Bachelor Thesis

Procedural Aging Of Buildings

Christos Othonos

University of Cyprus

D @

Department of Computer Science

May 2017







Bachelor Thesis

Procedural Aging Of Buildings

Christos Othonos

University of Cyprus

D @

Department of Computer Science

May 2017




University of Cyprus

Department of Computer Science

Procedural Aging Of Buildings

Christos Othonos

Advisor

Professor Yiorgos Chrysanthou

Diploma project has been submitted for partial fulfillment of the
requierements of Informatics Degree acquisition from the University of

Cyprus

May 2017



Acknowledgement

I would like to express my sincere gratitude to a few people that have helped me with the comple-
tion of this project. Firstly I would like to thank my advisor Professor Yiorgo Chrysanthou, for
his guidance and support throughout the completion of this project, his patience, motivation, and
immense knowledge. I would also like to thank Professor Gustavo Patow from the University
of Girona, for providing us with his valuable expertise in procedural building algorithms and
aging. Finally I would like to thank Gregorie Nieto for letting us study and learn from his work

on the same subject.



Abstract

Due to the increasing need for more graphical content, many professionals resort to incorporat-
ing procedural generation tools to their work-flows. One such category of graphical content is
building generation and already there are specialized tools that make use of a set of rules and
minimal user input to generate an astounding amount of buildings. Such technology has been
put into great use, providing city models for open world games and movies. We argue however,
that the procedural building generators have limited capacity for realism due to buildings always
being in pristine condition. To increase realism one must add layers of degradation to make it
look like it was affected by real world phenomena. This manual work is feasible for small
projects, but not for an entire city scape. We propose a system that can be integrated in any pro-
cedural building generator and can add degradation details to buildings automatically as they are
constructed. Our contributions include a proof of concept pipeline extending the popular CGA
Shape Grammar, the storing of aging and degradation related attributes on the building using a
grid model, several simulation techniques to detect areas affected by humidity and weakness of

structure, and several techniques that visualize degradation using the aforementioned attributes.
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1.1 Motivation

Computer graphics have revolutionized the way we work and entertain ourselves. The appli-
cations of computer graphics are endless and varied, ranging from medical visualizations to
movie productions. In addition, with the constant evolution of graphics hardware we see a
steady improvement in realistic real-time 3d rendering and image processing.

Some of the most impressive uses of computer graphics is in the entertainment industry.
Movie studios make extensive use of CGI graphics, to cut down the costs of practical effects
and rentals. Things like helicopters, creatures, vegetation or even entire cities are often drawn
by 3d modelers and rendered at a very high fidelity. If done correctly, these graphics look so
realistic that it is hard to discern them from their real counterparts. Video games by default
make use of computer graphics, because of their need to generate a picture on the fly based on
a dynamic game state. To immerse the player, game studios usually focus on a photorealistic
aesthetic and invest a big part of the budget on good looking 3d models.

Since most movie productions and electronic games have a high reliance on 3d graphics, it
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1.1. MOTIVATION CHAPTER 1. INTRODUCTION

is imperative to have the manpower to generate all of the 3d content. For that reason triple-A
studios with big budgets hire dozens of artists to model what is needed. However with the ever
increasing need for better and more graphics, especially in video games, even big companies
find it hard to keep up. At some point, the costs of graphics will be so prohibitive that companies
will find ways to cut corners. One such shortcut is procedural content generation.

Procedural generation algorithms are able to generate a specific type of content with a pre-
defined set of rules, a typically small user input and randomization. Procedural content can vary
from text, to texture, to audio or even 3d models. Even as back as the early days of computers
such algorithms existed, but it is only in recent years that they saw a rise in popularity.

Typically procedural generation offers two great advantages. Firstly it allows for the effec-
tive compression of extremely large data sets. This is because stochastic procedural methods
can generate potentially infinite amounts of the same type of content, with only a few rules
and minimal user input. This feature was exploited a few years back by computer games such
as Elder Scrolls:Daggerfall [29], where a large map the size of Great Britain was compressed
to fit in a single CD-ROM. More recent examples include the game “Minecraft” being able to
generate entire worlds from a single seed value. Another great advantage is that it helps with
the creation of large amounts of content. Esri’s CityEngine [7] is a program that allows for the
creation of entire cities using a floor plan and a set of procedural rules.

Ofcourse procedural algorithms are not without their shortcomings. A common complaint
by artists is that procedural generating solutions, with the exception of programs like Houdini
FX [28], severely limit artistic freedom. One reason is the fact that most procedural methods
make use of random elements to add variety; this in turn makes it difficult for the artist to predict
or even control the output of such generators. Artistic direction is a very important resource in
the creation of media, and it goes without saying that severely limiting the control of the artist
is a waste of ‘creative’ resources.

The second pitfall of procedural methods is the lack of creativity in the generated content.
Due to the algorithmic nature of these systems; even with the inclusion of stochastic elements,
the output will most likely look the same to the average observer. To better understand this
problem imagine a procedural generator that creates a set of clothes for a virtual character to
wear. [t works by simply changing the colour of existing clothing items to a random colour and
then dressing the avatar. This system would be able to generate a seemingly endless amount of

varied content; but the human observer would quickly notice a pattern in all of the combinations
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1.1. MOTIVATION CHAPTER 1. INTRODUCTION

since all of the clothes have the same shape and style as the previous avatar. So a procedural
generator such as the one in this example fails in adding variety. An improved version of the
generator would simply include more clothing items and randomly switch between them. This
would certainly create a greater variety, but this still requires an artist to draw all of the base
clothing items. The amount of work required by artists for the creation of sufficient procedural
generators is debatable, but that doesn’t change the fact that the generator does not innovate by
itself; it simply follows a set of discrete rules.

It becomes clear that the strength of procedural systems does not lie in creativity but to
facilitate large and monotonous tasks. In that regard artists can make use of such systems to
get rid of the tedious bulk of content, and then add their own creative touches afterwards. One
notable example is the dialogue systems of games such as “The Witcher 3” [30], where all of
the dialogue cinematics were procedurally generated by algorithms, and then refined by hand.
Therefore even if procedural algorithms themselves fail to be creative, they are essential in
projects with massive amounts of content.

One such type of task is the generation of buildings and entire cities, and specialized software
such as Esri’s cityengine [ 7] are put into effect. The fact that the majority of man made structures
are comprised of simple shapes and patterns, favors procedural algorithms. Additionally the
importance of procedural modeling of buildings and structures, attracted a lot of research effort;
and because of that we now have a plethora of tools and techniques to generate buildings.

The entirety of conventional procedural building methods, always create buildings in per-
fect shape. This is a huge disadvantage for projects that strive for a photo realistic aesthetic.
Most people in this world live in cities with old buildings full of imperfections due to long-
term weathering; so it is not common for them to see structures in pristine condition. Even
in newly built buildings, the most subtle of aging effects will appear. Also humans are very
good at pattern matching tasks, and can easily pick up minor details or lack thereof. Therefore
a city setting with perfect buildings would strike many people as unrealistic or even unsettling.
Especially outside the western world quite a lot of people live or work in buildings made of
earth or other natural materials that degrade quickly if not maintained.

Manually adding weathering details to a building is feasible, especially with the evolution
of 3d modeling software capabilities. Sculpting tools can be used to add dents, bumps and
cracks on a surface. Textures can be used to add moss, discolorations and layer degradation.

Additionally an artist can modify the entire structure of the building, collapse roofs, break

12
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windows etc. Not only can an artist have full control of the process, but also use intuition
to create an aesthetically pleasing output. Unfortunately this is not viable for large tasks, such
as with an entire city.

Alternatively a simulation based method may be used. Simulation methods take into con-
sideration various environmental and internal factors, and approximate reality in a more algo-
rithmic way. Depending on the granularity and resolution of the simulation, varying amounts
of computing power and computation time will be required. Seeing as how animation studios
have no problem in running a rendering farm for hours to get the perfect picture, a slow physics
simulation is not out of the question. What is a concern however is the lack of simulation tools
that specialize in building degradation.

When mentioning the words physics and building degradation, physics engines might come
to mind. State of the art physics engines such as NVidia’s PhysX [22] and Havok [10] are real
time and have very convincing results. One could procedurally create an entire building out
of different components, and then use a physics engine to simulate a sequence of events that
will collapse and degrade the structure. Physics engines among other things can simulate the
structural collapse of a building and the ‘peeling’ of layers such as plaster. Again since it is the
results that we are interested in, the cost of the simulation is not our major concern. However,
no matter how appealing this method is, we believe that it is very inefficient for this task. The
focus of a physics engine is to simulate real-time events, so that every independent body or
particle moves in a believable way. In other words physics engines are focused on real-time
and short-term simulations. Our goal however is to perform a long-term simulation, where each
simulation step can be as much as an entire month. There is no need to know how each wall

fragment moves every second; only where it has ended up.

1.2 Objective

Our objective is to develop a system that procedurally adds aging imperfections to buildings.
Such a system would help professional artists make their workflow more efficient when con-
structing ruined buildings. This would also help companies in the entertainment industry cut
costs when tackling this problem, so that they can focus their resources on other areas. This

system must have as much automation as possible to avoid unessesary manual refinements.
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1.3 Contributions

We propose an extension to the popular CGA shape grammar pipeline, that allows for the
simulation and application of long-term degradation effects on buildings. We implemented
a proof of concept on the Houdini software by Side FX, which requires a slight modification of
CGA shape grammar operations and the addition of a “simulation component” and an “aging
application component”. As this is one of the first projects to tackle procedural building and
degradation, we have placed a number of restrictions to keep the scope at a reasonable minimum.
First of all we will not be focusing on the accuracy of the simulation as compared to the real
world. Instead we want to demonstrate that our ideas and techniques are flexible enough for
any simulation algorithm to work. Secondly we will not be concerned with specific cases of
materials and building structures. We believe that by tweaking the attributes, algorithms and

techniques that we present; the believable degradation of most materials can be achieved.

1.4 Thesis Structure

In chapter 2 we will present related previous work that this thesis is based on. In chapter 3 we
will mention a few things regarding the degradation and aging of buildings in the real world.
Next we will explain our Simulation pipeline in chapter 4. Then we will go into more depth in
the Implementation specifics of our work in chapter 5, followed by chapter 6 in which we show
some simulation results in various conditions. Finally we will give some concluding remarks

and mention what we plan to improve in the future in chapter 7.
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2.1 Procedural Algorithms

Procedural algorithms are a set of rules and steps, that result in the creation of a specific type
of content. There are currently many procedural generators and they can be used generate
any type of content: from audio, to textures and 3d models. Procedural generation as we
have mentioned in the previous chapter, have the ability to compress large data sets, as well
as facilitating monotonous content creating workloads.

Music can be generated procedurally. Even as back as 1963, a software known as Musicomp
was used to compose musical scores such as the “Computer Cantata” [11]. Additionally audio
effects can also be generated by a computer. This is useful in interactive forms of media such
as video games, where pre-recorded sound effects cannot match all possible interactions [8§].

Texture synthesis involves the generation of textures with various methods. The generated

textures can have various properties, but should be able to fit together seamlessly and be varied
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enough. Substance [3] is a notable example of a software package that synthesizes infinite
and seamless textures. Instead however of the typical 2D texture, the target program will use
procedural rules to re-create the texture where it is needed.

Procedural modeling is a term referring to the semi-automatic generation of 3d models.
These models can represent anything visible in the virtual world, that is typically made of
polygons. One type of model that can be procedurally generated is terrain: a model that is
used to express features of the earth such as hills, valleys and mountains. Artists can use
traditional modeling tools to sculpt such models, but a more cost-effective solution is rather to
use height maps. Heightmaps not only offer a cheap way to store terrain models as 2D textures,
but can easily be generated procedurally using texture generation methods [25]. Terrains can
also be represented by voxel maps, which solve the cave and overhang problem of height-
maps [26] but may leave a huge memory footprint for large models. For that reason voxel
terrains are generated on the fly using 3d fractals and procedural rulesets. One such example is
the successful computer game Minecraft [19].

Although nature is important to replicate in the graphics industry, man-made structures are
equally as important. Most of these structures follow predictable and simple patterns, which
makes them easier to work with by artists. Unfortunately most projects require graphics of
massive city landscapes or other manmade structures, that are tedious to draw by hand. Because
of the aforementioned reason, the generation of buildings and other manmade structures, has
made this category of procedural generation gain a lot of research interest.

An interesting structure to procedurally construct are roads. Although this is a trivial prob-
lem in cases where the city layout is provided, roads outside of major cities can be quite complex.
Not only that but road construction takes into account the cost of building roads a certain way;
factors such as the inclination of slopes and natural obstructions may change the trajectory and
shape of the road. This can be solved by using a cost function to design the trajectories of the
road, and then procedurally construct structures such as roads, tunnels and bridges [9].

The procedural generation of buildings is a topic that received a great deal of research effort.
An L-system based procedural building algorithm was developed by Parish et al. Given a city
layout with population density and water boundaries, their proposed system can generate road
layouts, buildings, and parking lots [23]. Although their method was sufficient for generating
large city scapes, the generated buildings had simplistic mass models and their facade relied on

textures and shaders to depict features such windows and doors. A few years later P. Wonka
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et Al. present a method that uses split grammars instead of L-systems to generate buildings.
Their focus however was on speeding up the procedural algorithms of urban building generation
[31]. The P. Wonka et al. method produced high quality buildings, but only worked well with
simple mass models with axis aligned orientations. The shortcomings of both algorithms were
addressed with the CGA shape grammar. The CGA shape grammar uses ideas from [23], as
well as the split grammars from [31] and extends upon them. As of now this method is one of
the most popular in the procedural generation of cities and towns [20].

The majority of procedural building generation algorithms, including the ones mentioned in
the previous paragraph, suffer from a few problems. Firstly they only generate building shells
and completely neglect the interiors. This can be a problem for open world sandbox games,
that are advertised for the amount of freedom they give to the player. Game developers can
create a work-arounds such as the adding transitions that teleport the avatar to the room, but
such methods might be undesired for professional game studios. Alternatively it is possible to
generate interiors procedurally [4]. The other problem procedural generation algorithms may
face is the lack of building functionality. This is a given since most procedural algorithms do not
start with customer specifications, the same way an architect would start designing a building.
Both of these problems can be addressed, but for the scope of this project we will not consider

solving them.

2.2 CGA Shape Grammar

CGA shape (Computer Generated Architecture) is a shape grammar that efficiently generates
high quality building shells. The authors of the paper have build a virtual model of Pompeii to
demonstrate the capability of their grammar [20]. The Esri Cityengine is a specialized software
which uses a rule-based modeling system based on CGA shape to generate cities [7]. Due to
the flexibility and efficiency of this procedural algorithm we have decided to use it as a base to

present our aging simulation pipeline.

2.2.1 Notation

In this subsection we will present various terms and notation associated with the original CGA
shape grammar. It is important to do so, because we will need these terms to describe both the

how CGA shape works, and then how our system works.
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Shapes

According to the original paper, a shape is a collection containing a symbol, a geometry and
numeric attributes. Symbols are integral in any grammar, being either a terminal symbol or
a non-terminal symbol. In the case of CGA Shape grammar, every shape is represented and
identified by its symbol. The geometry is enclosed in a bounding box referred to as a scope.

For example we may have a bounding box like in Figure 2.1 that contains a cylinder mesh.

Figure 2.1: Example of a scope.

Facades

Facade is a word from the French language meaning “face” of a building (see Figure 2.2).
In procedural building jargon facades have the exact same meaning. In CGA Shape facades
are initially the geometric faces of the building geometry. Note that in CGA Shape Grammar

facades are not considered shapes, but they can be represented by a symbol.

Production Rules

Like any formal grammar, CGA shape uses a set of production rules. The symbols in these rules
represent a shape. The form of the rules is shown in Equation 2.1. On the left hand side we have
a numerical id for the rule, and the predecessor symbol. Once a condition is met, the successor

shape is generated in place of the predecessor. The value of prob is simply a probability to
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Figure 2.2: Examples of building facades. Left image from [5] and right image from [6]

add stochastic behavior and randomness in the building process. For example we may specify
multiple types of buildings that can be placed in an empty place, along with a probabillity for

their appearance. This way we can add variety in an otherwise deterministic system.

1d : predecessor : cond — successor : prob (2.1)

Scope Rules

Scope rules are operations that modify shapes. For example we can translate, rotate or scale a
shape. We can also add a geometric shape that fits inside the current scope. Additionally there
is an operation called Roof that is used along with the more conventional scope rules. The Roof

operation adds a roof on top of a shape, given a preset roof type and roof inclination.

Split Rules

An important part of CGA shape is its ability to split shapes and surfaces to refine the geometry.
The split rules are more or less identical to the ones presented in the book “Instant Architecture”
[31].

First we have the basic split rule. We can split our shape or facade in one of three axes
(or a combination of them) and in various locations. An example of such a rule is given in the
original paper and in Figure 2.2. In this example we split a facade in the Y axis into 5 sections.
We determine the size of each segment as well as the output symbol (in the curly brackets). We
can also split a 3d scope, if we want for example to split our building into multiple stories. The

results of the production rule can be seen in Figure 2.3.
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Figure 2.3: Subdivision of a building into multiple floors.

1: fac — Subdiv(”Y™,3.5,0.3, 3,3, 3){ floor|ledge| floor| floor| floor} (2.2)

Using the exact size to determine the segment may not always work in our favour. For
example, if we applied the same split rule on a building with a different height we will most
likely get unexpected results. For that reasons “scaling” is used. Using the letter r along with
a multiplier we can be sure that a segment’s size is relative to the size of the shape. We can
see this from another example given in the original paper, shown here in Equation 2.3. Just
like before we take a predecessor symbol ( “floor” in this case) and subdivide it into 4 sections.
Note that the two middle sections have relative sizing as opposed to sections A. No matter what
the size of the floor is we will get two sections of size 2, and two middle sections that take the
rest of the length. Figure 2.4 illustrates the use the production rule making use of scaling, and
comparing its use on two different building sizes.

Another split rule is “Repeat”, which performs a predetermined split repeatedly until the
shape is exhausted. The example from the “Procedural Modeling Of Buildings” paper [20]
(and Figure 2.5) splits the floor along the X-axis into N subsections of size 2. This is especially
useful when we want to separate an arbitrarily long surface into equally sized chunks.

Finally we have the Component split which splits a shape into shapes of lesser dimensions.

Using this split we can extract the facades from the 3d shape of the building.

Occlusion

One of the problems presented in the CGA shape paper was the danger of placing windows and

doors in areas that are partially or completely occluded. To solve this an occlusion checking rule
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Figure 2.4: Using scaling. Regardless of the size of the building, sections with relative sizing take up

the remaining space. Note that the example buildings are a continuation of 2.3

2: floor — Subdiv(”X”,2,1r, 1r,2){ A|B|B|A} (2.3)

is used such as the example in Equation 2.5. In the example we make sure that before placing
the shape door over the shape tile, that there is no other shape that occludes it. The same rule
can also check against a specific group of shapes instead of “all” and it can check for partial or

full occlusion instead of “none”

1 : tile : Shape.occ(”all”) == "none” — door (2.5)

This operation is very important when procedurally creating new buildings (e.x by using
probability rules) because the occlusions between the shapes can vary significantly. However
we have decided against implementing this functionality as it was not necessary to demonstrate

our pipeline.

2.2.2 Pipeline

We will now present the workflow of a typical CGA Shape pipeline. Some inferences had to be
made since some details were not explicitly specified. The process starts with the Mass Mod-
eling stage, assembling solids or extruding footprints to create the basic shape of the building.

Then we split the building into lesser dimensions in the Component Splitting stage. For the
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Figure 2.5: Using the repeat operation to cut the shape into equally sized chunks. In cases where the
length of the shape isn’t divisible by the given size, the last chunk will simply take up the remaining

space.

2: floor — Repeat(”X”,2){B} (2.4)

sake of simplicity we only consider facades as a lower dimension primitive. Next we use splits
to form the seams for the placement of detailed models in Facade Operations. Finally we place

detail geometry in the Apply Geometry stage. A flow diagram of the pipeline is show in Figure

2.6.
Mass Modeling @

h 4

Compaonent Split (Q
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Facade Cperations ﬁ@
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1 gy
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Figure 2.6: The CGA Shape grammar pipeline.
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Mass Modeling

The Mass Modeling stage involves the assembling of solids to form the basic shape of the
building. This can be achieved with a combination of scope operations, split rules and inserting
shapes in scopes. Alternatively we can follow the Cityengine approach and extrude the building
shape from a building floor plan, followed by regular production rules [7]. Figure 2.7 shows
two examples of mass models.

Another feature of the base shape is the roof. The original paper of CGA Shape grammar
suggests placing basic roof shapes that match the base solids. Depending on the shape of the
base model, we can perform a simple extrusion with an inset and collapse several edges to get
a basic roof shape. If our building was extruded from an arbitrary footprint we can use a roof

generating algorithm such as [15]. Figure 2.8 shows an example of a generated roof model.

Figure 2.7: Examples of combinations possible with mass modeling.

Figure 2.8: Extruding a footprint and generating a roof from the shape.
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Facade Operations

In this stage of the pipeline we work on a per-facade basis. Using facade symbols and the
appropriate generation rules we can add details such as windows and doors. What to keep in
mind here is that we are working on two dimensional faces and not 3d shapes. For that reason
all the split operations can be oriented based on the orientation of the facade, thus requiring only
two splitting axes. This is inferred from the claims that the CGA shape grammar can work on
shapes of arbitrary orientation including sloped roof surfaces.

Another thing that we should point out is that our method depends on the fact that no 3D
operations (or scope operations) are performed in Facade Operations. We work under the
assumption that upon the completion of the Mass Modeling stage, the algorithm has created
the best possible coarse representation of the final model. So the purpose of this stage of the

pipeline is to refine the shape of the model while keeping the basic shape the same.

2.2.3 Example

Here we will show a typical example using the standard CGA shape pipeline that we have shown

in the previous section. We will begin with the mass modeling stage.

Assembling Solids

We assume that initially we have a unit sized scope with a box shape that we call “footprint”.
Then we use a rule that takes the “footprint” shape as a predecessor and scales it 2 times in the
Y-axis. To add more components we can use the “footprint” again as many times as we want as
it was not deleted with the previous rule. In this example we need another box and a cylinder.
We use another rule which scales the “footprint” shape 3 times in the X axis, 1.25 times in the
Z-axis and then moves it 2 units in the Y-axis and 1.25 in the Z-axis (upwards). Finally we will
add the scope for the cylinder, by using the “footprint” shape once again, scaling by 2 units in
all directions, and then moving it 2.3 units in the Y-axis and 2 units in the Z-axis. Additionally
we use the insert scope rule to place a cylinder in place of the scope. We will give all building
parts the same symbol name “building” for the sake of simplicity. See figure 2.9 for a visual
representation.

Then we separate the entire building into three stories using a basic split in the Y-axis. Note

that the different colors for each subsection in figure 2.10 is only for demonstration purposes.

24



2.2. CGA SHAPE GRAMMAR CHAPTER 2. PREVIOUS WORK

Finally we add roofs to each building using the Roof operation. The roofs will be given the

symbol name “roof” to differentiate them from the other side-facades.

Figure 2.9: Visual representation of assembling the solids in the example.

Figure 2.10: Placing roof models on our example. The roof surfaces are tinted orange for contrast.

Component Split

Now that we have our three dimensional model ready it is time to move to a two-dimensional
workspace. To do that we need to extract the facades from the base model. We use the Comp
operation on the symbol “building” and extract all side-facades which we name with the

symbol “wall”. We use Comp also on the roofs to extract the roof surfaces.

Facade Operations

We will finally move to the Facade Operations stage. Remember: we will not touch any of the
symbols corresponding to 3d shapes, only facades. First we will select all walls that are on the

ground floor and we will subdivide them according to different patterns: 1) Window | Door |
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Window 2) Window | Window | Window 3) Wall | Window | Wall. We select each pattern with
an equal probability to add some variation. For the other floors we simply place patterns 2 and
3. As for the roof surfaces we will use a Repeat operation twice, once horizontally and once
vertically to form tiles. Using the occlusion check we place windows and door models on the
appropriate primitives. Finally we replace every tile of the roof surfaces with a roof-tile model.

Thus we have finished our simple example. See figure 2.11 for a visual representation.

Figure 2.11: The finished procedural model from the example.

2.3 Aging

A survey presented in 2008 by Mrillou and Ghazanfarpour [18] presents numerous techniques
for creating weathering and aging effects. The survey classifies aging phenomena for different
materials such as rocks, metals and organic matter. These aging techniques for the materials
can be used in the context of building weathering.

One form of aging effect in building which is important is the appearance of wall cracks.
Several methods for generating cracks and fractures on models have been developed succesfully
by many researchers over the past few decades [12—14].

Another thing we would like to mention is that this thesis is a continuation of Gregoire
Nieto’s work “Simulation of Aging for Procedural Buildings” [21]. His work sought to solve
the issue of aging by introducing procedural aging mechanisms on top of the very popular CGA

Shape Grammar. His approach involves using textures that are mapped on the building surfaces
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to store the aging attributes, and by using texture space algorithms it simulates the effects of
aging. The texture would then be applied on the desired surfaces mostly by using the Deepening
method which sculpts the surface depending on the amount of degradation. Although his idea
of using textures has great advantages, it does have a few shortcomings: Firstly each texel of
the aging texture is disassociated with its 3D counterpart. This removes the potential of using
simulation algorithms that require a point’s spatial relevance to the environment. Fixing this
with a texture space approach would require storing position and normal vectors along with the
aging values. Another problem concerns the connectivity of the surfaces. Each texture usually
corresponds to a single facade, meaning that a connected facade would be mapped to a different
texture. This creates issues when trying to use simulation algorithms that require to propagate
information from point to point. Such propagation algorithms would have to either stop at the
last texel, or use a complicated method to figure out which texel of another texture the current
one is connected to. To fix these problems we have decided to store aging related information

on the model itself rather than external images.
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Real World Aging
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3.1 Causes of degradation

In the real world buildings suffer from the effects of degradation. Not even recently constructed
buildings are immune to chemical and physical changes, and that is why most buildings that
people observe in their lifetime will have some flaw.

One of the leading causes of degradation is the accumulation of humidity. As we all know
water is fluid and has the ability to flow even in the tiniest of spaces. In some cases water
is absorbed by materials making them softer or even causing some chemical reactions that
effectively weakening them with time. One such example is when the metal reinforcement
of concrete rusts and expands, causing the concrete to crack.

Another destructive effect that humidity is partly responsible for is expansion and shrinking
of underground masses. When dirt absorbs water it expands taking more volume. That doesn’t
mean that the accumulated humidity stays in the same place: Tree roots absorb water, extreme
heat causes evaporation and pressures force the water to spread out. This means that if not taken
into consideration the soil under a building can expand and contract. If this happens it causes

deformities on that building such as the walls tilting inwards our outwards creating noticeable
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cracks [1]. Figure 3.1 shows a graphical example of this effect.

Figure 3.1: The tilting of the walls due to the expansion/contraction of the soil under the house.

Source: [1]

There are of course more extreme causes of building degradation. These range from calami-
ties and destructive forces of nature, to the intentional demolition and destruction of a building
by man. The thesis will not focus on such extreme causes of degradation, as a physics engine

could prove more productive in this case.

3.2 Natural Building Materials

We decided to focus on the weathering of old houses made of natural materials such as stone
and mudbrick. One of the reasons we made this decision is because the structure of these typed
of buildings are relatively simple, compared to modern structures. Secondly there are a lot of
old abandoned houses and buildings around the world, giving us the oportunity to study patterns
of degradation in the real world. In addition, unmaintained mudbrick houses age quickly, so
we can observe the changes that occur with time.

Mudbrick is a very old building material that was used as back as 7000 BC in Mehrgarh [24].
The manufacturing method and materials are varied between cultures but it typically involves
mixing mud with a binding material such as straw or rice. The mudbricks would then be left
to dry out in the sun to harden. When constructing the house, the builders would use mud as a
binding agent between the bricks. Figure 3.2 illustrates a mudbrick house. Figure 3.2b show
part of a mudbrick wall that was weathered away revealing the straws used as a binding material
of the brick.

Stone on the other hand is much more resistant to corrosion than mudbrick. Luckily there
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are many old structure and buildings made of stone including castles, walls, fountains and roads.

Figure 3.2 shows a medieval stone wall in France.

(a) Mudbrick house. (b) Exposed mudbrick.

Figure 3.2: Examples mudbrick houses.

Figure 3.3: Picture of an old stone wall.

3.3 Weathering Effects of Natural Materials

Corrosion

One of the most interesting degradation effects on natural building materials is corrosion. Due to
various factors including humidity, water flow, and chemical reactions portions of the material
are ’eaten’ away. In the case of mudbrick houses rain is the worst culprit for corrosion. In
dry areas of the world adobe houses last longer due to the lack of rain and the general lack of

humidity. Otherwise houses would need to be painted with a protective plaster layer, and since

30



3.3. WEATHERING EFFECTS OF NATURAL MATERMHSPTER 3. REAL WORLD AGING

that paint layer washes away with time, the owner was responsible for re-painting it. Corrosion
of mudbrick can also start from the top of the wall and progress downwards. This happens when
the protective ’plague’ placed between the roof surface and the wall is misplaced allowing for
rain to flow on top of the wall. Figure 3.4 shows examples of corrosion weathering effects on
mudbrick houses.

We have mentioned previously stone is more resistant to weathering. As opposed to mud-

brick water is not the largest factor for stone degradation, chemical reactions are. See Figure

3.5 for such examples.

Figure 3.4: Photographs of mudbrick houses subject to corrosion.

Cracks

Cracks form in all rigid materials both in nature and in manmade structures. We often see cracks
in concrete and brick walls. This even happens with mudbrick houses. Since the material
is rigid, seismic activity and other stresses can tear mudbrick walls into pieces. With stone
structures the appearance of cracks is less frequent. This is because each stone is independent

of other stones (no binding material is used). Figure 3.6 shows cracks on mudbrick walls.
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Figure 3.5: Stone structures affected by corossion.

Peeling

In the case of mudbrick houses a plaster coating is painted over the mudbrick to protect the
material from corrosion. Ofcourse that layer doesn’t last forever: it can be peeled off and reveal
the mudbrick hiding behind it. Figure 3.7 has a few pictures showing this effect on mudbrick

houses.

Roof Collapse

Roof slopes are also vulnerable to humidity. Glazed ceramic tiles are placed on those slopes to
shield materials that can be easily corroded with water. This increases the life time of a house
significantly, as roof tiles are effective at keeping water out and letting it flow to the ground
where it will be eventually drained. However if a set of tiles was to be removed the patch
of uncovered roof material would gradually corrode with time. Since in most cases tiles are
supported by other tiles, the fallen tiles would slowly drag other tiles along with them as the
damage spreads along the roof. Such an effect is noticeable in old houses, where after many
years of being neglected, holes form on the roofs. Figure 3.8 and 3.9 show examples of houses

with collapsing rooftops.
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Figure 3.6: Cracks on the walls of mudbrick houses.

Tilting Walls

In many cases the earth below a building is not stable. The absorbsion of humidity causes
soil to expand, while evaporation or displacement of that humidity causes the soil to contract.
Buildings that are build on top of such soils, and without any treatment (removing humidity) are
subject to structural cracks. More specifically, the walls of the building may be pulled inwards
or outwards forming those cracks in the process. From the outside these walls may appear tilted,

as is in the examples in figure 3.10.

Rubble

The accumulation of rubble is a great indication of where and how much a building was dam-
aged. Rubble piles form under collapsed rooftops, next to broken walls and in ruins. Figure

3.11 shows the rubble of a several abandoned mudbrick houses.

Ruins

After the longterm exposure to humidity and earthquakes, abandoned structures become ruins.
In the case of houses made of natural materials, we have the total collapse of roofs and walls,
the accumulation of rubble and the uncontrollable spreading of vegetation. Figure 3.12 shows

mudbrick house ruins, while figure 3.13 shows ruins of stone houses.

33



3.3. WEATHERING EFFECTS OF NATURAL MATERKMHAPTER 3. REAL WORLD AGING

Figure 3.7: Paint and plaster layer is peeled off, revealing the mudbricks.

Figure 3.8: Mudbrick house with collapsing rooftops.
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Figure 3.11: Rubble accumulation from the ruination of mudbrick houses.
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Figure 3.12: Mudbrick house ruins.

Figure 3.13: Ruins of old stone houses.
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4.1 Overview

In Subsection 2.2.2 the CGA Shape Grammar pipeline was illustrated and described. Our aging
simulation pipeline extends upon the CGA Shape Grammar by adding several new components.
The goal of this new pipeline is to perform simulation to calculate where the weathering should
occur and then apply the degradation using various techniques. Please use Figure 4.1 as a visual

guide while we explain each component of the new pipeline.

Mass Modeling

First we form the mass model, either by assembling solids or extruding footprints. This com-
ponent remains the same for our simulation pipeline.

Component Split

We extract the facades of the volumetric representation of our building. Although this com-
ponent remains the same on an abstract level, but depending on the implementation it might

require an extra step. In our implementation it is required to give each face a unique identifier.
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Figure 4.1: Flow diagram of the aging simulation pipeline.
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Grid Model

We form a uniform grid on the surface of the model that will store simulation related attributes.

The smaller the cells of the grid the higher the simulation resolution.

Transfer Semantics

We transfer information regarding different materials and objects on the grid model. To get this
information we need to reach the Facade Operations stage in the CGA Shape Grammar pipeline.

The transfered semantics contributes to the accuracy of the simulation.

Simulation

This component uses multiple simulation techniques, set by the user, in order to calculate the

points of degradation on our building.

Facade Operations

We will then split our grid model the same way we would in the CGA Shape Grammar pipeline.
Depending on the implementation approach, the split components may need to be modified. In
our implementation we created an alternate version of the CGA Shape Grammar split operations,

to split each facade while ignoring the existence of the grid model cells.

Apply Geometry

In the CGA Shape Grammar pipeline we place detailed models on our models, such as doors
and windows. The difference now is that we will concurrently apply degradation using various
methods. In some cases the application of aging effects at a certain point may interrupt the

placement of a model, such as the cases where roof tiles fell through a hole on the roof.

4.2 Simulation

In Section 4.1 we have presented our aging simulation pipeline which extends the CGA Shape
Grammar pipeline. In this section we will explain in more detail the simulation process. Please
note that for our implementation we decided to only take into consideration the weathering

effects caused by humidity from rain. For that reason the extension of the simulation process
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to add more weathering effects is encouraged. Figure 5.75 illustrates our simulation process in

more detail.
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Figure 4.2: Flow diagram of the simulation process.

Attributes

In our simulation we use the term attributes to refer to values representing a point on the build-
ing’s surface. The simulation uses those attributes to understand the status of a point and to
decide how it should be affected by damaging effects. Figure 4.3 illustrates the attributes used
in the simulation.

The current version of our work uses 4 layers of attributes for every single point. The first is
called rain and it is used to represent the amount of humidity accumulated by rainfall, directly
or indirectly (from downpour). It is important to differentiate points of the building that receive
very little rain and points that receive a lot of rain over-all, as this affects the speed of corrosion.

The next attribute has the name Shield and its purpose is to act as a shield to the underlying
structure mainly from heavy weather conditions. Think of a roof tile, or the plaster and paint

layer over a wall. The ‘amount’ of Shield does not represent any realistic quantity but it is used
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simply to adjust the robustness of certain parts of the building. For example the artist may want
to add a tougher material on a certain part of a wall.

Next we have the Support attribute which acts as a brake to the aging process. A real life
example would be the horizontal support beams that support parts of the roof. The Support
attribute also makes sure that a point does not collapse as easily as its neighbors: this can be
useful in cases where entire parts of a roof collapse, and we want certain parts to keep holding
on, due to underlying supporting structures.

Finally we have the Composite attribute which measures the damage inflicted on the layer
behind the shielding. This Composite layer can be thought of as composite materials that roof
tiles sit on, or the bricks behind the plaster layer. During the Aging Application process we take
into consideration the value of the Composite layer of an area to decide on the severity of the

weathering effect.

\\‘\\

m\\\\\\\

= Composite

Support .

Figure 4.3: An illustration of the four layers of attributes on a surface.

Grid Model

To store our attributes we use a “Grid Model” of our building. A grid model is a model that
has the same shape as the building model, but it’s surface is subdivided into a uniform mesh
allowing for more points to be stored on a surface. As we have mentioned previously in the
Previous Work chapter, we strayed away from the texture space approach because we wanted
each point to have spatial information as well as access to its neighbors and environment in 3D

space. We acknowledge that this approach does introduce aliasing problems as well as memory
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and performance issues. A user can change the resolution of the grid model to either increase

the quality, or decrease resource usage.

Semantics Transfer

The transfer of Semantics contributes to the accuracy of the simulation. With only the grid
model, we lack any information that alludes to the existence of different materials and objects
on our model. Such information can only be attained towards the end of the procedural pipeline,
more specifically right after the Facade Operations have finished. For that reason we use the
procedural model after the facade operations to transfer that semantic information on our grid
model in the form of attributes. The user has the freedom to transfer any value to any one of the
4 attribute layers we have mentioned previously. For example points that belong to a window
should have more humidity resistance than its surrounding mudbricks, or the points belonging
to supporting beams of the roof should have a much higher *Support’ value than surrounding

points.

Simulation Component

First I’ll explain was “’Stochastic Destruction Seed” is and why it is useful: it is a process that
randomly strips away parts of the shield layer. Without such a tool, the shield layer would
remain intact indefinetely (at least until user intervention), thus keeping the simulation static
and unchanging. Although this tool may seem unsophisticated it does has a basis in reality. In
mudbrick houses there are various forces that misplace roof tiles or remove the plaster of the
wall. This forces the owners of the mudbrick houses to regularly maintain the house to avoid
its degradation.

The simulation component can contain any number of simulation methods making use sim-
ulation attributes, geometry attributes, and the environment to calculate the amount of degrada-
tion on each point. In our case we have implemented four subcomponents: Rain Casting, Rain
Cascade, Corrosion and Collapse. Illustrations of each sub component are presented in Figure
4.4 and Figure 4.5.

Rain Casting is a component that performs ray casts from each point of the building towards
the sky. The ray vector matches the angle at which rain falls (or at least an average estimate)

and the raycast checks whether rain is blocked by another structure.
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Another useful component in Rain Cascade which finds the points that rain water reaches
indirectly. Rain can fall on any point of the building, but it can propagate nonetheless to other
lower parts of the building.

Then there is Corrode which is a component that calculates the amount of degradation on
each point depending on the amount of humidity, whether the point is shielded or not, and
whether there is underlying support or not.

Finally there is the Collapse component which complements the previous component. Its
purpose is to collapse points that have no logical reason to stay intact. For example an entire
segment of a roof slope collapsed: since the lower tiles were mostly supported by the upper

tiles, they will tend to fall regardless of the roof-tile shielding.
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(a) Rain casting: simulates rainfall (b) Cascade: simulates flow of water

Figure 4.4: An illustration of he different simulation components
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Figure 4.5: An illustration of he different simulation components
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4.3 Aging Application

Aging application is the process that applies weathering effects on our procedural model using
the simulated grid model as a reference. At this point artists can use their imagination and skills
to manipulate the geometry, apply special shaders or add grunge textures. We have developed
three aging applications tools for our proof of concept. In Figure 4.6 we illustrate the process

of aging application.

Select Geometry

The three tools we have mentioned work in different ways and produce different results. For that
reason we need to be carerful which tool we use with each part of the mesh. Thus we separate
our mesh into 3 types of geometry, each type corresponding to a different aging application
tool. For example type A geometry is the part of the geometry that will be processed by the
Deepening tool, type B will be processed by Peeling and type C will be processed by Nolnsert.

Deepening

The first tool is called Deepening and it involves moving points along their normal based on the
damage inflicted on the Composite layer attribute. If a quad primitive’s points are all completely
destroyed, then the quad is removed, forming holes in areas of severe degradation. Wall surfaces
can make use of this technique but require subdividing to add enough resolution first. Roof
surfaces are more suitable for this tool. Firstly the surface is already subdivided for the tile
seams. In addition to that, when using deepending the quad primitives change their orientation
depending on the surrounding destruction. This in turn creates an interesting effect of tiles

leaning towards the roof hole, seemingly ready to fall in next.

Peeling

The second tool we use for aging application is called Peeling. It works in a more discrete
fashion than Deepening in that it assumes that our surface is made our of multiple layers.
The user defines the different layers along with a range of Composite attribute values that it
will make it visible. Depending on the amount of degradation on an area different layers will
dissapear revealing the layers behind them. For example we may have a plaster layer then two

layers of bricks. With minimal damage the paint layer will be peeled off revealing the bricks
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Figure 4.6: Flow diagram of the simulation process.

underneath. With enough damage the front layer of bricks will dissapear revealing the second

layer of bricks. Then if the area is completely ruined all layers will be invisible revealing the

interior of the house.
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Nolnsert

Finally we use the Nolnsert tool to prevent the insertion of detailed models in ruined areas.
Similar to how Deepening removes quads to simulate the fall of the roof tiles, the Nolnsert
removes primitives to simulate the fall of wall features such as windows and doors. As opposed

to Deepening however we do not perform any displacement on the vertices of the primitive.
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This chapter is separated into three sections. First we will present the program we chose
to implement our pipeline, Houdini FX, along with all of the in-built tools and features we
have used from it. Then we will describe how we used Houdini to implement the basic CGA
Shape Grammar toolset. And finally we will describe how Houdini was used to implement the

simulation pipeline extension.
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5.1 Houdini

Houdini is a set of tools that procedurally create content for movies and games. It handles almost
all tasks of CGI pipeline including Animation, Simulations, Shading and Graphics. We have
chose to use Houdini for two reasons: A) It was designed in a way that it facilitates procedural
design. In more traditional modeling and animation packages you work on a single model,
modifying the geometry, the shading etc. With Houdini you work on a pipeline that processes
models: you can create a pipeline of operations that perform a series of complicated operations
and modify any part of that pipeline that you wish. B) It is extremely flexible and customizable.
Not only does it have a complete toolset of geometry manipulation operations, it allows you to
write scripts to do specialized processing. Although CityEngine has a working CGA Shape
pipeline it does not offer the same level of flexibility as Houdini.

In the next subsections we will explain some basic terminology of the Houdini Software.
We will not go into great detail about each subject and there is no need to present every feature
that this software package contains, only the tools that we use in our simulation pipeline. Note:
We have used Houdini Apprendice version 16.0 to implement the CGA Shape Grammar toolset

and the simulation pipeline.

5.1.1 Notation

Networks

A typical Houdini workload is done inside a network of nodes (See Figure 5.1). Nodes rep-
resent objects, operations or subnetworks and can be interconnected in various ways to form
a directional graph. The processing of a geometry usually starts from a node that creates a
mesh. That mesh is then directed to the next node, where it will be processed or used in some
way. A network can also be encapsulated in a Subnetwork node, allowing for abstraction and
reusabillity. On top of that a Houdini user can create Digital Assets: custom subnetworks that
are stored and can be reused in multiple projects. This also gave the oportunity for an online

economy of buying and selling Digital Assets online.

Operators

Nodes in a Houdini network are also known as Operators. The most common type of Operator is

the Surface Operator (or SOP), which specializes in creating or manipulating geometry. There
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Figure 5.1: An example of a Houdini network.

are also Vector Operators (VOPs) for handling volumetric objects, Shader Operators (SHOPs)
for applying shaders, Composition Operators (COPs) for image composition and many more.

Our simulation pipeline makes use of SOPs most of the time.

Geometry

Geometries in houdini are not unlike standard geometry definitions. The geometry itself con-
tains a list of points and a list of primitives. Primitives are polygons of arbitrary shape (usually
triangles or quads) that are made out of vertices. A Vertex is different than a Point: vertices
are unique to each primitive, but points are shared by connected primitives. See figure 5.2 for

a visual presentation.

Attributes

Think of attributes as values. They can represent a single number, or a vector (color, normals,
position etc). Houdini stores attributes at different levels of the Geometry. First it has attributes
at the “detail” level which encapsulate the entire mesh. Then it stores attributes per primitive,
per point and per vertex. These attributes can be used for a variety of tasks including the

manipulation of the geometry.
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Detail
Point list Detail attributes
Primitive list Groups

Primitive
Prim. attributes

Point
Point attributes

Vertex

Vertex attributes

Figure 5.2: An illustration for the various components of a mesh in houdini. Source: [27].

Houdini has a number of in-built Operators that manipulate or create new attributes. One
such example is the Attribute Create geometry node, which creates a new type of attribute on
any level of the geometry. You can set attributes using surface operators such as Vertex, Point

and Primitive.

Parameters

Operators in Houdini have several input parameters. These parameters can influence the way the
operator works; for example we can set the translation vector for a Transform node. Parameters
can be of any type: integers, floating point values, strings, vectors and more. They can also be
customized by the user.

One of the strengths of Houdini however is to use expressions in parameters. Expressions
are pieces of code that have a single output and are evaluated when Houdini “cooks” the node.

By parametrizing operators, an artist is able to create an entirely procedural system.

Groups

Points and primitives in Houdini can belong to one or more groups. Group assignment can be
based on almost anything the user can imagine: from the value of an attribute, to the position
of the entity in space. This feature is very helpful in selecting and filtering vertices based on a
shared feature of multiple points/primitives. An important thing to note is that the points/prim-
itives themselves see the group as another attribute, where if the value is 1 it means that they
belong to that group. This means that by adding more groups, a new attribute is added to all the

points/primitive, adding some extra cost to the storage of the model in physical memory.

50



5.1. HOUDINI CHAPTER 5. IMPLEMENTATION

Python

The Houdini Software supports the use of python scripts to perform various calculations and
interact with the Houdini environment. A python script can process geometry the same way
a built-in Surface Operator can. By using the Houdini Object Model, a python library, a user
can manipulate attributes and geometric entities with relative ease. It is possible to simulate
the function of any in-built node with the use of Python. In addition to that a python script
can also manipulate the Houdini Network and work environment: a user can create new nodes,
move them around and connect them in various ways. A use for this functionallity would be
the creation of macros that create a complicated subnetwork from scratch. Python code can be
executed via a terminal-like interface in Houdini (See Figure 5.3 ), via the Python Operator, or

by using scripts in the operator properties.

" for more information.

Figure 5.3: Screenshot of the Python Shell in Houdini.

5.1.2 Relative Nodes

In this section we will mention the Houdini in-built nodes that we use in our implementation of

the CGA Shape toolset and the simulation pipeline.

Group Node

Houdini gives users the ability to place points or primitives in a group with the Group Operator.
This can be useful in cases where we want to manipulate certain parts of the geometry depending
on whether they belong to a group or not. Many in-built Surface Operators use a group name
as input, allowing users to filter and process only one part of the geometry. Figure 5.4 shows a
group node as it appears in the Houdini Software environment.

The Group Operator gives a user many options to select points/primitives to assign to a
group. Figure 5.5 shows the interface of the group node, containing all the relative options and
parameters that a user can modify. First of all the user decides on the name of the group, which
acts as a label and an identifier. Then an entity type between Primitives, Points and Edges is

selected.
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Group

group_name

Figure 5.5: The Group Operator parameter interface.

In the case that a group with the same name was created previously, the merging mode
option will decide how to handle merging with entities belonging to the group. The selected
entities can be added to a group based on the known set operations (union,subtract,intersect) or
completely remove those entities from that group.

Subsequently the user can choose one or more ways of selection. The first way uses an
expression which can be based on attribute values of the selected entity or group names. The
second way involves a bounding volume check, so that entities within the defined bounding
box/sphere will be assigned to the group. Then we can select entities based on their normal.
More specifically a vector and angle tolerance is defined, and it selects entities that have normals
within the angle tolerance of the defined vector. Finally we can select edges based on various

characteristics such as length, angle and depth.

Delete Operator

The Delete operator is an elementary tool allowing for deletion of filtered primitives or points
of the input geometry. Figure 5.6 shows a delete node in Houdini. In a similar fashion to the
Group Operator, the Delete Node can select entities using varrious methods (attribute values,

group names, normal direction, bounding volume etc.) and either delete them or keep them.
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This proves useful when the user wants to filter part of the mesh to process it separately. See

Figure 5.7 for a screenshot of the delete node parameter interface.

Figure 5.7: The Delete Operator parameter interface.

In Figure 5.8 we show an example of usage. We use deletion based on normal, by using 3
different vectors as input with an angle tolerance. The left side of the picture shows the effects

when applied to a spherical mesh, and the right side shows the parameters used.

Figure 5.8: Deleting primitives based on normal.

Another example can be seen in Figure 5.9 where we delete part of the sphere using a

bounding box.
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Figure 5.9: Deleting primitives based on a bounding volume.

Transform Node

Another fundamental operator is the Transform node, which as its name suggests, allows the
user to translate, rotate and scale a geometric object. It also includes a filter box that allows for
the transformation of only the selected entities. In addition to that every parameter, including
the ones for transformation values, can be based on an expression and from values outside of the
current node. This level of parameterization allows for some truly powerful procedural designs.

Figures 5.10 and 5.11 show the Transform Operator in Houdini.

Figure 5.11: The Transform Operator parameter interface.

Clip Node

In cases where we need to cull part of the geometry using a plane, we can use the Clip node

(see Figure 5.12).
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¥ Clip Unconnected Points

Figure 5.13: The Clip Node parameter interface.

The user sets the normal of the clipping plane as well as its origin and distance. The origin
of the plane is used as a starting point, and the distance parameter is used to move the plane
itself forwards or backwards, depending on the plane normal. Additionally the user has the
option to clip geometry behind the plane, or in front of the plane without needing to change the
plane normals. We use the clip node to select subsections of a facade: we do this by using two
clipping planes that have the same origin and normal, but are distanced apart by a predetermined
distance D, and the first plane clips geometry behind it while the second clips geometry ahead

of it. Figure 5.13 shows the parameters of the Clip Node.

Figure 5.14: Usage example of the Clip Node.

Figure 5.14 shows the clip node being used to clip a cylindrical mesh. On the left side of the
figure you can see the original mesh. In the middle you can see the clipped mesh, along with
the clipping plane. And the chosen parameters are shown on the right side of the figure.

Poly Extrude

The Poly Extrude node extrudes the filtered entities (see Figure 5.15). Despite its simple
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premise, it is a quite intricate tool with many features. We will briefly explain most of its

features by using Figure 5.16 as a visual guide.

Figure 5.16: The Poly Extrude Node parameter interface.

Firstly the tool can filter entities using a group name or by evaluating an expression. The
extrusion can be based on the primitive or point normal. Next the distance, inset and twist
parameters can be set. The distance determines the extrusion length, the inset determines the
scale of the extruded surface relative to its progenitor and twist determines the relative rotation
of the extruded surface. Figure 5.17 shows examples of manipulating these settings.

Subsequently we have options that can add a curvature to our extrusion. The Divisions
parameter sets the amount of subdivisions to perform for the curvature, the Spine Shape param-
eter enable/disable curvature extrusion, and the Spine Control options fine tune the shape of the
curve. An example of this can be seen in Figure 5.18.

Another useful feature is the Output Geometry and Groups options, that allow for the as-

signment of various parts of the extrusion to be assigned to a group. This can be useful when
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Figure 5.18: Manipulating the curvature of the extrusion.

the user wants to later select the sides of the extrusion.

Edge Collapse

The edge collapse can merge a group of edges into a single point. The user can either specify
each edge manually by using the point indices, or specify an edge group that contains those

edges. Figure 5.19 and 5.20 show the Edge Collapse node in Houdini.

edgecollapse

Figure 5.19: The Edge Collapse Node in the Houdini Software.

A usage example can be seen in Figure 5.21, where two edges of a box were merged to form

a triangular prism.
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@ Edge Collapse edgecollapse

groupl

Figure 5.21: Usage example of Edge Collapse.

Partition Node

The Partition operator places entities into groups following a user-defined rule. This rule can
make use of attribute values of the processed entity, or even houdini related parameters such as

the current animation frame. Figure 5.22 show the Partition node in Houdini.

} partition

Figure 5.22: The Partition Node in the Houdini Software.

Figure 5.23 shows a screenshot of the node’s parameters. As you can see the rule parameter
in the example has the string ”primitive_group $PR”. What this rule does it that it puts every
primitive in a group named primitive_group with its primitive number at the end. This means
that every primitive will be put in a unique group which can act as an identifier for that primitive.
Note that even when the primitive gets subdivided into smaller pieces, all those pieces will still
belong to the group of the original primitive. Figure 5.24 shows the groups created by executing
that rule. There are 6 groups each corresponding to each primitive of the geometry which is a

cube.

For Loop Subnetwork

An essential node in a typical Houdini workflow is the For Loop Subnetwork seen in Figure
5.25. Although there is a for loop block, we prefer the subnetwork for its simplicity and ab-

straction of the loop function.
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Figure 5.23: The Partition Node parameter interface.

partition

Figure 5.24: Geometry info of the Partition Node example.

The for loop performs the functions of its subnetwork for each iteration. As seen in Figure
5.26 the user can iterate over each group of the input geometry (from the first input). Addition-
ally the user may iterate over each primitive/point of the geometry or use a number index. If the
for loop iterates over each group, the subnetwork will work on the primitives that are contained
over the current group. Similarly if the for loop iterates over each primitive, the subnetwork of
the loop will only be able to see one primitive at a time. However by using a number iterator,
the entire model will be available for processesing. Note that the subnetwork can reference the

current loop index (regardless of the selected scheme) by using what is called a stamp value.

Raycasting Node

Houdini offers an in-built solution for ray casting checks throught the Ray Operator (Figure
5.27).

It works differently than a conventional “check if ray hits” function. Instead the Ray tool
projects the geometry’s points on another geometry and if there is no geometry to project to
(raycasting check fails) then the point stays on place. An example of this can be seen in Figure
5.28.In the first image we show how we have set our example scene: A fine grid mesh is
positioned in front of an example mesh (a shader ball). In the second image we use the Ray
node with a given ray direction to project the grid onto the target object. The results speak for

themselves
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Figure 5.26: For-Each Subnetwork parameter interface.

Attribute Transfer

The Attribute Transfer node is used for transfering attributes from one mesh to another (Figure
5.29).

The first input of the node 1s the geometry we wish to transfer attributes to, and the second
input is for the source geometry. The transfer method is based on spatial locallity. A point
of the source geometry transfers its value to points of the destination mesh that are within a
certain distance. We use this method to transfer information from the simulation model to our

procedural model when we want to apply aging.

Python Operator

As we have mentioned previously, Houdini has the abillity to execute python code, and one
way to do so is to use the Python Node (Figure 5.30).

The python node only contains a single parameter: a box where the user can type the
python code as seen in Figure 5.31. In addition to using the Houdini Object Model libraries,
the python script can import external scripts (from a special directory) and use their functions.
Writing scripts externally with python IDEs is easier, but requires the user to restart the Houdini

workspace for their compilation into ”.pyc” files.
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Figure 5.27: The Ray Node in Houdini.

Figure 5.28: Projecting geometry with the Ray Node.

5.2 CGA Shape Grammar Toolset

In this section we will describe our implementation of several elementary CGA Shape Grammar
tools in the Houdini Software. We have decided to create these tools ourselves, in order to have

full control of their function and to facillitate their modification in the simulation pipeline.

5.2.1 Subdivide Scope

Subdivide Scope is a digital asset we created to simulate the CGA Shape Grammar splitting
rule for scopes (Figure 5.32).

As you can see in Figure 5.33, the tool has all the necessary parameters to describe a basic
split rule (aside from probabillistic selection). First the Input Filter is used to select the prede-
cessor shape, the Axis determines the splitting axis, and for each subdivision the sizing, length
and output symbol can be defined.

Figure 5.34a shows the subnetwork inside the Subdivide Scope Operator. First we use a
Delete SOP to select the predecessor shape. We then perform some calculations for the sub-
section lengths and the splitting plane inside a Null node. Next we use a foreach subnetwork to

iterate over each subdivision. At the end of the foreach node we receive the subdivided sections
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Figure 5.30: Screenshot of the Python Operator in Houdini.

which we merge with the geometry that did not belong to the predecessor symbol group.

The foreach loop subnetwork is illustrated in Figure 5.34b. We start with another Null node
making calculations relevant to the current subdivision. The clip section subnetwork defines
two clipping planes that will cut our current subdivision, and finally we give our subsection its

new symbol name and make sure it forgets its old symbol name (if needed).

5.2.2 Subdivide Facade

Subdivide Facade works similar to the Subdivide Scope tool, but works on facades. Whereas
the previous splitting operation used axis aligned splitting planes to do the job, now the task of
calculating the size of split, the splitting plane normal and splitting plane origin have become
much harder due to the arbitrary orientation of the facade. The input parameters of Subdivide
Facade remain exactly the same as the other tool, with the exception of having only two se-
lectable axes: X and Y. Since we are working with facades and the splitting planes will follow
the orientation of the facade, splitting on the Z-axis is entirely pointless.

Subdivide Facade is an implementation of the same split rule as Subdivide Scope, but is
designed to work on arbitrary orientations of facades (Figure 5.35).

The parameter interface of Subdivide Facade is similar to Subdivide Scope. The only
difference is that the user can only select between two splitting axes. Since facades are two
dimensional entities, depth has no meaning. Figure 5.36 shows an example of use and the

parameters used. In the example we only split a single face, and we do so vertically.
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Figure 5.31: Python Operator parameter interface.

Subdiv_Scope

Figure 5.32: The Subdivide Scope Node.

Inside the node (Figure 5.37a) we select the primitives that belong to the predecessor symbol
group. For each of the selected primitives, one by one we subdivide them inside the fore-
ach_primitive subnetwork. Finally we merge the subdivided primitives with the rest of the
geometry and output the results.

Inside the foreach primtive subnetwork (Figure 5.37b) we do the following: First we move
the primitive to the center of axes with move to origin (we use the centroid). Then we rotate
the primitive using the vertical axes, so that it aligns with the normal of a reference primitive
facing in the positive Z direction. Using another reference primitive pointing upwards we rotate
the primitive so that its normal faces upwards. At this point the primitive is laying flat on the
horizontal plane, with its center at (0,0,0). Next we use a Null node to perform calculations for
the subdivisions, and perform the subdivisions in a foreach loop subnetwork. Lastly we use the
previous versions of the primitive as references to take the primitive back to its original position
and orientation.

The foreach_subdivision node is identical to the one in Subdivide Scope with a minor dif-
ference (Figure 5.37¢). Due to implementation specific reasons we revert the vertical rotation

of the primitive inside this subnetwork, once for each subdivision section.
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# CGAShape Su

(a) Subnetwork (b) ForLoop Subnetwork

Figure 5.34: The networks inside the Subdivide Scope Node.

5.2.3 Repeat

The Repeat Node is a custom made digital asset that simulates the Repeat rule of CGA Shape
Grammar (Figure 5.38).

Just like in the production rule, the parameters let the user define the number of subdivisions
(5.39a). The user may also define the size of each subdivision section (5.39b).

The implementation of the Repeat Operator is almost identical to Subdivide Facade, so we
will focus on the differences. The first difference is that the group assignment happens at the
highest possible level (Figure 5.40a). This is because all subsections will be assigned the same
symbol name, so there is no need to do it individually. The second major difference is the way

the calculations are being performed.
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Figure 5.37: The networks inside the Subdivide Scope Node.

5.2.4 Insert

Finally we present our implementation of the Insertion rule. As you can see in Figure 5.41, the
node accepts two inputs: the first input is the procedural geometry, and the second input is the
insertion model.

Examples of usage can be seen in Figure 5.42. In the first example the roof of the house
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Figure 5.39: Example of Repeat Operation.

was subdivided with Repeat operations to form tiles. By using the Insert operation we added
roof tile models to create the results in the second picture. In the second example we insert a
window model to a primitive that belongs to the group window”. The parameters are minimal;
besides the first input which is the filter for the predecessor symbol, the other two are used for
fine tuning the location and size of the input model.

Figure 5.43a illustrates the subnetwork of the Insert node. First we select the primitives that
belong to the input filter, and for each one we insert the model from the second node input.

Inside the for loop node (Figure 5.43b) we move the primitive to the axes origin, and rotate
it so that it lays flat on the horizontal plane. Then we place the insertion model at the same point
and try to match its size. Since the primitive is flat we need to extrude it to form a bounding
box. The length of the extrusion depends on a user defined parameter and it will affect the depth
of the insertion model. Next we merge the primitive with the model and revert all rotations and

translations using the original primitive as a reference. Since the model is merged with the
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Figure 5.40: The networks inside the Repeat Node.
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Figure 5.41: The Repeat Operator.

primitive it will move along with it. The last step is to remove the primitive since we don’t

need it anymore.

5.2.5 Pipeline

We will now demonstrate the use of our tools in a standard CGA Shape pipeline. For each stage
of the procedural pipeline we will use a simple house as an example. The house in question will

look like the one in figure 5.44.

Mass Modeling

We begin by creating our base scope using a Box node (Figure 5.45). Then we extrude the
ceiling surface with a small inset using Poly Extrude and then Edge Collapse the right set of

edges to get a pointy roof as seen in Figure 5.46.
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# cGAShape Insert

window

0.1
o |

(b) Inserting a window

Figure 5.42: Example of Insert Operation.

(a) Subnetwork (b) ForEach Primitive

Figure 5.43: The networks inside the Insert Node.

Component Split

As opposed to the original paper we have not implemented a Comp tool to extract facades.
This is because our splitting tools extract facades by themselves with the ForLoop Subnetwork.
What we will do however in this stage is give appropriate names to each facade. By using the
Group node we select primitives according to their normal and name them. For the wall facing
the positive Z direction we named it “north wall”, while the wall facing the positive X direction
we named “west wall”. We also grouped the primitives facing upwards into the “roof” group.
We then grouped the west, east, and south walls into the “window wall” group. Similarly we
grouped the north wall on the “door wall” group. These names will help us decide later on
where to place windows and where to place doors. Figure 5.47 illustrates the different groups

assigned to the building.

68



5.2. CGA SHAPE GRAMMAR TOOLSET CHAPTER 5. IMPLEMENTATION

Figure 5.44: The final procedural model on the left, and the houdini network on the right.

"ﬂ' BaseScope

Figure 5.45: The initial box shape.

Facade Operations

Now it is time to work on the facades. First we subdivide the walls that belong to the “window
wall” group. We use two Subdivide Facade nodes: the first one splits with the X splitting axis
and creates 3 subsections; two subsections have relative sizing and the middle one has a fixed
size of 0.8. We name the middle section “window wall” again and forget the original shape.
The second subdivision is done on the new “window wall” and on the Y splitting axis. Like

before we subdivide the wall into 3 subsections, the middle section having fixed size 0.8. To
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WS oo e
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Figure 5.46: Extruding the roof model.
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Figure 5.47: Grouping each facade of the model appropriately

lower the windows I have given the upper relative subsection a multiplier of two. The results

of the above description are shown in Figure 5.48.

Figure 5.48: Splitting the facades to form square primitives for the windows

Next we will subdivide the “door wall”. We will once again use two Split Facade operations
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in a similar manner as before. We will split 3 sections in the X-axis with the middle section
having size 1.2, and then split in the Y-axis with 2 sections the fixed section having size 1.4.

See Figure 5.49.

Figure 5.49: Splitting the door wall so that the a door seam is formed.

Then we will need to cut the roof into tiles. We will do this with two Repeat operations: the
first will cut each roof surface into vertical strips of size 0.1. The second Repeat will cut each

vertical strip horizontally into tiles of length 0.26. See Figure 5.50.

Figure 5.50: Using the repeat split to form the seams for roof tile placement
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Apply Geometry

Finally it is time to use the Insert node to place the windows, doors and tiles. We import the
geometries of those models from file and then insert them to the primitives that belong to the

J% ¢

group’s “door”, “wall”, and “tile” respectively. You can see the results in Figure 5.51.

Figure 5.51: Finally we insert the door, window and roof tile models.

5.3 Aging Simulation Tools

In this section we will present the basic functionality of all the tools we use for the simulation

pipeline.

5.3.1 Simulation

Subdivide Grid
In order to store the attributes on arbitrary points of the building, we subdivide it into a uniform
grid using an implementation of Create Grid we named Subdivide Grid (5.52).

The tools takes only two parameters. First it needs an input filter, to only process the

predecessor shape, and it also needs the size of the uniform grid. Examples with different
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Create_Grid

Figure 5.52: The Subivide Grid Node.

grid sizes can be seen in Figure 5.57.

= CGAShape Subdiv Grid Create_Gric
Input Filter shape_symbol

Grid 5ize 0.1

= CGAShape Subdiv Grid Cr

Input Filter  shape_symbel

= CGAShape Subdiv Grid Create_Gric

Input Filter  shape_symbol

Grid Size 8.4

Figure 5.53: Example of using Subdivide Grid.

We have refrained from using the in-built subdivision method (with Houdini’s Subdivide
node) because it does not subdivide the mesh into uniform quads. Our tool on the other hand
ensures that all “grid cells” are uniform and connected. See Figure 5.54 below for a visual
comparison.

As for the implementation specifics, Create Grid makes use of a modified Repeat operation
called Repeat Scope. This modified split operation works like the Repeat operation but the
subdivision axes are orthogonal (X,Y and Z) and works on the entire 3D model. First the user

defines the grid size as a parameter to Create Grid. Then we perform 3 consecutive Repeat
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(a) Using in-built Subdivision node (b) Using our custom tool

Figure 5.54: Using the repeat split to form the seams for roof tile placement

Scope, one for each axis. First we repeat splits along the X-axis with the given spacing. Next
we split along the Z-axis. However the two repeats will only form vertical strips on vertically
aligned walls, so we need to repeat split on the Y-axis. Before we do that we must temporarily
remove sloped and horizontally aligned surfaces (roof surface, floors, ceilings etc.) to avoid
creating “double splits”. Now the model has multiple points on its surface that can store all of

the simulation related attributes. The Houdini network of this tool can be seen in Figure 5.55.

Figure 5.55: The networks inside the Subdivide Grid Node.

Transfer Support

As we have mentioned in the Simulation Chapter, we need to transfer semantic information from

the procedurally generated building to the “grid surface” model. To do that we have created the

74



5.3. AGING SIMULATION TOOLS CHAPTER 5. IMPLEMENTATION

Transfer Support tool, which transfers shielding and support attribute values. (Figure 5.56).

transfer_support

Figure 5.56: The Transfer Support Node.

In example Figure 5.57 you can see the tool in action. The node takes two inputs: It takes
the grid model we wish to transfer to, and the procedural model. In the same figure you can
see the parameters in use. As with any other tool so far we need an input filter, but it is used
slightly different in this case. Instead of selecting the primitives that we will process and refine,
we instead pick the primitives from the procedural model that we will transfer. In the example
we want to transfer window information to the grid model. The next two parameters control
the value of the shield and support attributes at the areas of transfer, and finally the grid size
attribute is used to properly match the transfer bounding boxes with the grid of the grid model.
The first image shows the procedural model, the second shows the grid model and the third

picture shows the transfer taking place (we visualize the shield value on the model).

Figure 5.57: Example of using Trasfer Support.

The implementation of the tool is simple in principle. The idea is to pick all the primitives
from the procedural model, form a bounding box around them and use it to the select points from
the grid model, which we will then set their attribute values corresponding to the parameters.
To do this we start with a simple deletion filter to select the right procedural model primitives
(See Figure 5.58a). Then we use a for loop network that iterates on each of the primitives, the
transfering operation taking place inside. If you are careful you might notice that something is
off with the for loop node. That is because the first input of the node is the grid model and not the
selected procedural model primitives. That contradicts the notion that we iterate on each of the

procedural model primitives. While we don’t actually iterate on geometry, what we do is that
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we iterate as many times as the number of filtered procedural primitives using a number index.
We select the appropriate primitive inside the for loop by using the iteration index (or stamp
value). This was done due to implementation specific reasons, mainly because other iteration
schemes failed to keep the attribute transfers on the grid model from previous loop iterations.
Inside the for loop we have two pathways (See Figure 5.58b). The left path way takes the
grid model and by using the calculated bounding box named “box” we select the contained
points of the grid model (using a delete node) and set their attribute value. Subsequently we use
a under-estimate bounding box named ’sbox” and repeat the same process. The under-estimate
transfers the user given value, while the ’over-estimate’ box transfers a fraction of the user given
value. The right path way uses the for loop index to select a procedural model primitive and
through some python code we create the two bounding boxes ’box’ and ’sbox”. We round up

the size of the bounding box by using the given grid size.

(a) Subnetwork (b) ForLoop Subnetwork

Figure 5.58: The networks inside the Transfer Support Node.

Ruin Shield

During each step of the simulation we destroy random parts of the shielding using the Ruin
Shield tool (Figure 5.59). This tool plays a major role in the process “’Stochastic Destruction
Seed” in the Simulation Component Diagram (Figure 5.75).

The tool has two parameters (please ignore the input filter): the probabillity of shield degra-
dation striking a point, and the amount of damage that will be dealt. Figure 5.60 illustrates two
examples of use, where the model is subject to shield degradation for each frame. We took

3 snapshots at time frames 30,60 and 90 for both cases. In the upper case the probabillity of
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ruin_shield

Figure 5.59: The Ruin Shield Node.

degradation is lower and as you can see this affects the speed at which the shield layer gets

ruined.

Figure 5.60: Example of using Ruin Shield.

Implementation wise, the tool is very simple. The node itself comprises of a single python
SOP as seen in Figure 5.61. The code makes a call to an external function ”"RuinShield” in our
Simulation script. The function basically iterates through each point of the geometry, and by
using a pseudo random number generator it decides whether or not to inflict damage.

Sub-Network Input #1

’ load_attributes

| pythont

outputl

tout #

Figure 5.61: Network and python code of Ruin Shield.

Rain Casting

Rain Casting is the implementation of the rain simulation component in the Simulation Chapter

(5.62).
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Rain_Castingl

Figure 5.62: The Rain Casting Node.

The basic idea is that we project our grid model to a collision model of the world using
Houdini’s in-built Ray node. Then by using a copy of the grid model, but with all of its rain
attibute values equal to 1, we transfer its attributes to the ray cast model. As a result: the
points of the grid model that failed the ray cast will remain in place and receive rain value of
1. In the collision model of the world we include the building itself to take self-occlusions into
consideration, but it must be shrinked to avoid floating point precision problems. See Figure

5.63 for an illustration of the subnetwork.

Figure 5.63: The subnetwork and python code for Rain Cast.

Another problem that this tool has to face is to correct false positives. Such false positives
may include ceiling surfaces that should not receive any rain but do so anyway due to projecting
to a nearby surface, thus receiving rain attribute of value one. To fix this we run a simple Python
script that checks if the dot product of the rain direction and the normal is greater than 0 and
if that is the case we know that that point cannot receive any rain. We can also calculate the
amount of rainfall that should fall depending on the slope angle relative to the rain direction.
The code of the Rain Fix script can be seen on the right image of Figure 5.63. Furthermore

there is a visual example in Figure 5.64.
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Figure 5.64: An illustration of how ray casting is used to calculate ’rain occlusion’.

Cascade

The entirety of the Rain Cascade simulation component (Figure 5.65) was implemented in
Python scripts. Since the script is very long, we will not include it in the thesis. We will

however explain the basic idea and the algorithms that we use to achieve the desired results.

"' cascadel

Figure 5.65: The Cascade Node.

We start by creating a vertex connectivity graph from the mesh of the “grid surface” model.
The reason we need to construct this data structure is because Houdini does not store the neigh-
bours of each point. Instead one needs to find the edges that the point belongs to and from there
discover its neighbor. The connectivity graph is an array of neighbor lists, where we can find
the neighbors of each point quickly by using its id. Then we create an ordered set of all the
points of our “grid surface” model and iterate on each point until the set is exhausted. For each
iteration of the loop we find the highest point of our mesh that exists in the point set and has rain

falling on it. If no such point exists, then we end our loop abruptly. For optimization reasons
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we remove points from point set that we come across that have no rainfall, or have no shielding
as lack of shielding means absorption of water.

Once the highest point has been picked we use it as an origin point to propagate the rain water
to lower points. Specifically we find all the direct and indirect neighbors that are on the same
height level as our origin point and add them as additional origin points. All origin points are
added to a queue, that holds the points along with the humidity that they transfer and start a BFS
like algorithm to propagate the humidity downwards. We use queue aggregation to minimize
the overhead of multipath propagation. The aggregation method involves finding points in the
queue that have the same destination and merge their humidity quantities. For every point that
we propagate we add the humidity from the source with the rainfall of the current point and then
move on. The algorithm stops of course when the queue is exhausted. Additionally we remove
all the points from the point set that we visited during this phase of the algorithm.

After the BFS propagation is done we return to our first while loop which iterates until the

point set is empty. Then we find the next highest point and repeat the entire process again and

again.

Figure 5.66: Here is the Cascade node in action.

An example can be seen in Figure 5.66, where we show how the existence of water with a
bright blue color. In the first row of the Figure, we show how the rain water that falls on top of
a object (first image) can flow down the sides (second image). The second row illustrates how
holes, illustrated as black spots in the gray scale images, effect the flow of water. As you can
see the existence of holes interrupts the flow of water. This feature was mainly introduced to

account for the dynamic nature of the building: during the aging simulation parts of the building
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get ruined, creating holes that cut off the flow of water.

Corrode

Corrode works with a simple python script that iterates over each point of the “grid surface”
model. For each point calculate the amount of damage caused by humidity using a formula.
This formula basically factors in the damage protection from the shield and support layers as
well as the amount of humidity. Depending on the resolution of the “grid surface” model we use
a multiplier to increase the damage, as a larger grid cell represents more points of the surface

thus gets damaged less.

Collapse

When a point of the building collapses, it gradually pulls all of the neighboring points along
with it. By using Collapse we create an area of influence that affects the surrounding points
of a destroyed point. To do this we use a specialized python script that finds the points all of
the destroyed points, and for each one a circular BFS is used to influence direct and indirect

neighbors.

5.3.2 Aging Application

We will now present the implementations of our Aging Application components.

Select Geometry

The separation of the "types’ of geometry is done with a simple delete node (Figure 5.67). We

enter the symbol names for all the groups that should be aged a particular way.

typeA_Geo

Figure 5.67: Selecting the type of geometry with a Delete node.
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deepening

Figure 5.68: The Deepening node.

Deepening

Deepening is our implementation (Figure 5.68) of the first aging technique we have mentioned
in the Simulation Chapter.
An example of this tool can be seen in Figure 5.69, where a mesh gets deeper every simu-

lation frame until a hole opens.

Figure 5.69: Usage example of the Deepening node.

The subnetwork hiding under the node is show in Figure 5.70. First we select the input filter
primitives. After we calculate the point normals we use a python script to perform deepening.
This involves moving the points along their normal, but in the opposite direction, multiplied
by the amount of aging and the wall depth. Then we use another python script to remove
primitives that have all of their points completely destroyed. Next we use an anti-aliasing script,
which moves every point by the average of its alive neighbor” vectors. These vectors are the
difference between the point in question and its neighbors that are not yet destroyed. Points that
have no destroyed neighbors will stay in place (assuming that our primitives are quads) while

the rest will tend to move away from the hole.

Peeling

We now move to the implementation of the Peeling component (Figure 5.71).

The parameters of the nodes include an input filter, tolerance values for the dissapearance
of the outer and inner layer and the depth of the inner layer. An example can be seen in Figure
5.72. The first image shows a visualization of the Composite attribute value (the amount of
aging), and the second image shows the effects of peeling. We should point out that the peeling

tool itself does not texture the layers.
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Figure 5.71: The Peeling node.

Implementation wise, we first filter the geometry to get the right primitives. Then we create
anew attribute for primitives named ’aging’. The value of the attributes are equal to the average
value of the aging attribute of each point. This is done in a python script. Subsequently we use
a delete node to select the primitives that belong to the inner layer, based on their aging value.
We extrude those primitives by the depth of the outer layer. We repeat this process to open a

hole. See Figure 5.73

Nolnsert

We have two implementations of this node. The first version deletes the primitive if even one of
its points are fully destroyed. The second version deletes the primitive only if all of its points are
fully destroyed. We have found that the first implementation suits objects like support beams,

while the other suits objects like windows and doors.

5.3.3 Pipeline

Now that we have presented all of the tools and techniques used in the simulation and aging

process, we will briefly present an implementation of our simulation pipeline. First take a
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Figure 5.73: Subnetwork in Peeling node.

look at Figure 5.74. The network illustrates an implementation of the Simulation Pipeline we
presented in the Simulation Chapter. First we create a mass model, then we split its components
and then split its facades. Next we use the procedural model as input to the Simulation process.
Finally we apply weathering effects on the procedural model by using the simulation model as

a reference.

Figure 5.74: Overview of all pipeline stages.

The inside of the simulation process can be seen in Figure 5.75. First we subdivide our
original model to form a grid model, and create the simulation attributes. We then transfer
semantics from the procedural model and finally run the simulation. The second input of the
simulation component is a model that will be used for ray cast collisions.

Figure 5.76 shows an example of what goes on in the Transfer Semantics Component. As

expected we make use of the Transfer Support node to transfer semantics from the procedural
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Figure 5.75: Simulation Process subnetwork.

model to our grid model. We use one node for each different component: windows, doors,

gates, beams, etc.

—N 3 = —5
<0 | o -
—0 o o —

Figure 5.76: Inside the Transfer Semantics component.

Next we will dwelve inside the simulation component. In Figure 5.77 we illustrate the
subnetwork inside the simulation component. The first node is used to initialize the simulation
model that will be used to store attributes from the previous simulation frames. The next node
contains all of the simulation related nodes, such as Rain Casting, Cascade and Collapse (See
Figure 5.78).

The Apply Aging component contains three subnetworks, each dedicated to a different type
of weathering effect (Figure 5.79). The type A is for surfaces that need to be deepened, type B

is for peeling, and type C is for the no-insert effect.
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Figure 5.77: The simulation component.

.I

Figure 5.78: Subnetwork of the simulation step.

Figure 5.79: Inside the Apply Aging component.
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6.1 Procedural House

Using the CGA Shape grammar tools that we implemented we have created a traditional Cypriot
mudbrick house (Figure 6.1).

The images of Figure 6.2 show the different stages of the development of the building,
starting from the Mass Modeling stage, then the Facade Split Operations (the shader is used to

show the seams) and finally the Application of Geometry.

6.2 General Degradation

Here we will demonstrate general degradation of the mudbrick house we built. To speed up
the simulation we have created several points of weakness as seen in the grayscale image of
Figure 6.3. We run the simulation for 5 frames before we show the next render, so that the
changes are clearer. Notice how the degradation spreads to neighbouring points. All three

aging application techniques can be seen. Deepening is used for the roof tiles, Nolnsert is used
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4

Figure 6.1: Renders of the procedural house.

Figure 6.2: CGA Shape Grammar procedure.

to remove the wooden beams when there is no support, and Peeling is used to peel layers of the

mudbrick wall and stone wall.

6.3 Humidity Destruction

Now we will demonstrate the effects of humidity from rain on the rate of deterioration of a
surface. For this example we have constructed a simple box shaped building with a single slope
roof and stripped away part of the protective layer of the roof to allow for rain to flood into
the sublayer. We created two cases: one where the building is completely unprotected, and the
second one has a tall brick wall protecting it from the rain. For reference the rain is falling from

the right side of the building. Observe how in the bottom row pictures (no wall protection) the
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Figure 6.3: Degradation of the mudbrick house.

roof collapses in a few simulation frames. See figure 6.4 for a visual comparison.

0.2cm

Figure 6.4: Effects of rain on building degradation.
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6.4 Support Resistance

In the next set of images we will demonstrate how a roof collapses with and without the existence
of underlying support structures. Figure 6.5 shows the gradual degradation of a roof without
any supporting beams. As you can see, there seems to be no limit on how much the hole spreads.

The frames were simulated at intervals of 10 frames.

Figure 6.5: Degradation of roof without supporting beams.

In Figure 6.6 we illustrate the same test but with a more sturdy roof. It is apparent that with

the existence of supporting structures, the degradation rate decellerates.
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Figure 6.6: Degradation of roof with supporting beams.
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7.1 Conclusion

We have shown you a aging simulation pipeline as a proof of concept. The simulation extension
as we have shown can be integrated in procedural algorithms such as CGA Shape. The grid-
model approach of representing aging attributes has potential for realistic simulation, as each
point of the building has a sense of space and interaction with neighboring points. Ray Tracing
can be used to simulate rainfall, graph propagation algorithms can be used to simulate the flow
of fluids and mathematical formulas can be used to affect points over time.

We have included means to store the simulation attributes of the building so that they can be
used for later frames, which allows us to follow an iterative method of progressive degradation
rather than a time-based formula method. The iterative approach makes sure that the simulation
flows from one state to the next in a logical order while allowing stochastic behavior; whereas
time-based functions have to be deterministic in order for this to be the case.

We have also introduced simple methods for presenting degradation in buildings. Artists

can ofcourse use their skills and creativity to create more intricate aging tools.
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7.2 Future Work

We believe that procedurally based aging has a lot of potential in benefiting the graphics in-
dustry. However our work has a lot of room for improvement before reaching the goal of
mainstream attention. For that reason we have listed a number of issues that our team will try

and solve in the future.

Interior Spaces

Since our aging tools allows for the opening of holes through the surface of a building an inter-
esting problem arises. The procedural algorithm that we have chosen focuses on constructing
the exterior surface of a building without giving any thought for the interior spaces. That of
course can be solved by incorporating procedural algorithms that given a volumetric space
attempt to create an interior space. We have mentioned one example in our Previous Work

section (Chapter 2).

Debris

Debris and rubble give the viewer pieces of information regarding the way that the building
collapsed. The lack of this detail can easily arouse the suspicion of human observers and break
the realism of the scene. Of course this is not the case if the disappearance of that mass has an in-
game explanation. One possible solution is to detect areas of collapsed surfaces and the use of
ray casting to place a debris model on a solid surface below the that surface. Additionally artists

could use procedural algorithms to generate a random pile of rubble if variety is of concern.

Structural Damage

Our simulation pipeline as of now is concerned mostly with surface level degradation. Extreme
forms of structural damage caused by catastrophes such as earthquakes, tornadoes and floods
require knowledge of the building’s underlying supporting structure. This is admittedly the
hardest problem to solve, especially without the use of manual configuration. There are without
a doubt ways to procedurally create a building in way similar to how builders create houses, but

we haven’t explored that possibility yet.
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Performance

Although in-built Houdini SOPs are highly optimized, our custom python scripts do not have
that advantage. In cases where expensive graph algorithms need to run on our grid model a
significant drop in performance will be noticed. One way to deal with this problem is to simplify
the code as much as possible at the expense of accuracy. Another way to increase performance
is to lower the resolution of the grid model. Alternatively the code can be written with parallel
programming in mind. As of now our scripts make use of a single thread, thus parallelizing

them will greatly improve performance.

Usability

Our priority was to make the simulation pipeline work and not to make industry grade tools.
Despite that our CGA procedural building tools themselves were designed to be straightforward
and easy to use. One only needs to drop the OTL on the current workspace, connect the inputs
correctly and get the results. On the other hand our simulation tools are a bit more clunky to
use.

An important usability issue is the fact that our simulation only moves forward frame by
frame. If an artist needs to jump ten frames, he will need to wait for the simulation to run
frame by frame until that point. On top of that, if the artist needs to compare a simulation result
from a previous point he will need to restart the simulation and recompute all the frames until
that point. This is undesirable for two reasons: A) It takes too long for the artist to go to the
wanted simulation frame and B) restarting the simulation and recomputing the frames might
get a completely different result due to the stochastic elements in the simulation. Thus we have
thought of storing all of the versions of the simulation on disk once they have been calculated.
All of these states can be accessed freely simply by moving the animation slider to the desired
frame. The artist will also be able to restart the simulation with different parameters with the

press of a button.
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