

Individual Diploma Thesis

IMPLEMENTATION OF A CLIENT - SERVER

SYNCHRONIZATION ALGORITHM FOR AN ONLINE PET

INFORMATION MANAGING SERVICE

Georgios Moullotos

UNIVERSITY OF CYPRUS

DEPARTMENT OF COMPUTER SCIENCE

MAY 2017

UNIVERSITY OF CYPRUS

DEPARTMENT OF COMPUTER SCIENCE

Implementation of a Client - Server Synchronization Algorithm for an Online Pet

Information Managing Service

Georgios Moullotos

Supervisor

Chryssis Georgiou

The Individual Diploma Thesis was submitted for partially meeting the requirements of

obtaining the degree of Computer Science of the Department of Computer Science of the

University of Cyprus

Acknowledgments

Many people are to thank for their assistance and role in completing this thesis. Firstly, I

would like to express my gratefulness to my research supervisor, Associate Professor

Chryssis Georgiou, for granting me the great opportunity of working with him. His guidance,

support and contribution were really important to conclude this thesis. I would also like to

thank my friends and fellow students from my undergraduate years for being there for me

whenever I needed them and for the countless hours we spent studying and discussing our

subjects. Also, I would like to thank my personal friends that were there for me to cheer me

up when I needed it the most. Moreover, I would like to express my admiration and gratitude

to the founders, Kyriakos Stavrou and Demos Pavlou, and to all the team of the 11Pets

Startup Company for their huge assistance in completing this work and for the priceless

knowledge they have shared with me. Last, but of course not least, I would like to thank my

family for believing in me, bearing me and being the greatest of all supports anyone could

wish for.

Abstract

The Online Pet Information Managing Service is basically one of the numerous services that

the Startup Company 11Pets has to offer. The main service that the company offers, is a

platform consisting of several interconnected clients (web services and mobile apps) which

allows its users, among others, to maintain information regarding pets and their wellbeing.

This information is stored on the local database that each device that owns the application

maintains. For the simple reason that each user owns more than one devices, the ideal

scenario for a system is to be able to provide a way to maintain these different databases

consistent between them. This offers the user the ability to switch between the devices owned

and carry out the same tasks without any differences. Of course, to provide such features a set

of issues have to be considered regarding the environment of the system. Some of these

particularities are:

• Mobile environment provides no guaranties regarding communication with servers

and requests.

• Such features should run on background of mobile applications and not allocate too

much resources.

• Most cost should be put on device’s and not on server for scaling.

• A clean solution, from a software engineering perspective is needed, as

implementation goes on iOS as well.

 The study and implementation of an algorithm that will satisfy the above particularities and

will provide the synchronization of data amongst devices, as well as the study of the general

problem of synchronizing data is the subject of this Individual Diploma Thesis.

TABLE OF CONTENTS

Chapter 1 .. 1
1.1 Motivation .. 1
1.2 Purpose ... 2
1.3 Methodology .. 3

1.4 Contributions.. 4
1.5 Thesis Organization ... 5

Chapter 2 .. 6
2.1 Introduction .. 6
2.2 System Architecture ... 7

2.3 Unique Sequence Number (USN) .. 8

2.4 Conflict Resolution .. 9

2.5 Conclusion ... 10
Chapter 3 .. 12

3.1 The Synchronization Algorithm .. 12
Chapter 4 .. 20

4.1 Introduction .. 20
4.2 Required Structures .. 20

4.3 Unit Tests ... 24
Chapter 5 .. 26

5.1 Introduction .. 26

5.2 Apache to Volley ... 26
5.3 Special Cases ... 29

5.4 Multiuser Scheme .. 31

5.5 Implementing the Synchronization Algorithm .. 33

5.6 Conflict Resolution Mechanism .. 38
5.7 Debugging .. 41

Chapter 6 .. 46

6.1 Introduction .. 46

6.2 System Usage ... 46
Chapter 7 .. 57

7.1 Metrics Overview... 57
7.1 Metrics Evaluation ... 58

Chapter 8 .. 61

8.1 Summary .. 61
8.2 Future Work ... 62

Bibliography .. 64

LIST OF FIGURES

FIGURE 1 - SYSTEM ARCHITECTURE ... 8
FIGURE 2 - SYNCHRONIZATION SCENARIO .. 9
FIGURE 3 - CONFLICT RESOLUTION SCENARIO .. 10
FIGURE 4 - SYNCHRONIZATION CYCLE ... 13

FIGURE 5 - REFERENCED ENTITIES .. 14
FIGURE 6 - PROCESS SERVER CHANGES - ENTRY DELETED ON SERVER 15
FIGURE 7 - PROCESS SERVER CHANGES - ENTRY NOT DELETED ON SERVER 17
FIGURE 8 - PROCESS DEVICE CHANGES .. 18
FIGURE 9 - CLIENT - SERVER COMMUNICATION .. 21

FIGURE 10 - DELETION SIDE EFFECTS ... 22

FIGURE 11 - APACHE ... 27

FIGURE 12 - VOLLEY ... 27
FIGURE 13 - UPLOAD FILES ... 28
FIGURE 14 - DOWNLOAD FILES ... 29
FIGURE 15 - SPECIAL CASE - SEEDED MAINTENANCE TYPES .. 31

FIGURE 16 - MULTIUSER SCHEME ... 32
FIGURE 17 - PHASE A - SETUP ... 34

FIGURE 18 - PHASE B - PROCESS SERVER CHANGES ... 35
FIGURE 19 - PHASE C - PROCESS DEVICE CHANGES .. 36
FIGURE 20 - PHASE D - PROCESS FILES ... 37

FIGURE 21 - CONFLICT RESOLUTION INTERFACE .. 41
FIGURE 22 - ADD PET .. 47

FIGURE 23 - PET GALLERY .. 48

FIGURE 24 - PET SCHEDULE .. 48

FIGURE 25 - PET DAILY CARE ... 49
FIGURE 26 - PET MEDICAL .. 49
FIGURE 27 - ADOPT ... 50

FIGURE 28 - PROFESSIONALS .. 51

FIGURE 29 - REGISTER .. 52
FIGURE 30 - RESTORE ... 53
FIGURE 31 - SYNCHRONIZE ... 53
FIGURE 32 - SETTING UP ... 54
FIGURE 33 - PROCESSING DATA .. 54

FIGURE 34 - DOWNLOADING FILES ... 55
FIGURE 35 - UPLOADING FILES ... 55
FIGURE 36 - CONFLICT RESOLVING ... 56

FIGURE 37 - SYNCHRONIZING AN EMPTY DATABASE FOR THE FIRST TIME 58
FIGURE 38 - SYNCHRONIZING WITHOUT ANY CHANGES .. 59
FIGURE 39 - SYNCHRONIZING WITH ONE NEW ENTRY .. 59
FIGURE 40 - SYNCHRONIZING WITH ONE UPDATED ENTRY .. 60

file:///C:/Users/bizsp/Dropbox/ADE-11Pets%20Synchronization%20Algorithm/ADE_Georgios_Moullotos_948390.docx%23_Toc483837723
file:///C:/Users/bizsp/Dropbox/ADE-11Pets%20Synchronization%20Algorithm/ADE_Georgios_Moullotos_948390.docx%23_Toc483837724
file:///C:/Users/bizsp/Dropbox/ADE-11Pets%20Synchronization%20Algorithm/ADE_Georgios_Moullotos_948390.docx%23_Toc483837725
file:///C:/Users/bizsp/Dropbox/ADE-11Pets%20Synchronization%20Algorithm/ADE_Georgios_Moullotos_948390.docx%23_Toc483837726
file:///C:/Users/bizsp/Dropbox/ADE-11Pets%20Synchronization%20Algorithm/ADE_Georgios_Moullotos_948390.docx%23_Toc483837727
file:///C:/Users/bizsp/Dropbox/ADE-11Pets%20Synchronization%20Algorithm/ADE_Georgios_Moullotos_948390.docx%23_Toc483837728
file:///C:/Users/bizsp/Dropbox/ADE-11Pets%20Synchronization%20Algorithm/ADE_Georgios_Moullotos_948390.docx%23_Toc483837729
file:///C:/Users/bizsp/Dropbox/ADE-11Pets%20Synchronization%20Algorithm/ADE_Georgios_Moullotos_948390.docx%23_Toc483837730
file:///C:/Users/bizsp/Dropbox/ADE-11Pets%20Synchronization%20Algorithm/ADE_Georgios_Moullotos_948390.docx%23_Toc483837731
file:///C:/Users/bizsp/Dropbox/ADE-11Pets%20Synchronization%20Algorithm/ADE_Georgios_Moullotos_948390.docx%23_Toc483837732
file:///C:/Users/bizsp/Dropbox/ADE-11Pets%20Synchronization%20Algorithm/ADE_Georgios_Moullotos_948390.docx%23_Toc483837733
file:///C:/Users/bizsp/Dropbox/ADE-11Pets%20Synchronization%20Algorithm/ADE_Georgios_Moullotos_948390.docx%23_Toc483837734
file:///C:/Users/bizsp/Dropbox/ADE-11Pets%20Synchronization%20Algorithm/ADE_Georgios_Moullotos_948390.docx%23_Toc483837735
file:///C:/Users/bizsp/Dropbox/ADE-11Pets%20Synchronization%20Algorithm/ADE_Georgios_Moullotos_948390.docx%23_Toc483837736
file:///C:/Users/bizsp/Dropbox/ADE-11Pets%20Synchronization%20Algorithm/ADE_Georgios_Moullotos_948390.docx%23_Toc483837737
file:///C:/Users/bizsp/Dropbox/ADE-11Pets%20Synchronization%20Algorithm/ADE_Georgios_Moullotos_948390.docx%23_Toc483837738
file:///C:/Users/bizsp/Dropbox/ADE-11Pets%20Synchronization%20Algorithm/ADE_Georgios_Moullotos_948390.docx%23_Toc483837739
file:///C:/Users/bizsp/Dropbox/ADE-11Pets%20Synchronization%20Algorithm/ADE_Georgios_Moullotos_948390.docx%23_Toc483837740
file:///C:/Users/bizsp/Dropbox/ADE-11Pets%20Synchronization%20Algorithm/ADE_Georgios_Moullotos_948390.docx%23_Toc483837741
file:///C:/Users/bizsp/Dropbox/ADE-11Pets%20Synchronization%20Algorithm/ADE_Georgios_Moullotos_948390.docx%23_Toc483837742
file:///C:/Users/bizsp/Dropbox/ADE-11Pets%20Synchronization%20Algorithm/ADE_Georgios_Moullotos_948390.docx%23_Toc483837743
file:///C:/Users/bizsp/Dropbox/ADE-11Pets%20Synchronization%20Algorithm/ADE_Georgios_Moullotos_948390.docx%23_Toc483837744
file:///C:/Users/bizsp/Dropbox/ADE-11Pets%20Synchronization%20Algorithm/ADE_Georgios_Moullotos_948390.docx%23_Toc483837745
file:///C:/Users/bizsp/Dropbox/ADE-11Pets%20Synchronization%20Algorithm/ADE_Georgios_Moullotos_948390.docx%23_Toc483837746
file:///C:/Users/bizsp/Dropbox/ADE-11Pets%20Synchronization%20Algorithm/ADE_Georgios_Moullotos_948390.docx%23_Toc483837747
file:///C:/Users/bizsp/Dropbox/ADE-11Pets%20Synchronization%20Algorithm/ADE_Georgios_Moullotos_948390.docx%23_Toc483837748
file:///C:/Users/bizsp/Dropbox/ADE-11Pets%20Synchronization%20Algorithm/ADE_Georgios_Moullotos_948390.docx%23_Toc483837749
file:///C:/Users/bizsp/Dropbox/ADE-11Pets%20Synchronization%20Algorithm/ADE_Georgios_Moullotos_948390.docx%23_Toc483837750
file:///C:/Users/bizsp/Dropbox/ADE-11Pets%20Synchronization%20Algorithm/ADE_Georgios_Moullotos_948390.docx%23_Toc483837751
file:///C:/Users/bizsp/Dropbox/ADE-11Pets%20Synchronization%20Algorithm/ADE_Georgios_Moullotos_948390.docx%23_Toc483837752
file:///C:/Users/bizsp/Dropbox/ADE-11Pets%20Synchronization%20Algorithm/ADE_Georgios_Moullotos_948390.docx%23_Toc483837753
file:///C:/Users/bizsp/Dropbox/ADE-11Pets%20Synchronization%20Algorithm/ADE_Georgios_Moullotos_948390.docx%23_Toc483837754
file:///C:/Users/bizsp/Dropbox/ADE-11Pets%20Synchronization%20Algorithm/ADE_Georgios_Moullotos_948390.docx%23_Toc483837755
file:///C:/Users/bizsp/Dropbox/ADE-11Pets%20Synchronization%20Algorithm/ADE_Georgios_Moullotos_948390.docx%23_Toc483837756
file:///C:/Users/bizsp/Dropbox/ADE-11Pets%20Synchronization%20Algorithm/ADE_Georgios_Moullotos_948390.docx%23_Toc483837757
file:///C:/Users/bizsp/Dropbox/ADE-11Pets%20Synchronization%20Algorithm/ADE_Georgios_Moullotos_948390.docx%23_Toc483837758
file:///C:/Users/bizsp/Dropbox/ADE-11Pets%20Synchronization%20Algorithm/ADE_Georgios_Moullotos_948390.docx%23_Toc483837759
file:///C:/Users/bizsp/Dropbox/ADE-11Pets%20Synchronization%20Algorithm/ADE_Georgios_Moullotos_948390.docx%23_Toc483837760
file:///C:/Users/bizsp/Dropbox/ADE-11Pets%20Synchronization%20Algorithm/ADE_Georgios_Moullotos_948390.docx%23_Toc483837761
file:///C:/Users/bizsp/Dropbox/ADE-11Pets%20Synchronization%20Algorithm/ADE_Georgios_Moullotos_948390.docx%23_Toc483837762

1

Chapter 1

Introduction

1.1 Motivation 1

1.2 Purpose 2

1.3 Methodology 3

1.4 Contributions 4

1.5 Thesis Organization 5

1.1 Motivation

In the modern era, cloud computing and data are thriving. The need for synchronization is

essential in order to provide consistency amongst data. Synchronized data give the advantage

to their owner to manage them from any device that has the system’s application installed.

However, keeping the data stored only on the cloud is a bad practice and can lead into many

unwanted situations. First of all, what it is done when an internet connection is not available?

What happens if the server falls? The application can simply do nothing as all of the data is

unreachable. That is why, there is a need to keep data stored locally as well.

The 11Pets is a pet-centric company that offers a platform consisting of several

interconnected clients that help its users to maintain information regarding pets and their

wellbeing [13]. These platforms basically are an android application, an iOS application and

a web application. The number of the users of the 11Pets android application is about eighty

thousand (80,000). Day by day this number is increasing rapidly and the piece of information

that comes up with these users becomes more and more valuable. What happens now when a

family, that are responsible for taking care the same pet, want to have the application on their

own device but have the same piece of information among each other? Imagine that one

member of this family feeds the pet and informs the application about this event. How can the

rest of the family be informed so they will not proceed, on their turn, to feed the pet? This is

the problem that the synchronization algorithm of this thesis is called to solve. These actions

and data will be propagated amongst devices sharing the same accounts and help people

2

coordinate in order to take care of their beloved pets. Thus, the algorithm will not only

benefit the users with the advantages we have seen but will also allow the company to gather

up all of this important information. The vision of 11Pets is to unite all pet-interested parties

and create a large ecosystem on where they will communicate with each other. These

interested parties can be professionals in the field of pets, like vets and trainers, pet shelters

and rescue centers as well as each one of us that love and care for pets.

Each individual system must be in place to provide some guarantees based on the

environment of the system in question [3]. The environment of our system consists of the

following particularities that need special attention:

• Regarding the mobile environment:

o No guaranties are given about the communication with the server.

o Build-in classes and their methods are evolving rapidly.

o Speed is essential.

o Must be lightweight. Features should run on background and not allocate too

much resources.

• Our application’s database scheme is evolving as new features are implemented.

• Most cost should be put on devices and not on server for scaling.

• A clean solution, from a software engineering perspective is needed, as

implementation goes on iOS as well.

With this in mind, there is a need for a mechanism that will synchronize all of the devices

that want to share their data and keep them consistent between each other.

1.2 Purpose

In order to achieve all that was described so far, we need to put together a wide range of

techniques regarding the computing field, some of which we will see in the chapters to come.

Synchronization is the capability of maintaining the same piece of information alongside all

devices sharing the same account and the main server [4]. At this point, it is worth

mentioning that a main body of the algorithm studied on this Individual Diploma Thesis

preexisted on paper as a draft, designed by members of the 11Pets Company. We did a lot of

modifications in order to fit it to our system’s needs and we proposed and discussed a lot of

changes and improvements to its basic structure. So basically, what we are asked to do is,

starting from the initial scheme of the database, to implement a mechanism that would

synchronize the data with all of the particularities our system has. Our goal, therefore, is to

design and implement a synchronization algorithm that will solve the data sharing problem

3

we have studied earlier and meet all of our expectations. The implementation of this

algorithm is the subject of this thesis.

1.3 Methodology

To achieve our final goal, which is the implementation of the synchronization algorithm,

we need to recognize and organize all of the tasks that must be done. The tasks presented

below, concern both the implementation of the algorithm as well as various structures and

mechanisms that are essential for the algorithm to be functional. The methodology way we

followed is:

• General study of the problem: the synchronization problem as well as the conflict

resolution problem and similar concepts were studied.

• Study and understanding of the algorithm: as mentioned before the algorithm

existed in a primitive form on the paper. In depth study and understanding of the

algorithm was essential in order to become confident enough to start and complete

its implementation.

• Implementation of required structures, on the application and on the main server,

that will allow sending and receiving data from both of these sides to each other:

we have two main structures that needed implementation, the DTOs (Data

Transfer Object) and the DAOs (Data Access Object).

• Study and implementation of Unit Test to check the correctness of the conversion

from DAO to DTO and vice versa: the unit tests are a special piece of the whole

application development cycle and the way of their designing and implementing

was studied before implemented.

• Conversion of android application requests to the server from apache protocol to

volley: For a better communication with the server, both for prior existing

requests of the application and for the new requests that came with the

implementation of the synchronization algorithm, we converted all of the

communication from apache to volley. The implementation of such requests was

done with the use of asynchronous tasks.

• Handling special cases: apart from the usual tables that were included in the

synchronization cycle there were some tables that needed special handling.

Automatically generated entries must be created in a deterministic way and seeded

data should be the same for all devices.

4

• Implementation of the algorithm: the existing drawings on the paper were

transformed into working code using the supportive structures we talked about on

earlier bullets.

• Implementation of the conflict resolution mechanism: this mechanism is able to

dynamically detect conflicts and provide three options, discussed on a following

chapter, in order to solve them.

• Debugging of the algorithm: numerous tests on local and live versions were done

in order to prepare the algorithm for its final releases.

• Empirical Evaluation: in this thesis, we scratched the surface of some performance

metrics of the algorithm. These are time complexity of some essential operations

of the algorithm. In future stage a more analytic study and evaluation of the

algorithm will be done to proceed to optimizations as well as a study to find the

best moments on a usage of the app to start the synchronization algorithm.

1.4 Contributions

Summarizing all of our efforts in this Individual Diploma Thesis the main and most

important contribution is the deployment of the synchronization algorithm on the devices of

the Company’s users. We are very pleased that we were able to reach the end of the line and

provide the users with something more practical and efficient than what they were

accustomed to use. In short, here is a list of what we have accomplished:

1. We took an algorithm on paper and studied it.

2. We implemented it and while doing so we:

a. Found cases that the database’s schema and assumptions of the algorithm

did not match.

b. Found types of data that needed different handling (automatically generated

entries and seeded tables).

c. Found conflict resolution problems.

d. Run different tests and methods of debugging.

e. Data sanitization (clean up user’s databases, e.g. delete zombie entries)

We proposed a set of solutions for each individual case and picked the most

appropriate to solve it.

3. Implemented a multiuser scheme.

4. Released the algorithm for public use as the main feature of the 11Pets android

application for data backup and retrieval.

5

1.5 Thesis Organization

So far, we have seen a summary of the various aspects that compose this Individual

Diploma Thesis. In the first chapter we began, by mentioning the reason this idea was born

and the need for its implementation. Afterwards, we set our main goal and our expectations

that must be reached until the end of this study. Later on, we focused on our methodology,

describing with more details what we have to implement from the very beginning to the end

of this Individual Diploma Thesis. We then separated the tasks in steps that have a logical

sequence. Finally, we studied our final results and evaluated ourselves and the work we have

done on this long journey of studying and coding.

So, in the chapters to come, we will be referring more specifically in the technical parts

and see how all of these combine together and compose the desired synchronization

algorithm. In the next chapter, we will study some general problems in the field of the

synchronization, conflict resolution and more. These studies will give us the desired

knowledge and influence so that we will be able to solve each of the issues we will have to

face. On the third chapter, we will study the implementation of our algorithm in depth by

dividing our implementation in separate pieces and analyzing both the algorithmic way of

thinking as well as the code itself. The fourth chapter will provide a manual of how the

algorithm behaves in the real world. Moreover, we will evaluate our algorithm and results on

the fifth chapter and finally, we are going to close this Individual Diploma Thesis with our

conclusions and future work on the sixth and last chapter of our work.

6

Chapter 2

Background and Related Work

2.1 Introduction 6

2.2 System’s Architecture 7

2.3 Unique Sequence Number (USN) 8

2.4 Conflict Resolution 9

2.5 Conclusion 10

2.1 Introduction

Synchronization refers to the idea that multiple client devices, sharing the same account,

are to link or handshake so as to reach an agreement depending on a set of data [1].

Synchronization is a general problem that has been studied in the computer science field for

many years. It all started with the need of low level processes to communicate with each

other in order to accomplish a specific task. The need of synchronization has moved towards

higher levels and now it finds appliance in all of the application’s layers. Synchronization

concerns both the communication between processes as well as the consistency of data. This

Individual Diploma Thesis focuses on the second aspect of synchronization, the data

synchronization. To achieve the data synchronization, a lot of patterns are known to exist

[11]. Each one of these synchronization patters is applying to some specific system’s needs

and comes with its benefits and liabilities. Synchronization is used by many known

applications and services to provide users the best experience in storing their data. Some of

this applications that use their own synchronization algorithms are Dropbox, iCloud, Google

Drive and many more [12]. Studying all these examples, we are called to combine them and

design our own synchronization algorithm that best fits our systems architecture and

environment.

7

2.2 System Architecture

By having a main server and a group of clients that communicate with the server, there

are many ways to achieve storage and synchronization of data. Firstly, a fully online

implementation may exist. This means that all data is stored only on the main server and all

devices must communicate with the server directly to fetch the needed data. Hence, working

offline is not possible. Another way to implement the synchronization is the fully offline way.

In this feature, each client keeps all of the data locally on its device. There is no

communication with the server and the data are not replicated or shared at all. Lastly, there is

the intermediate way of data storing and synchronization, which is the one we will use for our

system. In each synchronization execution, the data of the server and the device are

synchronized and kept updated on both remote and local devices.

As previously mentioned, the algorithm of this thesis will implement the intermediate

way of data storage. What a system basically gains from this method is both the ability to

work from more than one device as well as the capacity to work offline. Working offline is

essential for the 11Pets application because it maintains essential medical records that may

need to be accessed at any time. In order to implement this algorithm, we must study

numerous concepts and techniques that will allow this dynamic synchronization between the

main server and the local devices. Some of these techniques that are essential for our

implementation presented in the following sections.

An important characteristic of our system are the data conflicts. Conflict is the state of the

system where two or more replicas are found to have a piece of information that is different,

whilst it is considered as the most recent piece of information on all replicas [6]. In this case,

the system is called to be able to resolve it and restore balance with the correct piece of

information to dominate all others.

On our system, synchronization was achieved on the granularity of a database. This

meant that one is to send and receive the whole database as a file in order to backup and

restore it, respectively. This way doesn’t allow any resolution between conflicts because the

one file overwrites the other and it is hard to locate specific differences. What our algorithm

brings, is the granularity synchronization. Synchronization will be done separately for each

table and each record of the database. This is the harder of the two to implement, but it gives

the opportunity to handle inconsistencies dynamically and resolve them.

 Our system consists of a main server and lot of client devices. The system’s job is to

answer all of the clients’ requests and synchronize and store their data. Each device, on its

side, has a local database store on its memory. The database of our application consists of

numerous tables that are hierarchically structured. Meaning that there are references from one

8

table to the others and these connections synthesize together a tree. Our algorithm is

responsible to go through all of these tables and with the record granularity synchronization

to keep data consistent. In Figure 1 we depict a simple outline of our system architecture.

2.3 Unique Sequence Number (USN)

The synchronization algorithm targets at synchronizing the database of the granularity of

a record. For this specific reason, we added the Unique Sequence Number field [5]. The USN

is kept per record and shows the current version of this entry. The USN is only increased by

the server. The server keeps track of the greater USN of each record and is responsible for

updating this field. When a record is modified on the server or a device sends an update of

the record to the server, the USN of this record is updated and more specifically it is

increased. Next time another device wants to see the changes its database has with the main

server, it is not hard to track whether there are different USNs between the local record of the

device and the record stored on the main server. This is the most common way to track

differences between records on two different machines and this is the technique that we will

be using on our data. Such scenario is showed in Figure 2. On the left, we can see the server

having a newer version of the entry than the device has. After the synchronization, the two

entries are now the same. On the other hand, we have the same USN but with the entry being

Figure 1 - System Architecture

9

dirty on the device. When synchronized, the entry will be updated on the server and the USN

will be increased on both the server and the device.

2.4 Conflict Resolution

Ιn our system, a conflict occurs when two or more devices, starting from the same piece

of information, end up having different data while having the same version of information.

For example, consider the following scenario: Assume that the main server keeps a record

with USN of 25 and two devices that have their local copies updated and their USN of the

specific record set to 25. Now, both of these devices change this record on their local devices.

The first one to achieve synchronization with the main server will sent the updated entry to

the server and get the new increased USN. What happens when the second device starts to

synchronize with the server? The USN has changed on the server but so does the record on

the local device. Which is the correct piece of information?

There are many ways to resolve conflicts with each of them giving different participation

of the user. The most common way to resolve a conflict is to give the user the following three

options:

• Keep the remote piece of information, namely the data held on the main server.

• Keep the local piece of information, namely the local data of the device.

• Compare the timestamps of the two records and keep the most recent.

Figure 2 - Synchronization Scenario

10

As you may see these three ways of conflict resolution give the user the absolute privilege to

keep its desired piece of information. There are systems that may only provide two of the

three above options or even choose one of them without even asking the user about its

preference. We shall follow the above guideline and give our users the comfort to resolve

their conflicts the way they want. In Figure 3 that follows, we can see a scenario of a conflict

and its resolution. Two devices are synchronized with the server and thus have the same data.

Both modify their corresponding entries but the first device synchronizes first and sends its

update to the server. When the second device wants to synchronize a conflict is spotted. The

user chooses that the correct piece of information is its own and when the first device

synchronizes again the consistency of the data is restored.

2.5 Conclusion

Having all of the above general aspects well studied we come in place to see how all of

these apply to our problem. Our system consists of the server which contains the most

updated copies of our data. Each user, on the other hand, stores data on any number of

desired devices with each one having its own local replica. A numerous of particularities

Figure 3 - Conflict Resolution Scenario

11

depending our system must be considered. These particularities are the ones described in the

first chapter. Moreover, the communication and the initiation of the synchronization process

will be done by using a pull-based approach which suits better based on our system and its

particularities. As the authors of [1] explain, the pull-based approach is when the

synchronization algorithm’s launching is initiated from the clients and not the server. This

means that each device will launch the synchronization procedure to send and receive the

most recent data. Additionally, the ability to resolve conflicts comes to the hands of the users

with them called to decide the correct piece of information to keep.

All of the above is a general description of the basic ideas and the requirements of the

algorithm. We have studied our system’s structure as well as the technique to achieve the

synchronization. On the chapter following we are going to focus on the software engineering

part and implement the algorithm dividing all of the work in different groups of tasks.

12

Chapter 3

The Synchronization Algorithm

3.1 The Synchronization Algorithm 12

3.1 The Synchronization Algorithm

This chapter presents the algorithm that is to be implemented. The algorithm in question

is presented by the flow charts that follow. Each flow chart represents a phase of the

algorithm and it goes with the corresponding study of it. The split was done in order to be

able to focus better on the flow of the algorithm.

We have separated our algorithm into five (5) phases. The first phase is a preliminary

phase in order to get prepared for the algorithm and confirm that we are allowed to proceed

with the processing of data. The other four phases are separated into five (5) loops. The last

two (2) of these loops are completely independent and their job is to upload and download the

files that are pending. The remaining three loops (3) are connected with each other with one

of them including the other two. The outer of these three loops, as shown in the Figure 4, is

going through all of the database’s tables and processes the two loops shown in the flow

charts to follow. The two major phases that their combination gives us the synchronization

algorithm are the Process Server Changes and the Process Device Changes. First to come is

the Process Server Changes phase, in which all of the entries that the server has and are not

yet synchronized on the device are processed. Next to come is the second phase, the Process

Device Changes, in which the opposite procedures takes place. All of the new entries or

modified entries on the users’ devices, since the last synchronization cycle has taken place,

are sent to the server. To close our synchronization cycle, we process the files that are

pending to be sent to or received from the server.

13

We have studied, in earlier chapters, the usage of the Unique Sequence Number (USN)

field. On the subject of this, all records maintain their USN in order to know whether they are

up to date or not with the server’s records. At this point, it is worth mentioning the

DbTablesSyncInfo table. This table is created in order to maintain some essential

information about each table of our database regarding the synchronization. For each of our

database’s tables, we maintain one record in this table with some information, with the most

important being the tableName and the lastProcessedUsn. In this way, each time we

want to synchronize our device with the server we know, for each table we want to process,

the maximum USN we have processed so far. In consequence, we can identify changes that

the server has and the device has not and process them in the Process Server Changes. On the

other way around, we must identify which records are updated on the device but are not

tracked on the server. To identify these records, we use the dirty bit. This dirty bit exists in all

records just like the USN field and is set to 1 whenever a modification happens. This is a very

elegant and easy way to find out whether there are changes on the device for which our server

hasn’t been informed yet. As mentioned before, this procedure is followed for each table. We

have implemented the methods getLastProcessedUsn and setLastProcessedUsn

in the DbTablesSyncInfo to set and get the maximum USN of each table. We have also

Figure 4 - Synchronization Cycle

14

implemented the getUnsynchronizedEntries method that returns all of the records

that are dirty for each of our tables.

Now, we shall visit the referencedEntitiesExist methods. These methods are

responsible to check whether each entry’s fields that refer to another table, e.g. foreign keys

to the other table, exist. For example, assume an entry of the table Medications that has a

field called PetId and it’s a foreign key to the field id of the table Pets. If there is no entry

in the Pets table with an id equal the PetId of the Medication’s entry means that the

referenced entity doesn’t exist. That’s what the referencedEntitiesExist methods

do for each entry and its foreign keys. What should be done here is, that if the

referencedEntitiesExist method failed finding the entry, then the processing must

be stopped because some problem must have happened on the process of the foreign key’s

table and the entry wasn’t updated correctly. However, there is a scenario of the foreign key’s

entry not sent at all. This scenario is not an actual error and it is explained in the chapter 5

during the explanation of the debugging process. In case of this failure, we stop the

processing of the table and move forward. These cases are the error handling cases on our

flow charts. On the following figure, we can see the scenario we have mentioned above

alongside two more tables and referenced entities. The Species table, as we can see, has no

references to any other tables. The Medications table references the Pets table with the

PetId field, which with its turn references the Breeds table with the BreedId field and at

last the Breeds table references the Species with the SpeciesId field.

Let’s now focus our attention on the Process Server Changes loop. As we can see in

Figure 5, the loop starts only if the lastProcessedUsn is not equal to the maximum USN

the server maintains. With this comparison, we can find out whether there are records on the

server that are not yet synchronized on this device. We can retrieve the max USN of the

server with a request to the server, we will focus on all of our requests and their structure on

Figure 5 - Referenced Entities

15

Section 5.2. If the above condition is true, we move forward in our loop and request from the

server all of the records that have USN greater than the lastProcessedUsn our device

has. Meanly, all of these records are new or updated ones that our device hasn’t tracked yet.

For each record now we follow a certain procedure to figure out how to process this record

and update our data accordingly. To process each entry, we follow the decision tree

procedure below, with each indexing showing that we are moving inside the decision tree on

a subtree. The two figures below, Figure 6 and 7, separate the two main paths, the entry being

deleted on the server and the opposite.

Entry is deleted on the server

Case 1 - Entry doesn’t exist on device (e.g. is also deleted or no existing at all)

We update the last processed USN of our table and move on to the next entry

Case 2: Entry exists on device

First, we check if the entry is clean (clean is the opposite of dirty). If clean, we can safely

delete it and continue with the next entry. If dirty, we find ourselves facing our first case of

conflict resolution. The algorithm cannot safely decide which copy of the data to keep and

needs the help of the user to do so. After the choice is made, the selected entry is updated on

both the server and the device, it is marked as clean on the device and the last processed USN

of the table is updated accordingly.

Last processed
Usn on Device

 == Max USN on server

Request Max USN of Table
from server

No

Get Changes since Last
processed

Usn on Device

Returns all rows with USN >= X
that the user has access to

For each
unprocessed USN

Server entry
Deleted?

Yes

Server Id exists
on Device?

Yes

Device Entry
Clean?

Compare Modified
Dates and merge.

Conflict Resolution

No

Store last processed
USN as Last

processed USN on
device

Send updated
content with Usn to

Server

Server Replied
OK?

No ERROR HANDLING

Yes

 Copy Usn.
Mark clean

No

Delete From DeviceYes

Figure 6 - Process Server Changes - Entry Deleted on Server

16

Entry is not deleted on the server

Case 1 - Entry doesn’t exist on device (e.g. is also deleted or no existing at all)

We perform the referencedEntitiesExist check we mentioned before in order to see

whether the entries that the foreign keys concerning the entry were insert/updated correctly. If

it fails, we discard the change and stop the processing of this table. In case we continued and

another entry of the table was completed with success then the maximum USN of the table

would be updated. This would result in a scenario in which this entry would never be

requested again from the server. The correct changes will finally come with a future iteration

of the algorithm. On the other hand, if it succeeds we can write the new entry on the device

and update the last processed USN of the corresponding table in order to move on to the next

entry

Case 2: Entry exists on device

We again perform the referencedEntitiesExist check to see whether the entries

concerning the foreign keys were processed ok. If it fails, we discard the change and stop the

processing of this table. In case we continued and another entry of the table was completed

with success then the maximum USN of the table would be updated. This would result in a

scenario in which this entry would never be requested again from the server. The correct

changes will finally come with a future iteration of the algorithm. If it succeeds, we now

check whether the entry is dirty or clean on our device. If clean, we update the content of our

device’s entry with the server entry’s content and after we update the last processed USN of

our table we move on to the next entry. An entry is considered clean if it has not been

modified since the last time it was synchronized. If dirty, we find ourselves facing our second

and final case of conflict resolution. After the user chooses its preference, the selected entry

is updated on both the server and the device, it is marked as clean on the device and the last

processed USN of the table is updated accordingly. An entry is considered dirty if it has been

modified or deleted since the last time it was synchronized.

17

The Process Device Changes loop, shown in Figure 8 and that we are going to analyze

now, starts after the end of the Process Server Changes loop and it is much simpler than the

one analyzed above. This loop goes over each dirty entry of the device until it processes them

all. The dirty entries are the ones that were modified the devices and the server has not yet

learned about these modifications. Let’s have a look at the decision tree of this loop:

Entry is tracked on the server (exists on the server)

We send the updated content of the entry. We now receive the new USN from the server

which we store and mark our entry as clean in order to go on with the next entry.

Entry is not tracked on the server (doesn’t exist on the server)

We sent the new entry to the server. On the first communication with the server we receive

only the server id given to this entry and not the USN. After receiving the server id, we now

send a request to activate our entry. Then, we get a response from the server with the USN of

our entry. After marking our entry as clean, we can go on with the next entry. The double

communication is done to avoid having duplicate entries on the server with different USNs

and server ids.

Last processed
Usn on Device

 == Max USN on server

Request Max USN of Table
from server

No

Get Changes since Last
processed

Usn on Device

Returns all rows with USN >= X
that the user has access to

For each
unprocessed USN

Server entry
Deleted?

No

Server Id exists
on Device?

Yes

Device Entry
Clean?

Compare Modified
Dates and merge.

Conflict Resolution

No

Store last processed
USN as Last

processed USN on
device

Send updated
content with Usn to

Server

Server Replied
OK?

No ERROR HANDLING

Yes

 Copy Usn.
Mark clean

Referenced
Entities Exist

Yes

Copy Server
Content.

Update Usn. Mark
clean.

Yes

No Referenced
Entities Exist

ERROR HANDLINGNo

No

Write New
entry on
Device

(write the
USN)

Yes

Figure 7 - Process Server Changes - Entry not Deleted on Server

18

Moreover, we have the Download Files and Upload Files Phases. The files of the app are

stored locally on each of the devices’ memory. To represent these files in the app we

maintain the Media table. In the Media table, alongside some fields, we have the path field

which is a String indicating the path in the device that the corresponding file is stored in order

to be able to read it. To download the files from the server we must track our Media entries to

whether they are pending to be downloaded or not. This tracking is done with the

pendingDownload field. The pendingDownload field is set to true for each Media

entry received from the server with the synchronization algorithm. All files with their

corresponding media entry with pendingDownload equal to true are requested from the

server. After their download, this field is set to false. On the other hand, to upload the files

needed, we have the pendingUpload field in each on our media entries. All files that are

added or modified have their corresponding media’s entry pendingUpload field set to

true. All files with pendingUpload equal to true are sent to the server. When the server

receives the file, the corresponding Media entry is modified and has its pendingUpload

field set to false. On the next synchronization cycle the Media entry will be sent on the device

and the device will now have the same Media entry with the pendingUpload field set to

Request Max USN of Table
from server

Last processed
Usn on Device

 == Max USN on server

Yes

Is Tracked by
Server?

Send new entry

No

Yes
Send Updated

Content with USN
Yes

Server Replied
OK?

Copy Server Id

Yes

Server Replied
OK?

No

 Copy Usn.
Mark clean

Yes

No

Activate Entry
Copy Usn.

Mark clean

For each dirty entry

ERROR HANDLING

Figure 8 - Process Device Changes

19

false. Next, we will study our software stack and the structures needed for the algorithm to

run.

20

Chapter 4

Software Stack

4.1 Introduction 20

4.2 Required Structures 20

4.3 Unit Tests 24

4.1 Introduction

One of our system’s particularities is the need for a “clean” algorithm from a software

engineering perspective. All of this work is going to be transferred from the android

environment to the iOS. Of course, each one of the two environments have its own

particularities and structure. But even so, the two of them should follow the same software

engineering design and stack. In this specific chapter, we will study the low-level structures

that the synchronization algorithm needs. These structures are those that are going to be

transferred, in the future, on the iOS as well.

4.2 Required Structures

In order to be able to execute the synchronization algorithm there are some data

structures that must be implemented. The two main structures are the DAO (Data Access

Object) and the DTO (Data Transfer Object). Alongside these two structures, our application

already has the classes that represent the tables of our devices’ database, called the Entities.

The DAOs already exist in our application and they are the classes that are responsible for

converting the raw data that exist in the database to the Entity object of each table’s class. But

even so, we are going to add a new method for each DAO that is essential for our algorithm

to run. In addition to this, all DAOs extend the SynchronizableTable class. This class

consist of a number of functions that are responsible for the updates, deletes and insertions of

entries for the tables and are already implemented on our application in order to function

21

properly. We are going to add some new methods that will be needed for the synchronization

algorithm. The SynchronizableTable class is implemented for all DAOs and all of its

methods are generic, meaning that they can be executed by each Entity class that extends

them with the same way. The DTOs are the middle classes between the server and the

application. They can take an Entity object class and convert it into themselves, creating the

DTO that can communicate with the server and vice versa, thus to create an Entity object

class from themselves. In Figure 9, we can see how the communication is done, starting from

the raw data of each device’s database to the server.

With all the above in mind let’s now get into the real code and see what we have

implemented for our DAOs and DTOs. All of the code we are going to present are from the

Android Studio written in the programming language Java.

In each table’s DAO

deletionSideEffects method: This method is called each time an entry of a table is

deleted. It is responsible to delete all entries of the other tables that depend on the deleted

entry. For example, if you delete a Surgery entry then all of the media entries (images) and

note entries that are related with this surgery must also be deleted. The

deletionSideEffects method of the Surgeries table is shown in Figure 10.

Figure 9 - Client - Server Communication

22

Now you may wonder why the implementation of these methods is so important. Consider

that these methods don’t exist. Then all media and note entries of each surgery entry,

consider the above scenario, will not be deleted and will be synchronized. This will happen

for all non-deleted entries of each table’s that is dependent of the deleted entry. But this is not

the main problem here.

In SynchronizableTable

All DAOs extend this class and all of these methods are generic, namely they process and

return data for each table with the same way but depending on each table’s fields and

structure (We will focus on the most important of them):

prepareForSync method: this method will be called one time for each table when the

application is updated to the version that the synchronization is included. It is responsible,

just like its name says, to prepare the tables for the synchronization algorithm. This includes

adding UUIDS (Universally Unique Identifier) to all entries that don’t have one. The UUID

is a field for each entry that is unique and will help us identify same entries on the server and

the device. This is important to be done because some entries that were created in earlier

versions of the application may not have UUIDs on them. In addition to this, the

prepareForSync method makes all entries that are deleted non-dirty. Just like the

UUIDs, some entries on previous versions where deleted and their dirty field indicated them

being dirty. This must be corrected because we don’t want to send to the server and sync

entries that are deleted on the devices.

Figure 10 - Deletion Side Effects

23

replaceCorrespondingEntity method: the replaceCorrespondingEntity

method is responsible to replace an entry on the device from the one retrieved from the

server. This method will be called on three occasions. The first one is when we process the

server changes and an entry that exists on the server is not dirty on the device. We simply

replace it by using this method. The other two usages of this method is on the conflict

resolution feature. It will be called if an entry that is processed is dirty on the device but the

server maintains the same information about it. This may happen when a user changes an

entry and sets the same data. There is no need to launch the conflict resolution, we can simply

replace the entity on the device. The last one is when the user from the conflict resolution

options chooses the entry from the server.

deleteCorrespondingEntity method: the name of this method declares exactly its

use. This method is called only when the server maintains a deleted entry and its

corresponding entry on the device is clean. It’s important to mention that the

deletionSideEffects method will be also called. This is done to avoid having entries

that exist on the device and depend on this entry but they were not synced yet so they don’t

exist on the server. This means that the synchronization algorithm will not deleted on any

later stage.

correspondingEntityExists method: we have studied our algorithm using our flow

charts and we have seen that there are two points where we check whether the entry of we are

currently processing from the server exists on the device. This is where this method serves

our synchronization algorithm.

isCorrespondingEntityDirty method: as all methods we have studied, this method

declares its usage only with its name. It tells us whether the entry processed is dirty or clean.

correspondingEntityIsCleanAndNoServerChanges method: this method is an

optimization on our synchronization algorithm. It will skip an entry processed if it is clean

and there are no updates on it on the server.

In each table’s DTO

The DTO, as mentioned before, is the object responsible for the communication of the device

with the server. Its fields may differ from the entities because the server may maintain

different names for each field or may not need to receive some fields. This is what the

transformation of DTO to entity and the opposite essentially means.

fromDomain method: this method takes an entity object of the table and transforms it and

returns the DTO object of the table.

toDomain method: the opposite of the toDomain method. Taking a DTO object and

returning an entity object of the table.

24

referencedEntitiesExist method: we have analyzed the concept of this method on

our previous sections. This method makes reality what we have said before by checking

whether the entries that this entry depends on exist on the device. As we said before, the

failure of this method means that a problem has occurred on a previous table and we have to

abandon this table for now and proceed to the next one.

4.3 Unit Tests

During the implementation of our DTOs we wrote more than forty (40) new classes, one

for each table, with an average of three hundred (300) lines of code in each one of them. How

can we validate that all of that code doesn’t contain mistakes or bugs? The code is compiling

successfully but we need to find a way to be sure that all of the fields of each entity are

converted in the correct way into the fields of the DTO and the opposite. The Unit Tests are

here to help us check the above transformation. The most important characteristic of the Unit

Tests is that we can run as many of them without launching the application on any device.

That means that we don’t have to compile the whole app’s code each time and install it on a

device to check the tests. The framework of Unit Tests that was used was the Junit

framework [10]. This makes the process of the testing much more quick and effective.

 Each DTO is responsible to transform an Entity object to its corresponding DTO and the

opposite. To accomplish this, we have implemented the methods ToDomain, which takes a

DTO and transforms it into an Entity object, and FromDomain which takes a DTO and

transforms it into an Entity object. The Unit Tests now have to test these two methods of each

DTO class and make sure the convention is done right. Thus, for each table we have

implemented a test class which consists of three methods. As expected, the two methods are

called toDomain and fromDomain and it is easy to understand what they do. They are

responsible to check the transformation of DTO to Entity and the opposite. This must be done

by checking all the fields one by one and compare them to each other. To check whether each

field of the transformation was successful we execute the assertEquals method of the

Assert class that is contain in the Unit Tests package. This method takes as parameter two

objects, in our case two fields of the DTO and Entity we want to check, and returns true if

they are the same and false if not. We execute the assertEquals for each field of the

table tested. If any of the fields fails then we can revisit our code and correct any mistakes, if

all of the fields are the same then the test is successful. The third method in each of the tests

is the setUp method. This method is executed before any test starts. Its job is to create a

mock context, to be able to have access from the database and from there to read a random

25

entry. This entry will be transformed into the DTO using the fromDomain method of the

DTO class. The success of these transformation will be tested in the fromDomain method

of the test class. In case of a success we go on by using this DTO to create a new Entity

object, with the use of the toDomain method of the DTO, and again the toDomain

method of the test class will show us the result of the transformation.

With the above procedure being held for each one of our database’s table we were able to

successfully correct all of the mistakes done in our DTOs. We are now feeling confident that

the server and the application can communicate and successfully exchange data with the use

of the DTOs.

26

Chapter 5

Implementation

5.1 Introduction 26

5.2 Apache to Volley 26

5.3 Special Cases 29

5.4 Multiuser Scheme 31

5.5 Implementing the Synchronization Algorithm 33

5.6 Conflict Resolution Mechanism 38

5.7 Debugging 41

5.1 Introduction

What is to come in this chapter is the implementation of the algorithm itself. At the

beginning, we will explain the process of transforming our requests to the most updated

protocol that the android environment uses, the Volley. Later on, some special cases will be

studied as well as the importance of the multiuser scheme. Next, the implementation of the

algorithm and the conflict resolution mechanism are following. We will close this chapter

with one of the most important phases of each systems lifecycle, the debugging of it.

5.2 Apache to Volley

The most common way that android applications use to communicate with APIs and

servers is the Apache library [9]. Nevertheless, while the android development is evolving

more and more methods of the Apache library are becoming deprecated. Deprecated, in the

programming world, means that a method is not indicated to be used at any occasions

because the author is not making use of it or because a better alternative exists. The most

important though, is that the author is going to remove it on later updates of the library. With

all the above in mind, the 11Pets company decided this is a good opportunity for us to change

all of our communication from Apache to Volley Protocol [2].

27

Before doing this, we shall first study how Volley is implemented on android. While

studying Volley we found a major difference with the Apache protocol that will make our

conversion a little bit harder. The Apache is synchronous and the Volley is asynchronous.

This means that there was blocking behaviour on our Apache implementation which must be

implemented with a different way now. To get a better understanding of the difference

assume we have the following three lines of code on Apace and Volley shown in the

following figures.

Let’s say that both the apacheRequest method as well as the volleyRequest method

make a call to the server which returns them the value 5 and they assign x with this value.

What will the value that these two methods return when they are called? Most people would

say 5 but this is obviously wrong regarding the Volley implementation. The Apache

implementation, due to its synchronous and blocking way of working will wait for the

apacheRequest method to finish and then return the x which will have the value of 5.

Volley, on the other hand, due to its asynchronicity won’t wait the volleyRequest

method to finish. This means that the value that the x variable has stored and will be returned

will be 0. How can we solve this problem in Volley?

The implementation of execution chains will relief us from this problem and help us

build our requests. The execution chains are nothing more than a list of methods. Each

method in the chain does its job and when it finishes it calls the next method in the execution

chain. How to know that a method has finished its job? Volley uses call-back interfaces to

return the result of the Volley request. Volley requests implement two listeners, a listener that

will call the appropriate method of the call-back when the request was successful and an error

listener will call the method of the call-back interface on a response indicating failure. The

difficulty we encountered here is the need for fully restructuring the application’s

communication methods. The blocking way is gone, so the volley no longer provides us the

opportunity to execute more than one calls to the server in the same method. Thus, all of the

code that concerns the communication with the server must be totally refactored and

reordered in a new way.

Now that we know how to build our Volley requests with the execution chains let’s see

what kinds of features that need communication with the server we have in our app. To start

Figure 11 - Apache Figure 12 - Volley

28

with, we have the user account features. These are the login, register and forget password.

These requests only require one Volley request to the server. As a result, these features aren’t

so complicated to be transformed from Apache to Volley. Along with the user account

features, there are some more features that communicate with our server with the use of only

one Volley request. These requests include the Adopt and Blog, features of our company, the

Ping feature that is used for debugging reasons and the Google features that our app supports

which find nearby professionals. Though, we have three features of our app that require more

than one Volley request to the server. This means that the transformation from Apache to

Volley will be more complicated and the execution chains need more attention. The first two

features are the backup and restore features. For now, we need to make them work with

Volley until the synchronization is ready because it will replace them in order to store user’s

data. The following flow charts, Figures 13 and 14 show the backup and restore requests with

all their methods, which is basically the execution chain. Each method does a certain job or

request to the server and when it finishes it uses a call-back to call the next method in the

chain.

Start

Get Files To Upload List
Api/mobileBackup/latest

onCompletion

loopIndex < listsize

onCompletion

Upload Files
Api/mobileBackup/

True False

On Chain Completion

onSuccess_loop

onFailure

Login And Retry onFailureonSuccess

On Chain Completion
Get Files To Upload List

Api/mobileBackup/latest

onCompletion

loopIndex < listsize False

On Chain Completion

True

Upload Files
Api/mobileBackup/

onSuccess_loop

onFailure

On Chain Completion

Figure 13 - Upload Files

29

The third and final feature than needs conversion from Apache to Volley is the Upload

Reports feature. This feature uploads reports, basically the logs that the app is producing,

whenever an error is produced on any user’s device. This is one of the most important

features of the app because it gives us a feedback about bugs that happened and were not

spotted while developing the app. This feature uses one Volley request for each log file it has

to upload.

With all these implemented, tested and validated we released a version of the app that

now uses Volley for all of its communication instead of Apache. On Section 5.5, we are

going to study the implementation of the synchronization algorithm which just like all above

features will be implemented with the Volley protocol.

5.3 Special Cases

To change the topic and return back to our application’s structure, lets study some

special cases of ours. What we have called special cases are tables of our database that are

different, by some means, from the other tables and call for special handling. We are going to

study the two most important special cases, the auto-generated entries and the seeded tables.

For a start, there are the auto-generated entries as we like to call them. The auto-

generated entries are produced dynamically from the application itself when needed. The

table that maintains these auto-generated entries is the Event Instances table. These entries

Start

Get Files To Download List
Api/mobileBackup/latest

onCompletion

onSuccess_loop onFailure

tryToLogin False

On Chain Completion

True

Login And Retry

loopIndex < listsizeTrue False

On Chain Completion
Download And Save Files

Api/mobileBackup/ filname /
latest

onSuccess

Get Files To Download List
Api/mobileBackup/latest

On Chain Completion

onFailure

onSuccess_loop

onFailure

On Chain Completion

onSuccess_loop

onFailure

On Chain Completion

Figure 14 - Download Files

30

concern Food, Medication, Supplies and Daily Maintenance tables that on their term want to

produce some Reminders or Notifications based on some Repetitions that the user chooses.

More precisely, the application gives the user the opportunity to add single or repetitive

Reminders or Notifications for each of its pets Food, Medication, Supplies or Daily

Maintenance. If these Reminders or Notifications are to last forever, then of course, the

application cannot produce and create all of the Event Instances entries because this would

clearly be devastating. What is needed here, is a mechanism that periodically produces the

next Event Instances need after the ending of the current Event Instances.

Even after the implementation of the mechanism, the synchronization algorithm came to

bring up some problems regarding these auto-generated entries. Let’s assume there is a

Medication entry that is synchronized on two devices and produces its auto-generated Event

Instances. On the one device now, the pattern of the Medication is changed. Thus, instead of

let’s say a Reminder on 09:00 every day we have two Reminders on 12:00 and 20:00 every

day. The auto-generated Event Instance entries of the two devices would be different now.

When the synchronization comes now the Event Instances are mixed up and the Medication

will have scheduled Reminders both on 9:00 and on 12:00 and 20:00 each day. The solution

came by adding a new table, the Epochs, which will be responsible for maintaining the same

pattern for each Foods, Medication, Supplies or Daily Maintenance entry, produce the

appropriate Event Instances and delete all wrong Event Instances, e.g. those that don’t match

up with the specific Epoch.

Secondly, there are the seeded tables. Seeded tables are the tables of our database that are

completely or partially the same for each user. For example, the Species table is a completely

seeded table. There are four Species entries, the dog, the cat, the rabbit and the other. They

are the same for all databases and no one can add, delete or modify any entry. Another

example, this time of a partially seeded table, is the Maintenance Type table. This table,

describes the daily maintenance of the pets like, bath, ear and teeth cleaning and more. There

are numerous seeded categories but the users are free to add any new Maintenance Type they

want. The server, on its hand, keeps all of these seeded entries one time, meaning that all of

the users share these entries with the server and each other. To achieve the above, the seeding

of these entries inserts them in the user’s databases with a static UUID which results in being

the same as the server entries.

As already mentioned, some of our seeded tables can be characterized as partially seeded

because the users can add new entries on them and modify or delete those entries. The

problem comes with the Maintenance Type table, a table on which the application gives the

user to modify the seeded entries. The modifications correspond to whether the Maintenance

Type would be visible to the user and the position of the Maintenance Type on the

31

corresponding list. Following up our earlier statements about synchronizing the seeded

entries, any change of a seeded entry on one device would be propagated to the server and

with its turn to the other devices when they synced! This scenario is more than unwanted for

our system. Just like the problem with the auto-generated fields we decided to add a new

table for this problem as well. Therefore, we created the Maintenance Type User Specific

Fields table that carries out this task of keeping the modifications made on the Maintenance

Type seeded entries. Whenever a modification is made on the application regarding the

seeded Maintenance Type, the information coming with this modification is stored in the new

table and respectively it is fetched from it whenever needed. At last, this results in a safe way

of synchronizing the Maintenance Type and the Maintenance Type User Specific Fields

tables without affecting all users and databases. In Figure 15, we can see the Maintenance

Type User Specific Fields table containing the fields that can be changed from the user

regarding the Maintenance Type table and referencing it with the MaintenanceTypeId

field.

5.4 Multiuser Scheme

With the arrival of the synchronization algorithm, our application should be refactored,

both on its database schema as well as its inner implementation in order to support multiuser

usage. A Multiuser scheme is a system on where more than one users can login on the same

device without their data being affected on any reasons. A Multiuser system gives the illusion

to its users that each one of them is executing alone [7]. Before the synchronization, all

entries stored in the application’s database were considered to belong to one user only. Well

Figure 15 - Special Case - Seeded Maintenance Types

32

of course, this is contradicting with idea of synchronizing and be able to transfer each user’s

data onto more than one devices.

To achieve the Multiuser Scheme two major tasks were needed. Firstly, the database

schema should provide a way of categorizing the entries based on which their owner is. For

this reason, we added the dbOwner field in every entry of every table of our database. This

field is a foreign key to the User Role Info table’s id field, in order to know which of the

users stored in the database its owner is. Also, the User Role Info table needed modification

because up so far only one entry existed and was overwritten each time someone logged in

the device. From now on, each time a new user logs in from a device, a new User Role Info

entry is created and all of the entries added on the application, while this user is logged in, are

added with the dbOwner field being the id of this user. Finally, we went into the

application’s code and modified all of the reads and inserts to include the dbOwner field.

Meaning, that all of the entries insert include the corresponding dbOwner and only the

entries with the corresponding dbOwner field are read and retrieved from the database. The

Multiuser scheme, gives us the opportunity to the user to login from any device and retrieve

its data. In addition, when logging out his data stay safely hidden in the application without

others users of the device being able to modify or read them. In Figure 16, you can see a

graphic representation of a database maintaining the data of three (3) users.

Figure 16 - Multiuser Scheme

33

5.5 Implementing the Synchronization Algorithm

To continue, we have so far studied our algorithm in depth and we have implemented all

the necessary structures, and tested them, that the synchronization algorithm requires. Let’s

then get our hands dirty and start writing down the code of the algorithm based on what we

have seen so far. To make our algorithm easier to study we have split it into four phases.

Each phase represents a group of requests that carry out a feature of the algorithm. It is not

hard to understand that the two phases are the Process Server Changes and the Process

Device Changes that we have studied on Section 3.1. Those are the Phase B and Phase C of

the algorithm, respectively. Phase A is the Setup part of the algorithm, namely all of the

requests done to determine whether the synchronization is feasible. The last phase, Phase D,

is where all files will be synced. These files are the images that each user has stored in his

own device. For each phase, we will present a flow chart, with all the methods of the

execution chain, and explain for what each method is responsible. The colouring of the flow

chart isn’t random. The methods with green colour are the methods that execute a Volley

request, the orange colour represents methods that don’t communicate with the server, the

blue rhombus represent if statements and the circles, blue or purple, tell us where to go next.

The method οnChainCompletion is the method where we evaluate our outcome. It can

be called either when an error occurs and the sync will be stopped, the outcome will be the

appropriate error or when the sync finishes with success and the outcome will be the success

of our synchronization. We are now going to visit each phase and study it in depth.

Phase A – Setup

The Setup phase, shown in Figure 17, is here to execute all necessary work that is needed in

order to be able to execute the synchronization algorithm. Firstly, the user must be logged in

in order to execute any requests. Following the login request we have the sync gate feature.

This is a way to control whether the device is able to pass the synchronization gate or

whether it will be stopped. The sync gateway consists of two version numbers that are

checked. The first one is the database version of the device itself and the second is the server

version that the app is implementing. For example, if the app implements version 1 of the

server and the server is now on version 2, then it won’t allow the device to pass the gate and

synchronize. Also, if the device’s database is version 3 and the server requests a database of

version 4 and above then again the gate won’t be passed and the synchronization will not be

allowed. Next to follow is the registration of the device. This request registers the device to

the username of the user that tries to synchronize. The following two methods, the

34

setDbOwnership and checkDbOwnership have the responsibility to either confirm

that the device is owned by the account trying to sync or claim it if it is the first time this

device is being synchronized. If case of an account trying to synchronize a database that

belongs to someone else this will result in an error. The success of the above will transfer our

algorithm to the Phase B.

Phase B – Process Server Changes

The second phase of the synchronization algorithm is the Process Server Changes phase. We

are familiar with this phase because we have seen it again when we were studying our

algorithm on Section 3.1. The first thing this phase does is to initialize the table that is going

to sync. The initialization of the table that is going to sync is basically to set the correct DAO

and DTO classes alongside the correct names for the current table. After this is done, we

move on and request the server USN of the table from the server. We then read the device

USN of this table from our device. This is where the comparison of the server USN and

device USN is done. If server USN is not greater than the device USN we check whether we

are done with this table, if yes then we continue with the Phase C, if not that means he have

Figure 17 - Phase A - Setup

35

left entries unprocessed and we will return back to get the server USN. On the other hand, if

the server USN is greater than the device USN we request the server changes that concern our

account and that have USN in the range of device USN and server USN. For each of these

changes we follow a certain procedure to process it. This is done in the process server

changes method. This procedure is the one we discussed in Section 3.1. In Figure 18, you can

see the flow of the Process Server Changes phase.

Figure 18 - Phase B - Process Server Changes

36

Phase C – Process Device Changes

With the server sending all its changes to the device we shall go the opposite way now, send

the device changes back to the server. As Figure 19 shows, firstly, we evaluate the result of

the loop in Phase B. In case of an error we stop the sync, if all are ok we continue and with

the initUnsynchronizedList method we fetch all of our changes that must be send to

the server, these are all the dirty entries of our database. For each of our unsynchronized

entries we have two possible paths to follow depending if the entry is tracked by the server.

For existing entries, we send a Volley request with the updated entry. For the new entries, we

first send the new entry with a starting request and then another request follows to activate

the entry.

Phase D – Process Files

The 11Pets app gives users the opportunity to add images of their pets. Each image is

described in our database as a Media entry. These images, of course, cannot be stored in the

database but they are stored in the device’s storage. We have to make sure that we have a

way to synchronize these files as well because they are very important for the users. To

achieve that we added two new fields in our Media table, the pendingDownload and the

pendingUpload Boolean fields. The pendingDownload field is only kept in our local

database. On contrast the pendingUpload field is held at the server as well the server is

Figure 19 - Phase C - Process Device Changes

37

the one that modifies it. The pendingDownload field is set to false for each file the user

already maintains at the local storage. Each time a new Media entry the server sends us we

set its pendingDownload field to true. We also set a Media’s entry’s

pendingDownload field to true if we get an updated Media where the update concerns the

file. On our algorithm now, when we get the files to download from our

getFilesToDownload method we get all Media entries with pendingDownload true.

After we request and get these files we set the corresponding Media’s entry’s

pendingDownload to false. On the other hand, we have the pendingUpload field

which is set to true for each Media entry that has not yet synced with the server. The

pendingUpload field is set to true whenever we change an existing Media’s entry’s file or

we add a new Media entry and file. We are going to send to the server all the files that have

pendingUpload true in their corresponding Media entry. This is done in the

getFilesToUploadList. Whenever a file is successfully sent, the server is responsible

to inform us so we can set the pendingUpload field to false. The server needs this field in

order to know from which Media entries there are files to expect. In Figure 20, we can see the

flow chart of the download and upload files from and to the server.

Figure 20 - Phase D - Process Files

38

5.6 Conflict Resolution Mechanism

Having data conflicts when synchronizing data between two or more devices is

inevitable. What plays important role about each company is how they are handled. It is not

unusual to share data with other people and never come across conflicts. But, this doesn’t

mean no conflicts happen, instead it means that the application you are using resolves

conflicts on its own without asking you, more possibly keeping the most recent piece of

information for each case. As stated earlier, we have decided to provide three options for

conflict resolution:

• Keep the local entry of the device.

• Keep the entry that the server has.

• Keep the last updated entry.

In this section we are going to study the occasions that conflict might happen on our

algorithm, some optimizations we added and the classes and interface of our mechanism.

Conflicts can occur on our app when two or more devices, sharing the same account,

modify the same version of an entry and try to synchronize. More specifically, assume two

devices with the same account that are synchronized and maintain the same piece of

information. Consider an entry of a pet that has the name X. The first device changes the

entry and sets the pet’s name to X1 and the second devices sets it to X2. The server maintains

the entry of the pet with the name X so far. The first device now synchronizes and updates

the entry on the server with the new name, X1. The synchronization results in the update of

the USN of the entry as well. When the second device starts the synchronization algorithm

notices that there are entries on the server with greater USN than the device’s USN. The

server sends this entry and that’s the point where we find out that the corresponding entry on

the second device is dirty! The above scenario can happen also in a case of deletion of the

entry from one of the devices. For example, the entry might have been modified on the first

device and deleted on the second or the opposite. Again, when the server sends the entries

with USN greater than the local one we will locate the conflict and try to resolve it. Based on

our algorithm’s design, the only part that conflicts are spotted is Phase B – Process Server

Changes. The algorithm’s logic and design guarantees us that this is the only place that we

will find conflicts. So, there is no other part of our code from where problems may occur due

to conflicts.

Before releasing the algorithm, we tried to figure out any optimizations that we could do

in order to launch the conflict resolution mechanism only when necessary. We came up with

a neat idea to avoid a group of unnecessary conflicts, the conflicts occurred but concern the

39

same piece of data. Based on our previous example, consider than both of the devices change

the pet’s name to X1. For the algorithm, it doesn’t matter if the entry has the same piece of

data, it is still dirty on the device which will trigger the conflict resolution mechanism. This

might be a valid conflict but the users don’t know how the algorithm is implemented and they

will be asked to resolve a conflict among two entries that are exactly the same! The

optimization comes to help us identify these cases and resolve them automatically without the

user knowing anything. We implemented the sameObjects method for this reason. This

method takes two objects as parameters, the local entity and the remote one. For each one of

them it calls the getFieldsListForConflictResolution method (analyzed in next

paragraph) and now we have the two lists with the fields that must be checked. This fields are

ConflictObject objects that we are going to study on the next paragraph. The method

checks one by one the fields of the two objects to find whether they are the same or not. If all

the fields are found being the same then we come to the conclusion that these two entities are

the same and there is no need to trigger the conflict resolution mechanism. If at least one field

of the entities differs then conflict resolution is really needed. There are two more

optimizations that we discovered while debugging our algorithm. These optimizations are

going to be presented in the following subsection, the debugging of the algorithm.

We have seen all the theoretical part of the conflict resolution but we have not yet written

any code that will handle them. Firstly, we need to create a class that will be able to describe

the fields of the database in order to be checked for conflicts. The ConflictObject class

was created for this job. This class is consisted out of 6 fields:

• Label – String: description of the field to help the user understand better that each

field represents

• Value – String: the value of the field in a string datatype. For example, if we have a

field that is integer and corresponds to an enumeration, here we will show the value of

the enumeration in the index of the integer that this field maintains

• ValueString – String: the value of the field – used only for String type fields

• ValueLong – Long: the value of the field – used only for long/integer type fields

• ValueFloat – Float: the value of the field – used only for Float type fields

• Type – Enumeration: values: String, Long, Float, Date. Determines which of the

above values will be used, the other two remain null and won’t be used by the object.

The Date type was added after the debugging of the algorithm and it is one of the two

optimizations we are going to study later. The Date type uses the valueLong field

but it is treated differently than the Long type.

40

The ConflictObject has four constructor methods, one for each of the above types. The

most important method of this class is the compareToByValue. This method takes a

ConflictObject object as a parameter and compares it with the ConflictObject

object on which it is called on. The comparison is made based on the type of the object on

which the method is called. If the object that was send as a parameter is a different type of

object, then the comparison stops and an error is produced. If the two objects are of the same

type, then their values are compared and the method returns true if they are the same and

false if not. As mentioned before, when a conflict is spotted, the local and remote object

create a list of ConflictObject objects with each object representing one field of the

object. This is done in the sameObjects method and by calling the

compareToByValue method on each of the ConflictObjects of the list we can find

whether a different exists an on what field of the entry. Another class that is used in the

conflict resolution mechanism is the SynchronizationConflict. This class is created

after the conflict is spotted and verified and it contains the two objects, the local and the

remote, and the name of the table that the conflict’s entity belongs to.

Having mentioned the getFieldsForConflictResolution, we shall refer

to where it is contained. We will also have the

getContextForConlflictResolution method that is needed for the

synchronization algorithm and goes with the getFieldsForConflictResolution

method. These two conflict resolution methods are created in each of the Entity classes of

each table of our database. The first one creates a list of ConflictObjects and returns it

to the caller. It is worth mentioning that we don’t create a ConflictObject for all of the

fields that the Entity maintains. There are some fields of each table that doesn’t make sense

or are not needed to be included and checked in the conflict resolution mechanism. For

example, for a Surgery entry there is no need to create a ConflictObject for the petId

field because this field cannot be changed. Ιn case of different petIds in two objects that

are said to be the same, we can say that we have a more general problem in our application

and not in the synchronization algorithm specifically. The second method, the

getContextForConlflictResolution returns a pair of Strings that are used in the

activityConflicts, the activity class that is shown to the user and takes the users input, as the

title and subtitle of the conflict. For example, for a conflict of a Surgeries entry, the title

returned is the name of the surgery and the subtitle is the name of the pet that the surgery

refers to.

How will we present the conflict to the user and help him decide how to resolve it?

The activityConflicts is the activity class that is responsible to present the conflict of

41

the algorithm to the user and guide the user to the correct decision. As you can see in Figure

21, the toolbar of the activity consists of the title and the subtitle. Some tables may have only

a title. The main screen has two columns, the local entity column and the remote entity

column. Each row of the columns is a ConflictObject object and all of the rows

constitute the list we described earlier. At the bottom of the screen, there are the three choices

we have given our users on how to resolve a conflict: keep the local entity, keep the remote

entity or choose the automatic resolution that will keep the most recent updated entry.

5.7 Debugging

Probably the most important part in the implementation of any system is the

debugging of it. When debugging, a developer has the opportunity to check all aspects of the

system created and all the corner cases that a user may produce. While debugging, someone

has the chance to spot the most important and bad bugs on the system. Of course, not all bugs

and errors in any system can be found while developing or debugging. That’s where error

logs and reports come in hand, to inform the company for corner case errors that were not

spotted without the real users and data.

Figure 21 - Conflict Resolution Interface

42

The debugging of our algorithm is divided to three phases. The first one was done

with fake data and without the algorithm being live in the users’ devices. This phase’s

purpose is to spot the large majority of the mistakes. Mistakes that create errors that cannot

be avoided during the synchronizing of a simple database and are very common. During this

phase the first synchronization cycle was launched. Generally, the first synchronization

cycles can be characterized as successful. The study in depth of the algorithm and the careful

implementation of its needed structures and the code of the algorithm contributed in this

result. In addition to this, we were able to find and correct mistakes that were made on the

conversion of the entities. For this, we have already done a lot of Unit Tests but those tests

were done on static objects and we have missed out some cases. This phase was also very

helpful to us on developing the Conflict Resolutions interface and methods. At the beginning,

all the fields of each Entity were shown during the conflicts and the conflicts testing showed

us that this will not be good for the actual users. So, we left the fields that really interest the

user and that make sense to the knowledge a user has for the data. In addition to this,

The second phase was the live data one. The algorithm was released and was

running on the background of the users’ devices and synced their data without users manually

triggering it. This triggering of the synchronization algorithm would happen ten seconds after

a user proceeded to any change that resulted in a write operation on the local database.

Coupled with a mechanism that prevented more than one synchronization algorithm to be

launched we were good to go. Of course, we asked the users for their permission before

proceeding with this feature! Also, the synchronization would only run if the user has done a

backup of the database with the last version, to prevent any mistakes of our algorithm to

result into data loss and also run only on WIFI connections so we won’t use the data of the

user for our purposes. Additionally, we disabled the conflict resolution cases and we added an

error logging mechanism when conflicts were found by the algorithm. With the one way

synchronizing we wouldn’t expect any conflicts to actually occur but thankfully we added

this logging and as we are going to see later, conflicts did occur! During this phase, we were

able to discover a very important bug that we couldn’t have spotted while the local

debugging. We received a numerous of errors reporting that devices tried to synchronized

Event Instances entries and Repetition entries while having their RepetitionId and

PetId null respectively. This was spotted by the referencedEntitiesExist method

which found the referenced Repetitions and Pets entities deleted. This error was a bug that

was created during a precedent release that was responsible to delete all of these entries.

Obviously, this release was defective and the debugging on the real data gave us the

opportunity to correct this wrong.

43

Now we shall refer to the two optimizations of the conflict resolution mechanism

that were discovered during our debugging. Firstly, we received many conflicts that occurred

on the date field of entries. Why did this happen? On both our app and server, the dates are

saved as long types and they are the timestamp of the date that they represent. The big

difference is that the server doesn’t keep milliseconds, this results in the last three digits of a

date converted to a timestamp from the server (the ToDomain method is responsible for

this) to be equal to 0. Consider now the scenario where a Surgery entry is synchronized with

the server and the date is stored with the three last digits to be different than the apps ones.

When this entry is modified and the synchronization goes through the Process Server

Changes phase, this entry will be found as dirty and its data will not only differ on the field

changed but also on the date. To solve this one, we added Date as the fourth type of our

ConflictObject object. While converting our date field to a ConflictObject we set

this last three digits as zero so they will not differ from the server’s. Although we added this

optimization we noticed conflicts to be reported, this time not only for the date field but on

other fields as well. How could this happen? While taking a better look at our algorithm and

the reports we could identify what was causing these conflicts to emerge. On a first

synchronization cycle, a new entry will be sent to the server during the Process Device

Changes phase. The update of the device’s USN field though, for each table, is done in the

Process Server Changes phase. So, when a second synchronization cycle was launched the

server sent that new entry we referred to before and the expected result was to be the same on

the device and the update of the device USN would be successful. What if the entry was

modified before a second cycle of the synchronization was launched? That was the case we

didn’t consider because the design of the algorithm basically needs two cycles to be

complete. To solve this problem, we decided to use the device id property. Each time an entry

was sent or updated from the device to the server during the synchronization, the server

would keep a field indicating from which device this transaction was done. Then, when the

server sent the entries back to the device, the device id that was stored before was sent

alongside the entry. If the device id was the same as the id of the device receiving the

changes then we know this is no conflict scenario and we should not do anything. The entry

of the device, being dirty, will be sent to the server on the Process Device Changes phase and

all will be good.

At the same time, a large group of non-existing referenced entities emerged. After

taking a better look at the errors we could identify that all were produced by the same user

and during a short amount of time. Following this observation and the error logs we were

able to understand what was going wrong. Let’s assume we are a user and we want to add

two new pets in our application. Whenever a new pet is added, the application creates new

44

entries for more than the Pets table. The entries for its maintenance are created, the

repetitions of any events that are automatically added, the Pet Extra Info which is used in

case of the pet being a father or a mother to another pet and more. Not to mention that all

these tables are processed after the pet table is processed. Considering this, we add our first

pet and after ten seconds the synchronization algorithm starts. Just when the synchronization

completes the Process Device Changes for the Pets table we add our second pet. It’s not hard

to understand that the second pet was not sent to the server because it was added after the pets

table was processed. As a result, when the algorithm moves on a table we mentioned above,

the entries of the second pet will be there and we will try to sync them. However, the

referenced entities of the pet won’t exist and we have ourselves the bug. This bug can be

characterized as a fake error because on a second synchronization algorithm all will be done

normally due to the fact that the pet entry will be synced firstly. The problem now, lies on the

fact that this can either be a fake error, just like the one described above, or a real case of a

referenced entity missing. Consequently, there was a need for a mechanism to clarify the fake

and the real errors. Based on the idea of the fake errors to be those that occur once, we came

up with a fast and easy solution. Each table in our database maintained a field called ffu01

and was null for all entries because it was not used for any reasons. Therefore, we used that

field to mark any entry that created the referenced entities problem. Whenever any marked

entry confronted the referenced entities for a second time an error report would be produced

indicating a real error. Each time a marked entry was able to find its referenced entities and

sync properly we would unmark the entity back by making the ffu01 field null again. For our

own good, this never happened and the mechanism worked.

Eventually, we move forward to our third and last phase of debugging. This phase is

more of a verification of the second phase’s success. This is where we should be able to get a

better view of whether our synchronization algorithm was successful. The procedure is

simple. Retrieve a numerous of user databases from their backups and push them into a

device of ours. Then login the same user’s account from another device and try to

synchronize all their data. If our algorithm is successful, the two devices should have the

exact same piece of information. All of the above of course will be done at a replicate server

of the original and will not affect at any point the real data and databases of the users. After

testing a numerous of databases, we came across a strange phenomenon that just needed a

moment of thinking to be solved. All of the data were transferred correctly, but the schedule

was empty. No food tasks, no medications tasks, no hygiene task nothing! Just a second of

thought was needed to understand that this was absolutely natural. All of these tasks on the

schedule of each device are Reminder entries which are produced based on the Medications,

Food and other entries that result into Event Instances. The Reminders though aren’t

45

synchronized because they are time specific and each device is responsible for its own

Reminders. For this reason, a call to the appropriate method of the Reminders Service created

all the schedule and all were back to normal. To conclude, our third phase was a success

without any errors being produced. As a result, we are ready to release the synchronization

live and inform the users so they can start taking advantage of it and its advantages over the

simple backup / restore operations.

In summary, our synchronization algorithm is ready to go live! We have carefully

implemented it, debugged it very carefully and treated all the necessary corner cases

accordingly to make our algorithm more efficient and secure. Following up, there will be an

explanation, like a brief manual, on how the synchronization feature actually works on the

devices.

46

Chapter 6

System Usage

6.1 Introduction 46

6.2 System Usage 46

6.1 Introduction

The 11Pets application offers a plethora of features to its users for taking care of their

pets. In this chapter, we are going to create a brief manual that focuses on the main features

that the application has to offer. Of course, we are going to include the synchronization’s

feature as well as some cases of conflict and its resolution.

6.2 System Usage

The most common action that takes place in the application is for someone to add a

new pet in the system. As you can see in the following figures, the main screen asks for the

user to add some more important information regarding the new pet. Some of this important

information includes the name of the pet, its breed and species, its gender and a profile photo

if the user desires to add one. In addition to this, a whole bunch of additional information

regarding someone’s pet can be added through the advanced mode feature. Information about

the registration data of the pet, its parents and much more. When the user verifies the pet’s

addition, the application recommends the user some reminders about the pet’s care (bath,

ear/nails/teeth/hair cleaning etc.) based on the usual habits of the pet’s species.

47

After the pet is added, through the screen of the pet’s details someone can choose one of the

four main categories of information each pet has. These categories are the following:

Figure 22 - Add Pet

48

Gallery Category – Figure 23

From here, the user can add photos or notes about the daily life of the pet and create a

timeline of all these events.

Calendar Category – Figure 24

All the reminders that concern the pet’s food, medication, supplies and daily care events

show up in here. The user can click on an event to see more details of it or mark it as done,

choose to skip it or snooze its reminder to fire up at a later time.

Figure 23 - Pet Gallery

Figure 24 - Pet Schedule

49

Daily Care Category – Figure 25

The pet’s foods, medication vaccines and daily care information goes in here as well as

measurements and many more.

Medical Category – Figure 26

In here, information like lab and genetic test results can be saved as well as the pet’s medical

conditions, allergies and any surgeries the pet might have gone through.

Figure 25 - Pet Daily Care

Figure 26 - Pet Medical

50

Moreover, the 11Pets company maintains a web platform for Pet Adoptions. On this

platform, various shelters or pet rescue centres can register and then login and create a page

for each of the pets that are available for adoption on their institution. The android application

is connected with this platform and all these pets that are available for adoption can be

virtually visited from the application as well. The interface of the android application

regarding the adopt is shown in Figure 27.

Another feature the 11Pets android application provide to the users is the Professionals

feature as shown in Figure 28. From here, the users of the application have the opportunity to

search for various types of professionals that are registered in the Google Maps Services [8].

The search can be done using either the current location of the user of any other location of

its choice. Also, there are many types of professionals to search for, like vets, breeders,

trainers and more or even search for any other type of professional the user wants to.

Figure 27 - Adopt

51

What is more, there are the features that concern this Individual Diploma Thesis, the

synchronization algorithm. To start with, in order to be able to use the synchronization’s

feature, one must register to the 11Pets community first. Figure 29 shows how the registration

can be done from the screens of the application.

Figure 28 - Professionals

52

As was previously stated, the 11Pets application used to give its users the opportunity to

backup and restore their data, to and from the server, in order to keep them safe and

replicated. With the start of the synchronization era, these requests won’t be used anymore. In

any case, we came up with a neat and smart way to keep the restore feature still available but

hidden from the eyes of the users. The restore feature might be needed in case of a user that

wants to restore its data but no synchronization runs were made before. This means that the

data the user is looking for can only be obtained from the restore feature. The secret restore

becomes accessible for use if the user holds the sync icon for five seconds as can be seen in

Figure 30.

Figure 29 - Register

53

To return to the subject of synchronizing, there are two ways to run the synchronization

cycle. The first one is done on the foreground and with the user’s command and the other one

is done in background whenever it is called as necessary by the application itself. The user

can manually launch the synchronization algorithm as shown in the following figure.

The following figures show the progress bar that is shown to the user while the

synchronization is running. The progress bar informs the user on which of the four phases of

the algorithm is currently running and the total progress of the algorithm.

Figure 30 - Restore

Figure 31 - Synchronize

54

Phase A – Setting Up – Figure 32

Phase B – Processing Data – Figure 33

Figure 32 - Setting Up

Figure 33 - Processing Data

55

Phase C – Downloading Files – Figure 34

Phase D – Uploading Files – Figure 35

Finally, if the synchronization results in a conflict then an icon appears on the toolbar of

some of the screens of the 11Pets application, the most commonly used screens. As it can be

seen on the following figure, with the user’s click on the icon the conflict resolution activity

is launched and the user is called to choose how to resolve the conflict that has occurred.

Figure 34 - Downloading Files

Figure 35 - Uploading Files

56

Figure 36 - Conflict Resolving

57

Chapter 7

Empirical Evaluation

7.1 Metrics Overview 57

7.2 Metrics Evaluation 58

7.1 Metrics Overview

An important phase in the lifecycle of a system it’s its evaluation. The task of evaluating

a system comes after the implementation is completed. The metrics obtained from the

evaluation can give the developer a better understating of the performance of the system and

help find various optimizations and improvements for the system. Regarding our system, we

will be focusing on the time needed for the main phases of the algorithm and the most

common transactions. At the meantime, the proper infrastructure was used to provide us with

metrics about the breakdown of the algorithm. This means that we have metrics that concern

each phase of the algorithm which will allow us to go even deeper and focus our efforts on

specific transactions and processes.

For our metrics, he used two individual devices. The first device was a Samsung Galaxy

A5 (2017) and the second device was a Huawei Nexus 6P. The table that follows overviews

the specifications of the two devices.

 Samsung Galaxy A5(2017) Huawei Nexus 6P

OS Android 6.0.1 (Marshmallow) Android 6.0 (Marshmallow)

CPU Octa-core 1.9 GHz Cortex-A53 Octa-core (4x1.55 GHz Cortex-

A53 & 4x2.0 GHz Cortex-A57)

RAM 3 GB 3 GB

For this first evaluation effort, we were able to obtain the following metrics:

• Synchronization of an empty database for the very first time

• Synchronization without any changes

• Synchronization with one new entry

• Synchronization with one updated entry

58

7.1 Metrics Evaluation

 What follows, are the metrics taken from the real time runs of the algorithm on the two

devices mentioned above. The metrics shown are an average of about 25 observations each.

Synchronization of an empty database for the very first time

Average = 41.4 seconds on Samsung A5 and 44.8 on Nexus 6P. In Figure 37, this metric

shows as the average of the time needed to a new user to synchronize for the first time. The

time taken is acceptable because all of the seeded entries are to be synchronized for the one

and only time. These entries are approximately one thousand (1000). The synchronization for

the very first-time metric will be extended in order to see the time needed for not empty

databases to sync for their very first time.

Synchronization without any changes

Average = 14.8 seconds on Samsung A5 and 13.4 on Nexus 6P. This is the simplest scenario

of synchronization. As we can see in Figure 38, the average time needed is very low and we

are very pleased for this. This is also a common scenario because the application gives its

users the opportunity to the synchronization to be launched whenever the application starts. A

future metric regarding the no changes synchronization could be the times this scenario

actually occurs compared to other synchronization scenarios.

Figure 37 - Synchronizing an empty Database for the first time

59

Synchronization with one new entry

Average = 16.1 seconds on Samsung A5 and 15.2 on Nexus 6P. The one new entry

synchronization is a scenario that may occur very often due to the fact that synchronization

launches after a modification is done on the device’s database. As shown in the following

figure, the average time differs from the no changes synchronization by about two (2)

seconds. This tells us that an addition of a new entry will only increase our sync time by an

average of two (2) seconds. The most important is that no difference was noticed when

adding entries on different tables. This shows stability of our server and extensibility on new

tables addition.

Figure 39 - Synchronizing with one new entry

Figure 38 - Synchronizing without any changes

60

Synchronization with one updated entry

Average = 15.2 seconds on Samsung A5 and 14.3 on Nexus 6P. Just like the new entry

synchronization, the updated entry synchronization is a common scenario due to the

launching decisions we have taken for our algorithm. In figure 40, we can see that the time

needed for this scenario compared to the no changes synchronization is higher by an average

of 1 second and lower than the new entry scenario by an average of 1 second. Again, just like

the new entry synchronization, the update time on different tables showed no difference

between them.

The most important conclusion that we were able to exclude from our metrics is the

consistency of the requests. All of our observations are very close to the average and no

important outliers came up. This means that the server is very trusty and responds to request

with fairness. Also, what we could understand is that there are no differences on times

synchronizing different tables. The flow charts of the updated and new entries presented

above include numerous tables and the times needed were the same. As a future work, the

breakdown of the algorithm will be evaluated in order to find the best optimizations possible

to improve our algorithm.

Figure 40 - Synchronizing with one updated entry

61

Chapter 8

Conclusions and Future Work

8.1 Summary 61

8.2 Future Work 62

8.1 Summary

As a final chapter, we shall take a moment to rethink all of the work we have done and

set our goals for what’s yet to come. We have started our work by getting a better

understanding of what we are actually trying to achieve. We got to know better the inner

structure and needs of the Startup Company and its users. An algorithm on a piece of paper

was presented to us, alongside a set of new concepts that were basically unknown to us. The

study and analysis of this algorithm resulted in a brainstorming of ideas and questions that

needed to become reality. A fair amount of time was consumed in the general study of similar

concepts and problems in order to get a more spherical idea and knowledge of what problems

we have to face. Some concepts are the Synchronization, the data Replication and the

Conflict Resolution.

Eventually, we were ready to start designing our flow charts and writing code down.

First of all, the Entities, DAOs and DTOs were implemented in their final form. All these

classes contained a lot of methods that had to be carefully designed because even a single

mistake would lead our data to become corrupted. Next, we implemented a Unit Test class

for each of our database’s tables and validated that all of the above structures worked as

expected. Moving on, the Apache to Volley transformation took place. A very important and

time-consuming task that gave the Startup Company the ability to move on with the

evolvement of the application. Having these implemented we were ready to create our

Synchronization class and merge all of these features together to complete the algorithm. The

four phases of the algorithm were presented and implemented with great caution.

Specifically, we implemented the Setup, Process Server Changes, Process Device Changes

and Process Files phases. From this moment and on, we were able to run tests on our

62

algorithm whenever we wanted. Before proceeding with tests and debugging though, we had

to design the conflict resolution mechanism. This mechanism, is consisted by a numerous of

class objects alongside an activity that is responsible to provide the user with the graphic

interface and handle its choice. To return to the subject of synchronizing, we initiated a series

of debugging phases that would help us spot any mistakes done or any bugs left behind. The

first phase was done locally inside the Company’s boundaries with some fake data. That was

helpful, but we are aware that live databases are not so clean and neat as a new one created

for debugging. Seeing that, the second phase included a silent synchronization release. I

mean, that the users were aware of an inter-company algorithm running on their devices but

without them knowing what it was doing and without seeing any results or actions to take

place. This is due to the fact that the algorithm was running on the background of the

application. Finally, we performed an experimental evaluation to obtain a better

understanding of the latency of the main system transactions.

8.2 Future Work

Although a large amount of time and recourses were needed so far, the 11Pets

company’s plans for the synchronization algorithm haven’t finished. It is no doubt that an in-

depth analysis of the metrics of the algorithm is needed. Namely, for every individual request

and for each of our database’s tables, the time of the communication between the application

and the server must be reported. Using all of these metrics, someone could find slow requests,

requests that carry a lot of information and could be split and so on. Moreover, a very

interesting study is the launching moments of the synchronization algorithm. Should the

synchronization algorithm run whenever a change is made? Should it run after x changes?

What if an entry changed contains essential information that must be propagated as soon as

possible to the other devices? Similarly, one may come up with a lot of great ideas and

questions that are interesting to consider and study. In parallel, the limits of the server in

terms of scalability and high contention will be tested in order to see whether it can respond

to great level of concurrent transactions. All the above thoughts, hide another large project

and set of concepts that the 11Pets is asked to conquer.

In the meantime, the 11Pets has widened its services and an iOS application is being

developed. Consequently, all of the material studied and implemented in this thesis will be

carried out on the iOS environment as well. As a matter of fact, all of the research and design

of the algorithm with its supporting structures are ready as a result of this work. What will be

needed is an initial study of the iOS environment and its capabilities. The Volley and the Unit

63

Testing are features that may differ from the android ones that we have implemented. When

this is accomplished, all of the ideas, the algorithm itself and the issues that may appear have

already been studied and all its left to do is the code transformation.

All in all, the synchronization algorithm has great potential to improve and become even

more efficient. The optimizations based on the metrics will result in an even faster and more

efficient algorithm. Finally, the iOS synchronization algorithm will potentially give us more

feedback about our algorithm’s efficiency and allow users that work on the iOS environment

to benefit from the 11Pets service as well.

64

Bibliography

[1] Andrew S.Tanenbaum and Maarten Van Steen, “Distributed Systems, Principles and

Paradigms”, 2nd Edition, 2007, Cited on pages 274-275, 303.

[2] Hu Jieping and Yang Shulin, “Research and implementation of Web Services in

Android network communication framework Volley”, IEEE-ICCSN, June 2014.

[3] Douglas B. Terry, Alan J. Demers, Karin Petersen, Mike J. Spreitzer, Marvin M.

Theimer and Brent B, Welch, “Session Guarantees for Weakly Consistent Replicated

Data”, In Proceedings of the 3rd International Conference on Parallel and Distributed

Information Systems (PDIS 94), IEEE-ICCSN, 1994, pp. 140-149.

[4] Jonathan P. Munson and Prasun Dewa, “Sync: A Java Framework for Mobile

Collaborative Applications”, Special Issue on Executable Content in Java, IEEE

Computer, 1997, pp. 59-66.

[5] Cristiana Amza, Alan L. Cox and Willy Zwaenepoel, “Distributed Versioning:

Consistent Replication for Scaling Back-end Databases of Dynamic Content Web

Sites”, In Proceedings of Middleware 03, pp.282-304.

[6] Wolfgang Gatterbauer and Dan Suciu, “Data Conflict Resolution Using Trust

Mappings”, In Proceedings of the 2010 ACD SIGMOD International Conference on

Management of data, pp. 219-230.

[7] Philip A. Bernstein and Nathan Goodman, “Concurrency Control in Distributed

Database Systems”, ACM Computing Surveys (CSUR), Volume 1 Issue 2, June 1981,

pp. 185-221.

[8] Manav Singhal and Anupam Shukla, “Implementation of Location based Services in

Android using GPS and Web Services”, IJCSI International Journal of Computer

Science Issues, Vol. 9, Issue 1, January 2012.

65

[9] Israel J. Mojica Ruiz, Meiyappan Nagappan, Bran Adams and Ahmed E.Hassan,

“Understanding Reuse in the Android Market”, ICPC, 2012, pp. 113-122.

[10] Riyadh Mahmood, Naeem Esfahani, Thabet Kacem, Nariman Mirzaei, Sam Malek

and Angelos Stavrou, “A whitebox approach for automated security testing of

Android applications on the cloud”, In Proceedings of the 7th International Workshop

on Automation of Software Test, June 2012, pp. 22-28.

[11] Zach McCormick and Douglas C. Schmidt, “Data Synchronization Patterns in Mobile

Application Design”, In Proceedings of the Pattern Languages of Programs (PLoP)

2012 conference, October 19-21, Tucson, Arizona.

[12] Paul Pocatilu, Catalin Boja and Cristian Ciurea, “Syncing Mobile Applications with

Cloud Storage Services”, Informatica Economica, vol.17, no.2/2013.

[13] https://www.11pets.com

	Chapter 1
	1.1 Motivation
	1.2 Purpose
	1.3 Methodology
	1.4 Contributions
	1.5 Thesis Organization

	Chapter 2
	2.1 Introduction
	2.2 System Architecture
	2.3 Unique Sequence Number (USN)
	2.4 Conflict Resolution
	2.5 Conclusion

	Chapter 3
	3.1 The Synchronization Algorithm

	Chapter 4
	4.1 Introduction
	4.2 Required Structures
	4.3 Unit Tests

	Chapter 5
	5.1 Introduction
	5.2 Apache to Volley
	5.3 Special Cases
	5.4 Multiuser Scheme
	5.5 Implementing the Synchronization Algorithm
	5.6 Conflict Resolution Mechanism
	5.7 Debugging

	Chapter 6
	6.1 Introduction
	6.2 System Usage

	Chapter 7
	7.1 Metrics Overview
	7.1 Metrics Evaluation

	Chapter 8
	8.1 Summary
	8.2 Future Work

	Bibliography

