 Scores (111, 2.5%) Viral Popular Viral and Popular

Twitter Features 0.7344 0.5404 0.5932

YouTube Features 0.4454 0.6053 0.5026

All Features 0.5816 0.6226 0.5231

Mean F1 Score 0.5721

F1 Scores (717, 2.5%) Viral Popular Viral and Popular

Twitter Features 0.7611 0.5950 0.6446

YouTube Features 0.4609 0.6311 0.5446

All Features 0.5680 0.6630 0.5571

Mean F1 Score 0.6028

F1 Scores (111, 5%) Viral Popular Viral and Popular

Twitter Features 0.7303 0.5660 0.6077

YouTube Features 0.4553 0.6488 0.5744

All Features 0.5749 0.6136 0.5101

Mean F1 Score 0.5868

F1 Scores (717, 5%) Viral Popular Viral and Popular

Twitter Features 0.7580 0.5860 0.6557

YouTube Features 0.4896 0.6508 0.5893

All Features 0.5376 0.7072 0.5841

Mean F1 Score 0.6176

Figure 27: F1 scores for SVM – Linear SVC algorithm evaluation

F1 Scores explanation:

Looking at the F1 scores in Figure 27, it can be denoted that SVM – Linear SVC produces low

accuracy classifications for all the datasets used. It doesn’t seem to be affected by the amount

of features or the total number of videos in the dataset.

- 46 -

Baseline Testing:

(1) Average F1 Scores (>=0.75) – Failed

All the datasets in strict and soft labeling fail to achieve a minimum average F1 score

of 0.75 for any window. Moreover the algorithm appears to perform extremely poorly.

(2) Window Sensitivity (<=8%) – Succeeded

The average F1 score in strict datasets was increased by 5.4% and in soft datasets it was

increased by 5.2% meaning that the SVM algorithm has extremely low window

sensitivity. This was expected due to the consistency of the algorithm.

(3) High AUC (>=0.80) – Failed

There’s no need for any deep analysis of the data, since it’s obvious from the

precession-recall graphs that SVM performs extremely poorly when it comes to

classifying videos for the purpose of this research.

Running Time (111, 2.5%): 138.91 seconds. The SVM – Linear SVC algorithm is takes has

a moderate execution time cost.

Additional Comments:

Despite the fact that SVM is one of the most popular classification algorithms for binary

problems, it doesn’t seem to be suitable for the purpose of this research. Various SVM

algorithms where tested with different kernels but no one managed to exceed the minimum

needs for the solution of this problem.

- 47 -

3.2.4 Decision Tree Evaluation

 2.5% 5%

111

717

Figure 28: Decision Tree algorithm precision-recall graphs

Precision-Recall graph explanation:

Figure 28 shows that the Decision Tree algorithm produces high accuracy classifications for

older videos using any amount of features. In addition, it produces decent classifications for

the rest of the cases as well. The total number slightly improves the accuracy of the

classifications. What is important to note is that the Decision Tree algorithm produces much

higher AUC values, therefore better classifications for larger windows.

- 48 -

F1 Scores (111, 2.5%) Viral Popular Viral and Popular

Twitter Features 0.7639 0.6498 0.6806

YouTube Features 0.5965 0.8308 0.6941

All Features 0.7671 0.8368 0.7673

Mean F1 Score 0.7319

F1 Scores (717, 2.5%) Viral Popular Viral and Popular

Twitter Features 0.8097 0.6715 0.7546

YouTube Features 0.6486 0.8981 0.7573

All Features 0.8319 0.9018 0.8567

Mean F1 Score 0.7922

F1 Scores (111, 5%) Viral Popular Viral and Popular

Twitter Features 0.7657 0.6655 0.6925

YouTube Features 0.5988 0.8420 0.7129

All Features 0.7406 0.8430 0.7720

Mean F1 Score 0.737

F1 Scores (717, 5%) Viral Popular Viral and Popular

Twitter Features 0.8123 0.6717 0.7596

YouTube Features 0.6422 0.9033 0.7544

All Features 0.8219 0.9011 0.8473

Mean F1 Score 0.7904

Figure 29: F1 scores for Decision Tree algorithm evaluation

F1 Scores explanation:

The F1 scores of the Decision Tree algorithm classifications shown in Figure 29, correlate with

the AUC values in the precision-recall graphs. This is a reassurance that the Decision Tree

algorithm produces high accuracy classifications for almost all the cases. When it comes to

cross-platform predictions, the DT algorithm has lower F1 scores, therefore produces lower

- 49 -

quality classifications. Finally, it appears that this algorithm performs better while using larger

amounts of features. This behavior was expected due to the tree structure of the algorithm.

Baseline Testing:

(1) Average F1 Scores (>=0.75) – Partly Failed

Barely fails at small windows but succeeds at large windows.

(2) Window Sensitivity (<=8%) – Partly Failed

The average F1 score in strict datasets was increased by 8.2% and in soft datasets it was

increased by 7.2% meaning that the Decision Tree algorithm is relatively sensitive to

window changes but is very close to succeeding the minimum baseline tests.

(3) High AUC (>=0.80) – Partly Failed

The decision tree algorithm produces AUC slightly below the baseline causing the

algorithm to fail the tests. Although it produces high accuracy classifications at most

cases, the algorithm falls below baseline when it comes to labeling recent videos.

Running Time (111, 2.5%): 18.98 seconds. The Decision Tree is an extremely fast

classification algorithm.

Additional Comments:

From the window sensitivity test it is derived that while using strict datasets, the decision tree

algorithm is slightly oversensitive (8.2%). For this reason it barely fails the three predefined

tests. When a soft dataset is used, the algorithm succeeds in all three baseline tests, making it

suitable for the needs of this research.

After comparison of all the stand-alone algorithms, the decision tree algorithm was considered

to be the most suitable for the purpose of this research. All hybrid algorithms where developed

on top of decision trees to maximize performance and classification accuracy. Detailed

comparison of all the stand-alone algorithms can be found in Section 4.2.

- 50 -

3.2.6 Random Forest Evaluation

 2.5% 5%

111

717

Figure 30: Random Forest algorithm precision-recall graphs

Precision-Recall graph explanation:

The precision-recall graphs in Figure 30 show that the Random Forest algorithm produces very

high AUC values, which could be an indicator of high accuracy classifications. The total

number of videos doesn’t seem to affect the outcome of the classification. The window number

on the other hand, increases substantially the AUC values, especially for classifications using

only baseline features.

- 51 -

F1 Scores (111, 2.5%) Viral Popular Viral and Popular

Twitter Features 0.7994 0.6818 0.7167

YouTube Features 0.6261 0.8513 0.7197

All Features 0.8061 0.8720 0.8020

Mean F1 Score 0.7639

F1 Scores (717, 2.5%) Viral Popular Viral and Popular

Twitter Features 0.8662 0.7338 0.8039

YouTube Features 0.6901 0.9298 0.7883

All Features 0.8885 0.9322 0.8947

Mean F1 Score 0.8364

F1 Scores (111, 5%) Viral Popular Viral and Popular

Twitter Features 0.7955 0.6986 0.7243

YouTube Features 0.6304 0.8634 0.7367

All Features 0.7815 0.8710 0.8096

Mean F1 Score 0.7679

F1 Scores (717, 5%) Viral Popular Viral and Popular

Twitter Features 0.8545 0.7212 0.8071

YouTube Features 0.6916 0.9300 0.8008

All Features 0.8739 0.9325 0.8902

Mean F1 Score 0.8335

Figure 31: F1 scores for Random Forest algorithm evaluation

F1 Scores explanation:

Looking at the F1 scores of Figure 31, it can be denoted that the Random Forest algorithm

produces high accuracy classifications for most cases. It is clear from the “Viral and Popular”

F1 scores that the amount of features plays a big role in the quality of the classification.

- 52 -

Baseline Testing:

(1) Average F1 Scores (>=0.75) – Succeeded

The random algorithm produces fairly high average F1 scores for all the datasets,

surpassing the minimum required score of the test.

(2) Window Sensitivity (<=8%) – Failed

The average F1 score in strict datasets was increased by 9.5% and in soft datasets it was

increased by 8.5% meaning that the Random Forest algorithm is very sensitive to

window changes.

(3) High AUC (>=0.80) – Partly Failed

In strict labeling datasets the algorithm produces AUC below the baseline when it

comes to classifying recent videos using only the basic features. In soft labeling datasets

though, the algorithm succeeds in all the classifications. This behavior was to be

expected due to the very high window sensitivity of the algorithm.

Running Time (111, 2.5%): 248.38 seconds. The Random Forest algorithm has a moderate

execution time cost.

Additional Comments:

The Random Forest algorithm substantially improves the performance and classification

accuracy of a Decision Tree algorithm, but it suffers from very high window sensitivity making

it unsuitable for the minimum needs of the research. It also appears that this algorithm performs

better when using both YouTube and Twitter features. This could be an indication that, the

Random Forest algorithm is more suitable for a higher amount of features. This behavior was

expected since the algorithm is built on top of a Decision Tree.

- 53 -

3.2.5 Extra Trees Evaluation

 2.5% 5%

111

717

Figure 32: Extra Trees algorithm precision-recall graphs

Precision-Recall graph explanation:

Looking at Figure 32, it seems that the Extra Trees algorithm produces precision-recall graphs

with extremely high AUC value. This could be an indication of a high accuracy classification.

Also, it appears that the performance of the algorithm is improved when the total number of

videos in the dataset is increased or when the window number is increased.

- 54 -

F1 Scores (111, 2.5%) Viral Popular Viral and Popular

Twitter Features 0.7915 0.6734 0.6991

YouTube Features 0.6232 0.8515 0.7231

All Features 0.7996 0.8683 0.7932

Mean F1 Score 0.7581

F1 Scores (717, 2.5%) Viral Popular Viral and Popular

Twitter Features 0.8659 0.7340 0.8058

YouTube Features 0.6825 0.9282 0.7851

All Features 0.8850 0.9285 0.8951

Mean F1 Score 0.8345

F1 Scores (111, 5%) Viral Popular Viral and Popular

Twitter Features 0.7890 0.6875 0.7101

YouTube Features 0.6293 0.8626 0.7348

All Features 0.7800 0.8684 0.8016

Mean F1 Score 0.7626

F1 Scores (717, 5%) Viral Popular Viral and Popular

Twitter Features 0.8548 0.7187 0.8099

YouTube Features 0.6889 0.9301 0.7989

All Features 0.8699 0.9321 0.8871

Mean F1 Score 0.8323

Figure 33: F1 scores for Extra Trees algorithm evaluation

F1 Scores explanation:

Figure 33 shows that the Extra Trees algorithms produces very high F1 scores for almost all

the cases. It slightly underperforms in cross-platform predictions. It’s worth noting that the

quality of the classifications is substantially increased when the total amount of features is

increased.

- 55 -

Baseline Testing:

(1) Average F1 Scores (>=0.75) – Succeeded

The extra trees algorithm produces fairly high average F1 scores for all the datasets,

surpassing the minimum required score of the test.

(2) Window Sensitivity (<=8%) – Failed

The average F1 score in strict datasets was increased by 10.1% and in soft datasets it

was increased by 9.1% meaning that the Extra Trees algorithm is extremely sensitive

to window changes.

(3) High AUC (>=0.80) – Partly Failed

In strict labeling datasets the algorithm produces AUC below the baseline when it

comes to classifying recent videos using only the basic features. In soft labeling datasets

though, the algorithm succeeds in all the classifications. This behavior was to be

expected due to the extremely high window sensitivity of the algorithm.

Running Time (111, 2.5%): 166.68 seconds. The Extra Trees algorithm has a moderate

execution time cost.

Additional Comments:

The extra trees algorithm substantially improves the performance and classification accuracy

of a Decision Tree algorithm, but it suffers from extremely high window sensitivity making it

unsuitable for the minimum needs of the research. The major increase in the accuracy of the

classification when more features are used is mostly attributed to the fact that Extra Trees

consist of a bundle of Decision Trees

- 56 -

3.2.7 Bagging Decision Tree Evaluation

 2.5% 5%

111

717

Figure 34: Bagging Decision Tree algorithm precision-recall graphs

Precision-Recall graph explanation:

The precision-recall graphs in Figure 34 show a slight increase in the AUC values when the

total amount of videos was increase. It also shows a major increase in the AUC values when

the larger windows where used.

- 57 -

F1 Scores (111, 2.5%) Viral Popular Viral and Popular

Twitter Features 0.7978 0.6813 0.7157

YouTube Features 0.6290 0.8504 0.7203

All Features 0.8085 0.8734 0.8043

Mean F1 Score 0.7645

F1 Scores (717, 2.5%) Viral Popular Viral and Popular

Twitter Features 0.8632 0.7255 0.8049

YouTube Features 0.6880 0.9295 0.7882

All Features 0.8866 0.9318 0.8954

Mean F1 Score 0.8347

F1 Scores (111, 5%) Viral Popular Viral and Popular

Twitter Features 0.7952 0.6995 0.7268

YouTube Features 0.6328 0.8629 0.7367

All Features 0.7830 0.8763 0.8137

Mean F1 Score 0.7697

F1 Scores (717, 5%) Viral Popular Viral and Popular

Twitter Features 0.8534 0.7196 0.8097

YouTube Features 0.6971 0.9292 0.8017

All Features 0.8731 0.9338 0.8885

Mean F1 Score 0.8340

Figure 35: F1 scores for Bagging Decision Tree algorithm evaluation

F1 Scores explanation:

Looking at the f1 scores in Figure 35, it appears the BDT algorithm produces very high F1

scores, meaning that the accuracy of most of the classifications is high. Like most of the

algorithms it stumbles on cross-platform predictions.

- 58 -

Baseline Testing:

(1) Average F1 Scores (>=0.75) – Succeeded

The bagging methodology improved the performance of the decision tree, producing

average F1 scores greater than the baseline.

(2) Window Sensitivity (<=8%) – Failed

The average F1 score in strict datasets was increased by 9.2% and in soft datasets it was

increased by 8.4% meaning that the Bagging Decision Tree algorithm is very sensitive

to window changes.

(3) High AUC (>=0.80) – Partly Failed

In strict labeling datasets the algorithm produces AUC below the baseline when it

comes to classifying recent videos using only the basic features. In soft labeling datasets

though, the algorithm succeeds in all the classifications. This behavior was to be

expected due to the very high window sensitivity of the algorithm.

Running Time (111, 2.5%): 1013.85 seconds. The Bagging Decision Tree algorithm has an

extremely high execution time cost.

Additional comments:

The Bagging Decision Tree algorithm improves substantially the performance and

classification accuracy of a Decision Tree algorithm, but it suffers from very high window

sensitivity making it unsuitable for the minimum needs of the research. The algorithm is very

window sensitive due to the randomness embedded in the bagging methodology. The

performance of the BDT algorithm is increased when more features are used due to the use of

the Decision Tree structure. It is particularly interesting that the bagging methodology comes

with an extremely high execution time cost.

- 59 -

3.2.8 Gradient Boosting Decision Tree Evaluation

 2.5% 5%

111

717

Figure 36: Gradient Boosting Decision Tree algorithm precision-recall graphs

Precision-Recall graph explanation:

Figure 36 shows that the boosting methodology has improved the precision-recall graphs.

When predicting older videos, the GBDT algorithm produces almost perfect AUC values. It

appears that when the total number of videos is increased or when using larger windows, the

GBDT algorithm performs much better.

- 60 -

F1 Scores (111, 2.5%) Viral Popular Viral and Popular

Twitter Features 0.8033 0.6898 0.7220

YouTube Features 0.6109 0.8755 0.7307

All Features 0.8292 0.8849 0.8161

Mean F1 Score 0.7736

F1 Scores (717, 2.5%) Viral Popular Viral and Popular

Twitter Features 0.8649 0.7363 0.8079

YouTube Features 0.6837 0.9269 0.7969

All Features 0.8842 0.9310 0.8931

Mean F1 Score 0.8361

F1 Scores (111, 5%) Viral Popular Viral and Popular

Twitter Features 0.8005 0.7053 0.7268

YouTube Features 0.6265 0.8853 0.7498

All Features 0.8097 0.8891 0.8285

Mean F1 Score 0.7802

F1 Scores (717, 5%) Viral Popular Viral and Popular

Twitter Features 0.8602 0.7222 0.8145

YouTube Features 0.6928 0.9319 0.7986

All Features 0.8747 0.9346 0.8939

Mean F1 Score 0.8359

Figure 37: F1 scores for Gradient Boosting Decision Tree algorithm evaluation

F1 Scores explanation:

It is clear from the F1 scores in Figure 37 that the boosting methodology has substantially

improved the performance of the Decision Tree. It produces very high F1 scores, with the

exception of cross-platform predictions. The correlation between the accuracy of the classifier

and the amount of features is clearly visible from the “Viral and Popular” F1 scores.

- 61 -

Baseline Testing:

(1) Average F1 Scores (>=0.75) – Succeeded

Gradient boosting improved significantly the performance of the decision tree,

producing average F1 scores much higher than the baseline.

(2) Window Sensitivity (<=8%) – Partly Failed

The average F1 score in strict datasets was increased by 8.1% and in soft datasets it was

increased by 7.1% meaning that the Gradient boosting decision tree algorithm is mildly

sensitive to window changes causing it to fail the baseline test when strict datasets are

used.

(3) High AUC (>=0.80) – Succeeded

The gradient boosting decision tree algorithm produces very high AUC values despite

its mild window oversensitivity.

Running Time (111, 2.5%): 198.48 seconds. The Gradient Boosting Decision Tree algorithm

has a moderate execution time cost.

Additional comments:

High average F1 scores and AUC values are an indicative of a very accurate classifier. The

gradient boosting decision tree algorithm produces high quality classifications making it one

of the best choices for the purpose of this research. A small drawback of this classifier is its

mild oversensitivity to window changes. To overcome this problem some other hybrid

algorithms are used along with GBDT which lower the classifier’s window sensitivity. These

hybrid algorithms are evaluated in detail in the following Sections. Finally, the algorithm’s

dependence in the amount of features used is due to the decision tree structure.

- 62 -

3.2.9 Ada Boosting Decision Tree Evaluation

 2.5% 5%

111

717

Figure 38: Ada Boosting Decision Tree algorithm precision-recall graphs

Precision-Recall graph explanation:

Figure 38 shows that adaptive boosting produces high AUC values in precision-recall graphs.

This could be an indicator of a high accuracy classification. Also, the algorithm seems to

perform slightly better when the total number of videos is used or when larger windows are

applied.

- 63 -

F1 Scores (111, 2.5%) Viral Popular Viral and Popular

Twitter Features 0.7992 0.6858 0.7257

YouTube Features 0.6077 0.8724 0.7324

All Features 0.8261 0.8809 0.8125

Mean F1 Score 0.7714

F1 Scores (717, 2.5%) Viral Popular Viral and Popular

Twitter Features 0.8560 0.7311 0.7951

YouTube Features 0.6744 0.9209 0.7895

All Features 0.8770 0.9215 0.8832

Mean F1 Score 0.8276

F1 Scores (111, 5%) Viral Popular Viral and Popular

Twitter Features 0.8030 0.6996 0.7261

YouTube Features 0.6278 0.8827 0.7457

All Features 0.8061 0.8866 0.8254

Mean F1 Score 0.7781

F1 Scores (717, 5%) Viral Popular Viral and Popular

Twitter Features 0.8551 0.7158 0.8032

YouTube Features 0.6830 0.9294 0.7954

All Features 0.8665 0.9291 0.8758

Mean F1 Score 0.8281

Figure 39: F1 scores for Ada Boosting Decision Tree algorithm evaluation

F1 Scores explanation:

Figure 39 shows the F1 scores of the Ada Boosting Decision Tree algorithm. It appears that

adaptive boosting produces very high F1 scores with the exception of cross-platform

predictions where it underperforms. It particularly interesting that the ABDT algorithm has

reduced dependence on the amount of features despite the Decision Tree structure used within

- 64 -

the algorithm. It is also worth noting that the average F1 score doesn’t change much when

larger windows are used.

Baseline Testing:

(1) Average F1 Scores (>=0.75) – Succeeded

Adaptive boosting improved significantly the performance of the decision tree,

producing average F1 scores much higher than the baseline.

(2) Window Sensitivity (<=8%) – Succeeded

The average F1 score in strict datasets was increased by 7.3% and in soft datasets it was

increased by 6.4% meaning that the Ada boosting decision tree algorithm has extremely

low window sensitivity.

(3) High AUC (>=0.80) – Succeeded

The adaptive boosting decision tree algorithm produces very high AUC values for all

the datasets and windows of the experiments.

Running Time (111, 2.5%): 238.77 seconds. The Ada Boosting Decision Tree algorithm has

a moderate execution time cost.

Additional comments:

The Ada boosting decision tree algorithm managed to pass all the baseline tests, making it ideal

for the purpose of this research. Looking at the average F1 scores and the AUC values, it can

be concluded that ABDT produces high accuracy classifications. In addition to its’ high

performance, ABDT has very low sensitivity to window changes making it ideal for future

usage of the algorithm in variable windows to make popularity and virality predictions.

- 65 -

3.2.10 Voting – Ada and Gradient Boosting Decision Tree Evaluation

 2.5% 5%

111

717

Figure 40: Voting – Ada and Gradient Boosting Decision Tree algorithm precision-recall graphs

Precision-Recall graph explanation:

The precision-recall graphs in Figure 40 shows that the voting between ABDT and GBDT has

produced very high AUC values which is an indicator of a high quality classification. This

hybrid algorithm still has a small dependence to the number of videos in the dataset and the

size of the windows.

- 66 -

F1 Scores (111, 2.5%) Viral Popular Viral and Popular

Twitter Features 0.8031 0.6898 0.7225

YouTube Features 0.6110 0.8757 0.7318

All Features 0.8294 0.8851 0.8170

Mean F1 Score 0.7739

F1 Scores (717, 2.5%) Viral Popular Viral and Popular

Twitter Features 0.8666 0.7353 0.8062

YouTube Features 0.6822 0.9273 0.7964

All Features 0.8858 0.9314 0.8935

Mean F1 Score 0.8361

F1 Scores (111, 5%) Viral Popular Viral and Popular

Twitter Features 0.8006 0.7056 0.7266

YouTube Features 0.6263 0.8857 0.7498

All Features 0.8098 0.8895 0.8289

Mean F1 Score 0.7803

F1 Scores (717, 5%) Viral Popular Viral and Popular

Twitter Features 0.8603 0.7224 0.8140

YouTube Features 0.6930 0.9318 0.7982

All Features 0.8752 0.9346 0.8948

Mean F1 Score 0.8360

Figure 41: F1 scores for Voting – Ada and Gradient Boosting Decision Tree algorithm evaluation

F1 Scores explanation:

The F1 scores in Figure 41 show stunning results. The voting between the two boosting

algorithm has produced very high F1 scores, which in combination with the high AUC values

proves that this model is very powerful. It has even managed to slightly increase cross-platform

prediction scores. Its dependence on the amount of features used is slightly reduce, as it seems

from the “Virality and Popularity” columns.

- 67 -

Baseline Testing:

(1) Average F1 Scores (>=0.75) – Succeeded

Voting – (ABDT, GBDT) improved significantly the performance of the decision tree,

producing average F1 scores much higher than the baseline.

(2) Window Sensitivity (<=8%) – Succeeded

The average F1 score in strict datasets was increased by 8% and in soft datasets it was

increased by 7.1% meaning that the Voting – (ABDT, GBDT) algorithm has a moderate

window sensitivity but lies below the predefined baseline.

(3) High AUC (>=0.80) – Succeeded

The Voting – (ABDT, GBDT) algorithm produces very high AUC values.

Running Time (111, 2.5%): 303.5 seconds. The Voting – (ABDT, GBDT) algorithm has a

very high execution time cost.

Additional comments:

GBDT produced extremely high F1 scores and AUC values but suffered from mild window

sensitivity. ABDT produced very high F1 scores and AUC values as well but was characterized

by a very low sensitivity to window changes. Voting – (ABDT, GBDT) is a hybrid algorithm

which uses the majority vote methodology to produce high accuracy values but at the same

time achieve low window sensitivity. It is clear from the experiment results that voting between

the two classification algorithms has produced a very positive outcome since it has succeeded

in all three baseline tests. The only drawback of this algorithm is its very high computational

cost.

- 68 -

3.2.11 Voting – Ada and Gradient Boosting Decision Tree with Logistic Regression

Evaluation

 2.5% 5%

111

717

Figure 42: Voting – (ABDT, GBDT, LR) algorithm precision-recall graphs

Precision-Recall graph explanation:

The precision-recall graphs shown in Figure 42 are an indication of a high quality classification

model. The AUC values produced are very high for almost all the cases. When the number of

videos is increased or larger windows are used, the AUC values are slightly increased.

- 69 -

F1 Scores (111, 2.5%) Viral Popular Viral and Popular

Twitter Features 0.8010 0.6466 0.6501

YouTube Features 0.5980 0.8726 0.6936

All Features 0.8243 0.8789 0.7874

Mean F1 Score 0.7503

F1 Scores (717, 2.5%) Viral Popular Viral and Popular

Twitter Features 0.8625 0.7106 0.7285

YouTube Features 0.6703 0.9229 0.7835

All Features 0.8752 0.9241 0.8754

Mean F1 Score 0.8170

F1 Scores (111, 5%) Viral Popular Viral and Popular

Twitter Features 0.7908 0.6716 0.6616

YouTube Features 0.6150 0.8815 0.7146

All Features 0.8009 0.8856 0.7988

Mean F1 Score 0.7578

F1 Scores (717, 5%) Viral Popular Viral and Popular

Twitter Features 0.8560 0.7032 0.7492

YouTube Features 0.6739 0.9271 0.7820

All Features 0.8650 0.9309 0.8785

Mean F1 Score 0.8184

Figure 43: F1 scores for Voting – (ABDT, GBDT, LR) algorithm evaluation

F1 Scores explanation:

The F1 scores shown in Figure 43 are a solid proof of how deceiving precision-recall graphs

can sometimes be [10, 16]. For this reason a combination of the F1 score and the AUC values

is used in order to label a classifier as a “powerful model”. Looking at the F1 scores it is easily

noticeable that in some cases the algorithm performs relatively bad. More specifically, it

underperforms in cross-platform predictions and in “Viral and Popular” predictions.

- 70 -

Baseline Testing:

(1) Average F1 Scores (>=0.75) – Succeeded

Voting – (ABDT, GBDT, LR) improved the performance of the decision tree,

producing average F1 scores slightly higher than the baseline.

(2) Window Sensitivity (<=8%) – Partly Failed

The average F1 score in strict datasets was increased by 8.9% and in soft datasets it was

increased by 8% meaning that the Voting – (ABDT, GBDT, LR) algorithm has a high

window sensitivity when it comes to more strict datasets.

(3) High AUC (>=0.80) – Succeeded

The Voting – (ABDT, GBDT, LR) algorithm produces high AUC values and manages

to pass the baseline in all the datasets despite its high sensitivity to window changes.

Running Time (111, 2.5%): 334.89 seconds. The Voting – (ABDT, GBDT, LR) algorithm

has a very high execution time cost.

Additional comments:

Logistic regression was added as part of the voting algorithm in order to examine how far can

majority vote improve the quality of the classification. It is clear that when using too many

different estimators, voting can lead to low quality classifications due to overfitting. More

estimators doesn’t always mean better classifications.

- 71 -

3.2.12 Bagging Gradient Boosting Decision Tree Evaluation

 2.5% 5%

111

717

Figure 44: Bagging Gradient Boosting Decision Tree algorithm precision-recall graphs

Precision-Recall graph explanation:

As it seems from the precision-recall graphs in Figure 44, the Bagging Gradient Boosting

Decision Tree algorithm produces very high AUC values with a smaller dependence on the

number of videos used and the size of the window.

- 72 -

F1 Scores (111, 2.5%) Viral Popular Viral and Popular

Twitter Features 0.8034 0.6898 0.7218

YouTube Features 0.6108 0.8757 0.7307

All Features 0.8291 0.8849 0.8168

Mean F1 Score 0.7737

F1 Scores (717, 2.5%) Viral Popular Viral and Popular

Twitter Features 0.8655 0.7357 0.8081

YouTube Features 0.6839 0.9267 0.7943

All Features 0.8845 0.9305 0.8928

Mean F1 Score 0.8358

F1 Scores (111, 5%) Viral Popular Viral and Popular

Twitter Features 0.8005 0.7055 0.7267

YouTube Features 0.6265 0.8854 0.7499

All Features 0.8096 0.8892 0.8283

Mean F1 Score 0.7802

F1 Scores (717, 5%) Viral Popular Viral and Popular

Twitter Features 0.8603 0.7220 0.8138

YouTube Features 0.6929 0.9318 0.7990

All Features 0.8747 0.9346 0.8937

Mean F1 Score 0.8357

Figure 45: F1 scores for Bagging Gradient Boosting Decision Tree algorithm evaluation

F1 Scores explanation:

The F1 scores shown in Figure 45 give a clearer image of how accurate the classifications of

the BGBDT algorithm are. The algorithm underperforms in relation to other hybrid algorithms

but it is still a descent model for binary classifications. Looking at the “Viral and Popular”

column of the Figure it is clear that the model performs much better when larger amounts of

features are used.

- 73 -

Baseline Testing:

(1) Average F1 Scores (>=0.75) – Succeeded

Bagging GBDT significantly improved the performance of the decision tree, producing

average F1 scores much higher than the baseline.

(2) Window Sensitivity (<=8%) – Succeeded

The average F1 score in strict datasets was increased by 8% and in soft datasets it was

increased by 7.1% meaning that the Bagging GBDT algorithm has a moderate window

sensitivity but lies below the predefined baseline.

(3) High AUC (>=0.80) – Succeeded

The Bagging GBDT produces very high AUC values making it one of the most accurate

classifiers in this research.

Running Time (111, 2.5%): 1618.67 seconds. The Bagging Gradient Boosting Decision Tree

algorithm has an extremely high execution time cost.

Additional comments:

In order to improve the performance of a gradient boosting decision tree algorithm and at the

same time reduce its’ window sensitivity, the bagging methodology was applied. The new

Bagging GBDT hybrid algorithm produced very promising results since it appears to have

improved the overall performance of the GBDT classifier. Despite its’ high quality

performance, the bagging GBDT is still characterized by a moderate but acceptable window

sensitivity. The combination of the Gradient boosting methodology and the bagging

methodology produces very accurate classifications but the execution time required is

extremely high.

- 74 -

Chapter 4

Comparison

4.1 Comparison methodology 74

4.2 Stand-alone algorithms comparison 75

4.3 Extra Trees VS Random Forest VS Bagging Decision Tree 77

4.4 BDT VS GBDT VS ABDT 78

4.5 GBDT VS Voting – (GBDT, ABDT) 80

4.6 Voting – (GBDT, ABDT) VS Bagging GBDT 82

4.7 Comparison Conclusion 83

4.1 Comparison Methodology

In order to examine which algorithm better suits the needs of a certain research, a comparison

methodology was constructed. The comparison procedure consists of three different metrics

used in the evaluation of the algorithms. Depending on the kind and needs of a research,

different weights can be assigned to the following metrics, making one more important than

the other. In the context of this research, average F1 score is the most important metric.

The following tables depict how the algorithms chosen will be compared. The “Comparison”

column contains the name of the best performing algorithm.

Average F1 Scores Algorithm 1 Algorithm 2 Comparison

111 – 2.5%

717 – 2.5%

111 – 5%

717 – 5%

Table 16: Example of an average F1 score comparison table.

- 75 -

Window Sensitivity Algorithm 1 Algorithm 2 Comparison

Strict Labeling

Soft Labeling

Table 17: Example of window sensitivity in strict and soft labeling comparison table

AUC Algorithm 1 Algorithm 2 Comparison

All Features Old - AUC

All Features Recent - AUC

Baseline Features Old - AUC

Baseline Features Recent - AUC

Table 18: Example of AUC values for Both Popular graphs with (111, 2.5%) comparison table

Running Time Algorithm 1 Algorithm 2 Comparison

(111, 2.5%)

Table 19: Example of Running Time for (111, 2.5%) comparison table

4.2 Stand-alone Algorithms Comparison

Average F1

Scores
LR KNN SVM DT Comparison

111 – 2.5% 0.6136 0.6607 0.5721 0.7319 DT

717 – 2.5% 0.6875 0.7132 0.6028 0.7922 DT

111 – 5% 0.6243 0.6769 0.5868 0.737 DT

717 – 5% 0.6906 0.7218 0.6176 0.7904 DT

Window

Sensitivity
LR KNN SVM DT Comparison

Strict Labeling 12% 8% 5.4% 8.2% SVM

Soft Labeling 11% 6.5% 5.2% 7.2% SVM

AUC LR KNN SVM DT Comparison

All Features Old - AUC 0.95 0.70 0.65 0.92 LR

All Features Recent - AUC 0.71 0.51 0.44 0.68 LR

- 76 -

Baseline Features Old -

AUC
0.97 0.94 0.67 0.91 LR

Baseline Features Recent -

AUC
0.78 0.74 0.44 0.66 LR

Running Time LR KNN SVM DT Comparison

(111, 2.5%) 17.37 11.29 138.9 18.98 KNN

Figure 46: Comparison between all stand-alone algorithms (LR, KNN, SVM, DT)

Comparison comments on Figure 46:

In this Section a comparison between all the stand-alone algorithms used takes place in order

to examine which algorithm is more promising for further development.

The stand-alone algorithms compared behaved exactly as expected. What is particularly

interesting is that each algorithm dominated a different metric, with the exception of KNN.

The Decision Tree algorithm produced much higher average F1 scores from the algorithms in

comparison, proving that it is the most accurate algorithm when it comes to binary

classifications.

The SVM algorithm has the lowest window sensitivity compared to the rest of the algorithms,

whereas Logistic Regression has the highest. SVM low window sensitivity is a product of its

consistency as an algorithm, whereas Logistic Regression high window sensitivity is an

outcome of its’ probabilistic nature.

Logistic Regression produced the highest AUC values, showing that it performs well when it

comes to precision-recall. What this means is that Logistic Regression appears to be a good

standalone algorithm for binary classification but its’ poor performance on F1 Scores proves

that AUC values could be misleading.

Since the most reliable and important metric for this research is the F1 score, the Decision Tree

algorithm was chosen for further development as it performed substantially better than the

others. Another reason for choosing the Decision Tree is its execution time cost which is very

low.

- 77 -

4.3 Extra Trees VS Random Forest VS Bagging Decision Tree

Average F1 Scores ET RF BDT Comparison

111 – 2.5% 0.7581 0.7639 0.7645 BDT

717 – 2.5% 0.8345 0.8364 0.8347 RF

111 – 5% 0.7626 0.7679 0.7697 BDT

717 – 5% 0.8323 0.8335 0.8340 BDT

Window Sensitivity ET RF BDT Comparison

Strict Labeling 10.1% 9.5% 9.2% BDT

Soft Labeling 9.1% 8.5% 8.4% BDT

AUC ET RF BDT Comparison

All Features Old - AUC 0.98 0.98 0.98 -

All Features Recent - AUC 0.83 0.86 0.83 RF

Baseline Features Old -

AUC
0.95 0.94 0.96 BDT

Baseline Features Recent -

AUC
0.72 0.75 0.75 RF/BDT

Running Time ET RF BDT Comparison

(111, 2.5%) 166.68 248.37 1013.85 ET

Figure 47: Comparison between all the algorithms that embed randomness to their procedure

Comparison comments on Figure 47:

The first hybrid algorithms produced using Decision Trees where based on methodologies that

integrate random characteristics and/or random subsets of data. Those ensemble algorithms

where Extra Trees, Random Forest and Bagging Decision Tree. Each algorithm integrates

randomness to its methodology in a different extent.

Comparing the average F1 Scores and AUC values of these algorithms, it is clear that both

Bagging Decision Tree and Random Forest perform slightly better than the Extra Trees

algorithm.

- 78 -

It is no coincidence that the Extra Trees algorithm has the highest window sensitivity of all

three whereas the Bagging Decision Tree algorithm has the lowest. This behavior can be

attributed to the extent of randomness in each algorithm. The Extra Trees algorithm integrates

the most randomness in its methodology, therefore it is the most sensitive to window changes.

It is worth noting that the higher the accuracy the more running time required. The bagging

methodology appears to be very time costly. Despite its running time, the Bagging Decision

Tree algorithm has the best overall performance out of the three, so it was chosen for further

comparison with different hybrid algorithms implemented using various methodologies.

4.4 BDT VS GBDT VS ABDT

Average F1 Scores BDT GBDT ABDT Comparison

111 – 2.5% 0.7645 0.7736 0.7714 GBDT

717 – 2.5% 0.8347 0.8361 0.8276 GBDT

111 – 5% 0.7697 0.7802 0.7781 GBDT

717 – 5% 0.8340 0.8359 0.8281 GBDT

Window Sensitivity BDT GBDT ABDT Comparison

Strict Labeling 9.2% 8.1% 7.3% ABDT

Soft Labeling 8.4% 7.1% 6.4% ABDT

AUC BDT GBDT ABDT Comparison

All Features Old - AUC 0.98 0.98 0.98 -

All Features Recent -

AUC
0.83 0.84 0.82 GBDT

Baseline Features Old -

AUC
0.96 0.96 0.97 ABDT

Baseline Features Recent

- AUC
0.75 0.80 0.80 GBDT/ABDT

Running Time BDT GBDT ABDT Comparison

(111, 2.5%) 1013.85 198.48 238.77 GBDT

Figure 48: Comparison between the boosting algorithms and the Bagging Decision Tree algorithm

- 79 -

Comparison comments on Figure 48:

The Bagging Decision Tree algorithm is compared with two ensemble algorithms that apply

some kind of boosting on top of the decision tree weak learner. More specifically Adaptive

Boosting and Gradient Boosting respectively.

Looking at the comparison tables, it is clear that boosting methodologies produce better overall

results than the Bagging Decision Tree algorithm. It is worth noting that since GBDT and

ABDT don’t integrate any kind of randomness in their methodologies, they are much less

sensitive to window changes than BDT.

Analyzing the results it is not clear which algorithm, Gradient Boosting Decision Tree or Ada

Boosting Decision Tree, performs better.

The GBDT algorithm produces slightly higher average F1 scores and AUC values than the

ABDT algorithm. The ABDT algorithm on the other hand is substantially less sensitive to

window changes than GBDT, which makes it particularly useful when it comes to scaling the

problem in discussion. The running time of the two boosting algorithms is similar with the

GBDT algorithm requiring a little less time to run than the ABDT algorithm.

Depending on the nature of the problem either one of these two algorithm be chosen.

- 80 -

4.5 GBDT VS Voting – (GBDT, ABDT)

Average F1 Scores GBDT
Voting – (GBDT,

ABDT)
Comparison

111 – 2.5% 0.7736 0.7739 Voting

717 – 2.5% 0.8361 0.8361 -

111 – 5% 0.7802 0.7803 Voting

717 – 5% 0.8359 0.8360 Voting

Window Sensitivity GBDT
Voting – (GBDT,

ABDT)
Comparison

Strict Labeling 8.1% 8% Voting

Soft Labeling 7.1% 7.1% -

AUC GBDT
Voting – (GBDT,

ABDT)
Comparison

All Features Old - AUC 0.98 0.98 -

All Features Recent - AUC 0.84 0.84 -

Baseline Features Old -

AUC
0.96 0.97 Voting

Baseline Features Recent -

AUC
0.80 0.80 -

Running

Time
GBDT

Voting – (GBDT,

ABDT)
Comparison

(111,

2.5%)
198.48 303.50 GBDT

Figure 49: Comparison between GBDT and Voting – (GBDT, ABDT)

- 81 -

Comparison comments on Figure 49:

Since the GBDT and the ABDT algorithms performed similarly, the Voting methodology was

used to try and create a hybrid algorithm with higher average F1 Scores and AUC values and

lower window sensitivity.

The Voting – (GBDT, ABDT) hybrid algorithm managed to produce higher average F1 Scores

from GBDT, while at the same time reducing slightly the window sensitivity. The AUC values

where overall the same with a small exception where Voting – (GBDT, ABDT) performed

slightly better.

In addition to the above results, further comparison took place between the two algorithms,

which contained all the scenarios examined in this research. The conclusion was that Voting –

(GBDT, ABDT) performs better than GBDT in almost all the scenarios. The only throwback

of Voting – (GBDT, ABDT) algorithm is its computational cost that is much higher than that

of the GBDT algorithm. Since the GBDT uses 100 estimators whereas Voting – (GBDT,

ABDT) uses 150, it was expected that the voting algorithm would require at least 1.5 times

more running times than the GBDT algorithm. This hypothesis was justified by the running

time results presented in the comparison table.

- 82 -

4.6 Voting – (GBDT, ABDT) VS Bagging GBDT

Average F1 Scores Voting – (GBDT, ABDT) Bagging GBDT Comparison

111 – 2.5% 0.7739 0.7737 Voting

717 – 2.5% 0.8361 0.8358 Voting

111 – 5% 0.7803 0.7802 Voting

717 – 5% 0.8360 0.8357 Voting

Window Sensitivity
Voting – (GBDT,

ABDT)
Bagging GBDT Comparison

Strict Labeling 8% 8% -

Soft Labeling 7.1% 7.1% -

AUC
Voting – (GBDT,

ABDT)
Bagging GBDT Comparison

All Features Old - AUC 0.98 0.98 -

All Features Recent - AUC 0.84 0.84 -

Baseline Features Old -

AUC
0.97 0.96 Voting

Baseline Features Recent -

AUC
0.80 0.80 -

Running

Time

Voting – (GBDT,

ABDT)

Bagging GBDT
Comparison

(111,

2.5%)
303.50

1618.67 Voting – (GBDT,

ABDT)

Figure 50: Comparison between Voting – (GBDT, ABDT) and Bagging GBDT algorithms

Comparison comments on Figure 50:

The Bagging GBDT hybrid algorithm combines randomness and boosting in an attempt to

produce a high quality classifier that performs better than all the other algorithms. Since it

integrates two different kinds of demanding ensemble methodologies, it is obvious that

Bagging GBDT comes with a very high computational cost.

- 83 -

Despite the fact that the Bagging GBDT algorithm performed very well, it failed to surpass the

Voting – (GBDT, ABDT) algorithm in any of the metrics. It “tied” in window sensitivity and

AUC values but underperformed in the most important metric, which is the average F1 Scores.

Bagging GBDT has an extremely high computational cost. It requires five times more running

time than the Voting algorithm. This execution time cost doesn’t justify the final results,

therefore there is no reason to use the Bagging GBDT algorithm instead of the Voting –

(GBDT, ABDT) algorithm.

4.7 Comparison Conclusion

After extensive research, experiments and comparison between multiple algorithms, a list with

the most high performing hybrid algorithms was produced.

The list consists of the Gradient Boosting Decision Tree, Ada Boosting Decision Tree and

Voting – (GBDT, ABDT) hybrid algorithms. These algorithms appear to be the most suitable

for this kind of research problems or any similar binary classification problems.

The Gradient Boosting Decision Tree algorithm produces extremely accurate classifications.

It’s the strongest boosting algorithm and has a moderate computational cost. It’s superiority to

any other boosting algorithm is mostly denoted by the high F1 Scores and AUC values

produced. Its drawback is that GBDT appears to be slightly “oversensitive” to window

changes.

The Ada Boosting Decision Tree algorithm produces very accurate classifications. It has a

moderate computational cost. This hybrid algorithm is particularly powerful when window

sensitivity is very important to the research. Its drawback is that it produces slightly lower F1

Scores and AUC values than Gradient Boosting Decision Tree.

The Voting – (GBDT, ABDT) algorithm produces extremely accurate classifications. It has

the highest F1 Scores from all the other algorithms compared. It has moderate window

sensitivity. Its drawback is that it comes with a very high computational cost.

All the metrics mentioned in this document where taken into consideration for the final choice

of the most suitable algorithm for this research. It was concluded that the Voting – (GBDT,

ABDT) hybrid algorithm fits the most important needs of this kind of research and was

chosen as the main algorithm for future work.

- 84 -

Chapter 5

Discussion

3.1 Summary and final thoughts 84

3.2 Future work 85

5.1 Summary and Final Thoughts

Stand-alone algorithms are generally weak learners, meaning that they produce poor

classifications. Decision Tree, which is a weak learner, was a good algorithm to build stronger

and more accurate, hybrid algorithms on top of.

Hybrid algorithms, which is a combination of weak learners and various methodologies,

produced high accuracy classifications but with some drawbacks in some cases. For example,

it was concluded that any kind of randomization procedures within the algorithm itself,

increases its sensitivity to window changes. This oversensitivity is undesirable since the aim

of this research is to be able to produce powerful classifications independently of the training,

offset and labeling window.

Looking at the training features, it is clear that some are more important than others. More

specifically, any kind of acceleration or ratios appears to assist more in the classification than

most of the “static” features.

For the needs of this research, it was concluded that the Voting – (GBDT, ABDT) hybrid

algorithm is the most suitable. It is worth noting that a set of other hybrid algorithms analyzed

and evaluated in this study, produced high quality classifications as well and could be most

suitable in scenarios where other metrics are more important (e.g. window sensitivity). In short,

similar problems with slightly different needs could use one of the other powerful models

developed and evaluated in this study.

- 85 -

Table 20 contains the Voting – (GBDT, ABDT) classifier’s F1 scores for a sample of test cases

of this research. It is clear that there’s still room for improvement, especially in cross platform

classifications. Looking at this table, a particularly interesting hypothesis was made. It seems

that a different algorithms could be assigned in different subsections of the problem in hope of

producing better classifications.

F1 Scores Viral Popular Viral and Popular

Twitter Features 0.8031 0.6898 0.7225

YouTube Features 0.6110 0.8757 0.7318

All Features 0.8294 0.8851 0.8170

Table 20: Sample of Voting – (GBDT, ABDT) classifier’s F1 scores

5.2 Future Work

Following the hypothesis that was made from looking at table 20 in Section 5.1, it appears that

dividing the problem into various subsections, could indeed produce much better results.

More specifically, the overall problem could be divided into four sections:

1. Predictions using Twitter Features

2. Predictions using YouTube features

3. Predictions using All Features

4. Cross-platform predictions.

A different kind of hybrid algorithm could be assigned to each subsection. Each algorithm

could then be fine-tuned and adjusted to the specific needs of each section in order to produce

more accurate classifications. This approach to the problem is feasible and very promising. The

outcome could be an extremely powerful model that could make high accuracy, platform

independent, predictions. It has been noted that when the features are “weak”, meaning that

they don’t offer much information gain to the classifier, a more randomized approach might be

more suitable. For example, in the case of predictions using Twitter features, which don’t offer

much information gain, a Random Forest algorithm could be more preferable than a Boosting

algorithm.

Finally, further experimentation could take place regarding the training features. More

specifically, features that don’t seem to be important to the classification could be removed in

the future, whereas features that are important, could be combined to produce even more

powerful training features.

- 86 -

References

[1] Chris Anderson and Michael Wolff: The Web Is Dead. Long Live the Internet. URL:

https://www.wired.com/2010/08/ff_webrip/ [Last Accessed 14 May 2017]

[2] David Vallety, Shlomo Berkovskyz, Sebastien Ardony, Anirban Mahantiy, Mohamed Ali

Kaafary: Characterizing and Predicting Viral-and-Popular Video Content.

[3] What is: Machine Learning? URL: http://whatis.techtarget.com/definition/machine-

learning [Last Accessed: 14 May 2017]

[4] Πούης Λούκας, Ατομική Διπλωματική Εργασία, Τμήμα Πληροφορικής Πανεπιστημίου

Κύπρου 2016: Μελέτη Της Διάδοσης Των Βίντεο Του YouTube Στο Μέσο Κοινωνικής

δικτύωσης Twitter.

[5] Quora: What are the top 10 data mining or machine learning algorithms? URL:

https://www.quora.com/What-are-the-top-10-data-mining-or-machine-learning-algorithms

[Last Accessed: 14 May 2017]

[6] YouTube Data API V3.0. URL: https://developers.google.com/youtube/v3/ [Last

Accessed: 14 May 2017]

[7] Twitter Developer Documentation – Streaming APIs. URL:

https://dev.twitter.com/streaming/overview [Last Accessed: 14 May 2017]

[8] Scikit-learn, Machine Learning in Python. URL: http://scikit-learn.org/stable/ [Last

Accessed: 14 May 2017]

[9] Raschka, S. (2015). Python Machine Learning (Book). Birmingham: PACKT.

[10] What are the differences between AUC and F1-score? URL:

https://stats.stackexchange.com/questions/123036/what-are-the-differences-between-auc-and-

f1-score [Last Accessed: 14 May 2017]

[11] Microsoft: How to choose algorithms for Microsoft Azure Machine Learning. URL:

https://docs.microsoft.com/en-us/azure/machine-learning/machine-learning-algorithm-choice

[Last Accessed: 14 May 2017]

https://www.wired.com/2010/08/ff_webrip/
http://whatis.techtarget.com/definition/machine-learning
http://whatis.techtarget.com/definition/machine-learning
https://www.quora.com/What-are-the-top-10-data-mining-or-machine-learning-algorithms
https://developers.google.com/youtube/v3/
https://dev.twitter.com/streaming/overview
http://scikit-learn.org/stable/
https://stats.stackexchange.com/questions/123036/what-are-the-differences-between-auc-and-f1-score
https://stats.stackexchange.com/questions/123036/what-are-the-differences-between-auc-and-f1-score
https://docs.microsoft.com/en-us/azure/machine-learning/machine-learning-algorithm-choice

- 87 -

[12] Data School: Simple guide to confusion matrix terminology. URL:

http://www.dataschool.io/simple-guide-to-confusion-matrix-terminology/ [Last Accessed: 14

May 2017]

[13] Machine Learning Mastery: A Gentle Introduction to the Gradient Boosting Algorithm

for Machine Learning. URL: http://machinelearningmastery.com/gentle-introduction-

gradient-boosting-algorithm-machine-learning/ [Last Accessed: 14 May 2017]

[14] Introduction to machine learning with scikit-learn. URL:

https://github.com/justmarkham/scikit-learn-videos [Last Accessed: 14 May 2017]

[15] Coursera: Machine Learning by Andrew Ng. URL:

https://www.coursera.org/learn/machine-learning [Last Accessed: 14 May 2017]

[16] How to choose between ROC AUC and F1 score? URL:

https://stats.stackexchange.com/questions/210700/how-to-choose-between-roc-auc-and-f1-

score [Last Accessed: 14 May 2017]

[17] Scikit-learn issue: average_precision_score does not return correct AP when all

negative ground truth labels. URL: https://github.com/scikit-learn/scikit-learn/issues/8245

[Last Accessed: 14 May 2017]

[18] Scikit-learn: Support Vector Machines. URL: http://scikit-

learn.org/stable/modules/svm.html [Last Accessed: 14 May 2017]

[19] Bruce Eckel: Thinking in Java (Book). Prentice Hall, Pearson Education.

[20] Scikit-learn: Ensemble Methods. URL: http://scikit-

learn.org/stable/modules/ensemble.html#ensemble [Last Accessed: 14 May 2017]

[21] Ian Goodfellow, Yoshua Bengio and Aaron Courville: Deep Learning Book. URL:

http://www.deeplearningbook.org/ [Last Accessed: 14 May 2017]

[22] W3 Schools: The world’s largest web developer site. URL:

https://www.w3schools.com/ [Last Accessed: 14 May 2017]

http://www.dataschool.io/simple-guide-to-confusion-matrix-terminology/
http://machinelearningmastery.com/gentle-introduction-gradient-boosting-algorithm-machine-learning/
http://machinelearningmastery.com/gentle-introduction-gradient-boosting-algorithm-machine-learning/
https://github.com/justmarkham/scikit-learn-videos
https://www.coursera.org/learn/machine-learning
https://stats.stackexchange.com/questions/210700/how-to-choose-between-roc-auc-and-f1-score
https://stats.stackexchange.com/questions/210700/how-to-choose-between-roc-auc-and-f1-score
https://github.com/scikit-learn/scikit-learn/issues/8245
http://scikit-learn.org/stable/modules/svm.html
http://scikit-learn.org/stable/modules/svm.html
http://scikit-learn.org/stable/modules/ensemble.html#ensemble
http://scikit-learn.org/stable/modules/ensemble.html#ensemble
http://www.deeplearningbook.org/
https://www.w3schools.com/

- 88 -

[23] Analytics Vidhya: Quick Introduction to Boosting Algorithms in Machine Learning.

URL: https://www.analyticsvidhya.com/blog/2015/11/quick-introduction-boosting-

algorithms-machine-learning/ [Last Accessed: 14 May 2017]

[24] Scikit-learn: Precision - Recall - F1 Score Metrics. URL: http://scikit-

learn.org/stable/auto_examples/model_selection/plot_precision_recall.html [Last Accessed:

14 May 2017]

https://www.analyticsvidhya.com/blog/2015/11/quick-introduction-boosting-algorithms-machine-learning/
https://www.analyticsvidhya.com/blog/2015/11/quick-introduction-boosting-algorithms-machine-learning/
http://scikit-learn.org/stable/auto_examples/model_selection/plot_precision_recall.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_precision_recall.html

